US20070141600A1 - ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis - Google Patents
ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis Download PDFInfo
- Publication number
- US20070141600A1 US20070141600A1 US11/593,693 US59369306A US2007141600A1 US 20070141600 A1 US20070141600 A1 US 20070141600A1 US 59369306 A US59369306 A US 59369306A US 2007141600 A1 US2007141600 A1 US 2007141600A1
- Authority
- US
- United States
- Prior art keywords
- seq
- endometriosis
- polypeptide
- epp2
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 201000009273 Endometriosis Diseases 0.000 title claims abstract description 202
- 210000002966 serum Anatomy 0.000 title claims abstract description 48
- 102000036639 antigens Human genes 0.000 title abstract description 99
- 108091007433 antigens Proteins 0.000 title abstract description 99
- 239000000427 antigen Substances 0.000 title abstract description 98
- 102000003839 Human Proteins Human genes 0.000 title 1
- 108090000144 Human Proteins Proteins 0.000 title 1
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 98
- 229920001184 polypeptide Polymers 0.000 claims description 88
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 88
- 238000000034 method Methods 0.000 claims description 58
- 239000002773 nucleotide Substances 0.000 claims description 47
- 125000003729 nucleotide group Chemical group 0.000 claims description 47
- 239000000523 sample Substances 0.000 claims description 47
- 150000001413 amino acids Chemical class 0.000 claims description 44
- 238000012360 testing method Methods 0.000 claims description 30
- 238000003745 diagnosis Methods 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 17
- 108091033319 polynucleotide Proteins 0.000 claims description 15
- 102000040430 polynucleotide Human genes 0.000 claims description 15
- 239000002157 polynucleotide Substances 0.000 claims description 15
- 230000009870 specific binding Effects 0.000 claims description 12
- 239000013068 control sample Substances 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 8
- 230000027455 binding Effects 0.000 claims description 5
- 125000003275 alpha amino acid group Chemical group 0.000 claims 6
- 108090000623 proteins and genes Proteins 0.000 abstract description 200
- 102000004169 proteins and genes Human genes 0.000 abstract description 180
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 42
- 201000010099 disease Diseases 0.000 abstract description 30
- 230000002357 endometrial effect Effects 0.000 abstract description 21
- 238000003556 assay Methods 0.000 abstract description 12
- 235000018102 proteins Nutrition 0.000 description 175
- 210000004027 cell Anatomy 0.000 description 60
- 210000001519 tissue Anatomy 0.000 description 59
- 241000238631 Hexapoda Species 0.000 description 53
- 239000002299 complementary DNA Substances 0.000 description 50
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 48
- 230000009257 reactivity Effects 0.000 description 48
- 230000014509 gene expression Effects 0.000 description 45
- 238000001262 western blot Methods 0.000 description 29
- 238000002474 experimental method Methods 0.000 description 26
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 24
- 108091026890 Coding region Proteins 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 22
- 229940024606 amino acid Drugs 0.000 description 22
- 239000003550 marker Substances 0.000 description 22
- 108020004999 messenger RNA Proteins 0.000 description 22
- 150000007523 nucleic acids Chemical class 0.000 description 21
- 239000013592 cell lysate Substances 0.000 description 20
- 239000013598 vector Substances 0.000 description 20
- 238000000636 Northern blotting Methods 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 241000701447 unidentified baculovirus Species 0.000 description 18
- 239000006166 lysate Substances 0.000 description 17
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 17
- 108020004705 Codon Proteins 0.000 description 16
- 239000000499 gel Substances 0.000 description 15
- 238000001597 immobilized metal affinity chromatography Methods 0.000 description 15
- 102000039446 nucleic acids Human genes 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 12
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 12
- 108091008146 restriction endonucleases Proteins 0.000 description 12
- 239000000872 buffer Substances 0.000 description 11
- 238000009396 hybridization Methods 0.000 description 11
- 210000001550 testis Anatomy 0.000 description 11
- 210000001072 colon Anatomy 0.000 description 10
- 238000003119 immunoblot Methods 0.000 description 10
- 238000012544 monitoring process Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 210000000952 spleen Anatomy 0.000 description 10
- 238000010186 staining Methods 0.000 description 10
- 102100037334 E3 ubiquitin-protein ligase CHIP Human genes 0.000 description 9
- 101710187668 E3 ubiquitin-protein ligase CHIP Proteins 0.000 description 9
- 229920002684 Sepharose Polymers 0.000 description 9
- 108091081024 Start codon Proteins 0.000 description 9
- 239000012148 binding buffer Substances 0.000 description 9
- 239000000284 extract Substances 0.000 description 9
- 210000002307 prostate Anatomy 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 210000004291 uterus Anatomy 0.000 description 9
- 239000011534 wash buffer Substances 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 8
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 8
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 210000003567 ascitic fluid Anatomy 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 210000000265 leukocyte Anatomy 0.000 description 8
- 210000000813 small intestine Anatomy 0.000 description 8
- 210000001541 thymus gland Anatomy 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- 238000012512 characterization method Methods 0.000 description 7
- 210000004696 endometrium Anatomy 0.000 description 7
- 210000000987 immune system Anatomy 0.000 description 7
- 238000002357 laparoscopic surgery Methods 0.000 description 7
- 239000013642 negative control Substances 0.000 description 7
- 210000005259 peripheral blood Anatomy 0.000 description 7
- 239000011886 peripheral blood Substances 0.000 description 7
- 238000012408 PCR amplification Methods 0.000 description 6
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 6
- 108091036066 Three prime untranslated region Proteins 0.000 description 6
- 238000002869 basic local alignment search tool Methods 0.000 description 6
- 230000009089 cytolysis Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010828 elution Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- -1 AEBP-1 Proteins 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 238000003018 immunoassay Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 210000001672 ovary Anatomy 0.000 description 5
- 101000623061 Drosophila melanogaster 40S ribosomal protein S26 Proteins 0.000 description 4
- 101000608720 Helianthus annuus 10 kDa late embryogenesis abundant protein Proteins 0.000 description 4
- 101000608734 Helianthus annuus 11 kDa late embryogenesis abundant protein Proteins 0.000 description 4
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 4
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 108091005461 Nucleic proteins Proteins 0.000 description 4
- 206010033128 Ovarian cancer Diseases 0.000 description 4
- 238000012300 Sequence Analysis Methods 0.000 description 4
- 208000016599 Uterine disease Diseases 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 208000011099 endometrial disease Diseases 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 208000000509 infertility Diseases 0.000 description 4
- 230000036512 infertility Effects 0.000 description 4
- 231100000535 infertility Toxicity 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 108091093088 Amplicon Proteins 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 108091006054 His-tagged proteins Proteins 0.000 description 3
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 3
- 102000015271 Intercellular Adhesion Molecule-1 Human genes 0.000 description 3
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 239000006143 cell culture medium Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 239000012149 elution buffer Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000002175 menstrual effect Effects 0.000 description 3
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 3
- 210000004877 mucosa Anatomy 0.000 description 3
- 229910001453 nickel ion Inorganic materials 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 108091027963 non-coding RNA Proteins 0.000 description 3
- 102000042567 non-coding RNA Human genes 0.000 description 3
- 239000013610 patient sample Substances 0.000 description 3
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 3
- 238000011020 pilot scale process Methods 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 230000001850 reproductive effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- AOFUBOWZWQFQJU-SNOJBQEQSA-N (2r,3s,4s,5r)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol;(2s,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O.OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O AOFUBOWZWQFQJU-SNOJBQEQSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 2
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 206010014733 Endometrial cancer Diseases 0.000 description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010081520 Glycodelin Proteins 0.000 description 2
- 102000004240 Glycodelin Human genes 0.000 description 2
- 108010036652 HSC70 Heat-Shock Proteins Proteins 0.000 description 2
- 102000012215 HSC70 Heat-Shock Proteins Human genes 0.000 description 2
- 101000591312 Homo sapiens Putative MORF4 family-associated protein 1-like protein UPP Proteins 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- 108010085895 Laminin Proteins 0.000 description 2
- 102000007547 Laminin Human genes 0.000 description 2
- 101100288960 Mus musculus Lefty1 gene Proteins 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 2
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 102100034096 Putative MORF4 family-associated protein 1-like protein UPP Human genes 0.000 description 2
- 101710100170 Unknown protein Proteins 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000002491 angiogenic effect Effects 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 239000010836 blood and blood product Substances 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 210000003756 cervix mucus Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 201000003914 endometrial carcinoma Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000036407 pain Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 210000002536 stromal cell Anatomy 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 1
- 102100033714 40S ribosomal protein S6 Human genes 0.000 description 1
- ODPOAESBSUKMHD-UHFFFAOYSA-L 6,7-dihydrodipyrido[1,2-b:1',2'-e]pyrazine-5,8-diium;dibromide Chemical compound [Br-].[Br-].C1=CC=[N+]2CC[N+]3=CC=CC=C3C2=C1 ODPOAESBSUKMHD-UHFFFAOYSA-L 0.000 description 1
- 102100033824 A-kinase anchor protein 12 Human genes 0.000 description 1
- 101710148586 ADP,ATP carrier protein 1 Proteins 0.000 description 1
- 101710111394 ADP,ATP carrier protein 1, mitochondrial Proteins 0.000 description 1
- 101710102716 ADP/ATP translocase 1 Proteins 0.000 description 1
- 102100032533 ADP/ATP translocase 1 Human genes 0.000 description 1
- 108091006112 ATPases Proteins 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 108010009924 Aconitate hydratase Proteins 0.000 description 1
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 1
- 101710192173 Aldehyde dehydrogenase family 1 member A3 Proteins 0.000 description 1
- 102100039075 Aldehyde dehydrogenase family 1 member A3 Human genes 0.000 description 1
- 102100022712 Alpha-1-antitrypsin Human genes 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 102100029470 Apolipoprotein E Human genes 0.000 description 1
- 101710095339 Apolipoprotein E Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 102100030907 Aryl hydrocarbon receptor nuclear translocator Human genes 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 108010008629 CA-125 Antigen Proteins 0.000 description 1
- 102000007269 CA-125 Antigen Human genes 0.000 description 1
- 101150071146 COX2 gene Proteins 0.000 description 1
- 101000690445 Caenorhabditis elegans Aryl hydrocarbon receptor nuclear translocator homolog Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 102000003908 Cathepsin D Human genes 0.000 description 1
- 108090000258 Cathepsin D Proteins 0.000 description 1
- 108090000613 Cathepsin S Proteins 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 102000012272 Cholestanetriol 26-monooxygenase Human genes 0.000 description 1
- 108010022102 Cholestanetriol 26-monooxygenase Proteins 0.000 description 1
- 208000016216 Choristoma Diseases 0.000 description 1
- 102100038447 Claudin-4 Human genes 0.000 description 1
- 108090000601 Claudin-4 Proteins 0.000 description 1
- 102000001187 Collagen Type III Human genes 0.000 description 1
- 108010069502 Collagen Type III Proteins 0.000 description 1
- 102000047200 Collagen Type XVIII Human genes 0.000 description 1
- 108010001463 Collagen Type XVIII Proteins 0.000 description 1
- 102100036213 Collagen alpha-2(I) chain Human genes 0.000 description 1
- 101710126238 Collagen alpha-2(I) chain Proteins 0.000 description 1
- 102100033781 Collagen alpha-2(IV) chain Human genes 0.000 description 1
- 108010028780 Complement C3 Proteins 0.000 description 1
- 102000016918 Complement C3 Human genes 0.000 description 1
- 108010069241 Connexin 43 Proteins 0.000 description 1
- 102000001045 Connexin 43 Human genes 0.000 description 1
- 108010061635 Cystatin B Proteins 0.000 description 1
- 102100026891 Cystatin-B Human genes 0.000 description 1
- 102100039868 Cytoplasmic aconitate hydratase Human genes 0.000 description 1
- LEVWYRKDKASIDU-QWWZWVQMSA-N D-cystine Chemical compound OC(=O)[C@H](N)CSSC[C@@H](N)C(O)=O LEVWYRKDKASIDU-QWWZWVQMSA-N 0.000 description 1
- 239000005630 Diquat Substances 0.000 description 1
- 102100029952 Double-strand-break repair protein rad21 homolog Human genes 0.000 description 1
- 102100029791 Double-stranded RNA-specific adenosine deaminase Human genes 0.000 description 1
- 102000010778 Dual Specificity Phosphatase 1 Human genes 0.000 description 1
- 108010038537 Dual Specificity Phosphatase 1 Proteins 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 description 1
- 102100021451 Endoplasmic reticulum chaperone BiP Human genes 0.000 description 1
- 108010092408 Eosinophil Peroxidase Proteins 0.000 description 1
- 102100028471 Eosinophil peroxidase Human genes 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108091060211 Expressed sequence tag Proteins 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 102100035427 Forkhead box protein O1 Human genes 0.000 description 1
- 102000034286 G proteins Human genes 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 108090001064 Gelsolin Proteins 0.000 description 1
- 102000004878 Gelsolin Human genes 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102100029880 Glycodelin Human genes 0.000 description 1
- 108010042283 HSP40 Heat-Shock Proteins Proteins 0.000 description 1
- 102000004447 HSP40 Heat-Shock Proteins Human genes 0.000 description 1
- 101150112743 HSPA5 gene Proteins 0.000 description 1
- 102100025255 Haptoglobin Human genes 0.000 description 1
- 102100032510 Heat shock protein HSP 90-beta Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 101000779382 Homo sapiens A-kinase anchor protein 12 Proteins 0.000 description 1
- 101000614487 Homo sapiens Adenylate kinase 4, mitochondrial Proteins 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000793115 Homo sapiens Aryl hydrocarbon receptor nuclear translocator Proteins 0.000 description 1
- 101000710876 Homo sapiens Collagen alpha-2(IV) chain Proteins 0.000 description 1
- 101000584942 Homo sapiens Double-strand-break repair protein rad21 homolog Proteins 0.000 description 1
- 101000865408 Homo sapiens Double-stranded RNA-specific adenosine deaminase Proteins 0.000 description 1
- 101000877727 Homo sapiens Forkhead box protein O1 Proteins 0.000 description 1
- 101000998053 Homo sapiens GTP:AMP phosphotransferase AK3, mitochondrial Proteins 0.000 description 1
- 101000585553 Homo sapiens Glycodelin Proteins 0.000 description 1
- 101001078385 Homo sapiens Haptoglobin Proteins 0.000 description 1
- 101001016856 Homo sapiens Heat shock protein HSP 90-beta Proteins 0.000 description 1
- 101000606465 Homo sapiens Inactive tyrosine-protein kinase 7 Proteins 0.000 description 1
- 101000967918 Homo sapiens Left-right determination factor 2 Proteins 0.000 description 1
- 101001095231 Homo sapiens Peptidyl-prolyl cis-trans isomerase D Proteins 0.000 description 1
- 101000612134 Homo sapiens Procollagen C-endopeptidase enhancer 1 Proteins 0.000 description 1
- 101001098833 Homo sapiens Proprotein convertase subtilisin/kexin type 6 Proteins 0.000 description 1
- 101000617823 Homo sapiens Solute carrier organic anion transporter family member 6A1 Proteins 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102100022875 Hypoxia-inducible factor 1-alpha Human genes 0.000 description 1
- 108050009527 Hypoxia-inducible factor-1 alpha Proteins 0.000 description 1
- 102100029620 Immunoglobulin lambda constant 2 Human genes 0.000 description 1
- 108010004020 Immunoglobulin lambda-Chains Proteins 0.000 description 1
- 102100039813 Inactive tyrosine-protein kinase 7 Human genes 0.000 description 1
- 102000004372 Insulin-like growth factor binding protein 2 Human genes 0.000 description 1
- 108090000964 Insulin-like growth factor binding protein 2 Proteins 0.000 description 1
- 102000004374 Insulin-like growth factor binding protein 3 Human genes 0.000 description 1
- 108090000965 Insulin-like growth factor binding protein 3 Proteins 0.000 description 1
- 102000003777 Interleukin-1 beta Human genes 0.000 description 1
- 108090000193 Interleukin-1 beta Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 101710192606 Latent membrane protein 2 Proteins 0.000 description 1
- 101000839464 Leishmania braziliensis Heat shock 70 kDa protein Proteins 0.000 description 1
- 101000988090 Leishmania donovani Heat shock protein 83 Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 108700036248 MT-RNR1 Proteins 0.000 description 1
- 108010076502 Matrix Metalloproteinase 11 Proteins 0.000 description 1
- 208000037093 Menstruation Disturbances Diseases 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102000006746 NADH Dehydrogenase Human genes 0.000 description 1
- 108010086428 NADH Dehydrogenase Proteins 0.000 description 1
- 108091008747 NR2F3 Proteins 0.000 description 1
- 102100026779 Nascent polypeptide-associated complex subunit alpha, muscle-specific form Human genes 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101710090055 Nitric oxide synthase, endothelial Proteins 0.000 description 1
- 102000043924 Paralemmin Human genes 0.000 description 1
- 108700038311 Paralemmin Proteins 0.000 description 1
- 208000000450 Pelvic Pain Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102100041026 Procollagen C-endopeptidase enhancer 1 Human genes 0.000 description 1
- 102100038946 Proprotein convertase subtilisin/kexin type 6 Human genes 0.000 description 1
- 102100036197 Prosaposin Human genes 0.000 description 1
- 101710152403 Prosaposin Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710115194 Protease inhibitor 1 Proteins 0.000 description 1
- 108090000944 RNA Helicases Proteins 0.000 description 1
- 102000004409 RNA Helicases Human genes 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 102100025234 Receptor of activated protein C kinase 1 Human genes 0.000 description 1
- 108010044157 Receptors for Activated C Kinase Proteins 0.000 description 1
- 208000020207 Reproductive tract disease Diseases 0.000 description 1
- 206010065951 Retrograde menstruation Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 108090000221 Ribosomal protein S6 Proteins 0.000 description 1
- 101100111629 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR2 gene Proteins 0.000 description 1
- 102000040739 Secretory proteins Human genes 0.000 description 1
- 108091058545 Secretory proteins Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 1
- 102000049867 Steroidogenic acute regulatory protein Human genes 0.000 description 1
- 108010018411 Steroidogenic acute regulatory protein Proteins 0.000 description 1
- 102000017303 Stromelysin-3 Human genes 0.000 description 1
- 101710119418 Superoxide dismutase [Mn] Proteins 0.000 description 1
- 101710202572 Superoxide dismutase [Mn], mitochondrial Proteins 0.000 description 1
- 102100032891 Superoxide dismutase [Mn], mitochondrial Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101710109576 Terminal protein Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000011409 Transcobalamins Human genes 0.000 description 1
- 108010023603 Transcobalamins Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 101710128947 Tricarboxylate transport protein, mitochondrial Proteins 0.000 description 1
- 102100036216 Tricarboxylate transport protein, mitochondrial Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 206010000059 abdominal discomfort Diseases 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000003150 biochemical marker Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229960000766 danazol Drugs 0.000 description 1
- POZRVZJJTULAOH-LHZXLZLDSA-N danazol Chemical compound C1[C@]2(C)[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=CC2=C1C=NO2 POZRVZJJTULAOH-LHZXLZLDSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012774 diagnostic algorithm Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- LPEPZBJOKDYZAD-UHFFFAOYSA-N flufenamic acid Chemical compound OC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 LPEPZBJOKDYZAD-UHFFFAOYSA-N 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 238000010448 genetic screening Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 101150028578 grp78 gene Proteins 0.000 description 1
- 229960004198 guanidine Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 102000048255 human LEFTY2 Human genes 0.000 description 1
- 102000055252 human PPID Human genes 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 229940088592 immunologic factor Drugs 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 108091016323 lipid binding proteins Proteins 0.000 description 1
- 102000019758 lipid binding proteins Human genes 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 108010037351 nascent-polypeptide-associated complex Proteins 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 108010008217 nidogen Proteins 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 108010090916 phospholipase C epsilon Proteins 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 102000004401 podocalyxin Human genes 0.000 description 1
- 108090000917 podocalyxin Proteins 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 208000017443 reproductive system disease Diseases 0.000 description 1
- 108010086642 reticulocalbin Proteins 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000225 tumor suppressor protein Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/689—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to pregnancy or the gonads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4713—Autoimmune diseases, e.g. Insulin-dependent diabetes mellitus, multiple sclerosis, rheumathoid arthritis, systemic lupus erythematosus; Autoantigens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/36—Gynecology or obstetrics
- G01N2800/364—Endometriosis, i.e. non-malignant disorder in which functioning endometrial tissue is present outside the uterine cavity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S424/00—Drug, bio-affecting and body treating compositions
- Y10S424/81—Drug, bio-affecting and body treating compositions involving autoimmunity, allergy, immediate hypersensitivity, delayed hypersensitivity, immunosuppression, immunotolerance, or anergy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S424/00—Drug, bio-affecting and body treating compositions
- Y10S424/811—Drug, bio-affecting and body treating compositions involving sex selection or contraception
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/827—Proteins from mammals or birds
- Y10S530/85—Reproductive organs or embryos
- Y10S530/852—Sperm
- Y10S530/853—Ovary; eggs; embryos
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/868—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving autoimmunity, allergy, immediate hypersensitivity, delayed hypersensitivity, immunosuppression, or immunotolerance
Definitions
- Endometriosis is a female reproductive disorder characterized by the presence of endometrial tissue outside of the normal uterine location. Most frequently the endometriosis tissue is present in the peritoneal cavity, attaching to various tissues and organs in this location. Endometriosis is a benign disease affecting approximately 5 million women in the United States annually with a prevalence of 10 to 15 percent in women of childbearing age. The incidence increases to 60 to 80 percent of women who are infertile or present with pelvic pain (D. Gosselin et al. [1999] Curr. Opin. Onco. Endo. & Metabol. Invest. Drugs 1:31). The conditions that predispose an individual to endometriosis are still unknown.
- the marker may be of use for patients who are likely to have the disease for faster orientation toward laparoscopy, since CA-125 levels do correlate somewhat with the degree of disease and response to treatment (T. P. Canavan and L. Radosh [2000] Postgrad. Med. 107:213).
- VEGF and IL-6 levels in peritoneal fluid of women with endometriosis evaluated VEGF and IL-6 levels in peritoneal fluid of women with endometriosis and found them to be elevated in patients with advanced disease.
- the levels of VEGF and IL-6 were lower in normal women and patients with milder disease. Nevertheless, the diagnostic value of these markers is suspect since at least VEGF is known to be a potent angiogenesis factor that is regulated by hypoxia in normal endometrium (A. M. Sharkey et al. J. Clin. Endocrinol. Metab. [2000] 85:402-409).
- Patent application 2002/0192647 proposes a process for diagnosing angiogenic diseases by measuring a single nucleotide polymorphism in the VEGFR-1 gene. Endometriosis is categorized as one of this group of angiogenic diseases, but it was not the subject of any of the claims. Patent applications 2001/046713 and 2001/044158 describe a method for diagnosis of endometriosis by detecting anti-Tomsen-Frienenreich antibodies in specimens.
- An issued U.S. Pat. No. 6,376,201 illustrates the use of major histocompatibility complex-class I antigens in diagnosing endometriosis and forming the basis of the Metrio Test as described above.
- This marker is a small soluble protein isolated by affinity chromatography from the peritoneal fluid of women with endometriosis, and the protein has chemotactic activity to neutrophils and macrophages.
- a process for monitoring human endometrial functions is described in U.S. Pat. No. 4,489,166 and it involves the quantitative measurement of progestagen-associated endometrial protein (PEP) in a clinical sample.
- European Patent No. 1191107 describes a method for diagnosis of endometriosis by measuring a reduction in the levels of one of a group of 15 different human genes. An immunoassay process is described in European Patent No.
- W.O. 0063675 for diagnosis of endometriosis by measuring increased levels of endometriosis factor in biological fluids of a patient.
- W.O. 9963116 provides for a method of diagnosing endometriosis by measuring increases in the amount of prothymosin in endometriotic tissue.
- U.S. Pat. No. 6,531,277 discloses an endometriosis-specific secretory protein.
- the document characterized and disclosed human ENDO-1 that is produced by stromal cells of endometriotic tissue.
- the ENDO-1 protein is 40 to 50 kilodaltons in molecular weight and has an isoelectric point of 4.0 to 5.5.
- the claims of the document are concerned primarily with a molecular diagnostic assay measuring differences in expression of ENDO-1 mRNA in endometriosis tissue samples.
- U.S. 2002/0009718 the invention is extended for measurement of the ENDO-1 glycoprotein in patient samples using immunoassay to establish the presence of endometriosis.
- ENDO-1 the characteristics of ENDO-1 presented in these documents suggest that it is considerably different from the markers described in the present invention.
- the ME-5, ME-2, and EPP2 proteins are about 38, 49, and 9 kilodaltons in size, respectively.
- ME-2 marker is within the range specified for ENDO-1, but ME-2 has an isoelectric point of 8.8 so it is not a related protein.
- the isoelectric points of the ME-5 and EPP2 antigens are calculated at 5.7 and 12.5, respectively, which are also well above the range of values specified for the ENDO-1 protein.
- the ENDO-1 marker is a member of the haptogloblin family of proteins, but nucleic acid and amino acid sequence comparisons show that the ME-5, ME-2, and EPP2 markers are not related to this family of proteins.
- U.S. Pat. No. 5,843,673 specifies a method of screening for endometriosis in women by measuring a reduction in the amounts of a 28 to 32 kilodalton molecular weight glycoprotein in peritoneal fluid or serum samples.
- the protein possesses an isoelectric point of 7.0 to 9.0 and is secreted specifically by stromal cells of endometriotic origin.
- the glycoprotein disclosed in the document is related to tissue inhibitor of metaloproteinases-1 (TIMP-1) by virtue of amino acid sequence identity measured in the amino terminal region of protein.
- TIMP-1 tissue inhibitor of metaloproteinases-1
- the ME-5, ME-2, and EPP2 proteins of this invention are not related to TIMP-1 and they have no measurable protein or nucleic acid homology to this family of proteins.
- the biochemical properties of the ME-5, ME-2, and EPP2 proteins differ from those of TIMP-1 and each is considerably larger or smaller (at 38, 49, or 9 kilodaltons, respectively) than the range given for TIMP-1. While the isoelectric point of ME-2 is at the upper range of that of TIMP-1, the isoelectric point of ME-5 is 5.7 and EPP2 is 12.5 which are much different.
- the individual nucleic acid sequences identified and implicated as somehow being involved in endometriosis are: cathepsin D, AEBP-1, stromelysin-3, cystatin B, protease inhibitor 1, sFRP4, gelsolin, IGFBP-3, dual specificity phosphatase 1, PAEP, immunoglobulin ⁇ chain, ferritin, complement component 3, pro-alpha-1 type III collagen, proline 4-hydroxylase, alpha-2 type I collagen, claudin-4, melanoma adhesion protein, procollagen C-endopeptidase enhancer, nascent-polypeptide-associated complex alpha polypeptide, elongation factor 1 alpha (EF-1 a), vitamin D3 25 hydroxylase, CSRP-1, steroidogenic acute regulatory protein, apolipoprotein E, transcobalamin 11, prosaposin, early growth response 1 (EGR1), ribosomal protein S6, adenosine deaminase RNA-specific protein
- the overexpressed genes were NADH dehydrogenase, hUCCi, Paralemmin, citrate transport protein. HIF1-alpha, ARNT, Glut-1, MnSOD, GPx, ATP synthase, c-jun, Cx43, HSP 70, and cox2. In addition, 19 genes were reported in this document to be underexpressed in endometriosis patients relative to disease-free females.
- the genes underexpressed in diseased endometrial tissues were Cap43, RNA helicase, C03, FKHR, AK3, catalase, GST, eNOS, 12S rRNA, T1227H, C02, aconitase, ANT-1, Bcl-2, COUP-TF, IL-1 beta, HSP 90, GPx4, and GRP78. Yet another gene expression strategy was described by H. Hess-Stumpp et al. In US Patent Application 2003/0077589 resulting in the discovery of 15 genes that are overexpressed in endometriosis.
- the overexpressed genes were fibronectin, IGFBP-2, transmembrane receptor PTK7, platelet-derived growth factor alpha, collagen type XVIII alpha 1, subtilisin-like protein (PACE4), laminin M chain (merosin), elastin, collagen type IV alpha 2, p27interferon alpha-inducible gene, reticulocalbin, aldehyde dehydrogenase 6, gravin, nidogen, and phospholipase C epsilon.
- the ME-5, ME-2, and EPP2 protein and nucleic acid sequences are not related to any of the genes described in the latter two patents.
- the document WO 94/28021 describes endometrial proteins, antigenic compounds, and methods of detecting endometriosis.
- the disclosure encompasses endometriosis-specific proteins defined by molecular weight and isoelectric point. Many of the claims presented are based only on size, but others specify a molecular weight and isoelectric point.
- the principal endometriosis antigen of the document and which is described in the initial claim has a molecular weight of 64 kilodaltons and an isoelectric point of 3.5.
- the antigen is used to measure antibodies in specimens obtained from endometriosis patients and also can itself be measured directly for its presence in patient samples.
- the antigens described above do not compare in any reported properties to those of the three endometriosis antigens presented here. Initially, none of the unambiguous residues of amino terminal protein sequence are present in the corresponding regions of ME-5, ME-2, and EPP2. In addition, the ME-5, ME-2, and EPP2 proteins are 38, 49, and 9 kilodaltons in size, which are considerably smaller than the antigens described in the document outlined above. Moreover the isoelectric points of ME-5, ME-2, and EPP2 are 5.7, 8.8, and 12.5 which are considerably greater than described for the other proteins. It must be concluded that the endometrial ME-5, ME-2, and EPP2 antigens of this invention have little in common with the proteins described in WO 94/28021.
- NZ 232801 also application EP-A-0 387 027 essentially by measuring an endometriosis antigen in a patient specimen using an anti-endometriosis antibody.
- antigens are described in the document ranging in molecular weight from 50 to 173 kilodaltons but no additional characterization of the proteins was performed. These proteins were isolated as a mixture from the culture medium and cytoplasm of 2774 ovarian carcinoma cells, and can be obtained from other cultured cell lines as well.
- an anti-endometrial antibody which is a human IgM monoclonal originally isolated because it reacted with ovarian cancer-associated antigens.
- endometrial antigens reactive with anti-endometrial antibodies is described in WO 92/18535 and these are also characterized by molecular weight on SDS PAGE analysis.
- the described protein antigen fragments were isolated from the cytoplasm of epithelial adenocarcinoma cells and are described as useful for detection of endometrial antibodies which are indicative of endometriosis.
- the antigens are cytoplasmic proteins with sizes of 63 to 67, 33 to 37, 40 to 44, 31 to 35, and 57 to 64 kilodaltons. The designations likely refer to a single protein species, but the size ranges were presented in the document to reflect the inherent inaccuracy ( ⁇ 10%) for the SDS PAGE assay method used.
- the preferred proteins for use are the 33 to 37, 40 to 44, and the 57 to 59 kilodalton proteins.
- the 33 to 37 and 40 to 44 proteins seemed to be present in most of the cell lines that were studied in the document for use as sources of antigen, while the 57 to 59 protein fragments originates from the T47D breast carcinoma cell line.
- the document describes the use of these proteins individually (or mixed) immobilized on solid support to measure endometrial antibodies.
- similar applications are envisioned for the ME-5, ME-2, and EPP2 antigens, however with the exception of possibly the 33 to 37 kilodalton fragments there is little else presented in this document that compares to disclosures in WO 92/18535.
- a recombinant polynucleotide comprising an isolated nucleotide sequence from SEQ ID NO:2 encoding a polypeptide epitope of at least 5 amino acids of ME-5 (SEQ ID NO:3), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- a purified polypeptide comprising an epitope of at least 5 amino acids of ME-5 (SEQ ID NO:3), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- composition consisting essentially of an antibody that specifically binds to an epitope of ME-5 polypeptide (SEQ ID NO:3).
- a method for detecting a ME-5 polypeptide (SEQ ID NO:3) in a sample comprising the steps of:
- a method for diagnosing endometriosis in a human subject comprising the steps of:
- a recombinant polynucleotide comprising an isolated nucleotide sequence from SEQ ID NO:5 encoding a polypeptide epitope of at least 5 amino acids of ME-2 (SEQ ID NO:6), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- a purified polypeptide comprising an epitope of at least 5 amino acids of ME-2 (SEQ ID NO:6), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- composition consisting essentially of an antibody that specifically binds to an epitope of ME-2 polypeptide (SEQ ID NO:6).
- a method for detecting a ME-2 polypeptide (SEQ ID NO:6) in a sample comprising the steps of:
- a method for diagnosing endometriosis in a human subject comprising the steps of:
- a recombinant polynucleotide comprising an isolated nucleotide sequence from SEQ ID NO:8 encoding a polypeptide epitope of at least 5 amino acids of EPP2 (SEQ ID NO:9), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- a purified polypeptide comprising an epitope of at least 5 amino acids of EPP2 (SEQ ID NO:9), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- composition consisting essentially of an antibody that specifically binds to an epitope of EPP2 polypeptide (SEQ ID NO:9).
- a method for detecting a EPP2 polypeptide (SEQ ID NO:9) in a sample comprising the steps of:
- a method for diagnosing endometriosis in a human subject comprising the steps of:
- a purified polypeptide comprising an epitope of at least 5 amino acids of ME-5 (SEQ ID NO:3);
- a purified polypeptide comprising an epitope of at least 5 amino acids of ME-2 (SEQ ID NO:6), and
- epitopes specifically bind to antibodies from subjects diagnosed with endometriosis.
- a method for diagnosing endometriosis in a human subject comprising the steps of:
- the ME-5 endometriosis marker is specified by a mRNA of about 1.4 kb, of which 1,302 nucleotides is disclosed in this invention.
- the protein predicted from this sequence is 303 amino acids in size and has a calculated molecular weight of about 35,000 daltons.
- the natural protein product has a molecular weight of about 38 kD as measured by Western blot with a specific monoclonal antibody.
- the protein was particularly abundant in ovary tissue which, taken with the isolation from endometrial tissue is strongly supportive of its presence in reproductive tissues and as a marker of reproductive disease.
- immunoblotting experiments with immobilized recombinant ME-5 antigen a number of endometriosis patients were evaluated and the signals generated were considerably stronger than that obtained with a number of control patients.
- the ME-2 endometriosis marker is specified by a mRNA of about 2.0 kb of which 1,353 nucleotides is disclosed in this invention.
- the protein predicted from this sequence is 393 amino acids in size and has a calculated molecular weight of about 45,000 Daltons.
- the signal generated was considerably stronger than that obtained with a number of control patients.
- the EPP2 endometriosis marker is specified by a mRNA of about 1.0 kb of which 891 nucleotides is disclosed in this invention.
- the protein predicted from this sequence is 99 amino acids in size and has a calculated molecular weight of about 9,300 Daltons.
- the signal generated was considerably stronger than that obtained with a number of control patients.
- FIGS. 1A, 1B , and 1 C show the nucleotide sequence (SEQ ID NO:1) for the isolated ME-5 cDNA, the nucleotide sequence of the coding region (SEQ ID NO:2) of this ME-5cDNA, and the deduced amino acid sequence (SEQ ID NO:3) of the protein encoded by the nucleotide sequence of the ME-5 cDNA.
- SEQ ID NO:1 there is a 112 base pair 5′ untranslated sequence upstream of the predicted ATG start codon.
- a 254 base pair 3′ untranslated region downstream of the TGA stop codon is a stretch of dT corresponding to thte poly A tail of the mRNA.
- the start Codon (ATG) and the translation stop codon (TGA) are presented in bold type in the cDNA sequence of FIGS. 1A and B.
- FIGS. 2A, 2B , and 2 C show the nucleotide sequence (SEQ ID NO:4) for the isolated ME-2 cDNA, the nucleotide sequence of the coding region (SEQ ID NO:5) of this ME-2 cDNA, and the deduced amino acid sequence (SEQ ID NO:6) of the protein encoded by the nucleotide sequence of the ME-2 cDNA.
- SEQ ID NO:4 there is a 54 base pair 5′ untranslated sequence upstream of the predicted ATG start codon.
- a 95 base pair 3′ untranslated region downstream of the TAG stop codon is a stretch of dT corresponding to the poly A tail of the mRNA.
- the start codon (ATG) and the translation stop codon (TAG) are presented in bold type in the cDNA sequence of FIGS. 2A and B.
- FIGS. 3A, 3B , and 3 C show the nucleotide sequence (SEQ ID NO:7) for the isolated EPP2 cDNA, the nucleotide sequence of the coding region (SEQ ID NO:8) of this EPP2 cDNA, and the deduced amino acid sequence (SEQ ID NO:9) of the protein encoded by the nucleotide sequence of the EPP2 cDNA.
- FIG. 3A there is a 45 base pair 5′ untranslated sequence upstream of the predicted ATG start codon.
- a 522 base pair 3′ untranslated region downstream of the TAA stop codon is a stretch of dT corresponding to the poly A tail of the mRNA.
- the start codon (ATG) and the translation stop codon (TAA) are presented in bold type in the cDNA sequence of FIGS. 3A and B.
- FIG. 4 demonstrates the pattern of ME-5 mRNA expression in various human tissues.
- a commercial Northern blot (BD Biosciences; San Diego, CA) was hybridized with the complete 32 P-labeled ME-5 coding sequence of FIG. 1B . Conditions of hybridization and washing were as described by the manufacturer. Hybridizing bands were observed corresponding to a mRNA of about 1,400 nucleotides (migrates just slower than the 1,350 nucleotide marker) as well as another larger but perhaps less abundant message of 1,800 to 2,000 nucleotides (migrating just ahead of the 2,400 nucleotide marker).
- the ME-5 sequence seems to be expressed most abundantly in prostate, testis and uterus tissues, but lower amounts were detected in the other tissues evaluated (spleen, thymus, small intestine, colon and peripheral blood leukocyte).
- FIG. 5 demonstrates the pattern of ME-2 mRNA expression in various human tissues.
- a commercial Northern blot (BD Biosciences; San Diego, CA) was hybridized with the complete 32 P-labeled ME-2 coding sequence of FIG. 2B . Conditions of hybridization and washing were as described by the manufacturer. Hybridizing bands were observed corresponding to a mRNA of about 2,000 nucleotides (migrates about mid way between the 2,400 nucleotide and the 1,350 nucleotide markers). No other strongly hybridizing bands were detected upon the blot.
- the ME-2 sequence seems to be expressed most abundantly in prostate and testis tissues. Moderate levels are detectable in spleen, uterus, small intestine, colon, and peripheral blood leukocyte tissues. In this experiment lower amounts of hybridization were observed in thymus tissue.
- FIG. 6 demonstrates the pattern of EPP2 mRNA expression in various human tissues.
- a commercial Northern blot (BD Biosciences; San Diego, Calif.) was hybridized with the complete 32 P-labeled EPP2 coding sequence of FIG. 3B . Conditions of hybridization and washing were as described by the manufacturer. Hybridizing bands were observed corresponding to a mRNA of about 1,000 nucleotides (migrates just faster than the 1,350 nucleotide marker).
- the EPP2 sequence seems to be expressed most abundantly in prostate, testis, colon and peripheral blood leukocyte. Lesser amounts of signal were visualized in spleen, thymus, and small intestine tissues, but little or no signal was detected in uterus tissue.
- FIG. 7 shows the pattern of expression of recombinant ME-5 in an insect cell host.
- the ME-5 cDNA was cloned for expression as a 6X histidine-tagged recombinant protein in insect cells.
- a culture of Sf9 insect cells expressing recombinant ME-5 was prepared and lysed. The culture medium, PBS wash, and the soluble and insoluble fractions of the cell lysate were analyzed by SDS PAGE and staining (left panel) of the gel with GelCode blue (Pierce Chemicals; Rockford, Ill.).
- the expression samples were also evaluated by Western blotting (right panel) with an anti-HisG mouse monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125 I-labeled rabbit anti-mouse IgG secondary antibody.
- the recombinant protein was obscured by the multiplicity of protein bands in the stained gel at left, but a band of about 38 kD was clearly detected by the Western blot. This confirmed the presence of a 6 ⁇ His-tagged protein with the approximate molecular weight expected for the recombinant ME-5 antigen.
- No recombinant ME-5 protein was detectable in the cell culture medium, but some was present in the PBS used to wash the insect cells prior to lysis. Most of the recombinant ME-5 protein seemed to be present in the soluble fraction of the insect cell lysate, but some was associated with the insoluble material.
- FIG. 8 shows the pattern of expression of recombinant ME-2 in an insect cell host.
- the ME-2 cDNA was cloned for expression as a 6X histidine-tagged recombinant protein in insect cells.
- a culture of Sf9 insect cells expressing recombinant ME-2 was prepared and lysed.
- the culture medium, PBS wash, and the soluble and insoluble fractions of the cell lysate were analyzed by SDS PAGE and staining (left panel) of the gel with GelCode blue (Pierce Chemicals; Rockford, Ill.).
- the expression samples were also evaluated by Western blotting (right panel) with an anti-HisG mouse monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125 I-labeled rabbit anti-mouse IgG secondary antibody.
- the recombinant protein was obscured by the multiplicity of protein bands in the stained gel at left, but a band of about 49 kD was clearly detected by the Western blot. This confirmed the presence of a 6 ⁇ His-tagged protein with the approximate molecular weight expected for the recombinant ME-2 protein. No recombinant ME-2 protein was detectable in the cell culture medium, but some was present in the PBS used to wash the insect cells prior to lysis. Approximately equal amounts of the recombinant ME-2 protein seemed to be distributed between the soluble and the insoluble fractions of the insect cell lysate.
- FIG. 9 shows the pattern of expression of recombinant EPP2 in an insect cell host.
- the EPP2 cDNA was cloned for expression as a 6X histidine-tagged recombinant protein in insect cells.
- a culture of Sf9 insect cells expressing recombinant EPP2 was prepared and lysed.
- the culture medium, PBS wash, and the soluble and insoluble fractions of the cell lysate were analyzed by SDS PAGE and staining (left panel) of the gel with GelCode blue (Pierce Chemicals; Rockford, Ill.).
- the expression samples were also evaluated by Western blotting (right panel) with an anti-HisG mouse monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125 I-labeled rabbit anti-mouse IgG secondary antibody.
- the recombinant protein was obscured by the multiplicity of protein bands in the stained gel at left, but a band of about 9 kD was clearly detected by the Western blot. This confirmed the presence of a 6 ⁇ His-tagged protein with the approximate molecular weight expected for the recombinant EPP2 protein. No recombinant EPP2 protein was detectable in the cell culture medium, nor was any measurable amount present in the PBS used to wash the insect cells prior to lysis. Approximately equal amounts of the recombinant EPP2 protein seemed to be distributed between the soluble and the insoluble fractions of the insect cell lysate.
- FIG. 10 shows the isolation of the recombinant 6 ⁇ -tagged ME-5 protein using immobilized metal affinity chromatography (IMAC).
- IMAC immobilized metal affinity chromatography
- FIG. 11 shows the isolation of the recombinant 6 ⁇ -tagged ME-2 protein using immobilized metal affinity chromatography (IMAC).
- Recombinant ME-2 protein was expressed in Sf9 insect cells and the cells were lysed in IMAC column binding buffer.
- the soluble fraction of the insect cells (Lysate) was loaded onto a column of Chelating Sepharose Fast Flow (Amersham Biosciences; Piscataway, N.J.) that had been charged with nickel ions.
- the lysate was captured after passing through the column resin (break-through) and the column was washed extensively with IMAC wash buffers A10, A15, and A20.
- the recombinant ME-2 bound to the resin was eluted from the column with buffer containing imidazole.
- FIG. 12 shows the isolation of the recombinant 6 ⁇ -tagged EPP2 protein using immobilized metal affinity chromatography (IMAC).
- IMAC immobilized metal affinity chromatography
- the recombinant EPP2 bound to the resin was eluted from the column with buffer containing imidazole.
- Samples of the lysate, break-through, washes, and elution were analyzed by SDS PAGE and Western blot as described above.
- the stained gel showed the complexity of the insect cell lysate, which resulted in a smear of protein.
- the break-through and the A10 Column Wash samples contained a substantial amount of material that did not bind to the column matrix. Very little protein contaminants were washed away with the A15, A20, A25, and A30 Column Wash buffers as visualized from the stained gel.
- FIG. 13 shows Western blot analysis of isolated recombinant ME-5 protein, as well as the native ME-5 antigen present in RL95-2 endometrial carcinoma cells.
- Cultured RL95-2 cells were lysed and a sample of the soluble fraction electrophoresed in a 4% to 20% Tris Glycine SDS PAGE gel (Invitrogen; Carlsbad, Calif.).
- a sample of recombinant ME-5 isolated by IMAC from Sf9 insect cells was included on the gel as a positive control for the anti-ME-5 antibody.
- Western blotting was performed with the 2D1 anti-ME-5 monoclonal antibody followed by an 125 I-labeled rabbit anti-mouse IgG secondary antibody. A clear band of reactivity was observed (right lane) among the RL95-2 proteins that seemed to migrate with a molecular weight that was slightly greater than the insect cell recombinant.
- FIG. 14 is a Western blot showing ME-5 native antigen expression in various human tissues.
- Tissue protein extracts in SDS PAGE sample buffer protein medleys: BD Biosciences; San Diego, Calif.
- SDS PAGE sample buffer protein medleys: BD Biosciences; San Diego, Calif.
- the native ME-5 antigen seems to be ubiquitously present in all tissues examined, but it appears to be slightly more abundant in heart, liver, ovary and kidney extracts.
- FIGS. 15A and 15B show representative line immunoblots illustrating the ability of recombinant ME-5 to react with antibodies present in serum obtained from endometriosis patients, but not in normal control sera.
- Each strip contains immobilized antigens that were slotted onto the membrane at different concentrations.
- the protein concentrations for ME-5 are 0.018, 0.036, 0.072, and 0.144 milligrams per milliliter (mg/ml).
- the optimal concentration for discrimination between patients and controls was 0.036 mg/ml as designated by the arrow at the right of the line blot strips.
- One advantage of the line immunoblot assay is that many different proteins can be interrogated on a single strip, and additional unrelated proteins are present on the strips that act as internal controls.
- a reagent control (mouse anti-human IgG monoclonal) is included on each strip to act as a positive control.
- Each strip was incubated with serum from a normal person (control) or from a patient with confirmed endometriosis.
- Line blot patterns for a total of 11 controls (A6, A7, A8, A9, A10, A14, A15, A16, A17, A18, A21) are shown in FIG. 15A .
- ME-5 at a concentration of 0.036 mg/ml detected 18 endometriosis patients as positive (DS01, DS03, DS05, DS06, DS10, DS11, DS12, DS27, DS28, DS29, DS30, DS31, DS32, DS33, DS34, DS36, DS38, and DS39).
- 5 endometriosis patients (DS02, DS04, DS07, DS08, and DS13) yielded patterns of reactivity that were a bit lower.
- ME-5 clearly did not react with nine of them (A6, A7, A8, A10, A15, A16, A17, A18, A21). There may have been detectable signals seen for two of the normal controls (A9, A14), but these were very light relative to the patterns seen with sera from the endometriosis patients and are interpreted as negative.
- FIGS. 16A and 16B show representative line immunoblots illustrating the ability of recombinant ME-2 to react with antibodies present in serum obtained from endometriosis patients, but not in normal control sera.
- Each strip contains immobilized antigens that were slotted onto the membrane at different concentrations.
- the protein concentrations of ME-2 applied to the strips are 0.009 (for endometriosis sera, only), 0.018, 0.036, 0.072, and 0.144 (for control sera, only) milligrams per milliliter (mg/ml).
- the optimal concentration for discrimination between patients and controls was set at 0.018 mg/ml as designated by the arrow at the right of the line blot strips.
- line immunoblot assay One advantage of the line immunoblot assay is that many different proteins can be interrogated on a single strip for reactivity with antibodies, and additional unrelated proteins are present on the strips that act as internal controls.
- a reagent control mouse anti-human IgG monoclonal
- Each strip was incubated with serum from a normal person (control) or from a patient with confirmed endometriosis.
- Line blot patterns for a total of 11 controls (A01, A02, A03, A06, A08, Al 5, A20, A21, A22, A23, and A24) are shown in FIG. 16A .
- 21 endometriosis patients (DS10, DS11, DS12, DS13, DS14, DS17, DS19, DS20, DS21, DS22, DS24, DS25, DS26, DS27, DS28, DS29, DS30, DS31, DS32, DS33, and DS35) are shown in FIG. 16B .
- the intensity of staining of each band is indicative of the reactivity of the tested serum with ME-2.
- ME-2 at a concentration of 0.018 mg/ml detected 15 endometriosis patients as positive (DS012, DS17, DS19, DS20, DS21, DS22, DS24, DS25, DS26, DS27, DS28, DS30, DS31, DS33, and DS35).
- 6 endometriosis patients (DS10, DS11, DS13, DS14, DS29, and DS32) yielded patterns of reactivity that were a bit lower.
- ME-2 did not react with any of them at the 0.018 mg/ml cutoff applied to endometriosis patients.
- FIGS. 17A and 17B show representative line immunoblots illustrating the ability of recombinant EPP2 to react with antibodies present in serum obtained from endometriosis patients, but not in normal control sera.
- Each strip contains immobilized antigens that were slotted onto the membrane at different concentrations.
- the protein concentrations for EPP2 are 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, and 025 milligrams per milliliter.
- the optimal concentration for discrimination between patients and controls was 0.05 mg/ml as designated by the arrow at the right of the line blot strips.
- One advantage of the line immunoblot assay is that many different proteins can be interrogated on a single strip, and additional unrelated proteins are present on the strips that act as internal controls.
- a reagent control (mouse anti-human IgG monoclonal) is included on each strip to capture human IgG in the sample and act as a positive control.
- Each strip was incubated with serum from a normal person (control) or from a patient with confirmed endometriosis. Line blot patterns for a total of 11 controls (A01, A02, A03, A04, A05, A09, A13, A14, A16, A20, and A24) are shown in FIG. 17A .
- EPP2 at a concentration of 0.05 mg/ml detected 33 endometriosis patients as positive (DS06, DS12, DS24, DS05, BBI02, BBI03, BBI04, BBI06, BBI07, BBI08, BBI09, BBI10, BBI11, BBI12, BBI13, BBI15, BBI16, BBI20, BBI22, BBI23, BBI25, BBI26, BBI27, BBI28, BBI30, BBI31, BBI32, BBI34, BBI35, BBI37, BBI38, BBI39, and BBI40).
- Polypeptide refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds, related naturally occurring analogs thereof. Synthetic polypeptides can be synthesized, for example, using an automated polypeptide synthesizer.
- the term “protein” typically refers to large polypeptides.
- the term “peptide” typically refers to short polypeptides.
- polypeptide sequences the left-hand end of a polypeptide sequence is the amino-terminus; the right-hand end of a polypeptide sequence is the carboxyl-terminus.
- Constant substitution refers to the substitution in a polypeptide of an amino acid with a functionally similar amino acid. It is to be understood that the claims encompass conservative substitution. The following six groups each contain amino acids that are conservative substitutions for one another:
- Allelic Variant refers to any of two or more polymorphic forms of a gene occupying the same genetic locus. Allelic variations arise naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. “Allelic variants” also refer to cDNAs derived from mRNA transcripts of genetic allelic variants, as well as the proteins encoded by them.
- This invention provides methods for diagnosing endometriosis in a subject by detecting in a sample from the subject a diagnostic amount of an antibody that specifically binds to ME-2, ME-5 or EPP2 polypeptide.
- Suitable patient samples include, without limitation, saliva, blood or a blood product (e.g., serum), peritoneal fluid, urine, menstrual fluid, vaginal secretion.
- the antibodies can be detected by any of the methods for detecting proteins described herein. However, sandwich type assays are particularly useful.
- all antibodies are captured onto a solid phase, for example using protein A, and antibodies specific for ME-2, ME-5 or EPP2 are detected using a directly or indirectly labeled ME-2, ME-5 or EPP2 or polypeptide fragment of it having an epitope of ME-2, ME-5 or EPP2.
- ME-2, ME-5 or EPP2 or an antigenic fragment of it can be used as the capture molecule and captured antibodies can be detected.
- ME-2, ME-5 or EPP2 that is shed into the peritoneal fluid of women with endometriosis is useful in methods of diagnosing endometriosis. These methods include detecting ME-2, ME-5 or EPP2 in a biological sample of a subject. Suitable samples include, without limitation, saliva, blood or a blood product (e.g., serum), urine, menstrual fluid, vaginal secretion and, in particular, peritoneal fluid.
- ME-2, ME-5 or EPP2 can be detected by any of the methods described herein. Any detection of ME-2, ME-5 or EPP2 above a normal range is a positive sign in the diagnosis of endometriosis.
- substantially identical in the context of two nucleic acids or polypeptides, refers to two or more sequences or sub-sequences that have at least 60%, 80%, 90%, 95% or 98% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection.
- the substantial identity exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably the sequences are substantially identical over at least about 150 residues.
- the sequences are substantially identical over the entire length of the coding regions.
- the invention disclosed herein is the isolation of human cDNA molecules that encode three distinct endometrial proteins, and characterization of the corresponding antigens. These cDNA and the corresponding antigens have been designated ME-5, ME-2, and EPP2 and the proteins expressed from them are the targets of autoantibodies present in the serum of women who suffer from endometriosis. These features of the ME-5, ME-2, and EPP2 proteins makes them useful markers for diagnosis of endometrial disease and this is shown in detail in the Examples below.
- the endometriosis tissue cDNA library was generated using poly A + RNA isolated from a deep embedded endometriosis tissue specimen donated by Professor Philip Koninckx at the Catholic University of Leuven. Total RNA was isolated from the tissue using Trizol reagent (Biorad Laboratories; Hercules, Calif.), and poly A+ RNA was prepared by hybridization to oligo poly T coupled magnetic particles using a commercial kit (PolyATract; Promega; Madison, Wis.). Library construction was carried out using the Lambda ZAP® II vector system following instructions obtained from the supplier (Stratagene; San Diego, Calif.).
- the initial ME-5 and ME-2 cDNA clones were identified by immunoscreening using, as primary antibody, a single endometriosis patient serum specimen obtained from a woman diagnosed with mild disease. This serum was adsorbed of nonspecific anti- E. coli /lambda phage antibodies by diluting the sera 1:50 in a commercial E. coli phage lysate (Stratagene; San Diego, Calif.) according to the protocol provided by the supplier.
- EPP2 cDNA clone was identified in similar immunoscreening protocol except that, as primary antibody, a pool of ten endometriosis patient serum specimens was used. The sera in this pool were from women with various stages of endometrial disease.
- the ME-5 cDNA sequence is presented in FIG. 1A (SEQ ID NO:1) and it is 1,279 base pairs in size excluding the poly dA track.
- a 5′ noncoding sequence of 112 base pairs was identified just upstream of the suspected ATG start codon.
- the ME-5 coding sequence is shown in FIG. 1B (SEQ ID NO:2) as predicted from the entire isolated cDNA sequence ( FIG. 1A ).
- the coding region is 912 base pairs in size, including the start and stop codons.
- the cDNA codes for a predicted protein of 303 amino acids shown in FIG. 1C (SEQ ID NO:3) and the calculated molecular weight was about 35,000 Daltons.
- the translation product is slightly acidic with a calculated isoelectric value of 5.7.
- NCBI National Center for Biotechnology Information
- BLAST Basic Local Alignment Search Tool
- the 1-NY-CO-7 protein was reported to be 356 amino acids on size which is considerably larger than the predicted ME-5 protein.
- the nucleotide changes were at nucleotide 807 (C->G [occurs in 3 rd position of codon with no amino acid change->proline]), 814 (C->G [arginine->glycine]), and 838 (C->T [leucine->phenylalanine]) relative to the ME-5 coding domain.
- the 1-NY-CO-7 GenBank sequences were compared to that of ME-5 they were identical except for the three nucleotide mismatches described above.
- CHIP Hsp70-interacting protein
- a low stringency hybridization (42° C.) yielded 12 clones that did not hybridize at higher stringency (55° C.). Characterization of the clones revealed 8 of them corresponded to human CyP-40, and 4 clones encoded CHIP that was a sequence with no homology to known genes. Characterization of CHIP revealed that it interacts with both Hsc70 and Hsp70 by binding to the carboxy terminus of these proteins through sequences within the amino terminus of CHIP. Interestingly recombinant CHIP inhibited the Hsp40-stimulated ATPase activity of Hsc70 and Hsp70 suggesting that it regulated the forward reaction of the substrate-binding cycle.
- the ME-2 cDNA sequence is presented in FIG. 2A (SEQ ID NO:4) and it is 1,332 base pairs in size excluding the poly dA track.
- a 5′ noncoding sequence of 54 base pairs was identified just upstream of the suspected ATG start codon.
- the ME-2 coding sequence is shown in FIG. 2B (SEQ ID NO:5) as predicted from the entire isolated cDNA sequence ( FIG. 2A ).
- the coding region is 1182 base pairs in size, including the start and stop codons.
- the cDNA codes for a predicted protein of 393 amino acids shown in FIG. 2C (SEQ ID NO:6) and the calculated molecular weight was about 45,000 Daltons.
- the translation product is slightly acidic with a calculated isoelectric value of 8.8.
- the EPP2 cDNA sequence is presented in FIG. 3A (SEQ ID NO:7) and it is 868 base pairs in size excluding the poly dA track.
- a 5′ noncoding sequence of 45 base pairs was identified just upstream of the suspected ATG start codon.
- the EPP2 coding sequence is shown in FIG. 3B (SEQ ID NO:8) as predicted from the entire isolated cDNA sequence ( FIG. 3A ).
- the coding region is 300 base pairs in size, including the start and stop codons.
- the cDNA codes for a predicted protein of 99 amino acids shown in FIG. 3C (SEQ ID NO:9) and the calculated molecular weight was approximately 9300 Daltons. Interestingly 18 of the amino acids are arginine residues therefore the translation product is very basic with a calculated isoelectric value of 12.5.
- the gene expression profile of ME-5 from normal human tissues was done by performing Northern blot analysis with a commercial Multiple Tissue Northern Blot (BD Biosciences; San Diego, Calif.), the results of which are presented in FIG. 4 .
- the commercial Northern blot contained RNA from the following tissues: spleen, thymus, prostate, testis, uterus, small intestine, colon (no mucosa), and peripheral blood leukocyte.
- the entire 912 base pair coding sequence was isolated by electrophoresis in a low melting agarose gel, and labeled with 32 P by random priming.
- the 32 P-labeled ME-5 probe was used for hybridization to the Northern blot using the procedure supplied by the manufacturer. After washing the blot was exposed to X-ray film. Upon development of the film a band at about 1.4 kb on the Northern blot corresponds to the ME-5 transcript of the expected size ( FIG. 4 ).
- the transcript can be seen in all tissues and is particularly abundant in prostate, test
- Gene expression profile of ME-2 from normal human tissues was done by performing Northern blot analysis with a commercial Multiple Tissue Northern Blot (BD Biosciences; San Diego, Calif.), the results of which are presented in FIG. 5 .
- the commercial Northern blot contained RNA from the following tissues: spleen, thymus, prostate, testis, uterus, small intestine, colon (no mucosa), and peripheral blood leukocyte.
- the entire 1182 base pair coding sequence was isolated by electrophoresis in a low melting agarose gel, and labeled with 32 P by random priming.
- the 32 P-labeled ME-2 probe was used for hybridization to the Northern blot using the procedure supplied by the manufacturer. After washing the blot was exposed to X-ray film.
- RNAs expressed in spleen, uterus, small intestine, colon, and peripheral blood lymphocyte tissues Interestingly, despite the pattern observed with the peripheral blood lymphocytes, relatively little signal could be detected in thymus tissue.
- EPP2 Gene expression profile of EPP2 from normal human tissues was done by performing Northern blot analysis with a commercial Multiple Tissue Northern Blot (BD Biosciences; San Diego, Calif.), the results of which are presented in FIG. 6 .
- the commercial Northern blot contained RNA from the following tissues: spleen, thymus, prostate, testis, uterus, small intestine, colon (no mucosa), and peripheral blood leukocyte.
- the entire 300 base pair EPP2 coding sequence was isolated by electrophoresis in a low melting agarose gel, and labeled with 32 P by random priming.
- the 32 P-labeled EPP2 probe was used for hybridization to the Northern blot using the procedure supplied by the manufacturer.
- the blot was exposed to X-ray film. Upon development of the film a band at about 1.0 kb on the Northern blot corresponds to the EPP2 transcript hybridizing to the labeled probe ( FIG. 6 ).
- the transcript can be seen in all tissues and is most abundant in prostate, testis, colon, and peripheral blood lymphocyte tissues. In addition, the transcript is present but the relative levels of hybridization are lower among the RNAs expressed in spleen, thymus, uterus, and small intestine tissues.
- the ME-5 antigen was cloned for expression as a 6 ⁇ histidine-tagged fusion protein in insect cells.
- the sequence of the ME-5 cDNA insert was generated by PCR amplification using specific primers that flanked the 912 bp coding region. Unique sites for the Bam HI and Eco RI restriction enzymes were incorporated into the primers to maintain the ME-5 reading frame with the vector sequences.
- the PCR amplicons were digested with the Bam HI and Eco RI restriction enzymes (Stratagene; San Diego, Calif.) and purified by agarose gel electrophoresis.
- the insect cell transfer vector Blue Bac His2a (Stratagene; San Diego, Calif.) was also digested with the restriction enzymes Bam HI and Eco RI and treated with calf intestine alkaline phosphatase.
- the ME-5 cDNA insert was ligated with the vector and competent bacteria transformed. Individual isolated clones were grown, plasmid DNA isolated, and digested with the restriction enzymes Bam HI and Eco RI. Clones producing a band of about 900 bp in addition to the linear vector were chosen. Several candidates were further characterized by DNA sequence analysis to verify that no changes occurred during the process of PCR amplification and cloning.
- Recombinant baculoviruses were generated by cotransfection of Sf9 insect cells with baculovirus DNA and the ME-5 transfer vector. The baculoviruses were isolated by plaque purification and used to evaluate expression patterns in pilot cultures. The recombinant baculovirus virus and pilot scale cultures were evaluated for expression patterns.
- One recombinant baculovirus clone was identified which expressed an antigen of approximately 38 kD, which was detected in both the soluble and the insoluble fraction of the insect cell lysates. The clone was expanded into large-scale virus stocks for expression of recombinant ME-5 protein.
- the ME-2 antigen was cloned for expression as a 6 ⁇ histidine-tagged fusion protein in insect cells as described above for the ME-5 activity.
- the sequence of the ME-2 cDNA insert was generated by PCR amplification using specific primers that flanked the 1182 bp coding region. Unique sites for the Bam HI and Eco RI restriction enzymes were incorporated into the primers to maintain the ME-2 reading frame with the vector sequences.
- the PCR amplicons were digested with the Bam HI and Eco RI restriction enzymes (Stratagene; San Diego, Calif.) and purified by agarose gel electrophoresis.
- the insect cell transfer vector Blue Bac His2a (Stratagene; San Diego, Calif.) was also digested with the restriction enzymes Bam HI and Eco RI and treated with calf intestine alkaline phosphatase.
- the ME-2 cDNA insert was ligated with the vector and competent bacteria transformed. Individual isolated clones were grown, plasmid DNA isolated, and digested with the restriction enzymes Bam HI and Eco RI. Clones producing a band of about 1100 bp in addition to the linear vector were chosen. Several candidates were further characterized by DNA sequence analysis to verify that no changes occurred during the process of PCR amplification and cloning.
- Recombinant baculoviruses were generated by cotransfection of Sf9 insect cells with baculovirus DNA and the ME-2 transfer vector. The baculoviruses were isolated by plaque purification and used to evaluate expression patterns in pilot cultures. The recombinant baculovirus virus and pilot scale cultures were evaluated for expression patterns.
- One recombinant baculovirus clone was identified which expressed an antigen of approximately 49 kD, which was detected in both the soluble and the insoluble fraction of the insect cell lysates. The clone was expanded into large-scale virus stocks for expression of recombinant ME-2 protein.
- the EPP2 antigen was cloned for expression as a 6 ⁇ histidine-tagged fusion protein in insect cells as described above.
- the sequence of the EPP2 cDNA insert was generated by PCR amplification using specific primers that flanked the 300 bp coding region. Unique sites for the Bam HI and Eco RI restriction enzymes were incorporated into the primers to maintain the EPP2 reading frame with the vector sequences.
- the PCR amplicons were digested with the Bam HI and Eco RI restriction enzymes (Stratagene; San Diego, Calif.) and purified by agarose gel electrophoresis.
- the insect cell transfer vector Blue Bac His2a (Stratagene; San Diego, Calif.) was also digested with the restriction enzymes Bam HI and Eco RI and treated with calf intestine alkaline phosphatase.
- the EPP2 cDNA insert was ligated with the vector and competent bacteria transformed. Individual isolated clones were grown, plasmid DNA isolated, and digested with the restriction enzymes Bam HI and Eco RI. Clones producing a band of about 300 bp in addition to the linear vector were chosen. Several candidates were further characterized by DNA sequence analysis to verify that no changes occurred during the process of PCR amplification and cloning.
- Recombinant baculoviruses were generated by cotransfection of Sf9 insect cells with baculovirus DNA and the EPP2 transfer vector. The baculoviruses were isolated by plaque purification and used to evaluate expression patterns in pilot cultures. The recombinant baculovirus virus and pilot scale cultures were evaluated for expression patterns.
- One recombinant baculovirus clone was identified which expressed an antigen of approximately 9 kD, which was detected in both the soluble and the insoluble fraction of the insect cell lysates.
- the clone was expanded into large-scale virus stocks for expression of recombinant EPP2 protein. This was used to infect a large-scale culture of Sf9 insect cells. The pattern of expression is illustrated in FIG. 9 , and is best visualized by the Western blot analysis ( FIG. 9 ).
- the presence of recombinant EPP2 was confirmed with a commercial anti-HisG monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125 I-labeled rabbit anti-mouse IgG secondary antibody. This confirms the presence of a 6 ⁇ histidine-tagged protein of approximately 9 kD which is the molecular weight expected for EPP2.
- the recombinant was detected in both the soluble and the insoluble fraction of the insect cell lysates, but slightly more antigen seems to be localized in the soluble fraction. In contrast to the patterns seen with the ME-5 and ME-2 protein expression, no EPP2 antigen was present in the PBS used to wash the infected cells prior to the lysis.
- ME-5, ME-2, and EPP2 antigens require substantial amounts of isolated protein. Specifically, these are needed for evaluating the reactivity of the ME-5, ME-2, and EPP2 proteins with endometriosis patient serum specimens to establish clinical relevance.
- the recombinant ME-5, ME-2, and EPP2 antigens were isolated from the soluble fraction or the whole cell lysate by immobilized metal affinity chromatography (IMAC).
- ME-5 antigen was isolated from the soluble fraction of the insect cell lysate. Briefly, ME-5 recombinant baculoviruns-infected insect cells were harvested after three days of infection by centrifugation. The cells were washed twice with PBS and the cell pellet frozen for one hour at ⁇ 70° C. After thawing the cell pellet was suspended in binding buffer (500 mM NaCl, 20 mM Tris-HCl, pH 8.0) supplemented with protease inhibitor cocktail for mammalian tissues (Sigma; St. Louis, Mo.). The lysate was sonicated, and centrifuged at 18,000 rpm, 4° C. for 20 minutes to separate the soluble and insoluble fractions.
- binding buffer 500 mM NaCl, 20 mM Tris-HCl, pH 8.0
- the soluble fraction was dialyzed against binding buffer, and centrifuged at 18,000 rpm, 4° C. to remove impurities that might affect the performance of the column.
- Nickel-charged chelating Sepharose resin (Amersham Biosciences; Piscataway, N.J.) was equilibrated twice with 2 ⁇ column volume of binding buffer. The resin was incubated with the ME-5 insect cell lysate for 20 minutes on a rocker at room temperature. The resin/lysate mixture is loaded on a column and washed with 40 column volumes of A20 Column Wash buffer (20 mM imidazole; 500 mM NaCl; 20 mM Tris-HCl, pH 8.0).
- Bound ME-5 protein was eluted from the column with elution buffer (500 mM imidazole; 500 mM NaCl; 20 mM Tris-HCl, pH 7.5). Protease inhibitor cocktail was added to the pooled elution fractions and protein concentration measured by BCA assay (Pierce; Rockford, Ill.) using a BSA standard curve. The eluted protein samples are analyzed upon SDS PAGE followed by staining with Coomassie blue or transfer to nitrocellulose and Western blotting as shown in FIG. 10 . Such isolated ME-5 protein preparations are divided into aliquots and stored at ⁇ 20° C. with 30% glycerol.
- ME-2 antigen was also isolated from the soluble fraction of the insect cell lysate. Briefly, ME-2 recombinant baculovirus-infected insect cells were harvested after three days of infection by centrifugation. The cells were washed with PBS and the cells lysed as described above. After dialysis the soluble fraction was allowed to bind to nickel-charged chelating Sepharose resin (Amersham Biosciences; Piscataway, N.J.) for 20 minutes at room temperature.
- the resin/lysate mixture is loaded on a column and washed sequentially with denaturing binding buffer A10 (10 mM imidazole, 1 M NaCl, 20 mM Tris-HCl, pH 8.0, 10% glycerol, 6 M Urea), A15 (buffer A10 containing 15 mM imidazole), and A20 (buffer A10 with 20 mM imidazole).
- denaturing binding buffer A10 10 mM imidazole, 1 M NaCl, 20 mM Tris-HCl, pH 8.0, 10% glycerol, 6 M Urea
- A15 buffer A10 containing 15 mM imidazole
- A20 buffer A10 with 20 mM imidazole
- Bound ME-2 protein was eluted from the column with elution buffer (500 mM imidazole; 500 mM NaCl; 20 mM Tris-HCl, pH 7.5).
- Protease inhibitor cocktail was added to the pooled elution fractions and protein concentration measured by BCA assay (Pierce; Rockford, Ill.) using a BSA standard curve. The eluted protein samples are analyzed upon SDS PAGE followed by staining with Coomassie blue or transfer to nitrocellulose and Western blotting as shown in FIG. 11 . Such isolated ME-2 protein preparations are divided into aliquots and stored at ⁇ 20° C. with 30% glycerol.
- EPP2 antigen was isolated from the whole insect cell lysate as follows.
- the EPP2 recombinant baculovirus-infected insect cells were harvested after three days of infection by centrifugation. The cells were washed twice with PBS and the cell pellet frozen for one hour at ⁇ 70° C. After thawing the cell pellet was suspended in denaturing binding buffer (750 mM NaCl; 20 mM Tris-HCl, pH 8.0; 10% glycerol; 6 M guanidine HCl) supplemented with protease inhibitor cocktail for mammalian tissues (Sigma; St. Louis, Mo.). The lysate was sonicated, and centrifuged to separate the soluble and insoluble fractions.
- denaturing binding buffer 750 mM NaCl; 20 mM Tris-HCl, pH 8.0; 10% glycerol; 6 M guanidine HCl
- the soluble fraction was allowed to bind to nickel-charged chelating Sepharose resin (Amersham Biosciences; Piscataway, N.J.) for 20 minutes at room temperature.
- the resin is loaded on a column and washed sequentially with denaturing binding buffer A10 (10 mM imidazole, 1 M NaCl, 20 mM Tris-HCl, pH 8.0, 10.% glycerol, 6 M Urea), A15 (buffer A10 with 15 mM imidazole), A20 (buffer A10 with 20 mM imidazole), A25 (buffer A10 with 25 mM imidazole), and A30 (same as buffer A10 but with 30 mM imidazole).
- denaturing binding buffer A10 (10 mM imidazole, 1 M NaCl, 20 mM Tris-HCl, pH 8.0, 10.% glycerol, 6 M Urea
- A15 buffer A10 with 15 mM imidazole
- the isolated EPP2 protein is eluted with denaturing elution buffer (250 mM imidazole, 1 M NaCl, 20 mM Tris-HCl, pH 7.5, 10% glycerol, 6 M Urea).
- Protease inhibitor cocktail was added to the pooled elution fractions and EPP2 protein is dialyzed against 0.2 M bicarbonate buffer with 0.5 M NaCl and cysteine/cystine to remove the urea. After dialysis the samples are concentrated if needed on Aquacide and the protein concentration measured by BCA assay (Pierce; Rockford, Ill.) using a BSA standard curve.
- the isolated EPP2 protein samples are analyzed upon SDS PAGE followed by Coomassie and Western blotting as shown in FIG. 12 . Protein samples are stored at ⁇ 20° C. with 30% glycerol. Such isolated EPP2 protein preparations are divided into aliquots and stored at ⁇ 20° C. with 30% glycerol.
- Monoclonal antibodies to the ME-5 protein were produced using standard methods (G. Galfre et al. [1977] Nature 266:550) with modifications (V. T. Oi and L. A. Herzenberg [1980] In B. B. Mishell and S. M. Shiigi [eds.] Selected Method in Cellular Immunology [San Francisco: W. H. Freeman]).
- Such monocronal antibody reagents are valuable for additional studies of the ME-5 protein character, and to assist in development of immunoassays for determining the clinical significance of the protein in endometriosis patients.
- mice (BALB/c) were immunized with isolated recombinant ME-5 antigen and the antibody response to the antigen monitored in these animals by ELISA and Western blot techniques with the animal's serum. When the antibody response was significant the animals were boosted with another immunization with the ME-5 antigen. Three days later the spleen was removed from an animal and the immune-cells isolated from the organ. The isolated spleen cells were fused with the immunoglobulin non-producing Sp2/0 mouse myeloma cell line (M. Shulman et al. [1978] Nature 276:269). The resulting hybridoma cells were selected in culture medium containing HAT reagents.
- Candidate hybridoma cells were cloned a minimum of two times by limiting dilution and the clones screened by ELISA using isolated ME-5 antigen.
- One hybridoma cell line designated 2D1 was found to react particularly well with the isolated ME-5 antigen and this was selected for additional experiments.
- FIG. 13 shows the pattern of Western blot analysis obtained with the anti-ME-5 2D1 monoclonal antibody.
- the monoclonal reacted well with the isolated recombinant antigen and 2D1 reactivity was seen at an estimated molecular weight of 38 kD.
- the RL95-2 protein extract there was a clear band of reactivity with the natural ME-5 protein that appeared to be slightly larger than the isolated recombinant.
- tissue extracts obtained from various human organs were studied including human spleen, brain, lung, heart, liver, ovary, placenta, testis, skeletal muscle, and kidney.
- Samples of commercially available human tissue protein extracts (Protein Medleys: BD Biosciences; San Diego, Calif.) were separated by electrophoresis on SDS PAGE gels using instructions provided by the manufacturer.
- the protein extracts were evaluated by Western blot using the anti-ME-5 2D1 monoclonal as primary antibody and the immune complexes were detected with a 125 I-labeled anti-mouse antibody. The results are shown in FIG.
- the clinical significance of the ME-5, ME-2 and EPP2 proteins were evaluated using line immunoblotting studies to measure reactivity with antibodies present in the serum of endometriosis patients. These line blotting experiments were designed to identify IgG antibodies in human serum reactive with the recombinant proteins. Briefly, the line blot utilizes the ME-5, ME-2, and EPP2 recombinant protein antigens which are immobilized on a nitrocellulose membrane in a discrete location and in the form of a line spanning the surface. In addition, a reagent control line is included to verify that the specific assay conditions have been followed.
- FIG. 15A Some representative lineblot strips containing ME-5 antigen treated with normal control patient serum are shown in FIG. 15A .
- FIG. 15B the pattern of reactivity of representative endometriosis patients with similar strips is shown in FIG. 15B .
- Sera from endometriosis patients consistently react much more strongly with the ME-5 protein when compared to control sera (compare patterns of 15A and 15B).
- a particular concentration of the ME-5 recombinant is signaled out which offers the best discrimination of reactivity for antibodies in endometriosis patients relative to controls. In these experiments, and others to be summarized later, this concentration was 0.036 milligrams of ME-5 per milliliter. At this value, few if any control patients react, but reactivity of the endometriosis patients was substantial.
- the marker ME-5 reacted with at least 57% of the endometriosis patient sera evaluated in this experiment, and overall the pattern of reactivity of sera from endometriosis patients was considerably stronger with the ME-5 protein when compared to the patterns observed with control sera.
- FIG. 16A Some representative lineblot strips containing the ME-2 antigen and treated with normal control patient serum are shown in FIG. 16A .
- FIG. 16B the pattern of reactivity of representative endometriosis patients with similar strips is shown in FIG. 16B .
- Sera from endometriosis patients consistently react much more strongly with the ME-2 protein when compared to control sera (compare patterns of 16A and 16B).
- a particular concentration of the ME-2 recombinant is signaled out which offers the best discrimination of reactivity for antibodies in endometriosis patients relative to controls. In these experiments, and others to be summarized later, this concentration was 0.018 milligrams of ME-2 per milliliter. At this value, few if any control patients react, but reactivity of the endometriosis patients was substantial.
- the patient serum specimen showing reactivity with EPP2 antigen is considered positive if the intensity of the signal is stronger than that obtained with the protein on the control patient strips.
- the strips treated with control sera were compared to the strips incubated with endometriosis patient sera to facilitate analysis of the intensity of staining of each band.
- FIG. 17A Some representative lineblot strips showing the reactivity of recombinant EPP2 with normal control patient serum are shown in FIG. 17A .
- FIG. 17B shows the pattern of reactivity of representative endometriosis patients with similar strips.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Urology & Nephrology (AREA)
- Reproductive Health (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Pregnancy & Childbirth (AREA)
- Pathology (AREA)
- Diabetes (AREA)
- Rehabilitation Therapy (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Food Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Gynecology & Obstetrics (AREA)
- Animal Behavior & Ethology (AREA)
- Peptides Or Proteins (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
Abstract
Description
- Endometriosis is a female reproductive disorder characterized by the presence of endometrial tissue outside of the normal uterine location. Most frequently the endometriosis tissue is present in the peritoneal cavity, attaching to various tissues and organs in this location. Endometriosis is a benign disease affecting approximately 5 million women in the United States annually with a prevalence of 10 to 15 percent in women of childbearing age. The incidence increases to 60 to 80 percent of women who are infertile or present with pelvic pain (D. Gosselin et al. [1999] Curr. Opin. Onco. Endo. & Metabol. Invest. Drugs 1:31). The conditions that predispose an individual to endometriosis are still unknown. Several authoritative reports suggest that retrograde menstruation may be a key-contributing factor, but this process is thought to be common in most women. This theory has also been questioned recently (D. B. Redwine [2002] Fert. Steril. 78:686) due primarily to the substantial differences that occur between normal or eutopic endometrium and the ectopic tissue found in diseased patients. Consequently, other genetic as well as immunological factors are thought to contribute key roles to the development of the disease in susceptible women. For example, endometriosis is thought to be much more frequent in first degree relatives of affected women when compared to the rest of the population (Coxhead and Thomas [1993] J. Obstet. Gynacol. 13:42). In addition to the frequency, the disease has also been reported to be more severe in women with a first-degree relative with endometriosis (Thomas and Campbell [2000] Gynacol. Obstet. Invest. 50:2). The precise gene(s) involved in the disorder are unknown but the pattern is strongly suspected to be maternal in nature.
- Although not life threatening, endometriosis results in substantial abdominal discomfort, and may cause infertility. In fact, such symptoms can be indicative of other feminine health disorders and this makes the diagnosis of endometriosis clinically challenging. This was emphasized in a recent study upon the effects of delayed diagnosis of endometriosis (G. K. Husby et al [2003] Acta. Obstet. Gynecol. Scand. 82:649). These investigators reported delays from 3 to 11 years between the onset of pain and the final diagnosis of endometriosis. In this study women reporting both infertility and pain did not have a significantly shorter delay in diagnosis. Obviously such delays coupled with the symptoms reported lead to the expenditure of considerable economic and psychological resources.
- Currently surgical laparoscopy is considered to be the gold standard for diagnosis of endometriosis. During laparoscopy the disease is visually staged using a point system from stage I (minimal disease, 1 to 5 points) to IV (severe disease, >40 points). The points are assigned according to several parameters such as location, size, and depth (superficial versus deep) of the lesions (T. P. Canavan and L. Radosh [2000] Postgrad. Med. 107:213). Some opinions reveal potential hazards with the procedure, and frequently laparoscopy does not result in a definitive diagnosis of the disease (S. Pillai et al. [1996] Am. J. Reprod. Immunol. 35:483). For example, while laparoscopy is not classed as major surgery it still has several features (invasive, expensive, requires anesthesia, and full operating facilities) which together make the process an unfortunate choice for diagnosis at least. In fact, while endometriosis is not a fatal disorder, laparoscopy itself can be life threatening. The trans-abdominal approach has been reported to be responsible for 50% of the complications from this procedure, and injury to major blood vessels can result in mortality of 15% (I. A. Brosens and J. J. Brosens [2000] Eur. J. Obstet. Gynecol. Reprod. Biol. 88:117). Other complaints are that the visual staging of the disease does not correlate with the degree of infertility or the severity or number of symptoms (T. P. Canavan and L. Radosh [2000] Postgrad. Med. 107:213). It has been reported that the place of laparoscopy in the diagnosis of endometriosis should be reassessed (I. A. Brosens and J. J. Brosens [2000] Eur. J. Obstet. Gynecol. Reprod. Biol. 88:117). Rational for this lies in part due to the suggestion by some (P. R. Koninckx [1994] Hum. Reprod. 9:2202) that mild endometriosis is not a disease at all and that all women have endometriosis. Moreover as noted above there are functional aspects (e.g., infertility, abdominal pain, etc.) to stages other than mild disease and these are more commonly being applied to diagnosis. Consequently it has been proposed that the traditional ‘gold standard’ be replaced with a combination of transvaginal hydrolaparoscopy (THL, a somewhat milder procedure) and magnetic resonance (MR) imaging until suitable biochemical markers have been identified (I. A. Brosens and J. J. Brosens [2000] Eur. J. Obstet. Gynecol. Reprod. Biol. 88:117).
- The frequency of endometriosis and the difficulty of diagnosing the disorder together represent ample rationale for experiments designed to identify these serum based biochemical markers. Other discovery phase programs have implied that of potential markers of endometrial disease may exist. For example, levels of the epithelial ovarian-derived antigen CA-125 have been reported to be elevated in serum, peritoneal fluid, and menstrual fluid of endometriosis patients (B. Mol et al. [1998] Fertil. Steril. 70:1101). The marker exhibited good specificity, but the sensitivity is poor with high levels present in patients afflicted with PID, ovarian cancer, or cervical carcinoma. Despite the limitations, the marker may be of use for patients who are likely to have the disease for faster orientation toward laparoscopy, since CA-125 levels do correlate somewhat with the degree of disease and response to treatment (T. P. Canavan and L. Radosh [2000] Postgrad. Med. 107:213).
- Also, Sharpe-Timms et al. (Biol. Reprod. [1998] 58:988) have reported that endometriosis lesions secrete a haptoglobin-like protein in a rodent model system. The haptoglobulin was specifically synthesized by endometriosis tissue and was not found in uterine tissue using a sensitive reverse transcriptase PCR technique. This antigen is also interesting in that it has been reported to modulate immune cell functions and could contribute to the pathophysiology of endometriosis
- Along slightly different lines, D. Gosselin et al. (Curr. Opin. Oncol. Endo. Metabol. Inv. Drugs [1999] 1:31) reported a diagnostic algorithm employing several different combinations of leukocyte markers present upon subsets of T and B cells, macrophages, and NK cells in peripheral blood and endometrium of patients with endometriosis. This formed the foundation for the development of a diagnostic test (Metrio Test) by PROCREA BioSciences, Inc. which is approved by Health Canada. The Metrio Test is based on the assessment of eight proprietary leukocyte subsets by flow cytometry analysis combined with a blood biochemical marker evaluated by ELISA (J. Brosens et al. Obstet. Gynecol. Clin. North Am. [2003] 30:95-114). This test reportedly has a specificity rate of 95% and a sensitivity rate of 61%.
- P. Vigano et al. (Obstet. Gynecol. [2000] 95:115-118) report that the soluble form of
intercellular adhesion molecule 1 is released by uterine endometrium and such release correlates with the extent (number of implants) of endometriosis in patients. The authors suggest that solubleintercellular adhesion molecule 1 might be of value in evaluating the spread potential of refluxed endometrium. However, solubleintercellular adhesion molecule 1 is also known to be released in other disease states so the potential value of this protein as a marker may be diminished somewhat. - J. Mahnke et al. (Fertil. Sterl. [2000] 73:166-170) evaluated VEGF and IL-6 levels in peritoneal fluid of women with endometriosis and found them to be elevated in patients with advanced disease. The levels of VEGF and IL-6 were lower in normal women and patients with milder disease. Nevertheless, the diagnostic value of these markers is suspect since at least VEGF is known to be a potent angiogenesis factor that is regulated by hypoxia in normal endometrium (A. M. Sharkey et al. J. Clin. Endocrinol. Metab. [2000] 85:402-409).
- Matalliotakis and coworkers (Obstet. Gynecol. [2000] 95:810-813) found elevated levels of soluble CD23 in serum of women with endometriosis when compared to a control population. The CD23 levels decreased significantly during treatment with either danazol or leuprolide acetate. There seemed to be no correlation between soluble CD23 levels and the severity of endometriosis in the patients. As noted above for some of the other putative markers, CD23 has been associated with conditions linked to autoantibody production and levels of this protein are elevated in patients with autoimmune diseases.
- Overall despite the substantial effort extended by numerous researchers, and also as reported in the publications reviewed above, no truly acceptable marker for endometriosis has been discovered. Yet, the physical and economic impact of the disease, and the difficulty in diagnosing the disorder dictate that the search for suitable markers be continued. Consequently, the activities disclosed in this invention were undertaken to identify markers of endometriosis that can aid physicians in monitoring patients with this illness. Other groups have performed such projects and these discoveries are the subject of numerous patent documents, which differ substantially from the discovery of the ME-5, ME-2 and EPP2 markers described in this invention. In U.S. Patent application 2003/0032044 there is a description of methods for generally detecting reproductive tract disorders by measuring the levels of interleukins IL-13 and IL-15 in specimens. Another U.S. Patent application 2002/0192647 proposes a process for diagnosing angiogenic diseases by measuring a single nucleotide polymorphism in the VEGFR-1 gene. Endometriosis is categorized as one of this group of angiogenic diseases, but it was not the subject of any of the claims. Patent applications 2001/046713 and 2001/044158 describe a method for diagnosis of endometriosis by detecting anti-Tomsen-Frienenreich antibodies in specimens. An issued U.S. Pat. No. 6,376,201 illustrates the use of major histocompatibility complex-class I antigens in diagnosing endometriosis and forming the basis of the Metrio Test as described above. In this patent the MHC-class I antigens are detected in specimens with specific monoclonal antibodies and similar disclosures were described in U.S. Pat. No. 5,618,680 and W.O. 0043789. A method for diagnosing endometriosis is described in U.S. Pat. No. 6,540,980 that involves measurement of eosinophil peroxidase levels. In U.S. Pat. No. 6,525,187 is described an apparently novel, marker of endometriosis which is the target of autoantibodies present in patient serum. Another method for diagnosis of endometriosis is disclosed in U.S. Pat. No. 6,387,629 and this is based upon the measurement of the protease cathepsin S in a clinical sample. A gene encoding an endometrial bleeding associated factor (ebaf) is described in U.S. Pat. No. 6,294,662 and this gene could be useful for diagnosis of endometriosis. However the ebaf gene seems to have better utility in the early diagnosis of selected carcinomas (colon, ovaries, or testis) in a human. In U.S. Pat. No. 5,877,284 another potential marker of endometriosis is described. This marker is a small soluble protein isolated by affinity chromatography from the peritoneal fluid of women with endometriosis, and the protein has chemotactic activity to neutrophils and macrophages. A process for monitoring human endometrial functions is described in U.S. Pat. No. 4,489,166 and it involves the quantitative measurement of progestagen-associated endometrial protein (PEP) in a clinical sample. European Patent No. 1191107 describes a method for diagnosis of endometriosis by measuring a reduction in the levels of one of a group of 15 different human genes. An immunoassay process is described in European Patent No. 0387027 which establishes endometriosis in a patient by evaluating a specimen with an anti-endometriosis monoclonal antibody. A method is described in W.O. 0063675 for diagnosis of endometriosis by measuring increased levels of endometriosis factor in biological fluids of a patient. W.O. 9963116 provides for a method of diagnosing endometriosis by measuring increases in the amount of prothymosin in endometriotic tissue.
- U.S. Pat. No. 6,531,277 discloses an endometriosis-specific secretory protein. The document characterized and disclosed human ENDO-1 that is produced by stromal cells of endometriotic tissue. The ENDO-1 protein is 40 to 50 kilodaltons in molecular weight and has an isoelectric point of 4.0 to 5.5. The claims of the document are concerned primarily with a molecular diagnostic assay measuring differences in expression of ENDO-1 mRNA in endometriosis tissue samples. In a related application U.S. 2002/0009718 the invention is extended for measurement of the ENDO-1 glycoprotein in patient samples using immunoassay to establish the presence of endometriosis. Nevertheless, the characteristics of ENDO-1 presented in these documents suggest that it is considerably different from the markers described in the present invention. For example when measured by SDS PAGE and Western blotting the ME-5, ME-2, and EPP2 proteins are about 38, 49, and 9 kilodaltons in size, respectively. Only the ME-2 marker is within the range specified for ENDO-1, but ME-2 has an isoelectric point of 8.8 so it is not a related protein. Also, the isoelectric points of the ME-5 and EPP2 antigens are calculated at 5.7 and 12.5, respectively, which are also well above the range of values specified for the ENDO-1 protein. Moreover the ENDO-1 marker is a member of the haptogloblin family of proteins, but nucleic acid and amino acid sequence comparisons show that the ME-5, ME-2, and EPP2 markers are not related to this family of proteins.
- In yet another separate disclosure, U.S. Pat. No. 5,843,673 specifies a method of screening for endometriosis in women by measuring a reduction in the amounts of a 28 to 32 kilodalton molecular weight glycoprotein in peritoneal fluid or serum samples. The protein possesses an isoelectric point of 7.0 to 9.0 and is secreted specifically by stromal cells of endometriotic origin. The glycoprotein disclosed in the document is related to tissue inhibitor of metaloproteinases-1 (TIMP-1) by virtue of amino acid sequence identity measured in the amino terminal region of protein. In the patent it is shown that endometriosis is indicated in a patient who has reduced levels of TIMP-1 present in serum or peritoneal fluid. The ME-5, ME-2, and EPP2 proteins of this invention are not related to TIMP-1 and they have no measurable protein or nucleic acid homology to this family of proteins. In addition, and as noted above, the biochemical properties of the ME-5, ME-2, and EPP2 proteins differ from those of TIMP-1 and each is considerably larger or smaller (at 38, 49, or 9 kilodaltons, respectively) than the range given for TIMP-1. While the isoelectric point of ME-2 is at the upper range of that of TIMP-1, the isoelectric point of ME-5 is 5.7 and EPP2 is 12.5 which are much different.
- Another disclosure of protein agents implicated in endometriosis is contained in the document WO 01/32920 in which it is assumed that a total of 33 genes and their protein products are associated with the disease. These putative endometriosis markers were identified by comparing the pattern of gene expression in diseased endometrium relative to that of normal tissue. This differential display reverse transcriptase polymerase chain reaction employed in the document is a purely genetic screening approach designed to identify disease-associated genes based upon differences in the expression levels of mRNAs. The mRNA populations compared are usually normal healthy endometrium and the diseased counterpart, ideally both isolated from a single patient suffering from the illness. This technology ignores the functional activity of the proteins encoded by the mRNAs, and does not interrogate specimens based on disease hallmarks, symptoms, or the body's response to the illness. The latter strategies are arguably better approaches for marker discovery as discussed below. The individual nucleic acid sequences identified in the document fall into the general groups of; protease or protease inhibitor, tumor suppressor protein, immune system proteins, inflammatory response proteins, enzymes, lipid binding proteins, transcription factors, and matrix or cell adhesion molecules. All of the genes in WO 01/32920 are known and the nucleic acid sequences appear in the public databases allowing them to be identified. The individual nucleic acid sequences identified and implicated as somehow being involved in endometriosis are: cathepsin D, AEBP-1, stromelysin-3, cystatin B,
protease inhibitor 1, sFRP4, gelsolin, IGFBP-3,dual specificity phosphatase 1, PAEP, immunoglobulin λ chain, ferritin,complement component 3, pro-alpha-1 type III collagen, proline 4-hydroxylase, alpha-2 type I collagen, claudin-4, melanoma adhesion protein, procollagen C-endopeptidase enhancer, nascent-polypeptide-associated complex alpha polypeptide,elongation factor 1 alpha (EF-1 a), vitamin D3 25 hydroxylase, CSRP-1, steroidogenic acute regulatory protein, apolipoprotein E,transcobalamin 11, prosaposin, early growth response 1 (EGR1), ribosomal protein S6, adenosine deaminase RNA-specific protein, RAD21, guanine nucleotide binding protein beta polypeptide 2-like 1 (RACK1), and podocalyxin (and see references within WO 01/32920). Overall the diagnosis of endometriosis with the above agents would involve assessing the level of expression of the gene. The ME-5, ME-2, and EPP2 proteins and the nucleic acids described in this invention are also known and appear in the databases (see Example 1, below). However, none of the ME-5, ME-2, or EPP2 sequences fall into any of the groups listed above nor do they correspond to any of the designated agents either by computer-assisted homology comparison or predicted function based upon the presence of recognizable motifs present in the protein sequence. A similar gene expression-based strategy was employed in the discoveries documented by S. Baban et al. in US Patent Application 2002/0127555 in which 14 genes were found to be overexpressed in endometriosis patients relative to disease-free females. The overexpressed genes were NADH dehydrogenase, hUCCi, Paralemmin, citrate transport protein. HIF1-alpha, ARNT, Glut-1, MnSOD, GPx, ATP synthase, c-jun, Cx43, HSP 70, and cox2. In addition, 19 genes were reported in this document to be underexpressed in endometriosis patients relative to disease-free females. The genes underexpressed in diseased endometrial tissues were Cap43, RNA helicase, C03, FKHR, AK3, catalase, GST, eNOS, 12S rRNA, T1227H, C02, aconitase, ANT-1, Bcl-2, COUP-TF, IL-1 beta,HSP 90, GPx4, and GRP78. Yet another gene expression strategy was described by H. Hess-Stumpp et al. In US Patent Application 2003/0077589 resulting in the discovery of 15 genes that are overexpressed in endometriosis. The overexpressed genes were fibronectin, IGFBP-2, transmembrane receptor PTK7, platelet-derived growth factor alpha, collagentype XVIII alpha 1, subtilisin-like protein (PACE4), laminin M chain (merosin), elastin, collagentype IV alpha 2, p27interferon alpha-inducible gene, reticulocalbin,aldehyde dehydrogenase 6, gravin, nidogen, and phospholipase C epsilon. Again, as stated above, the ME-5, ME-2, and EPP2 protein and nucleic acid sequences are not related to any of the genes described in the latter two patents. - Taken together and comparing the results of these three documents, it is interesting that all of them used similar but not identical gene expression strategies to identify a total of 62 genes which are overexpressed in endometriosis and 19 genes that are underexpressed. The implication is therefore that the 81 described genes are related to or involved in endometrial disease. Surprisingly, among these three independent studies, no single human gene or class of genes was consistently found to be associated with endometriosis. Ostensibly if a gene were overexpressed because of changes occurring in endometriosis tissue relative to the normal counterpart, then it would be expected to reproducibly be identified in all studies that assess the gene expression profile of diseased tissue. This does not seem to occur in the otherwise well-designed projects, and brings into question strategies for marker discovery based only on gene expression profiling technologies.
- The document WO 94/28021 describes endometrial proteins, antigenic compounds, and methods of detecting endometriosis. The disclosure encompasses endometriosis-specific proteins defined by molecular weight and isoelectric point. Many of the claims presented are based only on size, but others specify a molecular weight and isoelectric point. The principal endometriosis antigen of the document and which is described in the initial claim has a molecular weight of 64 kilodaltons and an isoelectric point of 3.5. The antigen is used to measure antibodies in specimens obtained from endometriosis patients and also can itself be measured directly for its presence in patient samples. In addition, a larger molecular weight endometriosis protein of 94 kilodaltons with an isoelectric point of 3.5 is also described presumably to be used in the same formats as the smaller antigen. The document also claims nucleic acids for these proteins, however these sequences do not appear in enough detail to allow for comparison to the ME-5, ME-2, and EPP2 protein and nucleic acids of this invention. A small amount of amino acid sequence is presented in WO 94/28021, but there are only 17 residues shown in the document and of these over half are ambiguous. Although similar applications are envisioned for the ME-5, ME-2, and EPP2 protein described in this invention, the antigens described above do not compare in any reported properties to those of the three endometriosis antigens presented here. Initially, none of the unambiguous residues of amino terminal protein sequence are present in the corresponding regions of ME-5, ME-2, and EPP2. In addition, the ME-5, ME-2, and EPP2 proteins are 38, 49, and 9 kilodaltons in size, which are considerably smaller than the antigens described in the document outlined above. Moreover the isoelectric points of ME-5, ME-2, and EPP2 are 5.7, 8.8, and 12.5 which are considerably greater than described for the other proteins. It must be concluded that the endometrial ME-5, ME-2, and EPP2 antigens of this invention have little in common with the proteins described in WO 94/28021.
- Methods and reagents for diagnosis of endometriosis are described in NZ 232801 (also application EP-A-0 387 027) essentially by measuring an endometriosis antigen in a patient specimen using an anti-endometriosis antibody. Various antigens are described in the document ranging in molecular weight from 50 to 173 kilodaltons but no additional characterization of the proteins was performed. These proteins were isolated as a mixture from the culture medium and cytoplasm of 2774 ovarian carcinoma cells, and can be obtained from other cultured cell lines as well. Also described in the disclosure is an anti-endometrial antibody, which is a human IgM monoclonal originally isolated because it reacted with ovarian cancer-associated antigens. Isolation of the antibody was apparently through a set of activities that were unrelated to endometriosis and the ovarian cancer antigen targets apparently were not well characterized. The antibody was made by fusion of patient lymphocytes with a heteromyeloma, and apparently the reactivity of the monoclonal with endometrial antigens was discovered subsequently. Regardless, based on the criteria presented it is unlikely that any of the proteins of NZ 232801 are the same as the smaller ME-5, ME-2, and EPP2 proteins of this invention.
- Another series of endometrial antigens reactive with anti-endometrial antibodies is described in WO 92/18535 and these are also characterized by molecular weight on SDS PAGE analysis. The described protein antigen fragments were isolated from the cytoplasm of epithelial adenocarcinoma cells and are described as useful for detection of endometrial antibodies which are indicative of endometriosis. The antigens are cytoplasmic proteins with sizes of 63 to 67, 33 to 37, 40 to 44, 31 to 35, and 57 to 64 kilodaltons. The designations likely refer to a single protein species, but the size ranges were presented in the document to reflect the inherent inaccuracy (±10%) for the SDS PAGE assay method used. Apparently the preferred proteins for use are the 33 to 37, 40 to 44, and the 57 to 59 kilodalton proteins. The 33 to 37 and 40 to 44 proteins seemed to be present in most of the cell lines that were studied in the document for use as sources of antigen, while the 57 to 59 protein fragments originates from the T47D breast carcinoma cell line. The document describes the use of these proteins individually (or mixed) immobilized on solid support to measure endometrial antibodies. Of course similar applications are envisioned for the ME-5, ME-2, and EPP2 antigens, however with the exception of possibly the 33 to 37 kilodalton fragments there is little else presented in this document that compares to disclosures in WO 92/18535.
- A recombinant polynucleotide comprising an isolated nucleotide sequence from SEQ ID NO:2 encoding a polypeptide epitope of at least 5 amino acids of ME-5 (SEQ ID NO:3), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- A purified, recombinant ME-5 polypeptide whose amino acid sequence is substantially identical to that of SEQ ID NO:3 or an allelic variant of SEQ ID NO:3.
- A purified polypeptide comprising an epitope of at least 5 amino acids of ME-5 (SEQ ID NO:3), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- A composition consisting essentially of an antibody that specifically binds to an epitope of ME-5 polypeptide (SEQ ID NO:3).
- A method for detecting a ME-5 polypeptide (SEQ ID NO:3) in a sample, comprising the steps of:
-
- (a) contacting the sample with an antibody that specifically binds to an epitope of the ME-5 polypeptide and
- (b) detecting specific binding between the antibody and ME-5 polypeptide;
whereby specific binding provides a detection of ME-5 polypeptide in the sample.
- A method for diagnosing endometriosis in a human subject comprising the steps of:
-
- (a) detecting a test amount of an antibody that specifically binds to an epitope of ME-5 polypeptide (SEQ ID NO:3) in a sample from the subject; and
- (b) comparing the test amount with a normal range of the antibody in a control sample from a subject who does not suffer from endometriosis,
whereby a test amount above the normal range provides a positive indication in the diagnosis of endometriosis.
- A recombinant polynucleotide comprising an isolated nucleotide sequence from SEQ ID NO:5 encoding a polypeptide epitope of at least 5 amino acids of ME-2 (SEQ ID NO:6), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- A purified, recombinant ME-2 polypeptide whose amino acid sequence is identical to that of SEQ ID NO:6 or an allelic variant of SEQ ID NO:6.
- A purified polypeptide comprising an epitope of at least 5 amino acids of ME-2 (SEQ ID NO:6), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- A composition consisting essentially of an antibody that specifically binds to an epitope of ME-2 polypeptide (SEQ ID NO:6).
- A method for detecting a ME-2 polypeptide (SEQ ID NO:6) in a sample, comprising the steps of:
-
- (a) contacting the sample with an antibody that specifically binds to an epitope of the ME-2 polypeptide and
- (b) detecting specific binding between the antibody and ME-2 polypeptide;
whereby specific binding provides a detection of ME-2 polypeptide in the sample.
- A method for diagnosing endometriosis in a human subject comprising the steps of:
-
- (a) detecting a test amount of an antibody that specifically binds to an epitope of ME-2 polypeptide (SEQ ID NO:6) in a sample from the subject; and
- (b) comparing the test amount with a normal range of the antibody in a control sample from a subject who does not suffer from endometriosis,
whereby a test amount above the normal range provides a positive indication in the diagnosis of endometriosis.
- A recombinant polynucleotide comprising an isolated nucleotide sequence from SEQ ID NO:8 encoding a polypeptide epitope of at least 5 amino acids of EPP2 (SEQ ID NO:9), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- A purified, recombinant EPP2 polypeptide whose amino acid sequence is identical to that of SEQ ID NO:9 or an allelic variant of SEQ ID NO:9.
- A purified polypeptide comprising an epitope of at least 5 amino acids of EPP2 (SEQ ID NO:9), wherein the epitope specifically binds to antibodies from subjects diagnosed with endometriosis.
- A composition consisting essentially of an antibody that specifically binds to an epitope of EPP2 polypeptide (SEQ ID NO:9).
- A method for detecting a EPP2 polypeptide (SEQ ID NO:9) in a sample, comprising the steps of:
-
- (a) contacting the sample with an antibody that specifically binds to an epitope of the EPP2 polypeptide and
- (b) detecting specific binding between the antibody and EPP2 polypeptide;
whereby specific binding provides a detection of EPP2 polypeptide in the sample.
- A method for diagnosing endometriosis in a human subject comprising the steps of:
-
- (a) detecting a test amount of an antibody that specifically binds to an epitope of EPP2 polypeptide (SEQ ID NO:9) in a sample from the subject; and
- (b) comparing the test amount with a normal range of the antibody in a control sample from a subject who does not suffer from endometriosis,
whereby a test amount above the normal range provides a positive indication in the diagnosis of endometriosis.
- A composition containing at least one of
- a purified, recombinant ME-5 polypeptide whose amino acid sequence is substantially identical to that of SEQ ID NO:3 or an allelic variant of SEQ ID NO:3;
- a purified, recombinant ME-2 polypeptide whose amino acid sequence is substantially identical to that of SEQ ID NO:6 or an allelic variant of SEQ ID NO:6; and
- a purified, recombinant EPP2 polypeptide whose amino acid sequence is substantially identical to that of SEQ ID NO:9 or an allelic variant of SEQ ID NO:9.
- A composition containing at least one of
- a purified polypeptide comprising an epitope of at least 5 amino acids of ME-5 (SEQ ID NO:3);
- a purified polypeptide comprising an epitope of at least 5 amino acids of ME-2 (SEQ ID NO:6), and
- a purified polypeptide comprising an epitope of at least 5 amino acids of EPP2 (SEQ ID NO:9),
- wherein said epitopes specifically bind to antibodies from subjects diagnosed with endometriosis.
- A method for diagnosing endometriosis in a human subject comprising the steps of:
-
- (a) detecting a test amount of an antibody that specifically binds to at least one of ME-5 (SEQ ID NO:3) polypeptide, ME-2 (SEQ ID NO:6), and EPP2 (SEQ ID NO:9) polypeptide in a sample from the subject; and
- (b) comparing the test amount with a normal range of the antibody in a control sample from a subject who does not suffer from endometriosis,
whereby a test amount above the normal range provides a positive indication in the diagnosis of endometriosis.
- As shown in the documents cited above, a number of discoveries have been documented for candidate markers of endometriosis. None of those correspond to the ME-5, ME-2, or EPP2 proteins and nucleic acid sequences of the present invention. Consequently the ME-5, ME-2, and EPP2 proteins of this invention represent novel new markers for endometriosis and the targets of anti-endometrial antibodies produced by women suffering from the disorder. The discovery of the ME-5, ME-2, and EPP2 markers of this invention was predicated upon the knowledge that women suffering from endometriosis have defects in their immune systems. It is assumed that some immune system problems may be manifest in the presence of autoantibodies directed towards endometrial antigens. Others (S. Pillai et al. [1998] Am. J. Reprod. Immunol. 39:235; Van Voorhis and Stovall [1997] J. Reprod. Immunol. 33:239) have discussed such a situation. Clearly, this represents an attractive means of identifying candidate markers of the disease and as useful tools for monitoring patients with endometriosis. Recently, a summary of the accuracy of serum markers for the diagnosis of endometriosis showed endometrial antibodies to be among the best markers with sensitivity of 74% to 83% and specificity of 79% to 100% (J. Brosens et al. 2003] Obstet. Gynecol. Clin. North Am. 30:95). However the antibodies were not measured against discrete isolated antigens such as ME-5, ME-2, and EPP2 for example.
- In initiating a program to identify antigens that may be useful markers of endometriosis (and thus helpful in monitoring women that suffer the disorder) some assumptions were made regarding this disease. First, as noted above, it was assumed that immune system defects occur in these women which enable them to make antibodies directed towards specific endometrial antigens. Second these serum antibodies could be used as tools to identify the antigens, and these proteins in part would form the foundation of immunodiagnostic test systems for monitoring patients with the disorder. The strategy for identification of endometriosis markers was to use patient serum to immunoscreen an endometrial tissue cDNA expression library. Candidate clones would be completely characterized for development of an immunoassay suitable for monitoring patients in a clinical environment.
- A total of three endometrial proteins are described that react with antibodies present in the serum of endometriosis patients. The ME-5 endometriosis marker is specified by a mRNA of about 1.4 kb, of which 1,302 nucleotides is disclosed in this invention. The protein predicted from this sequence is 303 amino acids in size and has a calculated molecular weight of about 35,000 daltons. The natural protein product has a molecular weight of about 38 kD as measured by Western blot with a specific monoclonal antibody. The protein was particularly abundant in ovary tissue which, taken with the isolation from endometrial tissue is strongly supportive of its presence in reproductive tissues and as a marker of reproductive disease. In immunoblotting experiments with immobilized recombinant ME-5 antigen, a number of endometriosis patients were evaluated and the signals generated were considerably stronger than that obtained with a number of control patients.
- The ME-2 endometriosis marker is specified by a mRNA of about 2.0 kb of which 1,353 nucleotides is disclosed in this invention. The protein predicted from this sequence is 393 amino acids in size and has a calculated molecular weight of about 45,000 Daltons. In immunoblotting experiments with immobilized recombinant ME-2 antigen evaluated with a number of endometriosis patients the signal generated was considerably stronger than that obtained with a number of control patients.
- The EPP2 endometriosis marker is specified by a mRNA of about 1.0 kb of which 891 nucleotides is disclosed in this invention. The protein predicted from this sequence is 99 amino acids in size and has a calculated molecular weight of about 9,300 Daltons. In immunoblotting experiments with immobilized recombinant EPP2 antigen evaluated with a number of endometriosis patients the signal generated was considerably stronger than that obtained with a number of control patients.
- Details of these and other issues related to the ME-5, ME-2, and EPP2 endometriosis markers and their nucleic acids are contained in the examples below.
- Clearly as cited by the documents presented above, a number of discoveries have been documented for candidate markers of endometriosis. None of those correspond to the ME-5, ME-2, or EPP2 proteins and nucleic acid sequences disclosed herein. Consequently the ME-5, ME-2, and EPP2 proteins of this invention represent novel new markers for endometriosis and the targets of anti-endometrial antibodies produced by women suffering from the disorder. The discovery of the ME-5, ME-2, and EPP2 markers in this invention was predicated upon the knowledge that women suffering from endometriosis have defects in their immune systems. It is assumed that some immune system problems may be manifest in the presence of autoantibodies directed towards endometrial antigens. Others (S. Pillai et al. [1998] Am. J. Reprod. Immunol. 39:235; Van Voorhis and Stovall [1997] J. Reprod. Immunol. 33:239) have discussed such a situation. Clearly, this represents an attractive means of identifying candidate markers of the disease and as useful tools for monitoring patients with endometriosis. Recently, a summary of the accuracy of serum markers for the diagnosis of endometriosis showed endometrial antibodies to be among the best markers with sensitivity of 74% to 83% and specificity of 79% to 100% (J. Brosens et al. 2003] Obstet. Gynecol. Clin. North Am. 30:95). However the antibodies were not measured against discrete isolated antigens such as ME-5, ME-2, and EPP2 for example.
- In initiating a program to identify antigens that may be useful markers of endometriosis (and thus helpful in monitoring women that suffer the disorder) some that immune system defects occur in these women which enable them to make antibodies directed towards specific endometrial antigens. Second these serum antibodies could be used as tools to identify the antigens, and these proteins in part would form the foundation of immunodiagnostic test systems for monitoring patients with the disorder. The strategy for identification of endometriosis markers was to use patient serum to immunoscreen an endometrial tissue cDNA expression library. Candidate clones would be completely characterized for development of an immunoassay suitable for monitoring patients in a clinical environment.
-
FIGS. 1A, 1B , and 1C show the nucleotide sequence (SEQ ID NO:1) for the isolated ME-5 cDNA, the nucleotide sequence of the coding region (SEQ ID NO:2) of this ME-5cDNA, and the deduced amino acid sequence (SEQ ID NO:3) of the protein encoded by the nucleotide sequence of the ME-5 cDNA. InFIG. 1A there is a 112base pair 5′ untranslated sequence upstream of the predicted ATG start codon. Also inFIG. 1A is a 254base pair 3′ untranslated region downstream of the TGA stop codon. The 3′ untranslated region terminates at a stretch of dT corresponding to thte poly A tail of the mRNA. The start Codon (ATG) and the translation stop codon (TGA) are presented in bold type in the cDNA sequence ofFIGS. 1A and B. -
FIGS. 2A, 2B , and 2C show the nucleotide sequence (SEQ ID NO:4) for the isolated ME-2 cDNA, the nucleotide sequence of the coding region (SEQ ID NO:5) of this ME-2 cDNA, and the deduced amino acid sequence (SEQ ID NO:6) of the protein encoded by the nucleotide sequence of the ME-2 cDNA. InFIG. 2A there is a 54base pair 5′ untranslated sequence upstream of the predicted ATG start codon. Also inFIG. 2A is a 95base pair 3′ untranslated region downstream of the TAG stop codon. The 3′ untranslated region terminates at a stretch of dT corresponding to the poly A tail of the mRNA. The start codon (ATG) and the translation stop codon (TAG) are presented in bold type in the cDNA sequence ofFIGS. 2A and B. -
FIGS. 3A, 3B , and 3C show the nucleotide sequence (SEQ ID NO:7) for the isolated EPP2 cDNA, the nucleotide sequence of the coding region (SEQ ID NO:8) of this EPP2 cDNA, and the deduced amino acid sequence (SEQ ID NO:9) of the protein encoded by the nucleotide sequence of the EPP2 cDNA. InFIG. 3A there is a 45base pair 5′ untranslated sequence upstream of the predicted ATG start codon. Also inFIG. 3A is a 522base pair 3′ untranslated region downstream of the TAA stop codon. The 3′ untranslated region terminates at a stretch of dT corresponding to the poly A tail of the mRNA. The start codon (ATG) and the translation stop codon (TAA) are presented in bold type in the cDNA sequence ofFIGS. 3A and B. -
FIG. 4 demonstrates the pattern of ME-5 mRNA expression in various human tissues. A commercial Northern blot (BD Biosciences; San Diego, CA) was hybridized with the complete 32P-labeled ME-5 coding sequence ofFIG. 1B . Conditions of hybridization and washing were as described by the manufacturer. Hybridizing bands were observed corresponding to a mRNA of about 1,400 nucleotides (migrates just slower than the 1,350 nucleotide marker) as well as another larger but perhaps less abundant message of 1,800 to 2,000 nucleotides (migrating just ahead of the 2,400 nucleotide marker). The ME-5 sequence seems to be expressed most abundantly in prostate, testis and uterus tissues, but lower amounts were detected in the other tissues evaluated (spleen, thymus, small intestine, colon and peripheral blood leukocyte). -
FIG. 5 demonstrates the pattern of ME-2 mRNA expression in various human tissues. A commercial Northern blot (BD Biosciences; San Diego, CA) was hybridized with the complete 32P-labeled ME-2 coding sequence ofFIG. 2B . Conditions of hybridization and washing were as described by the manufacturer. Hybridizing bands were observed corresponding to a mRNA of about 2,000 nucleotides (migrates about mid way between the 2,400 nucleotide and the 1,350 nucleotide markers). No other strongly hybridizing bands were detected upon the blot. The ME-2 sequence seems to be expressed most abundantly in prostate and testis tissues. Moderate levels are detectable in spleen, uterus, small intestine, colon, and peripheral blood leukocyte tissues. In this experiment lower amounts of hybridization were observed in thymus tissue. -
FIG. 6 demonstrates the pattern of EPP2 mRNA expression in various human tissues. A commercial Northern blot (BD Biosciences; San Diego, Calif.) was hybridized with the complete 32P-labeled EPP2 coding sequence ofFIG. 3B . Conditions of hybridization and washing were as described by the manufacturer. Hybridizing bands were observed corresponding to a mRNA of about 1,000 nucleotides (migrates just faster than the 1,350 nucleotide marker). The EPP2 sequence seems to be expressed most abundantly in prostate, testis, colon and peripheral blood leukocyte. Lesser amounts of signal were visualized in spleen, thymus, and small intestine tissues, but little or no signal was detected in uterus tissue. -
FIG. 7 shows the pattern of expression of recombinant ME-5 in an insect cell host. The ME-5 cDNA was cloned for expression as a 6X histidine-tagged recombinant protein in insect cells. A culture of Sf9 insect cells expressing recombinant ME-5 was prepared and lysed. The culture medium, PBS wash, and the soluble and insoluble fractions of the cell lysate were analyzed by SDS PAGE and staining (left panel) of the gel with GelCode blue (Pierce Chemicals; Rockford, Ill.). The expression samples were also evaluated by Western blotting (right panel) with an anti-HisG mouse monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125I-labeled rabbit anti-mouse IgG secondary antibody. The recombinant protein was obscured by the multiplicity of protein bands in the stained gel at left, but a band of about 38 kD was clearly detected by the Western blot. This confirmed the presence of a 6× His-tagged protein with the approximate molecular weight expected for the recombinant ME-5 antigen. No recombinant ME-5 protein was detectable in the cell culture medium, but some was present in the PBS used to wash the insect cells prior to lysis. Most of the recombinant ME-5 protein seemed to be present in the soluble fraction of the insect cell lysate, but some was associated with the insoluble material. -
FIG. 8 shows the pattern of expression of recombinant ME-2 in an insect cell host. The ME-2 cDNA was cloned for expression as a 6X histidine-tagged recombinant protein in insect cells. A culture of Sf9 insect cells expressing recombinant ME-2 was prepared and lysed. The culture medium, PBS wash, and the soluble and insoluble fractions of the cell lysate were analyzed by SDS PAGE and staining (left panel) of the gel with GelCode blue (Pierce Chemicals; Rockford, Ill.). The expression samples were also evaluated by Western blotting (right panel) with an anti-HisG mouse monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125I-labeled rabbit anti-mouse IgG secondary antibody. The recombinant protein was obscured by the multiplicity of protein bands in the stained gel at left, but a band of about 49 kD was clearly detected by the Western blot. This confirmed the presence of a 6× His-tagged protein with the approximate molecular weight expected for the recombinant ME-2 protein. No recombinant ME-2 protein was detectable in the cell culture medium, but some was present in the PBS used to wash the insect cells prior to lysis. Approximately equal amounts of the recombinant ME-2 protein seemed to be distributed between the soluble and the insoluble fractions of the insect cell lysate. -
FIG. 9 shows the pattern of expression of recombinant EPP2 in an insect cell host. The EPP2 cDNA was cloned for expression as a 6X histidine-tagged recombinant protein in insect cells. A culture of Sf9 insect cells expressing recombinant EPP2 was prepared and lysed. The culture medium, PBS wash, and the soluble and insoluble fractions of the cell lysate were analyzed by SDS PAGE and staining (left panel) of the gel with GelCode blue (Pierce Chemicals; Rockford, Ill.). The expression samples were also evaluated by Western blotting (right panel) with an anti-HisG mouse monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125I-labeled rabbit anti-mouse IgG secondary antibody. The recombinant protein was obscured by the multiplicity of protein bands in the stained gel at left, but a band of about 9 kD was clearly detected by the Western blot. This confirmed the presence of a 6× His-tagged protein with the approximate molecular weight expected for the recombinant EPP2 protein. No recombinant EPP2 protein was detectable in the cell culture medium, nor was any measurable amount present in the PBS used to wash the insect cells prior to lysis. Approximately equal amounts of the recombinant EPP2 protein seemed to be distributed between the soluble and the insoluble fractions of the insect cell lysate. -
FIG. 10 shows the isolation of the recombinant 6×-tagged ME-5 protein using immobilized metal affinity chromatography (IMAC). Recombinant ME-5 protein was expressed in Sf9 insect cells and the cells were lysed in IMAC column binding buffer. The soluble fraction of the insect cells (Lysate) was loaded onto a column of Chelating Sepharose Fast Flow (Amersham Biosciences; Piscataway, N.J.) that had been charged with nickel ions. The lysate was captured after passing through the column resin (breakthrough) and the column was washed extensively with IMAC wash buffer. The recombinant ME-5 bound to the resin was eluted from the column with buffer containing imidazole. Samples of the lysate, breakthrough, wash, and elution were analyzed by SDS PAGE and Western blot as described above. The stained gel showed the complexity of the insect cell lysate, which resulted in a smear of protein for this and the breakthrough samples. A reasonable amount of non-binding protein contaminants were washed away with the A20 Column buffer, and a nice band corresponding to a 38 kD protein was present among the material eluted from the column with imidazol. Western blotting of these samples showed good levels of the recombinant ME-5 protein in the lysate, and in the breakthrough showing that in this particular experiment the amount of ME-5 exceeded the binding capacity for the column. Perhaps a trace of ME-5 was in the A20 Column buffer wash used to remove bound impurities from the Sepharose. The Western showed intense anti-HisG antibody reactivity with the eluted and partially purified 38 kD ME-5 antigen. -
FIG. 11 shows the isolation of the recombinant 6×-tagged ME-2 protein using immobilized metal affinity chromatography (IMAC). Recombinant ME-2 protein was expressed in Sf9 insect cells and the cells were lysed in IMAC column binding buffer. The soluble fraction of the insect cells (Lysate) was loaded onto a column of Chelating Sepharose Fast Flow (Amersham Biosciences; Piscataway, N.J.) that had been charged with nickel ions. The lysate was captured after passing through the column resin (break-through) and the column was washed extensively with IMAC wash buffers A10, A15, and A20. The recombinant ME-2 bound to the resin was eluted from the column with buffer containing imidazole. Samples of the lysate, breakthrough, wash, and elution were analyzed by SDS PAGE and Western blot as described above. The stained gel showed the complexity of the insect cell lysate, which resulted in a smear of protein for this, and the break-through samples. A substantial amount of non-binding protein contaminants were washed from the resin with the A10, A15, and A20 Column Wash buffers. Finally, a nice band corresponding to a 49 kD protein was present among the material eluted from the column with imidazol. Western blotting of these samples showed good levels of the recombinant ME-2 protein in the lysate, and some also in the break-through showing that in this particular run the amount of ME-2 may have exceeded the binding capacity for the column. Perhaps a trace of ME-2 was present in the A10 Column Wash buffer, but stronger signals were detected in the A15 and A20 Column Wash buffers wash used to remove bound impurities from the Sepharose. The Western showed intense anti-HisG antibody reactivity with the eluted and partially purified 49 kD ME-2 antigen. -
FIG. 12 shows the isolation of the recombinant 6×-tagged EPP2 protein using immobilized metal affinity chromatography (IMAC). Recombinant EPP2 protein was expressed in Sf9 insect cells and the cells were lysed in denaturing IMAC column binding buffer. The insect cell lysate was loaded onto a column of Chelating Sepharose Fast Flow (Amersham Biosciences; Piscataway, N.J.) that had been charged with nickel ions. The lysate was captured after passing through the column resin (break-through) and the column was washed extensively with A10, A15, A20, A25, and A30 IMAC wash buffers. The recombinant EPP2 bound to the resin was eluted from the column with buffer containing imidazole. Samples of the lysate, break-through, washes, and elution were analyzed by SDS PAGE and Western blot as described above. The stained gel showed the complexity of the insect cell lysate, which resulted in a smear of protein. In addition, the break-through and the A10 Column Wash samples contained a substantial amount of material that did not bind to the column matrix. Very little protein contaminants were washed away with the A15, A20, A25, and A30 Column Wash buffers as visualized from the stained gel. A very nice band corresponding to a 9 kD protein was present among the material eluted from the column with imidazol. Western blotting of these samples showed detectable levels of the recombinant EPP2 protein in the lysate. Little or no EPP2 was present in the break-through, A10, or A15 samples showing that in this particular run the EPP2 bound to the column pretty well. Perhaps a trace of EPP2 was detected in the in the A20, A25, and A30 Column Wash buffers used to remove bound impurities from the Sepharose. The Western showed intense anti-HisG antibody reactivity with the eluted 9 kD EPP2 antigen. -
FIG. 13 shows Western blot analysis of isolated recombinant ME-5 protein, as well as the native ME-5 antigen present in RL95-2 endometrial carcinoma cells. Cultured RL95-2 cells were lysed and a sample of the soluble fraction electrophoresed in a 4% to 20% Tris Glycine SDS PAGE gel (Invitrogen; Carlsbad, Calif.). A sample of recombinant ME-5 isolated by IMAC from Sf9 insect cells was included on the gel as a positive control for the anti-ME-5 antibody. Western blotting was performed with the 2D1 anti-ME-5 monoclonal antibody followed by an 125I-labeled rabbit anti-mouse IgG secondary antibody. A clear band of reactivity was observed (right lane) among the RL95-2 proteins that seemed to migrate with a molecular weight that was slightly greater than the insect cell recombinant. -
FIG. 14 is a Western blot showing ME-5 native antigen expression in various human tissues. Tissue protein extracts in SDS PAGE sample buffer (protein medleys: BD Biosciences; San Diego, Calif.) were separated in SDS PAGE gels and Western blotting done as described inFIG. 13 . The native ME-5 antigen seems to be ubiquitously present in all tissues examined, but it appears to be slightly more abundant in heart, liver, ovary and kidney extracts. -
FIGS. 15A and 15B show representative line immunoblots illustrating the ability of recombinant ME-5 to react with antibodies present in serum obtained from endometriosis patients, but not in normal control sera. Each strip contains immobilized antigens that were slotted onto the membrane at different concentrations. The protein concentrations for ME-5 are 0.018, 0.036, 0.072, and 0.144 milligrams per milliliter (mg/ml). The optimal concentration for discrimination between patients and controls was 0.036 mg/ml as designated by the arrow at the right of the line blot strips. One advantage of the line immunoblot assay is that many different proteins can be interrogated on a single strip, and additional unrelated proteins are present on the strips that act as internal controls. A reagent control (mouse anti-human IgG monoclonal) is included on each strip to act as a positive control. Each strip was incubated with serum from a normal person (control) or from a patient with confirmed endometriosis. Line blot patterns for a total of 11 controls (A6, A7, A8, A9, A10, A14, A15, A16, A17, A18, A21) are shown inFIG. 15A . In addition, 23 endometriosis patients (DS01, DS02, DS03, DS04, DS05, DS06, DS07, DS08, DS10, DS11, DS12, DS13, DS27, DS28, DS29, DS30, DS31, DS32, DS33, DS34, DS36, DS38, DS39) are shown inFIG. 15B . The intensity of staining of each band is indicative of the reactivity of the tested serum with ME-5. In this selected lineblot panel, ME-5 at a concentration of 0.036 mg/ml detected 18 endometriosis patients as positive (DS01, DS03, DS05, DS06, DS10, DS11, DS12, DS27, DS28, DS29, DS30, DS31, DS32, DS33, DS34, DS36, DS38, and DS39). In addition, 5 endometriosis patients (DS02, DS04, DS07, DS08, and DS13) yielded patterns of reactivity that were a bit lower. Among the 11 normal controls, ME-5 clearly did not react with nine of them (A6, A7, A8, A10, A15, A16, A17, A18, A21). There may have been detectable signals seen for two of the normal controls (A9, A14), but these were very light relative to the patterns seen with sera from the endometriosis patients and are interpreted as negative. -
FIGS. 16A and 16B show representative line immunoblots illustrating the ability of recombinant ME-2 to react with antibodies present in serum obtained from endometriosis patients, but not in normal control sera. Each strip contains immobilized antigens that were slotted onto the membrane at different concentrations. The protein concentrations of ME-2 applied to the strips are 0.009 (for endometriosis sera, only), 0.018, 0.036, 0.072, and 0.144 (for control sera, only) milligrams per milliliter (mg/ml). The optimal concentration for discrimination between patients and controls was set at 0.018 mg/ml as designated by the arrow at the right of the line blot strips. One advantage of the line immunoblot assay is that many different proteins can be interrogated on a single strip for reactivity with antibodies, and additional unrelated proteins are present on the strips that act as internal controls. A reagent control (mouse anti-human IgG monoclonal) is included on each strip to capture human IgG and act as a positive control. Each strip was incubated with serum from a normal person (control) or from a patient with confirmed endometriosis. Line blot patterns for a total of 11 controls (A01, A02, A03, A06, A08,Al 5, A20, A21, A22, A23, and A24) are shown inFIG. 16A . In addition, 21 endometriosis patients (DS10, DS11, DS12, DS13, DS14, DS17, DS19, DS20, DS21, DS22, DS24, DS25, DS26, DS27, DS28, DS29, DS30, DS31, DS32, DS33, and DS35) are shown inFIG. 16B . The intensity of staining of each band is indicative of the reactivity of the tested serum with ME-2. In this selected lineblot panel, ME-2 at a concentration of 0.018 mg/ml detected 15 endometriosis patients as positive (DS012, DS17, DS19, DS20, DS21, DS22, DS24, DS25, DS26, DS27, DS28, DS30, DS31, DS33, and DS35). In addition, 6 endometriosis patients (DS10, DS11, DS13, DS14, DS29, and DS32) yielded patterns of reactivity that were a bit lower. Among the 11 normal controls, ME-2 did not react with any of them at the 0.018 mg/ml cutoff applied to endometriosis patients. -
FIGS. 17A and 17B show representative line immunoblots illustrating the ability of recombinant EPP2 to react with antibodies present in serum obtained from endometriosis patients, but not in normal control sera. Each strip contains immobilized antigens that were slotted onto the membrane at different concentrations. The protein concentrations for EPP2 are 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, and 025 milligrams per milliliter. The optimal concentration for discrimination between patients and controls was 0.05 mg/ml as designated by the arrow at the right of the line blot strips. One advantage of the line immunoblot assay is that many different proteins can be interrogated on a single strip, and additional unrelated proteins are present on the strips that act as internal controls. A reagent control (mouse anti-human IgG monoclonal) is included on each strip to capture human IgG in the sample and act as a positive control. Each strip was incubated with serum from a normal person (control) or from a patient with confirmed endometriosis. Line blot patterns for a total of 11 controls (A01, A02, A03, A04, A05, A09, A13, A14, A16, A20, and A24) are shown inFIG. 17A . In addition, 39 endometriosis patients (DS06, DS12, DS24, DS05, BBI01, BBI02, BBI03, BBI04, BBI05, BBI06, BBI07, BBI08, BBI09, BBI10, BBI11, BBI12, BBI13, BBI14, BBI15, BBI16, BBI20, BBI21, BBI22, BBI23, BBI24, BBI25, BBI26, BBI27, BBI28, BBI30, BBI31, BBI32, BBI34, BBI35, BBI36, BBI37, BBI38, BBI39, and BBI40) are shown inFIG. 17B . The intensity of staining of each band is indicative of the reactivity of the tested serum with EPP2. In this selected lineblot panel, EPP2 at a concentration of 0.05 mg/ml detected 33 endometriosis patients as positive (DS06, DS12, DS24, DS05, BBI02, BBI03, BBI04, BBI06, BBI07, BBI08, BBI09, BBI10, BBI11, BBI12, BBI13, BBI15, BBI16, BBI20, BBI22, BBI23, BBI25, BBI26, BBI27, BBI28, BBI30, BBI31, BBI32, BBI34, BBI35, BBI37, BBI38, BBI39, and BBI40). In addition, 6 endometriosis patients (BBI01, BBI05, BBI14, BBI21, BBI24, and BBI36) yielded patterns of reactivity that were much lower. Among the 11 normal controls, EPP2 did not react strongly with any of them at the 0.05 mg/ml cut off. - “Polypeptide” refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds, related naturally occurring analogs thereof. Synthetic polypeptides can be synthesized, for example, using an automated polypeptide synthesizer. The term “protein” typically refers to large polypeptides. The term “peptide” typically refers to short polypeptides.
- Conventional notation is used herein to portray polypeptide sequences: the left-hand end of a polypeptide sequence is the amino-terminus; the right-hand end of a polypeptide sequence is the carboxyl-terminus.
- “Conservative substitution” refers to the substitution in a polypeptide of an amino acid with a functionally similar amino acid. It is to be understood that the claims encompass conservative substitution. The following six groups each contain amino acids that are conservative substitutions for one another:
-
- 1) Alanine (A), Serine (S), Threonine (T);
- 2) Aspartic acid (D), Glutamic acid (E);
- 3) Asparagine (N), Glutamine (Q);
- 4) Arginine (R), Lysine (K);
- 5) Isoleucine (I), Leucine (L), Methoinine (M), Valine (V); and
- 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
- “Allelic Variant” refers to any of two or more polymorphic forms of a gene occupying the same genetic locus. Allelic variations arise naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. “Allelic variants” also refer to cDNAs derived from mRNA transcripts of genetic allelic variants, as well as the proteins encoded by them.
- This invention provides methods for diagnosing endometriosis in a subject by detecting in a sample from the subject a diagnostic amount of an antibody that specifically binds to ME-2, ME-5 or EPP2 polypeptide. Suitable patient samples include, without limitation, saliva, blood or a blood product (e.g., serum), peritoneal fluid, urine, menstrual fluid, vaginal secretion. The antibodies can be detected by any of the methods for detecting proteins described herein. However, sandwich type assays are particularly useful. In one version, all antibodies are captured onto a solid phase, for example using protein A, and antibodies specific for ME-2, ME-5 or EPP2 are detected using a directly or indirectly labeled ME-2, ME-5 or EPP2 or polypeptide fragment of it having an epitope of ME-2, ME-5 or EPP2. In another version of the assay, ME-2, ME-5 or EPP2 or an antigenic fragment of it can be used as the capture molecule and captured antibodies can be detected.
- ME-2, ME-5 or EPP2 that is shed into the peritoneal fluid of women with endometriosis is useful in methods of diagnosing endometriosis. These methods include detecting ME-2, ME-5 or EPP2 in a biological sample of a subject. Suitable samples include, without limitation, saliva, blood or a blood product (e.g., serum), urine, menstrual fluid, vaginal secretion and, in particular, peritoneal fluid. ME-2, ME-5 or EPP2 can be detected by any of the methods described herein. Any detection of ME-2, ME-5 or EPP2 above a normal range is a positive sign in the diagnosis of endometriosis.
- The phrase “substantially identical,” in the context of two nucleic acids or polypeptides, refers to two or more sequences or sub-sequences that have at least 60%, 80%, 90%, 95% or 98% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. Preferably, the substantial identity exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably the sequences are substantially identical over at least about 150 residues. In a most preferred embodiment, the sequences are substantially identical over the entire length of the coding regions.
- The invention disclosed herein is the isolation of human cDNA molecules that encode three distinct endometrial proteins, and characterization of the corresponding antigens. These cDNA and the corresponding antigens have been designated ME-5, ME-2, and EPP2 and the proteins expressed from them are the targets of autoantibodies present in the serum of women who suffer from endometriosis. These features of the ME-5, ME-2, and EPP2 proteins makes them useful markers for diagnosis of endometrial disease and this is shown in detail in the Examples below.
- The endometriosis tissue cDNA library was generated using poly A+ RNA isolated from a deep embedded endometriosis tissue specimen donated by Professor Philip Koninckx at the Catholic University of Leuven. Total RNA was isolated from the tissue using Trizol reagent (Biorad Laboratories; Hercules, Calif.), and poly A+ RNA was prepared by hybridization to oligo poly T coupled magnetic particles using a commercial kit (PolyATract; Promega; Madison, Wis.). Library construction was carried out using the Lambda ZAP® II vector system following instructions obtained from the supplier (Stratagene; San Diego, Calif.). The initial ME-5 and ME-2 cDNA clones were identified by immunoscreening using, as primary antibody, a single endometriosis patient serum specimen obtained from a woman diagnosed with mild disease. This serum was adsorbed of nonspecific anti-E. coli/lambda phage antibodies by diluting the sera 1:50 in a commercial E. coli phage lysate (Stratagene; San Diego, Calif.) according to the protocol provided by the supplier. In a separate series of experiments the initial EPP2 cDNA clone was identified in similar immunoscreening protocol except that, as primary antibody, a pool of ten endometriosis patient serum specimens was used. The sera in this pool were from women with various stages of endometrial disease. Again the serum was adsorbed of nonspecific anti-E. coli/lambda phage antibodies by dilution with a commercial E. coil phage lysate (Stratagene; San Diego, Calif.) as described above. The second antibody for all screening experiments was 125I-labeled monoclonal antibody reactive with human immunoglobulin. Negative control human serum was used to screen the clones in parallel to verify the reactivity. Immunoreactive clones were plaque-purified three times and rescued by in vivo excision into the pBluescript® SK(−) phagemid vector using methods supplied by the manufacturer (Stratagene; San Diego, Calif.).
- Sequence analysis of both strands of each of the original isolated ME-5, ME-2, and EPP2 clones was performed upon an ABI Biosystems 373 DNA Sequencer (PE Applied Biosystems; Foster City, Calif.). The nucleic acid sequences so generated were analyzed using Bionet software to identify nucleic acid and protein characteristics and for homology comparisons with nucleic acid and protein sequences present in the database.
- The ME-5 cDNA sequence is presented in
FIG. 1A (SEQ ID NO:1) and it is 1,279 base pairs in size excluding the poly dA track. A 5′ noncoding sequence of 112 base pairs was identified just upstream of the suspected ATG start codon. There is a 3′ non coding sequence of 254 base pairs down stream of the TGA stop codon and this is followed by a stretch of dA residues that would correspond to the poly A tail at the 3′ end of the mRNA. Both the start and stop codon are highlighted in bold type inFIGS. 1A and 1B . The ME-5 coding sequence is shown inFIG. 1B (SEQ ID NO:2) as predicted from the entire isolated cDNA sequence (FIG. 1A ). The coding region is 912 base pairs in size, including the start and stop codons. The cDNA codes for a predicted protein of 303 amino acids shown inFIG. 1C (SEQ ID NO:3) and the calculated molecular weight was about 35,000 Daltons. The translation product is slightly acidic with a calculated isoelectric value of 5.7. - Computer-assisted database searches (National Center for Biotechnology Information [NCBI] Basic Local Alignment Search Tool [BLAST]) was used to perform homology comparisons with sequences contained within the GenBank nucleic acid database. It was discovered that two other laboratories working on different projects independently isolated an essentially identical cDNA molecule.
- First Scanlan and coworkers isolated the identical 1-NY-CO-7 cDNA using a process described in a paper: “Characterization of human colon cancer antigens recognized by autologous antibodies” published by Scanlan et al. [Int. J. Cancer 76, 652-658 (1998)]. The approach used by these individuals was similar to that employed for discovery of the ME-5 cDNA in that these investigators screened colorectal cancer cDNA libraries with serum from colorectal cancer patients. Comparing the ME-5 sequence with that of 1-NY-CO-7 revealed a substantial number of differences between the two. First, in the manuscript the 1-NY-CO-7 mRNA sequence was reported to be 1.22 kb perhaps slightly smaller than the ME-5 sequence of this invention. Second, the 1-NY-CO-7 protein was reported to be 356 amino acids on size which is considerably larger than the predicted ME-5 protein. Finally, there were three base mismatches in the carboxy terminal portion of the two sequences and two of these resulted in amino acid changes. The nucleotide changes were at nucleotide 807 (C->G [occurs in 3rd position of codon with no amino acid change->proline]), 814 (C->G [arginine->glycine]), and 838 (C->T [leucine->phenylalanine]) relative to the ME-5 coding domain. The authors commented that the 1-NY-CO-7 sequence was novel (little or no homologies with DNA sequences listed in the Gen Bank/EMBO data bases with the exception of expressed sequence tags), and the protein as having tetratricopeptide repeats (TPR, see below). The 1-NY-CO-7 sequence did not appear among those colon-specific sequences that were characterized in the paper, rather it was a direct submission to GenBank without further characterization of the nucleic acid or protein. When the 1-NY-CO-7 GenBank sequences were compared to that of ME-5 they were identical except for the three nucleotide mismatches described above.
- Second, Ballinger and coworkers identified the identical Carboxy terminus of Hsp70-interacting protein (CHIP) using a drastically different process described in a paper published: “Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively reglates chaperone functions” Ballinger et al. [Mol. Cell. Biol. 19, 4535-4545 (1999)]. In this paper the authors were interested in isolating novel tetratricopeptide repeat-containing proteins. The CHIP sequence was identified by screening a cardiac cDNA library with the cDNA sequence for the human CyP-40 protein at different stringency's. A low stringency hybridization (42° C.) yielded 12 clones that did not hybridize at higher stringency (55° C.). Characterization of the clones revealed 8 of them corresponded to human CyP-40, and 4 clones encoded CHIP that was a sequence with no homology to known genes. Characterization of CHIP revealed that it interacts with both Hsc70 and Hsp70 by binding to the carboxy terminus of these proteins through sequences within the amino terminus of CHIP. Interestingly recombinant CHIP inhibited the Hsp40-stimulated ATPase activity of Hsc70 and Hsp70 suggesting that it regulated the forward reaction of the substrate-binding cycle.
- Both of these sequences have near perfect homology with the ME-5 nucleic acid and protein sequences of this invention. However, the anticipated usefulness of ME-5 in the diagnosis of endometriosis was not contemplated by the aforementioned papers.
- The ME-2 cDNA sequence is presented in
FIG. 2A (SEQ ID NO:4) and it is 1,332 base pairs in size excluding the poly dA track. A 5′ noncoding sequence of 54 base pairs was identified just upstream of the suspected ATG start codon. There is a 3′ non coding sequence of 95 base pairs down stream of the TAG stop codon and this is followed by a stretch of dA residues that would correspond to the poly A tail at the 3′ end of the mRNA. Both the start and stop codon are highlighted in bold type inFIGS. 2A and 2B . The ME-2 coding sequence is shown inFIG. 2B (SEQ ID NO:5) as predicted from the entire isolated cDNA sequence (FIG. 2A ). The coding region is 1182 base pairs in size, including the start and stop codons. The cDNA codes for a predicted protein of 393 amino acids shown inFIG. 2C (SEQ ID NO:6) and the calculated molecular weight was about 45,000 Daltons. The translation product is slightly acidic with a calculated isoelectric value of 8.8. - Computer-assisted database searches (National Center for Biotechnology Information [NCBI] Basic Local Alignment Search Tool [BLAST]) was used to perform homology comparisons with the ME-2 cDNA with sequences contained within the GenBank nucleic acid database. It was discovered that while there are several submissions by groups involved with analysis of the human genome sequence all documents are direct submissions. Moreover, none of these submissions have been published in the scientific literature, and all refer to “unknown protein” or “hypothetical protein” or “unnamed protein product” and not to a defined product or function. These can be found in accession numbers GI:12652526, GI:22761484, and GI:24431994 for example. Therefore even though sequences corresponding to the ME-2 cDNA and protein are present in the public domain, the nature is not known and the involvement of the protein in endometriosis is certainly not-anticipated by this public information. Consequently, the ME-2 cDNA and protein sequences are unique and exclusively implicated in the human disease of endometriosis by the disclosures contained in this invention.
- The EPP2 cDNA sequence is presented in
FIG. 3A (SEQ ID NO:7) and it is 868 base pairs in size excluding the poly dA track. A 5′ noncoding sequence of 45 base pairs was identified just upstream of the suspected ATG start codon. There is a 3′ non coding sequence of 522 base pairs down stream of the TAA stop codon and this is followed by a stretch of dA residues that would correspond to the poly A tail at the 3′ end of the mRNA. Both the start and stop codon are highlighted in bold type in FIGS. 3A and 3B. The EPP2 coding sequence is shown inFIG. 3B (SEQ ID NO:8) as predicted from the entire isolated cDNA sequence (FIG. 3A ). The coding region is 300 base pairs in size, including the start and stop codons. The cDNA codes for a predicted protein of 99 amino acids shown inFIG. 3C (SEQ ID NO:9) and the calculated molecular weight was approximately 9300 Daltons. Interestingly 18 of the amino acids are arginine residues therefore the translation product is very basic with a calculated isoelectric value of 12.5. - Computer-assisted database searches (National Center for Biotechnology Information [NCBI] Basic Local Alignment Search Tool [BLAST]) was used to perform homology comparisons with the EPP2 cDNA with sequences contained within the GenBank nucleic acid database. In the fashion described above for ME-2, it was discovered that EPP2 was also represented by several direct submissions from groups involved with analysis of the human genome sequence. Moreover, as described above, none of these submissions have been published in the scientific literature, and all refer to “unknown protein” or “hypothetical protein” or “unnamed protein product” and not to a defined product or function. These can be found in accession numbers GI:12652993, GI:24308450, and GI:20892293 for example. Therefore even though sequences corresponding to the EPP2 cDNA and protein are present in the public domain the nature is not known and the involvement of the protein in endometriosis is certainly not anticipated by this public information. Consequently, the EPP2 cDNA and protein sequences are unique and exclusively implicated in the human disease of endometriosis by the disclosures contained in this invention.
- Gene expression profile of ME-5 from normal human tissues was done by performing Northern blot analysis with a commercial Multiple Tissue Northern Blot (BD Biosciences; San Diego, Calif.), the results of which are presented in
FIG. 4 . The commercial Northern blot contained RNA from the following tissues: spleen, thymus, prostate, testis, uterus, small intestine, colon (no mucosa), and peripheral blood leukocyte. The entire 912 base pair coding sequence was isolated by electrophoresis in a low melting agarose gel, and labeled with 32P by random priming. The 32P-labeled ME-5 probe was used for hybridization to the Northern blot using the procedure supplied by the manufacturer. After washing the blot was exposed to X-ray film. Upon development of the film a band at about 1.4 kb on the Northern blot corresponds to the ME-5 transcript of the expected size (FIG. 4 ). The transcript can be seen in all tissues and is particularly abundant in prostate, testis and uterus tissues. - Gene expression profile of ME-2 from normal human tissues was done by performing Northern blot analysis with a commercial Multiple Tissue Northern Blot (BD Biosciences; San Diego, Calif.), the results of which are presented in
FIG. 5 . The commercial Northern blot contained RNA from the following tissues: spleen, thymus, prostate, testis, uterus, small intestine, colon (no mucosa), and peripheral blood leukocyte. The entire 1182 base pair coding sequence was isolated by electrophoresis in a low melting agarose gel, and labeled with 32P by random priming. The 32P-labeled ME-2 probe was used for hybridization to the Northern blot using the procedure supplied by the manufacturer. After washing the blot was exposed to X-ray film. Upon development of the film a band at about 2.0 kb on the Northern blot corresponds to the ME-2 transcript hybridizing to the labeled probe (FIG. 5 ). The transcript can be seen in all tissues and is particularly abundant in prostate and testis. In addition, good levels of hybridization were observed amount the RNAs expressed in spleen, uterus, small intestine, colon, and peripheral blood lymphocyte tissues. Interestingly, despite the pattern observed with the peripheral blood lymphocytes, relatively little signal could be detected in thymus tissue. - Gene expression profile of EPP2 from normal human tissues was done by performing Northern blot analysis with a commercial Multiple Tissue Northern Blot (BD Biosciences; San Diego, Calif.), the results of which are presented in
FIG. 6 . The commercial Northern blot contained RNA from the following tissues: spleen, thymus, prostate, testis, uterus, small intestine, colon (no mucosa), and peripheral blood leukocyte. The entire 300 base pair EPP2 coding sequence was isolated by electrophoresis in a low melting agarose gel, and labeled with 32P by random priming. The 32P-labeled EPP2 probe was used for hybridization to the Northern blot using the procedure supplied by the manufacturer. After washing the blot was exposed to X-ray film. Upon development of the film a band at about 1.0 kb on the Northern blot corresponds to the EPP2 transcript hybridizing to the labeled probe (FIG. 6 ). The transcript can be seen in all tissues and is most abundant in prostate, testis, colon, and peripheral blood lymphocyte tissues. In addition, the transcript is present but the relative levels of hybridization are lower among the RNAs expressed in spleen, thymus, uterus, and small intestine tissues. - The ME-5 antigen was cloned for expression as a 6× histidine-tagged fusion protein in insect cells. The sequence of the ME-5 cDNA insert was generated by PCR amplification using specific primers that flanked the 912 bp coding region. Unique sites for the Bam HI and Eco RI restriction enzymes were incorporated into the primers to maintain the ME-5 reading frame with the vector sequences. The PCR amplicons were digested with the Bam HI and Eco RI restriction enzymes (Stratagene; San Diego, Calif.) and purified by agarose gel electrophoresis. The insect cell transfer vector Blue Bac His2a (Stratagene; San Diego, Calif.) was also digested with the restriction enzymes Bam HI and Eco RI and treated with calf intestine alkaline phosphatase. The ME-5 cDNA insert was ligated with the vector and competent bacteria transformed. Individual isolated clones were grown, plasmid DNA isolated, and digested with the restriction enzymes Bam HI and Eco RI. Clones producing a band of about 900 bp in addition to the linear vector were chosen. Several candidates were further characterized by DNA sequence analysis to verify that no changes occurred during the process of PCR amplification and cloning. One clone was confirmed to have no mutations and this was used for development of recombinant baculovirus vectors. Recombinant baculoviruses were generated by cotransfection of Sf9 insect cells with baculovirus DNA and the ME-5 transfer vector. The baculoviruses were isolated by plaque purification and used to evaluate expression patterns in pilot cultures. The recombinant baculovirus virus and pilot scale cultures were evaluated for expression patterns. One recombinant baculovirus clone was identified which expressed an antigen of approximately 38 kD, which was detected in both the soluble and the insoluble fraction of the insect cell lysates. The clone was expanded into large-scale virus stocks for expression of recombinant ME-5 protein. This was used to infect a large-scale culture of Sf9 insect cells. The pattern of expression is illustrated in
FIG. 7 , and is best visualized by the Western blot analysis (FIG. 7 ). The presence of recombinant ME-5 was confirmed with a commercial anti-HisG monoclonal antibody (Invitrogen; Carlsbad, CA) followed by an 125I-labeled rabbit anti-mouse IgG secondary antibody. This confirms the presence of a 6× histidine-tagged protein of approximately 38 kD which is the molecular weight expected for ME-5. The recombinant was detected in both the soluble and the insoluble fraction of the insect cell lysates, but slightly more antigen seems to be localized in the soluble fraction. In addition some antigen was present in the PBS used to wash the infected cells prior to the lysis. - The ME-2 antigen was cloned for expression as a 6× histidine-tagged fusion protein in insect cells as described above for the ME-5 activity. The sequence of the ME-2 cDNA insert was generated by PCR amplification using specific primers that flanked the 1182 bp coding region. Unique sites for the Bam HI and Eco RI restriction enzymes were incorporated into the primers to maintain the ME-2 reading frame with the vector sequences. The PCR amplicons were digested with the Bam HI and Eco RI restriction enzymes (Stratagene; San Diego, Calif.) and purified by agarose gel electrophoresis. The insect cell transfer vector Blue Bac His2a (Stratagene; San Diego, Calif.) was also digested with the restriction enzymes Bam HI and Eco RI and treated with calf intestine alkaline phosphatase. The ME-2 cDNA insert was ligated with the vector and competent bacteria transformed. Individual isolated clones were grown, plasmid DNA isolated, and digested with the restriction enzymes Bam HI and Eco RI. Clones producing a band of about 1100 bp in addition to the linear vector were chosen. Several candidates were further characterized by DNA sequence analysis to verify that no changes occurred during the process of PCR amplification and cloning. One clone was confirmed to have no mutations and this was used for development of recombinant baculovirus vectors. Recombinant baculoviruses were generated by cotransfection of Sf9 insect cells with baculovirus DNA and the ME-2 transfer vector. The baculoviruses were isolated by plaque purification and used to evaluate expression patterns in pilot cultures. The recombinant baculovirus virus and pilot scale cultures were evaluated for expression patterns. One recombinant baculovirus clone was identified which expressed an antigen of approximately 49 kD, which was detected in both the soluble and the insoluble fraction of the insect cell lysates. The clone was expanded into large-scale virus stocks for expression of recombinant ME-2 protein. This was used to infect a large-scale culture of Sf9 insect cells. The pattern of expression is illustrated in
FIG. 8 , and is best visualized by the Western blot analysis (FIG. 8 ). The presence of recombinant ME-2 was confirmed with a commercial anti-HisG monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125I-labeled rabbit anti-mouse IgG secondary antibody. This confirms the presence of a 6× histidine-tagged protein of approximately 49 kD which is the molecular weight expected for ME-2. The recombinant was detected in both the soluble and the insoluble fraction of the insect cell lysates, but slightly more antigen seems to be localized in the soluble fraction. In addition some antigen was present in the PBS used to wash the infected cells prior to the lysis. - The EPP2 antigen was cloned for expression as a 6× histidine-tagged fusion protein in insect cells as described above. The sequence of the EPP2 cDNA insert was generated by PCR amplification using specific primers that flanked the 300 bp coding region. Unique sites for the Bam HI and Eco RI restriction enzymes were incorporated into the primers to maintain the EPP2 reading frame with the vector sequences. The PCR amplicons were digested with the Bam HI and Eco RI restriction enzymes (Stratagene; San Diego, Calif.) and purified by agarose gel electrophoresis. The insect cell transfer vector Blue Bac His2a (Stratagene; San Diego, Calif.) was also digested with the restriction enzymes Bam HI and Eco RI and treated with calf intestine alkaline phosphatase. The EPP2 cDNA insert was ligated with the vector and competent bacteria transformed. Individual isolated clones were grown, plasmid DNA isolated, and digested with the restriction enzymes Bam HI and Eco RI. Clones producing a band of about 300 bp in addition to the linear vector were chosen. Several candidates were further characterized by DNA sequence analysis to verify that no changes occurred during the process of PCR amplification and cloning. One clone was confirmed to have no mutations and this was used for development of recombinant baculovirus vectors. Recombinant baculoviruses were generated by cotransfection of Sf9 insect cells with baculovirus DNA and the EPP2 transfer vector. The baculoviruses were isolated by plaque purification and used to evaluate expression patterns in pilot cultures. The recombinant baculovirus virus and pilot scale cultures were evaluated for expression patterns. One recombinant baculovirus clone was identified which expressed an antigen of approximately 9 kD, which was detected in both the soluble and the insoluble fraction of the insect cell lysates. The clone was expanded into large-scale virus stocks for expression of recombinant EPP2 protein. This was used to infect a large-scale culture of Sf9 insect cells. The pattern of expression is illustrated in
FIG. 9 , and is best visualized by the Western blot analysis (FIG. 9 ). The presence of recombinant EPP2 was confirmed with a commercial anti-HisG monoclonal antibody (Invitrogen; Carlsbad, Calif.) followed by an 125I-labeled rabbit anti-mouse IgG secondary antibody. This confirms the presence of a 6× histidine-tagged protein of approximately 9 kD which is the molecular weight expected for EPP2. The recombinant was detected in both the soluble and the insoluble fraction of the insect cell lysates, but slightly more antigen seems to be localized in the soluble fraction. In contrast to the patterns seen with the ME-5 and ME-2 protein expression, no EPP2 antigen was present in the PBS used to wash the infected cells prior to the lysis. - Additional studies of the ME-5, ME-2, and EPP2 antigens require substantial amounts of isolated protein. Specifically, these are needed for evaluating the reactivity of the ME-5, ME-2, and EPP2 proteins with endometriosis patient serum specimens to establish clinical relevance. The recombinant ME-5, ME-2, and EPP2 antigens were isolated from the soluble fraction or the whole cell lysate by immobilized metal affinity chromatography (IMAC).
- Recombinant ME-5 antigen was isolated from the soluble fraction of the insect cell lysate. Briefly, ME-5 recombinant baculoviruns-infected insect cells were harvested after three days of infection by centrifugation. The cells were washed twice with PBS and the cell pellet frozen for one hour at −70° C. After thawing the cell pellet was suspended in binding buffer (500 mM NaCl, 20 mM Tris-HCl, pH 8.0) supplemented with protease inhibitor cocktail for mammalian tissues (Sigma; St. Louis, Mo.). The lysate was sonicated, and centrifuged at 18,000 rpm, 4° C. for 20 minutes to separate the soluble and insoluble fractions. The soluble fraction was dialyzed against binding buffer, and centrifuged at 18,000 rpm, 4° C. to remove impurities that might affect the performance of the column. Nickel-charged chelating Sepharose resin (Amersham Biosciences; Piscataway, N.J.) was equilibrated twice with 2× column volume of binding buffer. The resin was incubated with the ME-5 insect cell lysate for 20 minutes on a rocker at room temperature. The resin/lysate mixture is loaded on a column and washed with 40 column volumes of A20 Column Wash buffer (20 mM imidazole; 500 mM NaCl; 20 mM Tris-HCl, pH 8.0). Bound ME-5 protein was eluted from the column with elution buffer (500 mM imidazole; 500 mM NaCl; 20 mM Tris-HCl, pH 7.5). Protease inhibitor cocktail was added to the pooled elution fractions and protein concentration measured by BCA assay (Pierce; Rockford, Ill.) using a BSA standard curve. The eluted protein samples are analyzed upon SDS PAGE followed by staining with Coomassie blue or transfer to nitrocellulose and Western blotting as shown in
FIG. 10 . Such isolated ME-5 protein preparations are divided into aliquots and stored at −20° C. with 30% glycerol. - Recombinant ME-2 antigen was also isolated from the soluble fraction of the insect cell lysate. Briefly, ME-2 recombinant baculovirus-infected insect cells were harvested after three days of infection by centrifugation. The cells were washed with PBS and the cells lysed as described above. After dialysis the soluble fraction was allowed to bind to nickel-charged chelating Sepharose resin (Amersham Biosciences; Piscataway, N.J.) for 20 minutes at room temperature. The resin/lysate mixture is loaded on a column and washed sequentially with denaturing binding buffer A10 (10 mM imidazole, 1 M NaCl, 20 mM Tris-HCl, pH 8.0, 10% glycerol, 6 M Urea), A15 (buffer A10 containing 15 mM imidazole), and A20 (buffer A10 with 20 mM imidazole). Bound ME-2 protein was eluted from the column with elution buffer (500 mM imidazole; 500 mM NaCl; 20 mM Tris-HCl, pH 7.5). Protease inhibitor cocktail was added to the pooled elution fractions and protein concentration measured by BCA assay (Pierce; Rockford, Ill.) using a BSA standard curve. The eluted protein samples are analyzed upon SDS PAGE followed by staining with Coomassie blue or transfer to nitrocellulose and Western blotting as shown in
FIG. 11 . Such isolated ME-2 protein preparations are divided into aliquots and stored at −20° C. with 30% glycerol. - Recombinant EPP2 antigen was isolated from the whole insect cell lysate as follows. The EPP2 recombinant baculovirus-infected insect cells were harvested after three days of infection by centrifugation. The cells were washed twice with PBS and the cell pellet frozen for one hour at −70° C. After thawing the cell pellet was suspended in denaturing binding buffer (750 mM NaCl; 20 mM Tris-HCl, pH 8.0; 10% glycerol; 6 M guanidine HCl) supplemented with protease inhibitor cocktail for mammalian tissues (Sigma; St. Louis, Mo.). The lysate was sonicated, and centrifuged to separate the soluble and insoluble fractions. The soluble fraction was allowed to bind to nickel-charged chelating Sepharose resin (Amersham Biosciences; Piscataway, N.J.) for 20 minutes at room temperature. The resin is loaded on a column and washed sequentially with denaturing binding buffer A10 (10 mM imidazole, 1 M NaCl, 20 mM Tris-HCl, pH 8.0, 10.% glycerol, 6 M Urea), A15 (buffer A10 with 15 mM imidazole), A20 (buffer A10 with 20 mM imidazole), A25 (buffer A10 with 25 mM imidazole), and A30 (same as buffer A10 but with 30 mM imidazole). The isolated EPP2 protein is eluted with denaturing elution buffer (250 mM imidazole, 1 M NaCl, 20 mM Tris-HCl, pH 7.5, 10% glycerol, 6 M Urea). Protease inhibitor cocktail was added to the pooled elution fractions and EPP2 protein is dialyzed against 0.2 M bicarbonate buffer with 0.5 M NaCl and cysteine/cystine to remove the urea. After dialysis the samples are concentrated if needed on Aquacide and the protein concentration measured by BCA assay (Pierce; Rockford, Ill.) using a BSA standard curve. The isolated EPP2 protein samples are analyzed upon SDS PAGE followed by Coomassie and Western blotting as shown in
FIG. 12 . Protein samples are stored at −20° C. with 30% glycerol. Such isolated EPP2 protein preparations are divided into aliquots and stored at −20° C. with 30% glycerol. - Monoclonal antibodies to the ME-5 protein were produced using standard methods (G. Galfre et al. [1977] Nature 266:550) with modifications (V. T. Oi and L. A. Herzenberg [1980] In B. B. Mishell and S. M. Shiigi [eds.] Selected Method in Cellular Immunology [San Francisco: W. H. Freeman]). Such monocronal antibody reagents are valuable for additional studies of the ME-5 protein character, and to assist in development of immunoassays for determining the clinical significance of the protein in endometriosis patients. Mice (BALB/c) were immunized with isolated recombinant ME-5 antigen and the antibody response to the antigen monitored in these animals by ELISA and Western blot techniques with the animal's serum. When the antibody response was significant the animals were boosted with another immunization with the ME-5 antigen. Three days later the spleen was removed from an animal and the immune-cells isolated from the organ. The isolated spleen cells were fused with the immunoglobulin non-producing Sp2/0 mouse myeloma cell line (M. Shulman et al. [1978] Nature 276:269). The resulting hybridoma cells were selected in culture medium containing HAT reagents. Candidate hybridoma cells were cloned a minimum of two times by limiting dilution and the clones screened by ELISA using isolated ME-5 antigen. One hybridoma cell line designated 2D1 was found to react particularly well with the isolated ME-5 antigen and this was selected for additional experiments.
- Initially the 2D1 monoclonal was used in Western blotting experiments upon protein extracts obtained from cultured RL95-2 endometrial carcinoma cells. Cultured RL95-2 cells were lysed by sonication, and insoluble debris removed by centrifugation. A portion of the soluble fraction was analyzed on SDS PAGE gels adjacent to a sample of isolated recombinant ME-5 protein.
FIG. 13 shows the pattern of Western blot analysis obtained with the anti-ME-5 2D1 monoclonal antibody. The monoclonal reacted well with the isolated recombinant antigen and 2D1 reactivity was seen at an estimated molecular weight of 38 kD. In the RL95-2 protein extract there was a clear band of reactivity with the natural ME-5 protein that appeared to be slightly larger than the isolated recombinant. - These studies of the natural ME-5 antigen were expanded to include tissue extracts obtained from various human organs. In these Western blotting experiments various tissues were studied including human spleen, brain, lung, heart, liver, ovary, placenta, testis, skeletal muscle, and kidney. Samples of commercially available human tissue protein extracts (Protein Medleys: BD Biosciences; San Diego, Calif.) were separated by electrophoresis on SDS PAGE gels using instructions provided by the manufacturer. The protein extracts were evaluated by Western blot using the anti-ME-5 2D1 monoclonal as primary antibody and the immune complexes were detected with a 125I-labeled anti-mouse antibody. The results are shown in
FIG. 14 and there was a strong band of reactivity with the isolated recombinant ME-5 protein included as a control. In addition, natural ME-5 protein seems to be present in nearly all of the tissues examined, and appropriately the protein seems to be present at the highest concentrations in ovary tissue. The presence of the ME-5 protein in other reproductive tissue is taken to imply that the antigen may naturally be expressed at high levels in this class of organs. It is therefore likely that ME-5 may have a major role in regulation of functions occurring in the reproductive system. Consequently ME-5 would be more likely to be the target of anti-endometrial antibodies generated during endometriosis. Good levels of expression were also registered in heart, liver, and kidney tissue extracts. This is also encouraging because the CHIP protein discussed in Example 2 was isolated from a cardiac cDNA library. Somewhat lower, but detectable levels of natural ME-5 were found in most of the remaining tissue extracts. - The clinical significance of the ME-5, ME-2 and EPP2 proteins were evaluated using line immunoblotting studies to measure reactivity with antibodies present in the serum of endometriosis patients. These line blotting experiments were designed to identify IgG antibodies in human serum reactive with the recombinant proteins. Briefly, the line blot utilizes the ME-5, ME-2, and EPP2 recombinant protein antigens which are immobilized on a nitrocellulose membrane in a discrete location and in the form of a line spanning the surface. In addition, a reagent control line is included to verify that the specific assay conditions have been followed. After cutting the membrane into a number of individual strips these are incubated with individual patient serum, and patient IgG binds to antigens immobilized in the discrete lines. Immune complexes are visualized by incubating the strips with enzyme-labeled anti-human IgG antibodies and a subsequent substrate reaction. When evaluating these experiments, the strips treated with control sera were compared to the strips incubated with endometriosis patient sera to facilitate analysis of the intensity of staining of each band. The patient serum specimen showing reactivity with the ME-5, ME-2, and EPP2 antigens is considered positive if the intensity of the signal is stronger than that obtained with the protein on the control patient strips.
- Some representative lineblot strips containing ME-5 antigen treated with normal control patient serum are shown in
FIG. 15A . In contrast, the pattern of reactivity of representative endometriosis patients with similar strips is shown inFIG. 15B . Sera from endometriosis patients consistently react much more strongly with the ME-5 protein when compared to control sera (compare patterns of 15A and 15B). Generally a particular concentration of the ME-5 recombinant is signaled out which offers the best discrimination of reactivity for antibodies in endometriosis patients relative to controls. In these experiments, and others to be summarized later, this concentration was 0.036 milligrams of ME-5 per milliliter. At this value, few if any control patients react, but reactivity of the endometriosis patients was substantial. - In this experiment a total of 47 endometriosis patients sera (Diagnostic Support; Boston, Mass.) were evaluated along with 24 negative controls. Some representative data are shown in the figures discussed above, and the reactivity of all endometriosis patient sera with the recombinant ME-5 antigen is summarized in Table 1. The control reactivity is presented in Table 2. A total of 27 of the endometriosis patients were strongly positive in this experiment. Moreover, most of those patient sera that seemed to be below the 0.036 milligrams of ME-5 per milliliter cut off definitely reacted better with higher concentrations of antigen compared to the negative control sera as noted above. None of the control specimens had had very much antibody reactivity to the ME-5 antigen as measured by line blot. Therefore, the marker ME-5 reacted with at least 57% of the endometriosis patient sera evaluated in this experiment, and overall the pattern of reactivity of sera from endometriosis patients was considerably stronger with the ME-5 protein when compared to the patterns observed with control sera.
- Some representative lineblot strips containing the ME-2 antigen and treated with normal control patient serum are shown in
FIG. 16A . In contrast, the pattern of reactivity of representative endometriosis patients with similar strips is shown inFIG. 16B . Sera from endometriosis patients consistently react much more strongly with the ME-2 protein when compared to control sera (compare patterns of 16A and 16B). Generally a particular concentration of the ME-2 recombinant is signaled out which offers the best discrimination of reactivity for antibodies in endometriosis patients relative to controls. In these experiments, and others to be summarized later, this concentration was 0.018 milligrams of ME-2 per milliliter. At this value, few if any control patients react, but reactivity of the endometriosis patients was substantial. - In this experiment a total of 47 endometriosis patients sera (Diagnostic Support; Boston, Mass.) were evaluated for reactivity with the ME-2 antigen along with 24 negative controls. Some representative data are shown in the Figures discussed above, and the reactivity of all the endometriosis patient sera with the recombinant ME-2 antigen is summarized in Table 3. The control patient reactivity is presented in Table 4. A total of 25 of the endometriosis patients were strongly positive in this experiment. Moreover, most of those patient sera that seemed to be below the 0.018 milligrams of ME-2 per milliliter cut off definitely reacted better with higher concentrations of antigen compared to the negative control sera as noted above. None of the control specimens had very much antibody reactivity to the ME-2 antigen as measured by line blot. Therefore, the marker ME-2 reacted with at least 53% of the endometriosis patient sera evaluated in this experiment, and overall the pattern of reactivity of sera from endometriosis patients was considerably stronger with the ME-2 protein when compared to the patterns observed with control sera. This is further exemplified by the fact that a two-fold higher concentration (0.144 mg/ml) of the ME-2 antigen was evaluated for reactivity with control sera, and the signal intensity observed for this was considerably lower than that generated with endometriosis sera at lower protein levels.
- As noted for the activities described above, the patient serum specimen showing reactivity with EPP2 antigen is considered positive if the intensity of the signal is stronger than that obtained with the protein on the control patient strips. Also noted above is that when evaluating these experiments, the strips treated with control sera were compared to the strips incubated with endometriosis patient sera to facilitate analysis of the intensity of staining of each band. Some representative lineblot strips showing the reactivity of recombinant EPP2 with normal control patient serum are shown in
FIG. 17A . In contrast, the pattern of reactivity of representative endometriosis patients with similar strips is shown inFIG. 17B . Generally sera from endometriosis patients react much more strongly with the EPP2 protein when compared to control sera (compare patterns of 17A and 17B). Generally a particular concentration of the EPP2 recombinant is signaled out which offers the best discrimination of reactivity for antibodies in endometriosis patients relative to controls. In these experiments, and others to be summarized later, this concentration was 0.05 milligrams of EPP2 per milliliter. At this value, few if any control patients react, but reactivity of the endometriosis patients was substantial. - In this experiment a total of 90 endometriosis patients sera (Diagnostic Support; Boston, Mass. and Boston Biomedica; Boston) were evaluated along with 24 negative controls. Some representative data are shown in the figures discussed above, and the reactivity of all endometriosis patient sera with the recombinant EPP2 antigen is summarized in Table 5. The control patient reactivity presented in Table 6. A total of 55 of the endometriosis patients were strongly positive in this experiment. Moreover, most of those patient sera that seemed to be below the 0.05 milligrams of EPP2 per milliliter cut off definitely reacted better with higher concentrations of antigen compared to the negative control sera as noted above. None of the control specimens had very much antibody reactivity to the EPP2 antigen as measured by line blot. Therefore, the marker EPP2 reacted with at least 61% of the endometriosis patient sera evaluated in this experiment, and overall the pattern of reactivity of sera from endometriosis patients was considerably stronger with the EPP2 protein when compared to the patterns observed with control sera.
- Overall the pattern of reactivity for the individual ME-5, ME-2, and EPP2 antigens was between 53% and 61% and this seems sufficient to be useful as a diagnostic marker for endometriosis. However, upon examination of the results summarized in Tables 1, 3, and 5 it is clear that different endometriosis patients do not react in the same way with each of the 3 antigens. Therefore, if the pattern of reactivity of endometriosis patient serum is considered for each of the 3 antigens then this panel of markers makes the utility as a diagnostic test even more convincing. For example, 47 patients were evaluated with each of the ME-5, ME-2, and EPP2 antigens and the pattern of reactivity with antibodies in one or more specimens is summarized in Table 7. Taken together, more that 83% of the sera tested contain antibodies which react with at least one of the ME-5, ME-2, or EPP2 antigens. Consequently if the three antigens were to be considered together as a panel for diagnostic testing then the frequency of antibodies in endometriosis patients that react with them is considerable.
Claims (43)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/593,693 US20070141600A1 (en) | 2004-07-07 | 2006-11-06 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
US12/460,724 US7981626B2 (en) | 2004-07-07 | 2009-07-22 | Method of detecting endometriosis in human subjects using SEQ ID No. 9 or an epitope thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/887,540 US20060008876A1 (en) | 2004-07-07 | 2004-07-07 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
US11/593,693 US20070141600A1 (en) | 2004-07-07 | 2006-11-06 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/887,540 Division US20060008876A1 (en) | 2004-07-07 | 2004-07-07 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/460,724 Division US7981626B2 (en) | 2004-07-07 | 2009-07-22 | Method of detecting endometriosis in human subjects using SEQ ID No. 9 or an epitope thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070141600A1 true US20070141600A1 (en) | 2007-06-21 |
Family
ID=35124497
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/887,540 Abandoned US20060008876A1 (en) | 2004-07-07 | 2004-07-07 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
US11/593,874 Abandoned US20080153106A1 (en) | 2004-07-07 | 2006-11-06 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
US11/593,975 Abandoned US20070178528A1 (en) | 2004-07-07 | 2006-11-06 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
US11/593,693 Abandoned US20070141600A1 (en) | 2004-07-07 | 2006-11-06 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
US12/460,255 Expired - Fee Related US7879562B2 (en) | 2004-07-07 | 2009-07-15 | Methods of diagnosing endometriosis in human subjects using the ME-5 polypeptide |
US12/460,724 Expired - Fee Related US7981626B2 (en) | 2004-07-07 | 2009-07-22 | Method of detecting endometriosis in human subjects using SEQ ID No. 9 or an epitope thereof |
US13/040,130 Expired - Fee Related US8030007B2 (en) | 2004-07-07 | 2011-03-03 | Method for the detection of endometriosis using an ME-2 antigen |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/887,540 Abandoned US20060008876A1 (en) | 2004-07-07 | 2004-07-07 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
US11/593,874 Abandoned US20080153106A1 (en) | 2004-07-07 | 2006-11-06 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
US11/593,975 Abandoned US20070178528A1 (en) | 2004-07-07 | 2006-11-06 | ME-5, ME-2, and EPP2: human protein antigens reactive with autoantibodies present in the serum of women suffering from endometriosis |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/460,255 Expired - Fee Related US7879562B2 (en) | 2004-07-07 | 2009-07-15 | Methods of diagnosing endometriosis in human subjects using the ME-5 polypeptide |
US12/460,724 Expired - Fee Related US7981626B2 (en) | 2004-07-07 | 2009-07-22 | Method of detecting endometriosis in human subjects using SEQ ID No. 9 or an epitope thereof |
US13/040,130 Expired - Fee Related US8030007B2 (en) | 2004-07-07 | 2011-03-03 | Method for the detection of endometriosis using an ME-2 antigen |
Country Status (9)
Country | Link |
---|---|
US (7) | US20060008876A1 (en) |
EP (1) | EP1614692B1 (en) |
JP (1) | JP2006051019A (en) |
AT (1) | ATE433462T1 (en) |
AU (1) | AU2005202925A1 (en) |
CA (1) | CA2509632A1 (en) |
DE (1) | DE602005014828D1 (en) |
ES (1) | ES2326324T3 (en) |
NZ (1) | NZ541063A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110171291A1 (en) * | 2010-01-07 | 2011-07-14 | Sanford-Burnham Medical Research Institute | Pathologically-activated therapeutics |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2703795A1 (en) * | 2006-10-27 | 2008-05-02 | Mount Sinai Hospital | Endometrial phase or endometrial cancer biomarkers |
US8279789B2 (en) * | 2008-06-10 | 2012-10-02 | Qualcomm Incorporated | Intelligent setting of hysteresis activation timer to enter hysteresis sooner and save battery |
DE102012002929A1 (en) | 2012-02-14 | 2013-08-14 | Jürgen Lewald | Analyzing a peripheral blood sample of a female subject based on concentration of a steroid hormone that indicates endometriosis, comprising e.g. testosterone, progesterone, cortisol, dehydroepiandrosterone and androstenedione |
GB202310300D0 (en) | 2023-07-05 | 2023-08-16 | Univ Edinburgh | Endometrosis markers and methods of diagnosing nedometriosis |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US652187A (en) * | 1899-11-02 | 1900-06-19 | Sigvald Krohn | System of electrical distribution. |
US4489166A (en) * | 1982-05-27 | 1984-12-18 | Research Corporation | Monitoring of human endometrial function by radioimmunoassay of PEP |
US5618680A (en) * | 1994-12-28 | 1997-04-08 | Institut De Medecine De La Reproduction De Montreal | Use of ligands specific to major histocompatibility complex-class I antigens for diagnosing endometriosis |
US5843673A (en) * | 1994-10-25 | 1998-12-01 | Curators Of The University Of Missouri | Method of screening for endometriosis |
US5877284A (en) * | 1993-08-12 | 1999-03-02 | The Trustees Of The University Of Pennsylvania | Isolated chemotactic factor from patients with endometriosis |
US6165767A (en) * | 1998-03-20 | 2000-12-26 | Incyte Pharmaceuticals, Inc. | Protein phosphatase-related molecules |
US6294662B1 (en) * | 1996-08-27 | 2001-09-25 | University Of South Florida | Nucleic acids encoding an endometrial bleeding associated factor (ebaf) |
US20010044158A1 (en) * | 2000-04-19 | 2001-11-22 | Yeaman Grant R. | Diagnostic assay for endometriosis |
US20010046713A1 (en) * | 2000-04-19 | 2001-11-29 | Research Corporation Technologies, Inc. | Diagnostic assay for endometriosis |
US20020009718A1 (en) * | 1994-10-25 | 2002-01-24 | Kathy L. Timms | Endometriosis-specific secretory protein |
US6376201B2 (en) * | 1994-12-28 | 2002-04-23 | Procrea Biosciences Inc. | Use of ligands specific to major histocompatibility complex-class I antigens for diagnosing endometriosis |
US6387629B1 (en) * | 1998-06-04 | 2002-05-14 | Reprogen, Inc. | Use of cathepsin S in the diagnosis and treatment of endometriosis |
US20020127555A1 (en) * | 2000-02-25 | 2002-09-12 | Soheyl Baban | Endometriosis-related markers and uses thereof |
US20020192647A1 (en) * | 2000-02-24 | 2002-12-19 | Smith John C. | Diagnostic method |
US20030032044A1 (en) * | 2001-07-17 | 2003-02-13 | Nasser Chegini | Detecting and treating reproductive tract disorders |
US6540980B1 (en) * | 1999-04-02 | 2003-04-01 | Center For Molecular Medicine And Immunology | Method of detecting endometriosis |
US20030077589A1 (en) * | 2000-09-25 | 2003-04-24 | Holger Hess-Stumpp | Method for in vitro diagnosis of endometriosis |
US20030166014A1 (en) * | 1994-10-25 | 2003-09-04 | Timms Kathy L. | Endometriosis-specific secretory protein |
US20070184444A1 (en) * | 2003-08-11 | 2007-08-09 | Alexander Abbas | Compositions and methods for the treatment of immune related diseases |
US20070224201A1 (en) * | 2002-10-02 | 2007-09-27 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of tumor |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03202769A (en) | 1989-03-07 | 1991-09-04 | Adeza Biomedical Corp | Method and reagent for diagnosis of endometrium disease |
ATE141278T1 (en) | 1991-03-15 | 1996-08-15 | Hoffmann La Roche | DIPHOSPHONIC ACID DERIVATIVES AS INTERMEDIATE PRODUCTS FOR THE PRODUCTION OF DIPHOSPHONE LIGANDS |
CA2062675A1 (en) | 1991-04-09 | 1992-10-10 | Sandra S. Fenton | Endometrial antigen, composition, test kit and method for endometrial antibody determination |
AU6960694A (en) * | 1993-05-28 | 1994-12-20 | Medical University Of South Carolina | Endometrial proteins, antigenic compositions and methods for detecting endometriosis |
WO1997035016A1 (en) | 1996-03-18 | 1997-09-25 | Novo Nordisk Biotech Inc | Polypeptides having phytase activity and nucleic acids encoding same |
AU2553097A (en) | 1996-03-21 | 1997-10-10 | New York University | Growth factor inducible serine/threonine phosphatase fin13 |
AU8571598A (en) | 1997-07-17 | 1999-02-10 | Ludwig Institute For Cancer Research | Cancer associated nucleic acids and polypeptides |
WO1999063116A2 (en) | 1998-06-04 | 1999-12-09 | Reprogen, Inc. | Use of prothymosin in the diagnosis and treatment of endometriosis |
US6525187B1 (en) * | 1998-07-31 | 2003-02-25 | Diagnostic Products Corporation | Polynucleotide encoding autoantigens associated with endometriosis |
JP2002535658A (en) | 1999-01-25 | 2002-10-22 | プロクレア・バイオサイエンスィズ・インコーポレーテッド | Methods and kits for diagnosing endometriosis |
AU4233500A (en) | 1999-04-16 | 2000-11-02 | Bioincept, Inc. | Identification of a serum marker for endometriosis |
CA2375424A1 (en) * | 1999-06-03 | 2000-12-14 | Curagen Corporation | Novel polynucleotides and polypeptides encoded thereby |
WO2001032920A2 (en) | 1999-11-03 | 2001-05-10 | Metris Therapeutics Limited | Agents implicated in endometriosis |
DE10048633A1 (en) | 2000-09-25 | 2002-04-18 | Schering Ag | Method for in vitro diagnosis of endometriosis |
WO2002068579A2 (en) | 2001-01-10 | 2002-09-06 | Pe Corporation (Ny) | Kits, such as nucleic acid arrays, comprising a majority of human exons or transcripts, for detecting expression and other uses thereof |
WO2004087874A2 (en) | 2003-03-28 | 2004-10-14 | Nuvelo, Inc. | Novel nucleic acids and polypeptides |
US6843673B1 (en) * | 2004-04-30 | 2005-01-18 | Speed Tech Corp. | Coaxial connector structure |
-
2004
- 2004-07-07 US US10/887,540 patent/US20060008876A1/en not_active Abandoned
-
2005
- 2005-06-30 EP EP05254121A patent/EP1614692B1/en not_active Not-in-force
- 2005-06-30 DE DE602005014828T patent/DE602005014828D1/en active Active
- 2005-06-30 ES ES05254121T patent/ES2326324T3/en active Active
- 2005-06-30 AT AT05254121T patent/ATE433462T1/en not_active IP Right Cessation
- 2005-06-30 NZ NZ541063A patent/NZ541063A/en not_active IP Right Cessation
- 2005-07-04 AU AU2005202925A patent/AU2005202925A1/en not_active Abandoned
- 2005-07-05 CA CA002509632A patent/CA2509632A1/en not_active Abandoned
- 2005-07-06 JP JP2005197432A patent/JP2006051019A/en active Pending
-
2006
- 2006-11-06 US US11/593,874 patent/US20080153106A1/en not_active Abandoned
- 2006-11-06 US US11/593,975 patent/US20070178528A1/en not_active Abandoned
- 2006-11-06 US US11/593,693 patent/US20070141600A1/en not_active Abandoned
-
2009
- 2009-07-15 US US12/460,255 patent/US7879562B2/en not_active Expired - Fee Related
- 2009-07-22 US US12/460,724 patent/US7981626B2/en not_active Expired - Fee Related
-
2011
- 2011-03-03 US US13/040,130 patent/US8030007B2/en not_active Expired - Fee Related
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US652187A (en) * | 1899-11-02 | 1900-06-19 | Sigvald Krohn | System of electrical distribution. |
US4489166A (en) * | 1982-05-27 | 1984-12-18 | Research Corporation | Monitoring of human endometrial function by radioimmunoassay of PEP |
US5877284A (en) * | 1993-08-12 | 1999-03-02 | The Trustees Of The University Of Pennsylvania | Isolated chemotactic factor from patients with endometriosis |
US20020009718A1 (en) * | 1994-10-25 | 2002-01-24 | Kathy L. Timms | Endometriosis-specific secretory protein |
US20030166014A1 (en) * | 1994-10-25 | 2003-09-04 | Timms Kathy L. | Endometriosis-specific secretory protein |
US5843673A (en) * | 1994-10-25 | 1998-12-01 | Curators Of The University Of Missouri | Method of screening for endometriosis |
US6531277B2 (en) * | 1994-10-25 | 2003-03-11 | The Curators Of The University Of Missouri | Endometriosis-specific secretory protein |
US6376201B2 (en) * | 1994-12-28 | 2002-04-23 | Procrea Biosciences Inc. | Use of ligands specific to major histocompatibility complex-class I antigens for diagnosing endometriosis |
US5618680A (en) * | 1994-12-28 | 1997-04-08 | Institut De Medecine De La Reproduction De Montreal | Use of ligands specific to major histocompatibility complex-class I antigens for diagnosing endometriosis |
US6294662B1 (en) * | 1996-08-27 | 2001-09-25 | University Of South Florida | Nucleic acids encoding an endometrial bleeding associated factor (ebaf) |
US6165767A (en) * | 1998-03-20 | 2000-12-26 | Incyte Pharmaceuticals, Inc. | Protein phosphatase-related molecules |
US6387629B1 (en) * | 1998-06-04 | 2002-05-14 | Reprogen, Inc. | Use of cathepsin S in the diagnosis and treatment of endometriosis |
US6540980B1 (en) * | 1999-04-02 | 2003-04-01 | Center For Molecular Medicine And Immunology | Method of detecting endometriosis |
US20020192647A1 (en) * | 2000-02-24 | 2002-12-19 | Smith John C. | Diagnostic method |
US20020127555A1 (en) * | 2000-02-25 | 2002-09-12 | Soheyl Baban | Endometriosis-related markers and uses thereof |
US20010044158A1 (en) * | 2000-04-19 | 2001-11-22 | Yeaman Grant R. | Diagnostic assay for endometriosis |
US6645725B2 (en) * | 2000-04-19 | 2003-11-11 | Research Corporation Technologies, Inc. | Diagnostic assay for endometriosis |
US20010046713A1 (en) * | 2000-04-19 | 2001-11-29 | Research Corporation Technologies, Inc. | Diagnostic assay for endometriosis |
US20030077589A1 (en) * | 2000-09-25 | 2003-04-24 | Holger Hess-Stumpp | Method for in vitro diagnosis of endometriosis |
US20030032044A1 (en) * | 2001-07-17 | 2003-02-13 | Nasser Chegini | Detecting and treating reproductive tract disorders |
US20070224201A1 (en) * | 2002-10-02 | 2007-09-27 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of tumor |
US20070184444A1 (en) * | 2003-08-11 | 2007-08-09 | Alexander Abbas | Compositions and methods for the treatment of immune related diseases |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110171291A1 (en) * | 2010-01-07 | 2011-07-14 | Sanford-Burnham Medical Research Institute | Pathologically-activated therapeutics |
Also Published As
Publication number | Publication date |
---|---|
US20110201129A1 (en) | 2011-08-18 |
ES2326324T3 (en) | 2009-10-07 |
US20070178528A1 (en) | 2007-08-02 |
CA2509632A1 (en) | 2006-01-07 |
US7981626B2 (en) | 2011-07-19 |
DE602005014828D1 (en) | 2009-07-23 |
US7879562B2 (en) | 2011-02-01 |
EP1614692A3 (en) | 2006-04-05 |
US20080153106A1 (en) | 2008-06-26 |
US8030007B2 (en) | 2011-10-04 |
JP2006051019A (en) | 2006-02-23 |
NZ541063A (en) | 2008-07-31 |
ATE433462T1 (en) | 2009-06-15 |
US20100330696A1 (en) | 2010-12-30 |
EP1614692B1 (en) | 2009-06-10 |
AU2005202925A1 (en) | 2006-02-02 |
US20060008876A1 (en) | 2006-01-12 |
EP1614692A2 (en) | 2006-01-11 |
US20100062453A1 (en) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7763432B2 (en) | Compositions and methods for early pregnancy diagnosis | |
Duncan et al. | Proteomics of semen and its constituents | |
JPH09503050A (en) | Assay for Cardiac Troponin I | |
US8030007B2 (en) | Method for the detection of endometriosis using an ME-2 antigen | |
JPH06502916A (en) | How to detect diabetic autoantibodies | |
JP2959837B2 (en) | Cancer-related haptoglobin | |
WO1994028021A1 (en) | Endometrial proteins, antigenic compositions and methods for detecting endometriosis | |
Fliger et al. | Identification of a target antigen in human anti-tubular basement membrane nephritis | |
JP2001501300A (en) | Biochemical markers of human endometrium | |
JPH08506658A (en) | Assay method for determining membrane rupture in women at risk for impending labor | |
JP3989837B2 (en) | Method for measuring anti-laminin-1 antibody and its application | |
US6531277B2 (en) | Endometriosis-specific secretory protein | |
JP2648952B2 (en) | Proteins and fragments thereof specifically expressed from PS2 gene in various pathological conditions, antibodies obtained from the proteins and / or fragments thereof, and proteins for detection, diagnosis and treatment of pathological conditions, Application of fragments and antibodies | |
Bell et al. | Development and Validation of a radioimmunoassay for human secretory ‘pregnancy-associated endometrial α2-globulin’(α2-PEG) and detection in serum during pregnancy | |
EP1226166B1 (en) | Immuno-interactive fragments of the alpha c subunit of inhibin | |
WO1992004472A1 (en) | Antigens associated with polymyositis and with dermatomyositis | |
JP4530539B2 (en) | Diagnostic method for recognition of pancreatic dysfunction | |
Szabó | Pregnancy-Related Protein Concentrations During Normal Pregnancy | |
WO2004095033A2 (en) | Compositions and methods for accurate early pregnancy diagnosis in ungulates | |
KR20190129004A (en) | Diagnosis of Systemic Lupus Erythematosus Using TCP1 Autoantibodies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIEMENS MEDICAL SOLUTIONS DIAGNOSTICS, NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:DIAGNOSTIC PRODUCTS CORPORATION;REEL/FRAME:019460/0262 Effective date: 20061114 Owner name: SIEMENS MEDICAL SOLUTIONS DIAGNOSTICS, NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:DIAGNOSTIC PRODUCTS CORPORATION;REEL/FRAME:019428/0598 Effective date: 20061114 |
|
AS | Assignment |
Owner name: SIEMENS HEALTHCARE DIAGNOSTICS INC., NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS MEDICAL SOLUTIONS DIAGNOSTICS;REEL/FRAME:020333/0976 Effective date: 20071231 Owner name: SIEMENS HEALTHCARE DIAGNOSTICS INC.,NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS MEDICAL SOLUTIONS DIAGNOSTICS;REEL/FRAME:020333/0976 Effective date: 20071231 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |