US20070134163A1 - Radiographic contrasting agents and radio-opaque polymeric materials for medical devices - Google Patents
Radiographic contrasting agents and radio-opaque polymeric materials for medical devices Download PDFInfo
- Publication number
- US20070134163A1 US20070134163A1 US11/301,874 US30187405A US2007134163A1 US 20070134163 A1 US20070134163 A1 US 20070134163A1 US 30187405 A US30187405 A US 30187405A US 2007134163 A1 US2007134163 A1 US 2007134163A1
- Authority
- US
- United States
- Prior art keywords
- radiographic contrasting
- radio
- medical device
- group
- halogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *NCC(CCCC[Y])(CCCC[Y])CCCC[Y] Chemical compound *NCC(CCCC[Y])(CCCC[Y])CCCC[Y] 0.000 description 6
- RMNZPZIOQCBHBX-UHFFFAOYSA-N CCCC(CCCC[Y])(CCCC[Y])CCCC[Y] Chemical compound CCCC(CCCC[Y])(CCCC[Y])CCCC[Y] RMNZPZIOQCBHBX-UHFFFAOYSA-N 0.000 description 5
- HIODWMHRFZCIKG-UHFFFAOYSA-N NCC(COC(=O)C1=C(I)C(I)=CC(I)=C1)(COC(=O)C1=C(I)C(I)=CC(I)=C1)COC(=O)C1=C(I)C(I)=CC(I)=C1 Chemical compound NCC(COC(=O)C1=C(I)C(I)=CC(I)=C1)(COC(=O)C1=C(I)C(I)=CC(I)=C1)COC(=O)C1=C(I)C(I)=CC(I)=C1 HIODWMHRFZCIKG-UHFFFAOYSA-N 0.000 description 2
- XLVXWEUBIUEDAI-UHFFFAOYSA-N C.CNCC(CO)(CO)CO.CNCC(COC(=O)C1=C(I)C(I)=CC(I)=C1)(COC(=O)C1=C(I)C(I)=CC(I)=C1)COC(=O)C1=C(I)C(I)=CC(I)=C1.O=C(Cl)C1=CC=C(I)C(I)=C1I Chemical compound C.CNCC(CO)(CO)CO.CNCC(COC(=O)C1=C(I)C(I)=CC(I)=C1)(COC(=O)C1=C(I)C(I)=CC(I)=C1)COC(=O)C1=C(I)C(I)=CC(I)=C1.O=C(Cl)C1=CC=C(I)C(I)=C1I XLVXWEUBIUEDAI-UHFFFAOYSA-N 0.000 description 1
- FIKPZVDVSUJABW-UHFFFAOYSA-N CNCC(COC(=O)C1=C(I)C(I)=CC(I)=C1)(COC(=O)C1=C(I)C(I)=CC(I)=C1)COC(=O)C1=C(I)C(I)=CC(I)=C1.I[IH]I.NCC(COC(=O)C1=C(I)C(I)=CC(I)=C1)(COC(=O)C1=C(I)C(I)=CC(I)=C1)COC(=O)C1=C(I)C(I)=CC(I)=C1 Chemical compound CNCC(COC(=O)C1=C(I)C(I)=CC(I)=C1)(COC(=O)C1=C(I)C(I)=CC(I)=C1)COC(=O)C1=C(I)C(I)=CC(I)=C1.I[IH]I.NCC(COC(=O)C1=C(I)C(I)=CC(I)=C1)(COC(=O)C1=C(I)C(I)=CC(I)=C1)COC(=O)C1=C(I)C(I)=CC(I)=C1 FIKPZVDVSUJABW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/04—X-ray contrast preparations
- A61K49/0433—X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
- A61K49/0438—Organic X-ray contrast-enhancing agent comprising an iodinated group or an iodine atom, e.g. iopamidol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/04—X-ray contrast preparations
- A61K49/0433—X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
- A61K49/0442—Polymeric X-ray contrast-enhancing agent comprising a halogenated group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/06—At least partially resorbable materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/14—Post-treatment to improve physical properties
- A61L17/145—Coating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/18—Materials at least partially X-ray or laser opaque
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/08—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals directly attached to carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H17/00—Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
- C07H17/02—Heterocyclic radicals containing only nitrogen as ring hetero atoms
Definitions
- the present invention relates to a radiographic contrasting agent that can initiate a polymerization process and a radio-opaque polymeric material comprising a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto.
- Biodegradable polymers have been widely used to construct medical devices, particularly implantable medical devices. Compared to the conventional metallic material, biodegradable polymers offer many advantages. First, biodegradable polymers are conformable and flexible, thereby causing less stress to the biological tissues. Second, medical implants made from biodegradable polymers do not require a second surgical intervention for removal. Third, the biodegradable polymers may be used to enhance the therapeutic effect of a medical implant. For example, a fractured bone that has been fixated with a rigid metal implant has a tendency for refracture upon removal of the metal implant because the stress is borne by the rigid metal, so the bone has not been able to carry sufficient load during the healing process.
- a biodegradable polymer can be tuned to degrade at a certain rate so that an implant prepared therefrom will slowly transfer load to the healing bone.
- biodegradable polymers are useful in drug delivery systems.
- a therapeutic agent can be admixed with a biodegradable polymer to form a polymer matrix. The release rate of the therapeutic agent in such a polymer matrix can be controlled by adjusting the degradation rate of the biodegradable polymer.
- Biodegradable polymers can be either natural or synthetic. In general, synthetic polymers offer greater advantages than natural materials since the synthetic polymers can be tailored to give the desirable properties according to their intended use. Synthetic polymers also offer better consistency and uniformity than natural polymers do. Furthermore, unlike natural materials, synthetic polymers cause little immunogenic responses after implantation. Common synthetic biodegradable polymers include polyglycolide, polylactide, poly(lactide-co-glycolide), polydioxanone, polycaprolactone, poly(hydroxyl butyrate), poly(trimethylene carbonate), polyphosphoester, polyphosphazene, and other poly(esteramide).
- biodegradable polymers are not radio-opaque. Consequently, medical devices made from those biodegradable polymers cannot be visualized by means of radiographic imaging.
- the ability to see the radiographic image of a medical device being used in, or implanted within, the body is very important since radiographic imaging provides a physician the ability to monitor and adjust the medical device during operation. For some medical implant applications, X-ray visibility is mandatory.
- one conventional method utilizes inorganic radiographic contrasting agents, such as barium sulfate, zirconium dioxide, or bismuth halides as additives or fillers in the polymeric material to form a radio-opaque polymeric matrix.
- inorganic radiographic contrasting agents such as barium sulfate, zirconium dioxide, or bismuth halides as additives or fillers in the polymeric material to form a radio-opaque polymeric matrix.
- these inorganic agents do not mix well with polymeric materials and may cause phase separation in the radio-opaque polymeric matrix.
- the phase separation problem is further aggravated since high concentrations (around 10%, and often times 20-30% by weight) of these inorganic radiographic contrasting agents are routinely used to obtain the required radio-opacity.
- the incompatibility between the polymeric and inorganic phases compromises the physicomechanical properties of the polymer matrix.
- Another disadvantage of using inorganic radiographic contrasting agents is the toxicity to
- radio-opacity is to synthesize polymers having covalently bound bromine or iodine atoms that may produce a radiographic contrasting effect (See U.S. Pat. No. 6,426,145).
- One radio-opaque composition of the prior art comprises a polymer having a non-leachable radio-opaque moiety covalently attached to the polymer (See U.S. Pat. No. 6,599,448), wherein the non-leachable radio-opaque moiety includes halogen substituted aromatic groups.
- the prior art has also disclosed a radio-opaque polymeric material comprising a diphenol-based monomer unit substituted with at least one bromine or iodine atom (See U.S. Pat. No. 6,852,308).
- preparations of these prior art radio-opaque polymers require synthesis of radiographic contrasting monomer units, which may increase the technical complexity and production cost.
- the present invention provides a radiographic contrasting agent comprising a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, a reactive nucleophilic group, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—,
- the radiographic contrasting agent has the following structure: wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms; X is oxygen, sulfur, —NH, —O(CO)—, —(CO)—, —NH(CO)—, —(CO)NH—, —O(SO 2 )—, —(SO 2 )O—, —O(SO)—, —(SO)O—, —NH(SO 2 )—, —(SO 2 )NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4.
- R is hydrogen; X is —O(CO)—, —NH(CO)—, or triazole; and n and m are both zero.
- the present invention also provides a radio-opaque polymeric material, comprising a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto, wherein the at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction, and the at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—, —(
- R is hydrogen;
- X is —O(CO)—, —NH(CO)—, or triazole; and n and m are both zero.
- the radiographic contrasting moiety covalently attached to the biodegradable polymer has the following structure: wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms; X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO 2 )—, —(SO 2 )O—, —O(SO)—, —(SO)O—, —NH(SO 2 )—, —(SO 2 )NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4.
- the present invention provides a medical device, wherein at least one portion of the medical device is radio-opaque, the at least one radio-opaque portion of the medical device comprising a radio-opaque polymeric material, which comprises a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto, wherein the at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction, and the at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, a reactive nucleophilic group, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic back
- the present invention provides a radiographic contrasting agent comprising a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, a reactive nucleophilic group, and at least two halogen-substituted aromatic groups.
- monosaccharide it is meant a simple sugar that cannot be hydrolyzed to smaller units.
- Empirical formula for monosaccharide is (CH 2 O) n , wherein n is an integer of 1 to 9.
- an aliphatic backbone denotes an organic moiety consisting of carbon atoms linked in open chains
- an alicyclic backbone denotes an organic moiety consisting of carbon atoms forming one or more rings that are not aromatic.
- the aliphatic or alicyclic backbone of the present invention contains 2 to 12 carbon atoms.
- a reactive nucleophilic group it is meant a reactive chemical moiety having an affinity to atomic nuclei.
- Reactive nucleophilic groups suitable for the present invention include, but are not limited to: NRH, OH, and SH; wherein R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- Each of the at least two halogen-substituted aromatic groups in the inventive radiographic contrasting agent is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group.
- the linkage group is selected from oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—,
- (CO) denotes a carbonyl moiety
- (SO) denotes a sulfinyl moiety
- (SO 2 ) denotes a sulfonyl moiety.
- the linkage group links the monosaccharide backbone or aliphatic or alicyclic backbone and the at least two halogen-substituted aromatic groups through covalent bonds.
- linkage group expressed as “-linkage-” denotes a linkage in the manner as follows: (the monosaccharide backbone or the aliphatic or alicyclic backbone)-linkage-(one of the at least two halogen-substituted aromatic groups).
- —(CO)O— denotes a linkage as follows: (the monosaccharide backbone or the aliphatic or alicyclic backbone)-(CO)O-(one of the at least two halogen-substituted aromatic groups).
- the linkage group of the present invention is —NH(CO)—, —O(CO)—, or triazole.
- triazole as used herein includes both 1,2,3-triazole and 1,2,4-triazole.
- linkage group is triazole
- the monosaccharide backbone or the aliphatic or alicyclic backbone and the at least two halogen-substituted aromatic group are linked through one of the two carbon atoms, and the nitrogen atom at the 4 position in the case of 1,2,4-triazole or the nitrogen atom at the 3 position in the case of 1,2,3-triazole.
- the monosaccharide backbones suitable for the present invention include, but are not limited to: monose, diose, triose, tetrose, pentose, hexose, heptose, octose, and nonose.
- the monosaccharide backbone of the present invention contains 3 to 7 carbon atoms.
- the aliphatic backbones suitable for the present invention include, but are not limited to: ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and analogs or isomers thereof.
- the alicyclic backbones suitable for the present invention include, but are not limited to: cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooxtanene, and analogs or isomers thereof.
- the aliphatic or alicyclic backbone is an aliphatic or alicyclic moiety having 4 to 8 carbon atoms.
- the radiographic contrasting agent of the present invention contains at least three halogen-substituted aromatic groups.
- a halogen-substituted aromatic group it is meant an aromatic group having at least one halogen substituent.
- an aromatic group it is meant a cyclic organic compound containing multiple conjugated double bonds.
- the halogen-substituted aromatic group of the present invention may be halogen-substituted carbocyclic, heterocyclic, or polycyclic compounds.
- Halogen-substituted aromatic groups suitable for the present invention include, but are not limited to: halogen-substituted benzene, toluene, xylenes, styrenes, pyridine, furan, naphthalene, anthracene, phenanthrene, indole, quinoline, and isoquinoline.
- the halogen-substituted aromatic group of the present invention is halogen-substituted benzene.
- Each of the halogen-substituted aromatic groups of the present invention is substituted with at least three halogen atoms.
- the at least three halogen atoms are bromine, iodine, or combinations thereof.
- the halogen-substituted aromatic group of the present invention is substituted with at least three iodine atoms.
- the halogen-substituted aromatic group is 2,3,5-triiodobenzene.
- the radiographic contrasting agent of the present invention has the following structure: wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms; X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO 2 )—, —(SO 2 )O—, —O(SO)—, —(SO)O—, —NH(SO 2 )—, —(SO 2 )NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4.
- the alkyl groups suitable for the present invention include, but are not limited to: methyl, ethyl, n-propyl and n-butyl.
- R is a hydrogen atom. More preferably, R is a hydrogen atom and X is —O(CO)—, —NH(CO)—, or triazole. Most preferably, R is a hydrogen atom; X is —O(CO)—, —NH(CO)—, or triazole; and m and n are both zero. It is preferable that the aromatic group substituted with at least three halogen atoms is a benzene group substituted with at least three halogen atoms.
- the at least three halogen atoms are bromine, iodine, or combinations thereof. It is more preferable that the aromatic group substituted with at least three halogen atoms is an aromatic group substituted with at least three iodine atoms. In one preferred embodiment of the present invention, the aromatic group aromatic group substituted with at least two halogen atoms is 2,3,5-triiodobenzene.
- the radiographic contrasting agent of formula (I) has the following structure:
- the inventive radiographic contrasting agent has one of the following structures:
- the radiographic contrasting agent of the present invention can be prepared through reactions between an organic compound containing polyhydric alcohol or polyamine and an aromatic compound substituted with multiple halogen atoms.
- the radiographic contrasting agent of the present invention is first synthesized in its protected form through an esterification of a polyhydric alcohol and 2,3,5-triiodobenzoic acid chloride, as shown in Scheme 1.
- the protection group may be any protection groups that are suitable for protecting amines and compatible with the esterification process.
- the protection group is a base-liable protection group, such as N-9-fluorenylmethyloxycarbonyl (Fmoc).
- DMAP denotes 4-(dimethylamino) pyridine or a hydrochloride salt thereof.
- the protection group is removed by a deprotection process providing the inventive radiographic contrasting agent, as shown in Scheme 2.
- the reaction condition of the deprotection process is determined by the nature of the protection group.
- the deprotection is typically conducted in the presence of a strong base.
- the inventive radiographic contrasting agent is prepared from a monosaccharide through a Huisgen [3+2] cycloaddition under mild conditions, as illustrated in Scheme 3. Since the monosaccharide is non-synthetic, natural molecule containing polyhydric alcohol, the inventive radiographic contrasting agent derived therefrom has enhanced biocompatibility.
- the term “TEA” denotes triethylamine.
- the reactive nucleophilic group in the inventive radiographic contrasting agent may react with an electrophilic group (e.g., a carbonyl group) in a biodegradable monomer initiating a polymerization process.
- the inventive radiographic contrasting agent may be an initiator for the polymerization of a biodegradable monomer producing a biodegradable polymer having the initiator, i.e., the inventive radiographic contrasting agent, covalently attached thereto.
- biodegradable polymer it is meant a polymer that can be degraded or decomposed by natural biological processes, as by the action of bacteria, plants, or animals. Biodegradable polymers are also known as bioabsorbable polymers or biodissolvable polymers.
- Biodegradable polymers suitable for the present invention include, but are not limited to: polyglycolide, polylactide, polydioxane, polycaprolactone, poly(lactide-co-glycolide), polyhydroxybutyrate, poly(trimethylene carbonate), other poly esters, and a mixture thereof.
- the inventive radiographic contrasting agent of formula (I) initiates the ring-opening polymerization of lactide producing a polylactide having the radiographic contrasting agent attached thereto, as shown in Scheme 4.
- the term “Sn(Oc) 2 ” as used herein denotes stannous octoate.
- X, Y, n and m are the same as defined hereinbefore.
- the present invention also provides a radio-opaque polymeric material comprising a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto.
- the at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction.
- the at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms and at least two halogen-substituted aromatic groups.
- Each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is selected from oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO 2 )—, —(SO 2 )O—, —O(SO)—, —(SO)O—, —NH(SO 2 )—, —(SO 2 )NH—, —NH(SO)—, —(SO)NH—, and triazole.
- the linkage group is selected from oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO 2 )—, —
- a nucleophilic reaction denotes a chemical reaction between a reactive nucleophilic group and a carbonyl group.
- a functional group derived from a nucleophilic reaction denotes a functional group formed through a nucleophilic reaction between a reactive nucleophilic group and a carbonyl group.
- a reactive nucleophilic group it is meant a reactive chemical moiety having an affinity to atomic nuclei.
- Reactive nucleophilic groups suitable for the present invention include, but are not limited to: NRH, OH, and SH; wherein R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- the radiographic contrasting moiety in the inventive radio-opaque polymeric material has the following structure: wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms; X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO 2 )—, —(SO 2 )O—, —O(SO)—, —(SO)O—, —NH(SO 2 )—, —(SO 2 )NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4.
- R is a hydrogen atom; and X is —O(CO)—, —NH(CO)—, or triazole. More preferably, R is a hydrogen atom; X is —O(CO)—, —NH(CO)—, or triazole; and n and m are both zero. It is preferable that the aromatic group substituted with at least three halogen atoms is a benzene group substituted with at least three halogen atoms. It is also preferable that the at least three halogen atoms are bromine, iodine, or combinations thereof.
- the aromatic group substituted with at least three halogen atoms is an aromatic group substituted with at least three iodine atoms.
- the aromatic group aromatic group substituted with at least two halogen atoms is 2,3,5-triiodobenzene.
- the biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto may be synthesized by initiating the polymerization of a biodegradable monomer with the inventive radiographic contrasting agent.
- the reactive nucleophilic group in the inventive radiographic contrasting agent can react with a carbonyl group in the biodegradable monomer forming a functional group and further initiating a polymerization process.
- the biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto comprises monomer units that include, but are not limited to: glycolide, lactide, dioxane, caprolactone, trimethylene carbonate, hydroxybutyrate, and combinations thereof.
- the inventive biodegradable polymer can be readily prepared from common biodegradable monomers, such as lactide, glycolide, caprolactone, dioxane, trimethylene carbonate, hydroxybutyrate, or combinations thereof.
- the biodegradable polymer having at least one radiographic contrasting moiety is prepared through the synthetic route shown in Scheme 4.
- the inventive biodegradable polymer having at least one radiographic contrasting moiety contains at least two radiographic contrasting moieties, thereby having enhanced radiographic contrasting effect.
- inventive biodegradable polymer having at least two radiographic contrasting moieties can be synthesized by end-capping an inventive biodegradable polymer having one radiographic contrasting moiety with a derivative of the radiographic contrasting agent of formula (I), (IV), or (V).
- the inventive radiographic contrasting agent is transformed to an acid derivative thereof, as shown in Scheme 5.
- X, Y, n, and m are the same as defined hereinbefore.
- inventive biodegradable polymer of formula (VI) is end-capped with the acid derivative of the inventive radiographic contrasting agent providing an inventive biodegradable polymer having at least two radiographic contrasting moieties, as shown in Scheme 6.
- DMAP denotes 4-(dimethylamino) pyridine or a hydrochloride salt thereof.
- X, Y, n, and m are the same as defined hereinbefore.
- the inventive biodegradable polymer not only possesses the desirable biocompatibility and physicomechanical properties (e.g., strength, fatigue, and smoothness), but also has radio-opacity for visualization in radiographic imaging.
- the mechanical strength and the degradation time of the inventive biodegradable polymer can be tuned by adjusting the molecular weight or composition thereof.
- the radiographic contrast intensity of the inventive biodegradable polymer can be adjusted by varying the ratio of the at least one radiographic contrasting moiety in the inventive biodegradable polymer or modifying the structure of the at least one radiographic contrasting moiety.
- the inventive biodegradable polymer is soluble in organic solvents and miscible with the bulk polymeric materials used to construct a medical device.
- the inventive biodegradable polymer is not soluble in water and do not leach out during the manufacture process or initial implantation period. Therefore, the inventive radio-opaque biodegradable polymer is suitable for the fabrication and use of medical devices interfacing with biological tissues, particularly implantable medical devices. Using similar reaction schemes as shown in Schemes 4 to 6, monosaccharide-based radiographic contrasting agents can be employed as polymerization initiators to prepare the inventive biodegradable polymers.
- the present invention provides a medical device, wherein at least one portion of the medical device is radio-opaque.
- the at least one radio-opaque portion of the medical device comprises a radio-opaque polymeric material, which comprises a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto.
- the at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction.
- the at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms and at least two halogen-substituted aromatic groups.
- Each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is selected from oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO 2 )—, —(SO 2 )O—,
- the at least one radiographic contrasting moiety has the following structure: wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms; X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO 2 )—, —(SO 2 )O—, —O(SO)—, —(SO)O—, —NH(SO 2 )—, —(SO 2 )NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4.
- R is a hydrogen atom; and X is —O(CO)—, —NH(CO)—, or triazole. More preferably, R is a hydrogen atom; X is —O(CO)—, —NH(CO)—, or triazole; and n and m are both zero.
- the inventive biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto contains at least two radiographic contrasting moieties, thereby having enhanced radiographic contrasting effect.
- Biodegradable polymers suitable for the present invention comprise monomer units that include, but are not limited to: glycolide, lactide, dioxane, caprolactone, trimethylene carbonate, hydroxybutyrate, and combinations thereof.
- the radio-opaque portion of the medical device may be at least a portion of one surface of the medical device, a component of the medical device, or a portion of a component of the medical device.
- the radio-opaque portion of the medical device may be in any shape or size depending upon the intended use and the fabrication method of the medical device.
- the whole medical device is radio-opaque.
- the medical device of the present invention is implantable.
- Examples of the medical devices suitable for the present invention include, but are not limited to: wound closure devices, such as, sutures, staples, and mesh; orthopedic fixation devices, such as, bone fracture fixation implants and bone augmentation implants; intestinal devices, such as, anastomosis rings and ligating clips; cardiovascular devices, such as, vascular grafts and drug elution stents; dental implants; nerve growth conduits; and other implantable medical devices.
- wound closure devices such as, sutures, staples, and mesh
- orthopedic fixation devices such as, bone fracture fixation implants and bone augmentation implants
- intestinal devices such as, anastomosis rings and ligating clips
- cardiovascular devices such as, vascular grafts and drug elution stents
- dental implants such as, nerve growth conduits; and other implantable medical devices.
- the inventive radio-opaque biodegradable polymeric material may be applied on at least a portion of one surface of a medical device using cast, spray, spin, dipping, or other methods known
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Materials Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials For Medical Uses (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
Abstract
The present invention discloses a radiographic contrasting agent containing multiple aromatic groups, each of which is substituted with at least three halogen atoms. The radiographic contrasting agent can initiate a polymerization process. The present invention also discloses a radio-opaque polymeric material that comprises a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto. The radio-opaque polymeric material provides enhanced contrasting intensity in radiographic imaging. The radio-opaque polymeric material can be applied on at least a portion of one surface of a medical device. The radio-opaque polymeric material can also be used to construct a medical device, a component thereof, or a portion of a component thereof.
Description
- The present invention relates to a radiographic contrasting agent that can initiate a polymerization process and a radio-opaque polymeric material comprising a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto.
- Biodegradable polymers have been widely used to construct medical devices, particularly implantable medical devices. Compared to the conventional metallic material, biodegradable polymers offer many advantages. First, biodegradable polymers are conformable and flexible, thereby causing less stress to the biological tissues. Second, medical implants made from biodegradable polymers do not require a second surgical intervention for removal. Third, the biodegradable polymers may be used to enhance the therapeutic effect of a medical implant. For example, a fractured bone that has been fixated with a rigid metal implant has a tendency for refracture upon removal of the metal implant because the stress is borne by the rigid metal, so the bone has not been able to carry sufficient load during the healing process. In contrast, a biodegradable polymer can be tuned to degrade at a certain rate so that an implant prepared therefrom will slowly transfer load to the healing bone. In addition, biodegradable polymers are useful in drug delivery systems. For example, a therapeutic agent can be admixed with a biodegradable polymer to form a polymer matrix. The release rate of the therapeutic agent in such a polymer matrix can be controlled by adjusting the degradation rate of the biodegradable polymer.
- Biodegradable polymers can be either natural or synthetic. In general, synthetic polymers offer greater advantages than natural materials since the synthetic polymers can be tailored to give the desirable properties according to their intended use. Synthetic polymers also offer better consistency and uniformity than natural polymers do. Furthermore, unlike natural materials, synthetic polymers cause little immunogenic responses after implantation. Common synthetic biodegradable polymers include polyglycolide, polylactide, poly(lactide-co-glycolide), polydioxanone, polycaprolactone, poly(hydroxyl butyrate), poly(trimethylene carbonate), polyphosphoester, polyphosphazene, and other poly(esteramide).
- However, most biodegradable polymers are not radio-opaque. Consequently, medical devices made from those biodegradable polymers cannot be visualized by means of radiographic imaging. The ability to see the radiographic image of a medical device being used in, or implanted within, the body is very important since radiographic imaging provides a physician the ability to monitor and adjust the medical device during operation. For some medical implant applications, X-ray visibility is mandatory.
- To achieve desirable radio-opacity in polymeric materials, one conventional method utilizes inorganic radiographic contrasting agents, such as barium sulfate, zirconium dioxide, or bismuth halides as additives or fillers in the polymeric material to form a radio-opaque polymeric matrix. However, these inorganic agents do not mix well with polymeric materials and may cause phase separation in the radio-opaque polymeric matrix. The phase separation problem is further aggravated since high concentrations (around 10%, and often times 20-30% by weight) of these inorganic radiographic contrasting agents are routinely used to obtain the required radio-opacity. The incompatibility between the polymeric and inorganic phases compromises the physicomechanical properties of the polymer matrix. Another disadvantage of using inorganic radiographic contrasting agents is the toxicity to tissues caused by the leach-out of these inorganic agents.
- An alternative approach to introduce radio-opacity into polymeric materials is to synthesize polymers having covalently bound bromine or iodine atoms that may produce a radiographic contrasting effect (See U.S. Pat. No. 6,426,145). One radio-opaque composition of the prior art comprises a polymer having a non-leachable radio-opaque moiety covalently attached to the polymer (See U.S. Pat. No. 6,599,448), wherein the non-leachable radio-opaque moiety includes halogen substituted aromatic groups. The prior art has also disclosed a radio-opaque polymeric material comprising a diphenol-based monomer unit substituted with at least one bromine or iodine atom (See U.S. Pat. No. 6,852,308). However, preparations of these prior art radio-opaque polymers require synthesis of radiographic contrasting monomer units, which may increase the technical complexity and production cost.
- Thus, there remains a need for a non-leachable radiographic contrasting agent that can provide enhanced contrasting intensity and a radio-opaque polymeric material that can be readily prepared from such a non-leachable radiographic contrasting agent and common biodegradable monomers.
- Accordingly, the present invention provides a radiographic contrasting agent comprising a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, a reactive nucleophilic group, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—,
- —(CO)NH—, —O(SO2)—, —(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—,
- —NH(SO)—, —(SO)NH—, or triazole.
- Preferably, the radiographic contrasting agent has the following structure:
wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms;
X is oxygen, sulfur, —NH, —O(CO)—, —(CO)—, —NH(CO)—, —(CO)NH—, —O(SO2)—,
—(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4. Preferably, R is hydrogen; X is —O(CO)—, —NH(CO)—, or triazole; and n and m are both zero. - The present invention also provides a radio-opaque polymeric material, comprising a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto, wherein the at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction, and the at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—, —(SO2)O—, —O(SO)—,
- —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole. Preferably, R is hydrogen; X is —O(CO)—, —NH(CO)—, or triazole; and n and m are both zero.
- Preferably, the radiographic contrasting moiety covalently attached to the biodegradable polymer has the following structure:
wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms;
X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—,
—(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4. - In another aspect, the present invention provides a medical device, wherein at least one portion of the medical device is radio-opaque, the at least one radio-opaque portion of the medical device comprising a radio-opaque polymeric material, which comprises a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto, wherein the at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction, and the at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, a reactive nucleophilic group, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—,
- —(CO)NH—, —O(SO2)—, —(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole.
- The present invention provides a radiographic contrasting agent comprising a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, a reactive nucleophilic group, and at least two halogen-substituted aromatic groups. By “monosaccharide”, it is meant a simple sugar that cannot be hydrolyzed to smaller units. Empirical formula for monosaccharide is (CH2O)n, wherein n is an integer of 1 to 9. As used herein, “an aliphatic backbone” denotes an organic moiety consisting of carbon atoms linked in open chains, and “an alicyclic backbone” denotes an organic moiety consisting of carbon atoms forming one or more rings that are not aromatic. The aliphatic or alicyclic backbone of the present invention contains 2 to 12 carbon atoms. By “a reactive nucleophilic group”, it is meant a reactive chemical moiety having an affinity to atomic nuclei. Reactive nucleophilic groups suitable for the present invention include, but are not limited to: NRH, OH, and SH; wherein R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Each of the at least two halogen-substituted aromatic groups in the inventive radiographic contrasting agent is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group. The linkage group is selected from oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—,
- —NH(CO)—, —(CO)NH—, —O(SO2)—, —(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—,
- —(SO2)NH—, —NH(SO)—, —(SO)NH—, and triazole. As used herein, “(CO)” denotes a carbonyl moiety; “(SO)” denotes a sulfinyl moiety; and “(SO2)” denotes a sulfonyl moiety. The linkage group links the monosaccharide backbone or aliphatic or alicyclic backbone and the at least two halogen-substituted aromatic groups through covalent bonds.
- The linkage group expressed as “-linkage-” denotes a linkage in the manner as follows: (the monosaccharide backbone or the aliphatic or alicyclic backbone)-linkage-(one of the at least two halogen-substituted aromatic groups). For example, “—(CO)O—” denotes a linkage as follows: (the monosaccharide backbone or the aliphatic or alicyclic backbone)-(CO)O-(one of the at least two halogen-substituted aromatic groups). Preferably, the linkage group of the present invention is —NH(CO)—, —O(CO)—, or triazole. The term “triazole” as used herein includes both 1,2,3-triazole and 1,2,4-triazole. When the linkage group is triazole, the monosaccharide backbone or the aliphatic or alicyclic backbone and the at least two halogen-substituted aromatic group are linked through one of the two carbon atoms, and the nitrogen atom at the 4 position in the case of 1,2,4-triazole or the nitrogen atom at the 3 position in the case of 1,2,3-triazole.
- The monosaccharide backbones suitable for the present invention include, but are not limited to: monose, diose, triose, tetrose, pentose, hexose, heptose, octose, and nonose. Preferably, the monosaccharide backbone of the present invention contains 3 to 7 carbon atoms. The aliphatic backbones suitable for the present invention include, but are not limited to: ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and analogs or isomers thereof. The alicyclic backbones suitable for the present invention include, but are not limited to: cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooxtanene, and analogs or isomers thereof. Preferably, the aliphatic or alicyclic backbone is an aliphatic or alicyclic moiety having 4 to 8 carbon atoms.
- It is preferable that the radiographic contrasting agent of the present invention contains at least three halogen-substituted aromatic groups. By “a halogen-substituted aromatic group”, it is meant an aromatic group having at least one halogen substituent. By “an aromatic group”, it is meant a cyclic organic compound containing multiple conjugated double bonds. The halogen-substituted aromatic group of the present invention may be halogen-substituted carbocyclic, heterocyclic, or polycyclic compounds. Halogen-substituted aromatic groups suitable for the present invention include, but are not limited to: halogen-substituted benzene, toluene, xylenes, styrenes, pyridine, furan, naphthalene, anthracene, phenanthrene, indole, quinoline, and isoquinoline. Preferably, the halogen-substituted aromatic group of the present invention is halogen-substituted benzene. Each of the halogen-substituted aromatic groups of the present invention is substituted with at least three halogen atoms. Preferably, the at least three halogen atoms are bromine, iodine, or combinations thereof. More preferably, the halogen-substituted aromatic group of the present invention is substituted with at least three iodine atoms. In one preferred embodiment of the present invention, the halogen-substituted aromatic group is 2,3,5-triiodobenzene.
- Preferably, the radiographic contrasting agent of the present invention has the following structure:
wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms;
X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—,
—(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4. The alkyl groups suitable for the present invention include, but are not limited to: methyl, ethyl, n-propyl and n-butyl. Preferably, R is a hydrogen atom. More preferably, R is a hydrogen atom and X is —O(CO)—, —NH(CO)—, or triazole. Most preferably, R is a hydrogen atom; X is —O(CO)—, —NH(CO)—, or triazole; and m and n are both zero. It is preferable that the aromatic group substituted with at least three halogen atoms is a benzene group substituted with at least three halogen atoms. It is also preferable that the at least three halogen atoms are bromine, iodine, or combinations thereof. It is more preferable that the aromatic group substituted with at least three halogen atoms is an aromatic group substituted with at least three iodine atoms. In one preferred embodiment of the present invention, the aromatic group aromatic group substituted with at least two halogen atoms is 2,3,5-triiodobenzene. -
-
- The radiographic contrasting agent of the present invention can be prepared through reactions between an organic compound containing polyhydric alcohol or polyamine and an aromatic compound substituted with multiple halogen atoms.
- In one embodiment of the present invention, the radiographic contrasting agent of the present invention is first synthesized in its protected form through an esterification of a polyhydric alcohol and 2,3,5-triiodobenzoic acid chloride, as shown in Scheme 1. The protection group may be any protection groups that are suitable for protecting amines and compatible with the esterification process. Preferably, the protection group is a base-liable protection group, such as N-9-fluorenylmethyloxycarbonyl (Fmoc). The term “DMAP” as used herein denotes 4-(dimethylamino) pyridine or a hydrochloride salt thereof.
- Then the protection group is removed by a deprotection process providing the inventive radiographic contrasting agent, as shown in Scheme 2. The reaction condition of the deprotection process is determined by the nature of the protection group. For a base-liable protection group, the deprotection is typically conducted in the presence of a strong base.
- In another embodiment of the present invention, the inventive radiographic contrasting agent is prepared from a monosaccharide through a Huisgen [3+2] cycloaddition under mild conditions, as illustrated in Scheme 3. Since the monosaccharide is non-synthetic, natural molecule containing polyhydric alcohol, the inventive radiographic contrasting agent derived therefrom has enhanced biocompatibility. As used herein, the term “TEA” denotes triethylamine.
- The reactive nucleophilic group in the inventive radiographic contrasting agent may react with an electrophilic group (e.g., a carbonyl group) in a biodegradable monomer initiating a polymerization process. Thus, the inventive radiographic contrasting agent may be an initiator for the polymerization of a biodegradable monomer producing a biodegradable polymer having the initiator, i.e., the inventive radiographic contrasting agent, covalently attached thereto. By “biodegradable polymer”, it is meant a polymer that can be degraded or decomposed by natural biological processes, as by the action of bacteria, plants, or animals. Biodegradable polymers are also known as bioabsorbable polymers or biodissolvable polymers. Biodegradable polymers suitable for the present invention include, but are not limited to: polyglycolide, polylactide, polydioxane, polycaprolactone, poly(lactide-co-glycolide), polyhydroxybutyrate, poly(trimethylene carbonate), other poly esters, and a mixture thereof.
- In one embodiment of the present invention, the inventive radiographic contrasting agent of formula (I) initiates the ring-opening polymerization of lactide producing a polylactide having the radiographic contrasting agent attached thereto, as shown in Scheme 4. The term “Sn(Oc)2” as used herein denotes stannous octoate. X, Y, n and m are the same as defined hereinbefore.
- The present invention also provides a radio-opaque polymeric material comprising a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto. The at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction. The at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms and at least two halogen-substituted aromatic groups. Each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is selected from oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—, —(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, and triazole. The term “a nucleophilic reaction” as used herein denotes a chemical reaction between a reactive nucleophilic group and a carbonyl group. The term “a functional group derived from a nucleophilic reaction” as used herein denotes a functional group formed through a nucleophilic reaction between a reactive nucleophilic group and a carbonyl group. By “a reactive nucleophilic group”, it is meant a reactive chemical moiety having an affinity to atomic nuclei. Reactive nucleophilic groups suitable for the present invention include, but are not limited to: NRH, OH, and SH; wherein R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- Preferably, the radiographic contrasting moiety in the inventive radio-opaque polymeric material has the following structure:
wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms;
X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—,
—(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4. Preferably, R is a hydrogen atom; and X is —O(CO)—, —NH(CO)—, or triazole. More preferably, R is a hydrogen atom; X is —O(CO)—, —NH(CO)—, or triazole; and n and m are both zero. It is preferable that the aromatic group substituted with at least three halogen atoms is a benzene group substituted with at least three halogen atoms. It is also preferable that the at least three halogen atoms are bromine, iodine, or combinations thereof. It is more preferable that the aromatic group substituted with at least three halogen atoms is an aromatic group substituted with at least three iodine atoms. In one preferred embodiment of the present invention, the aromatic group aromatic group substituted with at least two halogen atoms is 2,3,5-triiodobenzene. - In the present invention, the biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto may be synthesized by initiating the polymerization of a biodegradable monomer with the inventive radiographic contrasting agent. The reactive nucleophilic group in the inventive radiographic contrasting agent can react with a carbonyl group in the biodegradable monomer forming a functional group and further initiating a polymerization process. The biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto comprises monomer units that include, but are not limited to: glycolide, lactide, dioxane, caprolactone, trimethylene carbonate, hydroxybutyrate, and combinations thereof. Therefore, the inventive biodegradable polymer can be readily prepared from common biodegradable monomers, such as lactide, glycolide, caprolactone, dioxane, trimethylene carbonate, hydroxybutyrate, or combinations thereof. In one embodiment of the present invention, the biodegradable polymer having at least one radiographic contrasting moiety is prepared through the synthetic route shown in Scheme 4. Preferably, the inventive biodegradable polymer having at least one radiographic contrasting moiety contains at least two radiographic contrasting moieties, thereby having enhanced radiographic contrasting effect. The inventive biodegradable polymer having at least two radiographic contrasting moieties can be synthesized by end-capping an inventive biodegradable polymer having one radiographic contrasting moiety with a derivative of the radiographic contrasting agent of formula (I), (IV), or (V).
-
- Next, the inventive biodegradable polymer of formula (VI) is end-capped with the acid derivative of the inventive radiographic contrasting agent providing an inventive biodegradable polymer having at least two radiographic contrasting moieties, as shown in Scheme 6. The term “DMAP” as used herein denotes 4-(dimethylamino) pyridine or a hydrochloride salt thereof. X, Y, n, and m are the same as defined hereinbefore.
- The inventive biodegradable polymer not only possesses the desirable biocompatibility and physicomechanical properties (e.g., strength, fatigue, and smoothness), but also has radio-opacity for visualization in radiographic imaging. The mechanical strength and the degradation time of the inventive biodegradable polymer can be tuned by adjusting the molecular weight or composition thereof. The radiographic contrast intensity of the inventive biodegradable polymer can be adjusted by varying the ratio of the at least one radiographic contrasting moiety in the inventive biodegradable polymer or modifying the structure of the at least one radiographic contrasting moiety. The inventive biodegradable polymer is soluble in organic solvents and miscible with the bulk polymeric materials used to construct a medical device. The inventive biodegradable polymer is not soluble in water and do not leach out during the manufacture process or initial implantation period. Therefore, the inventive radio-opaque biodegradable polymer is suitable for the fabrication and use of medical devices interfacing with biological tissues, particularly implantable medical devices. Using similar reaction schemes as shown in Schemes 4 to 6, monosaccharide-based radiographic contrasting agents can be employed as polymerization initiators to prepare the inventive biodegradable polymers.
- In another aspect, the present invention provides a medical device, wherein at least one portion of the medical device is radio-opaque. The at least one radio-opaque portion of the medical device comprises a radio-opaque polymeric material, which comprises a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto. The at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction. The at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms and at least two halogen-substituted aromatic groups. Each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is selected from oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—, —(SO2)O—,
- —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, and triazole.
- In one embodiment of the present invention, the at least one radiographic contrasting moiety has the following structure:
wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms;
X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—,
—(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4. Preferably, R is a hydrogen atom; and X is —O(CO)—, —NH(CO)—, or triazole. More preferably, R is a hydrogen atom; X is —O(CO)—, —NH(CO)—, or triazole; and n and m are both zero. Preferably, the inventive biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto contains at least two radiographic contrasting moieties, thereby having enhanced radiographic contrasting effect. Biodegradable polymers suitable for the present invention comprise monomer units that include, but are not limited to: glycolide, lactide, dioxane, caprolactone, trimethylene carbonate, hydroxybutyrate, and combinations thereof. - In the present invention, the radio-opaque portion of the medical device may be at least a portion of one surface of the medical device, a component of the medical device, or a portion of a component of the medical device. The radio-opaque portion of the medical device may be in any shape or size depending upon the intended use and the fabrication method of the medical device. When all surfaces of the medical device are covered with the inventive radio-opaque biodegradable polymeric material or the whole medical device is prepared from the inventive radio-opaque biodegradable polymeric material, the whole medical device is radio-opaque. Preferably, the medical device of the present invention is implantable. Examples of the medical devices suitable for the present invention include, but are not limited to: wound closure devices, such as, sutures, staples, and mesh; orthopedic fixation devices, such as, bone fracture fixation implants and bone augmentation implants; intestinal devices, such as, anastomosis rings and ligating clips; cardiovascular devices, such as, vascular grafts and drug elution stents; dental implants; nerve growth conduits; and other implantable medical devices. The inventive radio-opaque biodegradable polymeric material may be applied on at least a portion of one surface of a medical device using cast, spray, spin, dipping, or other methods known to one skilled in the art. The medical device or a component thereof can be constructed from the inventive radio-opaque biodegradable polymeric material using injection molding, compression molding, extrusion, or other methods know to one skilled in the art to construct polymeric medical devices.
- While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated but fall within the scope of the appended claims.
Claims (22)
1. A radiographic contrasting agent comprising a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, a reactive nucleophilic group, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is oxygen, sulfur, —NH—,
—O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—, —(SO2)O—, —O(SO)—, —(So)O—,
—NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole.
2. The radiographic contrasting agent of claim 1 , having the following structure:
wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms;
X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—,
—(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4.
3. The radiographic contrasting agent of claim 2 , wherein R is a hydrogen atom.
4. The radiographic contrasting agent of claim 3 , wherein X is —O(CO)—, —NH(CO)—, or triazole.
5. The radiographic contrasting agent of claim 4 , wherein n and m are both zero.
6. The radiographic contrasting agent of claim 1 , wherein the at least three halogen atoms are bromine, iodine, or combinations thereof.
8. A radio-opaque polymeric material comprising a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto, wherein the at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction, and the at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2-12 carbon atoms, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—,
—(CO)NH—, —O(SO2)—, —(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—,
—NH(SO)—, —(SO)NH—, or triazole.
9. The radio-opaque polymeric material of claim 8 , wherein the at least one radiographic contrasting moiety has the following structure:
wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms;
X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—,
—(SO2)O—, —O(SO)—, —(SO)—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, or —(SO)NH—; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4.
10. The radio-opaque polymeric material of claim 9 , wherein R is a hydrogen atom; and X is —O(CO)—, —NH(CO)—, or triazole.
11. The radio-opaque polymeric material of claim 10 , wherein n and m are both zero.
12. The radio-opaque polymeric material of claim 9 , wherein the at least three halogen atoms are bromine, iodine, or combinations thereof.
13. The radio-opaque polymeric material of claim 9 , wherein the biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto comprises monomer units selected from the group consisting of glycolide, lactide, dioxane, caprolactone, trimethylene carbonate, hydroxybutyrate, and combinations thereof.
14. A medical device, wherein at least one portion of the medical device is radio-opaque, the at least one radio-opaque portion of the medical device comprising a radio-opaque polymeric material, which comprises a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto, wherein the at least one radiographic contrasting moiety is covalently attached to the biodegradable polymer through a functional group derived from a nucleophilic reaction, and the at least one radiographic contrasting moiety comprises a monosaccharide backbone or an aliphatic or alicyclic backbone of 2 to 12 carbon atoms, and at least two halogen-substituted aromatic groups, wherein each of the at least two halogen-substituted aromatic groups is substituted with at least three halogen atoms and is covalently attached to the monosaccharide backbone or the aliphatic or alicyclic backbone through a linkage group, wherein the linkage group is oxygen, sulfur, —NH—, —O(CO)—, —(CO)O—, —NH(CO)—,
—(CO)NH—, —O(SO2)—, —(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—,
—NH(SO)—, —(SO)NH—, or triazole.
15. The medical device of claim 14 , wherein the at least one radiographic contrasting moiety has the following structure:
wherein R is a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms;
X is oxygen, sulfur, —NH, —O(CO)—, —(CO)O—, —NH(CO)—, —(CO)NH—, —O(SO2)—,
—(SO2)O—, —O(SO)—, —(SO)O—, —NH(SO2)—, —(SO2)NH—, —NH(SO)—, —(SO)NH—, or triazole; Y is an aromatic group substituted with at least three halogen atoms; n and m are the same or different, and are independently zero or an integer of 1 to 4.
16. The medical device of claim 15 , wherein R is a hydrogen atom; and X is
—O(CO)—, —NH(CO)—, or triazole.
17. The medical device of claim 16 , wherein n and m are both zero.
18. The medical device of claim 15 , wherein the at least three halogen atoms are bromine, iodine, or combinations thereof.
19. The medical device of claim 15 , wherein the biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto comprises monomer units selected from the group consisting of glycolide, lactide, dioxane, caprolactone, trimethylene carbonate, hydroxybutyrate, and combinations thereof.
20. The medical device of claim 15 , wherein the radio-opaque portion of the medical device is at least a portion of one surface of the medical device, a component of the medical device, or a portion of a component of the medical device.
21. The medical device of claim 15 is implantable.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/301,874 US20070134163A1 (en) | 2005-12-13 | 2005-12-13 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
CA2820238A CA2820238C (en) | 2005-12-13 | 2006-12-06 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
CA2570410A CA2570410C (en) | 2005-12-13 | 2006-12-06 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
EP06256292A EP1815871B1 (en) | 2005-12-13 | 2006-12-11 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
AT06256292T ATE551074T1 (en) | 2005-12-13 | 2006-12-11 | X-RAY CONTRAST AGENTS AND RADIO-OPAQUE POLYMER MATERIALS FOR MEDICAL DEVICES |
JP2006334861A JP5068524B2 (en) | 2005-12-13 | 2006-12-12 | X-ray radiographic contrast medium and radiopaque polymer material for medical devices |
US12/412,052 US7771705B2 (en) | 2005-12-13 | 2009-03-26 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/301,874 US20070134163A1 (en) | 2005-12-13 | 2005-12-13 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/412,052 Continuation US7771705B2 (en) | 2005-12-13 | 2009-03-26 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070134163A1 true US20070134163A1 (en) | 2007-06-14 |
Family
ID=38139593
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/301,874 Abandoned US20070134163A1 (en) | 2005-12-13 | 2005-12-13 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
US12/412,052 Expired - Fee Related US7771705B2 (en) | 2005-12-13 | 2009-03-26 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/412,052 Expired - Fee Related US7771705B2 (en) | 2005-12-13 | 2009-03-26 | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices |
Country Status (5)
Country | Link |
---|---|
US (2) | US20070134163A1 (en) |
EP (1) | EP1815871B1 (en) |
JP (1) | JP5068524B2 (en) |
AT (1) | ATE551074T1 (en) |
CA (2) | CA2820238C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009036817A1 (en) * | 2009-08-10 | 2011-02-17 | Acoredis Gmbh | Occlusion device, useful e.g. for closing the heart defects in a patient and other abnormal body openings, comprises mesh of fibers or film body of highly flexible, elastic materials, where the device is introduced through e.g. catheter |
US20110224632A1 (en) * | 2010-03-12 | 2011-09-15 | Dmitry Zimnitsky | Radio opaque, reduced-pressure manifolds, systems, and methods |
WO2021110991A1 (en) * | 2019-12-04 | 2021-06-10 | Universität Zürich | Contrast agent for 3d ex vivo imaging of vascular and tubular structures in the kidney |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1404501B1 (en) * | 2001-06-05 | 2012-08-01 | Mikro Systems Inc. | Method and mold system for manufacturing three-dimensional devices |
US7790141B2 (en) * | 2003-08-11 | 2010-09-07 | Pathak Holdings, Llc | Radio-opaque compounds, compositions containing same and methods of their synthesis and use |
EP2559534B1 (en) | 2008-09-26 | 2023-10-25 | Raytheon Technologies Corporation | Composition and method for casting manufacturing |
US9180137B2 (en) | 2010-02-09 | 2015-11-10 | Bone Support Ab | Preparation of bone cement compositions |
US8813824B2 (en) | 2011-12-06 | 2014-08-26 | Mikro Systems, Inc. | Systems, devices, and/or methods for producing holes |
WO2014128217A1 (en) | 2013-02-20 | 2014-08-28 | Bone Support Ab | Improved setting of hardenable bone substitute |
US11213596B2 (en) | 2018-03-12 | 2022-01-04 | Boston Scientific Scimed, Inc. | Radiocontrast agents, scavenging methods, and scavenging system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5451393A (en) * | 1991-01-25 | 1995-09-19 | Eastman Kodak Company | X-ray contrast compositions useful in medical imaging |
US6426145B1 (en) * | 1999-05-20 | 2002-07-30 | Scimed Life Systems, Inc. | Radiopaque compositions for visualization of medical devices |
US6599448B1 (en) * | 2000-05-10 | 2003-07-29 | Hydromer, Inc. | Radio-opaque polymeric compositions |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1245853B (en) | 1990-11-16 | 1994-10-25 | Bracco Spa | 1,3-BIS (3- (MONO OR POLYHYDROXY) ACYLAMINE-5- (MONO OR POLYHYDROXY-ALCHYL) AMINOCARBONYL-2,4,6-TRIIODE-BENZOYL-AMINO) -HYDROXY- OR HYDROXY-ALCHYL-PROPANE, THEIR METHOD OF PREPARATION AND ROENTGENOGRAPHIC CONTRAST MEANS THAT CONTAIN THEM |
CA2308721C (en) | 1997-11-07 | 2007-04-17 | Joachim B. Kohn | Radio-opaque polymer biomaterials |
US8029561B1 (en) | 2000-05-12 | 2011-10-04 | Cordis Corporation | Drug combination useful for prevention of restenosis |
US6723746B2 (en) * | 1998-09-08 | 2004-04-20 | Veritas Pharmaceuticals, Inc. | Functional radiographic imaging methods and agents |
JP2004231622A (en) * | 2003-02-03 | 2004-08-19 | Fuji Photo Film Co Ltd | Pentose derivative having iodoaryl group |
PL1638624T3 (en) | 2003-06-19 | 2014-06-30 | Vascular Therapies Llc | Vascular closure device |
US7875282B2 (en) | 2004-03-22 | 2011-01-25 | Cordis Corporation | Coated medical device for local vascular delivery of Panzem® in combination with rapamycin to prevent restenosis following vascular injury |
US20050232965A1 (en) | 2004-04-15 | 2005-10-20 | Robert Falotico | Local administration of a combination of rapamycin and 17 beta-estradiol for the treatment of vulnerable plaque |
US20060292077A1 (en) * | 2005-03-18 | 2006-12-28 | Zhao Jonathon Z | Dendritic and star-shaped contrast agents for medical devices and bioabsorbable radiopaque bulk material and method for producing same |
-
2005
- 2005-12-13 US US11/301,874 patent/US20070134163A1/en not_active Abandoned
-
2006
- 2006-12-06 CA CA2820238A patent/CA2820238C/en not_active Expired - Fee Related
- 2006-12-06 CA CA2570410A patent/CA2570410C/en not_active Expired - Fee Related
- 2006-12-11 EP EP06256292A patent/EP1815871B1/en not_active Not-in-force
- 2006-12-11 AT AT06256292T patent/ATE551074T1/en active
- 2006-12-12 JP JP2006334861A patent/JP5068524B2/en not_active Expired - Fee Related
-
2009
- 2009-03-26 US US12/412,052 patent/US7771705B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5451393A (en) * | 1991-01-25 | 1995-09-19 | Eastman Kodak Company | X-ray contrast compositions useful in medical imaging |
US6426145B1 (en) * | 1999-05-20 | 2002-07-30 | Scimed Life Systems, Inc. | Radiopaque compositions for visualization of medical devices |
US6599448B1 (en) * | 2000-05-10 | 2003-07-29 | Hydromer, Inc. | Radio-opaque polymeric compositions |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009036817A1 (en) * | 2009-08-10 | 2011-02-17 | Acoredis Gmbh | Occlusion device, useful e.g. for closing the heart defects in a patient and other abnormal body openings, comprises mesh of fibers or film body of highly flexible, elastic materials, where the device is introduced through e.g. catheter |
US20110224632A1 (en) * | 2010-03-12 | 2011-09-15 | Dmitry Zimnitsky | Radio opaque, reduced-pressure manifolds, systems, and methods |
US8882730B2 (en) * | 2010-03-12 | 2014-11-11 | Kci Licensing, Inc. | Radio opaque, reduced-pressure manifolds, systems, and methods |
AU2011224240B2 (en) * | 2010-03-12 | 2015-11-12 | Solventum Intellectual Properties Company | Radio opaque, reduced-pressure manifolds,systems, and methods |
US10004645B2 (en) | 2010-03-12 | 2018-06-26 | Kci Licensing, Inc. | Radio opaque, reduced-pressure manifolds, systems, and methods |
WO2021110991A1 (en) * | 2019-12-04 | 2021-06-10 | Universität Zürich | Contrast agent for 3d ex vivo imaging of vascular and tubular structures in the kidney |
CN114845741A (en) * | 2019-12-04 | 2022-08-02 | 苏黎世大学 | Contrast agents for 3D ex vivo imaging of blood vessels and tubular structures in the kidney |
Also Published As
Publication number | Publication date |
---|---|
JP2007161713A (en) | 2007-06-28 |
CA2820238A1 (en) | 2007-06-13 |
ATE551074T1 (en) | 2012-04-15 |
US20090209745A1 (en) | 2009-08-20 |
EP1815871B1 (en) | 2012-03-28 |
EP1815871A2 (en) | 2007-08-08 |
EP1815871A3 (en) | 2007-12-26 |
JP5068524B2 (en) | 2012-11-07 |
CA2570410C (en) | 2015-03-24 |
CA2570410A1 (en) | 2007-06-13 |
US7771705B2 (en) | 2010-08-10 |
CA2820238C (en) | 2015-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7771705B2 (en) | Radiographic contrasting agents and radio-opaque polymeric materials for medical devices | |
US9212259B2 (en) | Nitric oxide delivery system using thermosensitive synthetic polymers | |
CN102245214B (en) | Biodegradable polymer - bioactive moiety conjugates | |
DE69327057T2 (en) | POLYARYLATES CONTAINING DERIVATIVES OF THE NATURAL AMINO ACID L-TYROSINE | |
JP5581202B2 (en) | Dihydroxybenzoate polymer and use thereof | |
ES2608756T3 (en) | Polyurea systems and their application as barriers against postoperative adhesions | |
JP6592437B2 (en) | Polymeric biomaterials derived from monomers containing hydroxy acids and phenolic compounds and their medical use | |
JP5671463B2 (en) | Linear polyester amides from aminophenol esters | |
WO1997038975A1 (en) | Polyester ionomers for implant fabrication | |
JP2015045025A (en) | Phenyl ester side chain for increasing the absorptivity of polymer | |
US20070117959A1 (en) | Novel polyesters | |
JP2001509519A (en) | Novel polymer composition | |
CA2568827C (en) | Organic radiographic contrasting agents for medical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CORDIS CORPORATION, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHAO, JONATHON Z.;REEL/FRAME:018556/0157 Effective date: 20060323 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |