US20070129284A1 - Single-chain insulin - Google Patents
Single-chain insulin Download PDFInfo
- Publication number
- US20070129284A1 US20070129284A1 US11/439,897 US43989706A US2007129284A1 US 20070129284 A1 US20070129284 A1 US 20070129284A1 US 43989706 A US43989706 A US 43989706A US 2007129284 A1 US2007129284 A1 US 2007129284A1
- Authority
- US
- United States
- Prior art keywords
- chain
- seq
- gly
- insulin
- amino acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 title claims abstract description 286
- 102000004877 Insulin Human genes 0.000 title claims abstract description 200
- 108090001061 Insulin Proteins 0.000 title claims abstract description 200
- 229940125396 insulin Drugs 0.000 title claims abstract description 132
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 91
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 claims abstract description 76
- 101000976075 Homo sapiens Insulin Proteins 0.000 claims abstract description 75
- 239000004026 insulin derivative Substances 0.000 claims abstract description 63
- 108010075254 C-Peptide Proteins 0.000 claims abstract description 56
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 78
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Chemical group NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 41
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 36
- 229920001184 polypeptide Polymers 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 30
- 230000010933 acylation Effects 0.000 claims description 25
- 238000005917 acylation reaction Methods 0.000 claims description 25
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 16
- 239000000825 pharmaceutical preparation Substances 0.000 claims description 14
- 108091033319 polynucleotide Proteins 0.000 claims description 14
- 102000040430 polynucleotide Human genes 0.000 claims description 14
- 239000002157 polynucleotide Substances 0.000 claims description 14
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- 101000852815 Homo sapiens Insulin receptor Proteins 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 102000047882 human INSR Human genes 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 230000007935 neutral effect Effects 0.000 claims description 10
- 229910052700 potassium Inorganic materials 0.000 claims description 10
- 238000006467 substitution reaction Methods 0.000 claims description 10
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 9
- 229930195729 fatty acid Natural products 0.000 claims description 9
- 239000000194 fatty acid Substances 0.000 claims description 9
- 150000004665 fatty acids Chemical class 0.000 claims description 9
- 238000011282 treatment Methods 0.000 claims description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 8
- 239000008103 glucose Substances 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 239000008280 blood Substances 0.000 claims description 7
- 210000004369 blood Anatomy 0.000 claims description 7
- 238000012217 deletion Methods 0.000 claims description 6
- 230000037430 deletion Effects 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 101710198884 GATA-type zinc finger protein 1 Proteins 0.000 claims description 4
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 claims description 4
- 102400000322 Glucagon-like peptide 1 Human genes 0.000 claims description 4
- 102400000326 Glucagon-like peptide 2 Human genes 0.000 claims description 4
- 101800000221 Glucagon-like peptide 2 Proteins 0.000 claims description 4
- 239000013604 expression vector Substances 0.000 claims description 4
- TWSALRJGPBVBQU-PKQQPRCHSA-N glucagon-like peptide 2 Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O)[C@@H](C)CC)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=CC=C1 TWSALRJGPBVBQU-PKQQPRCHSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 101500025353 Homo sapiens Insulin A chain Proteins 0.000 claims description 2
- 229940123452 Rapid-acting insulin Drugs 0.000 claims description 2
- 108010026951 Short-Acting Insulin Proteins 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 101500025354 Homo sapiens Insulin B chain Proteins 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 20
- 150000001413 amino acids Chemical class 0.000 abstract description 15
- 102000038455 IGF Type 1 Receptor Human genes 0.000 abstract description 11
- 108010031794 IGF Type 1 Receptor Proteins 0.000 abstract description 11
- 210000004027 cell Anatomy 0.000 description 42
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 40
- 239000000203 mixture Substances 0.000 description 32
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 25
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 23
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 22
- 239000013598 vector Substances 0.000 description 21
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 18
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 17
- 125000002252 acyl group Chemical group 0.000 description 17
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 16
- 235000001014 amino acid Nutrition 0.000 description 16
- 102000003746 Insulin Receptor Human genes 0.000 description 15
- 108010001127 Insulin Receptor Proteins 0.000 description 15
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 14
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 14
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 14
- 229940024606 amino acid Drugs 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 10
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 10
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 9
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 9
- -1 His Chemical compound 0.000 description 9
- 239000000600 sorbitol Substances 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 8
- 108010076504 Protein Sorting Signals Proteins 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 239000003755 preservative agent Substances 0.000 description 8
- 235000002639 sodium chloride Nutrition 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 8
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 206010061592 cardiac fibrillation Diseases 0.000 description 7
- 206010012601 diabetes mellitus Diseases 0.000 description 7
- 230000002600 fibrillogenic effect Effects 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- 239000008194 pharmaceutical composition Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 150000005846 sugar alcohols Chemical class 0.000 description 7
- VOUAQYXWVJDEQY-QENPJCQMSA-N 33017-11-7 Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)NCC(=O)NCC(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)CCC1 VOUAQYXWVJDEQY-QENPJCQMSA-N 0.000 description 6
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 6
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 210000004899 c-terminal region Anatomy 0.000 description 6
- 239000007951 isotonicity adjuster Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 230000002335 preservative effect Effects 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000007920 subcutaneous administration Methods 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- 125000000010 L-asparaginyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(=O)N([H])[H] 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 101150033985 TPI gene Proteins 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000002953 preparative HPLC Methods 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- 239000007995 HEPES buffer Substances 0.000 description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- 241000282887 Suidae Species 0.000 description 4
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- ATBBGZKLBRAQJR-CTPSUTNRSA-N [3H]/C(=[SH]\I)C(CCC)N[C@@H](CCCCNC(=O)CCCCCCCCCCCCC)C(C)=O Chemical compound [3H]/C(=[SH]\I)C(CCC)N[C@@H](CCCCNC(=O)CCCCCCCCCCCCC)C(C)=O ATBBGZKLBRAQJR-CTPSUTNRSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000010908 decantation Methods 0.000 description 4
- 230000008034 disappearance Effects 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 235000019341 magnesium sulphate Nutrition 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000002821 scintillation proximity assay Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 210000005253 yeast cell Anatomy 0.000 description 4
- NZEDHZOVUDEBGW-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)ON1C(=O)CCC1=O NZEDHZOVUDEBGW-UHFFFAOYSA-N 0.000 description 3
- HXJICNOLPKEOLU-UHFFFAOYSA-M 16-[(2-methylpropan-2-yl)oxy]-16-oxohexadecanoate Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCCCCCC([O-])=O HXJICNOLPKEOLU-UHFFFAOYSA-M 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 108010076181 Proinsulin Proteins 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 102100033598 Triosephosphate isomerase Human genes 0.000 description 3
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 229960002885 histidine Drugs 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000003362 replicative effect Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 2
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 2
- RUJWQYZAHOPUQT-UHFFFAOYSA-N 1-o-tert-butyl 16-o-(2,5-dioxopyrrolidin-1-yl) hexadecanedioate Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCCCCCC(=O)ON1C(=O)CCC1=O RUJWQYZAHOPUQT-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 241000228245 Aspergillus niger Species 0.000 description 2
- 108010001478 Bacitracin Proteins 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 2
- 150000008574 D-amino acids Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 2
- 101000610640 Homo sapiens U4/U6 small nuclear ribonucleoprotein Prp3 Proteins 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 2
- NPBGTPKLVJEOBE-IUCAKERBSA-N Lys-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N NPBGTPKLVJEOBE-IUCAKERBSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- 101001110823 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-A Proteins 0.000 description 2
- 101000712176 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-B Proteins 0.000 description 2
- 101900104102 Schizosaccharomyces pombe Triosephosphate isomerase Proteins 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 102100040374 U4/U6 small nuclear ribonucleoprotein Prp3 Human genes 0.000 description 2
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical group C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 2
- 108010048241 acetamidase Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- 102000004139 alpha-Amylases Human genes 0.000 description 2
- 229940024171 alpha-amylase Drugs 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 229960003071 bacitracin Drugs 0.000 description 2
- 229930184125 bacitracin Natural products 0.000 description 2
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 238000011284 combination treatment Methods 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- YMAWOPBAYDPSLA-UHFFFAOYSA-N glycylglycine Chemical compound [NH3+]CC(=O)NCC([O-])=O YMAWOPBAYDPSLA-UHFFFAOYSA-N 0.000 description 2
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 102000044162 human IGF1 Human genes 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 2
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 2
- 229960003105 metformin Drugs 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229940127017 oral antidiabetic Drugs 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- VYXXMAGSIYIYGD-NWAYQTQBSA-N propan-2-yl 2-[[[(2R)-1-(6-aminopurin-9-yl)propan-2-yl]oxymethyl-(pyrimidine-4-carbonylamino)phosphoryl]amino]-2-methylpropanoate Chemical compound CC(C)OC(=O)C(C)(C)NP(=O)(CO[C@H](C)Cn1cnc2c(N)ncnc12)NC(=O)c1ccncn1 VYXXMAGSIYIYGD-NWAYQTQBSA-N 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- SZHOJFHSIKHZHA-UHFFFAOYSA-N tridecanoic acid Chemical compound CCCCCCCCCCCCC(O)=O SZHOJFHSIKHZHA-UHFFFAOYSA-N 0.000 description 2
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- LBUIKNKQOBTCII-BLLLJJGKSA-N (4r,6s)-5-(4-chlorophenyl)sulfonyl-4,6-diethyl-1,4,6,7-tetrahydropyrazolo[4,3-c]pyridine Chemical compound N1([C@H](CC)C2=CNN=C2C[C@@H]1CC)S(=O)(=O)C1=CC=C(Cl)C=C1 LBUIKNKQOBTCII-BLLLJJGKSA-N 0.000 description 1
- QVAQMUAKTNUNLN-LURJTMIESA-N (4s)-4-amino-5-[(2-methylpropan-2-yl)oxy]-5-oxopentanoic acid Chemical compound CC(C)(C)OC(=O)[C@@H](N)CCC(O)=O QVAQMUAKTNUNLN-LURJTMIESA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- VHJLVAABSRFDPM-UHFFFAOYSA-N 1,4-dithiothreitol Chemical compound SCC(O)C(O)CS VHJLVAABSRFDPM-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- JTOVMMPSILRQQJ-UHFFFAOYSA-N 1-o-tert-butyl 18-o-(2,5-dioxopyrrolidin-1-yl) octadecanedioate Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCCCCCCCC(=O)ON1C(=O)CCC1=O JTOVMMPSILRQQJ-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 241000024188 Andala Species 0.000 description 1
- 241000534414 Anotopterus nikparini Species 0.000 description 1
- 108010037870 Anthranilate Synthase Proteins 0.000 description 1
- OMLWNBVRVJYMBQ-YUMQZZPRSA-N Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O OMLWNBVRVJYMBQ-YUMQZZPRSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 1
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 1
- 101710082738 Aspartic protease 3 Proteins 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 101150019032 B29R gene Proteins 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 101000775727 Bacillus amyloliquefaciens Alpha-amylase Proteins 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 101000695691 Bacillus licheniformis Beta-lactamase Proteins 0.000 description 1
- 108010029675 Bacillus licheniformis alpha-amylase Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101900040182 Bacillus subtilis Levansucrase Proteins 0.000 description 1
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 102100030981 Beta-alanine-activating enzyme Human genes 0.000 description 1
- 101710150190 Beta-secretase 2 Proteins 0.000 description 1
- 102100021277 Beta-secretase 2 Human genes 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 1
- WEDIKSVWBUKTRA-WTKGVUNUSA-N CC[C@H](C)[C@H](NC(=O)CN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H]1CSSC[C@@H]2NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CSSC[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc3c[nH]cn3)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)Cc3ccccc3)C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](Cc3c[nH]cn3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](Cc3ccc(O)cc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](Cc3ccc(O)cc3)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](Cc3ccc(O)cc3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC2=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)NC1=O)[C@@H](C)O)[C@@H](C)CC Chemical compound CC[C@H](C)[C@H](NC(=O)CN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H]1CSSC[C@@H]2NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CSSC[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc3c[nH]cn3)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)Cc3ccccc3)C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](Cc3c[nH]cn3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](Cc3ccc(O)cc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](Cc3ccc(O)cc3)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](Cc3ccc(O)cc3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC2=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)NC1=O)[C@@H](C)O)[C@@H](C)CC WEDIKSVWBUKTRA-WTKGVUNUSA-N 0.000 description 1
- 101100512078 Caenorhabditis elegans lys-1 gene Proteins 0.000 description 1
- 101100315624 Caenorhabditis elegans tyr-1 gene Proteins 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000235646 Cyberlindnera jadinii Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 101100342470 Dictyostelium discoideum pkbA gene Proteins 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 101100385973 Escherichia coli (strain K12) cycA gene Proteins 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 101100001650 Geobacillus stearothermophilus amyM gene Proteins 0.000 description 1
- 241000178290 Geotrichum fermentans Species 0.000 description 1
- 241000603729 Geotrichum sp. Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 108010008488 Glycylglycine Proteins 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 101150069554 HIS4 gene Proteins 0.000 description 1
- 101100295959 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) arcB gene Proteins 0.000 description 1
- 101100246753 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) pyrF gene Proteins 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000773364 Homo sapiens Beta-alanine-activating enzyme Proteins 0.000 description 1
- 101000801742 Homo sapiens Triosephosphate isomerase Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- 108010073961 Insulin Aspart Proteins 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 241000235087 Lachancea kluyveri Species 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- SMEROWZSTRWXGI-UHFFFAOYSA-N Lithocholsaeure Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 SMEROWZSTRWXGI-UHFFFAOYSA-N 0.000 description 1
- 101150068888 MET3 gene Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000235042 Millerozyma farinosa Species 0.000 description 1
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 101100022915 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cys-11 gene Proteins 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 241001452677 Ogataea methanolica Species 0.000 description 1
- 102000007981 Ornithine carbamoyltransferase Human genes 0.000 description 1
- 101710113020 Ornithine transcarbamylase, mitochondrial Proteins 0.000 description 1
- 102100037214 Orotidine 5'-phosphate decarboxylase Human genes 0.000 description 1
- 108010055012 Orotidine-5'-phosphate decarboxylase Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- 241001489192 Pichia kluyveri Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000235403 Rhizomucor miehei Species 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 101100022918 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sua1 gene Proteins 0.000 description 1
- 239000004288 Sodium dehydroacetate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 101100309436 Streptococcus mutans serotype c (strain ATCC 700610 / UA159) ftf gene Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000187432 Streptomyces coelicolor Species 0.000 description 1
- 101100370749 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) trpC1 gene Proteins 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 101150050575 URA3 gene Proteins 0.000 description 1
- 101100316828 Vaccinia virus (strain Copenhagen) B10R gene Proteins 0.000 description 1
- 101100437210 Vaccinia virus (strain Western Reserve) VACWR192 gene Proteins 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- FFUMOZUJVIMDSU-OFQDNOBISA-N [3H]/C(=[SH]\I)C(CCC)N[C@@H](CCCCNC(=O)CCCCCCCCCCCCCCCCC(=O)O)C(C)=O Chemical compound [3H]/C(=[SH]\I)C(CCC)N[C@@H](CCCCNC(=O)CCCCCCCCCCCCCCCCC(=O)O)C(C)=O FFUMOZUJVIMDSU-OFQDNOBISA-N 0.000 description 1
- DTGOULVVQFYYCO-AYUPLFMCSA-N [3H]/C(=[SH]\I)C(CCC)N[C@@H](CCCCNC(=O)CC[C@H](NC(=O)CCCCCCCCCCCCCCC(=O)O)C(=O)O)C(C)=O Chemical compound [3H]/C(=[SH]\I)C(CCC)N[C@@H](CCCCNC(=O)CC[C@H](NC(=O)CCCCCCCCCCCCCCC(=O)O)C(=O)O)C(C)=O DTGOULVVQFYYCO-AYUPLFMCSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 108010045649 agarase Proteins 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000001166 ammonium sulphate Substances 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 101150008194 argB gene Proteins 0.000 description 1
- 108010068380 arginylarginine Proteins 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000007998 bicine buffer Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 229960003168 bronopol Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229960002242 chlorocresol Drugs 0.000 description 1
- MXOAEAUPQDYUQM-UHFFFAOYSA-N chlorphenesin Chemical compound OCC(O)COC1=CC=C(Cl)C=C1 MXOAEAUPQDYUQM-UHFFFAOYSA-N 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 101150005799 dagA gene Proteins 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- ORPJQSFBLBHKPN-UHFFFAOYSA-N dichloromethane;methylsulfinylmethane Chemical compound ClCCl.CS(C)=O ORPJQSFBLBHKPN-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229940043351 ethyl-p-hydroxybenzoate Drugs 0.000 description 1
- HXQVQGWHFRNKMS-UHFFFAOYSA-M ethylmercurithiosalicylic acid Chemical compound CC[Hg]SC1=CC=CC=C1C(O)=O HXQVQGWHFRNKMS-UHFFFAOYSA-M 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 108010061330 glucan 1,4-alpha-maltohydrolase Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229940043257 glycylglycine Drugs 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229940050526 hydroxyethylstarch Drugs 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 1
- 229940113174 imidurea Drugs 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- YAQXGBBDJYBXKL-UHFFFAOYSA-N iron(2+);1,10-phenanthroline;dicyanide Chemical compound [Fe+2].N#[C-].N#[C-].C1=CN=C2C3=NC=CC=C3C=CC2=C1.C1=CN=C2C3=NC=CC=C3C=CC2=C1 YAQXGBBDJYBXKL-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- SMEROWZSTRWXGI-HVATVPOCSA-N lithocholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 SMEROWZSTRWXGI-HVATVPOCSA-N 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 101150039489 lysZ gene Proteins 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- DBNQIOANXZVWIP-UHFFFAOYSA-N n,n-dimethyl-1,1-bis[(2-methylpropan-2-yl)oxy]methanamine Chemical compound CC(C)(C)OC(N(C)C)OC(C)(C)C DBNQIOANXZVWIP-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 101150019841 penP gene Proteins 0.000 description 1
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 238000013310 pig model Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229940057838 polyethylene glycol 4000 Drugs 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 108010066381 preproinsulin Proteins 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 101150054232 pyrG gene Proteins 0.000 description 1
- 238000011555 rabbit model Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002287 radioligand Substances 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 101150025220 sacB gene Proteins 0.000 description 1
- 239000007261 sc medium Substances 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000004739 secretory vesicle Anatomy 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000019259 sodium dehydroacetate Nutrition 0.000 description 1
- 229940079839 sodium dehydroacetate Drugs 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- DSOWAKKSGYUMTF-GZOLSCHFSA-M sodium;(1e)-1-(6-methyl-2,4-dioxopyran-3-ylidene)ethanolate Chemical compound [Na+].C\C([O-])=C1/C(=O)OC(C)=CC1=O DSOWAKKSGYUMTF-GZOLSCHFSA-M 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ZTUXEFFFLOVXQE-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCC(O)=O ZTUXEFFFLOVXQE-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 229940086542 triethylamine Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 101150016309 trpC gene Proteins 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/62—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention is related to single-chain insulins which have insulin activity and can be used for the treatment of diabetes.
- the single-chain insulins have a high physical stability and a low tendency to fibrillation and will be soluble at neutral pH.
- the present invention is also related to a DNA sequence encoding the single-chain insulins, a method for their production and pharmaceutical compositions containing the single-chain insulins.
- Insulin is a polypeptide hormone secreted by ⁇ -cells of the pancreas and consists of two polypeptide chains, A and B, which are linked by two inter-chain disulphide bridges. Furthermore, the A-chain features one intra-chain disulphide bridge.
- the hormone is synthesized as a single-chain precursor proinsulin (preproinsulin) consisting of a prepeptide of 24 amino acid followed by proinsulin containing 86 amino acids in the configuration: prepeptide-B-Arg Arg-C-Lys Arg-A, in which C is a connecting peptide of 31 amino acids.
- Arg-Arg and Lys-Arg are cleavage sites for cleavage of the connecting peptide from the A and B chains to form the two-chain insulin molecule. Insulin is essential in maintaining normal metabolic regulation.
- the two chain structure of insulin allows insulin to undertake multiple conformations, and several findings have indicated that insulin has the propensity to considerable conformational change and that restrictions in the potential for such change considerably decrease the affinity of the insulin receptor for ligands.
- Proinsulin has a 100 fold lower affinity for the insulin receptor than native insulin. Blocking of the amino acid residue A1 in insulin also results in poor receptor binding, consistent with the dogma that a free N-terminal of the A-chain and free C-terminal of the B-chain of insulin are important for binding to the insulin receptor.
- the inherited physical and chemical stability of the insulin molecule is a basic condition for insulin therapy of diabetes mellitus. These basic properties are fundamental for insulin formulation and for applicable insulin administration methods, as well as for shelf-life and storage conditions of pharmaceutical preparations.
- Use of solutions in administration of insulin exposes the molecule to a combination of factors, e.g. elevated temperature, variable air-liquid-solid interphases as well as shear forces, which may result in irreversible conformation changes e.g. fibrillation.
- This is particularly relevant for insulin solutions in infusion pumps, either worn externally or implanted, which exposes the molecule to a combination of these factors as well as shear forces from the movement of the pump for extended periods of time. Consequently, fibrillation is especially a concern when using infusion pumps as insulin delivery system.
- the solubility of insulin is influenced by multiple factors and shows clear reduction in the pH range from 4.2 and 6.6.
- the pH precipitation zone generally imposes limitations for formulation, but has also been used deliberately in development and formulation of certain ana
- the stability and solubility properties of insulin are important underlying aspects for current insulin therapy.
- the present invention is addressed to these issues by providing stable, single-chain insulin analogues by introduction of a C-peptide between the B- and A-chain to decrease molecular flexibility and concomitantly reduce the fibrillation propensity and limit or modify the pH precipitation zone.
- EP 1,193,272 discloses the following modified C-peptides connecting B30 with A21: Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg-Gly-Pro-Gly-Gly-Gly (SEQ ID NO:2), Gly-Gly-Gly-Gly-Gly-Lys-Arg (SEQ ID NO:3), Arg-Arg-Gly-Gly-Gly-Gly-Gly (SEQ ID NO:4), Gly-Gly-Ala-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:5), Arg-Arg-Ala-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:6), Gly-Gly-Tyr-Pro
- EP 741,188 discloses single-chain insulins with a modified C-peptide having from 10-14 amino acids residues and having from 14 to 34% insulin activity and having the following connecting peptides Gln-Pro-Leu-Ala-Leu-Glu-Gly-Ser-Leu-Gln-Lys-Arg (SEQ ID NO:11) and Gly-Tyr-Gly-Ser-Ser-Arg-Arg-Ala-Pro-Gln-Thr (SEQ ID NO:12).
- WO 95/16708 discloses single-chain insulins with a connecting peptide of 1-15 amino acid residues and with no Lys or Arg as the C-terminal amino acid residue in the connecting peptide.
- WO 95/16708 discloses the following C-peptide sequences Gly-Tyr-Gly-Ser-Ser-Ser-Arg-Arg-Ala-Pro-Gln-Thr (SEQ ID NO:13) and Gly-Tyr-Gly-Ser-Ser-Ser-Ala-Ala-Ala-Pro-Gln-Thr (SEQ ID NO:14). These single-chain insulins are reported to have insulin activity but also a fairly high affinity to the IGF-1 receptor.
- a still further object of this invention is to provide a method for making the single-chain insulins and pharmaceutical compositions containing such compounds.
- the present invention is related to single-chain insulin having biological insulin activity and comprising the B- and the A-chain of human insulin or analogues or derivatives thereof connected by a connecting peptide, wherein the connecting peptide has from 5-11 amino acid residues and does not contain two adjacent basic amino acid residues and wherein the single-chain insulin has an affinity to the human insulin receptor of at least about 20% of that of human insulin if the single-chain insulin molecule is not chemically modified by acylation.
- the present invention is related to single-chain insulin having biological insulin activity and comprising the B- and the A-chain of human insulin or analogues or derivatives thereof connected by a connecting peptide, wherein the connecting peptide has from 5-11 amino acid residues provided that if the connecting peptide contains two adjacent basic amino acid residues then at least one of the natural amino acid residues in the B and/or A chain is substituted with another codable amino acid residue or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation or the connecting peptide is not one of the following sequences Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg-Gly-Pro-Gly-Gly-Gly (SEQ ID NO:2), Gly-Gly-Gly-Gly-Gly-Lys-Arg (SEQ ID NO:3), Arg-Arg-Gly-Gly-Gly-Gly
- the present invention is related to single-chain insulin having biological insulin activity and comprising the B- and the A-chain of human insulin or analogues or derivatives thereof connected by a connecting peptide, wherein the connecting peptide has from 5-11 amino acid residues provided that single-chain insulins with a pI above about 6.5 will comprise at least one amino acid residue substitution and/or deletion in the A- and/or B chains compared to the human insulin A- and B-chains or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
- the present invention is related to single-chain insulin having biological insulin activity and comprising the B- and the A-chain of human insulin or analogues or derivatives thereof connected by a connecting peptide, wherein the connecting peptide has from 5-14, 5-11, 6-10, 6-8, 6-7, 7-9 or 7-8 amino acid residues and wherein at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
- the single-chain insulin is acylated in at least one lysine group in the single-chain insulin molecule.
- the B29Lys is acylated.
- an inserted lysine in the single-chain insulin molecule is acylated or the B1 N-terminal amino acid residue is acylated.
- the single-chain insulin is acylated with a fatty acid having from 6 to 24 C, 6-20, 6-18 or 6-14 C-atoms.
- the present invention is related to a single-chain insulin being soluble at neutral pH and having a pI below about 6.5.
- the single-chain insulin has a pI from about 4.5 to below about 6.5.
- the present invention is related to a single-chain insulin wherein at least one lysine residue has been modified by acylation.
- the single-chain insulin with a chemically unmodified A- and B-chain has an affinity to the human insulin receptor of at least 30% of that of human insulin.
- the single-chain insulin contains up to two basic amino acid residues separated by at least one non basic amino acid residue in the connecting peptide.
- the single-chain insulin contains at least one additional basic amino acid in the A or B chain compared to the natural human A and B chains.
- the basic amino acid residue is preferably introduced by substituting one of the natural amino acid residues in the C-terminal end of the B-chain or in the N-terminal end of the A-chain and in one embodiment of the present invention the residue in position B27 is substituted by an Arg.
- the single-chain insulin will have an amino acid residue in position A21 of the A chain which is different from the natural amino acid residue Asn.
- Asn in position A21 may be substituted by any other codable amino acid residue except Cys.
- the amino acid residue in position A21 may be selected from the group consisting of Ala, Gln, Glu, Gly, His, Ile, Leu, Met, Ser, Thr, Trp, Tyr or Val, in particular Gly, Ala, Ser, and Thr.
- A21 is Gly.
- the single-chain insulin will contain at least one basic amino acid residue in the connecting peptide and a Gly in position A21. In a further embodiment of the present invention the single-chain insulin will have two basic amino acid residues in the connecting peptide and a Gly in position A21.
- the single-chain insulin has a connecting peptide with 6-10, 6-9, 6-8, or 6-7 or amino acid residues.
- the single-chain insulin has a connecting peptide with from 7-10, 7-9 or from 7-8 amino acid residues.
- the connecting peptide has a Gly in the connecting peptide in the penultimate position to the first amino acid residue (A1) in the A-chain.
- the connecting peptide comprises a sequence selected from the group consisting of AGRGSGK (SEQ ID NO:15); AGLGSGK (SEQ ID NO:33); AGMGSGK (SEQ ID NO:45); ASWGSGK (SEQ ID NO:48); TGLGSGQ (SEQ ID NO:22); TGLGRGK (SEQ ID NO:23); TGLGSGK (SEQ ID NO:21); HGLYSGK (SEQ ID NO:50); KGLGSGQ (SEQ ID NO:51); VGLMSGK (SEQ ID NO:56); VGLSSGQ (SEQ ID NO:27); VGLYSGK (SEQ ID NO:28), VGLSSGK (SEQ ID NO:30); VGMSSGK (SEQ ID NO:65); VWSSSGK (SEQ ID NO:76), VGSSSGK (SEQ ID NO:16), and VGMSSGK (SEQ ID NO:106)
- the single-chain insulin has the formula B(1-26)-X 1 -X 2 -X 3 -X 4 -A(1-21)
- X 1 is Thr, Lys or Arg
- X 2 is Pro, Lys or Asp
- X 3 is Lys, Pro or Glu
- X 4 is a peptide sequence of 6-11 amino acid residues
- B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof
- A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, wherein X 4 does not contain two adjacent basic amino acid residues and wherein the single-chain insulin has an affinity to the human insulin receptor of at least about 20% of that of human insulin if the single-chain insulin molecule is not chemically modified by acylation.
- the single-chain insulin has the formula B(1-26)-X 1 -X 2 -X 3 -X 4 -A(1-21)
- X 1 is Thr, Lys or Arg
- X 2 is Pro, Lys or Asp
- X 3 is Lys, Pro or Glu
- X 4 is a peptide sequence of 6-11 amino acid residues
- B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof
- A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, provided that if X 4 contains two adjacent basic amino acid residues then at least one of the natural amino acid residues in the B and/or A chain is substituted with another codable amino acid residue or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation or X 4 is not one of the following sequences Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg
- the single-chain insulin has the formula B(1-26)-X 1 -X 2 -X 3 -X 4 -A(1-21)
- X 1 is Thr, Lys or Arg
- X 2 is Pro, Lys or Asp
- X 3 is Lys, Pro or Glu
- X 4 is a peptide sequence of 6-11 amino acid residues
- B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof
- A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, provided that single-chain insulins with a pI above about 6.5 will comprise at least one amino acid residue substitution and/or deletion in the A- and/or B chain compared to the human insulin A- and B-chains or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
- the single-chain insulin has the formula B(1-26)-X 1 -X 2 -X 3 -X 4 -A(1-21)
- X 1 is Thr, Lys or Arg
- X 2 is Pro, Lys or Asp
- X 3 is Lys, Pro or Glu
- X 4 is a peptide sequence of 5-14, 5-11, 6-10, 6-8, 6-7, 7-9 or 7-8 amino acid residues
- B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof
- A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, wherein at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
- X 1 is Thr
- X 2 is Pro
- X 3 is Lys.
- X 4 is a peptide sequence with the following formula X a -X b -X c -X d -X e -X f -X g (SEQ ID NO:129) wherein
- X a is selected from the group consisting of L, R, T, A, H, O, G, S and V;
- X b is selected from the group consisting of W, G, S, A, H, R, and T;
- X c is selected from the group consisting of L, Y, M, H, R, T, Q, K, V, S, A, G and P;
- X d is selected from the group consisting of R, A, Y, M, S, N, H, and G;
- X e is selected from the group consisting of S, R, A, T, K P, N M, H, Q, V, and G;
- X f is selected from the group consisting of G and A;
- X g is selected from the group consisting of K, R, P, H, F, T, I, Q, W, and A
- X a is selected from the group consisting of L, R, T, A, H and V;
- X b is selected from the group consisting of W, G, S, A, H, R, and T;
- X c is selected from the group consisting of L, Y, M, H, R, T, Q, K, V, S, A, G and P;
- X d is selected from the group consisting of R, A, Y, M, S, N, H, and G;
- X e is selected from the group consisting of S, R, A, T, K P, and N;
- X g is selected from the group consisting of K, R, Q and P;
- X a is selected from the group consisting of T, A V, K;
- X b is G
- X c is selected from the group consisting of L, Y, M, H, R K, W;
- X d is G
- X e is selected from the group consisting of S, K;
- X g is selected from the group consisting of K, R, Q.
- X 4 has the sequence X 5 -G-X 6 -G-X 7 -G-X 8 (SEQ ID NO:130)
- X 5 selected from the group consisting of Val, Leu, Arg, Thr, Ala, His, Gin, Gly or Ser,
- X 6 is selected from the group consisting of Leu, Tyr, Met, His, Arg, Thr, Gin, Lys, Val, Ser, Ala, Gly, Pro,
- X 7 is selected from the group consisting of Ser, Arg, Ala, Thr, Lys, Pro, Asn, Met, His, Gln, Val, Gly, and
- X 8 is Lys or Arg.
- X 5 selected from the group consisting of Val, Leu, Arg, Thr, Ala, and His,
- X 6 is selected from the group consisting of Leu, Tyr, Met, and His,
- X 7 is selected from the group consisting of Ser, Arg, Ala, Thr, Lys, Pro and Asn and
- X 8 is Lys or Arg.
- X 4 comprises the sequence SGK. In another embodiment X 4 comprises the sequence GSGK (SEQ ID NO:131). In still another embodiment X 4 comprises the sequence SSSGK (SEQ ID NO:132).
- At least one of the natural amino acid residues in the position B1, B3, B10, B22, B27, B28, B29, A8, A15, A18, and A21 are substituted by another amino acid residue.
- the single-chain insulin is a desB1, desB25, desB27, desB28 or desB29 insulin analogue.
- X 4 comprises the sequence TRXXXGR (SEQ ID NO:112) wherein X is any amino acid.
- the present invention is related to single-chain insulin wherein the A- and B-chain are connected with a peptide sequence containing from 6-11 amino acid residues provided that the peptide sequence is not Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg-Gly-Pro-Gly-Gly-Gly (SEQ ID NO:2), Gly-Gly-Gly-Gly-Gly-Lys-Arg (SEQ ID NO:3), Arg-Arg-Gly-Gly-Gly-Gly-Gly (SEQ ID NO:4), Gly-Gly-Ala-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:5), Arg-Arg-Ala-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:6), Gly-Gly-Tyr-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:1),
- the connecting peptide is not SANNTK (SEQ ID NO:136), SPNTTK (SEQ ID NO:137), SSNTTK (SEQ ID NO:138) or SRNTTK (SEQ ID NO:139).
- the present invention is also related to polynucleotide sequences which code for the claimed single-chain insulins.
- the present invention is related to vectors containing such polynucleotide sequences and host cells containing such polynucleotide sequences or vectors.
- the invention in another aspect, relates to a process for producing the single chain insulins in a host cell, said method comprising (i) culturing a host cell comprising a polynucleotide sequence encoding the single-chain insulins under suitable conditions for expression of said single-chain insulins; and (ii) isolating the single-chain insulins from the culture medium.
- the host cell is a yeast host cell and in a further embodiment the yeast host cell is selected from the genus Saccharomyces . In a further embodiment the yeast host cell is selected from the species Saccharomyces cerevisiae.
- the invention is related to a method wherein at lyst one lysine residue in the single-chain insulin molecule is acylated.
- the present invention is related to the use of a single-chain insulin as a pharmaceutical for the treatment of diabetes.
- the present invention is related to pharmaceutical preparations comprising the single-chain insulin of the invention and suitable adjuvants and additives such as one or more agents suitable for stabilization, preservation or isotoni, for example, zinc ions, phenol, cresol, a parabene, sodium chloride, glycerol or mannitol.
- suitable adjuvants and additives such as one or more agents suitable for stabilization, preservation or isotoni, for example, zinc ions, phenol, cresol, a parabene, sodium chloride, glycerol or mannitol.
- the zinc content of the present formulations may be between 0 and about 6 zinc atoms per insulin hexamer.
- the pH of the pharmaceutical preparation may be between about 4 and about 8.5, between about 4 and about 5 or between about 6.5 and about 7.5.
- the present invention is related to pharmaceutical preparations comprising the singe-chain insulin and at least one other pharmaceutical such as rapid acting or protracted insulin analogues, and GLP-1, GLP-2 and exendin and analogues and derivatives thereof.
- the single-chain insulins according to the present invention may also be used in combination treatment together with rapid acting or protracted insulin analogues, and GLP-1, GLP-2 and exendin and analogues and derivatives thereof or an oral antidiabetic such as a thiazolidindione, metformin and other type 2 diabetic pharmaceutical preparations for oral treatment.
- the present invention is related to the use of the single-chain insulin for the preparation of a pharmaceutical preparation for the reducing of blood glucose level in mammalians in particularly for the treatment of diabetes.
- the present invention is related to a method of reducing the blood glucose level in mammalians by administrating a therapeutically active dose of a single-chain insulin according to the invention to a patient in need of such treatment.
- FIG. 1 shows the blood glucose reduction in normal Wistar rats by a single-chain insulin according to the present invention compared to the effect of human insulin.
- HI is human insulin and SCI is single-chain insulin,
- FIG. 2 shows disappearance of a single-chain insulin after s.c. administration in pig
- FIG. 3 shows disappearance of another single-chain insulin after s.c. administration in pig.
- the single-chain insulins according to the present invention have biological insulin activity. They furthermore have an affinity to the insulin receptor of least 20% of that of human insulin if the single-chain insulin molecule is not chemically modified by acylation. Furthermore, they have an IGF-1 receptor affinity similar to or lower than that of human insulin.
- the single-chain insulins which are not chemically modified by acylation have an affinity to the insulin receptor of at least 20 percent of that of human insulin.
- the single-chain insulins according to the present invention are also characterized in having a high physical stability.
- Single-chain insulins with at one additional positive charge compared to human insulin and a pI below about 6.5 are soluble at neutral pH and have an action profile like human insulin but have an improved physical stability. If additional positive charge in comparison to human insulin is introduced to the insulin molecule the pI will move upward with one for each added positive charge. By having two additional positive charges compared to human insulin the single-chain insulin will acquire a protracted profile.
- the single-chain insulin may also be made protracted by introduction of an acyl group in one or more Lys residues or in the N-terminal B1 amino acid residue.
- the acylated single-chain insulins are soluble at neutral pH and may furthermore be mixable with rapid acting two-chain insulins such as NovoRapid.
- the single-chain insulins may be selectively acylated in e.q. B29.
- one or more of the natural amino acid residue in the C-terminal end of the B-chain, in the connecting peptide sequence or in the N-terminal end of the A-chain may be substituted with a Lys residue which then in turn can by acylated in a well known manner as disclosed in U.S. Pat. No. 6,500,645
- the single-chain insulins of the invention having enhanced stability may also be mixed with soluble long-acting insulins described in U.S. Pat. Nos. 6,500,645 and 5,750,497.
- the resulting combination retains a biphasic phamacokinetic profile.
- single-chain insulins may feature amino acid substitutions in position B10 and/or B28 decreasing insulin self-association.
- the connecting peptide in the single-chain insulins of the invention may by up to 14 amino acids long. However a typically length of the connecting peptide will be from 6-10 or 7-10, 7-9 or 7-8.
- connection peptide may in one embodiment have the motives VGSSSGX (SEQ ID NO:122): VGSSSXK (SEQ ID NO:123); VGSSXGK (SEQ ID NO:124): VGSXSGK (SEQ ID NO:125); VGXSSGK (SEQ ID NO:126); VXSSSGK (SEQ ID NO:1127) and XGSSSGK (SEQ ID NO:128) where X is any codable amino acid residue.
- the following table shows selected meanings of X. 1. Preference 2.
- TRXXXGR SEQ ID NO:112
- X can be any codable amino acid residue.
- the single-chain insulin may be acylated with an acyl group which may be a linear or branched carboxylic acid having at least 2 carbon atoms and being saturated or unsaturated.
- Non-limiting examples of fatty acids are capric acid, lauric acid, tetradecanoic acid (myristic acid), pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, dodecanoic acid, tridecanoic acid, and tetradecanoic acid.
- the acyl group may also be a lipophilic substituent selected from the group comprising CH 3 (CH 2 ) n CO—, wherein n is 4 to 24, such as CH 3 (CH 2 ) 6 CO—, CH 3 (CH 2 ) 8 CO—, CH 3 (CH 2 ) 10 CO—, CH 3 (CH 2 ) 12 CO—, CH 3 (CH 2 ) 14 CO—, CH 3 (CH 2 ) 16 CO—, CH 3 (CH 2 ) 18 CO—, CH 3 (CH 2 ) 20 CO— and CH 3 (CH 2 ) 22 CO—.
- the acyl group is a straight-chain or branched alkane ⁇ , ⁇ -dicarboxylic acid. In another embodiment of the invention the acyl group has the formula HOOC(CH 2 ) t CO— wherein t is an integer of from 2 to 24.
- the acyl group is selected from the group comprising HOOC(CH 2 ) m CO—, wherein m is 2 to 24, such as HOOC(CH 2 ) 14 CO—, HOOC(CH 2 ) 16 CO—, HOOC(CH 2 ) 18 CO—, HOOC(CH 2 ) 20 CO— and HOOC(CH 2 ) 22 CO—.
- the acyl group may be attached to the single-chain insulin by a spacer molecule, e.g. a suitable amino acid residue.
- the spacer and the acyl group may thus have the formula CH 3 (CH 2 ) n CONH—CH(COOH)—(CH 2 ) p CO—, wherein n is an integer of from 4-24, 10-24 or 8-24 and p is an integer of from 1-3.
- the spacer and the acyl group have the formula HOOC 3 (CH 2 ) n CONH—CH(COOH)—(CH 2 ) p CO—, wherein n is an integer of from 4-24 and p is an integer of from 1-3.
- the combination of the spacer and the acyl group has the formula CH 3 (CH 2 ) n CONH—CH(CH 2 ) p (COOH)CO— wherein n is an integer of from 4-24 and p is an integer of from 1-3 or HOOC(CH 2 ) n CONH—CH((CH 2 ) p COOH)CO—, wherein n is an integer of from 4-24 and p is an integer of from 1-3.
- the acyl group may by a lithocholic acid as lithocholoyl or choloyl.
- the single-chain insulin is acylated in another position than B29 then the natural lysine residue in B29 is substituted with another amino acid residue e.g. Arg and Ala.
- Acylation of the single-chain insulins according to the present invention can be made by a methods analogue to the methods disclosed in U.S. Pat. Nos. 5,750,497 and 5,905,140.
- the single-chain insulins are produced by expressing a DNA sequence encoding the single-chain insulin in question in a suitable host cell by well known technique as disclosed in e.g. U.S. Pat. No. 6,500,645.
- the single-chain insulin is either expressed directly or as a precursor molecule which has an N-terminal extension on the B-chain.
- This N-terminal extension may have the function of increasing the yield of the directly expressed product and may be of up to 15 amino acid residues long.
- the N-terminal extension is cleaved in vitro after isolation from the culture broth and will therefore have a cleavage site next to B1.
- N-terminal extensions of the type suitable in the present invention are disclosed in U.S. Pat. No. 5,395,922, and European Patent No. 765,395A.
- the polynucleotide sequence coding for the single-chain insulin of the invention may be prepared synthetically by established standard methods, e.g. the phosphoamidite method described by Beaucage et al. (1981) Tetrahedron Letters 22:1859-1869, or the method described by Matthes et al. (1984) EMBO Journal 3:801-805.
- oligonucleotides are synthesized, for example, in an automatic DNA synthesizer, purified, duplexed and ligated to form the synthetic DNA construct.
- a currently preferred way of preparing the DNA construct is by polymerase chain reaction (PCR).
- the polynucleotide sequences may also be of mixed genomic, cDNA, and synthetic origin.
- a genomic or cDNA sequence encoding a leader peptide may be joined to a genomic or cDNA sequence encoding the A and B chains, after which the DNA sequence may be modified at a site by inserting synthetic oligonucleotides encoding the desired amino acid sequence for homologous recombination in accordance with well-known procedures or preferably generating the desired sequence by PCR using suitable oligonucleotides.
- the invention is related to a vector which is capable of replicating in the selected microorganism or host cell and which carries a polynucleotide sequence encoding the single-chain insulin of the invention.
- the recombinant vector may be an autonomously replicating vector, i.e., a vector which exists as an extra-chromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extra-chromosomal element, a mini-chromosome, or an artificial chromosome.
- the vector may contain any means for assuring self-replication.
- the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated.
- a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used.
- the vector may be linear or closed circular plasmids and will preferably contain an element(s) that permits stable integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.
- the recombinant expression vector is capable of replicating in yeast.
- sequences which enable the vector to replicate in yeast are the yeast plasmid 2 ⁇ m replication genes REP 1-3 and origin of replication.
- the vectors of the present invention may contain one or more selectable markers which permit easy selection of transformed cells.
- a selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.
- Examples of bacterial selectable markers are the daI genes from Bacillus subtilis or Bacillus licheniformis , or markers which confer antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracycline resistance.
- Selectable markers for use in a filamentous fungal host cell include amdS (acetamidase), argB (ornithine carbamoyltransferase), pyrG (orotidine-5′-phosphate decarboxylase) and trpC (anthranilate synthase.
- Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3.
- a well suited selectable marker for yeast is the Schizosaccharomyces pompe TPI gene (Russell (1985) Gene 40:125-130).
- the polynucleotide sequence is operably connected to a suitable promoter sequence.
- the promoter may be any nucleic acid sequence which shows transcriptional activity in the host cell of choice including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extra-cellular or intra-cellular polypeptides either homologous or heterologous to the host cell.
- suitable promoters for directing the transcription in a bacterial host cell are the promoters obtained from the E. coli lac operon, Streptomyces coelicolor agarase gene (dagA), Bacillus subtilis levansucrase gene (sacB), Bacillus licheniformis alpha-amylase gene (amyL), Bacillus stearothermophilus maltogenic amylase gene (amyM), Bacillus amyloliquefaciens alpha-amylase gene (amyQ), and Bacillus licheniformis penicillinase gene (penP).
- dagA Streptomyces coelicolor agarase gene
- sacB Bacillus subtilis levansucrase gene
- amyL Bacillus stearothermophilus maltogenic amylase gene
- amyQ Bacillus amyloliquefaciens alpha-amylase gene
- penP Bacillus lichen
- promoters for directing the transcription in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, and Aspergillus niger acid stable alpha-amylase.
- useful promoters are the Saccharomyces cerevisiae Ma1, TPI, ADH or PGK promoters.
- the polynucleotide construct of the invention will also typically be operably connected to a suitable terminator.
- a suitable terminator is the TPI terminator (Alber et al. (1982) J. Mol. Appl. Genet. 1:419-434).
- the procedures used to ligate the polynucleotide sequence of the invention, the promoter and the terminator, respectively, and to insert them into a suitable vector containing the information necessary for replication in the selected host are well known to persons skilled in the art.
- the vector may be constructed either by first preparing a DNA construct containing the entire DNA sequence encoding the single-chain insulins of the invention, and subsequently inserting this fragment into a suitable expression vector, or by sequentially inserting DNA fragments containing genetic information for the individual elements (such as the signal, pro-peptide, connecting peptide, A and B chains) followed by ligation.
- the present invention also relates to recombinant host cells, comprising a polynucleotide sequence encoding the single-chain insulins of the invention.
- a vector comprising such polynucleotide sequence is introduced into the host cell so that the vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier.
- the term “host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.
- the host cell may be a unicellular microorganism, e.g., a prokaryote, or a non-unicellular microorganism, e.g., a eukaryote.
- Useful unicellular cells are bacterial cells such as gram positive bacteria including, but not limited to, a Bacillus cell, Streptomyces cell, or gram negative bacteria such as E. coli and Pseudomonas sp.
- Eukaryote cells may be mammalian, insect, plant, or fungal cells.
- the host cell is a yeast cell.
- the yeast organism used in the process of the invention may be any suitable yeast organism which, on cultivation, produces large amounts of the single chain insulin of the invention.
- yeast organisms are strains selected from the yeast species Saccharomyces cerevisiae, Saccharomyces kluyveri, Schizosaccharomyces pombe, Sacchoromyces uvarum, Kluyveromyces lactis, Hansenula polymorpha, Pichia pastoris, Pichia methanolica, Pichia kluyveri, Yarrowia lipolytica, Candida sp., Candida utilis, Candida cacaoi, Geotrichum sp., and Geotrichum fermentans.
- the transformation of the yeast cells may for instance be effected by protoplast formation followed by transformation in a manner known per se.
- the medium used to cultivate the cells may be any conventional medium suitable for growing yeast organisms.
- the secreted insulin precursor of the invention a significant proportion of which will be present in the medium in correctly processed form, may be recovered from the medium by conventional procedures including separating the yeast cells from the medium by centrifugation, filtration or catching the insulin precursor by an ion exchange matrix or by a reverse phase absorption matrix, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, followed by purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, affinity chromatography, or the like.
- a salt e.g. ammonium sulphate
- compositions containing single-chain insulins of this invention can be used in the treatment of states which are sensitive to insulin. Thus, they can be used in the treatment of type 1 diabetes, type 2 diabetes and hyperglycaemia for example as sometimes seen in seriously injured persons and persons who have undergone major surgery.
- the optimal dose level for any patient will depend on a variety of factors including the efficacy of the specific insulin derivative employed, the age, body weight, physical activity, and diet of the patient, on a possible combination with other drugs, and on the severity of the state to be treated. It is recommended that the daily dosage of the insulin derivative of this invention be determined for each individual patient by those skilled in the art in a similar way as for known insulin compositions.
- the pharmaceutical preparations of this invention are administered subcutaneously.
- the single-chain insulins of the invention may also be used in insulin pumps and may be formulated for pulmunal administration.
- Single-chain insulins according to the present invention having at least one basic amino acid residues in the peptide sequence connecting B30 or B29 with A1 are expected to have a protracted insulin activity. Due to the additional positive charge the isoelectric point will be increased compared to human insulin and the pH of the pharmaceutical formulation may therefore preferably be below neutral pH e.g. below about 6. When such single-chain insulin preparations are injected they will precipitates at the injection sites where neutral pH exists and will then slowly be dissolved and released from the injection site. The slow release from the injection site will lead to a protracted action which may be wanted for certain applications. Pharmaceutical preparations of the claimed single-chain insulins will contain usual adjuvants and additives and are preferably formulated as an aqueous solution.
- the aqueous medium is made isotonic, for example, with sodium chloride, sodium acetate or glycerol. Furthermore, the aqueous medium may contain zinc ions, buffers and preservatives.
- the pH value of the composition is adjusted to the desired value and may be between about 4 to about 8.5, preferably between 7 and 7.5 depending on the isoelectric point, pI, of the single-chain insulin in question.
- this invention also relates to a pharmaceutical composition containing a single-chain insulin of the invention and optionally one or more agents suitable for stabilization, preservation or isotonicity, for example, zinc ions, phenol, cresol, a parabene, sodium chloride, glycerol or mannitol.
- agents suitable for stabilization, preservation or isotonicity for example, zinc ions, phenol, cresol, a parabene, sodium chloride, glycerol or mannitol.
- the zinc content of the present formulations may be between 0 and about 6 zinc atoms per insulin hexamer.
- the single-chain insulins may also be formulated with IFD ligands as disclosed in WO 2003027081.
- the buffer used in the pharmaceutical preparation according to the present invention may be selected from the group consisting of sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, bicine, tricine, malic acid, succinate, maleic acid, fumaric acid, tartaric acid, aspartic acid or mixtures thereof.
- Each one of these specific buffers constitutes an alternative embodiment of the invention.
- the pharmaceutically acceptable preservative may be selected from the group consisting of phenol, o-cresol, m-cresol, p-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, bronopol, benzoic acid, imidurea, chlorohexidine, sodium dehydroacetate, chlorocresol, ethyl p-hydroxybenzoate, benzethonium chloride, chlorphenesine (3p-chlorphenoxypropane-1,2-diol) or mixtures thereof.
- the preservative is present in a concentration from 0.1 mg/ml to 20 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 0.1 mg/ml to 5 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 5 mg/ml to 10 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 10 mg/ml to 20 mg/ml. Each one of these specific preservatives constitutes an alternative embodiment of the invention.
- the use of a preservative in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- the isotonicity agent may be selected from the group consisting of a salt (e.g. sodium chloride), a sugar or sugar alcohol, an amino acid (e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine), an alditol (e.g. glycerol (glycerine), 1,2-propanediol (propyleneglycol), 1,3-propanediol, 1,3-butanediol) polyethyleneglycol (e.g. PEG400), or mixtures thereof.
- a salt e.g. sodium chloride
- a sugar or sugar alcohol e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine
- an alditol e.g. glycerol
- Any sugar such as mono-, di-, or polysaccharides, or water-soluble glucans, including for example fructose, glucose, mannose, sorbose, xylose, maltose, lactose, sucrose, trehalose, dextran, pullulan, dextrin, cyclodextrin, soluble starch, hydroxyethyl starch and carboxymethylcellulose-Na may be used.
- the sugar additive is sucrose.
- Sugar alcohol is defined as a C4-C8 hydrocarbon having at least one —OH group and includes, for example, mannitol, sorbitol, inositol, galactitol, dulcitol, xylitol, and arabitol.
- the sugar alcohol additive is mannitol.
- the sugars or sugar alcohols mentioned above may be used individually or in combination. There is no fixed limit to the amount used, as long as the sugar or sugar alcohol is soluble in the liquid preparation and does not adversely effect the stabilizing effects achieved using the methods of the invention.
- the sugar or sugar alcohol concentration is between about 1 mg/ml and about 150 mg/ml.
- the isotonic agent is present in a concentration from 1 mg/ml to 50 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 1 mg/ml to 7 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 8 mg/ml to 24 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 25 mg/ml to 50 mg/ml. Each one of these specific isotonic agents constitutes an alternative embodiment of the invention.
- the use of an isotonic agent in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- the single-chain insulins of this invention may also be mixed with other single-chain insulins, human insulin or human insulin analogues or derivatives having a protracted or rapid acting insulin activity to prepare insulin compositions consisting of a mixture of rapid acting and protracted insulin.
- insulin analogues are described e.g. in the European patent applications having the publication Nos. EP 214826, EP 375437 and EP 383472.
- the single-chain insulins according to the present invention may also be mixed with other pharmaceutically active compounds such as GLP-1, GLP-2 and exendin or analogues or derivatives thereof.
- the single-chain insulins according to the present invention may also be used on combination treatment together with an oral antidiabetic such as a thiazolidindione, metformin and other type 2 diabetic pharmaceutical preparation for oral treatment.
- a single-chain insulin is meant a polypeptide sequence of the general structure B-C-A wherein B is the human B insulin chain or an analogue or derivative thereof, A is the human insulin A chain or an analogue or derivative and C is a peptide chain of 5-11 amino acid residues connecting the C-terminal amino acid residue in the B-chain (normally B30) with A1. If the B chain is a desB30 chain the connecting peptide will connect B29 with A1.
- the single-chain insulin may be derivatized by being acylated at a Lys residue.
- the single-chain insulin will contain correctly positioned disulphide bridges (three) as in human insulin that is between CysA7 and CysB7 and between CysA20 and CysB19 and an internal disulfide bridge between CysA6 and CysA11.
- Analogues of the B and A chains of the human insulin B and A chains are B and A chains having one or more mutations, substitutions, deletions and or additions of the A and/or B amino acid chains relative to that of the human insulin molecule.
- the insulin analogues are preferably such wherein one or more of the naturally occurring amino acid residues, preferably one, two, or three of them, have been substituted by another codable amino acid residue.
- the instant invention comprises analogue molecules having on or more of the position B1, B3, B10, B22; B27, B28, B29, A8, A15 or A22 relative to the natural human insulin molecule as explained in further details below.
- DesB30 or B(1-29) refers to a natural insulin B chain or an analogue thereof lacking the B30 amino acid residue.
- B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivatives thereof.
- A(1-21) means the natural insulin A chain or an analogue or derivative thereof and
- A(1-20) means the first 20 natural amino acid residues of the A chain of human insulin or an analogue or derivative thereof.
- the amino acid residues are indicated in the three letter amino acid code or the one letter amino code.
- A1 etc. is meant the amino acid residue in position 1 in the B chain of insulin (counted from the N-terminal end) and the amino acid residue in position 1 in the A chain of insulin (counted from the N-terminal end), respectively.
- insulin analogue as used herein is meant a polypeptide having a molecular structure which formally can be derived from the structure of human insulin. Insulin from other animals thus becomes analogues of human insulin.
- the structure of an analogue can be derived e.g. by deleting and/or substituting at least one amino acid residue occurring in the natural insulin and/or by adding at least one amino acid residue.
- the added and/or substituted amino acid residues can either be a codable amino acid residues, defined as a mutation, or other naturally occurring amino acid residues, including D-amino acids, or purely synthetic amino acid residues such as N-methyl amino acids, defined as a substitution.
- the structure can also be derived from a naturally occurring insulin by insertion of/substitution with a non-peptide moiety, e.g. a retroinverso fragment, or incorporation of non-peptide bonds such as an azapeptide bond (CO substituted by NH) or pseudo-peptide bond (e.g. NH substituted with CH 2 ).
- a non-peptide moiety e.g. a retroinverso fragment
- non-peptide bonds such as an azapeptide bond (CO substituted by NH) or pseudo-peptide bond (e.g. NH substituted with CH 2 ).
- the peptide chain may continue via iso-peptide bonds, i.e. via the ⁇ - or ⁇ -linked carboxyl groups of the side-chains, respectively.
- insulin analogues are such wherein Pro in position 28 of the B chain may be mutated with Asp, Lys, or Ile.
- Lys at position B29 is mutated with Pro.
- B27 Thr may be mutated with Lys, Arg or Glu.
- Asn at position A21 may be mutated with Ala, Gln, Glu, Gly, His, Ile, Leu, Met, Ser, Thr, Trp, Tyr or Val, in particular with Gly, Ala, Ser, or Thr and preferably with Gly.
- Asn at position B3 may be mutated with Thr, Lys, Gln, Glu or Asp, and Asn in position A18 may be mutated with Gln.
- insulin analogues are the deletion analogues des(B1 Phe) insulin; insulin analogues wherein the B-chain has an N-terminal extension and insulin analogues wherein the A-chain has a C-terminal extension, e.g. a Lys.
- insulin derivative as used herein is meant a naturally occurring insulin or an insulin analogue which has been chemically modified in vitro, e.g. by introducing a group in a side chain in one or more positions of the insulin, e.g. a nitro group in a tyrosine residue, or iodine in a tyrosine residue, or by conversion of a free carboxylic group to an ester group or to an amide group, or by converting an amino group to an amide by acylation, or by acylating a hydroxy group rendering an ester, or by alkylation of a primary amine rendering a secondary amine.
- Other derivatives are obtained by oxidation or reduction of the side-chains of the amino acid residues in the insulin.
- the single-chain insulins are named according to the following rule: The sequence starts with the B-chain, continues with the C-peptide and ends with the A-chain.
- the amino acid residues are named after their respective counterparts in human insulin and mutations and acylations are explicitly described whereas unaltered amino acid residues in the A- and B-chains are not mentioned.
- an insulin having the following mutations as compared to human insulin A21G, B30, B29R, desB30 and the C-peptide TGLGKGQ (SEQ ID NO:19) connecting the C-terminal B-chain and the N-terminal A-chain is named B(1-29)-B30-B29R-TGLGKGQ(SEQ ID NO:19)-A(1-21)-A18Q-A21G human insulin.
- acyl group is meant the radical derived from an organic acid by removal of the hydroxyl group, i.e. the R—CO— radical, where R can be either hydrogen, an alkyl group or an O-alkyl group.
- acylation is understood the chemical reaction whereby a hydrogen of an amino group or hydroxy group is exchanged with an acyl group.
- preferential or selective acylation is meant an acylation which occurs in a desired position at a higher degree, preferably at least at two or three times higher degree than in a not desired position.
- the acylation should preferably only take place in the ⁇ -amino group in the LysB29 or in an inserted Lys residue in another position or in the N-terminal B1 amino acid residue.
- activated acid is meant a carboxylic acid in which an activated leaving group has been attached to the acyl carbon enabling reaction with an amino group under formation of a amide bond and release of the leaving group.
- Activated fatty acids may be activated esters of fatty acids, activated amides of fatty acids and anhydrides or chlorides.
- Activated fatty acids include derivatives thereof such as esters with 1-hydroxybenzotriazole and N-hydroxysuccinimide.
- fatty acid or acyl group is meant a linear or branched carboxylic acid having at least 2 carbon atoms and being saturated or unsaturated.
- the acyl group is a fatty acid having from 6 to 24 C-atoms.
- single-chain insulin having insulin activity is meant single-chain insulin with the ability to lower the blood glucose in mammalians as measured in a suitable animal model, which may be a rat, rabbit, or pig model, after suitable administration e.g. by intravenous or subcutaneous administration.
- pI is the pH at which a peptide has a zero net charge.
- N is the number of occurrence.
- soluble at neutral pH is meant that a 0.6 mM single chain insulin is soluble at neutral pH.
- high physical stability is meant a tendency to fibrillation being less than 50% of that of human insulin. Fibrillation may be described by the lag time before fibril formation is initiated at a given conditions.
- fibrillation is meant a physical process by which partially unfolded insulin molecules interacts with each other to form linear aggregates.
- a polypeptide with Insulin receptor and IGF-1 receptor affinity is a polypeptide which is capable of interacting with an insulin receptor and an human IGF-1 receptor in a suitable binding assay.
- Such receptor assays are well-know within the field and are further described in the examples.
- the present single-chain insulins will not bind to the IGF-1 receptor or will have a rather low affinity to said receptor. More precisely the present single-chain insulins will have an affinity towards the IGF-1 receptor of substantially the same magnitude or less as that of human insulin when measured as described in the examples.
- the affinity of the present single-chain insulins towards the insulin receptor is measured as disclosed in the examples and will typically be between 20 and 200 percent of that of human insulin.
- POT is the Schizosaccharomyces pombe triose phosphate isomerase gene
- TPI1 is the S. cerevisiae triose phosphate isomerase gene
- leader an amino acid sequence consisting of a pre-peptide (the signal peptide) and a pro-peptide.
- signal peptide is understood to mean a pre-peptide which is present as an N-terminal sequence on the precursor form of a protein.
- the function of the signal peptide is to allow the heterologous protein to facilitate translocation into the endoplasmic reticulum.
- the signal peptide is normally cleaved off in the course of this process.
- the signal peptide may be heterologous or homologous to the yeast organism producing the protein.
- a number of signal peptides which may be used with the DNA construct of the invention including yeast aspartic protease 3 (YAP3) signal peptide or any functional analog (Egel-Mitani et al. (1990) YEAST 6:127-137 and U.S. Pat. No.
- pro-peptide means a polypeptide sequence whose function is to allow the expressed polypeptide to be directed from the endoplasmic reticulum to the Golgi apparatus and further to a secretory vesicle for secretion into the culture medium (i.e. exportation of the polypeptide across the cell wall or at least through the cellular membrane into the periplasmic space of the yeast cell).
- the pro-peptide may be the yeast ⁇ -factor pro-peptide, vide U.S. Pat. Nos. 4,546,082 and 4,870,008.
- the pro-peptide may be a synthetic pro-peptide, which is to say a pro-peptide not found in nature. Suitable synthetic pro-peptides are those disclosed in U.S.
- the pro-peptide will preferably contain an endopeptidase processing site at the C-terminal end, such as a Lys-Arg sequence or any functional analogue thereof.
- amino acids mentioned herein are L-amino acids.
- left and right ends of an amino acid sequence of a peptide are, respectively, the N- and C-termini unless otherwise specified.
- plasmids are of the C-POT type, similar to those described in EP 171, 142, which are characterized by containing the Schizosaccharomyces pombe triose phosphate isomerase gene (POT) for the purpose of plasmid selection and stabilization in S. cerevisiae .
- POT Schizosaccharomyces pombe triose phosphate isomerase gene
- the plasmids also contain the S. cerevisiae triose phosphate isomerase promoter and terminator. These sequences are similar to the corresponding sequences in plasmid pKFN1003 (described in WO 90/100075) as are all sequences except the sequence of the EcoRI-XbaI fragment encoding the fusion protein of the leader and the insulin product.
- EcoRI-XbaI fragment of pKFN1003 is simply replaced by an EcoRI-XbaI fragment encoding the leader-insulin fusion of interest.
- EcoRI-XbaI fragments may be synthesized using synthetic oligonucleotides and PCR according to standard techniques.
- Yeast transformants were prepared by transformation of the host strain S. cerevisiae strain MT663 (MATa/MAT ⁇ pep4-3/pep4-3 HIS4/his4 tpi::LEU2/tpi::LEU2 Cir + ).
- the yeast strain MT663 was deposited in the Deutsche Sammlung von Mikroorganismen und Zellkulturen in connection with filing WO 92/11378 and was given the deposit number DSM 6278.
- the suspension was then centrifuged and the pellet resuspended in 0.5 ml of 1.2 M sorbitol. Then, 6 ml of top agar (the SC medium of Sherman et al. (1982) Methods in Yeast Genetics , Cold Spring Harbor Laboratory) containing 1.2 M sorbitol plus 2.5% agar) at 52° C. was added and the suspension poured on top of plates containing the same agar-solidified, sorbitol containing medium.
- top agar the SC medium of Sherman et al. (1982) Methods in Yeast Genetics , Cold Spring Harbor Laboratory
- S. cerevisiae strain MT663 transformed with expression plasmids was grown in YPD for 72 h at 30° C.
- a number of single-chain insulins were produced as described above and isolated from the culture medium and purified for further testing.
- the single-chain insulins were tested for biological insulin activity as measured by binding affinity to the human insulin receptor relative to that of human insulin as described below.
- IR means human insulin receptor binding relative to that of human insulin.
- PKA Human IGF-1 receptor Single-chain binding relative to insulin
- IR human insulin 1606 RSFDGK 41% (SEQ ID NO: 34) 1663 TVGSSRGK 46% (SEQ ID NO: 35) 1664 TGSSRGK 43% (SEQ ID NO: 36) 1735 VGRSSGK [A21G] 143% (SEQ ID NO: 31) 1754 AGRGSGP 53% (SEQ ID NO: 18) 1767 AGRGSGP [A18Q_A21G] 28% (SEQ ID NO: 18) 1801 AGRGSGK 129% (SEQ ID NO: 15) 1817 AGRGSGK [A21G] 63% (SEQ ID NO: 15) 1800 AGRGSGK [A18Q_A21G] 175% (SEQ ID NO: 15) 1805 AGRGSGK [B3Q
- Insulin receptor binding of single-chain insulins with the motive of the connecting peptide of TRXXXGR (SEQ ID NO: 112) in percent of that of human insulin Human Insulin IGF-1 receptor receptor B chain XXX A-chain Binding IR binding B(1-29) YGS A(1-21) B((1-29) SSN A(1-21) 61% 0.1% B(1-29) LSQ A(1-21) 62% 0.05% B(1-29) PKS A(1-21) 18% B(1-29) LGG A(1-21) 43% B(1-29) VTG A(1-21) 57% B(1-29) STN A(1-21) 46% B(1-29) LES A(1-21) 43% B(1-29) IDS A(1-21) 31% B(1-29) NSQ A(1-21) 38% B(1-29) PSY A(1-21) 49% B(1-29) ENT A(1-21) 34% B(1-29) TPQ A(1-21) 22% B(1-29) NRT A(1-21) 22%
- B(1-29)-B30-B29R-TGLGKGQ-A(1-21)-A18Q-A21G human insulin (SEQ ID NO:133) (150 mg, 24 ⁇ mol) was dissolved in aqueous sodium carbonate (100 mM, 2.8 mL) and added a solution of myristic acid N-hydroxysuccinimide ester (7.7 mg, 24 ⁇ mol, may be prepared according to B. Faroux-Corlay et al., J. Med. Chem. 2001, 44, 2188-2203) in N-methylpyrrolidin-2-one (0.5 mL).
- the solid formed was isolated by centrifugation and decantation.
- the residue was purified by preparative HPLC in two runs on a Jones Kromasil RP18 5 ⁇ m, 15 ⁇ 225 mm column, using a flow of 8 mL/min with the following gradient:
- This compound was prepared similarly as described in example 2 from acylation of B(1-29)-B3Q-B29R-TGLGKGQ-A(1-21)-A18Q-A21G human insulin (SEQ ID NO:133) with tert-butyl hexadecandioyl- ⁇ -L-Glu(OSu)-OtBu, followed by TFA mediated deprotection of the tBu esters.
- Hexadecadioic acid (40.0 g, 140 mmol) was suspended in toluene (250 ml) and the mixture was heated to reflux. N,N-dimethylformamide di-tert-butyl acetal (76.3 g, 375 mmol) was added drop-wise over 4 hours. The mixture was refluxed overnight. The solvent was removed in vacuo at 50° C., and the crude material was suspended in DCM/AcOEt (500 ml, 1:1) and stirred for 15 mins. The solids were collected by filtration and triturated with DCM (200 ml). The filtrated were evaporated in vacuo to give crude mono-tert-butyl hexadecandioate, 30 grams.
- the mono tert-butyl ester (2 g, 5.8 mmol) was dissolved in THF (20 ml) and treated with TSTU (2.1 g, 7.0 mmol) and DIEA (1.2 ml, 7.0 mmol) and stirred overnight. The mixture was filtered, and the filtrate was evaporated in vacuo. The residue was dissolved in AcOEt and washed twice with cold 0.1 M HCl and water. Drying over MgSO4 and evaporation in vacuo gave succinimidyl tert-butyl hexadecandioate, 2.02 g (79%).
- the affinity of the single-chain insulins the invention for the human insulin receptor was determined by a SPA assay (Scintillation Proximity Assay) microtiterplate antibody capture assay.
- SPA-PVT antibody-binding beads, anti-mouse reagent (Amersham Biosciences, Cat No. PRNQ0017) were mixed with 25 ml of binding buffer (100 mM HEPES pH 7.8; 100 mM sodium chloride, 10 mM MgSO4, 0.025% Tween-20).
- Reagent mix for a single Packard Optiplate Packard No.
- 6005190 is composed of 2.4 ⁇ l of a 1:5000 diluted purified recombinant human insulin receptor—exon 11, an amount of a stock solution of A14 Tyr[125I]-human insulin corresponding to 5000 cpm per 100 ⁇ l of reagent mix, 12 ⁇ l of a 1:1000 dilution of F12 antibody, 3 ml of SPA-beads and binding buffer to a total of 12 ml. A total of 100 ⁇ l was then added and a dilution series is made from appropriate samples. To the dilution series was then added 100 ⁇ l of reagent mix and the samples were incubated for 16 hours while gently shaken. The phases were the then separated by centrifugation for 1 min and the plates counted in a Topcounter. The binding data were fitted using the nonlinear regression algorithm in the GraphPad Prism 2.01 (GraphPad Software, San Diego, Calif.).
- Specific antibodies were produced by monoclonal technique: RBF mice were immunized by injecting 50 ⁇ g of purified mIR in FCA subcutaneously followed by two injections with 20 ⁇ g of mIR in FIA. High responder mice were boosted intravenously with 25 ⁇ g of mIR and the spleens were harvested after 3 days. Spleen cells were fused with the myeloma Fox cell line (Köhler, G & Milstein C. (1976), European J. Immunology, 6:511-19; Taggart R T et al (1983), Science 219:1228-30). Supernatants were screened for antibody production in a mIR specific ELISA. Positive wells were cloned and tested in Western blotting.
- insulin receptor binding was tested in a hIRBHK membrane assay as follows:
- Plastic ware Packard OptiPlateTM-96, #6,005,290
- BHK cells from a ten-layer cell factory were harvested and homogenised in 25 ml of ice-cold buffer (25 mM HEPES pH 7.4, 2.5 mM CaCl 2 , 1 mM MgCl 2 , 250 mg/l bacitracin, 0.1 mM Pefablock).
- the homogenate was layered carefully on 41% sucrose cushions, centrifuged in the ultracentrifuge at 95,000 ⁇ g for 75 minutes in a Beckman SW28 rotor at 4° C.
- the plasma membranes were collected from the top of the sucrose cushion, diluted 1:4 with buffer and centrifuged at 40,000 ⁇ g for 45 min in a Beckman SW28 rotor.
- the pellets were suspended in buffer (25 mM HEPES pH 7.4, 2.5 mM CaCl 2 , 1 mM MgCl 2 , 250 mg/l bacitracin, 0.1 mM Pefablock) and stored at ⁇ 80° C.
- buffer 25 mM HEPES pH 7.4, 2.5 mM CaCl 2 , 1 mM MgCl 2 , 250 mg/l bacitracin, 0.1 mM Pefablock
- Radioligand binding to membrane-associated insulin receptors was performed in duplicate in 96-well OptiPlates.
- Membrane protein was incubated for 150 minutes at 25° C. with 50 pM [ 125 I-Tyr A14 ]-human insulin in a total volume of 200 ml assay buffer (50 mM HEPES, 150 mM NaCl, 5 mM MgSO 4 , 0.01% Triton X-100, 0.1% HSA, CompleteTM EDTA-free protease inhibitors) and increasing concentrations of human insulin or insulin analogues (typically between 0.01 and 300 nM).
- the assay was terminated by addition of 50 ⁇ l of a suspension of WGA-coated PVT microspheres (20 mg/ml). Following 5 minutes of slight agitation, the plate was centrifuged at 1500 RPM for 6 minutes, and bound radioactivity quantified by counting in a Packard TopCount NXT after a delay of 60 minutes.
- Results are given as IC 50 relative to human insulin in %.
- Wistar rats were used for testing the blood glucose lower efficacy of SCI at I.V bolus administration. Following administration the of either SCI or human insulin the concentration of blood glucose is monitored
- T50% is the time when 50% of an injected amount of the A14 Tyr[125I] labelled derivative of an insulin to be tested has disappeared from the injection site as measured with an external ⁇ -counter.
- Formulated preparations of insulin derivatives labelled in TyrA14 with 125I are injected sc. in pigs as previously described (Ribel, U., J ⁇ rgensen, K, Brange, J, and Henriksen, U. The pig as a model for subcutaneous insulin absorption in man. Serrano-Rios, M and Lefèbvre, P. J. 891-896. 1985. Amsterdam; New York; Oxford, Elsevier Science Publishers. 1985 (Conference Proceeding)).
- a dose of 60 nmol of the insulin derivative according to the invention (test compound) and a dose of 60 nmol of insulin (both 125I labelled in Tyr A14) are injected at two separate sites in the neck of each pig.
- IGF-1 receptor binding of the single-chain insulin was determined using a by a SPA assay (Scintillation Proximity Assay) microtiterplate antibody capture assay similar to that used for determining the Insulin receptor binding of the insulin derivatives of the invention, with the exception that the IGF1 receptor was used in stead of the insulin receptor, [125I]-human IGF-1 in stead of [125I]-human insulin and an antibody with specificity for the IGF-1 receptor.
- SPA assay Scintillation Proximity Assay
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Diabetes (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Endocrinology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Emergency Medicine (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention is related to single-chain insulin having insulin activity comprising a B- and an A-chain or a modified B- and A-chain connected by a connecting peptide of from 6-11 amino acids. The single-chain insulins will have biological insulin activity and an IGF-1 receptor affinity similar to or lower than that of human insulin and a high physical stability. The single-chain insulin may contain at least one basic amino acid residues in the connecting peptide. The single-chain insulins may also be acylated in one or more Lys residues.
Description
- The present invention is related to single-chain insulins which have insulin activity and can be used for the treatment of diabetes. The single-chain insulins have a high physical stability and a low tendency to fibrillation and will be soluble at neutral pH. The present invention is also related to a DNA sequence encoding the single-chain insulins, a method for their production and pharmaceutical compositions containing the single-chain insulins.
- Insulin is a polypeptide hormone secreted by β-cells of the pancreas and consists of two polypeptide chains, A and B, which are linked by two inter-chain disulphide bridges. Furthermore, the A-chain features one intra-chain disulphide bridge.
- The hormone is synthesized as a single-chain precursor proinsulin (preproinsulin) consisting of a prepeptide of 24 amino acid followed by proinsulin containing 86 amino acids in the configuration: prepeptide-B-Arg Arg-C-Lys Arg-A, in which C is a connecting peptide of 31 amino acids. Arg-Arg and Lys-Arg are cleavage sites for cleavage of the connecting peptide from the A and B chains to form the two-chain insulin molecule. Insulin is essential in maintaining normal metabolic regulation.
- The two chain structure of insulin allows insulin to undertake multiple conformations, and several findings have indicated that insulin has the propensity to considerable conformational change and that restrictions in the potential for such change considerably decrease the affinity of the insulin receptor for ligands. Proinsulin has a 100 fold lower affinity for the insulin receptor than native insulin. Blocking of the amino acid residue A1 in insulin also results in poor receptor binding, consistent with the dogma that a free N-terminal of the A-chain and free C-terminal of the B-chain of insulin are important for binding to the insulin receptor.
- The inherited physical and chemical stability of the insulin molecule is a basic condition for insulin therapy of diabetes mellitus. These basic properties are fundamental for insulin formulation and for applicable insulin administration methods, as well as for shelf-life and storage conditions of pharmaceutical preparations. Use of solutions in administration of insulin exposes the molecule to a combination of factors, e.g. elevated temperature, variable air-liquid-solid interphases as well as shear forces, which may result in irreversible conformation changes e.g. fibrillation. This is particularly relevant for insulin solutions in infusion pumps, either worn externally or implanted, which exposes the molecule to a combination of these factors as well as shear forces from the movement of the pump for extended periods of time. Consequently, fibrillation is especially a concern when using infusion pumps as insulin delivery system. Moreover, the solubility of insulin is influenced by multiple factors and shows clear reduction in the pH range from 4.2 and 6.6. The pH precipitation zone generally imposes limitations for formulation, but has also been used deliberately in development and formulation of certain analogues.
- Thus, the stability and solubility properties of insulin are important underlying aspects for current insulin therapy. The present invention is addressed to these issues by providing stable, single-chain insulin analogues by introduction of a C-peptide between the B- and A-chain to decrease molecular flexibility and concomitantly reduce the fibrillation propensity and limit or modify the pH precipitation zone.
- Single-chain insulins with insulin activity are disclosed in EP 1,193,272. These single-chain insulins have a modified C-peptide of 5-18 amino acids and are reported to have up to 42% insulin activity. EP 1,193,272 discloses the following modified C-peptides connecting B30 with A21: Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg-Gly-Pro-Gly-Gly-Gly (SEQ ID NO:2), Gly-Gly-Gly-Gly-Gly-Lys-Arg (SEQ ID NO:3), Arg-Arg-Gly-Gly-Gly-Gly-Gly (SEQ ID NO:4), Gly-Gly-Ala-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:5), Arg-Arg-Ala-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:6), Gly-Gly-Tyr-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:7), Arg-Arg-Tyr-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:8), Gly-Gly-His-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:9), and Arg-Arg-His-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:10). EP 741,188 discloses single-chain insulins with a modified C-peptide having from 10-14 amino acids residues and having from 14 to 34% insulin activity and having the following connecting peptides Gln-Pro-Leu-Ala-Leu-Glu-Gly-Ser-Leu-Gln-Lys-Arg (SEQ ID NO:11) and Gly-Tyr-Gly-Ser-Ser-Ser-Arg-Arg-Ala-Pro-Gln-Thr (SEQ ID NO:12). WO 95/16708 discloses single-chain insulins with a connecting peptide of 1-15 amino acid residues and with no Lys or Arg as the C-terminal amino acid residue in the connecting peptide. WO 95/16708 discloses the following C-peptide sequences Gly-Tyr-Gly-Ser-Ser-Ser-Arg-Arg-Ala-Pro-Gln-Thr (SEQ ID NO:13) and Gly-Tyr-Gly-Ser-Ser-Ser-Ala-Ala-Ala-Pro-Gln-Thr (SEQ ID NO:14). These single-chain insulins are reported to have insulin activity but also a fairly high affinity to the IGF-1 receptor.
- It is the object of the present invention to provide single-chain insulins which have improved properties over the known compounds both with respect to insulin activity, physical stability and solubility as well as pharmacokinetic e.g. a protracted or rapid action profile. A still further object of this invention is to provide a method for making the single-chain insulins and pharmaceutical compositions containing such compounds.
- In one aspect the present invention is related to single-chain insulin having biological insulin activity and comprising the B- and the A-chain of human insulin or analogues or derivatives thereof connected by a connecting peptide, wherein the connecting peptide has from 5-11 amino acid residues and does not contain two adjacent basic amino acid residues and wherein the single-chain insulin has an affinity to the human insulin receptor of at least about 20% of that of human insulin if the single-chain insulin molecule is not chemically modified by acylation.
- In another aspect the present invention is related to single-chain insulin having biological insulin activity and comprising the B- and the A-chain of human insulin or analogues or derivatives thereof connected by a connecting peptide, wherein the connecting peptide has from 5-11 amino acid residues provided that if the connecting peptide contains two adjacent basic amino acid residues then at least one of the natural amino acid residues in the B and/or A chain is substituted with another codable amino acid residue or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation or the connecting peptide is not one of the following sequences Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg-Gly-Pro-Gly-Gly-Gly (SEQ ID NO:2), Gly-Gly-Gly-Gly-Gly-Lys-Arg (SEQ ID NO:3), Arg-Arg-Gly-Gly-Gly-Gly-Gly (SEQ ID NO:4), Gly-Gly-Ala-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:5), Arg-Arg-Ala-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:6), Gly-Gly-Tyr-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:7), Arg-Arg-Tyr-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:8), Gly-Gly-His-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:9), or Arg-Arg-His-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:10).
- In another aspect the present invention is related to single-chain insulin having biological insulin activity and comprising the B- and the A-chain of human insulin or analogues or derivatives thereof connected by a connecting peptide, wherein the connecting peptide has from 5-11 amino acid residues provided that single-chain insulins with a pI above about 6.5 will comprise at least one amino acid residue substitution and/or deletion in the A- and/or B chains compared to the human insulin A- and B-chains or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
- In another aspect the present invention is related to single-chain insulin having biological insulin activity and comprising the B- and the A-chain of human insulin or analogues or derivatives thereof connected by a connecting peptide, wherein the connecting peptide has from 5-14, 5-11, 6-10, 6-8, 6-7, 7-9 or 7-8 amino acid residues and wherein at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
- In one embodiment the single-chain insulin is acylated in at least one lysine group in the single-chain insulin molecule. In another embodiment the B29Lys is acylated. In a still further embodiment an inserted lysine in the single-chain insulin molecule is acylated or the B1 N-terminal amino acid residue is acylated.
- In one aspect the single-chain insulin is acylated with a fatty acid having from 6 to 24 C, 6-20, 6-18 or 6-14 C-atoms.
- In a further aspect the present invention is related to a single-chain insulin being soluble at neutral pH and having a pI below about 6.5.
- In a still further the single-chain insulin has a pI from about 4.5 to below about 6.5.
- In another aspect the present invention is related to a single-chain insulin wherein at least one lysine residue has been modified by acylation.
- In another aspect the single-chain insulin with a chemically unmodified A- and B-chain has an affinity to the human insulin receptor of at least 30% of that of human insulin.
- In another aspect the single-chain insulin contains up to two basic amino acid residues separated by at least one non basic amino acid residue in the connecting peptide.
- In a further aspect of the present invention the single-chain insulin contains at least one additional basic amino acid in the A or B chain compared to the natural human A and B chains. The basic amino acid residue is preferably introduced by substituting one of the natural amino acid residues in the C-terminal end of the B-chain or in the N-terminal end of the A-chain and in one embodiment of the present invention the residue in position B27 is substituted by an Arg.
- In a further aspect of the present invention the single-chain insulin will have an amino acid residue in position A21 of the A chain which is different from the natural amino acid residue Asn. Thus Asn in position A21 may be substituted by any other codable amino acid residue except Cys. In one embodiment the amino acid residue in position A21 may be selected from the group consisting of Ala, Gln, Glu, Gly, His, Ile, Leu, Met, Ser, Thr, Trp, Tyr or Val, in particular Gly, Ala, Ser, and Thr. In a further embodiment A21 is Gly.
- In one embodiment of the present invention the single-chain insulin will contain at least one basic amino acid residue in the connecting peptide and a Gly in position A21. In a further embodiment of the present invention the single-chain insulin will have two basic amino acid residues in the connecting peptide and a Gly in position A21.
- In another embodiment the single-chain insulin has a connecting peptide with 6-10, 6-9, 6-8, or 6-7 or amino acid residues.
- In another embodiment the single-chain insulin has a connecting peptide with from 7-10, 7-9 or from 7-8 amino acid residues.
- In another embodiment the connecting peptide has a Gly in the connecting peptide in the penultimate position to the first amino acid residue (A1) in the A-chain.
- In a further embodiment the connecting peptide comprises a sequence selected from the group consisting of AGRGSGK (SEQ ID NO:15); AGLGSGK (SEQ ID NO:33); AGMGSGK (SEQ ID NO:45); ASWGSGK (SEQ ID NO:48); TGLGSGQ (SEQ ID NO:22); TGLGRGK (SEQ ID NO:23); TGLGSGK (SEQ ID NO:21); HGLYSGK (SEQ ID NO:50); KGLGSGQ (SEQ ID NO:51); VGLMSGK (SEQ ID NO:56); VGLSSGQ (SEQ ID NO:27); VGLYSGK (SEQ ID NO:28), VGLSSGK (SEQ ID NO:30); VGMSSGK (SEQ ID NO:65); VWSSSGK (SEQ ID NO:76), VGSSSGK (SEQ ID NO:16), and VGMSSGK (SEQ ID NO:106)
- In another embodiment the single-chain insulin has the formula
B(1-26)-X1-X2-X3-X4-A(1-21) - wherein
- X1 is Thr, Lys or Arg, X2 is Pro, Lys or Asp, X3 is Lys, Pro or Glu, X4 is a peptide sequence of 6-11 amino acid residues, B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof, and A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, wherein X4 does not contain two adjacent basic amino acid residues and wherein the single-chain insulin has an affinity to the human insulin receptor of at least about 20% of that of human insulin if the single-chain insulin molecule is not chemically modified by acylation.
- In another embodiment the single-chain insulin has the formula
B(1-26)-X1-X2-X3-X4-A(1-21) - wherein
- X1 is Thr, Lys or Arg, X2 is Pro, Lys or Asp, X3 is Lys, Pro or Glu, X4 is a peptide sequence of 6-11 amino acid residues, B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof, and A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, provided that if X4 contains two adjacent basic amino acid residues then at least one of the natural amino acid residues in the B and/or A chain is substituted with another codable amino acid residue or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation or X4 is not one of the following sequences Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg-Gly-Pro-Gly-Gly-Gly (SEQ ID NO:2), Gly-Gly-Gly-Gly-Gly-Lys-Arg (SEQ ID NO:3), Arg-Arg-Gly-Gly-Gly-Gly-Gly (SEQ ID NO:4), Gly-Gly-Ala-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:5), Arg-Arg-Ala-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:6), Gly-Gly-Tyr-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:7), Arg-Arg-Tyr-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:8), Gly-Gly-His-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:9), or Arg-Arg-His-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:10).
- In another embodiment the single-chain insulin has the formula
B(1-26)-X1-X2-X3-X4-A(1-21) - wherein
- X1 is Thr, Lys or Arg, X2 is Pro, Lys or Asp, X3 is Lys, Pro or Glu, X4 is a peptide sequence of 6-11 amino acid residues, B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof, and A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, provided that single-chain insulins with a pI above about 6.5 will comprise at least one amino acid residue substitution and/or deletion in the A- and/or B chain compared to the human insulin A- and B-chains or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
- In another embodiment the single-chain insulin has the formula
B(1-26)-X1-X2-X3-X4-A(1-21) - wherein
- X1 is Thr, Lys or Arg, X2 is Pro, Lys or Asp, X3 is Lys, Pro or Glu, X4 is a peptide sequence of 5-14, 5-11, 6-10, 6-8, 6-7, 7-9 or 7-8 amino acid residues, B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof, and A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, wherein at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
- In one aspect X1 is Thr, X2 is Pro, and X3 is Lys.
- In another embodiment X4 is a peptide sequence with the following formula Xa-Xb-Xc-Xd-Xe-Xf-Xg (SEQ ID NO:129) wherein
- Xa is selected from the group consisting of L, R, T, A, H, O, G, S and V;
- Xb is selected from the group consisting of W, G, S, A, H, R, and T;
- Xc is selected from the group consisting of L, Y, M, H, R, T, Q, K, V, S, A, G and P;
- Xd is selected from the group consisting of R, A, Y, M, S, N, H, and G;
- Xe is selected from the group consisting of S, R, A, T, K P, N M, H, Q, V, and G;
- Xf is selected from the group consisting of G and A; and
- Xg is selected from the group consisting of K, R, P, H, F, T, I, Q, W, and A
- In a further embodiment
- Xa is selected from the group consisting of L, R, T, A, H and V;
- Xb is selected from the group consisting of W, G, S, A, H, R, and T;
- Xc is selected from the group consisting of L, Y, M, H, R, T, Q, K, V, S, A, G and P;
- Xd is selected from the group consisting of R, A, Y, M, S, N, H, and G;
- Xe is selected from the group consisting of S, R, A, T, K P, and N;
- Xf is G; and
- Xg is selected from the group consisting of K, R, Q and P;
- In a further embodiment
- Xa is selected from the group consisting of T, A V, K;
- Xb is G;
- Xc is selected from the group consisting of L, Y, M, H, R K, W;
- Xd is G;
- Xe is selected from the group consisting of S, K;
- Xf is G, and
- Xg is selected from the group consisting of K, R, Q.
- In a still further aspect X4 has the sequence X5-G-X6-G-X7-G-X8 (SEQ ID NO:130)
- wherein
- X5 selected from the group consisting of Val, Leu, Arg, Thr, Ala, His, Gin, Gly or Ser,
- X6 is selected from the group consisting of Leu, Tyr, Met, His, Arg, Thr, Gin, Lys, Val, Ser, Ala, Gly, Pro,
- X7 is selected from the group consisting of Ser, Arg, Ala, Thr, Lys, Pro, Asn, Met, His, Gln, Val, Gly, and
- X8 is Lys or Arg.
- In a still further aspect X5 selected from the group consisting of Val, Leu, Arg, Thr, Ala, and His,
- X6 is selected from the group consisting of Leu, Tyr, Met, and His,
- X7 is selected from the group consisting of Ser, Arg, Ala, Thr, Lys, Pro and Asn and
- X8 is Lys or Arg.
- In one embodiment X4 comprises the sequence SGK. In another embodiment X4 comprises the sequence GSGK (SEQ ID NO:131). In still another embodiment X4 comprises the sequence SSSGK (SEQ ID NO:132).
- In one embodiment at least one of the natural amino acid residues in the position B1, B3, B10, B22, B27, B28, B29, A8, A15, A18, and A21 are substituted by another amino acid residue.
- In another embodiment the single-chain insulin is a desB1, desB25, desB27, desB28 or desB29 insulin analogue.
- In another embodiment X4 comprises the sequence TRXXXGR (SEQ ID NO:112) wherein X is any amino acid.
- In a further aspect the present invention is related to single-chain insulin wherein the A- and B-chain are connected with a peptide sequence containing from 6-11 amino acid residues provided that the peptide sequence is not Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg-Gly-Pro-Gly-Gly-Gly (SEQ ID NO:2), Gly-Gly-Gly-Gly-Gly-Lys-Arg (SEQ ID NO:3), Arg-Arg-Gly-Gly-Gly-Gly-Gly (SEQ ID NO:4), Gly-Gly-Ala-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:5), Arg-Arg-Ala-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:6), Gly-Gly-Tyr-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:7), Arg-Arg-Tyr-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:8), Gly-Gly-His-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:9), or Arg-Arg-His-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:10).
- In a further embodiment the connecting peptide is not SANNTK (SEQ ID NO:136), SPNTTK (SEQ ID NO:137), SSNTTK (SEQ ID NO:138) or SRNTTK (SEQ ID NO:139).
- The present invention is also related to polynucleotide sequences which code for the claimed single-chain insulins. In a further aspect the present invention is related to vectors containing such polynucleotide sequences and host cells containing such polynucleotide sequences or vectors.
- In another aspect, the invention relates to a process for producing the single chain insulins in a host cell, said method comprising (i) culturing a host cell comprising a polynucleotide sequence encoding the single-chain insulins under suitable conditions for expression of said single-chain insulins; and (ii) isolating the single-chain insulins from the culture medium.
- In one embodiment of the present invention the host cell is a yeast host cell and in a further embodiment the yeast host cell is selected from the genus Saccharomyces. In a further embodiment the yeast host cell is selected from the species Saccharomyces cerevisiae.
- In a further embodiment the invention is related to a method wherein at lyst one lysine residue in the single-chain insulin molecule is acylated.
- In a further embodiment the present invention is related to the use of a single-chain insulin as a pharmaceutical for the treatment of diabetes.
- In still a further aspect the present invention is related to pharmaceutical preparations comprising the single-chain insulin of the invention and suitable adjuvants and additives such as one or more agents suitable for stabilization, preservation or isotoni, for example, zinc ions, phenol, cresol, a parabene, sodium chloride, glycerol or mannitol. The zinc content of the present formulations may be between 0 and about 6 zinc atoms per insulin hexamer. The pH of the pharmaceutical preparation may be between about 4 and about 8.5, between about 4 and about 5 or between about 6.5 and about 7.5.
- In a still further aspect the present invention is related to pharmaceutical preparations comprising the singe-chain insulin and at least one other pharmaceutical such as rapid acting or protracted insulin analogues, and GLP-1, GLP-2 and exendin and analogues and derivatives thereof. The single-chain insulins according to the present invention may also be used in combination treatment together with rapid acting or protracted insulin analogues, and GLP-1, GLP-2 and exendin and analogues and derivatives thereof or an oral antidiabetic such as a thiazolidindione, metformin and other type 2 diabetic pharmaceutical preparations for oral treatment.
- In a further aspect the present invention is related to the use of the single-chain insulin for the preparation of a pharmaceutical preparation for the reducing of blood glucose level in mammalians in particularly for the treatment of diabetes.
- In a further embodiment the present invention is related to a method of reducing the blood glucose level in mammalians by administrating a therapeutically active dose of a single-chain insulin according to the invention to a patient in need of such treatment.
- FIG. 1 shows the blood glucose reduction in normal Wistar rats by a single-chain insulin according to the present invention compared to the effect of human insulin. HI is human insulin and SCI is single-chain insulin,
- FIG. 2 shows disappearance of a single-chain insulin after s.c. administration in pig and
- FIG. 3 shows disappearance of another single-chain insulin after s.c. administration in pig.
- The single-chain insulins according to the present invention have biological insulin activity. They furthermore have an affinity to the insulin receptor of least 20% of that of human insulin if the single-chain insulin molecule is not chemically modified by acylation. Furthermore, they have an IGF-1 receptor affinity similar to or lower than that of human insulin. The single-chain insulins which are not chemically modified by acylation have an affinity to the insulin receptor of at least 20 percent of that of human insulin. The single-chain insulins according to the present invention are also characterized in having a high physical stability.
- Single-chain insulins with at one additional positive charge compared to human insulin and a pI below about 6.5 are soluble at neutral pH and have an action profile like human insulin but have an improved physical stability. If additional positive charge in comparison to human insulin is introduced to the insulin molecule the pI will move upward with one for each added positive charge. By having two additional positive charges compared to human insulin the single-chain insulin will acquire a protracted profile. The single-chain insulin may also be made protracted by introduction of an acyl group in one or more Lys residues or in the N-terminal B1 amino acid residue. The acylated single-chain insulins are soluble at neutral pH and may furthermore be mixable with rapid acting two-chain insulins such as NovoRapid. The single-chain insulins may be selectively acylated in e.q. B29. Alternatively one or more of the natural amino acid residue in the C-terminal end of the B-chain, in the connecting peptide sequence or in the N-terminal end of the A-chain may be substituted with a Lys residue which then in turn can by acylated in a well known manner as disclosed in U.S. Pat. No. 6,500,645
- The single-chain insulins of the invention having enhanced stability may also be mixed with soluble long-acting insulins described in U.S. Pat. Nos. 6,500,645 and 5,750,497. The resulting combination retains a biphasic phamacokinetic profile. Furthermore single-chain insulins may feature amino acid substitutions in position B10 and/or B28 decreasing insulin self-association.
- The connecting peptide in the single-chain insulins of the invention may by up to 14 amino acids long. However a typically length of the connecting peptide will be from 6-10 or 7-10, 7-9 or 7-8.
- The connection peptide may in one embodiment have the motives VGSSSGX (SEQ ID NO:122): VGSSSXK (SEQ ID NO:123); VGSSXGK (SEQ ID NO:124): VGSXSGK (SEQ ID NO:125); VGXSSGK (SEQ ID NO:126); VXSSSGK (SEQ ID NO:1127) and XGSSSGK (SEQ ID NO:128) where X is any codable amino acid residue. The following table shows selected meanings of X.
1. Preference 2. Preference Connecting X selected from the X selected from the group peptide group consisting of consisting of VGSSSGX(SEQ K and R P; H; F; T; I; Q; W; and A ID NO: 122) VGSSSXK(SEQ G A ID NO: 123 VGSSXGK(SEQ S; R; A; T; K; P; and N M; H; Q; V; and G ID NO: 124) VGSXSGK(SEQ R A; Y; M; S; N; H and G ID NO: 125) VGXSSGK(SEQ L; Y; M; and H R; T; Q; K; V; S; A; G; P ID NO: 126) VXSSSGK(SEQ W G; S; A; H; R; T; P ID NO: 127) XGSSSGK(SEQ L, R, T, A, H, V Q, G, S ID NO: 128) - Another motif for the connecting peptide is TRXXXGR (SEQ ID NO:112) where X can be any codable amino acid residue.
- The single-chain insulin may be acylated with an acyl group which may be a linear or branched carboxylic acid having at least 2 carbon atoms and being saturated or unsaturated.
- Non-limiting examples of fatty acids are capric acid, lauric acid, tetradecanoic acid (myristic acid), pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, dodecanoic acid, tridecanoic acid, and tetradecanoic acid.
- The acyl group may also be a lipophilic substituent selected from the group comprising CH3(CH2)nCO—, wherein n is 4 to 24, such as CH3(CH2)6CO—, CH3(CH2)8CO—, CH3(CH2)10CO—, CH3(CH2)12CO—, CH3(CH2)14CO—, CH3(CH2)16CO—, CH3(CH2)18CO—, CH3(CH2)20CO— and CH3(CH2)22CO—.
- In one embodiment of the invention the acyl group is a straight-chain or branched alkane α,ω-dicarboxylic acid. In another embodiment of the invention the acyl group has the formula HOOC(CH2)tCO— wherein t is an integer of from 2 to 24.
- In another embodiment of the invention the acyl group is selected from the group comprising HOOC(CH2)mCO—, wherein m is 2 to 24, such as HOOC(CH2)14CO—, HOOC(CH2)16CO—, HOOC(CH2)18CO—, HOOC(CH2)20CO— and HOOC(CH2)22CO—.
- The acyl group may be attached to the single-chain insulin by a spacer molecule, e.g. a suitable amino acid residue. The spacer and the acyl group may thus have the formula CH3(CH2)nCONH—CH(COOH)—(CH2)pCO—, wherein n is an integer of from 4-24, 10-24 or 8-24 and p is an integer of from 1-3. In another embodiment the spacer and the acyl group have the formula HOOC3(CH2)nCONH—CH(COOH)—(CH2)pCO—, wherein n is an integer of from 4-24 and p is an integer of from 1-3. In another embodiment the combination of the spacer and the acyl group has the formula CH3(CH2)nCONH—CH(CH2)p(COOH)CO— wherein n is an integer of from 4-24 and p is an integer of from 1-3 or HOOC(CH2)nCONH—CH((CH2)pCOOH)CO—, wherein n is an integer of from 4-24 and p is an integer of from 1-3.
- Finally, the acyl group may by a lithocholic acid as lithocholoyl or choloyl.
- If the single-chain insulin is acylated in another position than B29 then the natural lysine residue in B29 is substituted with another amino acid residue e.g. Arg and Ala.
- Acylation of the single-chain insulins according to the present invention can be made by a methods analogue to the methods disclosed in U.S. Pat. Nos. 5,750,497 and 5,905,140.
- The single-chain insulins are produced by expressing a DNA sequence encoding the single-chain insulin in question in a suitable host cell by well known technique as disclosed in e.g. U.S. Pat. No. 6,500,645. The single-chain insulin is either expressed directly or as a precursor molecule which has an N-terminal extension on the B-chain. This N-terminal extension may have the function of increasing the yield of the directly expressed product and may be of up to 15 amino acid residues long. The N-terminal extension is cleaved in vitro after isolation from the culture broth and will therefore have a cleavage site next to B1. N-terminal extensions of the type suitable in the present invention are disclosed in U.S. Pat. No. 5,395,922, and European Patent No. 765,395A.
- The polynucleotide sequence coding for the single-chain insulin of the invention may be prepared synthetically by established standard methods, e.g. the phosphoamidite method described by Beaucage et al. (1981) Tetrahedron Letters 22:1859-1869, or the method described by Matthes et al. (1984) EMBO Journal 3:801-805. According to the phosphoamidite method, oligonucleotides are synthesized, for example, in an automatic DNA synthesizer, purified, duplexed and ligated to form the synthetic DNA construct. A currently preferred way of preparing the DNA construct is by polymerase chain reaction (PCR).
- The polynucleotide sequences may also be of mixed genomic, cDNA, and synthetic origin. For example, a genomic or cDNA sequence encoding a leader peptide may be joined to a genomic or cDNA sequence encoding the A and B chains, after which the DNA sequence may be modified at a site by inserting synthetic oligonucleotides encoding the desired amino acid sequence for homologous recombination in accordance with well-known procedures or preferably generating the desired sequence by PCR using suitable oligonucleotides.
- In a further aspect the invention is related to a vector which is capable of replicating in the selected microorganism or host cell and which carries a polynucleotide sequence encoding the single-chain insulin of the invention. The recombinant vector may be an autonomously replicating vector, i.e., a vector which exists as an extra-chromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extra-chromosomal element, a mini-chromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used. The vector may be linear or closed circular plasmids and will preferably contain an element(s) that permits stable integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.
- In one embodiment, the recombinant expression vector is capable of replicating in yeast. Examples of sequences which enable the vector to replicate in yeast are the yeast plasmid 2 μm replication genes REP 1-3 and origin of replication.
- The vectors of the present invention may contain one or more selectable markers which permit easy selection of transformed cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like. Examples of bacterial selectable markers are the daI genes from Bacillus subtilis or Bacillus licheniformis, or markers which confer antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracycline resistance. Selectable markers for use in a filamentous fungal host cell include amdS (acetamidase), argB (ornithine carbamoyltransferase), pyrG (orotidine-5′-phosphate decarboxylase) and trpC (anthranilate synthase. Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. A well suited selectable marker for yeast is the Schizosaccharomyces pompe TPI gene (Russell (1985) Gene 40:125-130).
- In the vector, the polynucleotide sequence is operably connected to a suitable promoter sequence. The promoter may be any nucleic acid sequence which shows transcriptional activity in the host cell of choice including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extra-cellular or intra-cellular polypeptides either homologous or heterologous to the host cell.
- Examples of suitable promoters for directing the transcription in a bacterial host cell, are the promoters obtained from the E. coli lac operon, Streptomyces coelicolor agarase gene (dagA), Bacillus subtilis levansucrase gene (sacB), Bacillus licheniformis alpha-amylase gene (amyL), Bacillus stearothermophilus maltogenic amylase gene (amyM), Bacillus amyloliquefaciens alpha-amylase gene (amyQ), and Bacillus licheniformis penicillinase gene (penP). Examples of suitable promoters for directing the transcription in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, and Aspergillus niger acid stable alpha-amylase. In a yeast host, useful promoters are the Saccharomyces cerevisiae Ma1, TPI, ADH or PGK promoters.
- The polynucleotide construct of the invention will also typically be operably connected to a suitable terminator. In yeast a suitable terminator is the TPI terminator (Alber et al. (1982) J. Mol. Appl. Genet. 1:419-434).
- The procedures used to ligate the polynucleotide sequence of the invention, the promoter and the terminator, respectively, and to insert them into a suitable vector containing the information necessary for replication in the selected host, are well known to persons skilled in the art. It will be understood that the vector may be constructed either by first preparing a DNA construct containing the entire DNA sequence encoding the single-chain insulins of the invention, and subsequently inserting this fragment into a suitable expression vector, or by sequentially inserting DNA fragments containing genetic information for the individual elements (such as the signal, pro-peptide, connecting peptide, A and B chains) followed by ligation.
- The present invention also relates to recombinant host cells, comprising a polynucleotide sequence encoding the single-chain insulins of the invention. A vector comprising such polynucleotide sequence is introduced into the host cell so that the vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier. The term “host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The host cell may be a unicellular microorganism, e.g., a prokaryote, or a non-unicellular microorganism, e.g., a eukaryote. Useful unicellular cells are bacterial cells such as gram positive bacteria including, but not limited to, a Bacillus cell, Streptomyces cell, or gram negative bacteria such as E. coli and Pseudomonas sp. Eukaryote cells may be mammalian, insect, plant, or fungal cells. In a preferred embodiment, the host cell is a yeast cell. The yeast organism used in the process of the invention may be any suitable yeast organism which, on cultivation, produces large amounts of the single chain insulin of the invention. Examples of suitable yeast organisms are strains selected from the yeast species Saccharomyces cerevisiae, Saccharomyces kluyveri, Schizosaccharomyces pombe, Sacchoromyces uvarum, Kluyveromyces lactis, Hansenula polymorpha, Pichia pastoris, Pichia methanolica, Pichia kluyveri, Yarrowia lipolytica, Candida sp., Candida utilis, Candida cacaoi, Geotrichum sp., and Geotrichum fermentans.
- The transformation of the yeast cells may for instance be effected by protoplast formation followed by transformation in a manner known per se. The medium used to cultivate the cells may be any conventional medium suitable for growing yeast organisms. The secreted insulin precursor of the invention, a significant proportion of which will be present in the medium in correctly processed form, may be recovered from the medium by conventional procedures including separating the yeast cells from the medium by centrifugation, filtration or catching the insulin precursor by an ion exchange matrix or by a reverse phase absorption matrix, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, followed by purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, affinity chromatography, or the like.
- Pharmaceutical Compositions
- Compositions containing single-chain insulins of this invention can be used in the treatment of states which are sensitive to insulin. Thus, they can be used in the treatment of type 1 diabetes, type 2 diabetes and hyperglycaemia for example as sometimes seen in seriously injured persons and persons who have undergone major surgery. The optimal dose level for any patient will depend on a variety of factors including the efficacy of the specific insulin derivative employed, the age, body weight, physical activity, and diet of the patient, on a possible combination with other drugs, and on the severity of the state to be treated. It is recommended that the daily dosage of the insulin derivative of this invention be determined for each individual patient by those skilled in the art in a similar way as for known insulin compositions.
- Usually, the pharmaceutical preparations of this invention are administered subcutaneously. However the single-chain insulins of the invention may also be used in insulin pumps and may be formulated for pulmunal administration.
- Single-chain insulins according to the present invention having at least one basic amino acid residues in the peptide sequence connecting B30 or B29 with A1 are expected to have a protracted insulin activity. Due to the additional positive charge the isoelectric point will be increased compared to human insulin and the pH of the pharmaceutical formulation may therefore preferably be below neutral pH e.g. below about 6. When such single-chain insulin preparations are injected they will precipitates at the injection sites where neutral pH exists and will then slowly be dissolved and released from the injection site. The slow release from the injection site will lead to a protracted action which may be wanted for certain applications. Pharmaceutical preparations of the claimed single-chain insulins will contain usual adjuvants and additives and are preferably formulated as an aqueous solution. The aqueous medium is made isotonic, for example, with sodium chloride, sodium acetate or glycerol. Furthermore, the aqueous medium may contain zinc ions, buffers and preservatives. The pH value of the composition is adjusted to the desired value and may be between about 4 to about 8.5, preferably between 7 and 7.5 depending on the isoelectric point, pI, of the single-chain insulin in question.
- Consequently, this invention also relates to a pharmaceutical composition containing a single-chain insulin of the invention and optionally one or more agents suitable for stabilization, preservation or isotonicity, for example, zinc ions, phenol, cresol, a parabene, sodium chloride, glycerol or mannitol. The zinc content of the present formulations may be between 0 and about 6 zinc atoms per insulin hexamer. The single-chain insulins may also be formulated with IFD ligands as disclosed in WO 2003027081.
- The buffer used in the pharmaceutical preparation according to the present invention may be selected from the group consisting of sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, bicine, tricine, malic acid, succinate, maleic acid, fumaric acid, tartaric acid, aspartic acid or mixtures thereof. Each one of these specific buffers constitutes an alternative embodiment of the invention.
- The pharmaceutically acceptable preservative may be selected from the group consisting of phenol, o-cresol, m-cresol, p-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, bronopol, benzoic acid, imidurea, chlorohexidine, sodium dehydroacetate, chlorocresol, ethyl p-hydroxybenzoate, benzethonium chloride, chlorphenesine (3p-chlorphenoxypropane-1,2-diol) or mixtures thereof. In a further embodiment of the invention the preservative is present in a concentration from 0.1 mg/ml to 20 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 0.1 mg/ml to 5 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 5 mg/ml to 10 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 10 mg/ml to 20 mg/ml. Each one of these specific preservatives constitutes an alternative embodiment of the invention. The use of a preservative in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- The isotonicity agent may be selected from the group consisting of a salt (e.g. sodium chloride), a sugar or sugar alcohol, an amino acid (e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine), an alditol (e.g. glycerol (glycerine), 1,2-propanediol (propyleneglycol), 1,3-propanediol, 1,3-butanediol) polyethyleneglycol (e.g. PEG400), or mixtures thereof. Any sugar such as mono-, di-, or polysaccharides, or water-soluble glucans, including for example fructose, glucose, mannose, sorbose, xylose, maltose, lactose, sucrose, trehalose, dextran, pullulan, dextrin, cyclodextrin, soluble starch, hydroxyethyl starch and carboxymethylcellulose-Na may be used. In one embodiment the sugar additive is sucrose. Sugar alcohol is defined as a C4-C8 hydrocarbon having at least one —OH group and includes, for example, mannitol, sorbitol, inositol, galactitol, dulcitol, xylitol, and arabitol. In one embodiment the sugar alcohol additive is mannitol. The sugars or sugar alcohols mentioned above may be used individually or in combination. There is no fixed limit to the amount used, as long as the sugar or sugar alcohol is soluble in the liquid preparation and does not adversely effect the stabilizing effects achieved using the methods of the invention. In one embodiment, the sugar or sugar alcohol concentration is between about 1 mg/ml and about 150 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 1 mg/ml to 50 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 1 mg/ml to 7 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 8 mg/ml to 24 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 25 mg/ml to 50 mg/ml. Each one of these specific isotonic agents constitutes an alternative embodiment of the invention. The use of an isotonic agent in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19th edition, 1995.
- The single-chain insulins of this invention may also be mixed with other single-chain insulins, human insulin or human insulin analogues or derivatives having a protracted or rapid acting insulin activity to prepare insulin compositions consisting of a mixture of rapid acting and protracted insulin. Examples of such insulin analogues are described e.g. in the European patent applications having the publication Nos. EP 214826, EP 375437 and EP 383472.
- The single-chain insulins according to the present invention may also be mixed with other pharmaceutically active compounds such as GLP-1, GLP-2 and exendin or analogues or derivatives thereof. The single-chain insulins according to the present invention may also be used on combination treatment together with an oral antidiabetic such as a thiazolidindione, metformin and other type 2 diabetic pharmaceutical preparation for oral treatment.
- Abbreviations and Nomenclature.
- By a single-chain insulin is meant a polypeptide sequence of the general structure B-C-A wherein B is the human B insulin chain or an analogue or derivative thereof, A is the human insulin A chain or an analogue or derivative and C is a peptide chain of 5-11 amino acid residues connecting the C-terminal amino acid residue in the B-chain (normally B30) with A1. If the B chain is a desB30 chain the connecting peptide will connect B29 with A1. The single-chain insulin may be derivatized by being acylated at a Lys residue. The single-chain insulin will contain correctly positioned disulphide bridges (three) as in human insulin that is between CysA7 and CysB7 and between CysA20 and CysB19 and an internal disulfide bridge between CysA6 and CysA11.
- Analogues of the B and A chains of the human insulin B and A chains are B and A chains having one or more mutations, substitutions, deletions and or additions of the A and/or B amino acid chains relative to that of the human insulin molecule. The insulin analogues are preferably such wherein one or more of the naturally occurring amino acid residues, preferably one, two, or three of them, have been substituted by another codable amino acid residue. In one embodiment, the instant invention comprises analogue molecules having on or more of the position B1, B3, B10, B22; B27, B28, B29, A8, A15 or A22 relative to the natural human insulin molecule as explained in further details below.
- DesB30 or B(1-29) refers to a natural insulin B chain or an analogue thereof lacking the B30 amino acid residue. B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivatives thereof. A(1-21) means the natural insulin A chain or an analogue or derivative thereof and A(1-20) means the first 20 natural amino acid residues of the A chain of human insulin or an analogue or derivative thereof. The amino acid residues are indicated in the three letter amino acid code or the one letter amino code.
- With B1, A1 etc. is meant the amino acid residue in position 1 in the B chain of insulin (counted from the N-terminal end) and the amino acid residue in position 1 in the A chain of insulin (counted from the N-terminal end), respectively.
- By insulin analogue as used herein is meant a polypeptide having a molecular structure which formally can be derived from the structure of human insulin. Insulin from other animals thus becomes analogues of human insulin. The structure of an analogue can be derived e.g. by deleting and/or substituting at least one amino acid residue occurring in the natural insulin and/or by adding at least one amino acid residue. The added and/or substituted amino acid residues can either be a codable amino acid residues, defined as a mutation, or other naturally occurring amino acid residues, including D-amino acids, or purely synthetic amino acid residues such as N-methyl amino acids, defined as a substitution. The structure can also be derived from a naturally occurring insulin by insertion of/substitution with a non-peptide moiety, e.g. a retroinverso fragment, or incorporation of non-peptide bonds such as an azapeptide bond (CO substituted by NH) or pseudo-peptide bond (e.g. NH substituted with CH2).
- Mutation or substitution of Asn residues improves the chemical stability of insulin and the pharmaceutically preparations hereof. Incorporation of D-amino acids and exchange of natural peptide bonds with non-peptide bonds may render resistance towards proteolytic enzymes.
- When residues of Asp and Glu occur in the sequence the peptide chain may continue via iso-peptide bonds, i.e. via the β- or γ-linked carboxyl groups of the side-chains, respectively.
- Examples of insulin analogues are such wherein Pro in position 28 of the B chain may be mutated with Asp, Lys, or Ile. In another embodiment Lys at position B29 is mutated with Pro. Furthermore B27 Thr may be mutated with Lys, Arg or Glu. Also, Asn at position A21 may be mutated with Ala, Gln, Glu, Gly, His, Ile, Leu, Met, Ser, Thr, Trp, Tyr or Val, in particular with Gly, Ala, Ser, or Thr and preferably with Gly. Furthermore, Asn at position B3 may be mutated with Thr, Lys, Gln, Glu or Asp, and Asn in position A18 may be mutated with Gln. Further examples of insulin analogues are the deletion analogues des(B1 Phe) insulin; insulin analogues wherein the B-chain has an N-terminal extension and insulin analogues wherein the A-chain has a C-terminal extension, e.g. a Lys.
- By insulin derivative as used herein is meant a naturally occurring insulin or an insulin analogue which has been chemically modified in vitro, e.g. by introducing a group in a side chain in one or more positions of the insulin, e.g. a nitro group in a tyrosine residue, or iodine in a tyrosine residue, or by conversion of a free carboxylic group to an ester group or to an amide group, or by converting an amino group to an amide by acylation, or by acylating a hydroxy group rendering an ester, or by alkylation of a primary amine rendering a secondary amine. Other derivatives are obtained by oxidation or reduction of the side-chains of the amino acid residues in the insulin.
- The single-chain insulins are named according to the following rule: The sequence starts with the B-chain, continues with the C-peptide and ends with the A-chain. The amino acid residues are named after their respective counterparts in human insulin and mutations and acylations are explicitly described whereas unaltered amino acid residues in the A- and B-chains are not mentioned. For example, an insulin having the following mutations as compared to human insulin A21G, B30, B29R, desB30 and the C-peptide TGLGKGQ (SEQ ID NO:19) connecting the C-terminal B-chain and the N-terminal A-chain is named B(1-29)-B30-B29R-TGLGKGQ(SEQ ID NO:19)-A(1-21)-A18Q-A21G human insulin.
- By acyl group is meant the radical derived from an organic acid by removal of the hydroxyl group, i.e. the R—CO— radical, where R can be either hydrogen, an alkyl group or an O-alkyl group.
- By acylation is understood the chemical reaction whereby a hydrogen of an amino group or hydroxy group is exchanged with an acyl group.
- With preferential or selective acylation is meant an acylation which occurs in a desired position at a higher degree, preferably at least at two or three times higher degree than in a not desired position. In one embodiment of the present invention the acylation should preferably only take place in the ε-amino group in the LysB29 or in an inserted Lys residue in another position or in the N-terminal B1 amino acid residue.
- With activated acid is meant a carboxylic acid in which an activated leaving group has been attached to the acyl carbon enabling reaction with an amino group under formation of a amide bond and release of the leaving group. Activated fatty acids may be activated esters of fatty acids, activated amides of fatty acids and anhydrides or chlorides. Activated fatty acids include derivatives thereof such as esters with 1-hydroxybenzotriazole and N-hydroxysuccinimide.
- With fatty acid or acyl group is meant a linear or branched carboxylic acid having at least 2 carbon atoms and being saturated or unsaturated. In one embodiment of the present invention the acyl group is a fatty acid having from 6 to 24 C-atoms.
-
- is assigned the name: B(1-29)-B30-B29R-TGLGK((eps)myristoyl)GQ-A(1-21)-A180-A21G human insulin (SEQ ID NO:133).
- By single-chain insulin having insulin activity is meant single-chain insulin with the ability to lower the blood glucose in mammalians as measured in a suitable animal model, which may be a rat, rabbit, or pig model, after suitable administration e.g. by intravenous or subcutaneous administration.
- pI is the pH at which a peptide has a zero net charge. The pI of a peptide can be calculated the following formula:
- wherein N is the number of occurrence.
- By soluble at neutral pH is meant that a 0.6 mM single chain insulin is soluble at neutral pH.
- By high physical stability is meant a tendency to fibrillation being less than 50% of that of human insulin. Fibrillation may be described by the lag time before fibril formation is initiated at a given conditions.
- By fibrillation is meant a physical process by which partially unfolded insulin molecules interacts with each other to form linear aggregates.
- A polypeptide with Insulin receptor and IGF-1 receptor affinity is a polypeptide which is capable of interacting with an insulin receptor and an human IGF-1 receptor in a suitable binding assay. Such receptor assays are well-know within the field and are further described in the examples. The present single-chain insulins will not bind to the IGF-1 receptor or will have a rather low affinity to said receptor. More precisely the present single-chain insulins will have an affinity towards the IGF-1 receptor of substantially the same magnitude or less as that of human insulin when measured as described in the examples.
- The affinity of the present single-chain insulins towards the insulin receptor is measured as disclosed in the examples and will typically be between 20 and 200 percent of that of human insulin.
- POT” is the Schizosaccharomyces pombe triose phosphate isomerase gene, and “TPI1” is the S. cerevisiae triose phosphate isomerase gene.
- By a “leader” is meant an amino acid sequence consisting of a pre-peptide (the signal peptide) and a pro-peptide.
- The term “signal peptide” is understood to mean a pre-peptide which is present as an N-terminal sequence on the precursor form of a protein. The function of the signal peptide is to allow the heterologous protein to facilitate translocation into the endoplasmic reticulum. The signal peptide is normally cleaved off in the course of this process. The signal peptide may be heterologous or homologous to the yeast organism producing the protein. A number of signal peptides which may be used with the DNA construct of the invention including yeast aspartic protease 3 (YAP3) signal peptide or any functional analog (Egel-Mitani et al. (1990) YEAST 6:127-137 and U.S. Pat. No. 5,726,038) and the α-factor signal of the MFα1 gene (Thorner (1981) in The Molecular Biology of the Yeast Saccharomyces cerevisiae, Strathern et al., eds., pp 143-180, Cold Spring Harbor Laboratory, NY and U.S. Pat. No. 4,870,00.
- The term “pro-peptide” means a polypeptide sequence whose function is to allow the expressed polypeptide to be directed from the endoplasmic reticulum to the Golgi apparatus and further to a secretory vesicle for secretion into the culture medium (i.e. exportation of the polypeptide across the cell wall or at least through the cellular membrane into the periplasmic space of the yeast cell). The pro-peptide may be the yeast α-factor pro-peptide, vide U.S. Pat. Nos. 4,546,082 and 4,870,008. Alternatively, the pro-peptide may be a synthetic pro-peptide, which is to say a pro-peptide not found in nature. Suitable synthetic pro-peptides are those disclosed in U.S. Pat. Nos. 5,395,922; 5,795,746; 5,162,498 and WO 98/32867. The pro-peptide will preferably contain an endopeptidase processing site at the C-terminal end, such as a Lys-Arg sequence or any functional analogue thereof.
- In the present context the three-letter or one-letter indications of the amino acids have been used in their conventional meaning as indicated in the following. Unless indicated explicitly, the amino acids mentioned herein are L-amino acids. Further, the left and right ends of an amino acid sequence of a peptide are, respectively, the N- and C-termini unless otherwise specified.
Abbreviations for amino acids One-letter Amino acid Tree-letter code code Glycine Gly G Proline Pro P Alanine Ala A Valine Val V Leucine Leu L Isoleucine Ile I Methionine Met M Cysteine Cys C Phenylalanine Phe F Tyrosine Tyr Y Tryptophan Trp W Histidine His H Lysine Lys K Arginine Arg R Glutamine Gln Q Asparagine Asn N Glutamic Acid Glu E Aspartic Acid Asp D Serine Ser S Threonine Thr T
The following abbreviations have been used in the specification and examples:
Bzl=Bn: benzyl
DIEA: N,N-diisopropylethylamine
DMF: N,N-dimethylformamide
tBu: tert-butyl
Glu: Glutamic acid
TSTU: O(N-succinimidyl)-1,1,3,3-tetramethyluronium tetrafluoroborate
THF: Tetrahydrofuran
EtOAc: Ethyl acetate
DIPEA: Diisopropylethylamine
HOAt: 1-Hydroxy-7-azabenzotriazole
NMP: N-methylpyrrolidin-2-one
TEA: triethyl amine
Su: succinimidyl=2,5-dioxo-pyrrolidin-1-yl
TFA: trifluoracetic acid
DCM: dichloromethane
DMSO: dimethyl sulphoxide
RT: room temperature - The present invention is described in further detain in the following examples which are not in any way intended to limit the scope of the invention as claimed. All references cited are herein specifically incorporated by reference for all that is described therein.
- General Procedures
- All expressions plasmids are of the C-POT type, similar to those described in EP 171, 142, which are characterized by containing the Schizosaccharomyces pombe triose phosphate isomerase gene (POT) for the purpose of plasmid selection and stabilization in S. cerevisiae. The plasmids also contain the S. cerevisiae triose phosphate isomerase promoter and terminator. These sequences are similar to the corresponding sequences in plasmid pKFN1003 (described in WO 90/100075) as are all sequences except the sequence of the EcoRI-XbaI fragment encoding the fusion protein of the leader and the insulin product. In order to express different fusion proteins, the EcoRI-XbaI fragment of pKFN1003 is simply replaced by an EcoRI-XbaI fragment encoding the leader-insulin fusion of interest. Such EcoRI-XbaI fragments may be synthesized using synthetic oligonucleotides and PCR according to standard techniques.
- Yeast transformants were prepared by transformation of the host strain S. cerevisiae strain MT663 (MATa/MATα pep4-3/pep4-3 HIS4/his4 tpi::LEU2/tpi::LEU2 Cir+). The yeast strain MT663 was deposited in the Deutsche Sammlung von Mikroorganismen und Zellkulturen in connection with filing WO 92/11378 and was given the deposit number DSM 6278.
- MT663 was grown on YPGaL (1% Bacto yeast extract, 2% Bacto peptone, 2% galactose, 1% lactate) to an O.D. at 600 nm of 0.6. 100 ml of culture was harvested by centrifugation, washed with 10 ml of water, recentrifuged and resuspended in 10 ml of a solution containing 1.2 M sorbitol, 25 mM Na2EDTA pH=8.0 and 6.7 mg/ml dithiotreitol. The suspension was incubated at 30° C. for 15 minutes, centrifuged and the cells resuspended in 10 ml of a solution containing 1.2 M sorbitol, 10 mM Na2EDTA, 0.1 M sodium citrate, pH 0 5.8, and 2 mg Novozym®234. The suspension was incubated at 30° C. for 30 minutes, the cells collected by centrifugation, washed in 10 ml of 1.2 M sorbitol and 10 ml of CAS (1.2 M sorbitol, 10 mM CaCl2, 10 mM Tris HCl (Tris=Tris(hydroxymethyl)aminomethane) pH=7.5) and resuspended in 2 ml of CAS. For transformation, 1 ml of CAS-suspended cells was mixed with approx. 0.1 mg of plasmid DNA and left at room temperature for 15 minutes. 1 ml of (20% polyethylene glycol 4000, 10 mM CaCl2, 10 mM Tris HCl, pH=7.5) was added and the mixture left for a further 30 minutes at room temperature. The mixture was centrifuged and the pellet resuspended in 0.1 ml of SOS (1.2 M sorbitol, 33% v/v YPD, 6.7 mM CaCl2) and incubated at 30° C. for 2 hours. The suspension was then centrifuged and the pellet resuspended in 0.5 ml of 1.2 M sorbitol. Then, 6 ml of top agar (the SC medium of Sherman et al. (1982) Methods in Yeast Genetics, Cold Spring Harbor Laboratory) containing 1.2 M sorbitol plus 2.5% agar) at 52° C. was added and the suspension poured on top of plates containing the same agar-solidified, sorbitol containing medium.
- S. cerevisiae strain MT663 transformed with expression plasmids was grown in YPD for 72 h at 30° C.
- A number of single-chain insulins were produced as described above and isolated from the culture medium and purified for further testing. The single-chain insulins were tested for biological insulin activity as measured by binding affinity to the human insulin receptor relative to that of human insulin as described below.
- Furthermore, the affinity to the IGF-1 was tested as described below. The results are shown Table 1 where “IR” means human insulin receptor binding relative to that of human insulin.
TABLE 1 Human IGF-1 receptor Single-chain binding relative to insulin (PAK) Connecting peptide Amino acid substitutions IR human insulin 1606 RSFDGK 41% (SEQ ID NO: 34) 1663 TVGSSRGK 46% (SEQ ID NO: 35) 1664 TGSSRGK 43% (SEQ ID NO: 36) 1735 VGRSSGK [A21G] 143% (SEQ ID NO: 31) 1754 AGRGSGP 53% (SEQ ID NO: 18) 1767 AGRGSGP [A18Q_A21G] 28% (SEQ ID NO: 18) 1801 AGRGSGK 129% (SEQ ID NO: 15) 1817 AGRGSGK [A21G] 63% (SEQ ID NO: 15) 1800 AGRGSGK [A18Q_A21G] 175% (SEQ ID NO: 15) 1805 AGRGSGK [B3Q_A18Q_A21G] 83% (SEQ ID NO: 15) 1808 AGRGSGK [B1G_B3Q_A18Q_A21G] 86% (SEQ ID NO: 15) 1802 AGRGK [A18Q_A21G] 25% (SEQ ID NO: 32) 1786001 AGLGDGK 50% (SEQ ID NO: 37) 1786017 AGLGVGK 47% (SEQ ID NO: 38) 1786026 AGLGMGK 35% (SEQ ID NO: 39) 1786030 AGLGSGK 197% (SEQ ID NO: 33) 1786036 AGLGYGK 35% (SEQ ID NO: 40) 1786044 AGLGQGK 22% (SEQ ID NO: 41) 1786046 AGLGGGK 68% (SEQ ID NO: 42) 1786053 AGLGRGK 54% (SEQ ID NO: 43) 1764 AGLGSGK [A18Q_A21G] 120% (SEQ ID NO: 33) 1816 AGLGSGQ [B3Q_A18Q] 37% (SEQ ID NO: 44) 1757 AGLGSGK 116% (SEQ ID NO: 24) 1755 AGMGSGK 137% (SEQ ID NO: 45) 1762 AGMGSGP [A18Q_A21G] 20% (SEQ ID NO: 25) 1672 AGSSSGK 31% (SEQ ID NO: 46) 1784 WASGSGK [A18Q_A21G] 23% (SEQ ID NO: 47) 1785 ASWGSGK [A18Q_A21G] 136% (SEQ ID NO: 48) 1796 AWSGSGK [A18Q_A21G] 102% (SEQ ID NO: 49) 1781 TGLGSGQ 122% (SEQ ID NO: 22) 1782 TGLGSGK 130% (SEQ ID NO: 21) 1783 TGLGRGK 86% (SEQ ID NO: 23) 1810 TGLGSGQ [A18Q_A21G] 73% (SEQ ID NO: 22) 1811 TGLGSGK [A18Q_A21G] 136% (SEQ ID NO: 21) 1812 TGLGRGK [A18Q_A21G] 118% (SEQ ID NO: 23) 1820 TGLGKGQ [B3Q_B29R_A18Q_A21G] 55% (SEQ ID NO: 19) 1821 TGLGSGK [B3Q_B29R_A18Q_A21G] 128% (SEQ ID NO: 21) 1835 TGLGKGQ [B29E_A18Q] 50% (SEQ ID NO: 19) 1837 TGLGKGQ [B29A_A18Q] 71% (SEQ ID NO: 19) 1838 TGLGKGQ [B29R_A18Q] 113% (SEQ ID NO: 19) 1845 TGLGKGQ [B27E_B29A_A18Q] 20% (SEQ ID NO: 19) 1846 TGLGKGR [B29A_A18Q] 92% (SEQ ID NO: 20) 1847 TGLGKGR [B27E_B29A_A18Q] 82% (SEQ ID NO: 20) 1848 TGLGKGR [B27E_B29E_A18Q] 40% (SEQ ID NO: 20) 1849 TGLGKGR [B29E_A18Q] 60% (SEQ ID NO: 20) 1850 TGLGSGQ [B10R] 31% (SEQ ID NO: 22) 1864 TGLGSGK [B3K_A18Q_A21G] 301% (SEQ ID NO: 21) 1877 TGLGSGK [B28D_A18Q] 140% (SEQ ID NO: 21) 1881 TGLGSGK [A18K_A21G] (SEQ ID NO: 21) 1891 TGLGSGQ [B10A_A18Q] 34% (SEQ ID NO: 22) 1892 TGLGSGQ [desB1_B3Q_B10A_A18Q] 38% (SEQ ID NO: 22) 1893 TGLGSGQ [B10Q_A18Q] 51% (SEQ ID NO: 22) 1894 TGLGSGQ [desB1_B3Q_B10Q_A18Q] 38% (SEQ ID NO: 22) 1791 HGLYSGK [A18Q_A21G] 226% (SEQ ID NO: 50) 1818 KGLGSGQ [B3Q_B29R_A18Q_A21G] 125% (SEQ ID NO: 51) 1819 C [B3Q_B29R_A18Q_A21G] 47% (SEQ ID NO: 26) 1824 GRGSGK [B1G_B3Q_A18Q_A21G] 75% (SEQ ID NO: 52) 1727 VGLSSGD 54% (SEQ ID NO: 53) 1728 VGLSSGQ 151% (SEQ ID NO: 54) 1730 VGLRSGK 306% (SEQ ID NO: 55) 1731 VGLMSGK 247% (SEQ ID NO: 56) 1841 VGLGGGPGAGK 43% (SEQ ID NO: 29) 1842 VGLGPGAGK 41% (SEQ ID NO: 58) 1813 VGLGGGPGAGK [A18Q] 39% (SEQ ID NO: 59) 1814 VGLGGPGAGK [A18Q] 43% (SEQ ID NO: 60) 1815 VGLGPGAGK [A18Q] 57% (SEQ ID NO: 58) 1787 VGLSSGQ [A18Q_A21G] 123% (SEQ ID NO: 27) 1788 VGLYSGK [A18Q_A21G] 323% (SEQ ID NO: 28) 1789 VGLRSGK [A18Q_A21G] 248% (SEQ ID NO: 55) 1790 VGLMSGK [A18Q_A21G] 261% (SEQ ID NO: 56) 1734 VGLSSGK [A21G] 211% (SEQ ID NO: 30) 1866 VGLSSGQ [A18Q] 196% (SEQ ID NO: 27) 1869 VGLSSGQ [B22K_B29A_A18Q] 69% (SEQ ID NO: 27) 1870 VGLSSGQ [B29A_A15K_A18Q] (SEQ ID NO: 27) 1871 VGLSSGQ [B29A_A18K] 82% (SEQ ID NO: 27) 1872 VGLSSGQ [B3K_B29A_A18Q] (SEQ ID NO: 27) 1854 VGLYSGK [B29E_A18Q] 40% (SEQ ID NO: 28) 1875 VGLSSGQ [B28K_B29A_A18Q] 35% (SEQ ID NO: 27) 1876 VGLSSGQ [B27K_B29A_A18Q] 38% (SEQ ID NO: 27) 1878 VGLSSGQ [B3K_A18K_A21G] 172% (SEQ ID NO: 27) 1879 VGLSSGQ [B29A_A18Q] 92% (SEQ ID NO: 27) 1880 VGLSSGQ [B1G_B3Q_A18Q_A21G] 54% (SEQ ID NO: 27) 1855 VGLYSGK [B28D_A18Q] 221% (SEQ ID NO: 28) 1858 VGLGGGPGKGR [B29E_A18Q] 36% (SEQ ID NO: 121) 1861 VGLGKGPGAGK [A18Q_A21G] 36% (SEQ ID NO: 61) 1862 VGLGGGPGAGK [B3K_A18Q_A21G] 42% (SEQ ID NO: 29) 1884 VGLSSGQ [B29A_A8K_A18Q] 89% (SEQ ID NO: 27) 1896 VGLSSGQ [B29A_A18Q_A22K] 38% (SEQ ID NO: 27) 1863 HGRGSGK [A18Q_A21G] 122% (SEQ ID NO: 62) 1873 KGLSSGQ [B29A_A18Q] 60% (SEQ ID NO: 63) 1874 VKLSSGQ [B29A_A18Q] 835 (SEQ ID NO: 64) 1688023 VGRSSGK 97% (SEQ ID NO: 31) 1688059 VGMSSGK 112% (SEQ ID NO: 65) 1655 TGSSSGK 43% (SEQ ID NO: 66) 1656 TVGSSSGK 57% (SEQ ID NO: 67) 1689007 LGSSSGK 49% (SEQ ID NO: 68) 1689008 RGSSSGK 54% (SEQ ID NO: 69) 1689012 QGSSSGK 34% (SEQ ID NO: 70) 1689021 GGSSSGK 23% (SEQ ID NO: 71) 1689037 SGSSSGK 49% (SEQ ID NO: 72) 1724005 VDSSSGK 32% (SEQ ID NO: 73) 1724012 VPSSSGK 80% (SEQ ID NO: 74) 1724014 VESSSGK 40% (SEQ ID NO: 75) 1724015 VWSSSGK 298% (SEQ ID NO: 76) 1724016 VTSSSGK 51% (SEQ ID NO: 77) 1724029 VASSSGK 81% (SEQ ID NO: 78) 1724040 VSSSSGK 73% (SEQ ID NO: 79) 1724042 VRSSSGK 76% (SEQ ID NO: 80) 1769013 QVGSSSGK [A18Q_A21G] 33% (SEQ ID NO: 81) 1769015 EVGSSSGK [A18Q_A21G] 42% (SEQ ID NO: 82) 1769020 SVGSSSGK [A18Q_A21G] 51% (SEQ ID NO: 83) 1769027 LVGSSSGK [A18Q_A21G] 68% (SEQ ID NO: 84) 1769033 PVGSSSGK [A18Q_A21G] 37% (SEQ ID NO: 85) 1769040 VVGSSSGK [A18Q_A21G] 29% (SEQ ID NO: 86) 1769053 GVGSSSGK [A18Q_A21G] 37% (SEQ ID NO: 87) 1769062 PVGSSSGK [A18Q_A21G] 56% (SEQ ID NO: 85) 1711 RGSSSGK 65% (SEQ ID NO: 120) 1674 VGASSGK 49% (SEQ ID NO: 86) VGSSNGK 48% (SEQ ID NO: 87) 1638077 VGSSRGK 61% 0.1% (SEQ ID NO: 17) VGSSGK (SEQ ID NO: 88) 1676 VGSSAGK 22% (SEQ ID NO: 119) 1723 VGSSRGK [A21G] 33% (SEQ ID NO: 17) 1617 VGSSNGK 48% (SEQ ID NO: 118) 1677 VGSSSAK 22% (SEQ ID NO: 89) 1766 VGSSSGK 62% 0.05% (SEQ ID NO: 16) 1724004 VGSSSGK 72% (SEQ ID NO: 16) 1760016 VGSSSGK [B10D] 135% (SEQ ID NO: 16) 1760023 VGSSSGK [B10E] 77% (SEQ ID NO: 16) 1760043 VGSSSGK [B10Q] 67% (SEQ ID NO: 16) 1760056 VGSSSGK [B10E] 83% (SEQ ID NO: 16) 1760059 VGSSSGK [B10N] 48% (SEQ ID NO: 16) 1738 VGSSSGK [A18Q] 89% (SEQ ID NO: 16) 1740 VGSSSGK [B1G_B3Q_A18Q_A21G] 90% (SEQ ID NO: 16) 1741 VGSSSGK [B1G] 112% (SEQ ID NO: 16) 1744 VGSSSGK [A18Q_A21G] 80% (SEQ ID NO: 16) 1860 VGSSSGK [B3K_A18Q_A21G] 83% (SEQ ID NO: 16) 1733 VGSSSGK [A21G] 42% (SEQ ID NO: 16) 1712 VGSSSGK B27R 85% (SEQ ID NO: 16) 1719 VGHSRGK 103% (SEQ ID NO: 90) 1721 HGSSRGK 118% (SEQ ID NO: 91) VGSASGK 80% (SEQ ID NO: 92) 1687009 VGSNSGK 48% (SEQ ID NO: 93) 1708 VGSRSGK 128% 0.2% (SEQ ID NO: 94) 1718 VGSHRGK 69% (SEQ ID NO: 95) 1687030 VGSGSGK 55% (SEQ ID NO: 96) 1687033 VGSYSGK 80% 0.2% (SEQ ID NO: 97) 1687046 VGSMSGK 82% 0.1% (SEQ ID NO: 98) 1688001 VGPSSGK 48% (SEQ ID NO: 99) 1688005 VGTSSGK 75% (SEQ ID NO: 100) 1688006 VGQSSGK 56% (SEQ ID NO: 101) 1688007 VGYSSGK 95% 0.2% (SEQ ID NO: 102) 1688011 VGLSSGK 132% 0.1% (SEQ ID NO: 30) 1688012 VGKSSGK 93% (SEQ ID NO: 103) 1688014 VGGSSGK 51% (SEQ ID NO: 104) 1709 VGRSSGK 97% 0.5% (SEQ ID NO: 105) 1688028 VGMSSGK 127% 0.2% (SEQ ID NO: 106) 1688056 VGVSSGK 59% (SEQ ID NO: 107) VGHSSGK 112% 0.15% (SEQ ID NO: 108) LGSSGK 49% (SEQ ID NO: 113) RGSSGK 54% 0.5% (SEQ ID NO: 114) QGSSGK 34% (SEQ ID NO: 115) GGSSGK 23% (SEQ ID NO: 116) SGSSGK 49% (SEQ ID NO: 117) GSSGK 35% (SEQ ID NO: 109) QGSSGK 36% (SEQ ID NO: 110) TRSSSGR (SEQ ID NO: 111) -
Insulin receptor binding of single-chain insulins with the motive of the connecting peptide of TRXXXGR (SEQ ID NO: 112) in percent of that of human insulin Human Insulin IGF-1 receptor receptor B chain XXX A-chain Binding IR binding B(1-29) YGS A(1-21) B((1-29) SSN A(1-21) 61% 0.1% B(1-29) LSQ A(1-21) 62% 0.05% B(1-29) PKS A(1-21) 18% B(1-29) LGG A(1-21) 43% B(1-29) VTG A(1-21) 57% B(1-29) STN A(1-21) 46% B(1-29) LES A(1-21) 43% B(1-29) IDS A(1-21) 31% B(1-29) NSQ A(1-21) 38% B(1-29) PSY A(1-21) 49% B(1-29) ENT A(1-21) 34% B(1-29) TPQ A(1-21) 22% B(1-29) NRT A(1-21) 22% -
- B(1-29)-B30-B29R-TGLGKGQ-A(1-21)-A18Q-A21G human insulin (SEQ ID NO:133) (150 mg, 24 μmol) was dissolved in aqueous sodium carbonate (100 mM, 2.8 mL) and added a solution of myristic acid N-hydroxysuccinimide ester (7.7 mg, 24 μmol, may be prepared according to B. Faroux-Corlay et al., J. Med. Chem. 2001, 44, 2188-2203) in N-methylpyrrolidin-2-one (0.5 mL). The resulting mixture was added more N-methylpyrrolidin-2-one (3 mL) and aqueous sodium carbonate (100 mM, 0.8 mL), to pH 10-11. The resulting mixture was stirred at room temperature for 50 minutes. pH was adjusted to 5.5 with 1 N hydrochloric acid. The solid formed was isolated by centrifugation and decantation. The residue was purified by preparative HPLC in two runs on a Jones Kromasil RP18 5 μm, 15×225 mm column, using a flow of 8 mL/min with the following gradient:
- 0.00-5.00 min: 10% CH3CN+0.1% TFA,
- 5.00-35.0 min: 10%-50% CH3CN+0.1% TFA,
- 35.0-45.0 min: 50%-90% CH3CN+0.1% TFA.
- Pure fractions were pooled and lyophilised to afford 12 mg of the title compound.
- Nanoflow Electrospray MS: m/z=6541 (M+1).
- HPLC: Rt=15.44 min.
- Column: C4, 5μ, 150×4 60 mm “phenomenex, Jupiter”.
- Injection 20 μl.
- Flow: 1.5 ml/min
- Solvents:
- A: 80% 0.0125 M Tris, 0.0187 M (NH4)2SO4 pH=7, 20% CH3CN.
- B: 80% CH3CN, 20% water.
- Gradient:
- 0.00-20.00 min: 5%-55% B,
- 20.0-22.0 min: 55%-80% B,
- 22.0-24.0 min: 80% B,
- 24.0-25.0 min: 80%-5% B,
- 25.0-32.0 min: 5% B.
-
- B(1-29)-B30-B29R-TGLGKGQ-A(1-21)-A18Q-A21G human insulin (SEQ ID NO:133) (150 mg, 24 μmol) was dissolved in aqueous sodium carbonate (100 mM, 2.8 mL) and added a solution of succinimidyl tert-butyl octadecandioate (prepared in analogy with the method described in example 4 (11 mg, 24 μmol) in acetonitrile (2 mL). The resulting mixture was added more acetonitrile (2 mL). pH of the mixture was 10-11. The resulting mixture was stirred at room temperature for 1 hour. pH was adjusted to 5.86 with 1N hydrochloric acid. The solid formed was isolated by centrifugation and decantation. The residue was purified by preparative HPLC in two runs on a Jones Kromasil RP18 5 μm, 15×225 mm column, using a flow of 8 mL/min with the following gradient:
- 0.00-5.00 min: 10% CH3CN,
- 5.00-35.0 min: 10%-50% CH3CN,
- 35.0-45.0 min: 50%-90% CH3CN.
- Pure fractions were pooled and lyophilised to afford 48 mg of intermediary B(1-29)-B3Q-B29R-TGLGK((eps)tert-butyl octadecandioyl)GQ-A(1-21)-A18Q-A21G human insulin (SEQ ID NO:133).
- The above B(1-29)-B3Q-B29R-TGLGK((eps)tert-butyl octadecandioyl)GQ-A(1-21)-A18Q-A21G human insulin(SEQ ID NO:133) (48 mg) was added trifluoroacetic acid (1.8 ml) and the mixture was gently stirred at room temperature for 35 minutes. The mixture was concentrated in vacuo and stripped with dichloromethane twice. The residue was purified by preparative HPLC in two runs on a Macherey-Nagel SP 250/21 Nucleosil 300-7 C4 column, using a flow of 8 mL/min with the following gradient:
- 0.00-5.00 min: 10% CH3CN,
- 5.00-30.0 min: 10%-50% CH3CN,
- 30.0-35.0 min: 50%-90% CH3CN.
- 35.0-40.0 min: 100% CH3CN.
- This afforded 19 mg B(1-29)-B30-B29R-TGLGK((eps)octadecandioyl)GQ-A(1-21)-A18Q-A21G human insulin (SEQ ID NO:133)
- Nanoflow Electrospray MS: m/z=6626 (calculated: 6626)
- HPLC: Rt=12.62 min.
- Column: C4, 5μ, 150×4 60 mm “phenomenex, Jupiter”.
- Flow: 1.5 ml/min
- Solvents:
- A: 80% 0.0125 M Tris, 0.0187 M (NH4)2SO4 pH=7, 20% CH3CN.
- B: 80% CH3CN, 20% water.
- Gradient:
- 0.00-20.00 min: 5%-55% B,
- 20.0-22.0 min: 55%-80% B,
- 22.0-24.0 min: 80% B,
- 24.0-25.0 min: 80%-5% B,
- 25.0-32.0 min: 5% B.
-
- This compound was prepared similarly as described in example 2 from acylation of B(1-29)-B3Q-B29R-TGLGKGQ-A(1-21)-A18Q-A21G human insulin (SEQ ID NO:133) with tert-butyl hexadecandioyl-γ-L-Glu(OSu)-OtBu, followed by TFA mediated deprotection of the tBu esters.
- Data for the title compound:
- MALDI-TOF: m/z=6727 (calculated: 6727)
- HPLC: Rt=10.15 min.
- Column: C4, 5μ, 150×4 60 mm “phenomenex, Jupiter”.
- Flow: 1.5 ml/min
- Solvents:
- A: 80% 0.0125 M Tris, 0.0187 M (NH4)2SO4 pH=7, 20% CH3CN.
- B: 80% CH3CN, 20% water.
- Gradient:
- 0.00-20.00 min: 5%-55% B,
- 20.0-22.0 min: 55%-80% B,
- 22.0-24.0 min: 80% B,
- 24.0-25.0 min: 80%-5% B,
- 25.0-32.0 min: 5% B.
- Preparation of tert-butyl hexadecandioyl-γ-L-Glu(OSu)-OtBu
- Hexadecadioic acid (40.0 g, 140 mmol) was suspended in toluene (250 ml) and the mixture was heated to reflux. N,N-dimethylformamide di-tert-butyl acetal (76.3 g, 375 mmol) was added drop-wise over 4 hours. The mixture was refluxed overnight. The solvent was removed in vacuo at 50° C., and the crude material was suspended in DCM/AcOEt (500 ml, 1:1) and stirred for 15 mins. The solids were collected by filtration and triturated with DCM (200 ml). The filtrated were evaporated in vacuo to give crude mono-tert-butyl hexadecandioate, 30 grams. This material was suspended in DCM (50 ml), cooled with ice for 10 mins, and filtered. The solvent was removed in vacuo to leave 25 gram crude mono-tert-butyl hexadecandioate, which was recrystallized from heptane (200 ml) to give mono-tert-butyl hexadecandioate, 15.9 g (33%). Alternatively to recrystallization, the mono-ester can be purified by silica gel chromatography eluting with AcOEt/heptane.
- 1H-NMR (CDCl3) δ: 2.35 (t, 2H), 2.20 (t, 2H), 1.65-1.55 (m, 4H), 1.44 (s, 9H), 1.34-1.20 (m, 20H).
- The mono tert-butyl ester (2 g, 5.8 mmol) was dissolved in THF (20 ml) and treated with TSTU (2.1 g, 7.0 mmol) and DIEA (1.2 ml, 7.0 mmol) and stirred overnight. The mixture was filtered, and the filtrate was evaporated in vacuo. The residue was dissolved in AcOEt and washed twice with cold 0.1 M HCl and water. Drying over MgSO4 and evaporation in vacuo gave succinimidyl tert-butyl hexadecandioate, 2.02 g (79%).
- 1H-NMR (CDCl3) δ: 2.84 (s, 4H), 2.60 (t, 2H), 2.20 (t, 2H), 1.74 (p, 2H), 1.56 (m, 2H), 1.44 (s, 9H), 1.40 (m, 2H), 1.30-1.20 (m, 18H).
- Succinimidyl tert-butyl hexadecandioate (1 g, 2.27 mmol) was dissolved DMF (15 ml) and treated with L-Glu-OtBu (0.51 g, 2.5 mmol) and DIEA (0.58 ml, 3.41 mmol) and the mixture was stirred overnight. The solvent was evaporated in vacuo, and the crude product was dissolved in AcOEt, and washed twice with 0.2M HCl, with water and brine. Drying over MgSO4 and evaporation in vacuo gave tert-butyl hexadecandioyl-γ-L-Glu-OtBu, 1.2 g (100%).
- 1H-NMR (CDCl3) δ: 6.25 (d, 1H), 4.53 (m, 1H), 2.42 (m, 2H), 2.21 (m, 4H), 1.92 (m, 1H), 1.58 (m, 4H), 1.47 (s, 9H), 1.43 (s, 9H), 1.43-1.22 (m, 18H).
- Tert-butyl hexadecandioyl-γ-L-Glu-OtBu (1.2 g, 2.27 mmol) was dissolved in THF (15 ml) and treated with TSTU (0.82 g, 2.72 mmol) and DIEA (0.47 ml, 2.72 mmol) and stirred overnight. The mixture was filtered, and the filtrate was evaporated in vacuo. The residue was dissolved in AcOEt and washed twice with cold 0.1 M HCl and water. Drying over MgSO4 and evaporation in vacuo gave tert-butyl hexadecandioyl-γ-L-Glu(OSu)-OtBu, 1.30 g (92%).
- 1H-NMR (CDCl3) δ: 6.17 (d, 1H), 4.60 (m, 1H), 2.84 (s, 4H), 2.72 (m, 1H), 2.64 (m, 1H), 2.32 (m, 1H), 2.20 (m, 4H), 2.08 (m, 1H), 1.6 (m, 4H), 1.47 (s, 9H), 1.43 (s, 9H), 1.33-1.21 (m, 20H).
-
- B(1-29)-B27E-B29A-TGLGKGQ-A(1-21)-A18Q Human insulin (SEQ ID NO:134) (117 mg, 20 μmol) was dissolved in aqueous sodium carbonate (100 mM, 2.5 mL) and added a solution of myristic acid N-hydroxysuccinimide ester (9 mg, may be prepared according to B. Faroux-Corlay et al., J. Med. Chem. 2001, 44, 2188-2203) in acetonitrile (1.8 mL). The resulting mixture was stirred at room temperature for 65 minutes. pH was adjusted to 5.5 with 1N hydrochloric acid. The solid formed was isolated by centrifugation and decantation. The residue was purified by preparative HPLC on a Macherey-Nagel SP 250/21 Nucleusil 300-7 C4 column, using a flow of 10 mL/min with the following gradient:
- 0-10 min: 20% CH3CN+0.1% TFA,
- 10-80 min: 20%-90% CH3CN+0.1% TFA,
- 35.0-45.0 min: 50%-90% CH3CN+0.1% TFA.
- Pure fractions were pooled and lyophilised to afford 20 mg of the title compound.
- MALDI-TOF MS: m/z=6509. Calculated: 6518.
- HPLC: Rt=11.64 min. Column: “Phenomenex, Jupiter”, C4 5μ, 150×4—60 mm, injection: 20 μl. Solvents: A: 80% 0.0125 M Tris, 0.0187 M (NH4)2SO4 pH=7, 20% CH3CN; B: 80% CH3CN, 20% water, flow 1.5 ml/min with the following gradient:
- 0-20 min: 5-55% B,
- 20-22 min: 55-80% B,
- 22-24 min: 80% B,
- 24-25 min: 80-5% B,
- 25-32 min: 5% B.
- HPLC: Rt=12.95 min. Column: “Phenomenex, Jupiter”, C4 5μ, 150×4—60 mm, injection: 20 μl. Solvents: A: 0.1% TFA, 10% CH3CN, 89.9% water; B: 0.1% TFA, 80% CH3CN, 19.9% water, flow: 1.5 ml/min with the following gradient:
- 0-17 min: 20-90% B,
- 17-21 min: 90% B,
- 21-23 min: 90-20% B,
- 23-30 min: 20% B.
-
- B(1-29)-B29A-TGLGKGQ-A(1-21)-A18Q Human insulin (SEQ ID NO:135) (151 mg, 24 μmol) was dissolved in aqueous sodium carbonate (100 mM, 5 mL) and added a solution of myristic acid N-hydroxysuccinimide ester (8 mg, may be prepared according to B. Faroux-Corlay et al., J. Med. Chem. 2001, 44, 2188-2203) in N-methylpyrrolidin-2-one (2.5 mL mL). The resulting mixture was stirred at room temperature for 45 minutes. pH was adjusted to 5.6 with 1N hydrochloric acid. The solid formed was isolated by centrifugation and decantation. The residue was purified by preparative HPLC on a Macherey-Nagel SP 250/21 Nucleusil 300-7 C4 column, using a flow of 8 mL/min with the following gradient:
- 0-5 min: 10% CH3CN+0.1% TFA,
- 5-35 min: 10%-90% CH3CN+0.1% TFA,
- 35-40 min: 90% CH3CN+0.1% TFA,
- 40-45 min: 100% CH3CN.
- Pure fractions were pooled and lyophilised to afford 24 mg of the title compound.
- MALDI-TOF MS: m/z=6489. Calculated: 6498
- HPLC: Rt=10.97 min. Column: VYDAC Protein, C4 25 cm, cat #214TP54, injection: 5 μl. Solvents: A: 80% 0.01 M Tris, 0.015 M (NH4)2SO4 pH=7.3, 20% CH3CN; B: 80% CH3CN, 20% water, flow 1.5 ml/min with the following gradient:
- 0-20 min: 10-80% B,
- 20-20.1 min: 80-90% B,
- 20.1-21 min: 90-10% B,
- 21-25 min: 10% B.
- HPLC: Rt=13.09 min. Column: “Phenomenex, Jupiter”, C4 5μ, 150×4—60 mm, injection: 25 μl. Solvents: A: 0.1% TFA, 10% CH3CN, 89.9% water; B: 0.1% TFA, 80% CH3CN, 19.9% water, flow: 1.5 ml/min with the following gradient:
- 0-17 min: 20-90% B,
- 17-21 min: 90% B,
- 21-23 min: 90-20% B,
- 23-30 min: 20% B.
- Affinity to the Human Insulin Receptor
IC50 relative to human insulin Example in %. 2 2% 3 0.1% 4 0.7% - Pharmacological Methods
- Assay (I)
- Insulin Receptor Binding of the Single-Chain Insulins of the Invention.
- The affinity of the single-chain insulins the invention for the human insulin receptor was determined by a SPA assay (Scintillation Proximity Assay) microtiterplate antibody capture assay. SPA-PVT antibody-binding beads, anti-mouse reagent (Amersham Biosciences, Cat No. PRNQ0017) were mixed with 25 ml of binding buffer (100 mM HEPES pH 7.8; 100 mM sodium chloride, 10 mM MgSO4, 0.025% Tween-20). Reagent mix for a single Packard Optiplate (Packard No. 6005190) is composed of 2.4 μl of a 1:5000 diluted purified recombinant human insulin receptor—exon 11, an amount of a stock solution of A14 Tyr[125I]-human insulin corresponding to 5000 cpm per 100 μl of reagent mix, 12 μl of a 1:1000 dilution of F12 antibody, 3 ml of SPA-beads and binding buffer to a total of 12 ml. A total of 100 μl was then added and a dilution series is made from appropriate samples. To the dilution series was then added 100 μl of reagent mix and the samples were incubated for 16 hours while gently shaken. The phases were the then separated by centrifugation for 1 min and the plates counted in a Topcounter. The binding data were fitted using the nonlinear regression algorithm in the GraphPad Prism 2.01 (GraphPad Software, San Diego, Calif.).
- Preparation of Monoclonal mIR Antibodies
- Specific antibodies (F12) were produced by monoclonal technique: RBF mice were immunized by injecting 50 μg of purified mIR in FCA subcutaneously followed by two injections with 20 μg of mIR in FIA. High responder mice were boosted intravenously with 25 μg of mIR and the spleens were harvested after 3 days. Spleen cells were fused with the myeloma Fox cell line (Köhler, G & Milstein C. (1976), European J. Immunology, 6:511-19; Taggart R T et al (1983), Science 219:1228-30). Supernatants were screened for antibody production in a mIR specific ELISA. Positive wells were cloned and tested in Western blotting.
- Assay (II)
- Alternatively the insulin receptor binding was tested in a hIRBHK membrane assay as follows:
- Binding of [125I]-human insulin to membrane-associated recombinant human insulin receptor isoform A (hIR-A)
- Reagents:
- 125I-Insulin: Novo Nordisk A/S, mono 125I-(Tyr A14) human insulin
- Human Insulin: Novo Nordisk A/S,
- Human serum albumin: Dade Behring, ORHA 194 C30, lot 455077
- Plastic ware: Packard OptiPlate™-96, #6,005,290
- Scintillant: Amersham Biosciences, WGA coated PVT microspheres, #RPNQ0001
- Cells: BHK tk− ts13 cells expressing recombinant human insulin receptor isoform A (hIR12-14).
- Extraction of membrane-associated insulin receptors: BHK cells from a ten-layer cell factory were harvested and homogenised in 25 ml of ice-cold buffer (25 mM HEPES pH 7.4, 2.5 mM CaCl2, 1 mM MgCl2, 250 mg/l bacitracin, 0.1 mM Pefablock). The homogenate was layered carefully on 41% sucrose cushions, centrifuged in the ultracentrifuge at 95,000×g for 75 minutes in a Beckman SW28 rotor at 4° C. The plasma membranes were collected from the top of the sucrose cushion, diluted 1:4 with buffer and centrifuged at 40,000×g for 45 min in a Beckman SW28 rotor. The pellets were suspended in buffer (25 mM HEPES pH 7.4, 2.5 mM CaCl2, 1 mM MgCl2, 250 mg/l bacitracin, 0.1 mM Pefablock) and stored at −80° C.
- Radioligand binding to membrane-associated insulin receptors was performed in duplicate in 96-well OptiPlates. Membrane protein was incubated for 150 minutes at 25° C. with 50 pM [125I-TyrA14]-human insulin in a total volume of 200 ml assay buffer (50 mM HEPES, 150 mM NaCl, 5 mM MgSO4, 0.01% Triton X-100, 0.1% HSA, Complete™ EDTA-free protease inhibitors) and increasing concentrations of human insulin or insulin analogues (typically between 0.01 and 300 nM). The assay was terminated by addition of 50 μl of a suspension of WGA-coated PVT microspheres (20 mg/ml). Following 5 minutes of slight agitation, the plate was centrifuged at 1500 RPM for 6 minutes, and bound radioactivity quantified by counting in a Packard TopCount NXT after a delay of 60 minutes.
- Results are given as IC50 relative to human insulin in %.
- Assay (III)
- Potency of the Single-Chain Insulin Derivatives of the Invention Relative to Human Insulin.
- Wistar rats were used for testing the blood glucose lower efficacy of SCI at I.V bolus administration. Following administration the of either SCI or human insulin the concentration of blood glucose is monitored
- Assay (IV)
- Determination in Pigs of T50% of the Single-Chain Insulins of the Invention.
- T50% is the time when 50% of an injected amount of the A14 Tyr[125I] labelled derivative of an insulin to be tested has disappeared from the injection site as measured with an external γ-counter.
- The principles of laboratory animal care are followed, Specific pathogen-free LYYD, non-diabetic female pigs, cross-breed of Danish Landrace, Yorkshire and Duroc, were used (Holmenlund, Haarloev, Denmark) for pharmacokinetic and pharmacodynamic studies. The pigs are conscious, 4-5 months of age and weighing 70-95 kg. The animals are fasted overnight for 18 h before the experiment.
- Formulated preparations of insulin derivatives labelled in TyrA14 with 125I are injected sc. in pigs as previously described (Ribel, U., Jørgensen, K, Brange, J, and Henriksen, U. The pig as a model for subcutaneous insulin absorption in man. Serrano-Rios, M and Lefèbvre, P. J. 891-896. 1985. Amsterdam; New York; Oxford, Elsevier Science Publishers. 1985 (Conference Proceeding)).
- At the beginning of the experiments a dose of 60 nmol of the insulin derivative according to the invention (test compound) and a dose of 60 nmol of insulin (both 125I labelled in Tyr A14) are injected at two separate sites in the neck of each pig.
- The disappearance of the radioactive label from the site of sc. Injection is monitored using a modification of the traditional external gamma-counting method (Ribel, U. Subcutaneous absorption of insulin analogues. Berger, M. and Gries, F. A. 70-77 (1993). Stuttgart; New York, Georg Thime Verlag (Conference Proceeding)). With this modified method it is possible to measure continuously the disappearance of radioactivity from a subcutaneous depot for several days using cordless portable device (Scancys Laboratorieteknik, Værløse, DK-3500, Denmark). The measurements are performed at 1-min intervals, and the counted values are corrected for background activity.
- IGF-1 Receptor Binding
- IGF-1 receptor binding of the single-chain insulin was determined using a by a SPA assay (Scintillation Proximity Assay) microtiterplate antibody capture assay similar to that used for determining the Insulin receptor binding of the insulin derivatives of the invention, with the exception that the IGF1 receptor was used in stead of the insulin receptor, [125I]-human IGF-1 in stead of [125I]-human insulin and an antibody with specificity for the IGF-1 receptor.
Claims (29)
1. A single-chain insulin polypeptide comprising the B-chain and the A-chain of human insulin, or analogues or derivatives thereof, wherein the B-chain and A-chain are connected by a connecting peptide having from 5-11 amino acid residues, wherein the connecting peptide does not contain two adjacent basic amino acid residues and wherein the single-chain insulin has an affinity to the human insulin receptor of at least about 20% of that of human insulin if the single-chain insulin molecule is not chemically modified by acylation.
2. A single-chain insulin polypeptide comprising the B-chain and the A-chain of human insulin or analogues or derivatives thereof, wherein the B-chain and A-chain are connected by a connecting having from 5-11 amino acid residues, provided that, if the connecting peptide contains two adjacent basic amino acid residues:
(i) at least one of the natural amino acid residues in the B and/or A chain is substituted with another amino acid residue or
(ii) at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation or
(ii) the connecting peptide is not one of the following sequences Gly-Gly-Gly-Pro-Gly-Lys-Arg (SEQ ID NO:1), Arg-Arg-Gly-Pro-Gly-Gly-Gly (SEQ ID NO:2), Gly-Gly-Gly-Gly-Gly-Lys-Arg (SEQ ID NO:3), Arg-Arg-Gly-Gly-Gly-Gly-Gly (SEQ ID NO:4), Gly-Gly-Ala-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:5), Arg-Arg-Ala-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:6), Gly-Gly-Tyr-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:7), Arg-Arg-Tyr-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:8), Gly-Gly-His-Pro-Gly-Asp-Val-Lys-Arg (SEQ ID NO:9), or Arg-Arg-His-Pro-Gly-Asp-Val-Gly-Gly (SEQ ID NO:10).
3. A single-chain insulin polypeptide comprising the B-chain and the A-chain of human insulin, or analogues or derivatives thereof, wherein the B-chain and A-chain are connected by a connecting peptide having from 5-11 amino acid residues, provided that, if the polypeptide has a pI above about 6.5, it comprises (i) at least one amino acid residue substitution and/or deletion in the A-chain and/or B chain compared to the human insulin A-chain and B-chain or (i) at least one lysine residue in the A-chain, in the B-chain, or in the connecting peptide has been chemically modified by acylation.
4. A single-chain insulin polypeptide comprising the B-chain and the A-chain of human insulin, or analogues or derivatives thereof, wherein the B-chain and A-chain are connected by a connecting peptide having from 5-14 amino acid residues and wherein at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
5. A polypeptide according to claim 1 , wherein said peptide is acylated in at least one lysine group.
6. A polypeptide according to claim 5 , wherein said polypeptide is acylated at residue B29.
7. A polypeptide according to claim 6 , wherein said polypeptide is acylated with a fatty acid having from 6 to 24 C-atoms.
8. A polypeptide according to claim 1 , wherein said polypeptide is soluble at neutral pH and has a pI below about 6.5.
9. A polypeptide according to claim 8 , wherein said polypeptide has a pI from about 4.5 to below about 6.5.
10. A polypeptide according to claim 1 , wherein said polypeptide has an affinity to the human insulin receptor of at least 30% of that of human insulin.
11. A polypeptide according to claim 1 , wherein the connecting peptide comprises a sequence selected from the group consisting of AGRGSGK (SEQ ID NO:15); AGLGSGK (SEQ ID NO:33); AGMGSGK (SEQ ID NO:45); ASWGSGK (SEQ ID NO:48); TGLGSGQ (SEQ ID NO:22); TGLGRGK (SEQ ID NO:23); TGLGSGK (SEQ ID NO:21); HGLYSGK (SEQ ID NO:50); KGLGSGQ (SEQ ID NO:51); VGLMSGK (SEQ ID NO:56); VGLSSGQ (SEQ ID NO:27); VGLYSGK (SEQ ID NO:28), VGLSSGK (SEQ ID NO:30); VGMSSGK (SEQ ID NO:65); VWSSSGK (SEQ ID NO:76), VGSSSGK (SEQ ID NO:16), and VGMSSGK (SEQ ID NO:106).
13. A polypeptide according to claim 1 having the formula
B(1-26)-X1-X2-X3-X4-A(1-21)
wherein
X1 is Thr, Lys, Arg, or a peptide bond; X2 is Pro, Lys, Asp, or a peptide bond; X3 is Lys, Pro, Glu, or a peptide bond; X4 is a peptide sequence of 6-11 amino acid residues, B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof, and A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, wherein X4 does not contain two adjacent basic amino acid residues.
14. A polypeptide according to claim 2 having the formula
B(1-26)-X1-X2-X3-X4-A(1-21)
wherein
X1 is Thr, Lys, Arg, or a peptide bond; X2 is Pro, Lys, Asp, or a peptide bond; X3 is Lys, Pro, Glu, or a peptide bond; X4 is a peptide sequence of 6-11 amino acid residues, B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof, and A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof.
15. A polypeptide according to claim 3 having the formula
B(1-26)-X1-X2-X3-X4-A(1-21)
wherein
X1 is Thr, Lys, Arg, or a peptide bond; X2 is Pro, Lys, Asp, or a peptide bond; X3 is Lys, Pro, Glu, or a peptide bond; X4 is a peptide sequence of 6-11 amino acid residues, B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof, and A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, provided that single-chain insulins with a pI above about 6.5 will comprise at least one amino acid residue substitution and/or deletion in the A- and/or B chain compared to the human insulin A- and B-chains or at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
16. A polypeptide according to claim 4 having the formula
B(1-26)-X1-X2-X3-X4-A(1-21)
wherein
X1 is Thr, Lys, Arg, or a peptide bond; X2 is Pro, Lys, Asp, or a peptide bond; X3 is Lys, Pro, Glu, or a peptide bond; X4 is a peptide sequence of 5-11 amino acid residues, B(1-26) is a peptide chain consisting of the first 26 amino acid residues of the B chain of human insulin counted from the N-terminal end of the B chain or an analogue or derivative thereof, and A(1-21) is the natural insulin A chain or an analogue thereof or derivative thereof, wherein at least one lysine residue in the A-chain, in the B-chain or in the connecting peptide has been chemically modified by acylation.
17. A polypeptide according to claim 1 , wherein the amino acid residue in position A21 is substituted by another amino acid residue except Cys.
18. A polypeptide according to claim 13 , wherein X4 is a peptide sequence with the following formula Xa-Xb-Xc-Xd-Xe-Xf-Xg (SEQ ID NO:129) wherein
Xa is selected from the group consisting of L, R, T, A, H, Q, G, S, V, and a peptide bond;
Xb is selected from the group consisting of W, G, S, A, H, R, T, and a peptide bond;
Xc is selected from the group consisting of L, Y, M, H, R, T, Q, K, V, S, A, G, P, and a peptide bond;
Xd is selected from the group consisting of R, A, Y, M, S, N, H, G, and a peptide bond;
Xe is selected from the group consisting of S, R, A, T, K P, N M, H, Q, V, G, and a peptide bond;
Xf is selected from the group consisting of G, A, and a peptide bond; and
Xg is selected from the group consisting of K, R, P, H, F, T, I, Q, W, A, and a peptide bond.
19. A polypeptide according to according to claim 13 , wherein X4 comprises the sequence SGK.
20. A polypeptide according to claim 13 , wherein X4 comprises the sequence GSGK (SEQ ID NO:131)
21. A polypeptide according to claim 13 , wherein X4 comprises the sequence SSSGK (SEQ ID NO:132)
22. A polypeptide according to claim 1 , wherein at least one of the natural amino acid residues in the positions B1, B3, B10, B22, B28, B29, A8, A15, A18 and A21 is substituted by another amino acid residue.
23. A polypeptide according to claim 1 selected from the group consisting of: desB1, desB27, desB28, and desB29 insulin analogues.
24. A polynucleotide sequence encoding a polypeptide according to claim 1 .
25. An expression vector containing a polynucleotide sequence according to claim 24 .
26. A transformed host cell containing an expression vector according to claim 25 .
27. A pharmaceutical preparation comprising a biologically active amount of a polypeptide according to claim 1 .
28. A pharmaceutical preparation according to claim 28 , further comprising a second biologically active compound.
29. A pharmaceutical preparation according to claim 28 , wherein the second compound is selected from the group consisting of rapid acting insulin analogues, protracted insulin analogues, GLP-1, GLP-2 and exendin or analogues or derivatives thereof.
30. A method of reducing the blood glucose level in mammalians, said method comprising administrating a therapeutically active dose of a pharmaceutical preparation according to claim 27 to a patient in need of such treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/251,901 US8883449B2 (en) | 2003-12-03 | 2008-10-15 | Single-chain insulin |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200301786 | 2003-12-03 | ||
DKPA200301786 | 2003-12-03 | ||
PCT/DK2004/000843 WO2005054291A1 (en) | 2003-12-03 | 2004-12-03 | Single-chain insulin |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2004/000843 Continuation WO2005054291A1 (en) | 2003-12-03 | 2004-12-03 | Single-chain insulin |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/251,901 Continuation US8883449B2 (en) | 2003-12-03 | 2008-10-15 | Single-chain insulin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070129284A1 true US20070129284A1 (en) | 2007-06-07 |
Family
ID=34639202
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/439,897 Abandoned US20070129284A1 (en) | 2003-12-03 | 2006-05-24 | Single-chain insulin |
US12/251,901 Expired - Fee Related US8883449B2 (en) | 2003-12-03 | 2008-10-15 | Single-chain insulin |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/251,901 Expired - Fee Related US8883449B2 (en) | 2003-12-03 | 2008-10-15 | Single-chain insulin |
Country Status (8)
Country | Link |
---|---|
US (2) | US20070129284A1 (en) |
EP (1) | EP1692168B1 (en) |
JP (2) | JP5697831B2 (en) |
CN (2) | CN1902226A (en) |
AT (1) | ATE517119T1 (en) |
AU (1) | AU2004295023A1 (en) |
ES (1) | ES2369895T3 (en) |
WO (1) | WO2005054291A1 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067636A2 (en) | 2007-11-20 | 2009-05-28 | Ambrx, Inc. | Modified insulin polypeptides and their uses |
US20090304814A1 (en) * | 2006-01-06 | 2009-12-10 | Case Western Reserve University | Fibrillation resistant proteins |
WO2009132129A3 (en) * | 2008-04-22 | 2010-01-21 | Case Western Reserve University | Isoform-specific insulin analogues |
US20100099601A1 (en) * | 2006-10-04 | 2010-04-22 | Case Western Reserve University | Fibrillation-resistant insulin and insulin analogues |
US20110059887A1 (en) * | 2008-04-14 | 2011-03-10 | Case Western Reserve University | Meal-time insulin analogues of enhanced stability |
US20110077196A1 (en) * | 2009-09-17 | 2011-03-31 | Case Western Reserve University | Non-standard insulin analogues |
US20110166064A1 (en) * | 2008-07-31 | 2011-07-07 | Case Western Reserve University | Halogen-stabilized insulin |
US20110236925A1 (en) * | 2008-02-19 | 2011-09-29 | Biocon Limited | Method of Obtaining a Purified, Biologically Active Heterologous Protein |
WO2011159895A2 (en) | 2010-06-16 | 2011-12-22 | Indiana University Research And Technology Corporation | Single chain insulin agonists exhibiting high activity at the insulin receptor |
WO2014158900A1 (en) | 2013-03-14 | 2014-10-02 | Indiana University Research And Technology Corporation | Insulin-incretin conjugates |
US8946147B2 (en) | 2010-06-24 | 2015-02-03 | Indiana University Research And Technology Corporation | Amide-based insulin prodrugs |
WO2014172488A3 (en) * | 2013-04-17 | 2015-03-05 | AmideBio LLC | Chemically and thermodynamically stable insulin analogues and improved methods for their production |
US9006176B2 (en) | 2011-10-18 | 2015-04-14 | AmideBio LLC | Chemically and thermodynamically stable insulin analogues and improved methods for their production |
US20150148300A1 (en) * | 2013-11-27 | 2015-05-28 | Industrial Technology Research Institute | Method and pharmaceutical composition for hair growth |
US9079975B2 (en) | 2009-12-11 | 2015-07-14 | Case Western Reserve University | Insulin analogues with chlorinated amino acids |
US9089539B2 (en) | 2008-01-30 | 2015-07-28 | Indiana University Research And Technology Corporation | Ester-based insulin prodrugs |
KR20150096387A (en) * | 2012-11-05 | 2015-08-24 | 케이스 웨스턴 리저브 유니버시티 | Long-acting single-chain insulin analogues |
US9200053B2 (en) | 2008-07-31 | 2015-12-01 | Case Western Reserve University | Insulin analogues containing penta-fluoro-Phenylalanine at position B24 |
US20160375146A1 (en) * | 2013-12-05 | 2016-12-29 | Chemical & Biopharmaceutical Laboratories Of Patras S.A. | Biologically Active Insulin Derivatives |
US9573987B2 (en) | 2011-12-20 | 2017-02-21 | Indiana University Research And Technology Corporation | CTP-based insulin analogs for treatment of diabetes |
US9593156B2 (en) | 2012-09-26 | 2017-03-14 | Indiana University Research And Technology Corporation | Insulin analog dimers |
US9670261B2 (en) | 2012-12-21 | 2017-06-06 | Sanofi | Functionalized exendin-4 derivatives |
US9694053B2 (en) | 2013-12-13 | 2017-07-04 | Sanofi | Dual GLP-1/glucagon receptor agonists |
US9750788B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Non-acylated exendin-4 peptide analogues |
US9751926B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Dual GLP-1/GIP receptor agonists |
US9758561B2 (en) | 2014-04-07 | 2017-09-12 | Sanofi | Dual GLP-1/glucagon receptor agonists derived from exendin-4 |
US9771406B2 (en) | 2014-04-07 | 2017-09-26 | Sanofi | Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4 |
US9775904B2 (en) | 2014-04-07 | 2017-10-03 | Sanofi | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
US9789165B2 (en) | 2013-12-13 | 2017-10-17 | Sanofi | Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists |
US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
US9982029B2 (en) | 2015-07-10 | 2018-05-29 | Sanofi | Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
US10232020B2 (en) | 2014-09-24 | 2019-03-19 | Indiana University Research And Technology Corporation | Incretin-insulin conjugates |
US10385107B2 (en) | 2014-09-24 | 2019-08-20 | Indiana Univeresity Researc and Technology Corporation | Lipidated amide-based insulin prodrugs |
US10392429B2 (en) | 2014-10-06 | 2019-08-27 | Case Western Reserve University | Biphasic single-chain insulin analogues |
US10758592B2 (en) | 2012-10-09 | 2020-09-01 | Sanofi | Exendin-4 derivatives as dual GLP1/glucagon agonists |
US10806797B2 (en) | 2015-06-05 | 2020-10-20 | Sanofi | Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate |
US11352406B2 (en) | 2015-08-25 | 2022-06-07 | Novo Nordisk A/S | Insulin derivatives and the medical uses hereof |
US11498951B2 (en) | 2019-12-11 | 2022-11-15 | Novo Nordisk A/S | Insulin analogues and uses thereof |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006097521A1 (en) * | 2005-03-18 | 2006-09-21 | Novo Nordisk A/S | Pegylated single-chain insulin |
WO2007104736A2 (en) * | 2006-03-13 | 2007-09-20 | Novo Nordisk A/S | Acylated single chain insulin |
WO2007104737A1 (en) * | 2006-03-13 | 2007-09-20 | Novo Nordisk A/S | Acylated single chain insulin |
EP1996709A2 (en) * | 2006-03-13 | 2008-12-03 | Novo Nordisk A/S | Acylated single chain insulin |
WO2007104734A1 (en) * | 2006-03-13 | 2007-09-20 | Novo Nordisk A/S | Acylated single chain insulin |
EP2514406A1 (en) | 2007-06-01 | 2012-10-24 | Novo Nordisk A/S | Spontaneously dispersible preconcentrates including a peptide drug in a solid or semisolid carrier |
EP2164459A1 (en) | 2007-06-01 | 2010-03-24 | Novo Nordisk A/S | Stable non-aqueous pharmaceutical compositions |
MX2010001645A (en) * | 2007-08-15 | 2010-03-10 | Novo Nordisk As | Insulin analogues with an acyl and aklylene glycol moiety. |
US20100048482A1 (en) * | 2008-08-15 | 2010-02-25 | Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for modulating epsilon protein kinase c-mediated cytoprotection |
WO2010029159A1 (en) | 2008-09-12 | 2010-03-18 | Novo Nordisk A/S | Method of acylating a peptide or protein |
CA2747720A1 (en) * | 2008-12-19 | 2010-07-15 | Indiana University Research And Technology Corporation | Yl-based insulin-like growth factors exhibiting high activity at the insulin receptor |
EP2376520B1 (en) | 2008-12-19 | 2014-02-12 | Indiana University Research&Technology Corporation | Insulin analogs |
WO2010080609A1 (en) | 2008-12-19 | 2010-07-15 | Indiana University Research And Technology Corporation | Amide-based insulin prodrugs |
US8853155B2 (en) | 2010-06-23 | 2014-10-07 | Novo Nordisk A/S | Insulin derivatives containing additional disulfide bonds |
US8815798B2 (en) | 2010-06-23 | 2014-08-26 | Novo Nordisk A/S | Insulin analogues containing additional disulfide bonds |
CA2890048C (en) | 2012-12-03 | 2022-05-03 | Merck Sharp & Dohme Corp. | O-glycosylated carboxy terminal portion (ctp) peptide-based insulin and insulin analogues |
GB201315335D0 (en) | 2013-08-29 | 2013-10-09 | Of Singapore | Amino diacids containing peptide modifiers |
CN105792852B (en) | 2013-10-04 | 2019-12-10 | 默沙东公司 | Glucose-responsive insulin conjugates |
AR099569A1 (en) | 2014-02-28 | 2016-08-03 | Novo Nordisk As | INSULIN DERIVATIVES AND THE MEDICAL USES OF THESE |
WO2016064606A1 (en) * | 2014-10-20 | 2016-04-28 | Case Western Reserve University | Halogenated insulin analogues of enhanced biological potency |
WO2016081670A2 (en) | 2014-11-21 | 2016-05-26 | Merck Sharp & Dohme Corp. | Insulin receptor partial agonists |
EP3268384B1 (en) | 2015-03-10 | 2021-11-03 | Merck Sharp & Dohme Corp. | Process for preparing recombinant insulin using microfiltration |
AR105616A1 (en) | 2015-05-07 | 2017-10-25 | Lilly Co Eli | FUSION PROTEINS |
CN104805091B (en) * | 2015-05-13 | 2018-01-30 | 武汉真福医药股份有限公司 | The expression and dedicated expression vector therefor of rh-insulin, engineering bacteria and application |
EP3344651B1 (en) | 2015-09-02 | 2022-03-02 | Merck Sharp & Dohme Corp. | A process for obtaining insulin with correctly formed disulfide bonds |
EP3393498A4 (en) | 2015-12-23 | 2019-08-07 | Case Western Reserve University | ENCAPSULATION OF ULTRA-STABLE ANALOGUES OF INSULIN WITH FUSED POLYMERS |
EP3448417A4 (en) | 2016-04-26 | 2019-12-11 | Merck Sharp & Dohme Corp. | SOUND CONJUGATES OF INSULIN-INCRETIN |
US10953076B2 (en) | 2016-05-24 | 2021-03-23 | Merck Sharp & Dohme Corp. | Insulin receptor partial agonists and GLP-1 analogues |
WO2017205309A1 (en) | 2016-05-25 | 2017-11-30 | Merck Sharp & Dohme Corp. | Insulin receptor partial agonists |
BR112019000837A2 (en) | 2016-07-18 | 2019-10-01 | Eth Zuerich | b cell mimetic cells |
EP3272877A1 (en) | 2016-07-18 | 2018-01-24 | ETH Zurich | B-cell-mimetic cells |
CN110234339A (en) | 2016-09-06 | 2019-09-13 | 佩特雷化学和生物制药学实验室有限公司 | Proinsulin derivant |
EP3600381A4 (en) | 2017-03-23 | 2021-06-16 | Merck Sharp & Dohme Corp. | GLUCOSE-ACTIVE INSULIN WITH A THREE-VALUE SUGAR CLUSTER FOR THE TREATMENT OF DIABETES |
KR20200038502A (en) | 2017-08-17 | 2020-04-13 | 노보 노르디스크 에이/에스 | Novel acylated insulin analogs and uses thereof |
WO2020072181A1 (en) * | 2018-10-01 | 2020-04-09 | University Of Houston System | Engineered active single-polypeptide chain insulin analogs |
TWI844709B (en) | 2019-07-31 | 2024-06-11 | 美商美國禮來大藥廠 | Relaxin analogs and methods of using the same |
WO2021026091A1 (en) * | 2019-08-02 | 2021-02-11 | Case Western Reserve University | Premixed ultra-stable single-chain insulin analogue formulations |
US20240043493A1 (en) * | 2020-12-07 | 2024-02-08 | Case Western Reserve University | Acylated single-chain insulin analogues |
CZ310198B6 (en) * | 2021-07-07 | 2024-11-13 | Ústav organické chemie a biochemie AV ČR, v. v. i. | Insulin derivatives with an increased thermal stability |
CN118647634A (en) * | 2022-03-16 | 2024-09-13 | 北京拓界生物医药科技有限公司 | Human insulin analogs, fusion proteins and medical uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008241A (en) * | 1985-03-12 | 1991-04-16 | Novo Nordisk A/S | Novel insulin peptides |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4546082A (en) | 1982-06-17 | 1985-10-08 | Regents Of The Univ. Of California | E. coli/Saccharomyces cerevisiae plasmid cloning vector containing the alpha-factor gene for secretion and processing of hybrid proteins |
US4870008A (en) | 1983-08-12 | 1989-09-26 | Chiron Corporation | Secretory expression in eukaryotes |
AU600885B2 (en) | 1984-05-25 | 1990-08-30 | Zymogenetics Inc. | Stable DNA constructs |
DK58285D0 (en) * | 1984-05-30 | 1985-02-08 | Novo Industri As | PEPTIDES AND MANUFACTURING AND USING THEREOF |
PH25772A (en) | 1985-08-30 | 1991-10-18 | Novo Industri As | Insulin analogues, process for their preparation |
DK463887D0 (en) | 1987-09-07 | 1987-09-07 | Novo Industri As | GAERLEADER |
JPH04502465A (en) | 1988-12-23 | 1992-05-07 | ノボ ノルディスク アクティーゼルスカブ | human insulin analogue |
DK105489D0 (en) | 1989-03-03 | 1989-03-03 | Novo Nordisk As | POLYPEPTIDE |
IL93282A (en) | 1989-02-09 | 1995-08-31 | Lilly Co Eli | Insulin analogs |
DK300090D0 (en) | 1990-12-19 | 1990-12-19 | Novo Nordisk As | PROCEDURE FOR PREPARING LEADER SEQUENCES |
US5304473A (en) | 1991-06-11 | 1994-04-19 | Eli Lilly And Company | A-C-B proinsulin, method of manufacturing and using same, and intermediates in insulin production |
DK82893D0 (en) | 1993-07-08 | 1993-07-08 | Novo Nordisk As | PEPTIDE |
PT792290E (en) | 1993-09-17 | 2002-01-30 | Novo Nordisk As | INSULINA ACILADA |
AU1272295A (en) * | 1993-12-17 | 1995-07-03 | Novo Nordisk A/S | Proinsulin-like compounds |
US5639642A (en) | 1994-06-16 | 1997-06-17 | Novo Nordisk A/S | Synthetic leader peptide sequences |
IL114160A (en) | 1994-06-17 | 2006-12-31 | Novo Nordisk As | Dna constructs encoding heterologous proteins and processes for the heterologous protein production in yeast |
US6500645B1 (en) | 1994-06-17 | 2002-12-31 | Novo Nordisk A/S | N-terminally extended proteins expressed in yeast |
IL118127A0 (en) * | 1995-05-05 | 1996-09-12 | Lilly Co Eli | Single chain insulin with high bioactivity |
US5905140A (en) | 1996-07-11 | 1999-05-18 | Novo Nordisk A/S, Novo Alle | Selective acylation method |
JP2001527387A (en) | 1997-01-24 | 2001-12-25 | ノボ ノルディスク アクティーゼルスカブ | Synthetic leader peptide sequence |
TR200001050T2 (en) * | 1997-10-24 | 2000-08-21 | Eli Lilly And Company | Insoluble insulin compositions |
DE19947456A1 (en) * | 1999-10-02 | 2001-04-05 | Aventis Pharma Gmbh | New synthetic derivatives of the C-peptide of proinsulin, useful in the preparation of human insulin or insulin analogs in high yield |
AU1995701A (en) | 1999-12-29 | 2001-07-16 | Novo Nordisk A/S | Method for making insulin precursors and insulin precursor analogues having improved fermentation yield in yeast |
DE60039074D1 (en) | 1999-12-29 | 2008-07-10 | Novo Nordisk As | METHOD FOR THE PRODUCTION OF INSULIN PROCESSORS AND ANALOGS OF INSULIN PROCESSORS |
ATE270306T1 (en) * | 2000-10-02 | 2004-07-15 | Univ Yonsei Seoul | SINGLE CHAIN INSULIN ANALOGUES |
KR100449454B1 (en) | 2000-10-02 | 2004-09-21 | 이현철 | Vector for Curing Diabetes Mellitus Containing Gene of Single-chain Insulin Analog |
EP1377608B1 (en) * | 2001-04-02 | 2009-09-16 | Novo Nordisk A/S | Insulin precursors and a process for their preparation |
HUP0401492A3 (en) | 2001-09-14 | 2008-05-28 | Novo Nordisk As | Novel ligands for the hisb10 zn2+ sites of r-state insulin hexa |
KR100508616B1 (en) * | 2003-06-20 | 2005-08-17 | 신항철 | Insulin analogs having enhanced bioactivity in the single-chain by basic amino acid residues |
-
2004
- 2004-12-03 AT AT04801167T patent/ATE517119T1/en not_active IP Right Cessation
- 2004-12-03 WO PCT/DK2004/000843 patent/WO2005054291A1/en active Application Filing
- 2004-12-03 AU AU2004295023A patent/AU2004295023A1/en not_active Abandoned
- 2004-12-03 CN CNA2004800388416A patent/CN1902226A/en active Pending
- 2004-12-03 CN CN2012103042454A patent/CN102816228A/en not_active Withdrawn
- 2004-12-03 EP EP04801167A patent/EP1692168B1/en not_active Expired - Lifetime
- 2004-12-03 JP JP2006541803A patent/JP5697831B2/en not_active Expired - Fee Related
- 2004-12-03 ES ES04801167T patent/ES2369895T3/en not_active Expired - Lifetime
-
2006
- 2006-05-24 US US11/439,897 patent/US20070129284A1/en not_active Abandoned
-
2008
- 2008-10-15 US US12/251,901 patent/US8883449B2/en not_active Expired - Fee Related
-
2012
- 2012-08-03 JP JP2012173151A patent/JP2012254086A/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008241A (en) * | 1985-03-12 | 1991-04-16 | Novo Nordisk A/S | Novel insulin peptides |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090304814A1 (en) * | 2006-01-06 | 2009-12-10 | Case Western Reserve University | Fibrillation resistant proteins |
US8343914B2 (en) | 2006-01-06 | 2013-01-01 | Case Western Reserve University | Fibrillation resistant proteins |
US8192957B2 (en) | 2006-10-04 | 2012-06-05 | Case Western Reserve University | Fibrillation-resistant insulin and insulin analogues |
US8501440B2 (en) | 2006-10-04 | 2013-08-06 | Case Western Reserve University | Fibrillation-resistant insulin and insulin analogues |
US20100099601A1 (en) * | 2006-10-04 | 2010-04-22 | Case Western Reserve University | Fibrillation-resistant insulin and insulin analogues |
WO2009067636A2 (en) | 2007-11-20 | 2009-05-28 | Ambrx, Inc. | Modified insulin polypeptides and their uses |
EP2930182A1 (en) | 2007-11-20 | 2015-10-14 | Ambrx, Inc. | Modified insulin polypeptides and their uses |
US9089539B2 (en) | 2008-01-30 | 2015-07-28 | Indiana University Research And Technology Corporation | Ester-based insulin prodrugs |
US20110236925A1 (en) * | 2008-02-19 | 2011-09-29 | Biocon Limited | Method of Obtaining a Purified, Biologically Active Heterologous Protein |
US8802816B2 (en) * | 2008-02-19 | 2014-08-12 | Biocon Limited | Method of obtaining a purified, biologically active heterologous protein |
US8993516B2 (en) | 2008-04-14 | 2015-03-31 | Case Western Reserve University | Meal-time insulin analogues of enhanced stability |
US20110059887A1 (en) * | 2008-04-14 | 2011-03-10 | Case Western Reserve University | Meal-time insulin analogues of enhanced stability |
US20110195896A1 (en) * | 2008-04-22 | 2011-08-11 | Case Western Reserve University | Isoform-specific insulin analogues |
WO2009132129A3 (en) * | 2008-04-22 | 2010-01-21 | Case Western Reserve University | Isoform-specific insulin analogues |
US9388228B2 (en) | 2008-07-31 | 2016-07-12 | Case Western Reserve University | Halogen-stabilized insulin |
US8921313B2 (en) | 2008-07-31 | 2014-12-30 | Case Western Reserve University | Halogen-stabilized insulin |
US9200053B2 (en) | 2008-07-31 | 2015-12-01 | Case Western Reserve University | Insulin analogues containing penta-fluoro-Phenylalanine at position B24 |
US20110166064A1 (en) * | 2008-07-31 | 2011-07-07 | Case Western Reserve University | Halogen-stabilized insulin |
US8399407B2 (en) | 2009-09-17 | 2013-03-19 | Case Western Reserve University | Non-standard insulin analogues |
US20110077196A1 (en) * | 2009-09-17 | 2011-03-31 | Case Western Reserve University | Non-standard insulin analogues |
US9079975B2 (en) | 2009-12-11 | 2015-07-14 | Case Western Reserve University | Insulin analogues with chlorinated amino acids |
US9458220B2 (en) * | 2010-06-16 | 2016-10-04 | Indiana University Research And Technology Corporation | Single-chain insulin agonists exhibiting high activity at the insulin receptor |
US20150148520A1 (en) * | 2010-06-16 | 2015-05-28 | Indiana University Research And Technology Corporation | Single-chain insulin agonists exhibiting high activity at the insulin receptor |
US10233225B2 (en) * | 2010-06-16 | 2019-03-19 | Indiana University Research And Technology Corporation | Single chain insulin agonists exhibiting high activity at the insulin receptor |
WO2011159895A2 (en) | 2010-06-16 | 2011-12-22 | Indiana University Research And Technology Corporation | Single chain insulin agonists exhibiting high activity at the insulin receptor |
US8946147B2 (en) | 2010-06-24 | 2015-02-03 | Indiana University Research And Technology Corporation | Amide-based insulin prodrugs |
US9006176B2 (en) | 2011-10-18 | 2015-04-14 | AmideBio LLC | Chemically and thermodynamically stable insulin analogues and improved methods for their production |
US9573987B2 (en) | 2011-12-20 | 2017-02-21 | Indiana University Research And Technology Corporation | CTP-based insulin analogs for treatment of diabetes |
US9593156B2 (en) | 2012-09-26 | 2017-03-14 | Indiana University Research And Technology Corporation | Insulin analog dimers |
US10758592B2 (en) | 2012-10-09 | 2020-09-01 | Sanofi | Exendin-4 derivatives as dual GLP1/glucagon agonists |
KR102163936B1 (en) | 2012-11-05 | 2020-10-13 | 케이스 웨스턴 리저브 유니버시티 | Long-acting single-chain insulin analogues |
KR20150096387A (en) * | 2012-11-05 | 2015-08-24 | 케이스 웨스턴 리저브 유니버시티 | Long-acting single-chain insulin analogues |
US10253079B2 (en) | 2012-12-21 | 2019-04-09 | Sanofi | Functionalized Exendin-4 derivatives |
US9670261B2 (en) | 2012-12-21 | 2017-06-06 | Sanofi | Functionalized exendin-4 derivatives |
US9745360B2 (en) | 2012-12-21 | 2017-08-29 | Sanofi | Dual GLP1/GIP or trigonal GLP1/GIP/glucagon agonists |
US10696726B2 (en) | 2013-03-14 | 2020-06-30 | Indiana University Research And Technology Corporation | Insulin-incretin conjugates |
WO2014158900A1 (en) | 2013-03-14 | 2014-10-02 | Indiana University Research And Technology Corporation | Insulin-incretin conjugates |
US9163073B2 (en) | 2013-04-17 | 2015-10-20 | Amidebio, Llc | Chemically and thermodynamically stable insulin analogues and improved methods for their production |
WO2014172488A3 (en) * | 2013-04-17 | 2015-03-05 | AmideBio LLC | Chemically and thermodynamically stable insulin analogues and improved methods for their production |
US9402876B2 (en) * | 2013-11-27 | 2016-08-02 | Industrial Technology Research Institute | Method and pharmaceutical composition for hair growth |
US20150148300A1 (en) * | 2013-11-27 | 2015-05-28 | Industrial Technology Research Institute | Method and pharmaceutical composition for hair growth |
US10195287B2 (en) * | 2013-12-05 | 2019-02-05 | Chemical & Biopharmaceuticals Laboratories Of Patras S.A. | Biologically active insulin derivatives |
US20160375146A1 (en) * | 2013-12-05 | 2016-12-29 | Chemical & Biopharmaceutical Laboratories Of Patras S.A. | Biologically Active Insulin Derivatives |
US9694053B2 (en) | 2013-12-13 | 2017-07-04 | Sanofi | Dual GLP-1/glucagon receptor agonists |
US9789165B2 (en) | 2013-12-13 | 2017-10-17 | Sanofi | Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists |
US9751926B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Dual GLP-1/GIP receptor agonists |
US9750788B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Non-acylated exendin-4 peptide analogues |
US9758561B2 (en) | 2014-04-07 | 2017-09-12 | Sanofi | Dual GLP-1/glucagon receptor agonists derived from exendin-4 |
US9775904B2 (en) | 2014-04-07 | 2017-10-03 | Sanofi | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
US9771406B2 (en) | 2014-04-07 | 2017-09-26 | Sanofi | Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4 |
US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
US10385107B2 (en) | 2014-09-24 | 2019-08-20 | Indiana Univeresity Researc and Technology Corporation | Lipidated amide-based insulin prodrugs |
US10232020B2 (en) | 2014-09-24 | 2019-03-19 | Indiana University Research And Technology Corporation | Incretin-insulin conjugates |
US10392429B2 (en) | 2014-10-06 | 2019-08-27 | Case Western Reserve University | Biphasic single-chain insulin analogues |
US11142560B2 (en) | 2014-10-06 | 2021-10-12 | Case Western Reserve University | Biphasic single-chain insulin analogues |
US10806797B2 (en) | 2015-06-05 | 2020-10-20 | Sanofi | Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate |
US9982029B2 (en) | 2015-07-10 | 2018-05-29 | Sanofi | Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
US11352406B2 (en) | 2015-08-25 | 2022-06-07 | Novo Nordisk A/S | Insulin derivatives and the medical uses hereof |
US11498951B2 (en) | 2019-12-11 | 2022-11-15 | Novo Nordisk A/S | Insulin analogues and uses thereof |
US12122818B2 (en) | 2019-12-11 | 2024-10-22 | Novo Nordisk A/S | Insulin analogues and uses thereof |
US12152063B2 (en) | 2019-12-11 | 2024-11-26 | Novo Nordisk A/S | Insulin analogues and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2012254086A (en) | 2012-12-27 |
JP2008502313A (en) | 2008-01-31 |
JP5697831B2 (en) | 2015-04-08 |
US8883449B2 (en) | 2014-11-11 |
EP1692168A1 (en) | 2006-08-23 |
CN102816228A (en) | 2012-12-12 |
ES2369895T3 (en) | 2011-12-07 |
US20090170750A1 (en) | 2009-07-02 |
ATE517119T1 (en) | 2011-08-15 |
CN1902226A (en) | 2007-01-24 |
EP1692168B1 (en) | 2011-07-20 |
WO2005054291A1 (en) | 2005-06-16 |
AU2004295023A1 (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8883449B2 (en) | Single-chain insulin | |
US20090069216A1 (en) | Single-Chain Insulin Analogues and Pharmaceutical Formulations Thereof | |
US20090099065A1 (en) | Acylated Single Chain Insulin | |
US20090069215A1 (en) | Acylated Single Chain Insulin | |
US10040839B2 (en) | Insulin derivatives and the medical uses hereof | |
US20110021423A1 (en) | Rapid Acting Insulin Analogues | |
US11352406B2 (en) | Insulin derivatives and the medical uses hereof | |
US20140303083A1 (en) | GLP-1 Derivatives | |
WO2007104736A2 (en) | Acylated single chain insulin | |
WO2007104734A1 (en) | Acylated single chain insulin | |
US20200283493A1 (en) | Novel Insulin Derivatives and the Medical Uses Hereof | |
US12122818B2 (en) | Insulin analogues and uses thereof | |
US20210094999A1 (en) | Novel Acylated Insulin Analogues and Uses Thereof | |
US20180244743A1 (en) | Novel Insulin Derivatives and the Medical Uses Hereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVO NORDISK A/S, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KJELDSEN, THOMAS BORGLUM;ANDERSEN, ASSER SLOTH;SCHLEIN, MORTEN;AND OTHERS;REEL/FRAME:018788/0788;SIGNING DATES FROM 20061018 TO 20061024 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |