US20070129859A1 - Control apparatus for fuel cell vehicle - Google Patents
Control apparatus for fuel cell vehicle Download PDFInfo
- Publication number
- US20070129859A1 US20070129859A1 US11/648,212 US64821206A US2007129859A1 US 20070129859 A1 US20070129859 A1 US 20070129859A1 US 64821206 A US64821206 A US 64821206A US 2007129859 A1 US2007129859 A1 US 2007129859A1
- Authority
- US
- United States
- Prior art keywords
- fuel cell
- capacitor
- power
- output
- propulsion motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 170
- 239000003990 capacitor Substances 0.000 claims abstract description 90
- 230000001172 regenerating effect Effects 0.000 claims abstract description 61
- 239000000376 reactant Substances 0.000 claims abstract description 32
- 239000007789 gas Substances 0.000 claims description 35
- 238000003487 electrochemical reaction Methods 0.000 claims description 4
- 238000010248 power generation Methods 0.000 abstract description 39
- 238000001514 detection method Methods 0.000 abstract description 15
- 230000008929 regeneration Effects 0.000 abstract description 10
- 238000011069 regeneration method Methods 0.000 abstract description 10
- 239000001257 hydrogen Substances 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 4
- 239000005518 polymer electrolyte Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04955—Shut-off or shut-down of fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2045—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/32—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
- B60L58/33—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M16/00—Structural combinations of different types of electrochemical generators
- H01M16/003—Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
- H01M16/006—Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04373—Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04567—Voltage of auxiliary devices, e.g. batteries, capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04589—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04865—Voltage
- H01M8/0488—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04895—Current
- H01M8/0491—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the present invention relates to a control apparatus for a fuel cell vehicle.
- a solid polymer membrane fuel cell conventionally comprises, for example, cells formed by sandwiching a solid polymer electrolyte membrane between a fuel electrode (anode) and an oxygen electrode (cathode), with a plurality of such cells arranged in a stack.
- Hydrogen is supplied to the fuel electrode as fuel, and air is supplied to the oxygen electrode as oxidant, and hydrogen ions generated by a catalytic reaction at the fuel electrode pass through the solid polymer electrolyte membrane and migrate to the oxygen electrode, causing an electrochemical reaction with the oxygen at the oxygen electrode, and generating electricity.
- a fuel cell vehicle provided with such a fuel cell as a source of motive power
- a fuel cell vehicle fitted with a capacitor comprising for example an electric double layer capacitor or an electrolytic capacitor or the like, and constructed so as to store the electrical energy generated by the fuel cell, and transfer electrical energy to the propulsion motor (see for example, Patent document 1).
- the capacitor is connected in parallel to the fuel cell via an output controller which controls the output current and output voltage of the fuel cell, and output control action such as chopping action or the like of the output controller which comprises, for example, a chopper type power conversion circuit, is controlled corresponding to the state of, for example, the fuel cell vehicle, the fuel cell, or the capacitor.
- Patent document 1 Japanese Unexamined Patent Application, First Publication No. 2001-357865.
- both the terminal voltage of the capacitor and the output voltage of the fuel cell increase.
- the setting is such that a command value for the output current corresponding to the increased output voltage based on predetermined power generation characteristics for the output current and output voltage, is input to the fuel cell, so that the relative relationship for the output current and the output voltage does not deviate from a predetermined power generation characteristic.
- the present invention takes into consideration the above situation with the object of providing a control apparatus for a fuel cell vehicle which can improve the energy efficiency of a fuel cell vehicle during regeneration by the propulsion motor.
- a control apparatus for a fuel cell vehicle is a control apparatus for a fuel cell vehicle provided with: a propulsion motor capable of driving a vehicle; a fuel cell furnished with a plurality of fuel cell units made by clamping an electrolyte from both side with a fuel electrode and an oxygen electrode, and which generates electricity by supplying a reactant gas to give an electrochemical reaction; a capacitor which is charged by a generated output of the fuel cell and regenerated electric power of the propulsion motor; a reactant gas supply device (for example the S/C output controller 17 , the air compressor 18 , the hydrogen tank 19 a , the hydrogen supply valve 19 b , and the control apparatus 20 in the embodiment) which supplies the reactant gas to the fuel cell; and an output control device (for example the current and voltage controller 12 in the embodiment) which controls an output current and an output voltage of the fuel cell, characterized in comprising: a regenerative electric power calculating device (for example
- the control apparatus for a fuel cell vehicle of the above configuration in the case where the chargeable power which can be charged to the capacitor is greater than the regenerative electric power which can be generated by the regenerative operation of the propulsion motor, the restriction on the output current of the fuel cell is cancelled, so that the capacitor can be promptly charged by the power generation of the fuel cell and by the regenerative operation of the propulsion motor.
- the output current of the fuel cell is restricted to zero, to thereby prevent the capacitor being over charged by the power generation of the fuel cell, and thus enable the energy efficiency of the fuel cell vehicle during regenerative operation of the propulsion motor to be improved.
- a control apparatus for a fuel cell vehicle is a control apparatus for a fuel cell vehicle provided with: a propulsion motor capable of driving a vehicle; a fuel cell furnished with a plurality of fuel cell units made by clamping an electrolyte from both side with a fuel electrode and an oxygen electrode, and which generates electricity by supplying a reactant gas to give an electrochemical reaction; a capacitor which accumulates generated energy of the fuel cell and performs transfer of electrical energy with the propulsion motor; a reactant gas supply device (for example the S/C output controller 17 , the air compressor 18 , the hydrogen tank 19 a , the hydrogen supply valve 19 b , and the control apparatus 20 in the embodiment) which supplies the reactant gas to the fuel cell; an output control device (for example the current and voltage controller 12 in the embodiment) which controls an output current and an output voltage of the fuel cell, and an output control device (for example the current and voltage controller 12 in the embodiment) which controls an output current and an output voltage of the fuel cell,
- the restriction on the output current of the fuel cell is cancelled, so that the capacitor can be promptly charged by the power generation of the fuel cell and by the regenerative operation of the propulsion motor. Furthermore, in the case where the pressure of the reactant gas at the fuel electrode of the fuel cell is greater than the predetermined pressure, even though the chargeable output power is less than the regenerative output power, the restriction on the output current of the fuel cell is cancelled, and reactant gas is supplied to the oxygen electrode by means of a power generation command corresponding to the pressure of the reactant gas at the fuel electrode. Moreover, by continuing the power generation, the electrode gap differential pressure due to the reactant gas between the fuel electrode and the oxygen electrode of the fuel cell can be prevented from increasing excessively.
- FIG. 1 is a block diagram of a control apparatus for a fuel cell vehicle according to an embodiment of the present invention.
- FIG. 2 is a flow chart showing an operation of the control apparatus for a fuel cell vehicle shown in FIG. 1 .
- FIG. 3 is a flow chart showing an operation of the control apparatus for a fuel cell vehicle according to a modified example of the present embodiment.
- a control apparatus 10 for a fuel cell vehicle comprises for example as shown in FIG. 1 ; a fuel cell 1 , a current and voltage controller 12 , a capacitor 13 , an output controller 14 , a propulsion motor 15 , a load 16 , an S/C output controller 17 , an air compressor (S/C) 18 , a hydrogen tank 19 a and hydrogen supply valve 19 b , a control apparatus 20 , a fuel cell unit voltage sensor 21 , an anode voltage sensor 22 , a capacitor voltage sensor 23 , a capacitor current sensor 24 , an degree of opening of the accelerator sensor 31 , an IG switch 32 , and a speed sensor 33 .
- the fuel cell 11 comprises a stack of fuel cell units made up with an electrolyte electrode structure holding a solid polymer electrolyte membrane formed from a positive ion exchange membrane or the like sandwiched between a fuel electrode (anode) formed from an anode catalyst and gas diffusion layer, and an oxygen electrode (cathode) formed from a cathode catalyst and gas diffusion layer, which is further sandwiched between a pair of separators.
- the anode of the fuel cell 11 is supplied with fuel gas (reactant gas) comprising hydrogen, from the high-pressure hydrogen tank 19 a via the hydrogen supply valve 19 b .
- fuel gas reactant gas
- Hydrogen ionized by the catalytic reaction on the anode catalyst of the anode migrates to the cathode via an appropriately humidified solid polymer electrolyte membrane, and electrons released in association with this migration are extracted to an external circuit and used as DC electrical energy.
- the cathode is supplied with, for example, air as an oxidizing gas (reactant gas) containing oxygen, by the air compressor (S/C) 18 , and the hydrogen ions, electrons, and oxygen react at the cathode to form water.
- the generated current (output current) extracted from the fuel cell 11 is input to the current and voltage controller 12 .
- the current and voltage controller 12 is connected to a capacitor 13 comprising, for example, multiple capacitor cells formed from electric double layer capacitors or electrolytic capacitors or the like connected mutually in series.
- the fuel cell 11 , the current and voltage controller 12 , and the capacitor 13 are connected in parallel to the propulsion motor 15 via the output controller 14 , the load 16 comprising various auxiliary equipment, for example, a cooling device for the fuel cell 11 and the capacitor 13 (not shown in drawings) and an air conditioner (not shown in drawings), and the air compressor (S/C) 18 via the S/C output controller 17 .
- the load 16 comprising various auxiliary equipment, for example, a cooling device for the fuel cell 11 and the capacitor 13 (not shown in drawings) and an air conditioner (not shown in drawings), and the air compressor (S/C) 18 via the S/C output controller 17 .
- the current and voltage controller 12 comprises, for example, a chopper type power conversion circuit wherein the value of the output current extracted from the fuel cell 11 is controlled by the chopping action of the chopper type power conversion circuit, in other words, by the on/off action of a switching device provided in the chopper type power conversion circuit.
- This chopping action is controlled in accordance with a duty ratio, in other words, on/off ratio, of the control pulse input from the control apparatus 20 .
- the current and voltage controller 12 restricts the output current of the fuel cell 11 , in other words, the primary current, as appropriate in accordance the duty ratio of the control pulse, and the restricted current thus obtained is output as the secondary current.
- the output controller 14 is provided with, for example, a PWM inverter which uses pulse width modulation (PWM), and controls the drive and regenerative action of the propulsion motor 15 corresponding to control commands output from the control apparatus 20 .
- PWM pulse width modulation
- the output controller 14 controls the drive and regenerative action of the propulsion motor 15 corresponding to control commands output from the control apparatus 20 .
- DC power output from the current and voltage controller 12 and the capacitor 13 is converted to three-phase AC power based on a torque command input from the control apparatus 20 , and supplied to the propulsion motor 15 .
- the three-phase AC power output from the propulsion motor 15 is converted to DC power and supplied to the capacitor 13 to charge the capacitor 13 .
- the propulsion motor 15 is, for example, a permanent magnet type three-phase AC synchronous motor using a permanent magnet as a field magnet, and is driven and controlled with three-phase AC power supplied from the output controller 14 . Additionally, when drive power is transmitted to the propulsion motor 15 from the drive wheels during deceleration of the vehicle, the propulsion motor 15 functions as a generator, producing so called regenerative braking power, recovering the kinetic energy of the vehicle in the form of electrical energy.
- the air compressor 18 takes, for example, air from outside the vehicle, compresses it, and supplies this air to the cathode of the fuel cell 11 as reactant gas.
- the speed of rotation of the motor (not shown in drawings) driving this air compressor 18 is controlled by the S/C output controller 17 , provided with, for example, a PWM inverter which uses pulse width modulation (PWM), based on control commands output from the control apparatus 20 .
- PWM pulse width modulation
- the control apparatus 20 outputs a command value for the flow of the reactant gas supplied from the air compressor 18 to the fuel cell 11 , and a command value for the opening of the hydrogen supply valve 19 b , based on, for example, the operating state of the vehicle, the concentration of hydrogen in the reactant gas supplied to the anode of the fuel cell 11 , the concentration of hydrogen in the gas discharged from the anode of the fuel cell 11 , and the state of power generation of the fuel cell 11 , for example, the terminal voltage of each of the multiple fuel cell units, the output current extracted from the fuel cell 11 , the pressure of reactant gas supplied to the anode, and the like, to thereby control the state of power generation of the fuel cell 11 .
- control apparatus 20 outputs control pulses to control the power conversion operation of the current and voltage controller 12 , based on a power generation command for the fuel cell 11 , to thereby control the value of the current output from the fuel cell 11 .
- control apparatus 20 controls the power conversion operation of the PWM inverter provided in the output controller 14 , and when, for example, the propulsion motor 15 is driven, computes a torque command based on a signal for the degree of opening of the accelerator associated with the amount of pressing of the accelerator pedal by the driver. The control apparatus 20 then inputs this torque command to the output controller 14 . As a result, a pulse width modulation signal corresponding to the torque command is input to the PWM inverter, and various phase currents required to produce the requested torque are output to each phase of the propulsion motor 15 .
- control apparatus 20 controls the regenerative operation of the propulsion motor 15 based on the travelling state of the vehicle, for example the speed of the vehicle (speed), or the state of the capacitor 13 , for example, the temperature of the capacitor 13 , the total voltage being the sum of the capacitor unit voltages of the multiple capacitor units, in other words, the detected value of the terminal voltage of the capacitor 13 , the detected value of the current charged to the capacitor 13 , or the like.
- a detection signal output from the fuel cell unit voltage sensor 21 which detects the terminal voltage (fuel cell unit voltage) of the multiple fuel cell units comprising the fuel cell 11 ; a detection signal output from the output current sensor (not shown in drawings) which detects the value of the output current extracted from the fuel cell 11 ; a detection signal output from the output voltage sensor (not shown in drawings) which detects the output voltage of the fuel cell 11 ; a detection signal output from the capacitor voltage sensor 23 which detects the terminal voltage of the capacitor 13 ; a detection signal output from the capacitor current sensor 24 which detects the capacitor current charged to the capacitor 13 ; a detection signal output from the capacitor temperature sensor (not shown in drawings) which detects the temperature of the capacitor 13 ; a detection signal output from the degree of opening of the accelerator sensor 31 ; a signal output from the IG switch 32 which instructs commencement of operation of the vehicle, and a detection signal output from the speed sensor 33 .
- the control apparatus 20 calculates the regenerative electric power which can be generated based on the vehicle condition, for example on the speed of the vehicle or the like. Furthermore, the control apparatus 20 calculates the chargeable power which can be charged to the capacitor 13 based for example on the detected value of the terminal voltage of the capacitor 13 or the like.
- the control apparatus 20 in the case where the chargeable power which can be charged to the capacitor 13 is greater than the regenerative electric power which can be generated by the propulsion motor 15 , makes the duty ratio of the control pulse output to the current and voltage controller 12 , 100%, and sets the fuel cell 11 and the capacitor 13 to a directly connected condition. Moreover, the control apparatus 20 outputs to the S/C output controller 17 a power generation command corresponding to the detection value of the terminal voltage of the capacitor 13 which has become the same value as the output voltage of the fuel cell 11 , to perform supply of reactant gas in accordance with the power generation command, so that the capacitor 13 is charged by the power generation power of the fuel cell 11 and the regenerative electric power of the propulsion motor 15 .
- the control apparatus 20 makes the duty ratio of the control pulse input to current and voltage controller 12 , 0%, to electrically disconnect the fuel cell 11 and the capacitor 13 , and prohibit charging of the capacitor 13 by the power generation power of the fuel cell 11 .
- the control apparatus 10 for a fuel cell vehicle has the aforementioned configuration. Next is a description of the operation of the control apparatus 10 for a fuel cell vehicle, in particular the operation during travelling of the fuel cell vehicle, with reference to the appended drawings.
- step S 01 of FIG. 2 it is determined whether or not the fuel cell vehicle is decelerating, according to for example a time change of the opening of the accelerator related to the accelerator operation amount of the driver, or for example the direction of the current being charged to the capacitor 15 , that is whether this is a charging current or a discharge current, or the like.
- step S 02 the flow proceeds to step S 02 .
- step S 02 the duty ratio of the control pulse input to current and voltage controller 12 is set to 100%, and the fuel cell 11 and the capacitor 13 are set to a directly connected condition.
- step S 03 a power generation command corresponding for example to the degree of opening of the accelerator related to the accelerator operation amount of the driver or the like, is output to the S/C output controller 17 , and also a torque command corresponding to the degree of opening of the accelerator or the like is output to the output controller 14 , so that the propulsion motor 15 is driven by the power supply from the fuel cell 11 , and this series of processing then ends.
- step S 04 based on the vehicle travelling conditions, for example the speed of the vehicle or the like, the regenerative electric power which can be generated by the regenerative operation of the propulsion motor 15 is calculated.
- step S 05 based for example on the detection value of the terminal voltage of the capacitor 13 or the like, the chargeable power which can be charged to the capacitor 13 is calculated.
- step S 06 it is determined whether or not the chargeable power which can be charged to the capacitor 13 is greater than the regenerative electric power which can be generated by the propulsion motor 15 .
- step S 07 the flow proceeds to step S 07 .
- step S 07 the duty ratio of the control pulse output to the current and voltage controller 12 is set to 100%, and the fuel cell 11 and the capacitor 13 are set to the directly connected condition, and also a power generation command corresponding to the detection value of the terminal voltage of the capacitor 13 which has become the same value as the output voltage of the fuel cell 11 , is output to the S/C output controller 17 , and supply of reactant gas is performed corresponding to the power generation command for the fuel cell 11 , so that the capacitor 13 is charged by the power generation power of the fuel cell 11 .
- step S 08 a regeneration command is output to the output controller 14 , and the three phase AC power output from the propulsion motor 15 due to the regeneration operation, is converted to DC regenerative electric power by the output controller 14 , and the capacitor 13 is charged by this regenerative electric power, and the series of processing ends.
- step S 09 the duty ratio of the control pulse input to current and voltage controller 12 is set to 0%, and the fuel cell 11 and the capacitor 13 are electrically disconnected, so that charging of the capacitor 13 by means of the power generation power of the fuel cell 11 is prohibited.
- step S 10 a regeneration command is output to the output controller 14 , and the three phase AC power output from the propulsion motor 15 due to the regenerative operation is converted to DC regenerative power by the output controller 14 , and the capacitor 13 is charged by this regenerative electric power, and the series of processing ends.
- the control apparatus 10 for a fuel cell vehicle of this embodiment in the case where the chargeable power which can be charged to the capacitor 13 is greater than the regenerative electric power which can be generated by the regeneration operation of the propulsion motor, the restriction on the output current of the fuel cell 11 is cancelled, so that the capacitor 13 can be quickly charged by the power generation power of the fuel cell 11 and the regenerative electric power of the propulsion motor 15 .
- the output current of the fuel cell 11 is restricted to zero.
- the capacitor being over charged by the power generation of the fuel cell can be prevented, and the energy efficiency of the fuel cell vehicle during regenerative operation of the propulsion motor 15 can be improved.
- the operation of current and voltage controller 12 may further be controlled corresponding to the electrode gap differential pressure of the anode and cathode of the fuel cell 11 .
- step S 06 the point different from the above mentioned embodiment is that in the case where the determination result in step S 06 is NO, the flow proceeds to step S 21 .
- step S 21 in FIG. 3 it is determined whether or not the detection result of the pressure (anode pressure) of the reactant gas at the anode of the fuel cell 11 is less than a predetermined pressure.
- step S 22 the flow proceeds to step S 22 .
- step S 22 the duty ratio of the control pulse input to current and voltage controller 12 is made 100% so that the fuel cell 11 and the capacitor 13 are set to the directly connected condition. Also the power generation command corresponding to the detection value of the anode pressure is output to the S/C output controller 17 , and supply of reactant gas (air) is performed corresponding to the power generation command for the cathode of the fuel cell 11 , so that power generation is performed in a condition where the differential pressure of the electrode gap of the anode and the cathode of the fuel cell 11 is maintained at a predetermined differential pressure condition, and the capacitor 13 is charged by the power generation power of the fuel cell 11 .
- step S 23 a regeneration command is output to the output controller 14 , and the three phase AC power output from the propulsion motor 15 is converted to DC regenerative power by means of the output controller 14 , and the capacitor 13 is then charged by this regenerative electric power, and the series of processing ends.
- the capacitor can be promptly charged by the power generation of the fuel cell and by the regenerative operation of the propulsion motor. Also overcharging of the capacitor by the power generation of the fuel cell can be prevented, thus enabling the energy efficiency of the fuel cell vehicle during regenerative operation of the propulsion motor to be improved.
- the capacitor can be promptly charged by the power generation of the fuel cell and by the regenerative operation of the propulsion motor. Also, while maintaining protection of the fuel cell, excessive charging of the capacitor due to the power generation of the fuel cell can be prevented, and the energy efficiency of the fuel cell vehicle at the time of regenerative operation of the propulsion motor can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Fuel Cell (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
A control apparatus 20 is provided in order to improve the energy efficiency of a vehicle during regeneration by a propulsion motor. At the time of regenerative operation of a propulsion motor 15, calculates the regenerative electric power which can be generated based on the speed of the vehicle or the like, and calculates the chargeable power which can be charged to a capacitor 13 based on the detected value of the terminal voltage of the capacitor 13 or the like. Then, the control apparatus 20, in the case where the chargeable power is greater than the regenerative electric power, sets the fuel cell 11 and the capacitor 13 to a directly connected condition, and outputs to an S/C output controller 17 a power generation command corresponding to the detection value of the terminal voltage of the capacitor 13 which has become the same value as the output voltage of the fuel cell 11, to perform supply of reactant gas in accordance with the power generation command, so that the capacitor 13 is charged by the power generation power of the fuel cell 11 and the regenerative electric power of the propulsion motor 15. In the case where the chargeable power is less than the regenerative electric power, the control apparatus 20 electrically disconnects the fuel cell 11 and the capacitor 13, and prohibits charging of the capacitor 13 by the power generation power of the fuel cell 11.
Description
- This invention is a continuation of U.S. Ser. No. 10/723,942 filed Nov. 26, 2003 (allowed Jul. 11, 2006) and claims priority to Japanese Application No. 2002-347148, filed Nov. 29, 2002, which are incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates to a control apparatus for a fuel cell vehicle.
- 2. Description of the Related Art
- A solid polymer membrane fuel cell conventionally comprises, for example, cells formed by sandwiching a solid polymer electrolyte membrane between a fuel electrode (anode) and an oxygen electrode (cathode), with a plurality of such cells arranged in a stack. Hydrogen is supplied to the fuel electrode as fuel, and air is supplied to the oxygen electrode as oxidant, and hydrogen ions generated by a catalytic reaction at the fuel electrode pass through the solid polymer electrolyte membrane and migrate to the oxygen electrode, causing an electrochemical reaction with the oxygen at the oxygen electrode, and generating electricity.
- As a fuel cell vehicle provided with such a fuel cell as a source of motive power, heretofore there is known a fuel cell vehicle, fitted with a capacitor comprising for example an electric double layer capacitor or an electrolytic capacitor or the like, and constructed so as to store the electrical energy generated by the fuel cell, and transfer electrical energy to the propulsion motor (see for example, Patent document 1).
- In such a fuel cell vehicle, the capacitor is connected in parallel to the fuel cell via an output controller which controls the output current and output voltage of the fuel cell, and output control action such as chopping action or the like of the output controller which comprises, for example, a chopper type power conversion circuit, is controlled corresponding to the state of, for example, the fuel cell vehicle, the fuel cell, or the capacitor.
- [Patent document 1] Japanese Unexamined Patent Application, First Publication No. 2001-357865.
- In practice, at the time of travelling and the like of the fuel cell vehicle according to the example of the aforementioned technology, in the case of a condition where the output current extracted from the fuel cell is not restricted by the output controller, that is the fuel cell and the capacitor are in a directly connected condition, the terminal voltage of the capacitor and the output voltage of the fuel cell become the same value.
- Therefore, if for example the capacitor is charged by the regeneration of the propulsion motor, then both the terminal voltage of the capacitor and the output voltage of the fuel cell increase. At this time the setting is such that a command value for the output current corresponding to the increased output voltage based on predetermined power generation characteristics for the output current and output voltage, is input to the fuel cell, so that the relative relationship for the output current and the output voltage does not deviate from a predetermined power generation characteristic.
- However, in the case where during regeneration of the propulsion motor, the power generation of the fuel cell continues, and for example the regenerative electric power of the propulsion motor is greater than the chargeable power which can be charged to the capacitor, there is the possibility that unnecessary power generation continues, so that the energy efficiency of the fuel cell vehicle drops.
- The present invention takes into consideration the above situation with the object of providing a control apparatus for a fuel cell vehicle which can improve the energy efficiency of a fuel cell vehicle during regeneration by the propulsion motor.
- To solve the aforementioned problems and achieve the related object, a control apparatus for a fuel cell vehicle according to a first aspect of the present invention is a control apparatus for a fuel cell vehicle provided with: a propulsion motor capable of driving a vehicle; a fuel cell furnished with a plurality of fuel cell units made by clamping an electrolyte from both side with a fuel electrode and an oxygen electrode, and which generates electricity by supplying a reactant gas to give an electrochemical reaction; a capacitor which is charged by a generated output of the fuel cell and regenerated electric power of the propulsion motor; a reactant gas supply device (for example the S/
C output controller 17, theair compressor 18, thehydrogen tank 19 a, thehydrogen supply valve 19 b, and thecontrol apparatus 20 in the embodiment) which supplies the reactant gas to the fuel cell; and an output control device (for example the current andvoltage controller 12 in the embodiment) which controls an output current and an output voltage of the fuel cell, characterized in comprising: a regenerative electric power calculating device (for example, step S04 in the embodiment) which calculates the regenerative electric power which can be generated by regenerative operation of the propulsion motor; and a chargeable power calculating device (for example, step S05 in the embodiment) which calculates the chargeable power which can be charged to the capacitor, and when the chargeable power is less than the regenerative electric power, the output control device restricts the value of the output current from the fuel cell to zero, and when the chargeable power is greater than the regenerative electric power, the output control device cancels the restriction on the output current of the fuel cell. - According to the control apparatus for a fuel cell vehicle of the above configuration, in the case where the chargeable power which can be charged to the capacitor is greater than the regenerative electric power which can be generated by the regenerative operation of the propulsion motor, the restriction on the output current of the fuel cell is cancelled, so that the capacitor can be promptly charged by the power generation of the fuel cell and by the regenerative operation of the propulsion motor.
- On the other hand, when the chargeable power is less than the regenerative electric power, the output current of the fuel cell is restricted to zero, to thereby prevent the capacitor being over charged by the power generation of the fuel cell, and thus enable the energy efficiency of the fuel cell vehicle during regenerative operation of the propulsion motor to be improved.
- Furthermore, a control apparatus for a fuel cell vehicle according to a second aspect of the present invention is a control apparatus for a fuel cell vehicle provided with: a propulsion motor capable of driving a vehicle; a fuel cell furnished with a plurality of fuel cell units made by clamping an electrolyte from both side with a fuel electrode and an oxygen electrode, and which generates electricity by supplying a reactant gas to give an electrochemical reaction; a capacitor which accumulates generated energy of the fuel cell and performs transfer of electrical energy with the propulsion motor; a reactant gas supply device (for example the S/
C output controller 17, theair compressor 18, thehydrogen tank 19 a, thehydrogen supply valve 19 b, and thecontrol apparatus 20 in the embodiment) which supplies the reactant gas to the fuel cell; an output control device (for example the current andvoltage controller 12 in the embodiment) which controls an output current and an output voltage of the fuel cell, and an output control device (for example the current andvoltage controller 12 in the embodiment) which controls an output current and an output voltage of the fuel cell, characterized in comprising: a regenerative electric power calculating device (for example, step S04 in the embodiment) which calculates the regenerative electric power which can be generated by regenerative operation of the propulsion motor; a chargeable power calculating device (for example, step S05 in the embodiment) which calculates the chargeable power which can be charged to capacitor; and a voltage detection device (for example theanode voltage sensor 22 in the embodiment) which detects the voltage of the reactant gas supplied to the fuel electrode of the fuel cell, and in the case where the chargeable power is less than the regenerative electric power and the pressure of the reactant gas at the fuel electrode of the fuel cell is less than a predetermined pressure, the reactant gas supply device stops supply of the reactant gas to the oxygen electrode of the fuel cell, and the output control device restricts the value of the output current of the fuel cell to zero, and in the case where the chargeable power is greater than the regenerative electric power, and the chargeable power is less than the regenerative electric power and the pressure of the reactant gas at the fuel electrode of the fuel cell is greater than a predetermined pressure, the output control device cancels the restriction on the output current of the fuel cell. - According to the control apparatus for a fuel cell vehicle of the above configuration, in the case where the chargeable power which can be charged to the capacitor is greater than the regenerative electric power which can be generated by the regenerative operation of the propulsion motor, the restriction on the output current of the fuel cell is cancelled, so that the capacitor can be promptly charged by the power generation of the fuel cell and by the regenerative operation of the propulsion motor. Furthermore, in the case where the pressure of the reactant gas at the fuel electrode of the fuel cell is greater than the predetermined pressure, even though the chargeable output power is less than the regenerative output power, the restriction on the output current of the fuel cell is cancelled, and reactant gas is supplied to the oxygen electrode by means of a power generation command corresponding to the pressure of the reactant gas at the fuel electrode. Moreover, by continuing the power generation, the electrode gap differential pressure due to the reactant gas between the fuel electrode and the oxygen electrode of the fuel cell can be prevented from increasing excessively.
- On the other hand, when the chargeable power is less than the regenerative electric power and the pressure of the reactant gas at the fuel electrode of the fuel cell is less than a predetermined pressure, supply of the reactant gas to the oxygen electrode of the fuel cell is stopped, and the output current of the fuel cell is restricted to zero. As a result, excessive charging of the capacitor due to the power generation of the fuel cell can be prevented, and the energy efficiency of the fuel cell vehicle at the time of regenerative operation of the propulsion motor can be improved. Furthermore, by restricting the output current to zero by means of the output control device, a situation where power generation stops due to the pressure of the reactant gas at the fuel electrode becoming less than the predetermined pressure, or an excessive current is extracted from the restricted fuel cell, can be prevented, so that the fuel cell can be maintained in an appropriate condition.
-
FIG. 1 is a block diagram of a control apparatus for a fuel cell vehicle according to an embodiment of the present invention. -
FIG. 2 is a flow chart showing an operation of the control apparatus for a fuel cell vehicle shown inFIG. 1 . -
FIG. 3 is a flow chart showing an operation of the control apparatus for a fuel cell vehicle according to a modified example of the present embodiment. - The following describes a control apparatus for a fuel cell vehicle according to an embodiment of the present invention, with reference to the appended drawings.
- A
control apparatus 10 for a fuel cell vehicle according to the present embodiment comprises for example as shown inFIG. 1 ; a fuel cell 1, a current andvoltage controller 12, acapacitor 13, anoutput controller 14, apropulsion motor 15, aload 16, an S/C output controller 17, an air compressor (S/C) 18, ahydrogen tank 19 a andhydrogen supply valve 19 b, acontrol apparatus 20, a fuel cellunit voltage sensor 21, ananode voltage sensor 22, acapacitor voltage sensor 23, a capacitorcurrent sensor 24, an degree of opening of theaccelerator sensor 31, anIG switch 32, and aspeed sensor 33. - The
fuel cell 11 comprises a stack of fuel cell units made up with an electrolyte electrode structure holding a solid polymer electrolyte membrane formed from a positive ion exchange membrane or the like sandwiched between a fuel electrode (anode) formed from an anode catalyst and gas diffusion layer, and an oxygen electrode (cathode) formed from a cathode catalyst and gas diffusion layer, which is further sandwiched between a pair of separators. - The anode of the
fuel cell 11 is supplied with fuel gas (reactant gas) comprising hydrogen, from the high-pressure hydrogen tank 19 a via thehydrogen supply valve 19 b. Hydrogen ionized by the catalytic reaction on the anode catalyst of the anode migrates to the cathode via an appropriately humidified solid polymer electrolyte membrane, and electrons released in association with this migration are extracted to an external circuit and used as DC electrical energy. The cathode is supplied with, for example, air as an oxidizing gas (reactant gas) containing oxygen, by the air compressor (S/C) 18, and the hydrogen ions, electrons, and oxygen react at the cathode to form water. - The generated current (output current) extracted from the
fuel cell 11 is input to the current andvoltage controller 12. The current andvoltage controller 12 is connected to acapacitor 13 comprising, for example, multiple capacitor cells formed from electric double layer capacitors or electrolytic capacitors or the like connected mutually in series. - The
fuel cell 11, the current andvoltage controller 12, and thecapacitor 13 are connected in parallel to thepropulsion motor 15 via theoutput controller 14, theload 16 comprising various auxiliary equipment, for example, a cooling device for thefuel cell 11 and the capacitor 13 (not shown in drawings) and an air conditioner (not shown in drawings), and the air compressor (S/C) 18 via the S/C output controller 17. - The current and
voltage controller 12 comprises, for example, a chopper type power conversion circuit wherein the value of the output current extracted from thefuel cell 11 is controlled by the chopping action of the chopper type power conversion circuit, in other words, by the on/off action of a switching device provided in the chopper type power conversion circuit. This chopping action is controlled in accordance with a duty ratio, in other words, on/off ratio, of the control pulse input from thecontrol apparatus 20. - For example, when the extraction of output current from the
fuel cell 11 is prevented, setting the duty ratio of the control pulse input from thecontrol apparatus 20 to 0% results in the switching device provided in the chopper type power conversion circuit being held in the off condition, and thefuel cell 11 and thecapacitor 13 are electrically disconnected. On the other hand, setting the duty ratio of the control pulse to 100% results in the switching device being held in the on condition, in effect directly connecting thefuel cell 11 and thecapacitor 13. Thus the output voltage of thefuel cell 11 and thecapacitor 13 terminal voltage assume the same value. - Furthermore, when the duty ratio of the control pulse is set appropriately between 0% and 100%, the current and
voltage controller 12 restricts the output current of thefuel cell 11, in other words, the primary current, as appropriate in accordance the duty ratio of the control pulse, and the restricted current thus obtained is output as the secondary current. - The
output controller 14 is provided with, for example, a PWM inverter which uses pulse width modulation (PWM), and controls the drive and regenerative action of thepropulsion motor 15 corresponding to control commands output from thecontrol apparatus 20. For example, when thepropulsion motor 15 is driven, DC power output from the current andvoltage controller 12 and thecapacitor 13 is converted to three-phase AC power based on a torque command input from thecontrol apparatus 20, and supplied to thepropulsion motor 15. On the other hand, during regeneration with thepropulsion motor 15, the three-phase AC power output from thepropulsion motor 15 is converted to DC power and supplied to thecapacitor 13 to charge thecapacitor 13. - The
propulsion motor 15 is, for example, a permanent magnet type three-phase AC synchronous motor using a permanent magnet as a field magnet, and is driven and controlled with three-phase AC power supplied from theoutput controller 14. Additionally, when drive power is transmitted to thepropulsion motor 15 from the drive wheels during deceleration of the vehicle, thepropulsion motor 15 functions as a generator, producing so called regenerative braking power, recovering the kinetic energy of the vehicle in the form of electrical energy. - Moreover, the
air compressor 18 takes, for example, air from outside the vehicle, compresses it, and supplies this air to the cathode of thefuel cell 11 as reactant gas. - The speed of rotation of the motor (not shown in drawings) driving this
air compressor 18 is controlled by the S/C output controller 17, provided with, for example, a PWM inverter which uses pulse width modulation (PWM), based on control commands output from thecontrol apparatus 20. - The
control apparatus 20 outputs a command value for the flow of the reactant gas supplied from theair compressor 18 to thefuel cell 11, and a command value for the opening of thehydrogen supply valve 19 b, based on, for example, the operating state of the vehicle, the concentration of hydrogen in the reactant gas supplied to the anode of thefuel cell 11, the concentration of hydrogen in the gas discharged from the anode of thefuel cell 11, and the state of power generation of thefuel cell 11, for example, the terminal voltage of each of the multiple fuel cell units, the output current extracted from thefuel cell 11, the pressure of reactant gas supplied to the anode, and the like, to thereby control the state of power generation of thefuel cell 11. - Furthermore, the
control apparatus 20 outputs control pulses to control the power conversion operation of the current andvoltage controller 12, based on a power generation command for thefuel cell 11, to thereby control the value of the current output from thefuel cell 11. - Moreover, the
control apparatus 20 controls the power conversion operation of the PWM inverter provided in theoutput controller 14, and when, for example, thepropulsion motor 15 is driven, computes a torque command based on a signal for the degree of opening of the accelerator associated with the amount of pressing of the accelerator pedal by the driver. Thecontrol apparatus 20 then inputs this torque command to theoutput controller 14. As a result, a pulse width modulation signal corresponding to the torque command is input to the PWM inverter, and various phase currents required to produce the requested torque are output to each phase of thepropulsion motor 15. - Furthermore, the
control apparatus 20 controls the regenerative operation of thepropulsion motor 15 based on the travelling state of the vehicle, for example the speed of the vehicle (speed), or the state of thecapacitor 13, for example, the temperature of thecapacitor 13, the total voltage being the sum of the capacitor unit voltages of the multiple capacitor units, in other words, the detected value of the terminal voltage of thecapacitor 13, the detected value of the current charged to thecapacitor 13, or the like. - Therefore to the
control apparatus 20 is input for example: a detection signal output from the fuel cellunit voltage sensor 21 which detects the terminal voltage (fuel cell unit voltage) of the multiple fuel cell units comprising thefuel cell 11; a detection signal output from the output current sensor (not shown in drawings) which detects the value of the output current extracted from thefuel cell 11; a detection signal output from the output voltage sensor (not shown in drawings) which detects the output voltage of thefuel cell 11; a detection signal output from thecapacitor voltage sensor 23 which detects the terminal voltage of thecapacitor 13; a detection signal output from the capacitorcurrent sensor 24 which detects the capacitor current charged to thecapacitor 13; a detection signal output from the capacitor temperature sensor (not shown in drawings) which detects the temperature of thecapacitor 13; a detection signal output from the degree of opening of theaccelerator sensor 31; a signal output from theIG switch 32 which instructs commencement of operation of the vehicle, and a detection signal output from thespeed sensor 33. - Moreover, as described below, the
control apparatus 20, at the time of regenerative operation of thepropulsion motor 15 such as during deceleration of the fuel cell vehicle, calculates the regenerative electric power which can be generated based on the vehicle condition, for example on the speed of the vehicle or the like. Furthermore, thecontrol apparatus 20 calculates the chargeable power which can be charged to thecapacitor 13 based for example on the detected value of the terminal voltage of thecapacitor 13 or the like. - Then, the
control apparatus 20, in the case where the chargeable power which can be charged to thecapacitor 13 is greater than the regenerative electric power which can be generated by thepropulsion motor 15, makes the duty ratio of the control pulse output to the current andvoltage controller 12, 100%, and sets thefuel cell 11 and thecapacitor 13 to a directly connected condition. Moreover, thecontrol apparatus 20 outputs to the S/C output controller 17 a power generation command corresponding to the detection value of the terminal voltage of thecapacitor 13 which has become the same value as the output voltage of thefuel cell 11, to perform supply of reactant gas in accordance with the power generation command, so that thecapacitor 13 is charged by the power generation power of thefuel cell 11 and the regenerative electric power of thepropulsion motor 15. - On the other hand, in the case where the chargeable power which can be charged to the
capacitor 13 is less than the regenerative electric power which can be generated by thepropulsion motor 15, thecontrol apparatus 20 makes the duty ratio of the control pulse input to current andvoltage controller 12, 0%, to electrically disconnect thefuel cell 11 and thecapacitor 13, and prohibit charging of thecapacitor 13 by the power generation power of thefuel cell 11. - The
control apparatus 10 for a fuel cell vehicle according to the present embodiment has the aforementioned configuration. Next is a description of the operation of thecontrol apparatus 10 for a fuel cell vehicle, in particular the operation during travelling of the fuel cell vehicle, with reference to the appended drawings. - At first, in step S01 of
FIG. 2 , it is determined whether or not the fuel cell vehicle is decelerating, according to for example a time change of the opening of the accelerator related to the accelerator operation amount of the driver, or for example the direction of the current being charged to thecapacitor 15, that is whether this is a charging current or a discharge current, or the like. - If the determination result is YES, the flow proceeds to the next step S04.
- On the other hand if the determination result is NO, the flow proceeds to step S02.
- In step S02, the duty ratio of the control pulse input to current and
voltage controller 12 is set to 100%, and thefuel cell 11 and thecapacitor 13 are set to a directly connected condition. - Then, in step S03, a power generation command corresponding for example to the degree of opening of the accelerator related to the accelerator operation amount of the driver or the like, is output to the S/
C output controller 17, and also a torque command corresponding to the degree of opening of the accelerator or the like is output to theoutput controller 14, so that thepropulsion motor 15 is driven by the power supply from thefuel cell 11, and this series of processing then ends. - Furthermore, in step S04, based on the vehicle travelling conditions, for example the speed of the vehicle or the like, the regenerative electric power which can be generated by the regenerative operation of the
propulsion motor 15 is calculated. - Next, in step S05, based for example on the detection value of the terminal voltage of the
capacitor 13 or the like, the chargeable power which can be charged to thecapacitor 13 is calculated. - Then, in step S06, it is determined whether or not the chargeable power which can be charged to the
capacitor 13 is greater than the regenerative electric power which can be generated by thepropulsion motor 15. - In the case where the determination result is NO, the flow proceeds to the next step S09.
- On the other hand, in the case where the determination result is YES, the flow proceeds to step S07.
- In step S07, the duty ratio of the control pulse output to the current and
voltage controller 12 is set to 100%, and thefuel cell 11 and thecapacitor 13 are set to the directly connected condition, and also a power generation command corresponding to the detection value of the terminal voltage of thecapacitor 13 which has become the same value as the output voltage of thefuel cell 11, is output to the S/C output controller 17, and supply of reactant gas is performed corresponding to the power generation command for thefuel cell 11, so that thecapacitor 13 is charged by the power generation power of thefuel cell 11. - Then, in step S08, a regeneration command is output to the
output controller 14, and the three phase AC power output from thepropulsion motor 15 due to the regeneration operation, is converted to DC regenerative electric power by theoutput controller 14, and thecapacitor 13 is charged by this regenerative electric power, and the series of processing ends. - Furthermore, in step S09, the duty ratio of the control pulse input to current and
voltage controller 12 is set to 0%, and thefuel cell 11 and thecapacitor 13 are electrically disconnected, so that charging of thecapacitor 13 by means of the power generation power of thefuel cell 11 is prohibited. - Then, in step S10, a regeneration command is output to the
output controller 14, and the three phase AC power output from thepropulsion motor 15 due to the regenerative operation is converted to DC regenerative power by theoutput controller 14, and thecapacitor 13 is charged by this regenerative electric power, and the series of processing ends. - As described above, according to the
control apparatus 10 for a fuel cell vehicle of this embodiment, in the case where the chargeable power which can be charged to thecapacitor 13 is greater than the regenerative electric power which can be generated by the regeneration operation of the propulsion motor, the restriction on the output current of thefuel cell 11 is cancelled, so that thecapacitor 13 can be quickly charged by the power generation power of thefuel cell 11 and the regenerative electric power of thepropulsion motor 15. - On the other hand, when the chargeable power is less than the regenerative electric power, the output current of the
fuel cell 11 is restricted to zero. As a result the capacitor being over charged by the power generation of the fuel cell can be prevented, and the energy efficiency of the fuel cell vehicle during regenerative operation of thepropulsion motor 15 can be improved. - In the above described embodiment, in the case where the chargeable power which can be charged to the
capacitor 13 is less than the regenerative electric power which can be generated by thepropulsion motor 15, charging of thecapacitor 13 by the power generation power of thefuel cell 11 is simply prohibited. However, this is not limiting, and for example as in the flow chart shown inFIG. 3 showing the operation of thecontrol apparatus 10 for a fuel cell vehicle according to a modified example of the embodiment, the operation of current andvoltage controller 12 may further be controlled corresponding to the electrode gap differential pressure of the anode and cathode of thefuel cell 11. - In this modified example of the embodiment, the point different from the above mentioned embodiment is that in the case where the determination result in step S06 is NO, the flow proceeds to step S21.
- Hereunder, parts the same as for the above mentioned embodiment are denoted by the same reference symbols, and description is omitted.
- That is to say, in step S21 in
FIG. 3 , it is determined whether or not the detection result of the pressure (anode pressure) of the reactant gas at the anode of thefuel cell 11 is less than a predetermined pressure. - In the case where the determination result is YES, the flow proceeds to the aforementioned step S09.
- On the other hand, in the case where the determination result is NO, the flow proceeds to step S22.
- In step S22, the duty ratio of the control pulse input to current and
voltage controller 12 is made 100% so that thefuel cell 11 and thecapacitor 13 are set to the directly connected condition. Also the power generation command corresponding to the detection value of the anode pressure is output to the S/C output controller 17, and supply of reactant gas (air) is performed corresponding to the power generation command for the cathode of thefuel cell 11, so that power generation is performed in a condition where the differential pressure of the electrode gap of the anode and the cathode of thefuel cell 11 is maintained at a predetermined differential pressure condition, and thecapacitor 13 is charged by the power generation power of thefuel cell 11. - Then, in step S23, a regeneration command is output to the
output controller 14, and the three phase AC power output from thepropulsion motor 15 is converted to DC regenerative power by means of theoutput controller 14, and thecapacitor 13 is then charged by this regenerative electric power, and the series of processing ends. - That is, in the case where the pressure of the hydrogen at the anode of the
fuel cell 11 is greater than a predetermined pressure, even though the chargeable power is less than the regenerative electric power, the restriction on the output current of thefuel cell 11 is cancelled so that power generation continues. As a result, an excessive increase in the differential pressure of the electrode gap between the anode and the cathode of thefuel cell 11 can be prevented. - As described above, according to the control apparatus for a fuel cell vehicle of the first aspect of the present invention, the capacitor can be promptly charged by the power generation of the fuel cell and by the regenerative operation of the propulsion motor. Also overcharging of the capacitor by the power generation of the fuel cell can be prevented, thus enabling the energy efficiency of the fuel cell vehicle during regenerative operation of the propulsion motor to be improved.
- Moreover according to the control apparatus for a fuel cell vehicle of the second aspect of the present invention, the capacitor can be promptly charged by the power generation of the fuel cell and by the regenerative operation of the propulsion motor. Also, while maintaining protection of the fuel cell, excessive charging of the capacitor due to the power generation of the fuel cell can be prevented, and the energy efficiency of the fuel cell vehicle at the time of regenerative operation of the propulsion motor can be improved.
- While preferred embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit or scope of the present invention. Accordingly, the invention is not to be considered as limited by the foregoing description but is only limited by the scope of the appended claims.
Claims (1)
1. A control device for a fuel cell vehicle comprising:
a propulsion motor capable of driving a vehicle;
a fuel cell which generates electric power by supplying a reactant gas to give an electrochemical reaction;
a capacitor which is charged by a generated output of said fuel cell and regenerated electric power of said propulsion motor;
a reactant gas supply device which supplies said reactant gases to said fuel cell; and
the control device comprising:
an output control device which controls an output current of said fuel cell, and
a regenerative electric power calculating device which calculates the regenerative electric power which can be generated by regenerative operation of said propulsion motor; and
a chargeable power calculating device which calculates the chargeable power which can be charged to said capacitor,
wherein when said chargeable power is less than said regenerative electric power, said output control device restricts the value of the output current from said fuel cell to zero, and
when said chargeable power is greater than said regenerative electric power, said output control device cancels the restriction on the output current of said fuel cell.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/648,212 US20070129859A1 (en) | 2002-11-29 | 2006-12-29 | Control apparatus for fuel cell vehicle |
US12/100,161 US8027759B2 (en) | 2002-11-29 | 2008-04-09 | Fuel cell vehicle system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-347148 | 2002-11-29 | ||
JP2002347148A JP3946623B2 (en) | 2002-11-29 | 2002-11-29 | Control device for fuel cell vehicle |
US10/723,942 US7164976B2 (en) | 2002-11-29 | 2003-11-26 | Control apparatus for fuel cell vehicle |
US11/648,212 US20070129859A1 (en) | 2002-11-29 | 2006-12-29 | Control apparatus for fuel cell vehicle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/723,942 Continuation US7164976B2 (en) | 2002-11-29 | 2003-11-26 | Control apparatus for fuel cell vehicle |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/100,161 Continuation-In-Part US8027759B2 (en) | 2002-11-29 | 2008-04-09 | Fuel cell vehicle system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070129859A1 true US20070129859A1 (en) | 2007-06-07 |
Family
ID=32707838
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/723,942 Expired - Fee Related US7164976B2 (en) | 2002-11-29 | 2003-11-26 | Control apparatus for fuel cell vehicle |
US11/648,212 Abandoned US20070129859A1 (en) | 2002-11-29 | 2006-12-29 | Control apparatus for fuel cell vehicle |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/723,942 Expired - Fee Related US7164976B2 (en) | 2002-11-29 | 2003-11-26 | Control apparatus for fuel cell vehicle |
Country Status (4)
Country | Link |
---|---|
US (2) | US7164976B2 (en) |
EP (1) | EP1442922B1 (en) |
JP (1) | JP3946623B2 (en) |
DE (1) | DE60335444D1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070087232A1 (en) * | 2005-10-18 | 2007-04-19 | Robin Curtis M | Capacitor hybrid fuel cell power generator |
US20080257621A1 (en) * | 2002-11-29 | 2008-10-23 | Honda Motor Co., Ltd. | Fuel cell vehicle system |
US20110093184A1 (en) * | 2008-04-24 | 2011-04-21 | Continental Automotive Gmbh | Control circuit for an electrochemical gas sensor and method for adjusting an electrochemical gas sensor |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3816436B2 (en) * | 2002-11-28 | 2006-08-30 | 本田技研工業株式会社 | Control device for fuel cell vehicle |
JP3946623B2 (en) * | 2002-11-29 | 2007-07-18 | 本田技研工業株式会社 | Control device for fuel cell vehicle |
DE102005016300A1 (en) * | 2005-04-08 | 2006-10-12 | Proton Motor Fuel Cell Gmbh | Drive system and method for operating a drive system for an electrically powered vehicle |
JP5007035B2 (en) * | 2005-10-11 | 2012-08-22 | 本田技研工業株式会社 | Exhaust treatment device |
US20070087239A1 (en) * | 2005-10-18 | 2007-04-19 | General Hydrogen Corporation | Fuel cell fluid management system |
US20070087241A1 (en) * | 2005-10-18 | 2007-04-19 | General Hydrogen Corporation | Fuel cell power pack |
CA2626632C (en) * | 2005-10-19 | 2014-04-08 | The Raymond Corporation | Lift truck with hybrid power source |
JP4737533B2 (en) * | 2005-12-28 | 2011-08-03 | スズキ株式会社 | Vehicle control device |
JP5109360B2 (en) | 2006-12-14 | 2012-12-26 | オムロン株式会社 | Fuel cell system |
WO2008144752A2 (en) | 2007-05-21 | 2008-11-27 | Nmhg Oregon, Llc | Energy recapture for an industrial vehicle |
JP4444343B2 (en) * | 2008-04-25 | 2010-03-31 | 本田技研工業株式会社 | Fuel cell vehicle |
KR100974760B1 (en) * | 2008-06-27 | 2010-08-06 | 현대자동차주식회사 | Fuel cell output control method of fuel cell hybrid vehicle |
JP5622693B2 (en) | 2011-09-09 | 2014-11-12 | 本田技研工業株式会社 | Fuel cell vehicle |
KR101847835B1 (en) | 2016-04-11 | 2018-04-11 | 현대자동차주식회사 | Fuel cell vehicle and controlling method therefor |
JP6505149B2 (en) * | 2017-03-10 | 2019-04-24 | 本田技研工業株式会社 | Power supply system |
CN112384424B (en) * | 2019-03-28 | 2024-06-14 | 日立建机株式会社 | Work vehicle |
CN111409509B (en) * | 2020-04-04 | 2021-10-29 | 东风汽车集团有限公司 | Fuel cell system and idle speed control method thereof |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369235A (en) * | 1979-06-25 | 1983-01-18 | Sab Nife Ab | Electrochemical cell and gas diffusion electrode for the same |
US5248566A (en) * | 1991-11-25 | 1993-09-28 | The United States Of America As Represented By The United States Department Of Energy | Fuel cell system for transportation applications |
US5366821A (en) * | 1992-03-13 | 1994-11-22 | Ballard Power Systems Inc. | Constant voltage fuel cell with improved reactant supply and control system |
US5512145A (en) * | 1994-10-07 | 1996-04-30 | The Cooper Union For The Advancement Of Science And Art | Energy conversion system |
US5602279A (en) * | 1986-04-15 | 1997-02-11 | Exxon Research And Engineering Company | Primary hindered aminoacids for promoted acid gas scrubbing process |
US5759712A (en) * | 1997-01-06 | 1998-06-02 | Hockaday; Robert G. | Surface replica fuel cell for micro fuel cell electrical power pack |
US5843395A (en) * | 1997-03-17 | 1998-12-01 | Wang; Chi S. | Process for hydrogen production from hydrogen sulfide dissociation |
US5927416A (en) * | 1996-09-18 | 1999-07-27 | Smh Management Services Ag | Method for operating a non-railborne hybrid vehicle |
US6018183A (en) * | 1998-06-20 | 2000-01-25 | United Microelectronics Corp. | Structure of manufacturing an electrostatic discharge protective circuit for SRAM |
US6019183A (en) * | 1997-11-18 | 2000-02-01 | Honda Giken Kogyo Kabushiki Kaisha | Hybrid vehicle |
US6326763B1 (en) * | 1999-12-20 | 2001-12-04 | General Electric Company | System for controlling power flow in a power bus generally powered from reformer-based fuel cells |
US6348278B1 (en) * | 1998-06-09 | 2002-02-19 | Mobil Oil Corporation | Method and system for supplying hydrogen for use in fuel cells |
US20020109406A1 (en) * | 2001-01-19 | 2002-08-15 | Markus Aberle | Apparatus for generating and distributing electrical power to loads in a vehicle |
US6458478B1 (en) * | 2000-09-08 | 2002-10-01 | Chi S. Wang | Thermoelectric reformer fuel cell process and system |
US6480767B2 (en) * | 2000-09-22 | 2002-11-12 | Nissan Motor Co., Ltd. | Control system for hybrid vehicle |
US6521369B1 (en) * | 2000-11-16 | 2003-02-18 | Graftech Inc. | Flooding-reducing fuel cell electrode |
US6627340B1 (en) * | 1999-11-06 | 2003-09-30 | Energy Conversion Devices, Inc. | Fuel cell hydrogen supply systems using secondary fuel to release stored hydrogen |
US6686084B2 (en) * | 2002-01-04 | 2004-02-03 | Hybrid Power Generation Systems, Llc | Gas block mechanism for water removal in fuel cells |
US6808832B2 (en) * | 2000-01-31 | 2004-10-26 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell humidifying system |
US6841292B2 (en) * | 2001-09-04 | 2005-01-11 | General Motors Corporation | Hydrogen sensor for fuel processors of a fuel cell |
US6887601B2 (en) * | 2000-09-28 | 2005-05-03 | Proton Energy Systems, Inc. | Regenerative electrochemical cell system and method for use thereof |
US6893757B2 (en) * | 2001-01-26 | 2005-05-17 | Kabushikikaisha Equos Research | Fuel cell apparatus and method of controlling fuel cell apparatus |
US6908700B2 (en) * | 2001-05-24 | 2005-06-21 | Nissan Motor Co., Ltd. | Fuel cell system for vehicle |
US6973393B2 (en) * | 2002-11-29 | 2005-12-06 | Honda Motor Co., Ltd. | Control apparatus for a fuel cell vehicle |
US7164976B2 (en) * | 2002-11-29 | 2007-01-16 | Honda Motor Co., Ltd. | Control apparatus for fuel cell vehicle |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1230984B (en) * | 1989-07-05 | 1991-11-08 | Giuseppe Bianchi | HIGH DENSITY ELECTRIC ACCUMULATOR FOR POINT LOADS. |
EP0578837A1 (en) * | 1989-11-27 | 1994-01-19 | Rudolf K. Abelin | Hybrid vehicle |
JP3433504B2 (en) | 1994-03-08 | 2003-08-04 | マツダ株式会社 | Power supply for vehicles |
DE19954306B4 (en) | 1999-11-11 | 2004-09-02 | Ballard Power Systems Ag | Device for generating electrical energy with a fuel cell in a vehicle and method for operating such a device |
JP4545285B2 (en) | 2000-06-12 | 2010-09-15 | 本田技研工業株式会社 | Fuel cell vehicle start control device |
JP4386314B2 (en) | 2000-07-17 | 2009-12-16 | ヤマハ発動機株式会社 | Electric vehicle power control method |
US6628011B2 (en) | 2000-07-28 | 2003-09-30 | International Power System, Inc. | DC to DC converter and power management system |
JP3662872B2 (en) * | 2000-11-17 | 2005-06-22 | 本田技研工業株式会社 | Fuel cell power supply |
JP3698072B2 (en) * | 2000-12-27 | 2005-09-21 | 日産自動車株式会社 | Control device for fuel cell system |
-
2002
- 2002-11-29 JP JP2002347148A patent/JP3946623B2/en not_active Expired - Fee Related
-
2003
- 2003-11-26 DE DE60335444T patent/DE60335444D1/en not_active Expired - Lifetime
- 2003-11-26 EP EP03027303A patent/EP1442922B1/en not_active Expired - Lifetime
- 2003-11-26 US US10/723,942 patent/US7164976B2/en not_active Expired - Fee Related
-
2006
- 2006-12-29 US US11/648,212 patent/US20070129859A1/en not_active Abandoned
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369235A (en) * | 1979-06-25 | 1983-01-18 | Sab Nife Ab | Electrochemical cell and gas diffusion electrode for the same |
US5602279A (en) * | 1986-04-15 | 1997-02-11 | Exxon Research And Engineering Company | Primary hindered aminoacids for promoted acid gas scrubbing process |
US5248566A (en) * | 1991-11-25 | 1993-09-28 | The United States Of America As Represented By The United States Department Of Energy | Fuel cell system for transportation applications |
US5366821A (en) * | 1992-03-13 | 1994-11-22 | Ballard Power Systems Inc. | Constant voltage fuel cell with improved reactant supply and control system |
US5512145A (en) * | 1994-10-07 | 1996-04-30 | The Cooper Union For The Advancement Of Science And Art | Energy conversion system |
US5927416A (en) * | 1996-09-18 | 1999-07-27 | Smh Management Services Ag | Method for operating a non-railborne hybrid vehicle |
US5759712A (en) * | 1997-01-06 | 1998-06-02 | Hockaday; Robert G. | Surface replica fuel cell for micro fuel cell electrical power pack |
US5843395A (en) * | 1997-03-17 | 1998-12-01 | Wang; Chi S. | Process for hydrogen production from hydrogen sulfide dissociation |
US6019183A (en) * | 1997-11-18 | 2000-02-01 | Honda Giken Kogyo Kabushiki Kaisha | Hybrid vehicle |
US6348278B1 (en) * | 1998-06-09 | 2002-02-19 | Mobil Oil Corporation | Method and system for supplying hydrogen for use in fuel cells |
US6018183A (en) * | 1998-06-20 | 2000-01-25 | United Microelectronics Corp. | Structure of manufacturing an electrostatic discharge protective circuit for SRAM |
US6627340B1 (en) * | 1999-11-06 | 2003-09-30 | Energy Conversion Devices, Inc. | Fuel cell hydrogen supply systems using secondary fuel to release stored hydrogen |
US6326763B1 (en) * | 1999-12-20 | 2001-12-04 | General Electric Company | System for controlling power flow in a power bus generally powered from reformer-based fuel cells |
US6808832B2 (en) * | 2000-01-31 | 2004-10-26 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell humidifying system |
US6458478B1 (en) * | 2000-09-08 | 2002-10-01 | Chi S. Wang | Thermoelectric reformer fuel cell process and system |
US6480767B2 (en) * | 2000-09-22 | 2002-11-12 | Nissan Motor Co., Ltd. | Control system for hybrid vehicle |
US6887601B2 (en) * | 2000-09-28 | 2005-05-03 | Proton Energy Systems, Inc. | Regenerative electrochemical cell system and method for use thereof |
US6521369B1 (en) * | 2000-11-16 | 2003-02-18 | Graftech Inc. | Flooding-reducing fuel cell electrode |
US20020109406A1 (en) * | 2001-01-19 | 2002-08-15 | Markus Aberle | Apparatus for generating and distributing electrical power to loads in a vehicle |
US6893757B2 (en) * | 2001-01-26 | 2005-05-17 | Kabushikikaisha Equos Research | Fuel cell apparatus and method of controlling fuel cell apparatus |
US6908700B2 (en) * | 2001-05-24 | 2005-06-21 | Nissan Motor Co., Ltd. | Fuel cell system for vehicle |
US6841292B2 (en) * | 2001-09-04 | 2005-01-11 | General Motors Corporation | Hydrogen sensor for fuel processors of a fuel cell |
US6686084B2 (en) * | 2002-01-04 | 2004-02-03 | Hybrid Power Generation Systems, Llc | Gas block mechanism for water removal in fuel cells |
US6973393B2 (en) * | 2002-11-29 | 2005-12-06 | Honda Motor Co., Ltd. | Control apparatus for a fuel cell vehicle |
US7164976B2 (en) * | 2002-11-29 | 2007-01-16 | Honda Motor Co., Ltd. | Control apparatus for fuel cell vehicle |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080257621A1 (en) * | 2002-11-29 | 2008-10-23 | Honda Motor Co., Ltd. | Fuel cell vehicle system |
US8027759B2 (en) | 2002-11-29 | 2011-09-27 | Honda Motor Co., Ltd. | Fuel cell vehicle system |
US20070087232A1 (en) * | 2005-10-18 | 2007-04-19 | Robin Curtis M | Capacitor hybrid fuel cell power generator |
US20110093184A1 (en) * | 2008-04-24 | 2011-04-21 | Continental Automotive Gmbh | Control circuit for an electrochemical gas sensor and method for adjusting an electrochemical gas sensor |
US8538665B2 (en) * | 2008-04-24 | 2013-09-17 | Continental Automotive Gmbh | Control circuit for an electrochemical gas sensor and method for adjusting an electrochemical gas sensor |
Also Published As
Publication number | Publication date |
---|---|
US20040172206A1 (en) | 2004-09-02 |
JP2004180475A (en) | 2004-06-24 |
EP1442922A1 (en) | 2004-08-04 |
JP3946623B2 (en) | 2007-07-18 |
DE60335444D1 (en) | 2011-02-03 |
US7164976B2 (en) | 2007-01-16 |
EP1442922B1 (en) | 2010-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070129859A1 (en) | Control apparatus for fuel cell vehicle | |
US8027759B2 (en) | Fuel cell vehicle system | |
US7083017B2 (en) | Fuel cell vehicle | |
US7946365B2 (en) | Control method for fuel cell vehicle, and fuel cell vehicle | |
JP4397739B2 (en) | Method for setting voltage state of fuel cell vehicle | |
JP4163222B2 (en) | Power supply system for fuel cell vehicles | |
KR100974760B1 (en) | Fuel cell output control method of fuel cell hybrid vehicle | |
US6973393B2 (en) | Control apparatus for a fuel cell vehicle | |
CN112582711B (en) | Fuel cell system, control method for fuel cell system, and storage medium | |
CN101909923A (en) | Fuel cell system and fuel cell vehicle | |
US7034475B2 (en) | Control apparatus for controlling regenerative operation of vehicle motor | |
JP3839397B2 (en) | Device for detecting disconnection of voltage detection line of power storage device | |
JP2008527648A (en) | Reduction of voltage loss caused by voltage cycling by using rechargeable battery | |
EP1953857B1 (en) | Fuel cell system | |
JP2018133147A (en) | Fuel cell system | |
JP4615379B2 (en) | Fuel cell system | |
CN112615087B (en) | Fuel cell system, control method for fuel cell system, and storage medium | |
JP4451056B2 (en) | Control device for fuel cell vehicle | |
JP4056863B2 (en) | Fault detection device for voltage detection circuit | |
JP2004187332A (en) | Controller for fuel cell vehicle | |
CN118560303A (en) | Vehicle system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONDA MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAEKI, HIBIKI;AOYAGI, SATOSHI;HASUKA, YOSHINOBU;REEL/FRAME:019081/0471 Effective date: 20040405 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |