+

US20070116133A1 - Automation device - Google Patents

Automation device Download PDF

Info

Publication number
US20070116133A1
US20070116133A1 US11/519,683 US51968306A US2007116133A1 US 20070116133 A1 US20070116133 A1 US 20070116133A1 US 51968306 A US51968306 A US 51968306A US 2007116133 A1 US2007116133 A1 US 2007116133A1
Authority
US
United States
Prior art keywords
counter
microcontroller
automation device
data
automation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/519,683
Inventor
Heiko Kresse
Andreas Stelter
Ralf Schaeffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20070116133A1 publication Critical patent/US20070116133A1/en
Assigned to ABB PATENT GMBH reassignment ABB PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRESSE, HEIKO, SCHAEFFER, RALF, STELTER, ANDREAS
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40032Details regarding a bus interface enhancer

Definitions

  • the invention relates to an automation device, with which a multiplicity of physically distributed functional units communicate with each other by means of a common transmission protocol. These functional units manifest themselves as field devices or operator units according to their automation function.
  • each measurement or control value is converted into a proportional DC current, which is superimposed on the DC supply current, where the DC current representing the measurement or control value can be a multiple of the DC supply current.
  • the supply current consumption of the field device is usually set to approximately 4 mA, and the dynamic range of the measurement or control value is mapped onto currents between 0 and 16 mA, so that the known 4 to 20 mA current loop can be used.
  • an AC transmission path capable of bi-directional operation is provided in parallel with the unidirectional DC transmission path, via which parameterization data are transferred in the direction to the field device and measurements and status data are transferred from the direction of the field device.
  • the parameterization data and the measurements and status data are modulated on an AC voltage, preferably frequency modulated.
  • field area In process control engineering, it is common in the field area as it is called, to arrange and link field devices, i.e. measurement, control and display modules, locally according to the specified safety requirements. These field devices have analog and digital interfaces for data transfer between them, where data transfer takes place via the supply lines of the power supply arranged in the control area. Operator units are also provided in the control area, as it is called, for controlling and diagnosing these field devices remotely, where lower safety requirements normally apply.
  • FSK modulation Frequency Shift Keying
  • ASICs specifically developed to implement the FSK interface according to the HART protocol, such as the HT2012 from the SMAR company, are commercially available and in common use.
  • the disadvantage with these special circuits is the permanently fixed range of functions and the associated lack of flexibility to adapt to changing requirements.
  • CMOS complementary metal-oxide-semiconductor
  • microcontroller a processing unit known as a microcontroller
  • the aim is to reproduce the functions of the FSK interface according to the HART protocol in the controller of the processing unit of the automation devices, without impairing in the process the automation task of the functional unit concerned.
  • the object of the invention is specifically to define an automation device having means for converting an FSK signal into a data bit-stream using a microcontroller known per se.
  • the invention is based on an automation device having a processing unit, which is assigned at least one memory unit for storing instructions and data. Connected to this processing unit on the transmit side is a digital-to-analog converter whose output is connected to a filter.
  • an event-controlled counter is provided. At each zero crossover of the line signal, the counter reading of the counter is buffer-stored and the counter is restarted.
  • the frequency representing the elapsed half-wave is detected from the time interval between two consecutive zero crossovers, which is registered by the buffer-stored counter reading, and the associated bit value is output. For this purpose, at each zero crossover of the line signal, an interrupt request is triggered, following which program execution of the microcontroller is interrupted. After the reconstructed data bit has been output, program execution of the microcontroller is recommenced and continued at the interruption point.
  • FIGURE 1 shows a block diagram of an automation device.
  • FIGURE 1 shows schematically an automation device 100 to the extent necessary to understand the present invention.
  • the automation device 100 is connected via a communications line 200 to an automation device 100 ′ of substantially the same type.
  • the communications line 200 is used bi-directionally.
  • the information sent by the automation device 100 is received by the automation device 100 ′, and vice versa. Hence reference is only made below to the automation device 100 shown in detail.
  • a core component of the automation device 100 is a controller 110 , which is connected at least to one memory unit 150 and one timing element, referred to below as a clock generator 120 for the sake of simplicity. Usually, however, parts of the clock generator 120 are already implemented in the controller 110 .
  • the controller 110 has connections for connecting a data sink 130 and a data source 140 .
  • a configurable and/or parameterizable sensor for converting a physical variable into an electrical variable can be provided as the data source 140 , in which case the configuration and/or parameterization is the data sink 130 .
  • the data sink 130 is an actuator for converting an electrical variable into a physical variable whose properties can be diagnosed.
  • the diagnostic device provided for this purpose is then the data source 140 .
  • the automation device 100 is part of a higher-level device designed for bi-directional communication with additional automation devices 100 ′.
  • the higher-level device is both the data source 140 and the data sink 130 .
  • the automation device 100 can be designed as a “protocol converter”.
  • the data source 140 and the data sink 130 are formed by a second communications system.
  • the data source 140 it is sufficient for the data source 140 to be present without the data sink 130 .
  • a digital-to-analog converter 160 connected to the controller 110 is a digital-to-analog converter 160 whose output is connected to a filter 170 .
  • the output of the filter 170 is connected to the communications line 200 .
  • the communications line 200 is taken to the input terminals of the controller 110 , via which terminals it is provided that the line signal 201 on the communications line 200 is received.
  • the automation device has a demodulation device 180 at the receiver end.
  • the demodulation device 180 essentially comprises a zero-crossover detector for detecting the zero crossover of the line signal.
  • the output of the zero-crossover detector is connected to an interrupt input of the microcontroller.
  • an event-controlled counter is provided.
  • an interrupt request is triggered, following which program execution of the microcontroller is interrupted.
  • Program execution of the microcontroller is then branched to an interrupt processing routine.
  • the current counter reading of the counter is read out and buffer-stored. Then the counter is reset and started again.
  • the frequency representing the elapsed half-wave is detected from the time interval between two consecutive zero crossovers, which is registered by the buffer-stored counter reading, and the associated bit value output. After the reconstructed data bit has been output, program execution of the microcontroller is recommenced and continued at the interruption point.
  • a filter is connected to the input of the zero-crossover detector, thereby removing interference signals from the line signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Communication Control (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

The invention relates to an automation device (100, 100′), in which a multiplicity of physically distributed functional units communicate with each other by means of a common transmission protocol. The device has a microcontroller (110), which is assigned at least one clock generator (120) and one memory unit (150), and which is connected at least to one data source (140), which is designed to output a data bit-stream to be transmitted.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims priority from German Application DE 10 2005 043 481.9 filed on Sep. 13, 2005 the contents of which are relied upon and incorporated herein by reference in their entirety, and the benefit of priority under 35 U.S.C. 119 is hereby claimed.
  • BACKGROUND OF THE INVENTION
  • The invention relates to an automation device, with which a multiplicity of physically distributed functional units communicate with each other by means of a common transmission protocol. These functional units manifest themselves as field devices or operator units according to their automation function.
  • For some time now it has been common practice in instrumentation and control engineering to use a two-wire line to supply a field device and to transfer measurements from this field device to a display device and/or to an automation control system, or transfer control values from an automation control system to the field device. Each measurement or control value is converted into a proportional DC current, which is superimposed on the DC supply current, where the DC current representing the measurement or control value can be a multiple of the DC supply current. Thus the supply current consumption of the field device is usually set to approximately 4 mA, and the dynamic range of the measurement or control value is mapped onto currents between 0 and 16 mA, so that the known 4 to 20 mA current loop can be used.
  • More recent field devices also feature universal properties that are largely adaptable to the given process. For this purpose, an AC transmission path capable of bi-directional operation is provided in parallel with the unidirectional DC transmission path, via which parameterization data are transferred in the direction to the field device and measurements and status data are transferred from the direction of the field device. The parameterization data and the measurements and status data are modulated on an AC voltage, preferably frequency modulated.
  • In process control engineering, it is common in the field area as it is called, to arrange and link field devices, i.e. measurement, control and display modules, locally according to the specified safety requirements. These field devices have analog and digital interfaces for data transfer between them, where data transfer takes place via the supply lines of the power supply arranged in the control area. Operator units are also provided in the control area, as it is called, for controlling and diagnosing these field devices remotely, where lower safety requirements normally apply.
  • Data transfer between the operator units in the control area and the field devices is implemented using FSK modulation (Frequency Shift Keying) superimposed on the known 20 mA current loops, where two frequencies, assigned to the binary states “0” and “1”, are transferred in frames as analog signals.
  • The general conditions for the FSK signal and the type of modulation are specified in the “HART Physical Layer Specification Revision 7.1-Final” dated 20 Jun. 1990 (Rosemount Document no. D8900097; Revision B).
  • ASICs specifically developed to implement the FSK interface according to the HART protocol, such as the HT2012 from the SMAR company, are commercially available and in common use. The disadvantage with these special circuits is the permanently fixed range of functions and the associated lack of flexibility to adapt to changing requirements.
  • Known modern automation devices are usually equipped with a processing unit known as a microcontroller, which is used to perform the correct data processing for the automation task of the functional unit concerned.
  • The aim is to reproduce the functions of the FSK interface according to the HART protocol in the controller of the processing unit of the automation devices, without impairing in the process the automation task of the functional unit concerned.
  • SUMMARY OF THE INVENTION
  • Hence the object of the invention is specifically to define an automation device having means for converting an FSK signal into a data bit-stream using a microcontroller known per se.
  • The invention is based on an automation device having a processing unit, which is assigned at least one memory unit for storing instructions and data. Connected to this processing unit on the transmit side is a digital-to-analog converter whose output is connected to a filter.
  • To reconstruct the transmitted data bit-stream from the FSK-modulated line signal, an event-controlled counter is provided. At each zero crossover of the line signal, the counter reading of the counter is buffer-stored and the counter is restarted.
  • The frequency representing the elapsed half-wave is detected from the time interval between two consecutive zero crossovers, which is registered by the buffer-stored counter reading, and the associated bit value is output. For this purpose, at each zero crossover of the line signal, an interrupt request is triggered, following which program execution of the microcontroller is interrupted. After the reconstructed data bit has been output, program execution of the microcontroller is recommenced and continued at the interruption point.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The invention is explained in more detail below with reference to an exemplary embodiment. In the drawings required for this,
  • FIGURE 1 shows a block diagram of an automation device.
  • FIGURE 1 shows schematically an automation device 100 to the extent necessary to understand the present invention.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The automation device 100 is connected via a communications line 200 to an automation device 100′ of substantially the same type. The communications line 200 is used bi-directionally. The information sent by the automation device 100 is received by the automation device 100′, and vice versa. Hence reference is only made below to the automation device 100 shown in detail.
  • A core component of the automation device 100 is a controller 110, which is connected at least to one memory unit 150 and one timing element, referred to below as a clock generator 120 for the sake of simplicity. Usually, however, parts of the clock generator 120 are already implemented in the controller 110.
  • The controller 110 has connections for connecting a data sink 130 and a data source 140.
  • A configurable and/or parameterizable sensor for converting a physical variable into an electrical variable can be provided as the data source 140, in which case the configuration and/or parameterization is the data sink 130.
  • In an alternative embodiment, it can be provided that the data sink 130 is an actuator for converting an electrical variable into a physical variable whose properties can be diagnosed. The diagnostic device provided for this purpose is then the data source 140.
  • In a further embodiment, it can be provided that the automation device 100 is part of a higher-level device designed for bi-directional communication with additional automation devices 100′. In this embodiment, the higher-level device is both the data source 140 and the data sink 130.
  • In a further embodiment, the automation device 100 can be designed as a “protocol converter”. In this embodiment, the data source 140 and the data sink 130 are formed by a second communications system.
  • To implement the invention, however, it is sufficient for the data source 140 to be present without the data sink 130.
  • In addition, connected to the controller 110 is a digital-to-analog converter 160 whose output is connected to a filter 170. The output of the filter 170 is connected to the communications line 200. In addition, the communications line 200 is taken to the input terminals of the controller 110, via which terminals it is provided that the line signal 201 on the communications line 200 is received.
  • Starting from the communications line 200, the automation device has a demodulation device 180 at the receiver end. The demodulation device 180 essentially comprises a zero-crossover detector for detecting the zero crossover of the line signal. The output of the zero-crossover detector is connected to an interrupt input of the microcontroller.
  • To reconstruct the transmitted data bit-stream at the receiver end from the FSK-modulated line signal, an event-controlled counter is provided.
  • At each zero crossover of the line signal, an interrupt request is triggered, following which program execution of the microcontroller is interrupted. Program execution of the microcontroller is then branched to an interrupt processing routine. In this interrupt processing routine, the current counter reading of the counter is read out and buffer-stored. Then the counter is reset and started again.
  • The frequency representing the elapsed half-wave is detected from the time interval between two consecutive zero crossovers, which is registered by the buffer-stored counter reading, and the associated bit value output. After the reconstructed data bit has been output, program execution of the microcontroller is recommenced and continued at the interruption point.
  • According to a further feature of the invention, a filter is connected to the input of the zero-crossover detector, thereby removing interference signals from the line signal.

Claims (1)

1. An automation device, with which a multiplicity of physically distributed functional units communicate with each other by means of a common transmission protocol, having a microcontroller, which is assigned at least one clock generator and one memory unit, and which is connected at least to one data sink, which is designed to accept a received data bit-stream, and to which is input an FSK-modulated line signal, characterized
in that an event-controlled counter is provided,
in that, at each zero crossover of the line signal, the counter reading of the counter is buffer-stored and the counter is restarted,
in that a data bit is output depending on the buffer-stored counter reading, and
in that, in order to process the counter, program execution of the microcontroller is interrupted by an interrupt request.
US11/519,683 2005-09-13 2006-09-12 Automation device Abandoned US20070116133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005043481A DE102005043481A1 (en) 2005-09-13 2005-09-13 Automation technical device e.g. protocol converter, for use as component of higher-level device, has counter and microcontroller, where program execution of microcontroller is interrupted by interrupt request for handling counter
DE102005043481.9 2005-09-13

Publications (1)

Publication Number Publication Date
US20070116133A1 true US20070116133A1 (en) 2007-05-24

Family

ID=37763098

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/518,699 Expired - Fee Related US8238379B2 (en) 2005-09-13 2006-09-11 Automation device
US11/519,683 Abandoned US20070116133A1 (en) 2005-09-13 2006-09-12 Automation device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/518,699 Expired - Fee Related US8238379B2 (en) 2005-09-13 2006-09-11 Automation device

Country Status (3)

Country Link
US (2) US8238379B2 (en)
CN (1) CN100587750C (en)
DE (1) DE102005043481A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070115852A1 (en) * 2005-09-13 2007-05-24 Heiko Kresse Automation device
US20070116040A1 (en) * 2005-09-13 2007-05-24 Heiko Kresse Automation device
US20070136538A1 (en) * 2005-09-13 2007-06-14 Heiko Kresse Automation device
US20070150625A1 (en) * 2005-08-31 2007-06-28 Heiko Kresse Automation device
US7930581B2 (en) 2005-09-13 2011-04-19 Abb Patent Gmbh Automation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586121A (en) * 1981-12-18 1986-04-29 U.S. Philips Corporation Control signal generator arrangement for semiconductor switches
US5103463A (en) * 1990-08-30 1992-04-07 Comacs, Ltd. Method and system for encoding and decoding frequency shift keying signals
US6107763A (en) * 1997-10-08 2000-08-22 Stmicroelectronics S.R.L. Closed loop and open synchronization of the phase switchings in driving a DC motor
US20050195093A1 (en) * 2000-05-12 2005-09-08 Rosemount Inc. Field-mounted process device with programmable digital/analog interface

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497625A (en) * 1965-07-15 1970-02-24 Sylvania Electric Prod Digital modulation and demodulation in a communication system
US3899637A (en) * 1974-02-08 1975-08-12 Westinghouse Electric Corp Frequency shift keyed communications device
GB1513970A (en) * 1975-09-06 1978-06-14 Wandel & Goltermann Method and circuit for measuring an alternating voltage
JPS52134303A (en) * 1976-05-06 1977-11-10 Tadamutsu Hirata Device for processing audio pitch correcting signal
US4104637A (en) * 1976-10-27 1978-08-01 E-Systems, Inc. VOR phase monitoring system
US4521879A (en) * 1977-11-25 1985-06-04 Klaus Gueldenpfennig Digital private branch exchange
US4287565A (en) * 1978-09-29 1981-09-01 Robert Bosch Gmbh Monitoring system for program controlled apparatus
US4259648A (en) * 1979-07-11 1981-03-31 Bell Telephone Laboratories, Incorporated One-bit frequency-shift-keyed modulator
DE3044765A1 (en) * 1980-11-27 1982-07-08 Siemens AG, 1000 Berlin und 8000 München DIFFERENCE DIGITAL MODULATION OR -DEMODULATION SYSTEM WITH SIGNAL-DEPENDENT SCAN
DE3102385A1 (en) * 1981-01-24 1982-09-02 Blaupunkt-Werke Gmbh, 3200 Hildesheim CIRCUIT ARRANGEMENT FOR THE AUTOMATIC CHANGE OF THE SETTING OF SOUND PLAYING DEVICES, PARTICULARLY BROADCAST RECEIVERS
DE3121444A1 (en) * 1981-05-29 1982-12-16 Siemens AG, 1000 Berlin und 8000 München METHOD AND ARRANGEMENT FOR DEMODULATING FSK SIGNALS
US4549044A (en) * 1983-10-06 1985-10-22 Cermetek Microelectronics, Inc. Remote telemetry unit
JPS6079460A (en) * 1983-10-07 1985-05-07 Nec Corp Control system in tightly coupling multioperating device
JPH0813004B2 (en) * 1984-09-07 1996-02-07 株式会社日立製作所 A / D converter
DE3525125A1 (en) * 1985-07-13 1987-01-15 Bbc Brown Boveri & Cie METHOD AND DEVICE FOR TRANSMITTING BINARY DATA SIGNALS BY FREQUENCY REVERSE
US4773083A (en) * 1985-11-08 1988-09-20 Raytheon Company QPSK demodulator
NL8601463A (en) * 1986-06-06 1988-01-04 Philips Nv CLOCK SIGNAL REGENATOR WITH A PHASE-LOCKED LOOP INCLUDED CRYSTAL OIL.
FR2627648B1 (en) * 1988-02-19 1994-07-08 Kawas Kaleh Ghassan TRANSMISSION SYSTEM WITH MSK MODULATION AND DIFFERENTIALLY COHERENT DETECTION
ATE86811T1 (en) * 1988-08-30 1993-03-15 Siemens Ag METHOD AND CIRCUIT ARRANGEMENT FOR DIGITAL CONTROL OF FREQUENCY AND/OR PHASE OF SAMPLING CLOCK PULSE.
FR2650717B1 (en) * 1989-08-02 1991-10-04 Alcatel Business Systems SYNCHRONOUS DIGITAL TRANSMITTER
WO1991006166A1 (en) * 1989-10-23 1991-05-02 Nippon Telegraph And Telephone Corporation Digital demodulator
EP0506750B1 (en) * 1989-12-22 1996-02-07 Signalling Technology Pty. Ltd. Data error detection in data communications
CA2045338C (en) * 1990-06-26 1995-07-04 Shousei Yoshida Clock recovery circuit with open-loop phase estimator and wideband phase tracking loop
US5121723A (en) * 1991-03-29 1992-06-16 Cummins Electronics Company, Inc. Engine brake control apparatus and method
DE4115211C2 (en) * 1991-05-10 2003-04-30 Bosch Gmbh Robert Method for controlling fuel metering in an internal combustion engine
US5225787A (en) * 1991-05-10 1993-07-06 U.S. Philips Corporation Sampling frequency converter including a sigma-delta modulator
US5233642A (en) * 1991-05-24 1993-08-03 Omnitronix, Inc. Cellular telephone usage monitoring system
US5341249A (en) * 1992-08-27 1994-08-23 Quantum Corporation Disk drive using PRML class IV sampling data detection with digital adaptive equalization
JPH06268696A (en) * 1993-03-10 1994-09-22 Toyo Commun Equip Co Ltd Afc circuit
DE4344817C2 (en) * 1993-12-28 1995-11-16 Hilti Ag Method and device for hand-held machine tools to avoid accidents due to tool blocking
US5652755A (en) * 1994-02-03 1997-07-29 Boehringer Mannheim Corporation Printer interface system
CA2116042C (en) * 1994-02-21 1999-03-23 Alexander F. Tulai Digital fsk receiver using double zero-crossing
DE4445053C2 (en) * 1994-12-07 2003-04-10 Francotyp Postalia Ag Interface circuit internal to the franking machine
US5555531A (en) * 1994-12-19 1996-09-10 Shell Oil Company Method for identification of near-surface drilling hazards
DE19504404C1 (en) * 1995-02-10 1996-06-20 Pilz Gmbh & Co System architecture
JP3319931B2 (en) * 1995-12-27 2002-09-03 吉川アールエフシステム株式会社 FSK modulation circuit
JP3076519B2 (en) * 1996-02-15 2000-08-14 松下電器産業株式会社 Bit synchronization circuit and bit synchronization method
US5764891A (en) * 1996-02-15 1998-06-09 Rosemount Inc. Process I/O to fieldbus interface circuit
GB2319933B (en) * 1996-11-27 2001-07-25 Sony Uk Ltd Signal processors
JPH10322259A (en) * 1997-05-19 1998-12-04 Matsushita Electric Ind Co Ltd Digital cordless communication system
US5963332A (en) * 1997-08-20 1999-10-05 General Electric Company Internal color probe
US6759954B1 (en) * 1997-10-15 2004-07-06 Hubbell Incorporated Multi-dimensional vector-based occupancy sensor and method of operating same
JP3414633B2 (en) * 1998-01-16 2003-06-09 沖電気工業株式会社 Frequency converter
AU3221600A (en) * 1999-02-04 2000-08-25 Electric Power Research Institute, Inc. Apparatus and method for implementing digital communications on a power line
US6813318B1 (en) * 1999-04-30 2004-11-02 Rosemount Inc, Process transmitter having a step-up converter for powering analog components
US6650712B1 (en) * 1999-07-27 2003-11-18 3Com Corporation Low complexity method and apparatus for FSK signal reception
US6307490B1 (en) * 1999-09-30 2001-10-23 The Engineering Consortium, Inc. Digital to analog converter trim apparatus and method
US6760366B1 (en) * 1999-11-29 2004-07-06 Qualcomm Incorporated Method and apparatus for pilot search using a matched filter
DE60006346T2 (en) * 1999-12-13 2004-09-09 Matsushita Electric Industrial Co., Ltd., Kadoma Fractional frequency ratio synthesizer and delta-sigma modulator to control the fractional part
US6324210B1 (en) * 1999-12-17 2001-11-27 Golden Bridge Technology Incorporated Sliding matched filter with flexible hardware complexity
US6888879B1 (en) * 2000-02-24 2005-05-03 Trimble Navigation Limited Method and apparatus for fast acquisition and low SNR tracking in satellite positioning system receivers
US6438176B1 (en) * 2000-04-04 2002-08-20 Texas Instruments Incorporated Digital gaussian frequency shift keying modulator
US6714158B1 (en) * 2000-04-18 2004-03-30 Sirf Technology, Inc. Method and system for data detection in a global positioning system satellite receiver
DE10030845B4 (en) * 2000-06-23 2008-11-20 Abb Ag Fieldbus connection system for actuators or sensors
US7372914B2 (en) * 2000-11-16 2008-05-13 Invensys Systems, Inc. Control system methods and apparatus for inductive communication across an isolation barrier
US8755473B2 (en) * 2001-01-29 2014-06-17 Ipr Licensing, Inc. Method and apparatus for detecting rapid changes in signaling path environment
US6629059B2 (en) * 2001-05-14 2003-09-30 Fisher-Rosemount Systems, Inc. Hand held diagnostic and communication device with automatic bus detection
KR100419196B1 (en) * 2001-07-06 2004-02-19 삼성전자주식회사 Field bus interface board
US20030065855A1 (en) * 2001-07-12 2003-04-03 Webster Steve R. Imbedded interrupt
US6959356B2 (en) * 2001-07-30 2005-10-25 Fisher-Rosemount Systems, Inc. Multi-protocol field device and communication method
US7426452B2 (en) * 2001-12-06 2008-09-16 Fisher-Rosemount Systems. Inc. Dual protocol handheld field maintenance tool with radio-frequency communication
US7027952B2 (en) * 2002-03-12 2006-04-11 Fisher-Rosemount Systems, Inc. Data transmission method for a multi-protocol handheld field maintenance tool
US20040151269A1 (en) * 2003-01-21 2004-08-05 Jaiganesh Balakrishnan Receiver sampling in an ultra-wideband communications system
US6904476B2 (en) * 2003-04-04 2005-06-07 Rosemount Inc. Transmitter with dual protocol interface
JP2004355165A (en) * 2003-05-28 2004-12-16 Nec Corp Monitor terminal equipment
US7397300B2 (en) * 2003-09-09 2008-07-08 Analog Devices, Inc. FSK demodulator system and method
US7098669B2 (en) * 2003-10-01 2006-08-29 Flowline, Inc. Depth determining system
DE10350553A1 (en) * 2003-10-29 2005-06-02 Robert Bosch Gmbh Device and method for detecting, detecting and / or evaluating at least one object
US7254188B2 (en) * 2003-12-16 2007-08-07 Comtech Ef Data Method and system for modulating and detecting high datarate symbol communications
US7626510B2 (en) * 2004-09-07 2009-12-01 Control4 Corporation System and method for a light based configuration guide for electronic ports
DE102005041455A1 (en) * 2005-08-31 2007-03-15 Abb Patent Gmbh Automated device e.g. field device and control device, has first program assigned to microcontroller for conversion of data bit stream and second program assigned to microcontroller for recognition of frequency-modulated line signal
DE102005043481A1 (en) 2005-09-13 2007-03-15 Abb Patent Gmbh Automation technical device e.g. protocol converter, for use as component of higher-level device, has counter and microcontroller, where program execution of microcontroller is interrupted by interrupt request for handling counter
DE102005043489B4 (en) * 2005-09-13 2009-07-23 Abb Ag Automation device
DE102005043488A1 (en) * 2005-09-13 2007-03-15 Abb Patent Gmbh Field device for data processing application, has microcontroller, whose connection is actively switched for input of logical connection in related level and is switched for input of inverse logical connection as high impedance input
DE102005043485A1 (en) * 2005-09-13 2007-03-15 Abb Patent Gmbh Automation technical equipment has several spatial distributed functional units whereby they communicate with each other by means of common transmission protocol
DE102005043478A1 (en) * 2005-09-13 2007-03-15 Abb Patent Gmbh Automation technical device e.g. protocol converter, for higher-level device, has delay stage and mixer stage, which are downstream to quantization stage, where delay stage is connected with mixer stage that is downstream to low-pass filter
DE102005043482A1 (en) * 2005-09-13 2007-03-15 Abb Patent Gmbh Automation technology device for communication among of spatially distributed functional units, has ladder network with monoflop, scanning device, low-pass filter and comparator, for reconstruction of received data
DE102005043483A1 (en) * 2005-09-13 2007-03-15 Abb Patent Gmbh Automatic technical device e.g. protocol converter, has microcontroller to which clock generator and memory unit are attached, and retriggerable mono-stable trigger circuits, where data bit is output based on output conditions of circuits
DE102005043479A1 (en) * 2005-09-13 2007-03-15 Abb Patent Gmbh Automation technology device for communication of spatially distributed functional units, has chain network with two comparators, scanning level, time-delay relay and mixer stage whereby output of scanning level is connected to mixer input
DE102005043480A1 (en) * 2005-09-13 2007-03-15 Abb Patent Gmbh Automation-technical device for providing communication between functional units, has microcontroller, decision maker evaluating time between successive zero crossings, and output stage outputting data bit stream based on determined time
DE102005043487A1 (en) * 2005-09-13 2007-03-15 Abb Patent Gmbh Automating technical device for e.g. controlling engineering, has microcontroller attached to memory, where sequential result of sampling values of time response is stored in memory such that values are outputted with clocks of timers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586121A (en) * 1981-12-18 1986-04-29 U.S. Philips Corporation Control signal generator arrangement for semiconductor switches
US5103463A (en) * 1990-08-30 1992-04-07 Comacs, Ltd. Method and system for encoding and decoding frequency shift keying signals
US6107763A (en) * 1997-10-08 2000-08-22 Stmicroelectronics S.R.L. Closed loop and open synchronization of the phase switchings in driving a DC motor
US20050195093A1 (en) * 2000-05-12 2005-09-08 Rosemount Inc. Field-mounted process device with programmable digital/analog interface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070150625A1 (en) * 2005-08-31 2007-06-28 Heiko Kresse Automation device
US9537692B2 (en) 2005-08-31 2017-01-03 Abb Patent Gmbh Automation device operable to convert between data byte streams and frequency modulated line signals
US20070115852A1 (en) * 2005-09-13 2007-05-24 Heiko Kresse Automation device
US20070116040A1 (en) * 2005-09-13 2007-05-24 Heiko Kresse Automation device
US20070136538A1 (en) * 2005-09-13 2007-06-14 Heiko Kresse Automation device
US7864675B2 (en) * 2005-09-13 2011-01-04 Abb Ag Automation device
US7930581B2 (en) 2005-09-13 2011-04-19 Abb Patent Gmbh Automation device
US8238379B2 (en) 2005-09-13 2012-08-07 Abb Patent Gmbh Automation device
US8782311B2 (en) 2005-09-13 2014-07-15 Abb Patent Gmbh Automation device

Also Published As

Publication number Publication date
US20070115852A1 (en) 2007-05-24
DE102005043481A1 (en) 2007-03-15
CN100587750C (en) 2010-02-03
US8238379B2 (en) 2012-08-07
CN1941018A (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US9537692B2 (en) Automation device operable to convert between data byte streams and frequency modulated line signals
US7386052B2 (en) Automation device using FSK modulation
RU2658180C2 (en) Communication module for manufacturing and technological network
US8782311B2 (en) Automation device
EP3220582B1 (en) Slave device, control method of slave device, information processing program and recording medium
JP6772531B2 (en) Control systems, control methods, control programs, and recording media
JP2753389B2 (en) Fieldbus system
US12241806B2 (en) Condition monitoring device for monitoring the condition of a mechanical machine component
US20070116133A1 (en) Automation device
US7447552B2 (en) Common transmission protocol system for an automation device
US7864675B2 (en) Automation device
US7359812B2 (en) Automation device
US7358781B2 (en) Automation device with stored profile
US7930581B2 (en) Automation device
US20070118686A1 (en) Automation device
US20070150626A1 (en) Automation device
CN212484123U (en) HART protocol communication circuit
CN100520847C (en) Automation device
US11456777B2 (en) Data recording device with a HART multiplexer
JPH0650555B2 (en) 4-wire field instrument device and its communication method
JPH07115393A (en) Fieldbus system
JPH04355541A (en) modem
JPH0678374A (en) Remote supervisory controller
KR960016274B1 (en) Home bus interface apparatus
JPH0847065A (en) Remote monitoring controller

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABB PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRESSE, HEIKO;STELTER, ANDREAS;SCHAEFFER, RALF;REEL/FRAME:020329/0157

Effective date: 20071107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载