US20070108300A1 - Removable memory cards including USB and other controllers, connectors, and methods of operating same - Google Patents
Removable memory cards including USB and other controllers, connectors, and methods of operating same Download PDFInfo
- Publication number
- US20070108300A1 US20070108300A1 US11/650,667 US65066707A US2007108300A1 US 20070108300 A1 US20070108300 A1 US 20070108300A1 US 65066707 A US65066707 A US 65066707A US 2007108300 A1 US2007108300 A1 US 2007108300A1
- Authority
- US
- United States
- Prior art keywords
- memory card
- controller module
- mmc
- usb
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 7
- 230000000903 blocking effect Effects 0.000 claims 2
- 230000004044 response Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 2
- 108010077333 CAP1-6D Proteins 0.000 description 1
- 101000897856 Homo sapiens Adenylyl cyclase-associated protein 2 Proteins 0.000 description 1
- 101000836079 Homo sapiens Serpin B8 Proteins 0.000 description 1
- 101000798702 Homo sapiens Transmembrane protease serine 4 Proteins 0.000 description 1
- 102100029500 Prostasin Human genes 0.000 description 1
- 102100032471 Transmembrane protease serine 4 Human genes 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 108010031970 prostasin Proteins 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K17/00—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/0772—Physical layout of the record carrier
- G06K19/07732—Physical layout of the record carrier the record carrier having a housing or construction similar to well-known portable memory devices, such as SD cards, USB or memory sticks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/0772—Physical layout of the record carrier
- G06K19/07733—Physical layout of the record carrier the record carrier containing at least one further contact interface not conform ISO-7816
Definitions
- the invention relates to a memory card, and more particularly, to a memory card and connector for a Universal Serial Bus (USB) and a connection system thereof.
- USB Universal Serial Bus
- NAND flash memory in many types of read/write memory cards such as: a Multi Media Card (MMC), a Secure Digital (SD) card, a Compact Flash (CF) card, and a memory stick, etc.
- MMC Multi Media Card
- SD Secure Digital
- CF Compact Flash
- a conventional MMC typically communicates only with an MMC type host, and therefore, may require a separate Universal Serial Bus (USB) reader to communicate with a USB host.
- USB Universal Serial Bus
- Embodiments according to the invention can provide removable memory card storage devices including usb and other controllers, connectors, and methods of operating same.
- a removable memory card can include a plurality of connector contacts including a Universal Serial Bus (USB) controller module power contact and a separate controller module power contact configured to provide separate mutually exclusively applied voltage to the removable memory card.
- USB Universal Serial Bus
- a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card can include a plurality of connector contacts including a Universal Serial Bus (USB) power contact and a separate MMC/SD power contact configured to provide separate voltage supplies to the MMC/SD form-factor compliant memory card.
- the MMC/SD form-factor compliant memory card is included in an MMC/SD form-factor compliant singular housing.
- the MMC/SD form-factor singular housing can have dimensions of about 32 mm ⁇ about 24 mm ⁇ about 1.4 mm.
- the USB power contact can be a connector contact on a beveled edge of the MMC/SD form-factor compliant singular housing.
- the MMC/SD power contact can be a connector contact at a center position on a straight edge of the MMC/SD form-factor compliant singular housing.
- the plurality of contacts are arranged for USB or MMC/SD use on the straight edge from adjacent to the beveled edge as: a first USB clock output/a NC, first USB data input/CMD input, first ground input, MMC/SD power input, USB clock input/MMC clock input, second ground, second USB data input/MMC data input.
- the MMC/SD form-factor compliant memory card operates according to a USB interface protocol via the plurality of connector contacts responsive to a USB voltage applied to the USB power contact and the MMC/SD form-factor compliant memory card operates according to an MMC/SD interface protocol via the plurality of connector contacts responsive to an MMC/SD voltage applied to the MMC/SD power contact.
- the device can further include a non-volatile memory configured to store data for access.
- a Universal Serial Bus (USB) interface controller can be coupled to the plurality of connector contacts and to the non-volatile memory, configured to interface the MMC/SD form-factor compliant memory card to a USB host device according to a USB interface protocol responsive to a USB voltage applied to the USB power contact.
- An MMC interface controller can be coupled to the plurality of connector contacts and to the non-volatile memory, configured to interface the MMC/SD form-factor compliant memory card to an MMC/SD host device according to an MMC/SD interface protocol responsive to an MMC/SD voltage applied to the MMC/SD power contact.
- the USB voltage and the MMC/SD voltage are applied mutually exclusive of one another.
- a connector can include a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card connector interface including a plurality of first contacts configured to interface to an MMC/SD form-factor compliant memory card.
- MMC Multi-Media Card
- SD Secure Digital
- a standard Universal Serial Bus (USB) connector interface including a plurality of second contacts can be coupled to the plurality of first contacts and configured to interface to a USB compliant host device.
- USB Universal Serial Bus
- the plurality of first contacts are arranged for USB or MMC/SD use as: USB power input, a USB clock output/a NC, first USB data input/CMD input, first ground input, MMC/SD power input, USB clock input/MMC clock input, second ground input, second USB data input/MMC data input.
- the connector can further include a voltage regulator coupled to the USB power input.
- a capacitor can be coupled between the USB power input and the first and second ground inputs.
- An oscillator circuit can be coupled between the first and second USB clock inputs.
- a first impedance matching resistor can be coupled to the first USB data input and a second impedance matching resistor can be coupled to the second USB data input.
- the MMC/SD form-factor compliant memory card connector interface is configured to removeably couple to a MMC/SD compliant singular housing.
- the removable MMC/SD compliant singular housing can have dimensions of about 32 mm ⁇ about 24 mm ⁇ about 1.4 mm.
- a removable memory system can include an MMC/SD form-factor compliant memory card including a plurality of connector contacts including a Universal Serial Bus (USB) power contact and a separate MMC/SD power contact configured to provide separate voltage supplies to the MMC/SD form-factor compliant memory card and a connector.
- the connector can include an MMC/SD form-factor compliant memory card connector interface including a plurality of first contacts configured to interface to the MMC/SD form-factor compliant memory card.
- a standard Universal Serial Bus (USB) connector interface including a plurality of second contacts can be coupled to the plurality of first contacts and configured to interface to a USB compliant host device.
- a method of interfacing an MMC/SD form-factor compliant memory card to a standard USB host device can include applying a USB voltage from the USB host to the MMC/SD form-factor compliant memory card. Applying an MMC/SD voltage to the MMC/SD form-factor compliant memory card can be avoided while the USB voltage is applied. An access to a memory included in the MMC/SD form-factor compliant memory card can be received from the a USB host. Signals received from the USB host included in the access to the MMC/SD form-factor compliant memory card can be mapped to provide access to the memory.
- FIG. 1 is a schematic view of an MMC/SD form-factor compliant memory card according to some embodiments of the invention.
- FIG. 2 is a table illustrating exemplary pin configuration of the memory card of FIG. 1 .
- FIG. 3 is a schematic view of an MMC/SD form-factor compliant memory card connector according to some embodiments of the invention.
- FIG. 4 is a schematic view of a connector, a MMC/SD form-factor compliant memory card, and a USB host according to some embodiments of the invention.
- a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card (or memory card) 100 includes a Universal Serial Bus (USB) power pin (or contact) 8 , a plurality of connection pins (or connector contacts) 1 through 7 , and a controller 110 .
- USB Universal Serial Bus
- the term “form-factor” means the physical size and shape of the memory card.
- the form-factor of memory cards according to some embodiments of the invention is described herein as a Multi-Media Card (MMC)/Secure Digital memory card that has a size and shape that allows such memory cards to be used with other compliant devices, such as readers.
- MMC Multi-Media Card
- SD represents a later developed version of the MMC standard which may allow MMC compliant memory cards to be used with SD compliant devices.
- MMC/SD form-factor compliant devices measure about 32 mm ⁇ about 24 mm ⁇ about 1.4 mm and can be shaped substantially as shown in FIGS. 1 and 4 .
- the MMC and SD standards are discussed further on the world-wide-web at “www.mmca.org.”
- the memory card 100 can be implemented according to various types (or standards) such as MMC and SD. For convenience, an MMC memory card will be described as an example of the memory card.
- the controller 110 communicates with an external host (not shown) through the USB power pin 8 and the connection pins 1 through 7 .
- the controller 110 includes a first controller module 120 for controlling communication with a USB host (not shown) and a second controller module 130 (such as an MMC interface controller) for controlling communication with a host (not shown) other than a USB host.
- the first controller module 120 operates in response to a supply voltage (such as a USB voltage) applied to the USB power pin 8 .
- the second controller module 130 operates in response to a supply voltage (such as an MMC voltage) applied through a source voltage pin 4 among the plurality of connection pins 1 through 7 .
- a supply voltage such as an MMC voltage
- the source voltage pin 4 is located at a center position among the pins on the straight edge of the memory card.
- the controllers and the pins are included as part of a singular housing that can be compliant with the mechanical dimensions specified as part of the different memory card standards (such as MMC and SD).
- the memory card 100 includes the USB power pin (or connector contact) 8 as a separate pin for receiving a USB voltage from an external USB host (not shown).
- the USB power pin 8 can be located on a beveled edge of the memory card, whereas the remaining plurality of pins are arranged along a straight edge of the memory card. It will also be understood that in some embodiments according to the invention, the USB power pin can be located at the opposite end of the edge.
- the first controller module 120 operates in response to the source voltage applied from the USB host via the USB power pin 8 .
- the second controller module 130 operates in response to a source voltage applied from a MMC host (not shown).
- the USB power pin 8 is separate from a pin (or contact) for applying a source voltage to the second controller module 130 mutually exclusive of power being applied to the first controller module 120 via the USB power pin 8 . In other words, if one of the first controller module 120 and the second controller module 130 receives the respective source voltage and operates, the other controller module does not operate.
- the operations of the first controller module 120 and the second controller module 130 are not separated by a specific recognition protocol but are divided by individually applying a source voltage.
- the first controller module 120 and the second controller module 130 can be included in the memory card 100 , without the separately applied source voltages interfering.
- FIG. 2 is a table for explaining the pin configuration of the memory card of FIG. 1 .
- the memory card 100 has connection pins 1 through 7 as follows: an RSV pin 1 , a command pin 2 , ground pins 3 and 6 , a source voltage pin 4 , a clock pin 5 , and a data pin 7 . If the memory card 100 is connected to an external host. (not shown) other than a USB host (not shown), that is, if the second controller module 130 is used, the RSV pin 1 is not connected and the command pin 2 , the ground pins 3 and 6 , the clock pin 5 , and the data pin 7 are connected.
- an external host not shown
- a USB host not shown
- the first controller module 120 receives a clock signal through the clock pin 5 among the plurality of connection pins 1 through 7 and outputs the clock signal through the RSV pin 1 .
- the memory card 100 receives a clock signal generated by a crystal oscillator (not shown) via the clock pin 5 and outputs the clock via the RSV pin 1 . In some embodiments according to the invention, where the memory card 100 receives a clock signal generated from an oscillator, only one of the clock pin 5 and the RSV pin 1 is used. Thus, the memory card 100 receives data through the command pin 2 and inversed data through the data pin 7 .
- the first controller module 120 receives a source voltage applied from the USB host (not shown) through the USB power pin 8 .
- the first controller module 120 and the second controller module 130 share the ground pins 3 and 6 among the plurality of connection pins 1 through 7 .
- the first controller module 120 may further include a regulator (not shown) for controlling a level of a source voltage applied through the USB power pin 8 .
- the regulator acts to change the source voltage (generally, 5V) of the USB host into a voltage of 3.3V.
- the regulator may be located outside of the memory card 100 . If located outside, the first controller module 120 receives a source voltage passed through the regulator at a source voltage of 3.3V through the USB power pin 8 . If the regulator is located in the first controller module 120 , a source voltage of 5V is received through the USB power pin 8 .
- other source voltages for circuits (not shown) in the controller 110 of the memory card 100 excluding the first controller module 120 and the second controller module 130 are received through the USB power pin 8 or the source voltage pin 4 .
- a source voltage to be supplied to the NAND flash memory 140 in the memory card 100 is received through the USB power pin 8 or the source voltage pin 4 , or is provided by the controller 110 .
- devices such as an oscillator for generating clocks or resistors, may be needed. Therefore, in some embodiments according to the invention, a connector allowing communication between the memory card 100 and the USB host can include the needed components.
- a connector 300 includes a pin 38 for supplying USB power, a plurality of supply connection pins 31 through 37 , and a USB interface 310 .
- the connector 300 communicates with an external memory card (not shown) through the USB power supply pin 38 and the supply connection pins 31 through 37 , and communicates with an external USB host (not shown) via the USB interface 310 .
- the connector 300 includes a clock oscillator circuit 320 for applying a clock signal to a memory card (not shown) and an impedance matching unit 330 for impedance matching of data and inversed data applied from a USB host (not shown).
- the clock oscillation circuit 320 may be an oscillator or a crystal oscillator.
- the crystal oscillator is connected between a connection clock output pin 31 and a connection clock input pin 35 among the plurality of supply connection pins 31 through 37 .
- the crystal oscillator outputs a clock signal to the memory card through the connection clock output pin 31 and receives a clock signal through the connection clock input pin 35 . If the clock oscillation circuit 320 is an oscillator, the clock signal is applied to the memory card through one of the connection clock output pin 31 and the connection clock input pin 35 .
- the impedance matching unit 330 includes a first resistor R 1 and a second resistor R 2 .
- the first resistor R 1 is serially connected between a connection data pin 32 among the plurality of supply connection pins 31 through 37 and the USB interface 310 .
- the first resistor R 1 has a resistance value of about 22-44 ⁇ .
- the second resistor R 2 is serially connected between a connection inversed data pin 37 among the plurality of supply connection pins 31 through 37 and the USB interface 310 .
- the second resistor R 2 has a resistance value of about 22-44 ⁇ .
- a line that transmits the data and inversed data and a line that receives the data and inverted data may be impedance-matched. Accordingly, the first resistor R 1 and the second resistor R 2 are resistors for impedance matching.
- Connection ground pins 33 and 36 among the plurality of supply connection pins 31 through 37 are connected to a shielding ground of an external USB connected with the USB interface.
- the shielding ground is connected to the connection ground pins 33 and 36 .
- capacitors CAP 1 and CAP 2 for stabilizing a source voltage transmitted through the USB power supply pin 38 are connected between the USB power supply pin 38 and the connection ground pins 33 and 36 .
- the connector 300 can further include a regulator 340 for controlling a source voltage level applied through the USB power supply pin 38 , between the USB power supply pin 38 and the USB interface 310 .
- the regulator 340 changes a source voltage of 5V into a voltage of 3V.
- the regulator 340 can be located in the connector 300 or the first controller module 120 of the memory card 100 of FIG. 1 .
- a pull-up resistor of about 3.3 K ⁇ should be connected to a bus to which data is applied. Also, if a device including a pull-up resistor is connected to a USB host (not shown), the USB host recognizes that a USB client is connected.
- the pull-up resistor is not located in the connector 300 , but is connected to a pad of a data input buffer (not shown) in the first controller module 120 of the memory card 100 of FIG. 1 so as to prevent an error from being generated when the connector 300 is connected to the USB host without the memory card 100 of FIG. 1 .
- the connector 300 of FIG. 3 includes the clock oscillation circuit 320 , the first and second resistors R 1 and R 2 , etc., which.,have not been installed in the memory card due to a thickness limitation in thickness of the memory card (so that, for example, the memory card can be form-factor compliant).
- the connector connects a memory card (not shown) with a USB host (not shown).
- the connection system includes a memory card 100 and a connector 300 .
- the memory card 100 includes a plurality of connection pins and a separate USB power pin for communication with a USB host 420 .
- the connector 300 communicates with the memory card 100 using a USB power supply pin and a plurality of supply connection pins, and communicates with the USB host 420 using a USB interface.
- the memory card 100 includes a controller 110 .
- the control 110 includes a first controller module (not shown) for controlling communication with the USB host 420 and a second controller module (not shown) for controlling communication with a host 410 other than the USB host 420 .
- the first controller module operates in response to a source voltage applied through a USB power pin.
- the second controller module operates in response to a source voltage applied through a source voltage pin among a plurality of connection pins.
- the connector 300 includes a clock oscillation circuit (not shown) for applying a clock signal to the memory card 100 and an impedance matching unit (not shown) for matching impedance of data and inversed data applied from the USB host 420 .
- the memory card 100 further includes a separate USB power pin and receives a source voltage transferred from the USB host 420 via the connector 300 through the USB power pin.
- the USB power pin is added at a location ⁇ circle around ( 1 ) ⁇ or ⁇ circle around ( 2 ) ⁇ of the memory card 100 . If the memory card 100 is a high speed MMC, the USB power pin is added at a location ⁇ circle around ( 3 ) ⁇ .
- the first controller module 120 in the memory card 100 operates. If the memory card 100 is connected to the MMC host 410 , the second controller module 130 in the memory card 100 operates.
- a memory card, a connector, and a connection system for connecting the memory card with the USB host can increase expandability and efficiency of the memory card by allowing communication between the memory card and the USB host.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Sources (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
Abstract
A removable memory card can include a plurality of connector contacts including a Universal Serial Bus (USB) controller module power contact and a separate controller module power contact configured to provide separate mutually exclusively applied voltage to the removable memory card.
Description
- This application is a continuation of and claims priority to application Ser. No. 10/895,666, filed Jul. 21, 2004 which claimed priority to Korean Patent Application No. 2003-50500, filed on Jul. 23, 2003, in the Korean Intellectual Property Office, the disclosure of which are incorporated herein in its entirety by reference.
- The invention relates to a memory card, and more particularly, to a memory card and connector for a Universal Serial Bus (USB) and a connection system thereof.
- It is known to use NAND flash memory in many types of read/write memory cards such as: a Multi Media Card (MMC), a Secure Digital (SD) card, a Compact Flash (CF) card, and a memory stick, etc. A conventional MMC typically communicates only with an MMC type host, and therefore, may require a separate Universal Serial Bus (USB) reader to communicate with a USB host. However, many problems arise when trying to add a USB function to a conventional MMC controller, such as how to provide the needed clocks for the USB interface.
- Embodiments according to the invention can provide removable memory card storage devices including usb and other controllers, connectors, and methods of operating same. Pursuant to these embodiments, a removable memory card can include a plurality of connector contacts including a Universal Serial Bus (USB) controller module power contact and a separate controller module power contact configured to provide separate mutually exclusively applied voltage to the removable memory card.
- In some embodiments according to the invention, a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card can include a plurality of connector contacts including a Universal Serial Bus (USB) power contact and a separate MMC/SD power contact configured to provide separate voltage supplies to the MMC/SD form-factor compliant memory card. In some embodiments according to the invention, the MMC/SD form-factor compliant memory card is included in an MMC/SD form-factor compliant singular housing.
- In some embodiments according to the invention, the MMC/SD form-factor singular housing can have dimensions of about 32 mm×about 24 mm×about 1.4 mm. In some embodiments according to the invention, the USB power contact can be a connector contact on a beveled edge of the MMC/SD form-factor compliant singular housing. In some embodiments according to the invention, the MMC/SD power contact can be a connector contact at a center position on a straight edge of the MMC/SD form-factor compliant singular housing.
- In some embodiments according to the invention, the plurality of contacts are arranged for USB or MMC/SD use on the straight edge from adjacent to the beveled edge as: a first USB clock output/a NC, first USB data input/CMD input, first ground input, MMC/SD power input, USB clock input/MMC clock input, second ground, second USB data input/MMC data input.
- In some embodiments according to the invention, the MMC/SD form-factor compliant memory card operates according to a USB interface protocol via the plurality of connector contacts responsive to a USB voltage applied to the USB power contact and the MMC/SD form-factor compliant memory card operates according to an MMC/SD interface protocol via the plurality of connector contacts responsive to an MMC/SD voltage applied to the MMC/SD power contact.
- In some embodiments according to the invention, the device can further include a non-volatile memory configured to store data for access. A Universal Serial Bus (USB) interface controller can be coupled to the plurality of connector contacts and to the non-volatile memory, configured to interface the MMC/SD form-factor compliant memory card to a USB host device according to a USB interface protocol responsive to a USB voltage applied to the USB power contact. An MMC interface controller can be coupled to the plurality of connector contacts and to the non-volatile memory, configured to interface the MMC/SD form-factor compliant memory card to an MMC/SD host device according to an MMC/SD interface protocol responsive to an MMC/SD voltage applied to the MMC/SD power contact. In some embodiments according to the invention, the USB voltage and the MMC/SD voltage are applied mutually exclusive of one another.
- In some embodiments according to the invention, a connector can include a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card connector interface including a plurality of first contacts configured to interface to an MMC/SD form-factor compliant memory card. A standard Universal Serial Bus (USB) connector interface including a plurality of second contacts can be coupled to the plurality of first contacts and configured to interface to a USB compliant host device.
- In some embodiments according to the invention, the plurality of first contacts are arranged for USB or MMC/SD use as: USB power input, a USB clock output/a NC, first USB data input/CMD input, first ground input, MMC/SD power input, USB clock input/MMC clock input, second ground input, second USB data input/MMC data input.
- In some embodiments according to the invention, the connector can further include a voltage regulator coupled to the USB power input. A capacitor can be coupled between the USB power input and the first and second ground inputs. An oscillator circuit can be coupled between the first and second USB clock inputs. A first impedance matching resistor can be coupled to the first USB data input and a second impedance matching resistor can be coupled to the second USB data input.
- In some embodiments according to the invention, the MMC/SD form-factor compliant memory card connector interface is configured to removeably couple to a MMC/SD compliant singular housing. In some embodiments according to the invention, the removable MMC/SD compliant singular housing can have dimensions of about 32 mm×about 24 mm×about 1.4 mm.
- In some embodiments according to the invention, a removable memory system can include an MMC/SD form-factor compliant memory card including a plurality of connector contacts including a Universal Serial Bus (USB) power contact and a separate MMC/SD power contact configured to provide separate voltage supplies to the MMC/SD form-factor compliant memory card and a connector. The connector can include an MMC/SD form-factor compliant memory card connector interface including a plurality of first contacts configured to interface to the MMC/SD form-factor compliant memory card. A standard Universal Serial Bus (USB) connector interface including a plurality of second contacts can be coupled to the plurality of first contacts and configured to interface to a USB compliant host device.
- In some embodiments according to the invention, a method of interfacing an MMC/SD form-factor compliant memory card to a standard USB host device can include applying a USB voltage from the USB host to the MMC/SD form-factor compliant memory card. Applying an MMC/SD voltage to the MMC/SD form-factor compliant memory card can be avoided while the USB voltage is applied. An access to a memory included in the MMC/SD form-factor compliant memory card can be received from the a USB host. Signals received from the USB host included in the access to the MMC/SD form-factor compliant memory card can be mapped to provide access to the memory.
-
FIG. 1 is a schematic view of an MMC/SD form-factor compliant memory card according to some embodiments of the invention. -
FIG. 2 is a table illustrating exemplary pin configuration of the memory card ofFIG. 1 . -
FIG. 3 is a schematic view of an MMC/SD form-factor compliant memory card connector according to some embodiments of the invention. -
FIG. 4 is a schematic view of a connector, a MMC/SD form-factor compliant memory card, and a USB host according to some embodiments of the invention. - The invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. However, this invention should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout. As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
- It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. Thus, a first element could be termed a second element without departing from the teachings of the present invention.
- Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
- Referring to
FIG. 1 , a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card (or memory card) 100 according to some embodiments of the invention includes a Universal Serial Bus (USB) power pin (or contact) 8, a plurality of connection pins (or connector contacts) 1 through 7, and acontroller 110. - As used herein, the term “form-factor” means the physical size and shape of the memory card. Moreover, the form-factor of memory cards according to some embodiments of the invention is described herein as a Multi-Media Card (MMC)/Secure Digital memory card that has a size and shape that allows such memory cards to be used with other compliant devices, such as readers. As known to those skilled in the art, SD represents a later developed version of the MMC standard which may allow MMC compliant memory cards to be used with SD compliant devices. In some embodiments according to the invention, MMC/SD form-factor compliant devices measure about 32 mm×about 24 mm×about 1.4 mm and can be shaped substantially as shown in
FIGS. 1 and 4 . The MMC and SD standards are discussed further on the world-wide-web at “www.mmca.org.” - The
memory card 100 can be implemented according to various types (or standards) such as MMC and SD. For convenience, an MMC memory card will be described as an example of the memory card. Thecontroller 110 communicates with an external host (not shown) through theUSB power pin 8 and the connection pins 1 through 7. Thecontroller 110 includes afirst controller module 120 for controlling communication with a USB host (not shown) and a second controller module 130 (such as an MMC interface controller) for controlling communication with a host (not shown) other than a USB host. - The
first controller module 120 operates in response to a supply voltage (such as a USB voltage) applied to theUSB power pin 8. Thesecond controller module 130 operates in response to a supply voltage (such as an MMC voltage) applied through asource voltage pin 4 among the plurality of connection pins 1 through 7. As shown inFIG. 1 , in some embodiments according to the invention, thesource voltage pin 4 is located at a center position among the pins on the straight edge of the memory card. In some embodiments according to the invention, the controllers and the pins are included as part of a singular housing that can be compliant with the mechanical dimensions specified as part of the different memory card standards (such as MMC and SD). - Hereinafter, the operation of the
memory card 100 is described in detail with reference toFIG. 1 . Thememory card 100 includes the USB power pin (or connector contact) 8 as a separate pin for receiving a USB voltage from an external USB host (not shown). As shown inFIG. 1 , in some embodiments according to the invention, theUSB power pin 8 can be located on a beveled edge of the memory card, whereas the remaining plurality of pins are arranged along a straight edge of the memory card. It will also be understood that in some embodiments according to the invention, the USB power pin can be located at the opposite end of the edge. Thefirst controller module 120 operates in response to the source voltage applied from the USB host via theUSB power pin 8. Thesecond controller module 130 operates in response to a source voltage applied from a MMC host (not shown). TheUSB power pin 8 is separate from a pin (or contact) for applying a source voltage to thesecond controller module 130 mutually exclusive of power being applied to thefirst controller module 120 via theUSB power pin 8. In other words, if one of thefirst controller module 120 and thesecond controller module 130 receives the respective source voltage and operates, the other controller module does not operate. - That is, in some embodiments according to the invention, the operations of the
first controller module 120 and thesecond controller module 130 are not separated by a specific recognition protocol but are divided by individually applying a source voltage. As a result, thefirst controller module 120 and thesecond controller module 130 can be included in thememory card 100, without the separately applied source voltages interfering. - In some embodiments according to the invention, while the
first controller module 120 operates, thesecond controller module 130 may not consume current. Likewise, while thesecond controller module 130 operates, thefirst controller module 120 may not consume current.FIG. 2 is a table for explaining the pin configuration of the memory card ofFIG. 1 . - Hereinafter, the pin connections of the
first controller module 120 and thesecond controller module 130 will be described with reference toFIGS. 1 and 2 . Referring toFIG. 1 , thememory card 100 hasconnection pins 1 through 7 as follows: anRSV pin 1, acommand pin 2, ground pins 3 and 6, asource voltage pin 4, aclock pin 5, and adata pin 7. If thememory card 100 is connected to an external host. (not shown) other than a USB host (not shown), that is, if thesecond controller module 130 is used, theRSV pin 1 is not connected and thecommand pin 2, the ground pins 3 and 6, theclock pin 5, and thedata pin 7 are connected. If thememory card 100 is connected to an external USB host (not shown), that is, if thefirst controller module 120 is used, thefirst controller module 120 receives a clock signal through theclock pin 5 among the plurality of connection pins 1 through 7 and outputs the clock signal through theRSV pin 1. - In some embodiments according to the invention, the
memory card 100 receives a clock signal generated by a crystal oscillator (not shown) via theclock pin 5 and outputs the clock via theRSV pin 1. In some embodiments according to the invention, where thememory card 100 receives a clock signal generated from an oscillator, only one of theclock pin 5 and theRSV pin 1 is used. Thus, thememory card 100 receives data through thecommand pin 2 and inversed data through thedata pin 7. Thefirst controller module 120 receives a source voltage applied from the USB host (not shown) through theUSB power pin 8. - The
first controller module 120 and thesecond controller module 130 share the ground pins 3 and 6 among the plurality of connection pins 1 through 7. In some embodiments according to the invention, thefirst controller module 120 may further include a regulator (not shown) for controlling a level of a source voltage applied through theUSB power pin 8. The regulator acts to change the source voltage (generally, 5V) of the USB host into a voltage of 3.3V. In some embodiments according to the invention, the regulator may be located outside of thememory card 100. If located outside, thefirst controller module 120 receives a source voltage passed through the regulator at a source voltage of 3.3V through theUSB power pin 8. If the regulator is located in thefirst controller module 120, a source voltage of 5V is received through theUSB power pin 8. - In some embodiments according to the invention, other source voltages for circuits (not shown) in the
controller 110 of thememory card 100 excluding thefirst controller module 120 and thesecond controller module 130 are received through theUSB power pin 8 or thesource voltage pin 4. - A source voltage to be supplied to the
NAND flash memory 140 in thememory card 100 is received through theUSB power pin 8 or thesource voltage pin 4, or is provided by thecontroller 110. To operate thememory card 100 ofFIG. 1 in connection with the external USB host, devices, such as an oscillator for generating clocks or resistors, may be needed. Therefore, in some embodiments according to the invention, a connector allowing communication between thememory card 100 and the USB host can include the needed components. - Referring to
FIG. 3 , aconnector 300 according to some embodiments of the invention includes apin 38 for supplying USB power, a plurality of supply connection pins 31 through 37, and aUSB interface 310. Theconnector 300 communicates with an external memory card (not shown) through the USBpower supply pin 38 and the supply connection pins 31 through 37, and communicates with an external USB host (not shown) via theUSB interface 310. Theconnector 300 includes aclock oscillator circuit 320 for applying a clock signal to a memory card (not shown) and animpedance matching unit 330 for impedance matching of data and inversed data applied from a USB host (not shown). - In some embodiments according to the invention, the
clock oscillation circuit 320 may be an oscillator or a crystal oscillator. The crystal oscillator is connected between a connectionclock output pin 31 and a connectionclock input pin 35 among the plurality of supply connection pins 31 through 37. The crystal oscillator outputs a clock signal to the memory card through the connectionclock output pin 31 and receives a clock signal through the connectionclock input pin 35. If theclock oscillation circuit 320 is an oscillator, the clock signal is applied to the memory card through one of the connectionclock output pin 31 and the connectionclock input pin 35. - In some embodiments according to the invention, the
impedance matching unit 330 includes a first resistor R1 and a second resistor R2. The first resistor R1 is serially connected between aconnection data pin 32 among the plurality of supply connection pins 31 through 37 and theUSB interface 310. The first resistor R1 has a resistance value of about 22-44Ω. - In some embodiments according to the invention, the second resistor R2 is serially connected between a connection inversed
data pin 37 among the plurality of supply connection pins 31 through 37 and theUSB interface 310. In some embodiments according to the invention, the second resistor R2 has a resistance value of about 22-44Ω. - To receive data and inverted data from an external USB host (not shown), a line that transmits the data and inversed data and a line that receives the data and inverted data may be impedance-matched. Accordingly, the first resistor R1 and the second resistor R2 are resistors for impedance matching.
- Connection ground pins 33 and 36 among the plurality of supply connection pins 31 through 37 are connected to a shielding ground of an external USB connected with the USB interface. There are generally four buses for USB communication and the shielding ground exists outside a cable surrounding the four buses. The shielding ground is connected to the connection ground pins 33 and 36. In the
connector 300, capacitors CAP1 and CAP2 for stabilizing a source voltage transmitted through the USBpower supply pin 38 are connected between the USBpower supply pin 38 and the connection ground pins 33 and 36. - The
connector 300 can further include aregulator 340 for controlling a source voltage level applied through the USBpower supply pin 38, between the USBpower supply pin 38 and theUSB interface 310. - The
regulator 340 changes a source voltage of 5V into a voltage of 3V. Theregulator 340 can be located in theconnector 300 or thefirst controller module 120 of thememory card 100 ofFIG. 1 . - Generally, to operate a USB driver at full speed, a pull-up resistor of about 3.3 KΩ should be connected to a bus to which data is applied. Also, if a device including a pull-up resistor is connected to a USB host (not shown), the USB host recognizes that a USB client is connected. In some embodiments according to the invention, the pull-up resistor is not located in the
connector 300, but is connected to a pad of a data input buffer (not shown) in thefirst controller module 120 of thememory card 100 ofFIG. 1 so as to prevent an error from being generated when theconnector 300 is connected to the USB host without thememory card 100 ofFIG. 1 . - As such, the
connector 300 ofFIG. 3 includes theclock oscillation circuit 320, the first and second resistors R1 and R2, etc., which.,have not been installed in the memory card due to a thickness limitation in thickness of the memory card (so that, for example, the memory card can be form-factor compliant). The connector connects a memory card (not shown) with a USB host (not shown). - Referring to
FIG. 4 , the connection system according to some embodiments of the invention includes amemory card 100 and aconnector 300. Thememory card 100 includes a plurality of connection pins and a separate USB power pin for communication with aUSB host 420. Theconnector 300 communicates with thememory card 100 using a USB power supply pin and a plurality of supply connection pins, and communicates with theUSB host 420 using a USB interface. - The
memory card 100 includes acontroller 110. Thecontrol 110 includes a first controller module (not shown) for controlling communication with theUSB host 420 and a second controller module (not shown) for controlling communication with ahost 410 other than theUSB host 420. The first controller module operates in response to a source voltage applied through a USB power pin. The second controller module operates in response to a source voltage applied through a source voltage pin among a plurality of connection pins. Theconnector 300 includes a clock oscillation circuit (not shown) for applying a clock signal to thememory card 100 and an impedance matching unit (not shown) for matching impedance of data and inversed data applied from theUSB host 420. - The
memory card 100 further includes a separate USB power pin and receives a source voltage transferred from theUSB host 420 via theconnector 300 through the USB power pin. The USB power pin is added at a location {circle around (1)} or {circle around (2)} of thememory card 100. If thememory card 100 is a high speed MMC, the USB power pin is added at a location {circle around (3)}. - If the
memory card 100 is connected to theUSB host 420 through theconnector 300, thefirst controller module 120 in thememory card 100 operates. If thememory card 100 is connected to theMMC host 410, thesecond controller module 130 in thememory card 100 operates. - The construction and operation of the
memory card 100 andconnector 300 have been described with reference toFIGS. 1 through 3 , and therefore, the detailed descriptions thereof are omitted. - As described above, a memory card, a connector, and a connection system for connecting the memory card with the USB host, according to the invention, can increase expandability and efficiency of the memory card by allowing communication between the memory card and the USB host.
- While the invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims.
Claims (13)
1. A memory card comprising:
a controller which controls communication with external hosts through connection pins, wherein the controller comprises first and second controller modules that are configured to be powered by respective separate source voltages applied thereto at different times.
2. A memory card according to claim 1 wherein the memory card further comprises:
a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card connector interface including a plurality of first contacts configured to interface to an MMC/SD form-factor compliant memory card via the first controller module; and
a standard Universal Serial Bus (USB) connector interface including a plurality of second contacts coupled to the plurality of first contacts and configured to interface to a USB compliant host device via the second controller module.
3. A memory card according to claim 1 wherein the second controller module consumes substantially no current while a source voltage is applied to the first controller module.
4. A memory card according to claim 1 wherein the first and second controller modules use the same recognition protocol.
5. A memory card according to claim 1 wherein the memory card comprises a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card.
6. A memory card, comprising:
a first controller module; and
a second controller module,
wherein the first controller module consumes substantially no current while the second controller module operates.
7. A memory card according to claim 6 wherein the second controller module consumes substantially no current while the first controller module operates.
8. A memory card according to claim 6 wherein the first and second controller modules are divided by individually applying a source voltage.
9. A memory card according to claim 8 wherein the first and second controller modules are not separated by a recognition protocol.
10. A memory card according to claim 6 wherein the memory card comprises a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card.
11. A method of operating a Multi-Media Card (MMC)/Secure Digital (SD) form-factor compliant memory card, the method comprising:
applying a first source voltage to a first controller module, in the MMC/SD form-factor compliant memory card, responsive to a command to operate the first controller module; and
blocking a second source voltage to a second controller module, responsive to the command to operate the first controller module.
12. A method according to claim 11 further comprising:
applying the second source voltage to the second controller module, responsive to the command to operate the second controller module; and
blocking the first source voltage to the first controller module, responsive to the command to operate the second controller module.
13. A method according to claim 12 wherein the first controller module consume substantially no current when the first source voltage is blocked and the second controller module consumes substantially no current when the second source voltage is blocked.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/650,667 US20070108300A1 (en) | 2003-07-23 | 2007-01-08 | Removable memory cards including USB and other controllers, connectors, and methods of operating same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0050500 | 2003-07-23 | ||
KR10-2003-0050500A KR100505697B1 (en) | 2003-07-23 | 2003-07-23 | Memory card, connector for Universal Serial Bus and Universal Serial Bus connection system |
US10/895,666 US7287703B2 (en) | 2003-07-23 | 2004-07-21 | Removable memory cards including USB and other controllers, connectors, and methods of operating same |
US11/650,667 US20070108300A1 (en) | 2003-07-23 | 2007-01-08 | Removable memory cards including USB and other controllers, connectors, and methods of operating same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/895,666 Continuation US7287703B2 (en) | 2003-07-23 | 2004-07-21 | Removable memory cards including USB and other controllers, connectors, and methods of operating same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070108300A1 true US20070108300A1 (en) | 2007-05-17 |
Family
ID=34074934
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/895,666 Expired - Fee Related US7287703B2 (en) | 2003-07-23 | 2004-07-21 | Removable memory cards including USB and other controllers, connectors, and methods of operating same |
US11/650,667 Abandoned US20070108300A1 (en) | 2003-07-23 | 2007-01-08 | Removable memory cards including USB and other controllers, connectors, and methods of operating same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/895,666 Expired - Fee Related US7287703B2 (en) | 2003-07-23 | 2004-07-21 | Removable memory cards including USB and other controllers, connectors, and methods of operating same |
Country Status (4)
Country | Link |
---|---|
US (2) | US7287703B2 (en) |
JP (1) | JP2005044366A (en) |
KR (1) | KR100505697B1 (en) |
TW (1) | TWI249137B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070061501A1 (en) * | 2005-08-29 | 2007-03-15 | M-Systems Flash Disk Pioneers Ltd. | Device and method for configuring a flash memory controller |
US20130054866A1 (en) * | 2011-08-30 | 2013-02-28 | Renesas Electronics Corporation | Usb hub and control method of usb hub |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100505697B1 (en) * | 2003-07-23 | 2005-08-02 | 삼성전자주식회사 | Memory card, connector for Universal Serial Bus and Universal Serial Bus connection system |
US20050041473A1 (en) * | 2003-08-06 | 2005-02-24 | Phison Electronics Corp. | Non-volatile memory storage integrated circuit |
JP2006139556A (en) * | 2004-11-12 | 2006-06-01 | Toshiba Corp | Memory card and card controller for same |
KR100707308B1 (en) | 2005-06-13 | 2007-04-12 | 삼성전자주식회사 | Flash memory device having an MC interface and a memory system including the same |
US7792859B2 (en) * | 2005-10-12 | 2010-09-07 | Hb Media, Llc | Media/data card |
US20070083559A1 (en) * | 2005-10-12 | 2007-04-12 | Harris Brock M | Media/data card |
TW200729210A (en) * | 2006-01-27 | 2007-08-01 | Instant Technology Co Ltd | Memory card compatible to USB storage disk and the implementation method thereof |
TW200734901A (en) * | 2006-03-06 | 2007-09-16 | Benq Corp | Image-signal adapter which receives electric power from a computer |
EP1833006B1 (en) * | 2006-03-10 | 2014-01-08 | LG Electronics Inc. | Method and apparatus for protocol selection on ICC |
EP1887494A1 (en) * | 2006-07-31 | 2008-02-13 | Axalto SA | Electronic device with several short-circuitable interfaces |
US20080070698A1 (en) * | 2006-09-15 | 2008-03-20 | Sung Park | Electronic game tracking |
CN101192274A (en) * | 2006-11-24 | 2008-06-04 | 北京握奇数据系统有限公司 | Card with interface contact and its manufacture method |
US20080235514A1 (en) * | 2007-03-22 | 2008-09-25 | Erf Wireless, Inc. | Safeguarding router configuration data |
KR100882207B1 (en) * | 2007-04-04 | 2009-02-06 | 삼성전자주식회사 | Memory device including a connector to interface other memory devices with the host independently |
JP2008257506A (en) * | 2007-04-05 | 2008-10-23 | Renesas Technology Corp | Semiconductor device |
US8327051B2 (en) * | 2007-11-20 | 2012-12-04 | Sandisk Technologies Inc. | Portable handheld memory card and methods for use therewith |
JP5117317B2 (en) * | 2008-08-06 | 2013-01-16 | セイコープレシジョン株式会社 | Time recorder |
US7802044B2 (en) * | 2008-12-24 | 2010-09-21 | Mediatek Inc. | Pin sharing device and method thereof for a universal asynchronous receiver/transmitter module and a universal serial bus module |
JP2011048756A (en) * | 2009-08-28 | 2011-03-10 | Toshiba Corp | Memory module |
US8270840B2 (en) | 2010-04-06 | 2012-09-18 | Via Technologies, Inc. | Backward compatible optical USB device |
US8234416B2 (en) * | 2010-04-06 | 2012-07-31 | Via Technologies, Inc. | Apparatus interoperable with backward compatible optical USB device |
KR101822977B1 (en) * | 2010-12-21 | 2018-01-29 | 삼성전자주식회사 | Multi-interface memory card and operation method thereof |
JP5792526B2 (en) * | 2011-06-27 | 2015-10-14 | 株式会社メガチップス | Memory system and information protection method |
CN102890553A (en) * | 2011-07-19 | 2013-01-23 | 鸿富锦精密工业(深圳)有限公司 | Memory and memory power supply system with same |
FR2980875B1 (en) * | 2011-10-03 | 2014-06-20 | Oberthur Technologies | MICROCIRCUIT DEVICE EQUIPPED WITH CONTACT RANGES AND METHOD FOR MANUFACTURING SUCH A DEVICE |
US9159374B2 (en) * | 2011-11-02 | 2015-10-13 | Novachips Canada Inc. | Flash memory module and memory subsystem |
CN102521186B (en) * | 2011-11-22 | 2015-01-14 | 飞天诚信科技股份有限公司 | USB (Universal Serial Bus) key and method for communicating with terminal thereof |
EP2663164B1 (en) * | 2012-05-10 | 2019-02-13 | LG Innotek Co., Ltd. | Communication module and lighting apparatus having the same |
CN104459386B (en) * | 2014-11-24 | 2017-11-03 | 东莞理工学院 | A kind of USB data line tester |
JP6915093B2 (en) * | 2017-06-05 | 2021-08-04 | キオクシア株式会社 | Memory card, host device, memory card connector and memory card adapter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040033727A1 (en) * | 2002-08-16 | 2004-02-19 | Chi-Lei Kao | Plug used for connection with a USB receptacle |
US20040044819A1 (en) * | 2002-09-03 | 2004-03-04 | Samsung Electronics Co., Ltd. | USB system having card-type USB interface connector |
US20040087213A1 (en) * | 2002-08-16 | 2004-05-06 | Chi-Lei Kao | Plug used for connection with a usb receptacle |
US20040182938A1 (en) * | 2003-03-21 | 2004-09-23 | Carry Computer Eng. Co., Ltd. | Universal micro memory card |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6148354A (en) * | 1999-04-05 | 2000-11-14 | M-Systems Flash Disk Pioneers Ltd. | Architecture for a universal serial bus-based PC flash disk |
KR100402196B1 (en) * | 1999-11-25 | 2003-10-22 | 리-호 야오 | Memory card with dual interfaces and the transferring module thereof |
KR100391489B1 (en) * | 2000-04-12 | 2003-07-12 | 리-호 야오 | Multi-interface memory card and adapter module for the same |
JP4650651B2 (en) * | 2000-08-31 | 2011-03-16 | ソニー株式会社 | Information processing apparatus and method, memory card, and program storage medium |
KR20020037779A (en) * | 2000-11-15 | 2002-05-23 | 최천우 | Usb-port operating type ic-card system |
JP2003067320A (en) * | 2001-08-15 | 2003-03-07 | Carry Computer Engineering Co Ltd | Double-interface storage communication network card with communication agreement device |
TWI286763B (en) * | 2002-04-19 | 2007-09-11 | Carry Computer Eng Co Ltd | Dual-interface SD flash memory card |
KR100505697B1 (en) * | 2003-07-23 | 2005-08-02 | 삼성전자주식회사 | Memory card, connector for Universal Serial Bus and Universal Serial Bus connection system |
-
2003
- 2003-07-23 KR KR10-2003-0050500A patent/KR100505697B1/en not_active Expired - Fee Related
-
2004
- 2004-07-20 TW TW093121579A patent/TWI249137B/en not_active IP Right Cessation
- 2004-07-21 US US10/895,666 patent/US7287703B2/en not_active Expired - Fee Related
- 2004-07-23 JP JP2004216490A patent/JP2005044366A/en active Pending
-
2007
- 2007-01-08 US US11/650,667 patent/US20070108300A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040033727A1 (en) * | 2002-08-16 | 2004-02-19 | Chi-Lei Kao | Plug used for connection with a USB receptacle |
US20040087213A1 (en) * | 2002-08-16 | 2004-05-06 | Chi-Lei Kao | Plug used for connection with a usb receptacle |
US20040044819A1 (en) * | 2002-09-03 | 2004-03-04 | Samsung Electronics Co., Ltd. | USB system having card-type USB interface connector |
US20040182938A1 (en) * | 2003-03-21 | 2004-09-23 | Carry Computer Eng. Co., Ltd. | Universal micro memory card |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070061501A1 (en) * | 2005-08-29 | 2007-03-15 | M-Systems Flash Disk Pioneers Ltd. | Device and method for configuring a flash memory controller |
US7464193B2 (en) * | 2005-08-29 | 2008-12-09 | Sandisk Il Ltd. | Device and method for configuring a flash memory controller |
US20130054866A1 (en) * | 2011-08-30 | 2013-02-28 | Renesas Electronics Corporation | Usb hub and control method of usb hub |
US9342131B2 (en) * | 2011-08-30 | 2016-05-17 | Renesas Electronics Corporation | USB hub and control method of USB hub |
Also Published As
Publication number | Publication date |
---|---|
JP2005044366A (en) | 2005-02-17 |
KR100505697B1 (en) | 2005-08-02 |
TWI249137B (en) | 2006-02-11 |
US20050021895A1 (en) | 2005-01-27 |
TW200511139A (en) | 2005-03-16 |
US7287703B2 (en) | 2007-10-30 |
KR20050011407A (en) | 2005-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7287703B2 (en) | Removable memory cards including USB and other controllers, connectors, and methods of operating same | |
US7237049B2 (en) | Multimedia/secure digital cards and adapters for interfacing using voltage levels to determine host types and methods of operating | |
US7809866B2 (en) | Double interface SD flash memory card | |
US7975122B2 (en) | Memory hub with integrated non-volatile memory | |
US20060047982A1 (en) | Mult-interface auto-switch circuit and memory device with dual interface auto-switch circuit | |
US7467249B2 (en) | Efficient connection between modules of removable electronic circuit cards | |
US7519756B2 (en) | Method and apparatus for controlling connections of PC cards and a passive-card-adapting card used for connecting one of the PC cards to the apparatus | |
EP2037372B1 (en) | Receptacles for removable electrical interface devices | |
US20060161716A1 (en) | Adapter for connecting a portable memory unit to a host, and a memory device having the adapter | |
US20050182858A1 (en) | Portable memory device with multiple I/O interfaces | |
EP2040174B1 (en) | Card-type peripheral device | |
US20070083689A1 (en) | USB system having card-type USB interface connector | |
US10095614B2 (en) | Memory controller and accessing system utilizing the same | |
US6067593A (en) | Universal memory bus and card | |
US7219846B2 (en) | Circuit module and memory card kit compliant with various access protocols | |
JPWO2018186456A1 (en) | Host device and removable system | |
US7600060B2 (en) | Memory system and method for setting data transmission speed between host and memory card | |
US20070067539A1 (en) | Enhanced CCID circuits and systems utilizing USB and PCI functions | |
KR100882207B1 (en) | Memory device including a connector to interface other memory devices with the host independently |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |