US20070094919A1 - Fuel compositions - Google Patents
Fuel compositions Download PDFInfo
- Publication number
- US20070094919A1 US20070094919A1 US11/492,496 US49249606A US2007094919A1 US 20070094919 A1 US20070094919 A1 US 20070094919A1 US 49249606 A US49249606 A US 49249606A US 2007094919 A1 US2007094919 A1 US 2007094919A1
- Authority
- US
- United States
- Prior art keywords
- levulinate
- alkyl
- fuel
- mpa
- fuel composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 135
- 239000000203 mixture Substances 0.000 title claims abstract description 91
- -1 alkyl levulinate Chemical compound 0.000 claims abstract description 50
- 229940058352 levulinate Drugs 0.000 claims abstract description 42
- 239000006184 cosolvent Substances 0.000 claims abstract description 33
- 239000007789 gas Substances 0.000 claims abstract description 25
- 230000003993 interaction Effects 0.000 claims abstract description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000001257 hydrogen Substances 0.000 claims abstract description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 32
- 238000005191 phase separation Methods 0.000 claims description 27
- GMEONFUTDYJSNV-UHFFFAOYSA-N Ethyl levulinate Chemical compound CCOC(=O)CCC(C)=O GMEONFUTDYJSNV-UHFFFAOYSA-N 0.000 claims description 22
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 claims description 16
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 14
- ISBWNEKJSSLXOD-UHFFFAOYSA-N Butyl levulinate Chemical compound CCCCOC(=O)CCC(C)=O ISBWNEKJSSLXOD-UHFFFAOYSA-N 0.000 claims description 8
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 claims description 8
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 8
- 150000001298 alcohols Chemical class 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 claims description 5
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 claims description 5
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 claims description 4
- QOSMNYMQXIVWKY-UHFFFAOYSA-N Propyl levulinate Chemical compound CCCOC(=O)CCC(C)=O QOSMNYMQXIVWKY-UHFFFAOYSA-N 0.000 claims description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- KFVUXNKQQOUCAH-UHFFFAOYSA-N butan-1-ol;propan-2-ol Chemical compound CC(C)O.CCCCO KFVUXNKQQOUCAH-UHFFFAOYSA-N 0.000 claims 1
- 239000000654 additive Substances 0.000 description 20
- 239000002283 diesel fuel Substances 0.000 description 20
- 239000003921 oil Substances 0.000 description 19
- 235000019198 oils Nutrition 0.000 description 19
- 239000002904 solvent Substances 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 150000002148 esters Chemical class 0.000 description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 10
- 239000005864 Sulphur Substances 0.000 description 10
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 10
- 230000000996 additive effect Effects 0.000 description 9
- JOOXCMJARBKPKM-UHFFFAOYSA-N 4-oxopentanoic acid Chemical compound CC(=O)CCC(O)=O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000001993 wax Substances 0.000 description 8
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 6
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 6
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 229920002367 Polyisobutene Polymers 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 239000003350 kerosene Substances 0.000 description 4
- 229940040102 levulinic acid Drugs 0.000 description 4
- 150000004730 levulinic acid derivatives Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 150000004702 methyl esters Chemical class 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 3
- 240000002791 Brassica napus Species 0.000 description 3
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 239000002551 biofuel Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- NKRVGWFEFKCZAP-UHFFFAOYSA-N 2-ethylhexyl nitrate Chemical compound CCCCC(CC)CO[N+]([O-])=O NKRVGWFEFKCZAP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000013556 antirust agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000002816 fuel additive Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000003079 shale oil Substances 0.000 description 2
- 150000003443 succinic acid derivatives Chemical class 0.000 description 2
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 1
- GGQRKYMKYMRZTF-UHFFFAOYSA-N 2,2,3,3-tetrakis(prop-1-enyl)butanedioic acid Chemical class CC=CC(C=CC)(C(O)=O)C(C=CC)(C=CC)C(O)=O GGQRKYMKYMRZTF-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- UKFQWAVMIMCNEH-UHFFFAOYSA-N 2-ethylpentan-1-ol Chemical compound CCCC(CC)CO UKFQWAVMIMCNEH-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 235000019737 Animal fat Nutrition 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- XKEHHUNHEXOXBR-UHFFFAOYSA-N C(C)C(CO)CCCC.C(C)C(CO)CCC Chemical compound C(C)C(CO)CCCC.C(C)C(CO)CCC XKEHHUNHEXOXBR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CKOYRRWBOKMNRG-UHFFFAOYSA-N Furfuryl acetate Chemical compound CC(=O)OCC1=CC=CO1 CKOYRRWBOKMNRG-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- UAGJVSRUFNSIHR-UHFFFAOYSA-N Methyl levulinate Chemical compound COC(=O)CCC(C)=O UAGJVSRUFNSIHR-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004146 Propane-1,2-diol Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002199 base oil Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- YKGYQYOQRGPFTO-UHFFFAOYSA-N bis(8-methylnonyl) hexanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCC(=O)OCCCCCCCC(C)C YKGYQYOQRGPFTO-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical class NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- HLYOOCIMLHNMOG-UHFFFAOYSA-N cyclohexyl nitrate Chemical compound [O-][N+](=O)OC1CCCCC1 HLYOOCIMLHNMOG-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000006280 diesel fuel additive Substances 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical class O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- FSWDLYNGJBGFJH-UHFFFAOYSA-N n,n'-di-2-butyl-1,4-phenylenediamine Chemical compound CCC(C)NC1=CC=C(NC(C)CC)C=C1 FSWDLYNGJBGFJH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/026—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1608—Well defined compounds, e.g. hexane, benzene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/1822—Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
- C10L1/1824—Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/185—Ethers; Acetals; Ketals; Aldehydes; Ketones
- C10L1/1852—Ethers; Acetals; Ketals; Orthoesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
Definitions
- the present invention relates to fuel compositions comprising a gas oil base fuel.
- Two different fuel components can be blended so as to modify the properties and/or the performance, e.g. engine performance, of the resultant composition.
- Diesel fuel components can include the so-called “biofuels” which derive from biological materials. Examples include levulinate esters.
- Levulinate esters esters of levulinic acid
- furfuryl acetate is described in Zh. Prikl. Khim. (Leningrad) (1969) 42(4), 958-9, and in particular the methyl, ethyl, propyl, butyl, pentyl and hexyl esters.
- WO-A-94/21753 discloses fuels for internal combustion engines, including both gasoline and diesel fuel, containing proportions (e.g. 1 to 90% v, 1 to 50% v, preferably 1 to 20% v) of esters of C 4-6 keto-carbonic acids, preferably levulinic acid, with C 1-22 alcohols. Esters with C 1-8 alcohols are described as being particularly suitable for inclusion in gasolines, and esters with C 9-22 alcohols are described as being particularly suitable for inclusion in diesel fuels. The examples in WO-A-94/21753 are about the inclusion of quantities of levulinate esters in gasolines, for improvement in octane numbers (RON and MON).
- WO-A-03/002696 discloses a fuel composition incorporating levulinic acid, or a functional derivative thereof, with the object of providing more oxygen by volume than ethanol or traditional oxygenates such as MTBE or ETBE, giving little or no increase in fuel Reid vapour pressure and little or no effect on the flash point of the base fuel.
- the functional derivative is preferably an alkyl derivative, more preferably a C 1-10 alkyl derivative. Ethyl levulinate is said to be preferred, with methyl levulinate a preferred alternative.
- the levulinic acid or functional derivative is preferably used to form 0.1 to 5% v of the fuel.
- Diesel fuel specifications such as ASTM D975-02 (USA) and EN590 (Europe) include limits on Cloud Point temperature in order to ensure that diesel fuel remains fluid at the lowest anticipated service temperature and that blocking of fuel filters by wax is prevented.
- the blending of a standard commercial diesel base fuel with other fuel components, to modify the overall fuel properties and/or performance, can therefore have an adverse impact on the performance of the blend in the engines for which it is intended.
- any diesel fuel blend it is desirable for any diesel fuel blend to have an overall specification as close as possible to that of the standard commercially available diesel base fuels for which engines tend to be optimised.
- a fuel composition comprising a gas oil base fuel, an alkyl levulinate and a co-solvent having a polar interaction parameter ( ⁇ p) in the range of from 1 to 7 MPa 1/2 and a hydrogen bonding parameter ( ⁇ h) in the range of from 2 to 18 MPa 1/2 .
- a method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate comprising incorporating in the fuel composition a co-solvent having a polar interaction parameter ( ⁇ p) in the range of from 1 to 7 MPa 1/2 and a hydrogen bonding parameter ( ⁇ h) in the range of from 2 to 18 MPa 1/2 .
- ⁇ p polar interaction parameter
- ⁇ h hydrogen bonding parameter
- a method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate comprising (a) selecting by reference to its polar interaction parameter ( ⁇ p) and hydrogen bonding parameter ( ⁇ h) a co-solvent for which said polar interaction parameter is in the range of from 1 to 7 MPa 1/2 and said hydrogen bonding parameter is in the range of from 2 to 18 MPa 1/2 and (b) incorporating said selected co-solvent in the fuel composition.
- HSP Hildebrand Solubility Parameter
- phase separation temperature of the fuel composition can be reduced by the inclusion of a co-solvent, preferably an alcohol, having a polar interaction parameter ( ⁇ p) and a hydrogen bonding parameter ( ⁇ h) falling within certain respective ranges.
- a co-solvent preferably an alcohol
- ⁇ p polar interaction parameter
- ⁇ h hydrogen bonding parameter
- a fuel composition comprising a gas oil base fuel, an alkyl levulinate and a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter ( ⁇ p) in the range of from 1 to 7 MPa 1/2 , preferably from 1.5 to 6.5 MPa 1/2 , more preferably from 2.5 to 6 MPa 1/2 , and a hydrogen bonding parameter ( ⁇ h) in the range of from 2 to 18 MPa 1/2 , preferably from 4 to 17 MPa 1/2 , more preferably from 6 to 16 MPa 1/2 .
- ⁇ p polar interaction parameter
- ⁇ h hydrogen bonding parameter
- a method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate, which method comprises incorporating in the fuel composition a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter ( ⁇ p) in the range of from 1 to 7 MPa 1/2 , preferably from 1.5 to 6.5 MPa 1/2 , more preferably from 2.5 to 6 MPa 1/2 , and a hydrogen bonding parameter ( ⁇ h) in the range of from 2 to 18 MPa 1/2 , preferably from 4 to 17 MPa 1/2 , more preferably from 6 to 16 MPa 1/2 .
- ⁇ p polar interaction parameter
- ⁇ h hydrogen bonding parameter
- a method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate, which method comprises selecting by reference to its polar interaction parameter ( ⁇ p) and hydrogen bonding parameter ( ⁇ h) a co-solvent for which said polar interaction parameter is in the range of from 1 to 7 MPa 1/2 , preferably from 1.5 to 6.5 MPa 1/2 , more preferably from 2.5 to 6 MPa 1/2 , and said hydrogen bonding parameter is in the range of from 2 to 18 MPa 1/2 , preferably from 4 to 17 MPa 1/2 , more preferably from 6 to 16 MPa 1/2 , preferably an alcohol, and incorporating said selected co-solvent in the fuel composition.
- ⁇ p polar interaction parameter
- ⁇ h hydrogen bonding parameter
- a fuel composition comprising a gas oil base fuel and an alkyl levulinate of a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter ( ⁇ p) in the range of from 1 to 7 MPa 1/2 , preferably from 1.5 to 6.5 MPa 1/2 , more preferably from 2.5 to 6 MPa 1/2 , and a hydrogen bonding parameter ( ⁇ h) in the range of from 2 to 18 MPa 1/2 , preferably from 4 to 17 MPa 1/2 , more preferably from 6 to 16 MPa 1/2 , for the purpose of reducing the phase separation temperature of the fuel composition.
- ⁇ p polar interaction parameter
- ⁇ h hydrogen bonding parameter
- a method of operating a compression ignition engine and/or a vehicle which is powered by such an engine which method involves introducing into a combustion chamber of the engine a fuel composition according to the present invention.
- a method of operating a heating appliance provided with a burner comprises supplying to said burner a fuel composition according to the present invention.
- a process for the preparation of a fuel composition involves blending a gas oil base fuel, an alkyl levulinate and a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter ( ⁇ p) in the range of from 1 to 7 MPa 1/2 , preferably from 1.5 to 6.5 MPa 1/2 , more preferably from 2.5 to 6 MPa 1/2 , and a hydrogen bonding parameter ( ⁇ h) in the range of from 2 to 18 MPa 1/2 , preferably from 4 to 17 MPa 1/2 , more preferably from 6 to 16 MPa 1/2 .
- ⁇ p polar interaction parameter
- ⁇ h hydrogen bonding parameter
- said alkyl levulinate is selected from C 2-8 alkyl levulinates, preferably ethyl levulinate, n-propyl levulinate, n-butyl levulinate, n-pentyl levulinate, 2-hexyl levulinate, 2-ethyl hexyl levulinate and/or mixtures thereof, more preferably ethyl levulinate, n-butyl levulinate and/or n-pentyl levulinate, most preferably ethyl levulinate.
- said co-solvent is selected from C 3-8 alcohols, for example isopropanol, 1-butanol, isobutanol, 3-methyl-1-butanol, 1-pentanol, 2-butoxy-ethanol (i.e. butyl oxitol), 4-methyl-2-pentanol (i.e. methyl isobutyl carbinol), 2-ethyl hexanol, 2-[2-(1-butoxy)ethoxy]ethanol (i.e. butyl dioxitol) and mixtures thereof; hydrocarbons such as toluene; and oxygenates such as fatty acid alkyl esters, particularly rapeseed methyl ester (RME).
- C 3-8 alcohols for example isopropanol, 1-butanol, isobutanol, 3-methyl-1-butanol, 1-pentanol, 2-butoxy-ethanol (i.e. butyl oxitol), 4-methyl-2-pentanol (i.
- the concentration of said co-solvents accords with one or more of the following parameters:
- phase separation temperature is reduced by at least 3° C., more preferably by at least 5° C., still more preferably by at least 10° C., and most preferably by at least 20° C.
- said phase separation temperature of said fuel composition is below ⁇ 5° C., more preferably below ⁇ 10° C., still more preferably below ⁇ 20° C., and most preferably below ⁇ 30° C.
- blends of two or more of the alkyl levulinates may be included in the fuel composition.
- selection of the particular components of said blends and their proportions is dependent upon one or more desired characteristics of the fuel composition.
- the present invention may be used to formulate fuel blends which are expected to be of particular use in modern commercially available diesel engines as alternatives to the standard diesel base fuels, for instance as commercial and legislative pressures favour the use of increasing quantities of organically derived “biofuels”.
- a fuel component in a fuel composition means incorporating the component into the composition, typically as a blend (i.e. a physical mixture) with one or more other fuel components, conveniently before the composition is introduced into an engine.
- the fuel composition will typically contain a major proportion of the base fuel, such as from 50 to 99% v, preferably from 50 to 98% v, more preferably from 80 to 98% v, most preferably from 90 to 98% v.
- the proportions of the alkyl levulinates and co-solvents will be chosen to achieve the desired degree of miscibility, i.e. phase separation temperature, and may also be influenced by other properties required of the overall composition.
- the fuel compositions to which the present invention relates include diesel fuels for use in automotive compression ignition engines, as well as in other types of engine such as for example marine, railroad and stationary engines, and industrial gas oils for use in heating applications (e.g. boilers).
- the base fuel may itself comprise a mixture of two or more different diesel fuel components, and/or be additivated as described below.
- Such diesel fuels will contain a base fuel which may typically comprise liquid hydrocarbon middle distillate gas oil(s), for instance petroleum derived gas oils.
- a base fuel which may typically comprise liquid hydrocarbon middle distillate gas oil(s), for instance petroleum derived gas oils.
- Such fuels will typically have boiling points within the usual diesel range of 150 to 400° C., depending on grade and use. They will typically have a density from 750 to 900 kg/m 3 , preferably from 800 to 860 kg/m 3 , at 15° C. (e.g. ASTM D4502 or IP 365) and a cetane number (ASTM D613) of from 35 to 80, more preferably from 40 to 75. They will typically have an initial boiling point in the range 150 to 230° C. and a final boiling point in the range 290 to 400° C. Their kinematic viscosity at 40° C. (ASTM D445) might suitably be from 1.5 to 4.5 mm 2 /s.
- Such industrial gas oils will contain a base fuel which may comprise fuel fractions such as the kerosene or gas oil fractions obtained in traditional refinery processes, which upgrade crude petroleum feedstock to useful products.
- a base fuel which may comprise fuel fractions such as the kerosene or gas oil fractions obtained in traditional refinery processes, which upgrade crude petroleum feedstock to useful products.
- fuel fractions such as the kerosene or gas oil fractions obtained in traditional refinery processes, which upgrade crude petroleum feedstock to useful products.
- such fractions contain components having carbon numbers in the range 5 to 40, more preferably 5 to 31, yet more preferably 6 to 25, most preferably 9 to 25, and such fractions have a density at 15° C. of 650 to 1000 kg/m 3 , a kinematic viscosity at 20° C. of 1 to 80 mm 2 /s, and a boiling range of 150 to 400° C.
- non-mineral oil based fuels such as vegetable oil-based or animal fat-based biofuels or Fischer-Tropsch derived fuels, may also form or be present in the fuel composition.
- Fischer-Tropsch fuels may for example be derived from natural gas, natural gas liquids, petroleum or shale oil, petroleum or shale oil processing residues, coal or biomass.
- the amount of Fischer-Tropsch derived fuel used in a diesel fuel composition may be from 0.5 to 100% v of the overall diesel fuel composition, preferably from 5 to 75% v. It may be desirable for the composition to contain 10% v or greater, more preferably 20% v or greater, still more preferably 30% v or greater, of the Fischer-Tropsch derived fuel. It is particularly preferred for the composition to contain 30 to 75% v, and particularly 30 or 70% v, of the Fischer-Tropsch derived fuel. The balance of the fuel composition is made up of one or more other fuels.
- An industrial gas oil composition will preferably comprise more than 50 wt %, more preferably more than 70 wt %, of a Fischer-Tropsch derived fuel component.
- Such a Fischer-Tropsch derived fuel component is any fraction of the middle distillate fuel range, which can be isolated from the (hydrocracked) Fischer-Tropsch synthesis product. Typical fractions will boil in the naphtha, kerosene or gas oil range. Preferably, a Fischer-Tropsch product boiling in the kerosene or gas oil range is used because these products are easier to handle in for example domestic environments. Such products will suitably comprise a fraction larger than 90 wt % which boils between 160 and 400° C., preferably to about 370° C.
- Fischer-Tropsch derived kerosene and gas oils are described in EP-A-0583836, WO-A-97/14768, WO-A-97/14769, WO-A-00/11116, WO-A-00/11117, WO-A-01/83406, WO-A-01/83648, WO-A-01/83647, WO-A-01/83641, WO-A-00/20535, WO-A-00/20534, EP-A-1101813, U.S. Pat. No. 5,766,274, U.S. Pat. No. 5,378,348, U.S. Pat. No. 5,888,376 and U.S. Pat. No. 6,204,426.
- the Fischer-Tropsch product will suitably contain more than 80 wt % and more suitably more than 95 wt % iso and normal paraffins and less than 1 wt % aromatics, the balance being naphthenics compounds.
- the content of sulphur and nitrogen will be very low and normally below the detection limits for such compounds. For this reason the sulphur content of a fuel composition containing a Fischer-Tropsch product may be very low.
- the fuel composition preferably contains no more than 5000 ppmw sulphur, more preferably no more than 500 ppmw, or no more than 350 ppmw, or no more than 150 ppmw, or no more than 100 ppmw, or no more than 50 ppmw, or most preferably no more than 10 ppmw sulphur.
- the fuel composition of the present invention may, if required, contain one or more additives as described below.
- the base fuel may itself be additivated (additive-containing) or unadditivated (additive-free). If additivated, e.g. at the refinery, it will contain minor amounts of one or more additives selected for example from anti-static agents, pipeline drag reducers, flow improvers (e.g. ethylene/vinyl acetate copolymers or acrylate/maleic anhydride copolymers), lubricity additives, antioxidants and wax anti-settling agents.
- additives selected for example from anti-static agents, pipeline drag reducers, flow improvers (e.g. ethylene/vinyl acetate copolymers or acrylate/maleic anhydride copolymers), lubricity additives, antioxidants and wax anti-settling agents.
- Detergent-containing diesel fuel additives are known and commercially available. Such additives may be added to diesel fuels at levels intended to reduce, remove, or slow the build up of engine deposits.
- detergents suitable for use in fuel additives for the present purpose include polyolefin substituted succinimides or succinamides of polyamines, for instance polyisobutylene succinimides or polyisobutylene amine succinamides, aliphatic amines, Mannich bases or amines and polyolefin (e.g. polyisobutylene) maleic anhydrides.
- Succinimide dispersant additives are described for example in GB-A-960493, EP-A-0147240, EP-A-0482253, EP-A-0613938, EP-A-0557516 and WO-A-98/42808.
- Particularly preferred are polyolefin substituted succinimides such as polyisobutylene succinimides.
- the additive may contain other components in addition to the detergent.
- lubricity enhancers e.g. alkoxylated phenol formaldehyde polymers
- anti-foaming agents e.g. polyether-modified polysiloxanes
- ignition improvers cetane improvers
- anti-rust agents e.g. 2-ethylhexyl nitrate (EHN), cyclohexyl nitrate, di-tert-butyl peroxide and those disclosed in U.S. Pat. No. 4,208,190 at column 2, line 27 to column 3, line 21
- anti-rust agents e.g.
- a propane-1,2-diol semi-ester of tetrapropenyl succinic acid, or polyhydric alcohol esters of a succinic acid derivative the succinic acid derivative having on at least one of its alpha-carbon atoms an unsubstituted or substituted aliphatic hydrocarbon group containing from 20 to 500 carbon atoms, e.g. the pentaerythritol diester of polyisobutylene-substituted succinic acid); corrosion inhibitors; reodorants; anti-wear additives; anti-oxidants (e.g.
- phenolics such as 2,6-di-tert-butylphenol, or phenylenediamines such as N,N′-di-sec-butyl-p-phenylenediamine); metal deactivators; and combustion improvers.
- the additive include a lubricity enhancer, especially when the fuel composition has a low (e.g. 500 ppmw or less) sulphur content.
- the lubricity enhancer is conveniently present at a concentration of less than 1000 ppmw, preferably between 50 and 1000 ppmw, more preferably between 100 and 1000 ppmw.
- Suitable commercially available lubricity enhancers include ester- and acid-based additives.
- Other lubricity enhancers are described in the patent literature, in particular in connection with their use in low sulphur content diesel fuels, for example in:
- the additive contain an anti-foaming agent, more preferably in combination with an anti-rust agent and/or a corrosion inhibitor and/or a lubricity additive.
- the (active matter) concentration of each such additional component in the additivated fuel composition is preferably up to 10000 ppmw, more preferably in the range from 0.1 to 1000 ppmw, advantageously from 0.1 to 300 ppmw, such as from 0.1 to 150 ppmw.
- the (active matter) concentration of any dehazer in the fuel composition will preferably be in the range from 0.1 to 20 ppmw, more preferably from 1 to 15 ppmw, still more preferably from 1 to 10 ppmw, advantageously from 1 to 5 ppmw.
- the (active matter) concentration of any ignition improver present will preferably be 2600 ppmw or less, more preferably 2000 ppmw or less, conveniently from 300 to 1500 ppmw.
- the additive components may be co-mixed, preferably together with suitable diluent(s), in an additive concentrate, and the additive concentrate may be dispersed into the fuel, in suitable quantity to result in a composition of the present invention.
- the additive will typically contain a detergent, optionally together with other components as described above, and a diesel fuel-compatible diluent, which may be a carrier oil (e.g. a mineral oil), a polyether, which may be capped or uncapped, a non-polar solvent such as toluene, xylene, white spirits and those sold by Shell companies under the trade mark “SHELLSOL”, and/or a polar solvent such as an ester and, in particular, an alcohol, e.g.
- a carrier oil e.g. a mineral oil
- a polyether which may be capped or uncapped
- a non-polar solvent such as toluene, xylene, white spirits and those sold by Shell companies under the trade mark “SHELLSOL”
- a polar solvent such as an ester and, in particular, an alcohol, e.g.
- hexanol 2-ethylhexanol, decanol, isotridecanol and alcohol mixtures such as those sold by Shell companies under the trade mark “LINEVOL”, especially LINEVOL 79 alcohol which is a mixture of C 7-9 primary alcohols, or a C 12-14 alcohol mixture which is commercially available.
- LINEVOL especially LINEVOL 79 alcohol which is a mixture of C 7-9 primary alcohols, or a C 12-14 alcohol mixture which is commercially available.
- the total content of the additives may be suitably between 0 and 10000 ppmw and preferably below 5000 ppmw.
- the alkyl levulinate concentration in the fuel composition accords with one or more of the following parameters:
- amounts (concentrations, % v, ppmw, wt %) of components are of active matter, i.e. exclusive of volatile solvents/diluent materials.
- the present invention is particularly applicable where the fuel composition is used or intended to be used in a direct injection diesel engine, for example of the rotary pump, in-line pump, unit pump, electronic unit injector or common rail type, or in an indirect injection diesel engine.
- the fuel composition may be suitable for use in heavy and/or light duty diesel engines.
- boilers include standard boilers, low temperature boilers and condensing boilers, and are typically used for heating water for commercial or domestic applications such as space heating and water heating.
- the present invention may lead to any of a number of advantageous effects, including good engine low temperature performance.
- Fuel A was a Dreyfuss ULSD, a hydrotreated AGO having a cloud point of ⁇ 27° C. and an aromatics content of 22% m; and (2) Fuel B was a Swedish Class 1 AGO, which is a low density, low aromatics (4% m) diesel fuel with a cloud point of ⁇ 38° C. Both base fuels met the EN590 specification.
- Fuels A and B are given in Table 1: TABLE 1 Fuel A Fuel B Density @ 15° C., kg/m 3 822 815 Distillation T50, ° C. 242 235 Distillation T95, ° C. 304 272 Cetane Number 54 54 Viscosity @40° C., mm 2 /s 2.10 2.03 Sulphur, mg/kg 10 ⁇ 5 Cloud Point, ° C. ⁇ 27 ⁇ 38 Aromatics, % m 22 4
- the miscibility of the ethyl levulinate was measured using a method based on the ASTM D2500 “Cloud Point” procedure.
- a sample of fuel 40 ml
- the sample is examined at 1° C. intervals as it cools to its wax cloud point.
- a further two temperatures were recorded coinciding with the following observations, if they occurred:
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
A fuel composition containing a gas oil base fuel, an alkyl levulinate and a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2 and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2 is provided.
Description
- The present invention relates to fuel compositions comprising a gas oil base fuel.
- Two different fuel components can be blended so as to modify the properties and/or the performance, e.g. engine performance, of the resultant composition.
- Diesel fuel components can include the so-called “biofuels” which derive from biological materials. Examples include levulinate esters.
- Levulinate esters (esters of levulinic acid) and their preparation by reaction of the appropriate alcohol with furfuryl acetate are described in Zh. Prikl. Khim. (Leningrad) (1969) 42(4), 958-9, and in particular the methyl, ethyl, propyl, butyl, pentyl and hexyl esters.
- WO-A-94/21753 discloses fuels for internal combustion engines, including both gasoline and diesel fuel, containing proportions (e.g. 1 to 90% v, 1 to 50% v, preferably 1 to 20% v) of esters of C4-6 keto-carbonic acids, preferably levulinic acid, with C1-22 alcohols. Esters with C1-8 alcohols are described as being particularly suitable for inclusion in gasolines, and esters with C9-22 alcohols are described as being particularly suitable for inclusion in diesel fuels. The examples in WO-A-94/21753 are about the inclusion of quantities of levulinate esters in gasolines, for improvement in octane numbers (RON and MON).
- WO-A-03/002696 discloses a fuel composition incorporating levulinic acid, or a functional derivative thereof, with the object of providing more oxygen by volume than ethanol or traditional oxygenates such as MTBE or ETBE, giving little or no increase in fuel Reid vapour pressure and little or no effect on the flash point of the base fuel. The functional derivative is preferably an alkyl derivative, more preferably a C1-10 alkyl derivative. Ethyl levulinate is said to be preferred, with methyl levulinate a preferred alternative. The levulinic acid or functional derivative is preferably used to form 0.1 to 5% v of the fuel.
- Current commercially available compression ignition (diesel) engines tend to be optimised to run on fuels having a desired specification. Moreover, the conditions under which the engine is required to operate can affect the manner in which a fuel composition in the engine will behave. In particular, as the atmospheric temperature falls, a fuel that is a single-phase homogeneous liquid at normal temperatures may become a multiphase liquid as certain components either (i) freeze (forming solid wax) or (ii) become immiscible in the bulk liquid and form a separate liquid layer. The onset of wax formation on cooling is characterised by a change in the transparency of the fuel and the temperature at which this occurs is termed the “Cloud Point” of the fuel. If, on cooling, the Cloud Point is preceded by the formation of a separate liquid phase, the temperature at which this occurs is termed the “Phase separation temperature”. Diesel fuel specifications such as ASTM D975-02 (USA) and EN590 (Europe) include limits on Cloud Point temperature in order to ensure that diesel fuel remains fluid at the lowest anticipated service temperature and that blocking of fuel filters by wax is prevented. For trouble free operation, it is also desirable that the diesel fuel in the fuel tank remains homogeneous, since the composition of some or all of any separated liquid layers may be unsuitable as a fuel for the engine. The blending of a standard commercial diesel base fuel with other fuel components, to modify the overall fuel properties and/or performance, can therefore have an adverse impact on the performance of the blend in the engines for which it is intended.
- For the above reason, it is desirable for any diesel fuel blend to have an overall specification as close as possible to that of the standard commercially available diesel base fuels for which engines tend to be optimised.
- This can, however, be difficult to achieve because any additional fuel component is likely to alter the properties and performance of the base fuel. Moreover the properties of a blend, in particular its effect on low temperature performance, are not always straightforward to predict from the properties of the constituent fuels alone.
- In one embodiment of the invention, there is provided a fuel composition comprising a gas oil base fuel, an alkyl levulinate and a co-solvent having a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2 and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2.
- In another embodiment of the invention, there is provided a method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate comprising incorporating in the fuel composition a co-solvent having a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2 and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2.
- In yet another embodiment of the invention, there is provided a method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate comprising (a) selecting by reference to its polar interaction parameter (δp) and hydrogen bonding parameter (δh) a co-solvent for which said polar interaction parameter is in the range of from 1 to 7 MPa1/2 and said hydrogen bonding parameter is in the range of from 2 to 18 MPa1/2 and (b) incorporating said selected co-solvent in the fuel composition.
- Further there is provided a method to operate an engine and/or a vehicle comprising such fuel.
- The relative solvency behaviour of a solvent can be expressed by a solubility parameter. One such parameter is the Hildebrand Solubility Parameter (HSP), which is defined as the square root of the molar cohesive energy, C, i.e.
δHSP=C1/2={(H vap −RT)/V m}1/2,
where Hvap=molar heat of vaporisation, R=universal gas constant, T=temperature and Vm=molar volume. - The Hildebrand parameter is an overall parameter, but Hansen was able to split it into three different molecular interactions, a dispersive interaction δd (non-permanent dipole-dipole interaction), a polar interaction δp (permanent dipole) and a hydrogen bonding interaction δh, their units being (cal/ml)1/2 or MPa1/2, i.e.
δHSP2=(δd)2+(δp)2+(δh)2 (cal/ml or MPa) - It has now been found that in fuel compositions comprising a gas oil base fuel and an alkyl levulinate, the phase separation temperature of the fuel composition can be reduced by the inclusion of a co-solvent, preferably an alcohol, having a polar interaction parameter (δp) and a hydrogen bonding parameter (δh) falling within certain respective ranges. Such parameters can be found in, for example, “Hansen Solubility Parameters: A user's handbook”, C. M. Hansen, 2000, CRC Press, ISBN 0-8493-1525-5. In cases where the solubility parameters are not tabulated in that reference, it provides a suitable method for estimation.
- In accordance with one embodiment of the present invention there is provided a fuel composition comprising a gas oil base fuel, an alkyl levulinate and a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2, preferably from 1.5 to 6.5 MPa1/2, more preferably from 2.5 to 6 MPa1/2, and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2, preferably from 4 to 17 MPa1/2, more preferably from 6 to 16 MPa1/2.
- In accordance with another embodiment of the present invention there is also provided a method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate, which method comprises incorporating in the fuel composition a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2, preferably from 1.5 to 6.5 MPa1/2, more preferably from 2.5 to 6 MPa1/2, and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2, preferably from 4 to 17 MPa1/2, more preferably from 6 to 16 MPa1/2.
- In accordance with yet another embodiment of the present invention there is further provided a method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate, which method comprises selecting by reference to its polar interaction parameter (δp) and hydrogen bonding parameter (δh) a co-solvent for which said polar interaction parameter is in the range of from 1 to 7 MPa1/2, preferably from 1.5 to 6.5 MPa1/2, more preferably from 2.5 to 6 MPa1/2, and said hydrogen bonding parameter is in the range of from 2 to 18 MPa1/2, preferably from 4 to 17 MPa1/2, more preferably from 6 to 16 MPa1/2, preferably an alcohol, and incorporating said selected co-solvent in the fuel composition.
- In accordance with yet another embodiment of the present invention there is further provided use in a fuel composition comprising a gas oil base fuel and an alkyl levulinate of a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2, preferably from 1.5 to 6.5 MPa1/2, more preferably from 2.5 to 6 MPa1/2, and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2, preferably from 4 to 17 MPa1/2, more preferably from 6 to 16 MPa1/2, for the purpose of reducing the phase separation temperature of the fuel composition.
- In accordance with another embodiment of the present invention there is further provided a method of operating a compression ignition engine and/or a vehicle which is powered by such an engine, which method involves introducing into a combustion chamber of the engine a fuel composition according to the present invention.
- In accordance with yet another embodiment of the present invention there is further provided a method of operating a heating appliance provided with a burner, which method comprises supplying to said burner a fuel composition according to the present invention.
- In accordance with yet another embodiment of the present invention there is further provided a process for the preparation of a fuel composition which process involves blending a gas oil base fuel, an alkyl levulinate and a co-solvent, preferably an alcohol, which co-solvent has a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2, preferably from 1.5 to 6.5 MPa1/2, more preferably from 2.5 to 6 MPa1/2, and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2, preferably from 4 to 17 MPa1/2, more preferably from 6 to 16 MPa1/2.
- Preferably, said alkyl levulinate is selected from C2-8 alkyl levulinates, preferably ethyl levulinate, n-propyl levulinate, n-butyl levulinate, n-pentyl levulinate, 2-hexyl levulinate, 2-ethyl hexyl levulinate and/or mixtures thereof, more preferably ethyl levulinate, n-butyl levulinate and/or n-pentyl levulinate, most preferably ethyl levulinate.
- Preferably, said co-solvent is selected from C3-8 alcohols, for example isopropanol, 1-butanol, isobutanol, 3-methyl-1-butanol, 1-pentanol, 2-butoxy-ethanol (i.e. butyl oxitol), 4-methyl-2-pentanol (i.e. methyl isobutyl carbinol), 2-ethyl hexanol, 2-[2-(1-butoxy)ethoxy]ethanol (i.e. butyl dioxitol) and mixtures thereof; hydrocarbons such as toluene; and oxygenates such as fatty acid alkyl esters, particularly rapeseed methyl ester (RME).
- Preferably, the concentration of said co-solvents accords with one or more of the following parameters:
- (i) at least 0.5% m; (ii) at least 1% m; (iii) at least 2% m; (iv) up to 5% m; (v) up to 8% m; (vi) up to 15% m, with ranges having features (i) and (vi), (ii) and (v), (iii) and (iv) respectively being progressively more preferred.
- Preferably, said phase separation temperature is reduced by at least 3° C., more preferably by at least 5° C., still more preferably by at least 10° C., and most preferably by at least 20° C.
- Preferably, said phase separation temperature of said fuel composition is below −5° C., more preferably below −10° C., still more preferably below −20° C., and most preferably below −30° C.
- In all aspects of the present invention, blends of two or more of the alkyl levulinates may be included in the fuel composition. In the context of the present invention, selection of the particular components of said blends and their proportions is dependent upon one or more desired characteristics of the fuel composition.
- The present invention may be used to formulate fuel blends which are expected to be of particular use in modern commercially available diesel engines as alternatives to the standard diesel base fuels, for instance as commercial and legislative pressures favour the use of increasing quantities of organically derived “biofuels”.
- In the context of the present invention, “use” of a fuel component in a fuel composition means incorporating the component into the composition, typically as a blend (i.e. a physical mixture) with one or more other fuel components, conveniently before the composition is introduced into an engine.
- The fuel composition will typically contain a major proportion of the base fuel, such as from 50 to 99% v, preferably from 50 to 98% v, more preferably from 80 to 98% v, most preferably from 90 to 98% v. The proportions of the alkyl levulinates and co-solvents will be chosen to achieve the desired degree of miscibility, i.e. phase separation temperature, and may also be influenced by other properties required of the overall composition.
- The fuel compositions to which the present invention relates include diesel fuels for use in automotive compression ignition engines, as well as in other types of engine such as for example marine, railroad and stationary engines, and industrial gas oils for use in heating applications (e.g. boilers).
- The base fuel may itself comprise a mixture of two or more different diesel fuel components, and/or be additivated as described below.
- Such diesel fuels will contain a base fuel which may typically comprise liquid hydrocarbon middle distillate gas oil(s), for instance petroleum derived gas oils. Such fuels will typically have boiling points within the usual diesel range of 150 to 400° C., depending on grade and use. They will typically have a density from 750 to 900 kg/m3, preferably from 800 to 860 kg/m3, at 15° C. (e.g. ASTM D4502 or IP 365) and a cetane number (ASTM D613) of from 35 to 80, more preferably from 40 to 75. They will typically have an initial boiling point in the range 150 to 230° C. and a final boiling point in the range 290 to 400° C. Their kinematic viscosity at 40° C. (ASTM D445) might suitably be from 1.5 to 4.5 mm2/s.
- Such industrial gas oils will contain a base fuel which may comprise fuel fractions such as the kerosene or gas oil fractions obtained in traditional refinery processes, which upgrade crude petroleum feedstock to useful products. Preferably such fractions contain components having carbon numbers in the range 5 to 40, more preferably 5 to 31, yet more preferably 6 to 25, most preferably 9 to 25, and such fractions have a density at 15° C. of 650 to 1000 kg/m3, a kinematic viscosity at 20° C. of 1 to 80 mm2/s, and a boiling range of 150 to 400° C.
- Optionally, non-mineral oil based fuels, such as vegetable oil-based or animal fat-based biofuels or Fischer-Tropsch derived fuels, may also form or be present in the fuel composition. Such Fischer-Tropsch fuels may for example be derived from natural gas, natural gas liquids, petroleum or shale oil, petroleum or shale oil processing residues, coal or biomass.
- The amount of Fischer-Tropsch derived fuel used in a diesel fuel composition may be from 0.5 to 100% v of the overall diesel fuel composition, preferably from 5 to 75% v. It may be desirable for the composition to contain 10% v or greater, more preferably 20% v or greater, still more preferably 30% v or greater, of the Fischer-Tropsch derived fuel. It is particularly preferred for the composition to contain 30 to 75% v, and particularly 30 or 70% v, of the Fischer-Tropsch derived fuel. The balance of the fuel composition is made up of one or more other fuels.
- An industrial gas oil composition will preferably comprise more than 50 wt %, more preferably more than 70 wt %, of a Fischer-Tropsch derived fuel component.
- Such a Fischer-Tropsch derived fuel component is any fraction of the middle distillate fuel range, which can be isolated from the (hydrocracked) Fischer-Tropsch synthesis product. Typical fractions will boil in the naphtha, kerosene or gas oil range. Preferably, a Fischer-Tropsch product boiling in the kerosene or gas oil range is used because these products are easier to handle in for example domestic environments. Such products will suitably comprise a fraction larger than 90 wt % which boils between 160 and 400° C., preferably to about 370° C. Examples of Fischer-Tropsch derived kerosene and gas oils are described in EP-A-0583836, WO-A-97/14768, WO-A-97/14769, WO-A-00/11116, WO-A-00/11117, WO-A-01/83406, WO-A-01/83648, WO-A-01/83647, WO-A-01/83641, WO-A-00/20535, WO-A-00/20534, EP-A-1101813, U.S. Pat. No. 5,766,274, U.S. Pat. No. 5,378,348, U.S. Pat. No. 5,888,376 and U.S. Pat. No. 6,204,426.
- The Fischer-Tropsch product will suitably contain more than 80 wt % and more suitably more than 95 wt % iso and normal paraffins and less than 1 wt % aromatics, the balance being naphthenics compounds. The content of sulphur and nitrogen will be very low and normally below the detection limits for such compounds. For this reason the sulphur content of a fuel composition containing a Fischer-Tropsch product may be very low.
- The fuel composition preferably contains no more than 5000 ppmw sulphur, more preferably no more than 500 ppmw, or no more than 350 ppmw, or no more than 150 ppmw, or no more than 100 ppmw, or no more than 50 ppmw, or most preferably no more than 10 ppmw sulphur.
- In addition to the alkyl levulinates and the above-mentioned co-solvents, the fuel composition of the present invention may, if required, contain one or more additives as described below.
- The base fuel may itself be additivated (additive-containing) or unadditivated (additive-free). If additivated, e.g. at the refinery, it will contain minor amounts of one or more additives selected for example from anti-static agents, pipeline drag reducers, flow improvers (e.g. ethylene/vinyl acetate copolymers or acrylate/maleic anhydride copolymers), lubricity additives, antioxidants and wax anti-settling agents.
- Detergent-containing diesel fuel additives are known and commercially available. Such additives may be added to diesel fuels at levels intended to reduce, remove, or slow the build up of engine deposits.
- Examples of detergents suitable for use in fuel additives for the present purpose include polyolefin substituted succinimides or succinamides of polyamines, for instance polyisobutylene succinimides or polyisobutylene amine succinamides, aliphatic amines, Mannich bases or amines and polyolefin (e.g. polyisobutylene) maleic anhydrides. Succinimide dispersant additives are described for example in GB-A-960493, EP-A-0147240, EP-A-0482253, EP-A-0613938, EP-A-0557516 and WO-A-98/42808. Particularly preferred are polyolefin substituted succinimides such as polyisobutylene succinimides.
- The additive may contain other components in addition to the detergent. Examples are lubricity enhancers; dehazers, e.g. alkoxylated phenol formaldehyde polymers; anti-foaming agents (e.g. polyether-modified polysiloxanes); ignition improvers (cetane improvers) (e.g. 2-ethylhexyl nitrate (EHN), cyclohexyl nitrate, di-tert-butyl peroxide and those disclosed in U.S. Pat. No. 4,208,190 at column 2, line 27 to column 3, line 21); anti-rust agents (e.g. a propane-1,2-diol semi-ester of tetrapropenyl succinic acid, or polyhydric alcohol esters of a succinic acid derivative, the succinic acid derivative having on at least one of its alpha-carbon atoms an unsubstituted or substituted aliphatic hydrocarbon group containing from 20 to 500 carbon atoms, e.g. the pentaerythritol diester of polyisobutylene-substituted succinic acid); corrosion inhibitors; reodorants; anti-wear additives; anti-oxidants (e.g. phenolics such as 2,6-di-tert-butylphenol, or phenylenediamines such as N,N′-di-sec-butyl-p-phenylenediamine); metal deactivators; and combustion improvers.
- It is particularly preferred that the additive include a lubricity enhancer, especially when the fuel composition has a low (e.g. 500 ppmw or less) sulphur content. In the additivated fuel composition, the lubricity enhancer is conveniently present at a concentration of less than 1000 ppmw, preferably between 50 and 1000 ppmw, more preferably between 100 and 1000 ppmw. Suitable commercially available lubricity enhancers include ester- and acid-based additives. Other lubricity enhancers are described in the patent literature, in particular in connection with their use in low sulphur content diesel fuels, for example in:
-
- the paper by Danping Wei and H. A. Spikes, “The Lubricity of Diesel Fuels”, Wear, III (1986) 217-235;
- WO-A-95/33805—cold flow improvers to enhance lubricity of low sulphur fuels;
- WO-A-94/17160—certain esters of a carboxylic acid and an alcohol wherein the acid has from 2 to 50 carbon atoms and the alcohol has 1 or more carbon atoms, particularly glycerol monooleate and di-isodecyl adipate, as fuel additives for wear reduction in a diesel engine injection system;
- U.S. Pat. No. 5,490,864—certain dithiophosphoric diester-dialcohols as anti-wear lubricity additives for low sulphur diesel fuels; and
- WO-A-98/01516—certain alkyl aromatic compounds having at least one carboxyl group attached to their aromatic nuclei, to confer anti-wear lubricity effects particularly in low sulphur diesel fuels.
- It is also preferred that the additive contain an anti-foaming agent, more preferably in combination with an anti-rust agent and/or a corrosion inhibitor and/or a lubricity additive.
- Unless otherwise stated, the (active matter) concentration of each such additional component in the additivated fuel composition is preferably up to 10000 ppmw, more preferably in the range from 0.1 to 1000 ppmw, advantageously from 0.1 to 300 ppmw, such as from 0.1 to 150 ppmw.
- The (active matter) concentration of any dehazer in the fuel composition will preferably be in the range from 0.1 to 20 ppmw, more preferably from 1 to 15 ppmw, still more preferably from 1 to 10 ppmw, advantageously from 1 to 5 ppmw. The (active matter) concentration of any ignition improver present will preferably be 2600 ppmw or less, more preferably 2000 ppmw or less, conveniently from 300 to 1500 ppmw.
- If desired, the additive components, as listed above, may be co-mixed, preferably together with suitable diluent(s), in an additive concentrate, and the additive concentrate may be dispersed into the fuel, in suitable quantity to result in a composition of the present invention.
- In the case of a diesel fuel composition, for example, the additive will typically contain a detergent, optionally together with other components as described above, and a diesel fuel-compatible diluent, which may be a carrier oil (e.g. a mineral oil), a polyether, which may be capped or uncapped, a non-polar solvent such as toluene, xylene, white spirits and those sold by Shell companies under the trade mark “SHELLSOL”, and/or a polar solvent such as an ester and, in particular, an alcohol, e.g. hexanol, 2-ethylhexanol, decanol, isotridecanol and alcohol mixtures such as those sold by Shell companies under the trade mark “LINEVOL”, especially LINEVOL 79 alcohol which is a mixture of C7-9 primary alcohols, or a C12-14 alcohol mixture which is commercially available.
- The total content of the additives may be suitably between 0 and 10000 ppmw and preferably below 5000 ppmw.
- Preferably, the alkyl levulinate concentration in the fuel composition accords with one or more of the following parameters:
- (i) at least 1% v; (ii) at least 2% v; (iii) at least 3% v; (iv) at least 4% v; (v) at least 5% v; (vi) up to 6% v; (vii) up to 8% v; (viii) up to 10% v, (xi) up to 12% v, (x) up to 35% v, with ranges having features (i) and (x), (ii) and (ix), (iii) and (viii), (iv) and (vii), and (v) and (vi) respectively being progressively more preferred.
- In this specification, amounts (concentrations, % v, ppmw, wt %) of components are of active matter, i.e. exclusive of volatile solvents/diluent materials.
- The present invention is particularly applicable where the fuel composition is used or intended to be used in a direct injection diesel engine, for example of the rotary pump, in-line pump, unit pump, electronic unit injector or common rail type, or in an indirect injection diesel engine. The fuel composition may be suitable for use in heavy and/or light duty diesel engines.
- As mentioned above, it is also applicable where the fuel composition is used in heating applications, for example boilers. Such boilers include standard boilers, low temperature boilers and condensing boilers, and are typically used for heating water for commercial or domestic applications such as space heating and water heating.
- The present invention may lead to any of a number of advantageous effects, including good engine low temperature performance.
- The present invention will now be further described by reference to the following Examples, in which, unless otherwise indicated, parts and percentages are by weight, and temperatures are in degrees Celsius:
- Fuels were blended with additives by adding said additives to base fuel at ambient temperature (20° C.) and homogenising.
- The following additives were used:
- (a) ethyl levulinate (available ex. Aldrich);
- (b) 1-pentanol (δp=4.5 MPa1/2; δh=13.9 MPa1/2) (available ex. Aldrich);
- (c) 2-ethyl hexanol (δp=3.3 MPa1/2; δh=11.9 MPa1/2) (available ex. Aldrich);
- (d) 3-methyl-1-butanol (δp=5.2 MPa1/2; δh=13.4 MPa1/2) (available ex. Aldrich);
- (e) 4-methyl-2-pentanol (δp=3.3 MPa1/2; δh=12.3 MPa1/2) (available ex. Aldrich);
- (f) 2-butoxy ethanol (δp=6.3 MPa1/2; δh=12.9 MPa1/2) (available ex. Aldrich);
- (g) 2-[2-(1-butoxy)ethoxy]ethanol (δp=6.6 MPa1/2; δh=11.9 MPa1/2) (available ex. Shell Chemicals);
- (h) 2-methyl-2,4-pentanediol, i.e. hexylene glycol (δp=8.4 MPa1/2; δh=17.8 MPa1/2) (available ex. Aldrich);
- (i) toluene (δp=1.4 MPa1/2; δh=2.0 MPa1/2) (available ex. Aldrich);
- (j) rapeseed methyl ester (for soybean methyl ester, δp=4.9 MPa1/2; δh=5.9 MPa1/2) (available ex. Diester Industrie); and
- (k) tetrahydrofurfuryl alcohol (δp=8.7 MPa1/2; δh=15.0 MPa1/2) (available ex Aldrich).
- The miscibility of levulinates depends to some extent on base fuel properties. Two base fuels representative of the European market were chosen to explore this effect, i.e. (1) Fuel A was a Dreyfuss ULSD, a hydrotreated AGO having a cloud point of −27° C. and an aromatics content of 22% m; and (2) Fuel B was a Swedish Class 1 AGO, which is a low density, low aromatics (4% m) diesel fuel with a cloud point of −38° C. Both base fuels met the EN590 specification.
- The properties of Fuels A and B are given in Table 1:
TABLE 1 Fuel A Fuel B Density @ 15° C., kg/m3 822 815 Distillation T50, ° C. 242 235 Distillation T95, ° C. 304 272 Cetane Number 54 54 Viscosity @40° C., mm2/s 2.10 2.03 Sulphur, mg/kg 10 <5 Cloud Point, ° C. −27 −38 Aromatics, % m 22 4 - For screening purposes, a simple test method was used to determine the room temperature (20° C.) limit of miscibility of ethyl levulinate. Accurately metered volumes of ester were added sequentially to a known volume of diesel fuel in a 15 ml glass vial, shaken and observed. The first appearance of haze was recorded as the room temperature limit of miscibility for the mixture. The results are shown in Table 2 and clearly show that Fuel A solubilised more ethyl levulinate than Fuel B.
TABLE 2 Fuel A Fuel B 14% v 7% v - The miscibility of the ethyl levulinate was measured using a method based on the ASTM D2500 “Cloud Point” procedure. In this procedure, a sample of fuel (40 ml) is cooled from ambient temperature (20° C.) in a series of thermostat baths maintained at progressively lower temperatures. The sample is examined at 1° C. intervals as it cools to its wax cloud point. In addition to the wax cloud point temperature described in ASTM D2500, a further two temperatures were recorded coinciding with the following observations, if they occurred:
- (1) the appearance of the first haze,
- (2) the first sign of dropout of a separate liquid phase. In each case, cooling continued to the wax cloud point—beyond which, no further phase separation could be observed reliably, because the sample became opaque.
- Solutions of the ester ethyl levulinate in Fuel A were blended at various concentrations and the miscibility of each blend was measured. The results are shown in Table 3 below:
TABLE 3 Phase separation Ester concentration (% v) temperature (° C.) 2 W 3 W 4 −17 5 −10 6 −5* 8 7 10 14
W denotes that the mixture was cooled to the wax cloud point (−27° C. for Fuel A) without liquid separation;
*= extrapolated value
- The miscibility tests were repeated using Fuel B. The results are shown in Table 4:
TABLE 4 Phase separation Ester concentration (% v) temperature (° C.) 2 −26 3 −10 4 3 5 5 6 10*
*= extrapolated value
- It has been found that, when various quantities of co-solvent alcohols were added to Fuels A and B containing 5% vol ethyl levulinate, this had the effect of reducing the phase separation temperature by various amounts. The results of tests which demonstrate this effect in respect of Fuel A are set out in Table 5:
TABLE 5 Co-solvent Co-solvent 2-ethyl 1-pentanol Phase separation hexanol Phase separation (% v) temperature (° C.) (% v) temperature (° C.) 0 −10 0 −10 1 −19* 1 −17* 2 −28* 2 −24 3 −28* 3 — 4 −27* 4 — 5 −27* 5 — 6 −27* 6 —
*= extrapolated value
- The results of tests which demonstrate this effect in respect of Fuel B are set out in Table 6:
TABLE 6 Phase separation Co-solvent 2-ethyl hexanol (% v) temperature (° C.) 0 5 1 1* 2 −3 3 −7* 4 −12* 5 −15 6 −19*
*= extrapolated value
- The miscibility of ethyl levulinate was measured in n-decane as a model diesel component using 1-pentanol and 2-ethyl hexanol as co-solvents. The results are shown in Table 7:
TABLE 7 Phase separation temperature (° C.) No 1-pentanol Ester and no concentration 2-ethyl 1-pentanol 2-ethyl hexanol (% w) hexanol 2% w 4.8% w 2% w 4.8% w 3 −20 <−20 <−26 <−20 <−25 5 −3 −14 −26 −16 −25 6 0 −12* −19* −10 −20* 8 8* 0 −10 0 −12* 10 16* 3* 0 6* −8* 15 28 13 5 20 4 20 34* 23* 14* 27* 12* 25 38* 27* 17* 32* 17* 30 41 31 20 33 20 35 42* 32* 22* 34 23*
*= extrapolated value
- It can be seen quite clearly from the figures in Table 7 that each of the alcohol co-solvents 1-pentanol and 2-ethyl hexanol had the effect of reducing the phase temperature with a broad range of concentrations of ethyl levulinate in n-decane.
- It has been found that a number of further co-solvents, when added to n-decane containing 5% w ethyl levulinate, also had the effect of reducing the phase separation temperature, which was −3° C. before addition of said co-solvents. This can be seen from the results set out in Table 8, which show the phase separation temperatures when the co-solvents are added in the amounts of 2% w and 4.8% w:
TABLE 8 Co-solvent Phase separation (% w) temperature (° C.) 1-pentanol 2 −14 4.8 −26 2-ethyl hexanol 2 −16 4.8 −24 3-methyl-1-butanol 2 −15 4.8 −21 4-methyl-2-pentanol 2 −18 4.8 −24 2-butoxy ethanol 2 −10 4.8 −18 *2-[2-(1-butoxy)ethoxy] ethanol 2 −6 4.8 −9 Toluene 2 −6 4.8 −10 rapeseed methyl ester 2 n.d. 4.8 −8
n.d. not determined
- It can be seen quite clearly from the figures in Table 8 that each of the co-solvents listed, which exhibit values of polar interaction parameter (δp) and hydrogen bonding parameter (δh) within the respective ranges specified above, had the effect of reducing the phase separation temperature of the composition containing n-decane and 5% w ethyl levulinate.
- By way of comparison, it has also been shown that co-solvents which exhibit values of polar interaction parameter (δp) and hydrogen bonding parameter (δh) outside the respective ranges specified above, do not have the effect of reducing the phase separation temperature of the composition containing n-decane and 5% w ethyl levulinate.
- This can be seen from the results set out in Table 9, which show the phase separation temperatures when such co-solvents are added in the amounts of 2% w and 4.8% w:
TABLE 9 Co-solvent Phase separation (% w) temperature (° C.) 2-methyl-2,4-pentanediol 2 −2 4.8 4 tetrahydrofurfuryl alcohol 2 13 4.8 18
Claims (20)
1. A fuel composition comprising a gas oil base fuel, an alkyl levulinate and a co-solvent having a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2 and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2.
2. A method of reducing the phase separation temperature of a fuel composition comprising a gas oil base fuel and an alkyl levulinate comprising the step of incorporating in the fuel composition a co-solvent having a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2 and a hydrogen bonding parameter (δh) in the range of from 2 to 18 Mpa1/2.
3. A method of reducing the phase separation temperature of a fuel composition containing a gas oil base fuel and an alkyl levulinate comprising the steps of (a) selecting by reference to its polar interaction parameter (δp) and hydrogen bonding parameter (δh) a co-solvent for which said polar interaction parameter is in the range of from 1 to 7 MPa1/2 and said hydrogen bonding parameter is in the range of from 2 to 18 MPa1/2 and (b) incorporating said selected co-solvent in the fuel composition.
4. The fuel composition of claim 1 wherein said alkyl levulinate is selected from C2-8 alkyl levulinates.
5. The fuel composition of claim 4 wherein said alkyl levulinate is selected from the group consisting of ethyl levulinate, n-propyl levulinate, n-butyl levulinate, n-pentyl levulinate, 2-hexyl levulinate and 2-ethyl hexyl levulinate, more preferably ethyl levulinate, n-butyl levulinate or n-pentyl levulinate, and mixtures thereof.
6. The fuel composition of claim 5 wherein said alkyl levulinate is ethyl levulinate.
7. The fuel composition of claim 1 wherein the co-solvent comprises alcohol.
8. A fuel composition of claim 7 wherein said alkyl levulinate is selected from C2-8 alkyl levulinates said co-solvent is selected from C3-8 alcohols.
9. The fuel composition of claim 8 wherein the co-solvent is selected from the group consisting of isopropanol 1-butanol, isobutanol, 3-methyl-1-butanol, 1-pentanol, 2-butoxy-ethanol, 4-methyl-2-pentanol, 2-ethyl hexanol, 2-[2-(1-butoxy)ethoxy]ethanol and mixtures thereof.
10. The method of claim 2 wherein said alkyl levulinate is selected from C2-8 alkyl levulinates.
11. The method of claim 10 wherein said alkyl levulinate is selected from the group consisting of ethyl levulinate, n-propyl levulinate, n-butyl levulinate, n-pentyl levulinate, 2-hexyl levulinate and 2-ethyl hexyl levulinate, more preferably ethyl levulinate, n-butyl levulinate or n-pentyl levulinate, and mixtures thereof.
12. The method of claim 11 wherein said alkyl levulinate is selected from C2-8 alkyl levulinates said co-solvent is selected from C3-8 alcohols.
13. The method of claim 3 wherein said alkyl levulinate is selected from C2-8 alkyl levulinates.
14. The method of claim 13 wherein said alkyl levulinate is selected from the group consisting of ethyl levulinate, n-propyl levulinate, n-butyl levulinate, n-pentyl levulinate, 2-hexyl levulinate and 2-ethyl hexyl levulinate, more preferably ethyl levulinate, n-butyl levulinate or n-pentyl levulinate, and mixtures thereof.
15. The method of claim 14 wherein said alkyl levulinate is ethyl levulinate.
16. A method of operating a compression ignition engine and/or a vehicle which is powered by such an engine comprising introducing into a combustion chamber of the engine a fuel composition of claim 1 .
17. A method of operating a compression ignition engine and/or a vehicle which is powered by such an engine comprising introducing into a combustion chamber of the engine a fuel composition of claim 2 .
18. A method of operating a compression ignition engine and/or a vehicle which is powered by such an engine comprising introducing into a combustion chamber of the engine a fuel composition of claim 3 .
19. A method of operating a heating appliance provided with a burner, which method comprises supplying to said burner a fuel composition of claim 1 .
20. A process for the preparation of a fuel composition comprising blending a gas oil base fuel, an alkyl levulinate and a co-solvent having a polar interaction parameter (δp) in the range of from 1 to 7 MPa1/2 and a hydrogen bonding parameter (δh) in the range of from 2 to 18 MPa1/2.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05254627.2 | 2005-07-25 | ||
EP05254627 | 2005-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070094919A1 true US20070094919A1 (en) | 2007-05-03 |
Family
ID=35432476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/492,496 Abandoned US20070094919A1 (en) | 2005-07-25 | 2006-07-25 | Fuel compositions |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070094919A1 (en) |
EP (1) | EP1907514A1 (en) |
AR (1) | AR055995A1 (en) |
CA (1) | CA2616082A1 (en) |
WO (1) | WO2007012586A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080155889A1 (en) * | 2006-12-04 | 2008-07-03 | Chevron U.S.A. Inc. | Fischer-tropsch derived diesel fuel and process for making same |
US20090204055A1 (en) * | 1998-10-15 | 2009-08-13 | Lennox Charles D | Treating urinary retention |
US20100313467A1 (en) * | 2009-06-16 | 2010-12-16 | Meadwestvaco Corporation | Diesel fuel compositions containing levulinate ester |
US20140331952A1 (en) * | 2013-05-10 | 2014-11-13 | Chevron U.S.A. Inc. | Method for increasing the maximum operating speed of an internal combustion engine operated in a low temperature combustion mode |
WO2020228990A1 (en) * | 2019-05-15 | 2020-11-19 | Steeper Energy Aps | Low sulphur fuel blend of hydrocarbon containing fuels and method for producing such blend |
WO2020228991A1 (en) * | 2019-05-15 | 2020-11-19 | Steeper Energy Aps | Blend of hydrocarbon containing fossil and renewable components and method for producing such blend |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9126890B2 (en) * | 2011-10-20 | 2015-09-08 | International Flavors & Fragrances Inc. | Low volatile reactive malodor counteractives and methods of use thereof |
ES2632605T3 (en) | 2012-08-10 | 2017-09-14 | Senju Metal Industry Co., Ltd | High temperature lead free solder alloy |
US10226544B2 (en) | 2015-06-05 | 2019-03-12 | International Flavors & Fragrances Inc. | Malodor counteracting compositions |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3563715A (en) * | 1958-07-15 | 1971-02-16 | Chevron Res | Motor fuels |
US3615290A (en) * | 1969-04-03 | 1971-10-26 | Exxon Research Engineering Co | Emulsified hydrocarbon fuel |
US4208190A (en) * | 1979-02-09 | 1980-06-17 | Ethyl Corporation | Diesel fuels having anti-wear properties |
US4753661A (en) * | 1986-01-21 | 1988-06-28 | Polar Molecular Corporation | Fuel conditioner |
US5378348A (en) * | 1993-07-22 | 1995-01-03 | Exxon Research And Engineering Company | Distillate fuel production from Fischer-Tropsch wax |
US5490864A (en) * | 1991-08-02 | 1996-02-13 | Texaco Inc. | Anti-wear lubricity additive for low-sulfur content diesel fuels |
US5766274A (en) * | 1997-02-07 | 1998-06-16 | Exxon Research And Engineering Company | Synthetic jet fuel and process for its production |
US5888376A (en) * | 1996-08-23 | 1999-03-30 | Exxon Research And Engineering Co. | Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing |
US6204426B1 (en) * | 1999-12-29 | 2001-03-20 | Chevron U.S.A. Inc. | Process for producing a highly paraffinic diesel fuel having a high iso-paraffin to normal paraffin mole ratio |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0111679D0 (en) * | 2001-05-12 | 2001-07-04 | Aae Tech Int Ltd | Fuel composition |
WO2005044960A1 (en) * | 2003-11-10 | 2005-05-19 | Shell Internationale Research Maatschappij B.V. | Fuel compositions comprising a c4-c8 alkyl levulinate |
-
2006
- 2006-07-19 WO PCT/EP2006/064397 patent/WO2007012586A1/en not_active Application Discontinuation
- 2006-07-19 CA CA002616082A patent/CA2616082A1/en not_active Abandoned
- 2006-07-19 EP EP06777845A patent/EP1907514A1/en not_active Withdrawn
- 2006-07-21 AR ARP060103171A patent/AR055995A1/en not_active Application Discontinuation
- 2006-07-25 US US11/492,496 patent/US20070094919A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3563715A (en) * | 1958-07-15 | 1971-02-16 | Chevron Res | Motor fuels |
US3615290A (en) * | 1969-04-03 | 1971-10-26 | Exxon Research Engineering Co | Emulsified hydrocarbon fuel |
US4208190A (en) * | 1979-02-09 | 1980-06-17 | Ethyl Corporation | Diesel fuels having anti-wear properties |
US4753661A (en) * | 1986-01-21 | 1988-06-28 | Polar Molecular Corporation | Fuel conditioner |
US5490864A (en) * | 1991-08-02 | 1996-02-13 | Texaco Inc. | Anti-wear lubricity additive for low-sulfur content diesel fuels |
US5378348A (en) * | 1993-07-22 | 1995-01-03 | Exxon Research And Engineering Company | Distillate fuel production from Fischer-Tropsch wax |
US5888376A (en) * | 1996-08-23 | 1999-03-30 | Exxon Research And Engineering Co. | Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing |
US5766274A (en) * | 1997-02-07 | 1998-06-16 | Exxon Research And Engineering Company | Synthetic jet fuel and process for its production |
US6204426B1 (en) * | 1999-12-29 | 2001-03-20 | Chevron U.S.A. Inc. | Process for producing a highly paraffinic diesel fuel having a high iso-paraffin to normal paraffin mole ratio |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090204055A1 (en) * | 1998-10-15 | 2009-08-13 | Lennox Charles D | Treating urinary retention |
US20080155889A1 (en) * | 2006-12-04 | 2008-07-03 | Chevron U.S.A. Inc. | Fischer-tropsch derived diesel fuel and process for making same |
US20100313467A1 (en) * | 2009-06-16 | 2010-12-16 | Meadwestvaco Corporation | Diesel fuel compositions containing levulinate ester |
US20140331952A1 (en) * | 2013-05-10 | 2014-11-13 | Chevron U.S.A. Inc. | Method for increasing the maximum operating speed of an internal combustion engine operated in a low temperature combustion mode |
US9663739B2 (en) * | 2013-05-10 | 2017-05-30 | Chevron U.S.A. Inc. | Method for increasing the maximum operating speed of an internal combustion engine operated in a low temperature combustion mode |
WO2020228990A1 (en) * | 2019-05-15 | 2020-11-19 | Steeper Energy Aps | Low sulphur fuel blend of hydrocarbon containing fuels and method for producing such blend |
WO2020228991A1 (en) * | 2019-05-15 | 2020-11-19 | Steeper Energy Aps | Blend of hydrocarbon containing fossil and renewable components and method for producing such blend |
CN113840896A (en) * | 2019-05-15 | 2021-12-24 | 斯蒂珀能源有限公司 | Mixture comprising hydrocarbon fossil and renewable components and method for producing such a mixture |
JP2022532346A (en) * | 2019-05-15 | 2022-07-14 | スティーパー エナジー エーピーエス | Blends of hydrocarbons containing fossil fuels and renewable components, and methods of making such blends. |
JP2022532592A (en) * | 2019-05-15 | 2022-07-15 | スティーパー エナジー エーピーエス | Low-sulfur fuel blends of hydrocarbon-containing fuels and methods for producing such blends |
JP7485261B2 (en) | 2019-05-15 | 2024-05-16 | スティーパー エナジー エーピーエス | Hydrocarbon blends containing fossil fuels and renewable components and methods for producing such blends |
US12054676B2 (en) | 2019-05-15 | 2024-08-06 | Steeper Energy Aps | Blend of hydrocarbon containing fossil and renewable components and method for producing such blend |
Also Published As
Publication number | Publication date |
---|---|
CA2616082A1 (en) | 2007-02-01 |
WO2007012586A1 (en) | 2007-02-01 |
AR055995A1 (en) | 2007-09-12 |
EP1907514A1 (en) | 2008-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2152835B1 (en) | Use of a fatty acid alkyl ester in diesel fuel compositions comprising a gas oil base fuel | |
US20070175090A1 (en) | Fuel compositions | |
US20070094919A1 (en) | Fuel compositions | |
CA2729355A1 (en) | Liquid fuel compositions | |
EP1685217B1 (en) | Fuel compositions comprising a c4-c8 alkyl levulinate | |
EP2209874B1 (en) | Blends for use in fuel compositions | |
US9017429B2 (en) | Fuel compositions | |
US9447356B2 (en) | Diesel fuel with improved ignition characteristics | |
US11512261B2 (en) | Diesel fuel with improved ignition characteristics | |
US9862905B2 (en) | Diesel fuel with improved ignition characteristics | |
US8771385B2 (en) | Fuel compositions | |
AU2004287631B2 (en) | Fuel compositions comprising a C4-C8 alkyl levulinate | |
RU2788009C2 (en) | Diesel fuel with improved ignition characteristics | |
EP1992674A1 (en) | Diesel fuel compositions comprising a gas oil base fuel, a fatty acid alkyl ester and an aromatic component | |
EP3374471A1 (en) | Process for preparing a diesel fuel composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHELL OIL COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAAN, JOHANNES PIETER;STEVENSON, PAUL ANTHONY;REEL/FRAME:018762/0391;SIGNING DATES FROM 20061012 TO 20061013 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |