US20070077998A1 - Fiber-to-the-seat in-flight entertainment system - Google Patents
Fiber-to-the-seat in-flight entertainment system Download PDFInfo
- Publication number
- US20070077998A1 US20070077998A1 US11/533,258 US53325806A US2007077998A1 US 20070077998 A1 US20070077998 A1 US 20070077998A1 US 53325806 A US53325806 A US 53325806A US 2007077998 A1 US2007077998 A1 US 2007077998A1
- Authority
- US
- United States
- Prior art keywords
- switch
- server
- fiber
- packet
- chassis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004891 communication Methods 0.000 claims abstract description 18
- 230000003287 optical effect Effects 0.000 claims description 63
- 238000012545 processing Methods 0.000 claims description 29
- 239000000835 fiber Substances 0.000 abstract description 145
- QJPWUUJVYOJNMH-UHFFFAOYSA-N homoserine lactone Chemical compound NC1CCOC1=O QJPWUUJVYOJNMH-UHFFFAOYSA-N 0.000 description 23
- 230000002457 bidirectional effect Effects 0.000 description 11
- 229920002745 polystyrene-block- poly(ethylene /butylene) Polymers 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000013307 optical fiber Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010397 one-hybrid screening Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- RGNPBRKPHBKNKX-UHFFFAOYSA-N hexaflumuron Chemical compound C1=C(Cl)C(OC(F)(F)C(F)F)=C(Cl)C=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F RGNPBRKPHBKNKX-UHFFFAOYSA-N 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H20/00—Arrangements for broadcast or for distribution combined with broadcast
- H04H20/53—Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
- H04H20/61—Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast
- H04H20/62—Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast for transportation systems, e.g. in vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H20/00—Arrangements for broadcast or for distribution combined with broadcast
- H04H20/65—Arrangements characterised by transmission systems for broadcast
- H04H20/69—Optical systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/66—Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/21—Server components or server architectures
- H04N21/214—Specialised server platform, e.g. server located in an airplane, hotel, hospital
- H04N21/2146—Specialised server platform, e.g. server located in an airplane, hotel, hospital located in mass transportation means, e.g. aircraft, train or bus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/472—End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
- H04N21/47202—End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for requesting content on demand, e.g. video on demand
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/63—Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
- H04N21/64—Addressing
- H04N21/6408—Unicasting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/65—Transmission of management data between client and server
- H04N21/658—Transmission by the client directed to the server
- H04N21/6581—Reference data, e.g. a movie identifier for ordering a movie or a product identifier in a home shopping application
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/65—Transmission of management data between client and server
- H04N21/658—Transmission by the client directed to the server
- H04N21/6587—Control parameters, e.g. trick play commands, viewpoint selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/22—Adaptations for optical transmission
Definitions
- the invention relates to systems for data servers and data communication networks related to aircraft in-flight entertainment and networking.
- IFE Inflight entertainment
- Bell and Howell Avicom Division
- Airvision introduced the first inseat video system allowing passengers to choose between several channels of broadcast video.
- Swissair installed the first interactive Video on Demand (VOD) system.
- VOD Video on Demand
- the IFE supplier is able to extract premium fees for these services.
- This open architecture, standards-based environment has enabled many suppliers to enter the terrestrial VOD market and compete for each VOD hardware/software component, leading to significant price drops for terrestrial VOD systems.
- IFE installation costs and passenger comfort depend largely on the size and form factor of the IFE line replaceable units (LRUs).
- LRUs line replaceable units
- an airline's IFE operation and maintenance costs depend largely on the number of distinct LRUs, both within a single aircraft and across an airline's entire fleet of aircraft.
- FIG. 1 illustrates a typical, legacy IFE system architecture.
- the left of the figure shows the components that are typically found at the head end of the system or in an electronics bay.
- the right side of the figure illustrates the components that are typically found at the passenger seat.
- the middle section of the figure shows the components that are typically found between the head end and the seats.
- These components are area distribution boxes (ADBs) or a combination of ADBs and zone interface units (ZIUs).
- ADBs and ZIUs The purpose of ADBs and ZIUs is to fan-out the distribution of IFE data from the head end to the seats.
- the ADB connects to one seat electronics box (SEB) within each seat column.
- SEB seat electronics box
- Box A illustrates the most typical in-seat architecture.
- Boxes B and C illustrate the trend for newer systems, as the IFE suppliers try to eliminate or to significantly reduce the size of the SEB by moving more intelligence to the VDU. Some systems on the market have completely eliminated the SEB, typically at the expense of VDU size, weight, and power.
- the IFE industry As a whole has been rather slow to reduce size and system complexity by leveraging new technologies to improve capability and reduce the total number of unique LRUs.
- One recent IFE system has no area or head-end components. However, this architecture has no parallel in the terrestrial world and cannot easily leverage advancements and technology developments from the terrestrial world.
- Another recent IFE system uses a simplified head-end unit that co-packages the audio, video, and application server. However, this system is also proprietary and cannot leverage advancements in the terrestrial world easily. In addition, the latter system requires a network of distribution nodes between the head-end unit and the seats.
- the IFE system in one embodiment, provides a server/switch line replaceable unit (LRU) for an inflight entertainment (IFE) system including at least one server, at least one switching element and a plurality of fiber optic transceivers adapted to transmit and receive data directly to and from a plurality of passenger seat LRUs over fiber optic cables.
- the server/switch LRU in one embodiment, resides at the head end of the IFE system.
- At least one server such as, for example, an audio server, a video server, an audio/video server, a game server, an application server, a file server, etc, provides data (e.g., entertainment programming, internet file data, etc.).
- the switching element is, in one embodiment, adapted to distribute data generated by the at least one server to selected ones of the plurality of transceivers for transmission to ones of passenger seat LRUs.
- one or more fiber cables carry data between the server/switch LRU and the passenger seat LRU.
- a fiber cable link connects the server/switch LRU and a passenger seat LRU that services a passenger seat group.
- a fiber cable link connects the server/switch LRU and a passenger seat LRU that services a plurality of seat groups.
- the IFE system in one embodiment, includes at least one server/switch LRU as summarized above connected to a plurality of passenger seat LRUs using fiber cable transmission.
- a plurality of server/switch LRUs are also connected to one another either directly or through one or more intermediary server/switch LRUs using fiber or copper cable connections to provide failover capability, master-slave capability, and/or server aggregation capability for the IFE system.
- the server/switch LRUs operate independently of one another and may or may not be connected to one another.
- the IFE system in one embodiment, includes a method for providing inflight entertainment including the steps of generating a multimedia data stream at a server/switch LRU as summarized above and transmitting the data directly to a passenger seat LRU over a fiber optic cable.
- the IFE system in one embodiment, includes a hybrid switch LRU for an IFE system including a pluralitiy of switching elements, a plurality of fiber optic transceivers associated with the first switching element adapted to transmit and receive data directly to and from a plurality of passenger seat LRUs over fiber optic cables, and a plurality of fiber optic transceivers associated with the second switching element adapted to transmit and receive data directly to the same plurality of passenger seat LRUs over fiber optic cables.
- the hybrid switch LRU in one embodiment, resides at the head end of the IFE system.
- Each switching element is, in one embodiment, adapted to distribute data generated by at least one server to selected ones of the plurality of passenger seat LRUs.
- the first switching element is a packet switching element
- the second switching element is a circuit switching element
- SDM space division multiplexing
- WDM wave division multiplexing
- TDM time division multiplexing
- the IFE system in the one embodiment, provides a raw pixel data LRU for an IFE system including at least one processing node adapted to generate raw pixel data, at least one serializer adapted to serialize the raw pixel data and at least one transceiver adapted to transmit the serialized raw pixel data.
- the raw pixel LRU also includes at least one TDM unit adapted to multiplex additional data onto the raw pixel serial bit stream and the multiplexed data stream is output to a circuit switching network for distribution to at least one VDU.
- the IFE system in one embodiment, includes a hybrid video display unit (HVDU) LRU for an inflight entertainment system including a decoupling system adapted to separate a packet switched data stream from a circuit switched data stream, a transceiver adapted to receive the decoupled packet switched data stream, a transceiver adapted to receive the decoupled circuit switched data network stream, a deserializer for deserializing the circuit switched data stream into remotely generated raw pixel data, a processing unit for generating locally generated raw pixel data, and a switch to select selected raw pixel data from the remotely generated and locally generated raw pixel data to drive a video display.
- the HVDU also contains a pixel re-formatter to convert the remotely generated raw pixel data into raw pixel data suitable for the specific display used in the HVDU.
- the IFE system in one embodiment, includes at least one hybrid switch LRU as summarized above provided to a plurality of passenger seat LRUs using fiber cable connections.
- a plurality of hybrid switch LRUs are connected to one another either directly or through one or more intermediary hybrid switch LRUs using fiber or copper cable connections to provide switch aggregation capability for the IFE system.
- the hybrid switch LRU's operate independently of one another and may or may not be connected to one another.
- the IFE system in one embodiment, includes a method for providing inflight entertainment including the steps of generating a raw pixel data stream at a raw pixel data LRU as summarized above, transmitting the raw pixel data stream to a hybrid switch LRU as summarized above, and then transmitting the raw pixel data stream directly from the hybrid switch LRU to a passenger seat HVDU LRU as summarized above over a fiber optic cable.
- the chassis of the server/switch unit and/or hybrid-switch unit are configured to mount in an aircraft equipment rack.
- the optical ports of the transceivers in the switch units are provided to an optical connector on chassis such that when the chassis is mounted in the equipment rack, the optical connector (or connectors) on the chassis blind-mate with a corresponding optical connector (or connectors) on the rack.
- the optical connectors on the rack are provided to the fiber-optic cables in the aircraft (e.g., the fiber-optic cables that run to the passenger seat units, the fiber-optic cables that run to other switch units, other servers, etc.
- a fiber/switch line replaceable unit (LRU) for an inflight entertainment (IFE) system includes at least one switching element, one or more fiber optic transceivers adapted to transmit and receive data to and from one or more servers over fiber optic cables, and a plurality of fiber optic transceivers configured to transmit and receive data directly to and from a plurality of passenger seat LRUs over fiber optic cables.
- the fiber/switch LRU typically resides at the head end of the IFE system.
- the switching element distributes data received by the at least one transceivers connected to the at least one server to selected ones of the plurality of transceivers for transmission to ones of passenger seat LRUs.
- the IFE system includes at least one fiber/switch LRU as summarized above connected to a plurality of passenger seat LRUs using fiber cable connections and also connected to at least one server using fiber cable connections.
- a plurality of fiber/switch LRUs are also connected to one another either directly or through one or more intermediary fiber/switch LRUs using fiber or copper cable connections to provide switch aggregation capability for the IFE system and can be configured to be interconnected or not interconnected.
- the fiber/switch LRUs operate independently.
- the fiber/switch LRUs are interconnected to provide additional functionality such as, for example, master/slave operation, fault-tolerant failover capability, sharing of servers, etc.
- providing inflight entertainment includes generating a multimedia data stream at a server and transmitting the data through a fiber/switch LRU to a passenger seat LRU over a fiber optic cable.
- a hybrid server switch LRU for an IFE system includes at least one server, a pluralitiy of switching elements, a plurality of fiber optic transceivers associated with the first switching element adapted to transmit and receive data directly to and from a plurality of passenger seat LRUs over fiber optic cables, and a plurality of fiber optic transceivers associated with the second switching element adapted to transmit data to and receive data from the same plurality of passenger seat LRUs over fiber optic cables.
- the servers can include, for example, an audio server, a video server, an audio/video server, a game server, an application server or a file server.
- the hybrid server switch LRU typically resides at the head end of the IFE system.
- Each switching element distributes data generated by at least one server to selected ones of the plurality of passenger seat LRUs.
- the first switching element includes a packet switching element
- the second switching element includes a circuit switching element
- SDM space division multiplexing
- WDM wave division multiplexing
- TDM time division multiplexing
- the first and second switching elements operate substantially independently except for the exchange of control information.
- the IFE system includes at least one hybrid server switch LRU connected to a plurality of passenger seat LRUs using fiber cable connections.
- a plurality of hybrid server switch LRUs are connected to one another either directly or through one or more intermediary hybrid server switch LRUs using fiber or copper cable connections to provide switch aggregation capability for the IFE system.
- a plurality of hybrid server switch LRUs are also connected to one another either directly or through one or more intermediary hybrid server switch LRUs using fiber or copper cable connections to provide failover capability, master-slave capability, and/or server aggregation capability for the IFE system.
- the hybrid server switch LRUs operate independently of one another and may or may not be connected to one another.
- One embodiment includes generating a raw pixel data stream at a raw pixel data LRU, transmitting the raw pixel data stream to a hybrid server switch LRU, and transmitting the raw pixel data stream from the hybrid server switch LRU to a passenger seat HVDU LRU over a fiber optic cable.
- FIG. 1 shows a legacy IFE system architecture.
- FIG. 2 shows one embodiment of a server/switch LRU-based IFE system architecture.
- FIG. 3 shows one embodiment of a server/switch LRU.
- FIG. 4 shows a high level flow diagram for a server/switch LRU-based IFE system.
- FIG. 5 shows one embodiment of a hybrid-switch LRU-based IFE system architecture.
- FIG. 6 shows one embodiment of a hybrid-switch LRU.
- FIG. 7 shows one embodiment of a raw pixel LRU.
- FIG. 8 shows one embodiment of an HVDU LRU.
- FIG. 9 shows a flow diagram for an HVDU LRU-based IFE system.
- FIG. 10 shows one embodiment of a fiber/switch LRU-based IFE system architecture.
- FIG. 11 shows one embodiment of a fiber/switch LRU.
- FIG. 12 is a flow diagram for a fiber/switch LRU-based IFE system.
- FIG. 13 shows one embodiment of a hybrid server switch LRU-based IFE system architecture.
- FIG. 14 shows one embodiment of a hybrid server switch LRU.
- FIG. 15 is a flow diagram for an hybrid server switch LRU-based IFE system.
- FIG. 1 shows an example of a traditional IFE system architecture that includes an offboard network 100 , an onboard network 101 , an onboard network 101 , a data loader 102 , a cabin management system 111 , and one or more head-end servers provided to a head-end switch 109 .
- the head-end servers shown in FIG. 1 include a application server(s) 103 , video server(s) 104 , audio server(s) 105 , game server(s) 106 , file server(s) 107 , and a passenger flight information server 108 .
- the head-end switch 109 is provided to a plurality of area distribution boxes 110 .
- the area distribution boxes 110 are provided to a plurality of video display units 113 and passenger control units 114 directly or through seat electronic boxes 112 .
- the offboard network 100 communicates with terrestrial networks typically through satellite-based or ground-based radio frequency (RF) networks.
- Offboard network 100 is typically connected to an IFE head-end switch 109 through one of head-end network cables 120 .
- a bidirectional version of offboard network 100 provides network connectivity of an IFE onboard network 101 with terrestrial networks (broadband connectivity).
- a unidirectional version of offboard network 100 provides an IFE onboard network 100 with access to off-aircraft broadcast data sources such as television (broadcast video).
- the onboard network 101 provides the IFE system with access to non-IFE specific data such as: reading light control, flight attendant call and flight information for applications such as moving maps.
- Onboard network 101 is typically connected to head-end switch 109 using head-end network cables 120 .
- the application server 103 is a system controller that typically provides the following services: content management; channel packaging; transaction processing; billing system integration; services management; provisioning integration; system administration and management; encryption management (key servers, authentication etc.); software client management; and server integration for audio, video, gaming and file servers.
- the application server 103 typically connects to the head-end switch 109 through the head-end network cables 120 .
- the audio server 105 provides the following types of services to the IFE system: Audio on Demand (AOD) and broadcast audio.
- AOD Audio on Demand
- AS 105 typically connects to head-end switch 109 using the head-end network cables 120 .
- the video server 104 provides the following type of services to the IFE system: Video on Demand (VOD), Near Video on Demand (NVOD), Pay-per-View (PPV), Network Personal Video Recorder (PVR) and broadcast video.
- VOD Video on Demand
- NVOD Near Video on Demand
- PV Pay-per-View
- PVR Network Personal Video Recorder
- the data loader 102 provides the following types of services for the IFE system: media content updates (movies, audio, games, internet web pages, files, etc.), key updates, and transaction data transfers.
- the data loader 102 typically transfers data to and from the IFE system using one of the following mechanisms: removable disk or tape that is inserted into a DL installed on the aircraft, a portable disk drive or tape drive that is carried onboard and temporarily connected to the audio server 105 or the video server 104 , a wireless LAN, or other wireless link.
- the data loader 102 typically connects to head-end switch 109 using the head-end network cables 120 .
- the game server 106 typically provides the following services for the IFE system: the logic and programming for the games and dynamically delivered web pages for browser based games.
- the game server 106 typically connects to head-end switch 109 using the head-end network cables 120 .
- the file server 107 typically provides the following types of services for the IFE system: cached internet content, cached user data, and user profile data.
- the file server 107 typically connects to the head-end switch 109 via the head-end network cables 120 .
- the cabin management terminal (CMT) 111 allows flight attendants to perform system management and administration functions for the IFE system such as: LRU reboot, video channel preview, flight attendant override, attendant call status, reading light status, bit interrogation and system test.
- the CMT 111 typically connects to the head-end switch 109 via the head-end network cables 120 .
- the passenger flight information system server (PFISS) 108 receives data from the aircraft navigation system and computes various flight information including time to destination, speed, altitude, outside air temperature, time at destination, aircraft location for display to passenger either in text form, or graphically such as a moving map display.
- the PFISS 108 typically connects to the head-end switch 109 via the head-end network cables 120 .
- the head-end switch/distribution system 109 interconnects one or more head-end data servers, data networks, and/or other systems on the head-end of the IFE system.
- the head end switch/distribution system 109 also connects to the area distribution boxes 110 through the head-end to area network cables 121 .
- the area distribution boxes (ADBs) 110 typically provide a distribution and signal regeneration function for connecting the head-end switch 109 to the passenger seat LRUs.
- the ADBs 110 connect to head-end switch 109 over head-end to area network cables 121 and to the SEB 112 within each seat column over an ADB-to-SEB network cable 122 .
- the SEB 112 then communicates with an adjacent seat group in the same seat column via the SEB-to-SEB network cables 126 .
- a typical seat group size is three seats. Because of this, in-seat electronics are often designed at the seat group level rather than at the seat level.
- the Seat electronics boxes 112 are in-seat LRUs that are typically mounted under the seat and contain the network interface and the local processing unit for a seat group. Each of SEBs 112 typically supports three seats corresponding to the common three-seat seat groups. SEBs 112 are usually mounted under the middle seat of the seat group. Common in-seat implementations of an SEB are illustrated in FIG. 1 .
- the SEB generates raw pixel data that is fed to a seat-back mounted VDU 113 over an SEB-to-VDU network cable 124 .
- the SEB also generates raw audio and sends and receives other control data that are transported to a passenger control unit (PCU) 114 over an SEB-to-PCU network cable 125 .
- PCU passenger control unit
- an SEB distributes data to, and receives data from SEBs 112 in an adjacent seat group in the same seat column over an SEB-to-SEB network cable 126 .
- the video display unit 113 includes a display device (e.g. flat panel display) for viewing video content and navigating the IFE menu system.
- a display device e.g. flat panel display
- IFE suppliers have recently begun migrating more of the electronics that were previously located in SEBs 112 to the VDUs 113 to reduce the size of SEBs 112 .
- callout box B shows an example of a VDU 131 were the SEB 112 has been eliminated and the VDU 131 communicates directly to the ADB over an ADB-to-VDU network cable 123 .
- the PCU 114 connects to the VDU 131 over a PCU-to-VDU network cable 127 .
- callout box C shows an example of a VDU 130 in which both the SEB 112 and the PCU 114 have been eliminated.
- the VDU 130 communicates directly to the ADB 110 over an ADB-to-VDU network cable 127 .
- the passenger control unit 114 is typically a unit that is fixed-mounted or tether-mounted to a passenger's armrest and provides control functions for interacting with the IFE system. These functions typically include: volume control, channel control, lighting control, attendant call button, menu buttons, and menu selection buttons.
- FIG. 2 shows one embodiment of a new server/switch LRU (SSL)-based IFE system architecture wherein, one or more Server/Switch LRUs (SSLs) 200 are interconnected with head-end fiber optic network cables 201 to form an aggregate head-end switch composed of the switches in the SSLs 200 .
- the offboard network 100 A and the onboard network 101 A are provided to one or more of the SSLs 200 via one or more head-end network cables 201 .
- the data loader 102 A and the cabin management terminal 111 A are also provided to one or more of the SSLs 200 via one or more of the head-end network cables 201 .
- VDUs 130 A A plurality of N Video Display Units (VDUs) 130 A are provided to each SSL 200 using fiber-optic SSL-to-seat network cabling 202 .
- each passenger seat VDU 130 A provides the LRU functionality for that seat.
- each VDU 130 A is provided to its designated SSL 200 port via a separate fiber-optic cable (or set of cables).
- designated server functionality e.g., application server, audio server, video server, games server, file server, passenger information system server, etc.
- designated server functionality is provided by the SSLs 200 in a modular, scalable, robust fashion to reduce the impact on the IFE system in the event server functions in one or more of the SSLs 200 should fail.
- FIG. 3 shows one embodiment of the SSL 200 as a server/switch LRU (SSL) 300 .
- the SSL 300 includes an integrated application server 301 , an integrated video server 302 , an integrated audio server 303 , an integrated game server 304 , an integrated file server 305 , and an integrated passenger flight information system server 306 .
- the servers 301 - 306 are provided to an integrated switch 307 via data paths 314 .
- the integrated switch 307 has N ports for passenger VDUs and K ports for auxiliary connections to on board networks, off board networks, cabin management terminals, data loaders, and other SSLs 200 .
- the K ports provided for auxiliary connections of the integrated switch 307 are provided to K auxiliary port transceivers 308 via data paths 313 .
- the K auxiliary port transceivers 308 are provided to a fiber-optic panel connector 310 via fiber cables 309 .
- the N ports for passenger VDU connections to the integrated switch 307 are provided to N passenger seat port transceivers 320 via data paths 312 .
- the N passenger port transceivers 320 are provided to the fiber optic panel connector 310 via fiber cables 315 .
- the fiber cables 309 - 315 are simplex by the time they connect to the panel connector 310 (either the transceivers 308 - 320 are bidirectional or a coupler is used to convert the unidirectional duplex transceiver output to bidirectional simplex format).
- the LRU 300 chassis is constructed such that the connector 310 blind mates with a connector 311 when the LRU 300 is installed in an equipment mounting rack.
- the connector 311 has K fibers 201 for the auxiliary ports that connect to the corresponding auxiliary fibers 309 in the box when the LRU is installed in the equipment rack.
- connector 311 has N fibers 202 for the passenger VDU ports that connect to the corresponding passenger VDU fibers 315 in the box when the LRU is installed in the rack.
- each SSL is configured with T total data ports, where T is greater than or equal to K+N.
- T data ports provided by the connector 310 (and its corresponding connector 311 ) can also be split across several 310 / 311 connector pairs.
- FIG. 4 is a flow diagram for the server/switch LRU (SSL) based IFE system.
- SSL server/switch LRU
- the integrated application servers 301 within the SSL 300 sends VDU client software to the VDU 130 A.
- the VDU 130 A loads and executes the IFE client software.
- the client software on the VDU 130 A requests menu pages from the application server 301 as the passenger navigates the IFE menu pages.
- the application server 301 serves the requested menu pages to the VDU 130 client software.
- the client software sends the movie selection information to the application server 301 .
- the application server 301 determines whether the movie requires a payment based on the selection.
- the application server 301 sends a request-for-payment page to the VDU 130 A.
- the passenger provides evidence of payment (such as, for example, swipes his/her credit card in a integrated credit card reader provided the VDU 130 A, enters an access code, provides biometric data, or other payment/validation scheme designated by the airline or service provider)
- the client software on the VDU 130 A sends the payment information to the application server 301 for processing.
- the application server sends the movie request to the integrated video server 302 .
- the integrated video server 302 begins streaming the selected movie to the passenger's VDU 130 A.
- the passenger can enter DVD-like commands (e.g., stop, pause, fast-forward, rewind, chapter titles, etc.) which the passenger's VDU 130 A forwards to the video server 302 .
- DVD-like commands e.g., stop, pause, fast-forward, rewind, chapter titles, etc.
- the video server 302 modifies the video stream according to the passenger's commands.
- FIG. 5 shows one embodiment of a hybrid/switch LRU (HSL) 500 IFE and system architecture wherein one or more HSLs 500 are interconnected with head-end fiber optic network cables 501 on their packet switching ports to produce an aggregate head-end packet switch system using the packet switches in the HSLs.
- HSL hybrid/switch LRU
- FIG. 5 one or more offboard networks 505 , onboard networks 506 , data loaders 507 , application servers 508 , video servers 509 , audio servers 510 , game servers 511 , and file servers 512 are provided to one or more HSLs 500 packet switching data ports via head-end network cabling 501 .
- a cabin management terminal 514 , and a passenger flight information system server 513 are also provided to the one or more of the HSLs 500 packet switching data ports via the head-end network cabling 501 .
- one or more premium application raw pixel servers 520 are provided to one or more of the HSL's 500 packet switching data ports via the head-end network cabling 501 .
- multiple premium application raw pixel server 520 circuit ports can be provided to each HSL 500 via spatially multiplexed multi-channel network cables 502 .
- Each HSL 500 can be connected to multiple premium application raw pixel servers 520 via the multi-channel network cables 502 .
- Each HSL 500 is connected to up to N hybrid video cable VDUs 504 (HVDU) via HSL-to-HVDU network cables 503 .
- the HSL to HVDU network cables 503 carry bidirectional packet data on one wavelength and unidirectional (HSL-to-HVDU) circuit switched data on a different wavelength.
- FIG. 6 shows one embodiment of the hybrid/switch LRU (HSL) 500 .
- the HSL includes independent switches, an integrated packet switch 600 (e.g., an Ethernet switch) and an integrated circuit switch 601 (e.g., a cross point switch).
- the integrated packet switch 600 has K ports provided for auxiliary connections which are typically connections to other HSLs, the offboard networks 505 , the onboard networks 506 , the data loaders 507 , the application servers 508 , the video servers 509 , the audio servers 510 , the game servers 511 , the file servers 512 , the cabin management terminals 514 , and/or the passenger flight information system servers 513 .
- the integrated packet switch's 600 K auxiliary ports are provided to the electrical side of K auxiliary port fiber optic transceivers 604 through internal connections 603 .
- the optical side of the K auxiliary port fiber optic transceivers 604 are provided to the fiber optic panel connector 310 with fiber optic cables 606 .
- the integrated packet switch 600 has N ports provided for connections with hybrid capable VDUs (HVDU) 504 .
- the integrated packet switch's 600 N HVDU ports are connected to the electrical side of N HVDU fiber optic transceivers 624 through internal connections 623 .
- the N HVDU fiber optic transceivers send and receive optical signals at a first optical wavelength W 1 .
- the optical side of the N HVDU fiber optic transceivers 624 are provided to the W 1 port of a the corresponding HVDU fiber optic wavelength coupler 607 via a fiber optic cable 606 .
- one or more transceivers in the HSL 500 e.g., one or more of the transceivers 604 , 624 , 613 , and 610
- the integrated packet switch 600 is also provided to the circuit switch 601 via a data path 602 connection. This connection is used by an application server 508 to control and query the status of the circuit switch 601 .
- J premium port transceivers 613 are provided to the panel connector 310 via fiber-optic cabling 614 .
- Each premium port transceiver receives on its optical port a unidirectional data stream broadcast from a premium application processing node 702 of a premium application raw pixel server 520 .
- This data is made available to the input port of the circuit switch 601 via a data path 612 between the electrical data port on the premium port transceiver 613 and the circuit switch 601 .
- the circuit switch includes a cross point switch.
- the application server 508 sends control signals to the circuit switch 601 which can be configured to connect any of the J circuit switch 601 inputs to any of the N circuit switch 601 outputs in a unicast, multicast or broadcast fashion.
- the N circuit switch 601 outputs are provided to the electrical input ports the of N premium port HVDU fiber optic transceivers 610 via data paths 611 .
- the N premium port HVDU fiber optic transceivers 610 are selected to transmit at a second optical wavelength W 2 .
- the optical output ports of the N premium port HVDU fiber optic transceivers 610 are connected with fiber optic cables 608 to the optical W 2 ports of the corresponding HVDU fiber optic wavelength couplers 607 .
- the HVDU fiber optic wavelength couplers 607 combine outbound optical signals from the packet switch transceivers 624 at optical wavelength W 1 on fiber 605 and the circuit switch transceivers 610 at optical wavelength W 2 on fiber 608 onto a single fiber 609 carrying both output optical wavelengths.
- Inbound optical signals on W 1 from optical fiber 609 are routed to the packet switch transceivers 624 on optical fiber 605 .
- the HVDU fiber optic wavelength couplers 607 are connected to the panel connector 310 with optical fiber 609 .
- the hybrid/switch LRU 500 is confiugred such that the connector 310 blind mates with the connector 311 when the LRU is installed in the rack.
- Connector 311 includes K fibers 501 for the auxiliary ports that connect to the corresponding auxiliary fibers 609 in the box when the HSL 500 is installed in the rack and N fibers 503 for the passenger VDU ports that connect to the corresponding passenger VDU fibers 609 in the box when the HSL 500 is installed in the rack.
- connector 311 has J fibers 502 for the premium application ports that connect to the corresponding premium application fibers 614 in the box when the HSL 500 is installed in the rack.
- connector pairs 310 / 311 can also be configured as multiple connector pairs.
- FIG. 7 shows one embodiment of the premium application raw pixel server LRU (PAL) 501 .
- the PAL 501 contains an integrated packet switch 700 , M premium application processing nodes 702 , M time division multiplexing (TDM) serializer units 703 , and M+1 fiber optic transceivers ( 701 / 704 ).
- the integrated packet switch 700 has one port connected to the electrical side of the packet data port transceiver 701 with an internal connection 706 .
- the optical port of the packet data port transceiver 701 is connected to the panel connector 301 with an internal fiber cable 705 . This port is used for control of the internally mounted premium application processing nodes.
- the integrated packet switch 700 has M ports for connections to M premium application processing nodes 702 with internal connections 707 .
- the premium application processing nodes 702 provide application processing such as, for example: high-performance PCs running Windows OS, Mac OS, Unix, etc; premium game systems such as Nintendo, Playstation, Xbox, etc.
- the premium application processing nodes 702 generate raw pixel data that is sent to the TDM/Serializer 703 over connection 708 along with other locally generated that may be desired at the VDU 130 A for the premium application server.
- the TDM/Serializer 703 combines the raw pixel data stream with other data (if other data is being sent) using time division multiplexing and then serializes the data into a single bit stream for transmission over fiber.
- the TDM/Serializer 703 connects to the electrical side of a premium port transceiver 704 with internal connection 709 .
- the optical side of the premium port transceiver 704 is connected to the panel connector 310 via fiber optic connection 710 .
- the PAL 501 is configured such that the connector 310 (or connectors 310 ) blind mate with connector 311 (or connectors 311 ) when the PAL LRU 501 is installed in a rack.
- Connector 311 includes at least one fiber 501 provided for control of the PAL and the control of the premium application processing nodes.
- the fiber 501 connects to the corresponding in-the-box fiber 705 when the PAL 501 is installed in a rack.
- the connector 311 includes M fibers 502 for the premium application ports that connect to the corresponding premium application fibers 710 in the box when the PAL 501 is installed in a rack.
- the control fiber 501 is provided to a HSL 500 packet switching auxiliary port and the premium application fibers 502 are provided to the HSL 500 premium application ports.
- FIG. 8 shows one embodiment of a premium hybrid-capable video display unit LRU (HVDU) 504 .
- the HVDU 504 includes a flat panel display 800 for displaying the video to the passenger.
- the flat panel display 800 is connected to the data source selector 801 with an internal connection 811 .
- the pixel data source selector 801 selects the source of the raw pixel data.
- a first source 802 provides pixel data generated locally on the HVDU and a second source 806 provides pixel data that was originally generated remotely by a premium application processing node.
- the sources 802 and 806 are shown as separate blocks for clarity.
- the source 802 and/or the source 806 can be provided as hardware and/or software in the HVDU processor.
- the raw pixel data source 806 reformats the raw pixel data generated remotely on a premium application processing node to a raw pixel data format compatible with the HVDU flat panel display 800 .
- a deserializer/demultiplexer 807 deserializes (and optionally demultiplexes) the incoming serial bit stream from the premium port data transceiver 808 .
- the raw pixel data from the deserializer/demultiplexer 807 is provided to the raw pixel data source 806 , and other deserialized/demultiplexed data components (audio, RS 232 , etc.) are provided to the VDU processing unit 805 .
- the VDU processing unit 805 performs set top box operations, such as, for example, retrieving and displaying passenger navigation screens, receiving touchscreen navigation inputs from passenger, generating video from compressed MPEG data streams, and interfacing with user input devices 850 .
- the user input devices 850 includes optional user input devices, such as, for example, a credit card reader, a touch screen panel, a keyboard, a mouse, etc.
- the VDU processing unit 805 connects to the electrical side of the packet port data transceiver 803 over internal connection 812 .
- the packet port data transceiver 803 is configured to transmit and receive at optical W 1 .
- the optical side of the packet port data transceiver 803 is connected to the wavelength coupler 804 with fiber optic cable 813 .
- the deserializer/demultiplexer module 807 is connected to the electrical side of the premium port transceiver 808 with internal connection 816 .
- the premium port transceiver 808 is configured to receive data on optical wavelength W 2 (it does not transmit).
- the optical side of the premium port transceiver 808 is provided to the wavelength coupler 804 via fiber optic cable 815 .
- the wavelength coupler 804 receives both packet data at optical W 1 and circuit-switched data on optical wavelength W 2 from the fiber cable connecting to the panel 814 .
- the coupler 804 routes the signal on optical wavelength W 1 to the packet data port transceiver 803 and the signal on optical wavelength W 2 to the premium application data port transceiver 808 .
- the wavelength coupler 804 routes the transmitted signal from the packet data port transceiver 803 at optical wavelength W 1 to the panel connector fiber 814 that connects the wavelength coupler 804 to the panel connector 809 .
- Panel connector 809 is configured to mate to a terminating connector 810 on the fiber connecting the HVDU 504 to its corresponding port on the HSL 500 .
- FIG. 9 shows a flow diagram of a hybrid/switch LRU (HSL) based IFE system.
- HV hybrid/switch LRU
- the application servers 508 sends the VDU client software to the HVDU 504 .
- the HVDU 504 loads and executes the IFE client software.
- the client software on the HVDU 130 requests menu pages from the Application server 508 as the passenger navigates the IFE menu pages.
- the Application server 508 serves the requested menu pages to the HVDU 504 client software.
- the client software sends the premium application selection information to the Application server 508 .
- the Application server 508 determines if the premium application requires a payment based on the selection.
- the application server 508 sends a request for payment to the HVDU 504 .
- the passenger provides the requested evidence of payment (e.g., swipes his/her credit card in the credit card, enters a code, enters biometric data, etc.)
- the client software on the HVDU 504 sends the payment information to the application server 508 for processing.
- the application server 508 sends a command to the HSL circuit switch 601 to attach the input port corresponding to the desired premium application node 702 to the output port corresponding to the passenger's HVDU 504 .
- the application server 508 also sends a message to the HVDU 504 to acknowledge the connection.
- the HVDU 504 reconfigures the pixel data source selector to premium application source.
- the passenger's HVDU 504 and the corresponding premium application processing node 702 communicate bi-directionally over the packet switched network and un-directionally over the circuit switched port.
- FIG. 10 shows one embodiment of a fiber/switch LRU (FSL)-based IFE system architecture where one or more FSLs 1010 are interconnected with head-end fiber optic network cables 1011 forming an aggregate head-end switch composed of the switches in the FSLs 1010 .
- the offboard network 1000 , the onboard network 1001 , the data loader 1002 , the application server 1003 , the video server 1004 , the audio server 1005 , the game server 1006 , the file server 1007 , the cabin management terminal 1009 , and the passenger flight information system server 1008 are provided to one or more of the FSLs 1010 .
- Up to N VDUs 1013 are provided to each FSL via fiber optic FSL-to-seat network cables 1012 .
- FIG. 10 shows the passenger seat LRU as a VDU 1013 .
- FIG. 11 shows one embodiment of the fiber/switch LRU (FSL) 1100 .
- the FSL 1100 includes an integrated switch 1108 .
- the integrated switch 1108 has N ports for passenger VDUs and K ports for auxiliary connections to audio servers, video servers, audio/video servers, game servers, application servers, file servers, on board networks, off board networks, cabin management terminals, data loaders, other FSLs 1100 , etc.
- the K ports for auxiliary connections of the integrated switch 1108 are provided to K auxiliary port transceivers 1102 via data connections 1101 .
- the K auxiliary port transceivers 1102 are provided to a fiber optic panel connector 1104 via K fiber cables 1103 .
- the N ports for passenger VDU connections of the integrated switch 1108 connect to N passenger seat port transceivers 1109 via connections 1110 .
- the N passenger seat transceivers 1109 are connected to the fiber optic panel connector 1104 by N fiber cables 1111 .
- the fiber cables 1103 and 1111 are operating in simplex mode at the panel connector 1104 (either the transceivers 1102 and 1109 are bidirectional or a coupler is used to convert the unidirectional duplex transceiver output to bidirectional simplex format).
- the LRU 1100 is designed such that connector 1104 will blind mate with connector 1105 when LRU 1100 is installed in the equipment rack.
- Connector 1105 has K fibers 1106 reserved for the auxiliary ports that connect to the corresponding auxiliary fibers 1103 in the box when the LRU is installed in the equipment rack. Similarly, connector 1105 has N fibers 1107 for the passenger VDU ports that connect to the corresponding passenger VDU fibers 1111 in the box when the LRU is installed in the rack.
- FIG. 12 is a flow diagram for the fiber/switch LRU (FSL) based IFE system.
- the application servers 1003 When the system is initialized (or re-initialized) one or more of the application servers 1003 sends the VDU client software to the VDU 1013 .
- the VDU 1013 loads and executes the IFE client software.
- the client software on the VDU 1013 requests menu pages from the Application server 1003 as the passenger navigates the IFE menu pages.
- the application server 1003 serves the requested menu pages to the VDU 1013 client software.
- the client software sends the movie selection information to the application server 1003 .
- the application server 1003 determines if the movie requires a payment based on the selection.
- the application server 1003 sends a request for payment information to the VDU 1013 .
- the client software on the VDU 1013 sends the payment information to the application server 1003 for processing.
- the application server sends the movie request to a video server 1004 .
- the video server 1004 begins streaming the selected movie to the passenger's VDU 1013 .
- the passenger can enter DVD-like controls (stop, pause, fast-forward, rewind, chapter titles, etc.) which the passenger's VDU 1013 forwards to the video server 1003 through the FSL 1010 .
- the video server 1004 modifies the video stream according to the passenger's commands.
- FIG. 13 shows one embodiment of the hybrid/server/switch LRU (HSSL) 1306 based IFE system architecture wherein one or more HSSLs 1306 are interconnected with head-end fiber optic network cables 1305 on their packet switching ports forming an aggregate head-end packet switch composed of all the packet switches in the HSSLs and one or more server functions (application server, audio server, video server, games server, file server, passenger information system server, etc.) are integrated into the HSSLs 1305 in a modular, scalable, robust fashion to minimize the impact on the IFE system in the event server functions in one or more HSSLs fail.
- server functions application server, audio server, video server, games server, file server, passenger information system server, etc.
- the offboard network 1300 , the onboard network 1301 , the data loader 1302 , and the cabin management terminal 1304 connect to one or more of the HSSLs 1306 packet switching data ports via a head end network cable 1305 .
- one or more premium application raw pixel servers 1303 connect to one or more HSSL's 1306 packet switching data ports with a head end network cable 1305 .
- multiple premium application raw pixel server 1303 circuit ports can be connected to each HSSL 1306 using spatially-multiplexed multi-channel network cables 1307 .
- Each HSSL 1306 can be connected to multiple premium application raw pixel servers 1303 with multi-channel network cables 1307 .
- Each HSSL 1306 is connected to up to N hybrid video cable VDUs 1309 (HVDU) with a HSSL to HVDU network cable 1308 .
- the HSSL to HVDU network cable 1308 carries bidirectional packet data on one wavelength and unidirectional (HSSL to HVDU) circuit switched data on a different wavelength.
- FIG. 14 shows one embodiment of the hybrid/server/switch LRU (HSSL) 1400 .
- the HSSL 1400 includes independent switches, an integrated packet switch 1401 (such as, for example, an Ethernet switch) and an integrated circuit switch 1420 (such as, for example, a cross point switch).
- FIG. 14 shows six integrated servers, including an application server 1407 , a video server 1408 , a audio server 1409 , a game server 1410 , a file server 1411 , and a passenger flight information system server 1412 , that internally connect to an integrated switch 1401 via connections 1402 .
- the integrated packet switch 1401 has K ports for auxiliary connections which are generally connections to other HSSLs, offboard networks 1300 , onboard networks 1301 , data loaders 1302 , or cabin management terminals 1304 .
- the integrated packet switch's 1401 K auxiliary ports are connected to the electrical side of K auxiliary port fiber optic transceivers 1406 through connections 1404 .
- the optical side of the K auxiliary port fiber optic transceivers 1406 are connected internally to the fiber optic panel connector 1424 with fiber optic cables 1414 .
- the integrated packet switch 1401 has N ports for connections with hybrid capable VDUs (HVDU) 1309 .
- the integrated packet switch's 1401 N HVDU ports are connected to the electrical side of N HVDU fiber optic transceivers 1405 through connections 1403 .
- the N HVDU fiber optic transceivers send and receive optical signals at a first optical wavelength W 1 .
- the optical side of the N HVDU fiber optic transceivers 1405 are connected internally to the optical wavelength- 1 port of the corresponding HVDU fiber optic wavelength coupler 1415 with a fiber optic cable 1413 .
- the transceivers in the HSSL 1400 ( 1406 , 1405 , 1422 , 1418 ) are bidirectional (or unidirectional with external coupling to convert them to bidirectional) optical signals.
- the integrated packet switch 1401 also connects to the integrated circuit switch 1420 with internal connection 1402 . This connection is used by an integrated application server 1407 to control and query the status of the circuit switch 1420 .
- J premium port transceivers 1418 are connected to the panel connector 1424 with fiber cables 1417 .
- Each premium port transceiver receives on its optical port a unidirectional data stream broadcast from a premium application processing node 702 within a premium application raw pixel server 520 .
- This data is made available to the input port of the circuit switch 1420 through an connection 1419 between the electrical data port on the premium port transceiver 1418 and the circuit switch 1420 .
- the integrated application server 1407 sends control signals to the circuit switch 1420 which can be configured to connect any of the J circuit switch 1420 inputs to any of the N circuit switch 1420 outputs in a unicast, multicast or broadcast fashion.
- the N circuit switch 1420 outputs are connected to the electrical input port of N premium port HVDU fiber optic transceivers 1422 with internal connections 1421 .
- the N premium port HVDU fiber optic transceivers 1422 are selected to transmit at a second optical wavelength W 2 .
- the optical output ports of the N premium port HVDU fiber optic transceivers 1422 are connected with fiber optic cables 1423 to the optical wavelength- 2 ports of the corresponding HVDU fiber optic wavelength couplers 1415 .
- the HVDU fiber optic wavelength couplers 1415 combines outbound optical signals from the packet switch transceivers 1405 at optical wavelength W 1 on fiber 1413 and the circuit switch transceivers 1422 at optical wavelength W 2 on fiber 1423 onto a single fiber 1416 carrying both output optical wavelengths.
- Inbound optical signals on wavelength- 1 from optical fiber 1413 are routed to the packet switch transceivers 1405 on optical fiber 1413 .
- the HVDU fiber optic wavelength couplers 1415 are connected to the panel connector 1424 with optical fiber 1416 .
- the hybrid/sever/switch LRU 1400 is designed such that the connector 1424 will blind mate with connector 1425 when the LRU is installed in the rack.
- Connector 1425 has K fibers 1305 for the auxiliary ports that connect to the corresponding auxiliary fibers 1414 in the box when the HSSL 1400 is installed in the rack.
- connector 1425 has N fibers 1308 for the passenger VDU ports that connect to the corresponding passenger VDU fibers 1416 in the box when the HSSL 1400 is installed in the rack.
- connector 1425 has J fibers 1307 reserved for the premium application ports that connect to the corresponding premium application fibers 1417 in the box when the HSSL 1400 is installed in the rack.
- FIG. 15 is a flow diagram of a hybrid/server/switch LRU (HSSL) based IFE system.
- HVDU 1309 loads and executes the IFE client software.
- the client software on the HVDU 1309 requests menu pages from the application server 1407 as the passenger navigates the IFE menu pages.
- the application server 1407 serves the requested menu pages to the HVDU 1309 client software.
- the client software sends the premium application selection information to the application server 1407 .
- the application server 1407 determines if the premium application requires a payment based on the selection.
- the application server 1407 sends a request for payment page to the HVDU 1309 .
- the client software on the HVDU 1309 sends the payment information to the application server 1407 for processing.
- the application server 1407 sends a command to the HSSL circuit switch 1420 to attach the input port corresponding to the desired premium application node 702 to the output port corresponding to the passenger's HVDU 1309 .
- the application server 1407 also sends a message to the HVDU 1309 to acknowledge the connection.
- the HVDU 1309 reconfigures the pixel data source selector to premium application source.
- the passenger's HVDU 1309 and the corresponding premium application processing node 702 communicate bi-directionally over the packet switched network and un-directionally over the circuit switched port.
- the switch units 200 , 300 , 500 , 501 , 1010 , 1100 , 1306 , 11400 etc. can use packet switching, circuit switching, or combinations thereof
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computer Networks & Wireless Communication (AREA)
- Aviation & Aerospace Engineering (AREA)
- Databases & Information Systems (AREA)
- Human Computer Interaction (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/533,258 US20070077998A1 (en) | 2005-09-19 | 2006-09-19 | Fiber-to-the-seat in-flight entertainment system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71856305P | 2005-09-19 | 2005-09-19 | |
US11/533,258 US20070077998A1 (en) | 2005-09-19 | 2006-09-19 | Fiber-to-the-seat in-flight entertainment system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070077998A1 true US20070077998A1 (en) | 2007-04-05 |
Family
ID=37762522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/533,258 Abandoned US20070077998A1 (en) | 2005-09-19 | 2006-09-19 | Fiber-to-the-seat in-flight entertainment system |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070077998A1 (fr) |
EP (1) | EP1938484A2 (fr) |
JP (1) | JP2009508735A (fr) |
CN (1) | CN101268640B (fr) |
WO (1) | WO2007035739A2 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080100474A1 (en) * | 2006-10-12 | 2008-05-01 | Avion Engineering Services Inc. Dba Avion Partners | Flight information module |
US20090034540A1 (en) * | 2007-08-02 | 2009-02-05 | Thales Avionics, Inc. | System and method for streaming video on demand (vod) streams over a local network |
US20090292851A1 (en) * | 2008-05-20 | 2009-11-26 | Honeywell International Inc. | Docking station for portable electronic devices |
US20100088731A1 (en) * | 2008-10-02 | 2010-04-08 | Thales Avionics, Inc. | Adaptable configuration plug in a vehicle entertainment system |
US20100318794A1 (en) * | 2009-06-11 | 2010-12-16 | Panasonic Avionics Corporation | System and Method for Providing Security Aboard a Moving Platform |
WO2011017233A1 (fr) | 2009-08-06 | 2011-02-10 | Lumexis Corporation | Système de divertissement en vol par fibre jusquaux sièges à mise en réseau série |
WO2011020071A1 (fr) * | 2009-08-14 | 2011-02-17 | Lumexis Corp. | Dispositif de connexion d'unité d'affichage vidéo pour un système fibre à l'écran de divertissement à bord |
US20110087758A1 (en) * | 2009-10-13 | 2011-04-14 | Panasonic Corporation | In-flight service system |
US20110134333A1 (en) * | 2009-12-03 | 2011-06-09 | Petrisor Gregory C | Inflight entertainment system video display unit with swappable entertainment processor board |
US20110162015A1 (en) * | 2009-10-05 | 2011-06-30 | Lumexis Corp | Inflight communication system |
US8184974B2 (en) * | 2006-09-11 | 2012-05-22 | Lumexis Corporation | Fiber-to-the-seat (FTTS) fiber distribution system |
US8416698B2 (en) | 2009-08-20 | 2013-04-09 | Lumexis Corporation | Serial networking fiber optic inflight entertainment system network configuration |
US20130149894A1 (en) * | 2011-12-09 | 2013-06-13 | Airbus Operations Gmbh | Interface device for cabin monuments |
US20140040524A1 (en) * | 2011-03-30 | 2014-02-06 | Fujitsu Technology Solutions Intellectual Property Gmbh | Rack, server and assembly comprising such a rack and at least one server |
DE102013203841A1 (de) * | 2013-03-06 | 2014-09-11 | Airbus Operations Gmbh | Vorrichtung zur Steuerung einer Vielzahl von Geräten an Bord eines Fahrzeugs |
US20140341107A1 (en) * | 2013-05-16 | 2014-11-20 | Airbus Operations (S.A.S.) | Distributed management of aircraft-ground communications in an aircraft |
WO2015020665A1 (fr) | 2013-08-09 | 2015-02-12 | Hewlett-Packard Development Company, L.P. | Ensemble commutateur |
WO2015060820A1 (fr) * | 2013-10-22 | 2015-04-30 | Hewlett-Packard Development Company, L.P. | Commutation hybride circuits-paquets |
US20170346553A1 (en) * | 2016-05-27 | 2017-11-30 | Corning Optical Communications LLC | Fiber optic assemblies for tapping live optical fibers in fiber optic networks employing wdm technology |
US10419667B2 (en) * | 2015-09-24 | 2019-09-17 | Airbus Operations Gmbh | Virtual windows for airborne vehicles |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5421266B2 (ja) | 2007-09-14 | 2014-02-19 | パナソニック・アビオニクス・コーポレイション | 乗物用情報システムのための携帯型ユーザ用操作デバイスおよび操作方法 |
ATE505858T1 (de) | 2007-09-24 | 2011-04-15 | Panasonic Avionics Corp | Anordnung und verfahren zum empfang eines rundfunkinhalts auf einer mobilen plattform während der reise |
US8509990B2 (en) | 2008-12-15 | 2013-08-13 | Panasonic Avionics Corporation | System and method for performing real-time data analysis |
US9016627B2 (en) | 2009-10-02 | 2015-04-28 | Panasonic Avionics Corporation | System and method for providing an integrated user interface system at a seat |
CN102870306B (zh) | 2009-12-14 | 2015-09-09 | 松下航空电子公司 | 用于提供动态功率管理的系统和方法 |
CN101867783A (zh) * | 2010-06-08 | 2010-10-20 | 深圳市多尼卡电子技术有限公司 | 飞机中的分布缓存式音视频点播系统及其运行方法 |
JP2012049844A (ja) | 2010-08-27 | 2012-03-08 | Panasonic Corp | 光データ伝送システム |
AU2011298966B2 (en) | 2010-09-10 | 2014-11-06 | Panasonic Avionics Corporation | Integrated user interface system and method |
CA2841685C (fr) | 2013-03-15 | 2021-05-18 | Panasonic Avionics Corporation | Systeme et procede permettant d'assurer une distribution de donnees sans fil a modes multiples |
CN103581692A (zh) * | 2013-11-05 | 2014-02-12 | 成都金本华科技股份有限公司 | 基于流媒体单播和组播相结合的机载娱乐系统及其单播控制方法 |
US9420314B1 (en) * | 2015-05-07 | 2016-08-16 | The Boeing Company | Distribution of in-flight entertainment content to portable electronic devices |
CN104994148B (zh) * | 2015-06-26 | 2019-06-11 | 深圳市航电技术研究院 | 一种ife系统的资源管理方法及装置 |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2010A (en) * | 1841-03-18 | Machine foe | ||
US4433344A (en) * | 1981-11-25 | 1984-02-21 | Sundstrand Data Control, Inc. | Automatic television antenna control system |
US4433301A (en) * | 1981-05-11 | 1984-02-21 | Sundstrand Data Control, Inc. | Equalization preamplifier with high frequency gain peaking |
US4577191A (en) * | 1983-08-01 | 1986-03-18 | Eeco Incorporated | Matrix control method and apparatus |
US4639106A (en) * | 1985-04-26 | 1987-01-27 | Sundstrand Data Control, Inc. | Aircraft video projection system |
US4894818A (en) * | 1987-10-22 | 1990-01-16 | Kokusai Denshin Denwa Kabushiki Kaisha | Optical packet switching system using multi-stage combination of light triggering switches |
US4994794A (en) * | 1987-06-29 | 1991-02-19 | Gec-Marconi Limited | Methods and apparatus for displaying data |
US5007699A (en) * | 1989-10-19 | 1991-04-16 | Honeywell Inc. | Fiber optic reflective tree architecture |
US5093567A (en) * | 1989-07-14 | 1992-03-03 | Gec-Marconi Limited | Helmet systems with eyepiece and eye position sensing means |
US5096271A (en) * | 1991-03-29 | 1992-03-17 | Sony Trans Com, Inc. | Drive assembly, power off retract |
US5179447A (en) * | 1991-04-16 | 1993-01-12 | Hughes-Avicom International, Inc. | Personal video player and monitor assembly for airline passenger seat console |
US5181013A (en) * | 1988-09-14 | 1993-01-19 | Gec-Marconi Limited | Display apparatus |
US5181771A (en) * | 1991-03-01 | 1993-01-26 | Sony Trans Com Inc. | Triple spring torque motor |
US5184231A (en) * | 1983-03-26 | 1993-02-02 | Gec-Marconi Limited | Helmet systems |
US5200757A (en) * | 1990-05-23 | 1993-04-06 | Gec-Marconi Limited | Microwave antennas having both wide elevation beamwidth and a wide azimuth beamwidth over a wide frequency bandwidth |
US5203220A (en) * | 1992-05-26 | 1993-04-20 | Gec-Marconi Electronic Systems Corp. | Optical tracking and stabilizing system with a gimbal mounted mirror for establishing a line of sight |
US5289196A (en) * | 1992-11-23 | 1994-02-22 | Gec-Marconi Electronic Systems Corp. | Space duplexed beamshaped microstrip antenna system |
US5307206A (en) * | 1992-09-30 | 1994-04-26 | Gec-Marconi Electronic Systems Corp. | Image stabilization assembly for an optical system |
US5398991A (en) * | 1993-02-09 | 1995-03-21 | Sony Trans Com Incorporated | Seat arm display monitor deployment mechanism |
US5400079A (en) * | 1991-06-25 | 1995-03-21 | Sextant Avionique | Real time device to display television images on a screen |
US5481868A (en) * | 1993-04-30 | 1996-01-09 | Gec-Marconi Limited | Variable area nozzle with fixed convergent-divergent walls and relatively movable parallel sideplates |
US5596647A (en) * | 1993-06-01 | 1997-01-21 | Matsushita Avionics Development Corporation | Integrated video and audio signal distribution system and method for use on commercial aircraft and other vehicles |
US5601208A (en) * | 1994-07-15 | 1997-02-11 | Sony Corporation | Vending apparatus and system for automated dispensing of disks |
US5704798A (en) * | 1996-02-09 | 1998-01-06 | Sony Corporation | Apparatus for automatically terminating a signal |
US5705860A (en) * | 1996-03-29 | 1998-01-06 | Sony Corporation | Inflight entertainment system having EMI and ESD improvements |
US5731782A (en) * | 1989-03-03 | 1998-03-24 | Gec-Marconi Limited | Ranging systems |
US5738392A (en) * | 1995-10-12 | 1998-04-14 | Sony Corporation | Latch for securing an aircraft video device |
US5857869A (en) * | 1997-06-23 | 1999-01-12 | Matsushita Avionics Systems Corporation | Spring latch for use with cable connectors |
US5859616A (en) * | 1997-04-10 | 1999-01-12 | Gec-Marconi Hazeltine Corporation | Interleaved planar array antenna system providing angularly adjustable linear polarization |
US5871173A (en) * | 1995-10-13 | 1999-02-16 | Gec-Marconi Limited | Drag-producing aerodynamic device |
US5872934A (en) * | 1996-08-26 | 1999-02-16 | Sony Corporation | Method and apparatus for connecting several video distribution units to a serial data bus |
US5881228A (en) * | 1996-08-29 | 1999-03-09 | Sony Corporation | Efficient message processing using a multi-ported RAM and a dedicated microcontroller |
US5884096A (en) * | 1995-08-25 | 1999-03-16 | Apex Pc Solutions, Inc. | Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch |
US5889466A (en) * | 1997-01-14 | 1999-03-30 | Sony Corporation | Apparatus and method of providing power control based on environmental conditions |
US5889775A (en) * | 1995-08-07 | 1999-03-30 | Be Aerospace, Inc. | Multi-stage switch |
US5892478A (en) * | 1997-10-27 | 1999-04-06 | Gec-Marconi Hazeltine Corporation Electronics Systems Division | Adaptive azimuth processing for monopulse IFF interrogators |
US6011322A (en) * | 1997-07-28 | 2000-01-04 | Sony Corporation | Apparatus and method for providing power to circuitry implementing two different power sources |
US6014381A (en) * | 1996-09-13 | 2000-01-11 | Sony Corporation | System and method for distributing information throughout an aircraft |
US6031299A (en) * | 1997-09-19 | 2000-02-29 | Sony Corporation | Apparatus and method of providing EMI filtering |
US6034688A (en) * | 1997-09-15 | 2000-03-07 | Sony Corporation | Scrolling navigational display system |
US6038426A (en) * | 1996-08-26 | 2000-03-14 | Sony Corporation | System and method for securing a removable seat electronics unit without detachment of the communication cable |
US6185643B1 (en) * | 1997-11-15 | 2001-02-06 | Cybex Computer Products Corporation | Method and apparatus for extending the range between a computer and computer peripherals |
US6189127B1 (en) * | 1998-11-02 | 2001-02-13 | Sony Corporation | Method and apparatus for pat 2 bus decoding |
US6195040B1 (en) * | 1996-06-07 | 2001-02-27 | Sextant Avionique | Satellite signal receiver with position extrapolation filter |
US6208307B1 (en) * | 2000-04-07 | 2001-03-27 | Live Tv, Inc. | Aircraft in-flight entertainment system having wideband antenna steering and associated methods |
US6359608B1 (en) * | 1996-01-11 | 2002-03-19 | Thomson Lcd | Method and apparatus for driving flat screen displays using pixel precharging |
US6507952B1 (en) * | 1999-05-25 | 2003-01-14 | Rockwell Collins, Inc. | Passenger entertainment system providing live video/audio programming derived from satellite broadcasts |
US20030016806A1 (en) * | 2001-07-18 | 2003-01-23 | Emerson Harry E. | Integrated telephone central office systems for integrating the internet with the public switched telephone network |
US20030033459A1 (en) * | 2001-08-10 | 2003-02-13 | Garnett Paul J. | Interface standard support in modular computer systems |
US6520015B1 (en) * | 1999-09-28 | 2003-02-18 | Thales Avionics S.A. | Tuning fork gyroscope |
US6681250B1 (en) * | 2000-05-03 | 2004-01-20 | Avocent Corporation | Network based KVM switching system |
US6679112B2 (en) * | 1999-12-17 | 2004-01-20 | Thales Avionics S.A. | Total pressure determination with multifunction probe for aircraft |
US6698281B1 (en) * | 1999-04-02 | 2004-03-02 | Thales Avionics S.A. | Vane designed to get oriented in the ambient air flow axis |
US20040052372A1 (en) * | 2002-08-28 | 2004-03-18 | Rockwell Collins, Inc. | Software radio system and method |
US6844874B2 (en) * | 1997-12-15 | 2005-01-18 | Maurice Francois | Device for controlling a matrix display cell |
US6845658B2 (en) * | 1999-12-30 | 2005-01-25 | Thales Avionics S.A. | Device for angular positioning of an incidence probe on a wall, of the type comprising of a weather vane that can move about an axis, particularly on a wall of an aircraft |
US20050044186A1 (en) * | 2003-06-13 | 2005-02-24 | Petrisor Gregory C. | Remote interface optical network |
US20050044564A1 (en) * | 2003-06-04 | 2005-02-24 | Matsushita Avionics Systems Corporation | System and method for downloading files |
US20050055228A1 (en) * | 2003-09-08 | 2005-03-10 | Aircraft Protective Systems, Inc. | Management method of in-flight entertainment device rentals having self-contained audio-visual presentations |
US20050053237A1 (en) * | 2003-09-08 | 2005-03-10 | Aircraft Protective Systems, Inc. | Security system and method of in-flight entertainment device rentals having self-contained audiovisual presentations |
US20050055278A1 (en) * | 2003-09-08 | 2005-03-10 | Aircraft Protective Systems, Inc. | Payment method for in-flight entertainment device rentals having self-contained audio-visual presentations |
US20060107295A1 (en) * | 2004-06-15 | 2006-05-18 | Panasonic Avionics Corporation | Portable media device and method for presenting viewing content during travel |
US7177638B2 (en) * | 2004-12-28 | 2007-02-13 | Live Tv, Llc | Aircraft in-flight entertainment system including digital radio service and associated methods |
US20070044126A1 (en) * | 2005-08-18 | 2007-02-22 | Rockwell Collins, Inc. | Wireless video entertainment system |
US7187498B2 (en) * | 2001-11-21 | 2007-03-06 | Thales Avionics, Inc. | Surveillance window |
US20080023600A1 (en) * | 2006-07-25 | 2008-01-31 | Perlman Marshal H | System and Method for Mounting User Interface Devices |
US7330649B2 (en) * | 2001-11-21 | 2008-02-12 | Thales Avionics, Inc. | Universal security camera |
US20080040756A1 (en) * | 2006-08-08 | 2008-02-14 | Perlman Marshal H | User Interface Device and Method for Presenting Viewing Content |
US7337043B2 (en) * | 2004-06-30 | 2008-02-26 | Rockwell Collins, Inc. | Terrain maneuver advisory envelope system and method |
US20080050512A1 (en) * | 2006-08-23 | 2008-02-28 | Rockwell Collins, Inc. | Integrated circuit tampering protection and reverse engineering prvention coatings and methods |
US20080056178A1 (en) * | 2002-05-10 | 2008-03-06 | Rockwell Collins, Inc. | Method and system for providing a mobile ip network with non-path dependent intra domain quality of service |
US7343157B1 (en) * | 2005-06-13 | 2008-03-11 | Rockwell Collins, Inc. | Cell phone audio/video in-flight entertainment system |
US20080063398A1 (en) * | 2006-09-11 | 2008-03-13 | Cline James D | Fiber-to-the-seat (ftts) fiber distribution system |
US7344102B1 (en) * | 2004-06-28 | 2008-03-18 | Rockwell Collins, Inc. | Method and apparatus for variable tension cord recoil and tethered user interface |
US20090007193A1 (en) * | 2007-04-30 | 2009-01-01 | Thales Avionics, Inc. | Wireless audio distribution system and method for an in-flight entertainment system |
US20090007194A1 (en) * | 2007-04-30 | 2009-01-01 | Thales Avionics, Inc. | Remote recovery of in-flight entertainment video seat back display audio |
US7483696B1 (en) * | 2004-11-29 | 2009-01-27 | Rockwell Collins, Inc. | Cellular wireless network for passengers cabins |
US7486960B2 (en) * | 2006-09-15 | 2009-02-03 | Thales Avionics, Inc. | System and method for wirelessly transferring content to and from an aircraft |
US20090034540A1 (en) * | 2007-08-02 | 2009-02-05 | Thales Avionics, Inc. | System and method for streaming video on demand (vod) streams over a local network |
US7487938B2 (en) * | 2004-02-17 | 2009-02-10 | Thales Avionics, Inc. | System and method utilizing Internet Protocol (IP) sequencing to identify components of a passenger flight information system (PFIS) |
US7496361B1 (en) * | 2004-07-19 | 2009-02-24 | Rockwell Collins, Inc. | Configurable cabin antenna system and placement process |
US20090068474A1 (en) * | 2006-08-23 | 2009-03-12 | Rockwell Collins, Inc. | Alkali silicate glass based coating and method for applying |
US20090077595A1 (en) * | 2007-09-14 | 2009-03-19 | Steven Sizelove | Media Device Interface System and Method for Vehicle Information Systems |
US20090081947A1 (en) * | 2007-09-24 | 2009-03-26 | Paul Anthony Margis | System and Method for Receiving Broadcast Content on a Mobile Platform During Travel |
US20090079705A1 (en) * | 2007-09-14 | 2009-03-26 | Steven Sizelove | Portable User Control Device and Method for Vehicle Information Systems |
US7642974B2 (en) * | 2007-01-26 | 2010-01-05 | Thales Avionics, Inc. | Window mounted antenna for a vehicle and a method for using the same |
USD607800S1 (en) * | 2009-07-02 | 2010-01-12 | Thales Avionics, Inc. | Display panel with a graphical user interface icon for an aircraft cabin management system |
USD607801S1 (en) * | 2009-07-02 | 2010-01-12 | Thales Avionics, Inc. | Display panel with a graphical user interface icon for an aircraft cabin management system |
US20100008503A1 (en) * | 2002-11-21 | 2010-01-14 | Rodney Farley | Secure Terminal Data Loader Apparatus and Method for a Mobile Platform |
US20100013279A1 (en) * | 2008-05-22 | 2010-01-21 | Societe Industrielle et Commerciale de Materiel Aeronautique (SICMA Aero Seat) | Shock absorption device and seat including such a device |
US20100027461A1 (en) * | 2006-10-24 | 2010-02-04 | Rockwell-Collins France | Radio communication system for acars messages exchange |
US20100032999A1 (en) * | 2005-10-13 | 2010-02-11 | Jean-Luc Petitpierre | Aircraft Seat with Shared Control Architecture |
US7675849B2 (en) * | 2005-03-29 | 2010-03-09 | Panasonic Avionics Corporation | System and method for routing communication signals via a data distribution network |
US7676225B2 (en) * | 2004-12-28 | 2010-03-09 | Livetv, Llc | Area entertainment system including digital radio service and associated methods |
US20100060739A1 (en) * | 2008-09-08 | 2010-03-11 | Thales Avionics, Inc. | System and method for providing a live mapping display in a vehicle |
US20100064327A1 (en) * | 2008-09-11 | 2010-03-11 | Lynch Michael J | Aircraft communications system with video file library and associated methods |
US7680092B2 (en) * | 2004-02-19 | 2010-03-16 | Rockwell Collins, Inc. | Link adaption for mobile ad hoc and mesh networks |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2235800B (en) * | 1989-05-31 | 1993-05-12 | Plessey Co Plc | Improvements relating to entertainment and services systems |
US6058288A (en) * | 1995-08-07 | 2000-05-02 | Sextant In-Flight Systems, Llc | Passenger service and entertainment system |
CN1164456C (zh) * | 2001-01-03 | 2004-09-01 | 财团法人工业技术研究院 | 飞机客舱娱乐系统的红外线无线控制装置 |
US20030064714A1 (en) * | 2001-10-02 | 2003-04-03 | Sanford William C. | Consolidated in-flight entertainment electronic system |
US6801769B1 (en) * | 2003-03-12 | 2004-10-05 | The Boeing Company | Modular aircraft information network system and an associated method of packaging the same |
US8403411B2 (en) * | 2003-12-15 | 2013-03-26 | Digecor, Inc. | Detachable seat mounted audio-visual entertainment system with locally storable, selectable, and updatable content |
-
2006
- 2006-09-19 WO PCT/US2006/036492 patent/WO2007035739A2/fr active Application Filing
- 2006-09-19 US US11/533,258 patent/US20070077998A1/en not_active Abandoned
- 2006-09-19 JP JP2008531439A patent/JP2009508735A/ja active Pending
- 2006-09-19 EP EP06814950A patent/EP1938484A2/fr not_active Withdrawn
- 2006-09-19 CN CN200680034350.3A patent/CN101268640B/zh active Active
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2010A (en) * | 1841-03-18 | Machine foe | ||
US4433301A (en) * | 1981-05-11 | 1984-02-21 | Sundstrand Data Control, Inc. | Equalization preamplifier with high frequency gain peaking |
US4433344A (en) * | 1981-11-25 | 1984-02-21 | Sundstrand Data Control, Inc. | Automatic television antenna control system |
US5184231A (en) * | 1983-03-26 | 1993-02-02 | Gec-Marconi Limited | Helmet systems |
US4577191A (en) * | 1983-08-01 | 1986-03-18 | Eeco Incorporated | Matrix control method and apparatus |
US4639106A (en) * | 1985-04-26 | 1987-01-27 | Sundstrand Data Control, Inc. | Aircraft video projection system |
US4994794A (en) * | 1987-06-29 | 1991-02-19 | Gec-Marconi Limited | Methods and apparatus for displaying data |
US4894818A (en) * | 1987-10-22 | 1990-01-16 | Kokusai Denshin Denwa Kabushiki Kaisha | Optical packet switching system using multi-stage combination of light triggering switches |
US5181013A (en) * | 1988-09-14 | 1993-01-19 | Gec-Marconi Limited | Display apparatus |
US5731782A (en) * | 1989-03-03 | 1998-03-24 | Gec-Marconi Limited | Ranging systems |
US5093567A (en) * | 1989-07-14 | 1992-03-03 | Gec-Marconi Limited | Helmet systems with eyepiece and eye position sensing means |
US5007699A (en) * | 1989-10-19 | 1991-04-16 | Honeywell Inc. | Fiber optic reflective tree architecture |
US5200757A (en) * | 1990-05-23 | 1993-04-06 | Gec-Marconi Limited | Microwave antennas having both wide elevation beamwidth and a wide azimuth beamwidth over a wide frequency bandwidth |
US5181771A (en) * | 1991-03-01 | 1993-01-26 | Sony Trans Com Inc. | Triple spring torque motor |
US5096271A (en) * | 1991-03-29 | 1992-03-17 | Sony Trans Com, Inc. | Drive assembly, power off retract |
US5179447A (en) * | 1991-04-16 | 1993-01-12 | Hughes-Avicom International, Inc. | Personal video player and monitor assembly for airline passenger seat console |
US5400079A (en) * | 1991-06-25 | 1995-03-21 | Sextant Avionique | Real time device to display television images on a screen |
US5203220A (en) * | 1992-05-26 | 1993-04-20 | Gec-Marconi Electronic Systems Corp. | Optical tracking and stabilizing system with a gimbal mounted mirror for establishing a line of sight |
US5307206A (en) * | 1992-09-30 | 1994-04-26 | Gec-Marconi Electronic Systems Corp. | Image stabilization assembly for an optical system |
US5289196A (en) * | 1992-11-23 | 1994-02-22 | Gec-Marconi Electronic Systems Corp. | Space duplexed beamshaped microstrip antenna system |
US5398991A (en) * | 1993-02-09 | 1995-03-21 | Sony Trans Com Incorporated | Seat arm display monitor deployment mechanism |
US5481868A (en) * | 1993-04-30 | 1996-01-09 | Gec-Marconi Limited | Variable area nozzle with fixed convergent-divergent walls and relatively movable parallel sideplates |
US5596647A (en) * | 1993-06-01 | 1997-01-21 | Matsushita Avionics Development Corporation | Integrated video and audio signal distribution system and method for use on commercial aircraft and other vehicles |
US5601208A (en) * | 1994-07-15 | 1997-02-11 | Sony Corporation | Vending apparatus and system for automated dispensing of disks |
US5889775A (en) * | 1995-08-07 | 1999-03-30 | Be Aerospace, Inc. | Multi-stage switch |
US5884096A (en) * | 1995-08-25 | 1999-03-16 | Apex Pc Solutions, Inc. | Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch |
US5738392A (en) * | 1995-10-12 | 1998-04-14 | Sony Corporation | Latch for securing an aircraft video device |
US5871173A (en) * | 1995-10-13 | 1999-02-16 | Gec-Marconi Limited | Drag-producing aerodynamic device |
US6359608B1 (en) * | 1996-01-11 | 2002-03-19 | Thomson Lcd | Method and apparatus for driving flat screen displays using pixel precharging |
US5704798A (en) * | 1996-02-09 | 1998-01-06 | Sony Corporation | Apparatus for automatically terminating a signal |
US5705860A (en) * | 1996-03-29 | 1998-01-06 | Sony Corporation | Inflight entertainment system having EMI and ESD improvements |
US6195040B1 (en) * | 1996-06-07 | 2001-02-27 | Sextant Avionique | Satellite signal receiver with position extrapolation filter |
US6038426A (en) * | 1996-08-26 | 2000-03-14 | Sony Corporation | System and method for securing a removable seat electronics unit without detachment of the communication cable |
US5872934A (en) * | 1996-08-26 | 1999-02-16 | Sony Corporation | Method and apparatus for connecting several video distribution units to a serial data bus |
US5881228A (en) * | 1996-08-29 | 1999-03-09 | Sony Corporation | Efficient message processing using a multi-ported RAM and a dedicated microcontroller |
US6014381A (en) * | 1996-09-13 | 2000-01-11 | Sony Corporation | System and method for distributing information throughout an aircraft |
US5889466A (en) * | 1997-01-14 | 1999-03-30 | Sony Corporation | Apparatus and method of providing power control based on environmental conditions |
US5859616A (en) * | 1997-04-10 | 1999-01-12 | Gec-Marconi Hazeltine Corporation | Interleaved planar array antenna system providing angularly adjustable linear polarization |
US5857869A (en) * | 1997-06-23 | 1999-01-12 | Matsushita Avionics Systems Corporation | Spring latch for use with cable connectors |
US6011322A (en) * | 1997-07-28 | 2000-01-04 | Sony Corporation | Apparatus and method for providing power to circuitry implementing two different power sources |
US6034688A (en) * | 1997-09-15 | 2000-03-07 | Sony Corporation | Scrolling navigational display system |
US6031299A (en) * | 1997-09-19 | 2000-02-29 | Sony Corporation | Apparatus and method of providing EMI filtering |
US5892478A (en) * | 1997-10-27 | 1999-04-06 | Gec-Marconi Hazeltine Corporation Electronics Systems Division | Adaptive azimuth processing for monopulse IFF interrogators |
US6185643B1 (en) * | 1997-11-15 | 2001-02-06 | Cybex Computer Products Corporation | Method and apparatus for extending the range between a computer and computer peripherals |
US6844874B2 (en) * | 1997-12-15 | 2005-01-18 | Maurice Francois | Device for controlling a matrix display cell |
US6189127B1 (en) * | 1998-11-02 | 2001-02-13 | Sony Corporation | Method and apparatus for pat 2 bus decoding |
US6698281B1 (en) * | 1999-04-02 | 2004-03-02 | Thales Avionics S.A. | Vane designed to get oriented in the ambient air flow axis |
US6507952B1 (en) * | 1999-05-25 | 2003-01-14 | Rockwell Collins, Inc. | Passenger entertainment system providing live video/audio programming derived from satellite broadcasts |
US6520015B1 (en) * | 1999-09-28 | 2003-02-18 | Thales Avionics S.A. | Tuning fork gyroscope |
US6679112B2 (en) * | 1999-12-17 | 2004-01-20 | Thales Avionics S.A. | Total pressure determination with multifunction probe for aircraft |
US6845658B2 (en) * | 1999-12-30 | 2005-01-25 | Thales Avionics S.A. | Device for angular positioning of an incidence probe on a wall, of the type comprising of a weather vane that can move about an axis, particularly on a wall of an aircraft |
US6208307B1 (en) * | 2000-04-07 | 2001-03-27 | Live Tv, Inc. | Aircraft in-flight entertainment system having wideband antenna steering and associated methods |
US6681250B1 (en) * | 2000-05-03 | 2004-01-20 | Avocent Corporation | Network based KVM switching system |
US20030016806A1 (en) * | 2001-07-18 | 2003-01-23 | Emerson Harry E. | Integrated telephone central office systems for integrating the internet with the public switched telephone network |
US20030033459A1 (en) * | 2001-08-10 | 2003-02-13 | Garnett Paul J. | Interface standard support in modular computer systems |
US7187498B2 (en) * | 2001-11-21 | 2007-03-06 | Thales Avionics, Inc. | Surveillance window |
US7649696B2 (en) * | 2001-11-21 | 2010-01-19 | Thales Avionics, Inc. | Universal security camera |
US7330649B2 (en) * | 2001-11-21 | 2008-02-12 | Thales Avionics, Inc. | Universal security camera |
US20080056178A1 (en) * | 2002-05-10 | 2008-03-06 | Rockwell Collins, Inc. | Method and system for providing a mobile ip network with non-path dependent intra domain quality of service |
US20040052372A1 (en) * | 2002-08-28 | 2004-03-18 | Rockwell Collins, Inc. | Software radio system and method |
US20100008503A1 (en) * | 2002-11-21 | 2010-01-14 | Rodney Farley | Secure Terminal Data Loader Apparatus and Method for a Mobile Platform |
US20050044564A1 (en) * | 2003-06-04 | 2005-02-24 | Matsushita Avionics Systems Corporation | System and method for downloading files |
US20050044186A1 (en) * | 2003-06-13 | 2005-02-24 | Petrisor Gregory C. | Remote interface optical network |
US20050055278A1 (en) * | 2003-09-08 | 2005-03-10 | Aircraft Protective Systems, Inc. | Payment method for in-flight entertainment device rentals having self-contained audio-visual presentations |
US20050053237A1 (en) * | 2003-09-08 | 2005-03-10 | Aircraft Protective Systems, Inc. | Security system and method of in-flight entertainment device rentals having self-contained audiovisual presentations |
US20050055228A1 (en) * | 2003-09-08 | 2005-03-10 | Aircraft Protective Systems, Inc. | Management method of in-flight entertainment device rentals having self-contained audio-visual presentations |
US7487938B2 (en) * | 2004-02-17 | 2009-02-10 | Thales Avionics, Inc. | System and method utilizing Internet Protocol (IP) sequencing to identify components of a passenger flight information system (PFIS) |
US7680092B2 (en) * | 2004-02-19 | 2010-03-16 | Rockwell Collins, Inc. | Link adaption for mobile ad hoc and mesh networks |
US20060107295A1 (en) * | 2004-06-15 | 2006-05-18 | Panasonic Avionics Corporation | Portable media device and method for presenting viewing content during travel |
US7344102B1 (en) * | 2004-06-28 | 2008-03-18 | Rockwell Collins, Inc. | Method and apparatus for variable tension cord recoil and tethered user interface |
US7337043B2 (en) * | 2004-06-30 | 2008-02-26 | Rockwell Collins, Inc. | Terrain maneuver advisory envelope system and method |
US7496361B1 (en) * | 2004-07-19 | 2009-02-24 | Rockwell Collins, Inc. | Configurable cabin antenna system and placement process |
US7483696B1 (en) * | 2004-11-29 | 2009-01-27 | Rockwell Collins, Inc. | Cellular wireless network for passengers cabins |
US7177638B2 (en) * | 2004-12-28 | 2007-02-13 | Live Tv, Llc | Aircraft in-flight entertainment system including digital radio service and associated methods |
US7676225B2 (en) * | 2004-12-28 | 2010-03-09 | Livetv, Llc | Area entertainment system including digital radio service and associated methods |
US7675849B2 (en) * | 2005-03-29 | 2010-03-09 | Panasonic Avionics Corporation | System and method for routing communication signals via a data distribution network |
US7343157B1 (en) * | 2005-06-13 | 2008-03-11 | Rockwell Collins, Inc. | Cell phone audio/video in-flight entertainment system |
US20070044126A1 (en) * | 2005-08-18 | 2007-02-22 | Rockwell Collins, Inc. | Wireless video entertainment system |
US20100032999A1 (en) * | 2005-10-13 | 2010-02-11 | Jean-Luc Petitpierre | Aircraft Seat with Shared Control Architecture |
US20080023600A1 (en) * | 2006-07-25 | 2008-01-31 | Perlman Marshal H | System and Method for Mounting User Interface Devices |
US20080040756A1 (en) * | 2006-08-08 | 2008-02-14 | Perlman Marshal H | User Interface Device and Method for Presenting Viewing Content |
US20090068474A1 (en) * | 2006-08-23 | 2009-03-12 | Rockwell Collins, Inc. | Alkali silicate glass based coating and method for applying |
US20080050512A1 (en) * | 2006-08-23 | 2008-02-28 | Rockwell Collins, Inc. | Integrated circuit tampering protection and reverse engineering prvention coatings and methods |
US20080063398A1 (en) * | 2006-09-11 | 2008-03-13 | Cline James D | Fiber-to-the-seat (ftts) fiber distribution system |
US7486960B2 (en) * | 2006-09-15 | 2009-02-03 | Thales Avionics, Inc. | System and method for wirelessly transferring content to and from an aircraft |
US20100027461A1 (en) * | 2006-10-24 | 2010-02-04 | Rockwell-Collins France | Radio communication system for acars messages exchange |
US20100066616A1 (en) * | 2007-01-26 | 2010-03-18 | Thales Avionics, Inc. | Window mounted antenna for a vehicle and a method for using the same |
US7642974B2 (en) * | 2007-01-26 | 2010-01-05 | Thales Avionics, Inc. | Window mounted antenna for a vehicle and a method for using the same |
US20090007193A1 (en) * | 2007-04-30 | 2009-01-01 | Thales Avionics, Inc. | Wireless audio distribution system and method for an in-flight entertainment system |
US20090007194A1 (en) * | 2007-04-30 | 2009-01-01 | Thales Avionics, Inc. | Remote recovery of in-flight entertainment video seat back display audio |
US20090034540A1 (en) * | 2007-08-02 | 2009-02-05 | Thales Avionics, Inc. | System and method for streaming video on demand (vod) streams over a local network |
US20090079705A1 (en) * | 2007-09-14 | 2009-03-26 | Steven Sizelove | Portable User Control Device and Method for Vehicle Information Systems |
US20090083805A1 (en) * | 2007-09-14 | 2009-03-26 | Panasonic Avionics Corporation | Media Device Interface System and Method for Vehicle Information Systems |
US20090077595A1 (en) * | 2007-09-14 | 2009-03-19 | Steven Sizelove | Media Device Interface System and Method for Vehicle Information Systems |
US20090081947A1 (en) * | 2007-09-24 | 2009-03-26 | Paul Anthony Margis | System and Method for Receiving Broadcast Content on a Mobile Platform During Travel |
US20100013279A1 (en) * | 2008-05-22 | 2010-01-21 | Societe Industrielle et Commerciale de Materiel Aeronautique (SICMA Aero Seat) | Shock absorption device and seat including such a device |
US20100060739A1 (en) * | 2008-09-08 | 2010-03-11 | Thales Avionics, Inc. | System and method for providing a live mapping display in a vehicle |
US20100064327A1 (en) * | 2008-09-11 | 2010-03-11 | Lynch Michael J | Aircraft communications system with video file library and associated methods |
USD607801S1 (en) * | 2009-07-02 | 2010-01-12 | Thales Avionics, Inc. | Display panel with a graphical user interface icon for an aircraft cabin management system |
USD607800S1 (en) * | 2009-07-02 | 2010-01-12 | Thales Avionics, Inc. | Display panel with a graphical user interface icon for an aircraft cabin management system |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8184974B2 (en) * | 2006-09-11 | 2012-05-22 | Lumexis Corporation | Fiber-to-the-seat (FTTS) fiber distribution system |
US20080100474A1 (en) * | 2006-10-12 | 2008-05-01 | Avion Engineering Services Inc. Dba Avion Partners | Flight information module |
US7808891B2 (en) | 2007-08-02 | 2010-10-05 | Thales Avionics, Inc. | System and method for streaming video on demand (VOD) streams over a local network |
US20090034540A1 (en) * | 2007-08-02 | 2009-02-05 | Thales Avionics, Inc. | System and method for streaming video on demand (vod) streams over a local network |
WO2009018410A3 (fr) * | 2007-08-02 | 2010-01-07 | Thales Avionics, Inc. | Système et procédé de diffusion en continu des flux de données de vidéo à la demande (vod) sur réseau local |
US8145821B2 (en) * | 2008-05-20 | 2012-03-27 | Honeywell International Inc. | Docking station for portable electronic devices |
US20090292851A1 (en) * | 2008-05-20 | 2009-11-26 | Honeywell International Inc. | Docking station for portable electronic devices |
US20100088731A1 (en) * | 2008-10-02 | 2010-04-08 | Thales Avionics, Inc. | Adaptable configuration plug in a vehicle entertainment system |
US8382516B2 (en) | 2008-10-02 | 2013-02-26 | Thales Avionics, Inc. | Adaptable configuration plug in a vehicle entertainment system |
US20100318794A1 (en) * | 2009-06-11 | 2010-12-16 | Panasonic Avionics Corporation | System and Method for Providing Security Aboard a Moving Platform |
US8402268B2 (en) * | 2009-06-11 | 2013-03-19 | Panasonic Avionics Corporation | System and method for providing security aboard a moving platform |
WO2010144815A3 (fr) * | 2009-06-11 | 2011-03-31 | Panasonic Avionics Corporation | Système et procédé de fourniture de sécurité à bord d'une plateforme mobile |
WO2011017233A1 (fr) | 2009-08-06 | 2011-02-10 | Lumexis Corporation | Système de divertissement en vol par fibre jusquaux sièges à mise en réseau série |
US20140269262A1 (en) * | 2009-08-06 | 2014-09-18 | Lumexis Corporation | Serial networking fiber-to-the-seat inflight entertainment system |
US9118547B2 (en) * | 2009-08-06 | 2015-08-25 | Lumexis Corporation | Serial networking fiber-to-the-seat inflight entertainment system |
US9532082B2 (en) | 2009-08-06 | 2016-12-27 | Lumexis Corporation | Serial networking fiber-to-the-seat inflight entertainment system |
CN102576356A (zh) * | 2009-08-06 | 2012-07-11 | 路美克斯公司 | 串联联网光纤到座位的机内娱乐系统 |
US8659990B2 (en) | 2009-08-06 | 2014-02-25 | Lumexis Corporation | Serial networking fiber-to-the-seat inflight entertainment system |
US20110065303A1 (en) * | 2009-08-14 | 2011-03-17 | Lumexis Corporation | Video display unit docking assembly for fiber-to-the-screen inflight entertainment system |
WO2011020071A1 (fr) * | 2009-08-14 | 2011-02-17 | Lumexis Corp. | Dispositif de connexion d'unité d'affichage vidéo pour un système fibre à l'écran de divertissement à bord |
US8424045B2 (en) * | 2009-08-14 | 2013-04-16 | Lumexis Corporation | Video display unit docking assembly for fiber-to-the-screen inflight entertainment system |
US8416698B2 (en) | 2009-08-20 | 2013-04-09 | Lumexis Corporation | Serial networking fiber optic inflight entertainment system network configuration |
US9036487B2 (en) | 2009-08-20 | 2015-05-19 | Lumexis Corporation | Serial networking fiber optic inflight entertainment system network configuration |
US9344351B2 (en) | 2009-08-20 | 2016-05-17 | Lumexis Corporation | Inflight entertainment system network configurations |
US20110162015A1 (en) * | 2009-10-05 | 2011-06-30 | Lumexis Corp | Inflight communication system |
US20110087758A1 (en) * | 2009-10-13 | 2011-04-14 | Panasonic Corporation | In-flight service system |
US8375105B2 (en) * | 2009-10-13 | 2013-02-12 | Panasonic Corporation | In-flight service system |
US20110134333A1 (en) * | 2009-12-03 | 2011-06-09 | Petrisor Gregory C | Inflight entertainment system video display unit with swappable entertainment processor board |
US20140040524A1 (en) * | 2011-03-30 | 2014-02-06 | Fujitsu Technology Solutions Intellectual Property Gmbh | Rack, server and assembly comprising such a rack and at least one server |
US9582450B2 (en) * | 2011-03-30 | 2017-02-28 | Fujitsu Technology Solutions Intellectual Property Gmbh | Rack, server and assembly comprising such a rack and at least one server |
US20130149894A1 (en) * | 2011-12-09 | 2013-06-13 | Airbus Operations Gmbh | Interface device for cabin monuments |
US8938560B2 (en) * | 2011-12-09 | 2015-01-20 | Airbus Operations Gmbh | Interface device for cabin monuments |
DE102013203841A1 (de) * | 2013-03-06 | 2014-09-11 | Airbus Operations Gmbh | Vorrichtung zur Steuerung einer Vielzahl von Geräten an Bord eines Fahrzeugs |
US10320909B2 (en) | 2013-03-06 | 2019-06-11 | Airbus Operations Gmbh | Apparatus for controlling a plurality of appliances aboard a vehicle |
US20140341107A1 (en) * | 2013-05-16 | 2014-11-20 | Airbus Operations (S.A.S.) | Distributed management of aircraft-ground communications in an aircraft |
US9515722B2 (en) * | 2013-05-16 | 2016-12-06 | Airbus Operations (S.A.S.) | Distributed management of aircraft-ground communications in an aircraft |
EP3031187A4 (fr) * | 2013-08-09 | 2017-03-08 | Hewlett-Packard Enterprise Development LP | Ensemble commutateur |
US9871749B2 (en) | 2013-08-09 | 2018-01-16 | Hewlett Packard Enterprise Development Lp | Switch assembly |
WO2015020665A1 (fr) | 2013-08-09 | 2015-02-12 | Hewlett-Packard Development Company, L.P. | Ensemble commutateur |
WO2015060820A1 (fr) * | 2013-10-22 | 2015-04-30 | Hewlett-Packard Development Company, L.P. | Commutation hybride circuits-paquets |
US10212497B2 (en) | 2013-10-22 | 2019-02-19 | Hewlett Packard Enterprise Development Lp | Hybrid circuit-packet switch |
US10419667B2 (en) * | 2015-09-24 | 2019-09-17 | Airbus Operations Gmbh | Virtual windows for airborne vehicles |
US20170346553A1 (en) * | 2016-05-27 | 2017-11-30 | Corning Optical Communications LLC | Fiber optic assemblies for tapping live optical fibers in fiber optic networks employing wdm technology |
Also Published As
Publication number | Publication date |
---|---|
WO2007035739A2 (fr) | 2007-03-29 |
WO2007035739A3 (fr) | 2007-05-10 |
CN101268640A (zh) | 2008-09-17 |
JP2009508735A (ja) | 2009-03-05 |
EP1938484A2 (fr) | 2008-07-02 |
CN101268640B (zh) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070077998A1 (en) | Fiber-to-the-seat in-flight entertainment system | |
US9532082B2 (en) | Serial networking fiber-to-the-seat inflight entertainment system | |
US8184974B2 (en) | Fiber-to-the-seat (FTTS) fiber distribution system | |
US6058288A (en) | Passenger service and entertainment system | |
US5889775A (en) | Multi-stage switch | |
US20060277589A1 (en) | System And Method For Presenting High-Quality Video | |
US20030194967A1 (en) | Consolidated in-flight entertainment electronic system | |
US20040139467A1 (en) | Aircraft communication distribution system | |
CA2583720A1 (fr) | Systeme permettant de fournir un divertissement en vol avec redondance des donnees | |
CN101808898A (zh) | 用于接入飞行器机载个人信息设备的系统和方法,以及包括这种系统的飞行器 | |
WO2009100352A1 (fr) | Système de communications optiques et procédé de distribution de contenu à bord d’une plate-forme mobile en cours de déplacement | |
US20150341677A1 (en) | Serial networking fiber-to-the-seat inflight entertainment system | |
US20130074108A1 (en) | Seatback Video Display Unit Wireless Access Points for Inflight Entertainment System | |
WO1998011686A3 (fr) | Systeme numerique combine d'audio/video a la demande et de radiodiffusion | |
US11329752B2 (en) | Reconfigurable optical backplane | |
US20130198263A1 (en) | Server system, aircraft or spacecraft and method | |
Hong et al. | Airborne LAN for broadband communications | |
GB2344254A (en) | Rearrangeable multi-stage switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LUMEXIS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PETRISOR, GREGORY C.;REEL/FRAME:018728/0035 Effective date: 20061212 |
|
AS | Assignment |
Owner name: PAR INVESTMENT PARTNERS, L.P., MASSACHUSETTS Free format text: SECURITY INTEREST;ASSIGNOR:LUMEXIS CORPORATION;REEL/FRAME:036729/0778 Effective date: 20150917 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
|
AS | Assignment |
Owner name: GLOBAL EAGLE ENTERTAINMENT, INC., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:LUMEXIS CORPORATION;REEL/FRAME:037834/0212 Effective date: 20160224 |
|
AS | Assignment |
Owner name: GLOBAL EAGLE ENTERTAINMENT INC., CALIFORNIA Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:LUMEXIS CORPORATION;REEL/FRAME:041789/0249 Effective date: 20170328 Owner name: LUMEXIS CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GLOBAL EAGLE ENTERTAINMENT INC.;REEL/FRAME:041788/0954 Effective date: 20170328 Owner name: LUMEXIS CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PAR INVESTMENT PARTNERS, L.P.;REEL/FRAME:041789/0015 Effective date: 20170328 |