US20070071803A1 - Dermal penetration enhancers and drug delivery systems involving same - Google Patents
Dermal penetration enhancers and drug delivery systems involving same Download PDFInfo
- Publication number
- US20070071803A1 US20070071803A1 US11/513,342 US51334206A US2007071803A1 US 20070071803 A1 US20070071803 A1 US 20070071803A1 US 51334206 A US51334206 A US 51334206A US 2007071803 A1 US2007071803 A1 US 2007071803A1
- Authority
- US
- United States
- Prior art keywords
- skin
- active agent
- group
- delivery system
- metered dose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- NVINXWUOGICNLU-UHFFFAOYSA-N CC.CC=CC1=CC=CC=C1 Chemical compound CC.CC=CC1=CC=CC=C1 NVINXWUOGICNLU-UHFFFAOYSA-N 0.000 description 2
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/046—Aerosols; Foams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/44—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
- A61K8/445—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof aromatic, i.e. the carboxylic acid directly linked to the aromatic ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/12—Aerosols; Foams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/12—Aerosols; Foams
- A61K9/122—Foams; Dry foams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M35/00—Devices for applying media, e.g. remedies, on the human body
- A61M35/003—Portable hand-held applicators having means for dispensing or spreading integral media
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/08—Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/10—Drugs for genital or sexual disorders; Contraceptives for impotence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/16—Masculine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/18—Feminine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/20—Hypnotics; Sedatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/02—Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
- A61P33/06—Antimalarials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
- A61P5/26—Androgens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
- A61P5/30—Oestrogens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to percutaneous or transdermal drug delivery. More specifically, the invention relates to a topical absorption/penetration enhancing agent for use in the delivery of a physiologically active agent to an animal, including a human. The invention also relates to a system for the non-occlusive delivery to an animal of a physiologically active agent across a dermal surface or mucosal membrane of the animal. Transdermal drug formulations of the present invention may be used for local application or systemic delivery.
- the prevention or treatment of local or topical disease states or conditions of the skin has traditionally used simple non-occlusive delivery systems.
- These drug delivery systems usually include a volatile and/or non-volatile medium whereby a composition of the drug and medium is topically applied to the skin, generally in the vicinity of or directly on the area of skin to be treated.
- Such delivery systems usually take the form of emulsions, creams, ointments, foams, gels, liquids, sprays and aerosols.
- These delivery systems are generally used to treat skin inflammations, soft-tissue contusions, parasites, fungal and bacterial topical infection and topical analgesia.
- the limitation with this type of delivery system is that systemic drugs are generally not suitable for this type of administration.
- Some major problems with the current state of the art relate to a lack of efficacy of systemic drugs because of the low drug flux across the skin, as observed for drugs such as testosterone, amlodipine, fentanyl, buprenorphine and many others.
- Other drugs such as glyceryl trinitrate, NitrobidTM (a drug for the treatment of angina), are difficult to deliver by these systems due to the inability to adequately control the rate of drug delivery, or the requirement for a very large application area.
- Other problems with the poor dermal penetration of drugs is that the drug can be easily washed off or transferred to clothes, other surfaces or other animals.
- the dermal delivery of drugs may represent the oldest form of drug delivery in human history. Resins and animal fats were probably used by humans in early times to treat damage to the skin resulting from injuries and burns. Such substances for local delivery of active substances remained largely unchanged until as late as this century.
- the concept of transdermal systemic drug delivery was first seriously advocated by Dr Alejandro Zaffaroni in U.S. Pat. Nos. 3,598,122, 3,731,683 and 3,797,494 from the early 1970s.
- Transdermal systemic drug delivery provides an effective method of achieving improved bioavailability for physiologically active substances where the drugs are poorly absorbed by traditional routes of delivery. It can also be used where oral dosing is poorly tolerated or not possible.
- Transdermal formulations are however limited. For example polar drugs tend to penetrate the skin too slowly. Since most drugs are of a polar nature this limitation is significant, as is the fact that many drugs cause irritation at the site of topical application.
- thermodynamic activity of a drug in a dermal formulation is proportional to the concentration of the drug and the selection of the vehicle. According to the laws of thermodynamics, the maximum activity of a drug is related to that of the pure drug crystal.
- penetration enhancers to increase the permeability of the dermal surface and has generally proven to be more convenient and effective.
- transdermal patch devices are like bandages which are attached to the surface of intact skin for prolonged periods of time to allow a desired systemic delivery of a drug or other physiologically active agent.
- transdermal patch devices occlude the skin and trap the drug, together with volatiles and vehicle excipients, between the skin and an outer impermeable backing membrane. The membrane prevents the evaporation or diffusion of vehicle excipients, volatiles and drug into an environment other than the target skin site.
- the prolonged length of time required for transfer of the drug and excipients from the patch into the skin can and often does result in local skin irritation.
- the irritation is caused by prolonged contact on the skin by the drug, volatiles, vehicle excipients, or the adhesive used to attach the patch device to the skin.
- the occlusive nature of the patch device also restricts the natural ability of the skin to “breathe”, increasing the risk of irritation.
- With added problems of complex and costly manufacturing processes for transdermal patch devices there is a need for improved transdermal drug delivery systems.
- the rate of drug delivery across a dermal surface can be increased by dermal penetration enhancers.
- dermal penetration enhancers are often toxic, irritating or allergenic. These enhancers tend to be proton accepting solvents such as dimethylsulfoxide and dimethyacetamide.
- 2-pyrrolidine, N,N-diethyl-m-toluamide (Deet), 1-dodecal-azacycloheptane-2-one (Azone®), N,N-dimethylformamide, N-methyl-2-pyrrolidine and calcium thioglycolate have been reported as effective enhancers.
- difficulties remain with such dermal enhancers because the problem of irritation at the site of application has not been overcome.
- Azone® may be employed as a dermal penetration enhancer if the amount applied is sufficiently small so as not to be appreciably toxic, irritating or allergenic to the animal.
- thermodynamic activity of a drug can be increased by employing supersaturated systems which give rise to unusually high thermodynamic potentials [Coldman, et al., J. Pharm. Sci., 58(9), 119, 1969].
- topical vehicles relying on supersaturation have the major limitation of formulation instability, both prior to and during application to the skin. As such, they are of limited clinical value within a non-occlusive volatile:non-volatile delivery vehicle, because as soon as the formulation comes into contact with a person's clothing or the like, the drug often precipitates; hence the formulation is no longer supersaturated and any enhanced percutaneous absorption ceases.
- German patent application DE 4334553-A1 to Jenapharm GmbH discloses a pharmaceutical liquid system consisting of a drug (diclofenac), a lipophilic phase, a volatile component and appropriate antioxidants, preservatives or stabilisers. This system relies on supersaturation to increase the flux rate of dermal absorption. An application chamber is used to prevent accidental precipitation of the supersaturated drug delivery system over the application time of 150 minutes.
- Japanese patent JP 61-268631 to Showa Denko KK discloses dermal penetration enhancers suitable for use with water-soluble drugs.
- the dermal penetration enhancers disclosed include 1-5 carbon fatty acid esters of para-aminobenzoic acid but their chemical structures are quite distinct from the compounds used in the present invention, and the physicochemical properties of the 1-5 carbon fatty acid esters of para-aminobenzoic acid are markedly different to those of the present invention.
- the octanol-water partition coefficients for all the 1-5 carbon fatty acid esters of para-aminobenzoic acid are at least 200 fold lower than those of the present invention.
- the preferred dermal penetration enhancer disclosed in JP 61-268631 is the 2 carbon fatty acid ester of para-aminobenzoic acid (or Benzocaine) which has an octanol-water partition coefficient which is more than 8000 fold lower than those of the present invention.
- the preferred dermal penetration enhancer disclosed in JP 61-268631 has significant pharmacological properties in that it is a local anaesthetic, which has also been reported to cause irritant and allergic skin reactions.
- the compounds used in the present invention fulfil the ideal properties of a dermal penetration enhancer in that they are non-irritant and pharmacologically inert [Barry, B. W. Vehicle Effect: What Is an Enhancer? In: Topical Drug Bioavailability, Bioequivalence, and Penetration. Shah, V. P.; Maibach, H. I. Eds. Plenum Press: New York, 1993; pp 261-276.].
- a transdermal drug delivery system which comprises at least one physiologically active agent or prodrug thereof and at least one dermal penetration enhancer; characterised in that the dermal penetration enhancer is a safe skin-tolerant ester sunscreen.
- the present invention also provides use of a safe skin-tolerant ester sunscreen as a dermal penetration enhancer.
- the present inventors have found a new class of dermal penetration enhancers being skin-tolerant ester sunscreens, which are generally considered safe by the FDA (U.S.).
- Compounds such as octyl dimethyl-para-aminobenzoate (Padimate O) and octyl salicylate have been extensively used over the last ten to twenty years as safe and effective sunscreens in concentrations up to 8% v/v for Padimate O and 5% v/v for octyl salicylate.
- Dermal Penetration Enhancers of the Present Invention are Preferably Esters of Formula (i):
- R.sup.1 is hydrogen, lower alkyl, lower alkoxy, halide, hydroxy or NR 3 R 4 ;
- R 2 is long chain alkyl
- R 3 and R 4 are each independently hydrogen, lower alkyl or R 3 and R 4 together with the nitrogen atom to which they are attached form a 5- or 6-membered heterocyclic ring;
- n 0 or 1
- q 1 or 2.
- the ester is a long chain alkyl para-aminobenzoate, long chain alkyl dimethyl-para-aminobenzoate, long chain alkyl cinnamate, long chain alkyl methoxycinnamate or long chain alkyl salicylate; most preferably octyl dirnethyl-para-aminobenzoate, octyl para-methoxycinnamate, octyl salicylate or isoamyl salicylate.
- the drug delivery systems according to the invention may comprise any physiologically active agent together with the penetration enhancer incorporated into a dosage form for topical application to the skin or mucous membranes of animals.
- Suitable dosage forms include creams, lotions, gels, ointments, suppositories, mousses, spray, for example nasal sprays, aerosols, buccal and sublingual tablets, gingival and buccal patches or any one of a variety of transdermal devices for use in the continuous administration of systematically active drugs by absorption through the skin, oral mucosa or other membranes.
- suitable vehicles are given in U.S. Pat. Nos.
- Physiologically active agents that may be used in the percutaneous or transdermal drug delivery system of the present invention include any locally or systemically active agents which are compatible with the dermal penetration enhancers of the present invention and which can be delivered through the skin with the assistance of the dermal penetration enhancer to achieve a desired effect.
- active agents grouped by therapeutic class
- Antidiarrhoeals such as diphenoxylate, loperamide and hyoscyamine.
- Antihypertensives such as hydralazine, minoxidil, captopril, enalapril, clonidine, prazosin, debrisoquine, diazoxide, guanethidne, methyldopa, reserpine, trimetaphan.
- Calcium channel blockers such as diltiazem, felodopine, amlodipine, nitrendipine, nifedipine and verapamil.
- Antiarrhyrthmics such as amiodarone, flecainide, disopyramide, procainamide, mexiletene and quinidine.
- Antiangina agents such as glyceryl trinitrate, erythritol tetranitrate, pentaerythritol tetranitrate, mannitol hexanitrate, perhexilene, isosorbide dinitrate and nicorandil.
- Beta-adrenergic blocking agents such as alprenolol, atenolol, bupranolol, carteolol, labetalol, metoprolol, nadolol, nadoxolol, oxprenolol, pindolol, propranolol, sotalol, timolol and timolol maleate.
- Cardiotonic glycosides such as digoxin and other cardiac glycosides and theophylline derivatives.
- Adrenergic stimulants such as adrenaline, ephedrine, fenoterol, isoprenaline, orciprenaline, rimeterol, salbutamol, salmeterol, terbutaline, dobutamine, phenylephrine, phenylpropanolamine, pseudoephedrine and dopamine.
- Vasodilators such as cyclandelate, isoxsuprine, papaverine, dipyrimadole, isosorbide dinitrate, phentolamine, nicotinyl alcohol, co-dergocrine, nicotinic acid, glyceryl trinitrate, pentaerythritol tetranitrate and xanthinol.
- Antimigraine preparations such as ergotamine, dihydroergotamine, methysergide, pizotifen and sumatriptan.
- Anticoagulants and thrombolytic agents such as warfarin, dicoumarol, low molecular weight heparins such as enoxaparin; streptokinase and its active derivatives.
- Haemostatic agents such as aprotinin, tranexamic acid and protamine.
- Analgesics including the opiod analgesics-such as buprenorphine, dextromoramide, dextropropoxyphene, fentanyl, alfentanil, sufentanil, hydromorphone, methadone, morphine, oxycodone, papaveretum, pentazocine, pethidine, phenoperidine, codeine and dihydrocodeine.
- Others include acetylsalicylic acid (aspirin), paracetamol, and phenazone.
- Hypnotics and sedatives such as the barbiturates, amylobarbitone, butobarbitone and pentobarbitone and other hypnotics and sedatives such as choral hydrate, chlormethiazole, hydroxyzine and meprobamate.
- Antianxiety agents such as the benzodiazepines, alprazolam, bromazepam, chlordiazepoxide, clobazam, chlorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, nitrazepam, oxazepam, temazepam and triazolam.
- Neuroleptic and antipsychotic drugs such as the phenothiazines, chlorpromazine, fluphenazine, pericyazine, perphenazine, promazine, thiopropazate, thioridazine and trifluoperazine and the butyrophenones, droperidol and haloperidol and the other antipsychotic drugs such as pimozide, thiothixene and lithium.
- Antidepressants such as the tricyclic antidepressants amitryptyline, clomipramine, desipramine, dothiepin, doxepin, imipramine, nortriptyline, opipramol, protriptyline and trimipramine and the tetracyclic antidepressants such as mianserin and the monoamine oxidase inhibitors such as isocarboxazid, phenelizine, tranylcypromine and moclobemide and selective serotonin re-uptake inhibitors such as fluoxetine, paroxetine, citalopram, fluvoxamine and sertraline.
- CNS Stimulants such as Caffeine
- Antiparkinson agents such as amantadine, benserazide, carbidopa, levodopa, benztropine, biperiden, benzhexol, procyclidine and dopamine-2 agonists such as S(-)-2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetrali- n (N-0923).
- Anticonvulsants such as phenytoin, valproic acid, primidone, phenobarbitone, methylphenobarbitone and carbamazepine, ethosuximide, methsuximide, phensuximide, sulthiame and clonazepam.
- Antiemetics, antinauseants such as the phenothiazines, prochloperazine, thiethylperazine and 5HT-3 receptor antagonists such as ondansetron and granisetron and others such as dimenhydrinate, diphenhydramine, metoclopramide, domperidone, hyoscine, hyoscine hydrobromide, hyoscine hydrochloride, clebopride and brompride.
- phenothiazines such as the phenothiazines, prochloperazine, thiethylperazine and 5HT-3 receptor antagonists
- ondansetron and granisetron and others such as dimenhydrinate, diphenhydramine, metoclopramide, domperidone, hyoscine, hyoscine hydrobromide, hyoscine hydrochloride, clebopride and brompride.
- Non-steroidal anti-inflammatory agents including their racemic mixtures or individual enantiomers where applicable, such as ibuprofen, flurbiprofen, ketoprofen, aclofenac, diclofenac, aloxiprin, aproxen, aspirin, diflunisal, fenoprofen, indomethacin, mefenamic acid, naproxen, phenylbutazone, piroxicam, salicylamide, salicylic acid, sulindac, desoxysulindac, tenoxicam, tramadol and ketoralac.
- non-steroidal antiinflammatory agents which can be formulated in combination with the dermal penetration enhancers include salicylamide, salicylic acid, flufenisal, salsalate, triethanolamine salicylate, aminopyrine, antipyrine, oxyphenbutazone, apazone, cintazone, flufenamic acid, clonixeril, clonixin, meclofenamic acid, flunixin, colchicine, demecolcine, allopurinol, oxypurinol, benzydamine hydrochloride, dimefadane, indoxole, intrazole, mimbane hydrochloride, paranylene hydrochloride, tetrydamine, benzindopyrine hydrochlolde, fluprofen, ibufenac, naproxol, fenbufen, cinchophen, diflumidone sodium, fenamole, flutiazin, metazamide, letimide hydrochloride
- Antirheumatoid agents such as penicillamine, aurothioglucose, sodium aurothiomalate, methotrexate and auranofin.
- Muscle relaxants such as baclofen, diazepam, cyclobenzaprine hydrochloride, dantrolene, methocarbamol, orphenadrine and quinine.
- Agents used in gout and hyperuricaemia such as allopurinol, colchicine, probenecid and sulphinpyrazone.
- Oestrogens such as oestradiol, oestriol, oestrone, ethinyloestradiol, mestranol, stilboestrol, dienoestrol, epioestriol, estropipate and zeranol.
- Progesterone and other progestagens such as allyloestrenol, dydrgesterone, lynoestrenol, norgestrel, norethyndrel, norethisterone, norethisterone acetate, gestodene, levonorgestrel, medroxyprogesterone and megestrol.
- Antiandrogens such as cyproterone acetate and danazol.
- Antioestrogens such as tamoxifen and epitiostanol and the aromatase inhibitors, exemestane and 4-hydroxy-androstenedione and its derivatives. Androgens and anabolic agents such as testosterone, methyltestosterone, clostebol acetate, drostanolone, furazabol, nandrolone oxandrolone, stanozolol, trenbolone acetate, dihydro-testosterone, 17- ⁇ -methyl-19-nortestosterone and fluoxymesterone. 5-alpha reductase inhibitors such as finasteride, turosteride, LY-191704 and MK-306.
- Corticosteroids such as betamethasone, betamethasone valerate, cortisone, dexamethasone, dexamethasone 21-phosphate, fludrocortisone, flumethasone, fluocinonide, fluocinonide desonide, fluocinolone, fluocinolone acetonide, fluocortolone, halcinonide, halopredone, hydrocortisone, hydrocortisone 17-valerate, hydrocortisone 17-butyrate, hydrocortisone 21-acetate methylprednisolone, prednisolone, prednisolone 21-phosphate, prednisone, triamcinolone, triamcinolone acetonide.
- Pituitary hormones and their active derivatives or analogs such as corticotrophin, thyrotropin, follicle stimulating hormone (FSH), luteinising hormone (LH) and gonadotrophin releasing hormone (GnRH).
- FSH follicle stimulating hormone
- LH luteinising hormone
- GnRH gonadotrophin releasing hormone
- Hypoglycaemic agents such as insulin, chlorpropamide, glibenclamide, gliclazide, glipizide, tolazamide, tolbutamide and mefformin.
- Thyroid hormones such as calcitonin, thyroxine and liothyronine and antithyroid agents such as carbimazole and propylthiouracil.
- miscelaneous hormone agents such as octreotide.
- Ovulation inducers such as clomiphene.
- Diuretics such as the thiazides, related diuretics and loop diuretics, bendrofluazide, chlorothiazide, chlorthalidone, dopamine, cyclopenthiazide, hydrochlorothiazide, indapamide, mefruside, methycholthiazide, metolazone, quinethazone, bumetanide, ethacrynic acid and frusemide and pottasium sparing diuretics, spironolactone, amiloride and triamterene.
- Antidiuretics such as desmopressin, Iypressin and vasopressin including their active derivatives or analogs.
- Obstetric drugs including agents acting on the uterus such as ergometrine, oxytociri and gemeprost.
- Prostaglandins such as alprostadil (PGE1), prostacyclin (PGI2), dinoprost (prostaglandin F2-alpha) and misoprostol.
- Antimicrobials including the cephalosporins such as cephalexin, cefoxytin and cephalothin.
- Penicillins such as amoxycillin, amoxycillin with clavulanic acid, am picillin, bacampicillin, benzathine penicillin, benzylpenicillin, carbenicillin, cloxacillin, methicillin, phenethicillin, phenoxymethylpenicillin, flucloxacillin, mezlocillin, piperacillin, ticarcillin and azlocillin.
- Tetracyclines such as minocycline, chlortetracycline, tetracycline, demeclocycline, doxycycline, methacycline and oxytetracycline and other tetracycline-type antibiotics.
- Aminoglycosides such as amikacin, gentamicin, kanamycin, neomycin, netilmicin and tobramycin.
- Antifungais such as amorolfine, isoconazole, clotrimazole, econazole, miconazole, nystatin, terbinafine, bifonazole, amphotericin, griseofulvin, ketoconazole, fluconazole and flucytosine, salicylic acid, fezatione, ticlatone, tolnaftate, triacetin, zinc, pyrithione and sodium pyrithione.
- Antifungais such as amorolfine, isoconazole, clotrimazole, econazole, miconazole, nystatin, terbinafine, bifonazole, amphotericin, griseofulvin, ketoconazole, fluconazole and flucytosine, salicylic acid, fezatione, ticlatone, tolnaftate, triacetin, zinc, pyrithione and sodium pyrithione.
- Quinolones such as nalidixic acid, cinoxacin, ciprofloxacin, enoxacin and norfloxacin.
- Sulphonamides such as phthalylsulphthiazole, sulfadoxine, sulphadiazine, sulphamethizole and sulphamethoxazole.
- Sulphones Such as Dapsone.
- miscellaneous antibiotics such as chloramphenicol, clindamycin, erythromycin, erythromycin ethyl carbonate, erythromycin estolate, erythromycin glucepate, erythromycin ethylsuccinate, erythromycin lactobionate, roxithromycin, lincomycin, natamycin, nitrofurantoin, spectinomycin, vancomycin, aztreonam, colistin IV, metronidazole, tinidazole, fusidic acid and trimethoprim; 2-thiopyridine N-oxide; halogen compounds, particularly iodine and iodine compounds such as iodine-PVP complex and diiodohydroxyquin; hexachlorophene; chlorhexidine; chloroamine compounds; benzoylperoxide;.
- Antituberculosis drugs such as ethambutol, isoniazid, pyrazinamide, rifampicin and clofazimine.
- Antimalarials such as rimaquine, pyrimethamine, chloroquine, hydroxychloroquine, quinine, mefloquine and halofantrine.
- Antiviral agents such as acyclovir and acyclovir prodrugs, famciclovir, zidovudine, didanosine, stavudine, lamivudine, zalcitabine, saquinavir, indinavir, ritonavir, n-docosanol, tromantadine and idoxuridine.
- Anthelmintics such as mebendazole, thiabendazole, niclosamide, praziquantel, pyrantel embonate and diethylcarbamazine.
- Cytotoxic agents such as plicamycin, cyclophosphamide, dacarbazine, fluorouracil and its prodrugs [described,for example, in International Journal of Pharmaceutics 111, 223-233 (1994)], methotrexate, procarbazine, 6-mercaptopurine and mucophenolic acid.
- Anorectic and weight reducing agents including dexfenfluramine, fenfluramine, diethylpropion, mazindol and phentermine.
- Agents used in hypercalcaemia such as calcitriol, dihydrotachysterol and their active derivatives or analogs.
- Antitussives such as ethylmorphine, dextromethorphan and pholcodine.
- Expectorants such as acetylcysteine, bromhexine, emetine, guaiphenesin, ipecacuanha ans saponins.
- Decongestants such as phenylephrine, phenylpropanolamine ans pseudoephedrine.
- Bronchospasm relaxants such as ephedrine, fenoterol, orciprenaline, rimiterol, salbutamol, sodium cromoglycate, cromoglycic acid and its prodrugs [described,for example, in International Journal of Pharmaceutics .7, 63-75 (1980)], terbutaline, ipratropium bromide, salmeterol and theophylline and theophylline derivatives.
- Antihistamines such as meclozine, cyclizine, chlorcyclizine, hydroxyzine, brompheniramine, chlorpheniramine, clemastine, cyproheptadine, dexchlorpheniramine, diphenhydramine, diphenylamine, doxylamine, mebhydrolin, pheniramine, tripolidine, azatadine, diphenylpyraline, methdilazine, terfenadine, astemizole, loratidine and cetirizine.
- Local anaesthetics such as bupivacaine, amethocaine, lignocaine, cinchocaine, dibucaine, mepivacaine, prilocaine and etidocaine.
- Stratum corneum lipids such as ceramides, cholesterol and free fatty acids, for improved skin barrier repair [Man, et al. J. Invest. Dermatol., 106(5), 1096, 1996].
- Neuromuscular blocking agents such as suxamethonium, alcuronium, pancuronium, atracurium, gallamine, tubocurarine and vecuronium.
- Smoking cessation agents such as nicotine, bupropion and ibogaine.
- Insecticides and other pesticides which are suitable for local or systemic application.
- Dermatological agents such as vitamins A and E, vitamin E acetate and vitamin E sorbate.
- Allergens for desensitisation such as house dust mite allergen.
- Nutritional agents such as vitamins, essential amino acids and essential fats.
- Keratolytics such as the alpha-hydroxy acids, glycollic acid and salicylic acid.
- Psychicenergisers such as 3-(2-aminopropyl)indole, 3-(2-aminobutyl)indole, and the like.
- Anti-acne agents such as containing isotretinoin, tretinoin and benzoyl peroxide.
- Anti-psoriasis agents such as containing etretinate, cyclosporin and calcipotriol.
- Anti-itch agents such as capsaicin and its derivatives such as nonivamide [Tsai, et al. Drug. Dev. Ind. Pharm., 20(4), 719, 1994].
- Anticholinergic agents which are effective for the inhibition of axillary sweating and for the control of prickly heat.
- the antiperspirrant activity of agents such as methatropine nitrate, propantheline bromide, scopolamine, methscopolamine bromide, and the new class of soft antiperspirants, quaternary acyloxymethyl ammnonium salts [described, for example, by Bodor et al, J. Med. chem. 23, 474 (1980) and also in United Kingdom Specification No. 2010270, published Jun. 27, 1979].
- physiologically active peptides and proteins small to medium-sized peptides, e.g., vasopressin and human growth hormone.
- the penetration enhancer may be applied before or after the application of the physiologically active agent, if desired.
- the present invention also provides a transdermal drug delivery system which comprises at least one physiologically active agent or prodrug thereof, at least one dermal penetration enhancer and at least one volatile liquid; characterised in that the dermal penetration enhancer is a safe skin-tolerant ester sunscreen.
- a non-occlusive, percutaneous or transdermal drug delivery which comprises:
- the dermal penetration enhancer is adapted to transport the physiologically active agent across a dermal surface or mucosal membrane of an animal, including a human, when the volatile liquid evaporates, to form a reservoir or depot of a mixture comprising the penetration enhancer and the physiologically active agent or prodrug within said surface or membrane; and the dermal penetration enhancer is of low toxicity to, and is tolerated by, the dermal surface or mucosal membrane of the animal.
- the present invention also provides a method for administering at least one systemic or locally acting physiologically active agent or prodrug thereof to a animal which comprises applying an effective amount of the physiologically active agent in the form of a drug delivery system according to the present invention.
- the present invention provides a method for the treatment or prophylaxis of a disease or condition in a animal which comprises administering to a dermal surface or mucosal membrane of said animal in need of such treatment a therapeutically effective amount of a drug delivery system according to the present invention.
- the invention further provides apparatus for the controlled application of an aerosol or spray composition to the dermal surface or mucosal membrane of an animal, which comprises a shroud as described hereinafter.
- the animal is a human but the invention also extends to the treatment of non-human animals.
- the non-occlusive drug delivery system is not supersaturated with respect to the physiologically active agent or prodrug.
- the volatile liquid of the non-occlusive drug delivery system evaporates, the resulting non-volatile composition is rapidly driven into the dermal surface or mucosal membrane. It is possible that as the volatile liquid evaporates, the non-volatile dermal penetration enhancer becomes supersaturated with respect to the active agent. However, it is preferred that any supersaturation does not occur before transport of the resulting non-volatile composition across the epidermal surface has occurred.
- the volatile component of the delivery system evaporates and the area of skin to which the drug delivery system was applied becomes touch-dry.
- said area of skin becomes touch-dry within 10 minutes, more preferably within 3 minutes, most preferably within 1 minute.
- the group of dermal penetration enhancing ester sunscreen compounds of the present invention are particularly suitable for non-occlusive transdermal delivery of active agents through the skin and membranes of a animal. These dermal penetration enhancing compounds are of low toxicity to the skin and are excellent promoters of percutaneous and oral mucosal (especially gingival) absorption.
- known dermal penetration enhancers may be employed in the non-occlusive transdermal drug delivery system of the present invention. These known dermal penetration enhancers include laurocapram (Azone®) and laurocapram derivatives, such as those 1-alkylazacycloheptan-2-ones specified in U.S. Pat. No.
- oleic acid and its ester derivatives such as methyl, ethyl, propyl, isopropyl, butyl, vinyl and glycerylmonooleate, and sorbitan esters such as sorbitan monolaurate and sorbitan monooleate, and other fatty acid esters such as isopropyl laurate, isopropyl myristate, isopropyl palmitate, diisopropyl adipate, propylene glycol monolaurate and propylene glycol monooleate, and long chain alkyl esters of 2-pyrrolidone, particularly the 1-lauryl, 1-hexyl and 1-(2-ethylhexyl) esters of 2-pyrollidene and those dermal penetration enhancers given in U.S.
- 2-pyrrolidone particularly the 1-lauryl, 1-hexyl and 1-(2-ethylhexyl) esters of 2-pyrollidene and those dermal penetration enhancer
- Preferred known dermal penetration enhancers are laurocapram and laurocapram derivatives, such as those 1 -alkylazacycloheptan-2-ones specified in U.S. Pat. No. 5,196,410, and oleic acid and its ester derivatives, such as methyl, ethyl, propyl, isopropyl, butyl, vinyl and glycerylmonooleate, and those given in U.S. Pat. No. 5,082,866, particularly dodecyl (N,N-dimethylamino) acetate and dodecyl (N,N-dimethylamino) propionate and in U.S. Pat. No.
- 4,861,764 particularly 2-n-nonyl-1-3-dioxolane.
- Most preferred known dermal penetration enhancers are oleic acid and its ester derivatives, such as methyl, ethyl, propyl, isopropyl, butyl, vinyl and glycerylmonooleate, and those given in U.S. Pat. No. 5,082,866, particulary dodecyl (N,N-dimethylamino) acetate and dodecyl (N,N-dimethylamino) propionate and in U.S. Pat. No. 4,861,764, particularly 2-n-nonyl-1-3-dioxolane.
- Preferred volatile liquids of the present invention include safe skin-tolerant solvents such as ethanol and isopropanol.
- An aerosol propellant, such as dimethyl ether, may constitute a volatile liquid for the purpose of the present invention.
- the group of dermal penetration compounds identified enhance the absorption of active agents and prodrugs thereof through the skin and mucous membranes while avoiding the significant pharmacological disadvantages and toxicities of prior art enhancers. Additionally, the group of compounds of the invention surprisingly exhibit appreciable penetration into and substantivity for the outer layers of the skin, namely the stratum corneum which has previously presented a daunting barrier to percutaneous drug absorption.
- a pharmaceutical compounding agent in drug delivery systems according to the first aspect of the present invention a pharmaceutical compounding agent, co-solvent, surfactant, emulsifier, antioxidant, preservative, stabiliser, diluent or a mixture of two or more of said components may be incorporated in these systems as is appropriate to the particular route of administration and dosage form.
- the amount and type of components used should be compatible with the dermal penetration enhancers of this invention as well as with the active ingredient.
- a co-solvent or other standard adjuvant, such as a surfactant may be required to maintain the agent in solution or suspension at the desired concentration.
- the pharmaceutical compounding agents can include paraffin oils, esters such as isopropyl myristate, ethanol, silicone oils and vegetable oils. These are preferably used in the range 1 to 50%.
- Surfactants such as ethoxylated fatty alcohols, glycerol mono stearate, phosphate esters, and other commonly used emulsifiers and surfactants preferably in the range of 0.1 to 10% may be used, as may be preservatives such as hydroxybenzoate esters for preservation of the compound preferably in amounts of 0.01% to 0.5%.
- Typical co-solvents and adjuvants may be ethyl alcohol, isopropyl alcohol, acetone, dimethyl ether and glycol ethers such as diethylene glycol mono ethyl ether. These may be used in amounts of 1 to 50%.
- a pharmaceutical compounding agent in drug delivery systems according to the second aspect of the present invention, whilst a pharmaceutical compounding agent, co-solvent, surfactant, emulsifier, antioxidant, preservative, stabiliser, diluent or a mixture of two or more of said components may be incorporated, these must be compatible with the ability of the system to become touch-dry after application.
- the dosage of the physiologically active agent may often be less than that conventionally used. It is proposed that, a dosage near the lower end of the useful range of the particular agent may be employed initially and increased as indicated from the observed response if necessary.
- the concentration of physiologically active agent used in the drug delivery system will depend on its propertes and may be equivalent to that normally utilised for the particular agent in conventional formulations. Both the amount of physiologically active agent and the amount of penetration enhancer will be influenced by the type of effect desired. For example, if a more localised effect is required in treating a superficial infection with an antibacterial agent, lower amounts of physiologically active agents and lower concentrations of enhancer may be appropriate. Where deeper penetration is desired, as in the case of local anaesthesia, a higher concentration of enhancer may be appropriate.
- the concentration of absorption/penetration enhancer may be in the range from 10-10,000 weight percent of absorption/penetration enhancer based upon the weight of active ingredient.
- the ratio of penetration enhancer to active ingredient may vary considerably and will be governed as much as anything, by the pharmacological results that are required to be achieved. In principle, it is desirable that as little absorption enhancer as possible is used. On the other hand, for some actives, it may well be that the upper range of 10,000% by weight will be required. It is preferred that the penetration enhancer and active are in approximately equal proportions.
- the drug delivery system delivers the physiologically active agent to a animal without the need for an occlusive patch device.
- the efficacy of known systemic drug delivery systems, and in particular transdermal patch devices is maintained, and in some cases is increased by use of non-occlusive, percutaneous or transdermal drug delivery systems of the present invention.
- a particular advantage of the non-occlusive drug delivery system of the present invention is that patient compliance is improved as the system does not occlude the skin or membrane and therefore local irritation and allergic sensitisation problems arising from prolonged exposure of the skin to both the delivery system of occlusive transdermal patch devices and the adhesive used to affix these patches to the skin are reduced.
- mucous membrane refers generally to any of the mucous membranes in the body, absorption through the mucous membranes of the oral cavity which is of particular interest.
- buccal, sublingual, gingival and palatal absorption are specifically contemplated by the present invention.
- the penetration enhancers of the present invention are used to improve absorption through those oral tissues which most resemble the skin in their cellular structure, i.e. the gingiva and palate.
- physiologically active agent is used herein to refer to a broad class of useful chemical and therapeutic agents.
- physiologically active in describing the agents contemplated herein is used in a broad sense to comprehend not only agents having a direct pharmacological effect on the host, but also those having an indirect or observable effect which is useful in the medical arts.
- a “prodrug” of a physiologically active agent herein means a structurally related compound or derivative of an active compound which in the animal body is converted to the desired physiologically active compound.
- the prodrug itself may have little or none of the desired activity.
- percutaneous and “transdermal” are used herein in the broadest sense to refer to being able to pass through unbroken skin.
- skin penetration enhancer is used herein in its broadest sense to refer to an agent which improves the rate of percutaneous transport of active agents across the skin for use and delivery of active agents to organisms such as animals, whether it be for local application or systemic delivery.
- non-occlusive is used herein in its broadest sense to refer to not trapping or closing the skin to the atmosphere by means of a patch device, fixed reservoir, application chamber, tape, bandage, sticking plaster, or the like which remains on the skin at the site of application for a prolonged length of time.
- stratum corneum is used herein in its broadest sense to refer to the outer layer of the skin, which is comprised of (approximately 15) layers of terminally differentiated keratinocytes made primarily of the proteinaceous material keratin arranged in a ‘brick and mortar’ fashion with the mortar being comprised of a lipid matrix made primarily from cholesterol, ceramides and long chain fatty acids.
- the stratum corneum creates the rate-limiting barrier for diffusion of the active agent across the skin.
- skin-depot is used herein in its broadest sense to refer to a reservoir or deposit of active agent and dermal penetration enhancer within the stratum corneum, whether it be intra-cellular (within keratinocytes) or inter-cellular.
- volatile:non-volatile liquid vehicle is used in the art to refer to a liquid pharmaceutical vehicle comprising a volatile liquid mixed with a non-volatile liquid vehicle, such as a dermal penetration enhancer.
- a system or vehicle comprising a volatile liquid mixed with a non-volatile dermal penetration enhancer when described herein is used in its broadest sense to include those systems known as volatile:non-volatile liquid vehicles.
- Alkyl and alkoxy groups referred to herein may be either straight chain or branched.
- the term “lower alkyl” means alkyl groups containing from 1 to 5 carbon atoms.
- the term “lower alkoxy has a similar meaning.
- the term “long chain alkyl” means alkyl groups containing from 5 to 18 carbon atoms, more preferably 6 to 18 carbon atoms.
- the term “halide” means fluoride, chloride, bromide or iodide.
- heterocyclic ring is herein defined to mean a ring of carbon atoms containing at least one hetero atom, and further the ring may be saturated or unsaturated to any allowable degree.
- ultraviolet screen is used herein in its broadest sense to refer to a chemical agent capable of-filtering out ultraviolet light.
- the non-occlusive, percutaneous or transdermal drug delivery system of the present invention enables a wide range of physiologically active agents to be delivered through the skin to achieve a desired systemic effect.
- the drug delivery system preferably comprises the active agent intimately mixed with a non-volatile dermal penetration enhancer and a volatile liquid. Where the drug delivery system is applied to the skin, the active agent and non-volatile liquid are thermodynamically driven into the skin as the volatile liquid evaporates. Once within the skin the non-volatile liquid may either disrupt the lipid matrix and/or act as a solubilizer to allow an enhanced penetration rate of the active agent through the skin and into the subject being treated. In this way, the dermal penetration enhancer acts as a vehicle and many systemic active agents are able to be transdermally administered to an animal.
- the non-volatile dermal penetration enhancer is readily absorbed into the stratum corneum in sufficient quantities to form a reservoir or depot of the dermal penetration enhancer within the stratum corneum.
- the dermal penetration enhancer also contains the active agent to be administered and as the dermal penetration enhancer crosses through the skin to form the skin-depot, the active agent contained therein is transported through the skin and contained within the depot.
- These depots are believed to form within the lipid matrix of the stratum corneum wherein the lipid matrix creates a rate-limiting barrier for diffusion of the active agent across the skin and allows the dermally administered active agent to be systemically released over a period of time, usually up to 24 hours.
- the outer surface of the skin is then substantially free of active agent and non-volatile dermal penetration enhancer. Normal touching, wearing of clothes, rinsing or even washing of the skin will not, to any significant extent, affect delivery of the drug or displace either the active agent or the non-volatile dermal penetration enhancer, once the volatile liquid has evaporated.
- the rate of absorption of the physiologically active agent via the stratum corneum is increased by the non-volatile dermal penetration enhancer.
- the active agent may be dissolved or suspended in the dermal penetration enhancer at the time when it is being transported from the surface of the skin and into the stratum corneum.
- the performance of the dermal penetration enhancer to deliver a desired active agent varies with differences in both the nature of the dermal penetration enhancer and active agent. It is understood that different dermal penetration enhancers may need to be selected to be appropriate for delivery of various active agents.
- Physiologically active agents that may be used in the percutaneous or transdermal drug delivery system of the present invention include any locally or systemically active agents which are compatible with the non-volatile dermal penetration enhancers and volatile liquids of the present invention and which can be delivered through the skin with the assistance of the dermal penetration enhancer to achieve a desired effect.
- Preferred active agents include steroids and other hormone derivatives, more preferably testosterone, oestradiol, ethinyloestradiol, progesterone, norethisterone acetate and gestodene; and non-steroidal anti-inflammatory drugs, preferably ibuprofen, ketoprofen, flurbiprofen, naproxen and diclofenac; and opioid analgesics, preferably fentanyl and buprenorphine; and antinauseants, preferably prochlorperazine, metochlopramide, ondansetron and scopolamine; and antioestrogens, preferably tamoxifen and epitiostanol and the aromatase inhibitors, preferably exemestane and 4-hydroxy-androstenedione and its derivatives; and 5-alpha reductase inhibitors, preferably finasteride, turosteride, LY191704 and MK-306; and anxiolytics,
- Diseases or conditions that may be treated by using the drug delivery system and methods of the present invention include, but are not limited to, male hormone replacement in testosterone deficient hypogonadal men, female hormone replacement therapy for postmenopausal women, androgen replacement therapy for females lacking libido, male contraception, female contraception, soft tissue injury, narcotic withdrawal, severe post-operative pain, motion sickness, oestrogen dependent breast cancer, prostatic enlargement and/or prostatic cancer, alopecia and acne, anxiety disorders, male impotence, Raynauds syndrome and varicose veins, sleep disorders such as jetlag, herpes virus infections, deep vein thrombosis, migraine, high blood pressure, malaria, diagnosis of cystic fibrosis and asthma, particularly nocturnal asthma, smoking. cessation, psychotic disorders, severe postnatal depression, virilisation and obesity.
- the drug delivery system of the present invention may be applied to the skin by means of an aerosol, spray, pump-pack, brush, swab, or other applicator.
- the applicator provides either a fixed or variable metered dose application such as a metered dose aerosol, a stored-energy metered dose pump or a manual metered dose pump.
- the application is most preferably performed by means of a topical metered dose aerosol combined with an actuator nozzle shroud which together accurately control the amount and/or uniformity of the dose applied.
- One function of the shroud is to keep the nozzle at a pre-determined height above, and perpendicular to, the skin or membrane to which the drug delivery system is being applied.
- shroud This function may also be achieved by means of a spacer-bar or the like.
- Another function of the shroud is to enclose the area above the skin or membrane in order to prevent or limit bounce-back and/or loss of the drug delivery system to the surrounding environment.
- the area of application defined by the shroud is substantially circular in shape.
- the drug delivery system may be propelled by either pump pack or more preferably by the use of propellants such as hydrocarbons, hydro fluorocarbons, nitrogen, nitrous oxide, carbon dioxide or ethers, preferably dimethyl ether.
- propellants such as hydrocarbons, hydro fluorocarbons, nitrogen, nitrous oxide, carbon dioxide or ethers, preferably dimethyl ether.
- the non-occlusive, drug delivery system is preferably in a single phase system as this allows less complicated manufacture and ease of dose uniformity. It may also be necessary to apply a number of dosages on untreated skin to obtain the desired result.
- FIG. 1 is a diagrammatic representation showing the halves of a stainless steel flow-through diffusion cell.
- FIG. 2 is a graphical representation showing the effect of pretreatment with various enhancers on the diffusion of ketoprofen across shed snake skin.
- FIG. 3 is a graphical representation showing the effect of various enhancers on the diffusion of ketoprofen across shed snake skin.
- FIG. 4 is a graphical representation showing the diffusion of ibuprofen from gel formulations across shed snake skin.
- FIG. 5 is a graphical representation showing the clasma profile of testosterone in domestic weanling pigs after a single application of a metered dose topical aerosol. Error bars represent standard error of the mean.
- FIG. 6 is a graphical representation showing the plasma profile of estradiol in domestic weanling pigs after a single application of a metered dose topical aerosol. Error bars represent standard error of the mean.
- FIG. 7 is a graphical representation showing the plasma profile of testosterone in castrated domestic weanling pigs after the sixth once daily application of a metered dose topical aerosol. Each point represents the mean of 4 individual values and the error bars represent standard error of the mean. Testosterone levels shown are baseline subtracted and the mean baseline ( ⁇ sem) on Day 1 at 0 h was 0.8 ng ⁇ ml ⁇ 1 ⁇ 0.3 ng ⁇ ml ⁇ 1 .
- FIG. 8 is a graphical representation showing the predicted testosterone input across human skin in vivo and children's python snake skin in vitro. Error bars represent standard error of the mean.
- FIG. 9 is a graphical representation showing the predicted testosterone plasma concentration in hypogonadal males after once daily dosing to steady-state with a metered dose topical spray.
- the effectiveness of the penetration enhancers are illustrated by measuring the skin penetration of formulations of a number of representative physiologically active agents with the dermal penetration enhancers. Also, the skin penetration of physiologically active agents was measured with other prior art penetration enhancers as well as formulations of the physiologically active agents with common adjuvants, which serve as control formulations. The comparisons made generally consisted of measuring the relative penetration through shed snake skin of the various formulations. In every case, those formulations which contained the dermal penetration enhancers delivered more of the active agent through the skin than did the corresponding control formulation or commercial preparation.
- Shed snake skin has shown to be a suitable model membrane for human skin by Itoh, et al., Use of Shed Snake Skin as a Model Membrane for In Vitro Percutaneous Penetration Studies: Comparison with Human Skin, Pharm. Res., 7(10), 1042-1047, 1990; and Rigg, et al., Shed Snake Skin and Hairless Mouse Skin as Model Membranes for Human Skin During Permeation Studies, J. Invest. Dermatol., 94; 235-240, 1990.
- mice of 4-8 weeks of age were used.
- the mouse skin was excised and full-thickness skin was isolated from the torso, the subcutaneous fat and connective tissue removed and the skin cut into circles of 2.0 cm 2 , then placed into the diffusion cells for flux measurements.
- guinea pigs of either sex were used.
- the hair on the back flank and back was removed with the aid of depilatory wax (Arielle®) under halothane anaesthesia.
- the guinea pigs were killed and the skin removed and placed on a chilled slab.
- the subcutaneous fat and connective tissue removed and the skin cut into circles and then placed into the diffusion cells for flux measurements.
- the guinea pigs were housed in individual cages and the topical hydroquinone formulations were applied to the hair-free areas.
- Each guinea pig received the test or control formulation on the corresponding contralateral site, thus allowing each animal to act as its own control.
- the work using Hydroquinone was performed using vertical Franz diffusion cells which had an effective diffusional area of 1.3 cm 2 , a receiver chamber temperature of 37 or 32 degrees Celsius, and receiver chamber volume of 13 mL of normal saline.
- FIG. 1 A modified stainless steel flow-through diffusion cell assembly based on that first shown by Cooper in J. Pharm. Sci. 73(8), 1984, was used to perform the experiments on diffusion of the drugs from various donor compositions through the skin (either snake or hairless mouse).
- the flow-through diffusion cell used to perform the present experiments is shown in FIG. 1 .
- the cell consists of an upper section ( 1 ) and a lower section ( 2 ).
- a stainless steel wire mesh support ( 4 ) is housed in a recess ( 5 ) in the lower section of the cell.
- the bottom section of the cell is provided with inlet ( 6 ) and outlet ( 7 ) tubes which connect to the bottom of the recess ( 5 ) and through which a receptor solution was pumped by a microcassette peristaltic pump (Watson Marlow, UK) (not shown) at a constant flow rate to maintain sink conditions.
- the receptor solution consisted of 50% propylene glycol in water, made isotonic with 0.9% sodium chloride and preserved with 0.1% sodium azide or 0.1% sodium fluoride. To prevent air bubbles forming under the skin, the wire mesh ( 4 ) ensures turbulent receptor flow.
- the recess ( 5 ) is filled with receptor solution prior to placing.the skin in the cell.
- the receptor solution was degassed by spraying the solution into fine droplets under vacuum.
- the diffusion cells were set on a hollow metal heater bar which maintained normal skin temperature of 32° C. ( ⁇ 5° C.) means of heated, circulating water (Thermomix, Braun, Germany). Each diffusion cell had its receptor solution collected via tube ( 7 ) into polyethylene vials (6 ml liquid scintillation vials, Packard instruments, Netherlands) at two or four hour intervals for 24 hours, by means of an automated rotating fraction collector (Retriever II, ISCO, Australia). The amount of drug in each vial containing receptor solution was determined by reverse phase HPLC. Prior to analysis each vial was weighed with an analytical balance (Mettler AT261, Australia) and the volume calculated from the density of the receptor solution which was 1.0554 g/cm 3 at 22° C.
- the concentration of applied drug in each diffusion cell sample was measured using high pressure liquid chromatography (HPLC).
- HPLC high pressure liquid chromatography
- the receptor solution was assayed neat, with 20 microL injected (WISP 712 autoinjector, Waters, Australia) into a freshly prepared and degassed (by filtering) mobile phase.
- Each drug was separated using a pre column fitted with a C18 insert and a ⁇ Bandapak C18 (30 cm ⁇ 3.9 nm) HPLC column (Waters).
- Absorbance was measured at the appropriate wavelength using a Waters tuneable absorbance detector and peak area was plotted and integrated using a Shimadzu C-R3A chromatopac integrator.
- the results reported for each experiment are the average values of four replicate diffusion cells uriless stated otherwise.
- the assay conditions used for each different drug are given in each example.
- the in vitro diffusion cell method described above was used to compare the penetration of 400 microL of 2% w/v ketoprofen in 70% v/v aqueous ethanol applied to the shed snake skin following the application of 400 microL of the different dermal penetration enhancers in a 2% v/v solution in 70% ethanol, 2 hours prior to the application of the ketoprofen.
- the control experiment involved application of 400 microL of 70% aqueous ethanol alone for 2 hours, followed by application of 400 microL of the 2% ketoprofen solution. Samples were assayed according to the method described previously. The detection wavelength was 255 nm and the mobile phase consisted of acetonitrile:water (55:45) made to pH 3.0 with orthophosphoric acid (BDH, Australia).
- FIG. 2 shows the representative mean cumulative amount versus time plots for ketoprofen.
- the in vitro diffusion cell method described above was used to compare the penetration of 30 microL of the commercial formulation IndosprayTM (Rhone-Poulenc Rorer, Australia), which is a 1.0% w/w solution of indomethacin in 95% v/v ethanol when applied to the snake skin.
- 10 microL of increasing concentrations of Octyl dimethyl PABA in absolute ethanol were applied 30 mins prior to the application of the indomethacin formulation.
- the control experiment involved application of 10 microL of absolute ethanol alone 30 mins prior to the application of the indomethacin formulation. Samples were assayed according to the method described previously.
- the detection wavelength was 254 nm and the mobile phase consisted of acetonitrile:water (55% v/v:45% v/v) made to pH 3.0 with orthophosphoric acid.
- Table 2 shows the mean flux of indomethacin across the snake skin over 24 hours. TABLE 2 Mean flux +/ ⁇ Enhancer std error p value conc.
- Example 2 The same protocol as Example 1 was repeated, except the dermal penetration enhancers were included in the ketoprofen formulation, such that 400 microL of 2% w/v ketoprofen and 2% v/v dermal penetration enhancer in 70% v/v aqueous ethanol was applied to the skin from the start of the diffusion experiment.
- Table 3 shows the mean flux of ketoprofen across the snake skin over 24 hours.
- FIG. 3 shows the representative mean cumulative amount versus time plots for ketoprofen.
- Table 4 shows the mean flux (% dose/h)+/ ⁇ the standard error of the mean of hydroquinone (HQ) penetrated across full-thickness guinea pig skin in vitro from a gel formulation applied to the skin at a dose of 15 mg/cm 2 .
- Radio labelled hydroquinone C14, Amersham
- 200 microL of receptor solution was withdrawn with a micro-pipefte and replaced with 200 microL of fresh normal saline.
- the 200 microL samples were added to 800 microL of water which in turn was added to 10 mL of scintillation cocktail consisting of TolueneTM 1L, PPO 5 g, POPOP 0.1 g and Triton.
- Table 5 shows the effect of hydroquinone (HQ) penetration across full-thickness guinea pig skin in vivo on the mean melanin content (mg/cm 2 )+/ ⁇ standard error of the mean following the application of a finite dose solution (5 microL/cm 2 ).
- Melanin content was measured by reflectance absorbance from the treated and untreated skin according to the methods outlined in the PhD thesis of Anderson, J. R., titled The Development of Techniques for Measuring the Bioavailability of Topical Depigmenting Agents (School of Pharmaceutics, Contemporary College of Pharmacy Ltd., Parkville, Victoria, Australia, December, 1985).
- Enhancement Melanin p value ratio HQ concentration/ content relative to (enhancer/ Enhancer type ( ⁇ g/cm 2 ) control control) HQ 1% w/v control * 57.5 ⁇ 3.7 — HQ 1% w/v, Octyl dimethyl 38.2 ⁇ 3.1 0.002* 1.5 PABA 2% v/v HQ 2% w/v control ⁇ circumflex over ( ) ⁇ 36.8 ⁇ 8.1 — HQ 2% w/v, Azone 2% v/v 39.5 ⁇ 9.6 0.35 ⁇ circumflex over ( ) ⁇ 0.93 n 8, statistically significant differences tested for using a Student t-test.
- Table 6 shows the median amount ( ⁇ g/cm 2 ) of ibuprofen penetrated across full-thickness hairless mouse skin in vitro when 400 microL of a 2% w/v ibuprofen and 2% v/v dermal penetration enhancer in 70% v/v aqueous ethanol is applied. Again Azone was selected as the standard for comparison and the control formulation contained no penetration enhancer.
- the detection wavelength was 210 nm and the mobile phase consisted of acetonitrile:water (55:45) made to pH 3.0 with orthophosphoric acid.
- Table 7 shows the mean amount ( ⁇ /cm 2 )+/ ⁇ standard error of the mean of testosterone penetrated across dermatomed (300 ⁇ m thickness) neonate porcine skin in vitro when 10 microL of a 12% w/v testosterone and 8% v/v of dermal penetration enhancer in absolute ethanol was applied.
- the detection wavelength was 241 nm and the mobile phase consisted of acetonitrile:water (55% :45%).
- FIG. 4 shows the cumulative amount of ibuprofen transferred across shed snake skin versus time for gel formulations of ibuprofen. 5 mg of each gel was applied to the skin. Samples were assayed by the HPLC method mentioned in Example 5. The gels were made to a final concentration of 5% w/w ibuprofen and 2% w/w dermal penetration enhancer by first dissolving them in 50% v/v aqueous ethanol then adding 2% w/w Sepigel-305TM (SEPPIC, Paris, France) as a gelling agent and stirring at room temperature until a gel was formed.
- SEPPIC SePPIC, Paris, France
- This formulation was compared with the commercial IBUGELTM (Dermal Laboratories, UK) formulation which contained 5% w/w ibuprofen in a ethanolic gel base formed with carbopol. As well, 2% w/w dermal penetration enhancer was added to the IBUGEL by simple mixing. The ibuprofen contents of each gel were determined by HPLC and were found to be 5.02, 5.75 and 5.43 mg/g for the gel using Sepigel-305TM and enhancer, the IBUGEL and the IBUGEL with enhancer; respectively.
- the flux enhancement ratios were 6.15 and 2.61 for the gel using Sepigel-305TM and enhancer and the IBUGEL with enhancer (n 3) respectively when compared to the IBUGEL (p ⁇ 0.05).
- Table 8 shows the mean flux (g/cm 2 ⁇ h) of hydrocortisone penetrated across snake skin in vitro when 400 microL of 1% w/v hydrocortisone and 2% v/v octyl dimethyl PABA in 70% v/v aqueous ethanol was applied.
- the control formulation contained no penetration enhancer.
- the detection wavelength was 242 nm and the mobile phase consisted of acetonitrile:water (35%:65%).
- Table 9 shows the mean flux over 24 h of ketoprofen from a transdermal patch using the enhancer octyl salicylate compared with a control without enhancer.
- the patches were prepared by dissolving 300 mg of ketoprofen, 400 mg of penetration enhancer, 300 mg of polyethylene glycol 400 and 800 mg of hydroxypropylcellulose in 20 mL of ethanol and stirring until viscous. This was then poured onto a clean glass plate and dried at 40 degrees Celsius for 1 h. The thickness of this film was approximately 1 mm. Circles of 0.8 cm 2 were then cut out of this matrix and stuck onto the middle of 2.0 cm 2 circles of OPSITETM adhesive bandage. This patch was then stuck onto 2.0 cm 2 pieces of snake skin and placed in the diffusion cell. The.
- Mean flux +/ ⁇ std error p value microg/ relative to Enhancement Enhancer type cm 2 ⁇ h
- the effectiveness of the dermal penetration enhancers are illustrated by measuring the skin penetration of physiologically active agents. Also, the skin penetration of the dermal penetration enhancers of this invention were compared with that of other penetration enhancers as well as formulations of bio-affecting agents with common adjuvants. The comparisons made generally consisted of measuring the relative penetration through shed snake skin of the various formulations. In the examples, the in vitro skin penetration studies were performed using the same in vitro diffusion cell apparatus as previously. mentioned.
- FIG. 5 shows the mean cumulative amount of testosterone which crosses the shed snake skin versus time.
- each formulation applied to the skin was 5 microL/cm 2 .
- Each formulation contained 12% w/v testosterone in absolute ethanol.
- the dose was applied with a GC syringe. All except for the control formulation had a penetration enhancer added at a concentration of 8% v/v.
- Table 10 shows the mean flux of testosterone over 24 h for each of the formulations and the degree of enhancement expressed as the ratio of the mean flux of the penetration enhancer formulation divided by the mean flux of the control formulation.
- Table 11 shows the mean flux over 24 h and the enhancement ratios for a number of different preferred compounds after they are applied to the skin at a dose of 5 microL/cm 2 .
- the two penetration enhancers given as examples are octyl dimethyl PABA and Azone. Both penetration enhancers were again at a concentration of 8% v/v within the formulations and control was without a penetration enhancer.
- a concentration of 2% w/v oestradiol was used in the formulation and detection wavelength was 212 nm and the mobile phase consisted of acetonitrile:water (40%:60%).
- a concentration of 6% w/v progesterone was used in the formulation, the detection wavelength was 240 nm and the mobile phase consisted of acetonitrile:water (55%:45%).
- a concentration of 6% w/v norethisterone acetate was used in the formulation, the detection wavelength was 240 nm and the mobile phase consisted of acetonitrile:water (55%:45%) adjusted to pH 3.0 with orthophosphoric acid.
- a concentration of 20% ibuprofen was used in the formulation, the detection wavelength was 210 nm and the mobile phase consisted of acetonitrile:water (55%:45%) adjusted to pH 3.0 with orthophosphoric acid.
- the flux values obtained for these drugs are clinically relevant, given for example that in hormone replacement therapy for postmenopausal women the current transdermal delivery systems aim to provide 25 to 100 ⁇ g of estradiol per day and 250 ⁇ g of norethisterone per day (EstracombiTM) and in testosterone replacement therapies the goal ranges from replacing 0.1 to 0.3 mg per day in women lacking testosterone (U.S. Pat. No. 5,460,820), to 5 to 6 mg per day in testosterone deficient hypogonadal men (Androderm.TM.) and up to 6 to 10 mg per day for male contraception (ref. J. Clin. Endocrinol. Metab., Vol. 81, 4113-4121, 1996).
- ibuprofen and flurbiprofen increased drug flux is desirably predicated on the basis that this will lead to higher local concentrations of the active drug at the target site of pain and inflammation.
- FIGS. 5 and 6 show the mean plasma levels of testosterone and oestradiol respectively following application of the topical transdermal aerosols (described previously in examples 15 and 14 respectively) to domestic weanling pigs (7 to 8 weeks old) in vivo.
- Plasma testosterone and oestradiol levels were determined by high specificity radioimmunoassays, using commercially available assay kits.
- the oestradiol assay (Orion Diagnostica, Finland) was conducted according to the manufacturers' directions.
- the testosterone assay (Pantex, Calif., USA) was also conducted according to the directions, with the procedure modified to include an extraction step (90% diethylether/10% ethyl acetate) to remove any species specific matrix effects.
- the control formulations were the same aerosol systems as above, except they did not contain any dermal penetration enhancer.
- the male pigs receiving the testosterone dose were surgically castrated 1 week prior to the commencement of the study to remove any interference from endogenous testosterone production and at the same time a cephalic cannula was inserted to facilitate biood sampling. These procedures were performed under general anaesthetic halothane (FluothaneTM).
- a single application of 9 sprays over 180 cm 2 was applied at 9 am and blood samples were taken at the intervals shown over 24 h.
- the mean body weight of the pigs were 19.9 kg+/ ⁇ 0.8 kg and 17.2 kg +/ ⁇ 0.4 kg for the test and control groups respectively.
- the area under the plasma concentration versus time curve (AUC) was 2.2 fold greater (p ⁇ 0.05) for the penetration enhancer formulation compared with control.
- the calculated results for AUC were normalised to a body weight of 20. kg assuming volume of distribution is directly proportional to body weight.
- a single application of 3 sprays over 30 cm 2 was applied at 9 am and blood samples were taken at the intervals shown over 24 h.
- the mean body weights of the pigs were 21.3 kg+/ ⁇ 1.0 kg and 17.5 kg+/ ⁇ 0.4 kg for the test and control group respectively.
- the area under the plasma versus time curve (AUC) was 14.1 fold greater (p ⁇ 0.0003) for the penetration enhancer formulation compared with control.
- the calculated results for AUC were normalised to a body weight of 20 kg assuming volume of distribution is directly proportional to body weight.
- FIG. 7 shows the mean plasma level of testosterone versus time over 24 h. The results shown are baseline testosterone subtracted and are representative of the expected steady-state profile for testosterone.
- FIG. 8 shows the controlled nature of testosterone penetration across the skin in vivo, as well as the good predictive capability of the in vitro shed snake skin diffusion model for ascertaining the likely penetration of the testosterone across human skin. It is therefore envisaged that the flux values obtained in examples 10 and 11 will be very similar to those obtained in humans in a clinical setting.
- FIG. 9 depicts the predicted plasma levels of testosterone in male subjects of a nominal weight of 70 kg based upon the clearance value of testosterone in males shown above.
- the 95% confidence interval of the testosterone plasma level in normal healthy adult males is given (Mazer, et al., J. Control. Releas., 19, 347-362, 1992).
- this delivery system is quite capable of achieving the desired level of testosterone replacement in testosterone deficient hypogonadal men based upon on simple once daily application of the delivery system.
- a plastic-coated glass aerosol container of 10 ml fill volume was fitted with a pharmaceutical grade metered-dose valve of a nominated discharge volume (50 ⁇ l for the oestradiol aerosol and 100 ⁇ l for the testosterone aerosol).
- a stainless steel O-ring locks the valve in place on the aerosol container.
- the aerosol container is charged with at least one physiologically active agent, non-volatile dermal penetration enhancer, volatile liquid carrier and optionally any other diluents, carriers, surfactants or additives followed by the propellant according to any suitable process.
- a pharmaceutical grade spray nozzle and an aerosol shroud is fitted to keep the spray nozzle perpendicular to the skin at a height of 50 mm.
- the nozzle shroud envelopes the spray, providing an effective closed system which deposits the active agent into the skin, and such that when the spray hits the surface of the skin it does not undergo any appreciable bounce-back into the atmosphere.
- a defined dose of active agent and penetration enhancer is forced through a uniform spray nozzle at a constant pressure form a defined height to give a uniform dose per cm 2 .
- One spray of 50 ⁇ l will apply 1 mg of 17- ⁇ -oestradiol over an area of approximately 10 cm ⁇ sup ⁇ 2. 3 sprays will be administered to the forearm skin, applying a dose of 3 mg over approximately 30 cm 2 .
- Testosterone Metered-Dose Transdermal Aerosol Concentration Active ingredient Testosterone 12% w/v
- Non-volatile dermal penetration enhancer Octyl dimethyl-para-aminobenzoate 8% v/v
- Volatile liquid Absolute ethanol (AR) 50% v/v
- Volatile propellant Dimethyl ether to give a final formulation pressure of 35% v/v 2.4 kp/cm 2 (35 psi).
- One spray of 100 ⁇ l will apply 12 mg of testosterone over an area of approximately 20 cm 2 .
- 9 sprays will be administered to a defined area of skin on the torso (rib cage), applying a dose of 108 mg over approximately 180 cm 2
- Analgesic mousse with penetration enhancement Ingredient Concentration Ibuprofen 5% w/w 2-ethylhexyl-p-methoxycinnamate 5% w/w nonionic emulsifier 2.5% w/w ethyl alcohol (95%) 32.5% w/w purified water 50% w/w hydrocarbon propellant 5% w/w
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Dispersion Chemistry (AREA)
- Birds (AREA)
- Endocrinology (AREA)
- Dermatology (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Heart & Thoracic Surgery (AREA)
- Virology (AREA)
- Hematology (AREA)
- Pulmonology (AREA)
- Pain & Pain Management (AREA)
- Anesthesiology (AREA)
- Reproductive Health (AREA)
- Emergency Medicine (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Tropical Medicine & Parasitology (AREA)
- Gynecology & Obstetrics (AREA)
- Rheumatology (AREA)
- Otolaryngology (AREA)
- Toxicology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
Abstract
The invention relates to a method for treatment or prophylaxis of a disease or condition in an animal comprising administering to a mucosal membrane of said animal in need of such treatment a therapeutically effective amount of a drug delivery system comprising at least one physiologically active agent or prodrug thereof and at least one penetration enhancer selected from safe ester sunscreens.
Description
- This application is a continuation in part application Ser. No based on 09/910,780 filed on Jul. 24, 2001.
- The present invention relates to percutaneous or transdermal drug delivery. More specifically, the invention relates to a topical absorption/penetration enhancing agent for use in the delivery of a physiologically active agent to an animal, including a human. The invention also relates to a system for the non-occlusive delivery to an animal of a physiologically active agent across a dermal surface or mucosal membrane of the animal. Transdermal drug formulations of the present invention may be used for local application or systemic delivery.
- The prevention or treatment of local or topical disease states or conditions of the skin has traditionally used simple non-occlusive delivery systems. These drug delivery systems usually include a volatile and/or non-volatile medium whereby a composition of the drug and medium is topically applied to the skin, generally in the vicinity of or directly on the area of skin to be treated. Such delivery systems usually take the form of emulsions, creams, ointments, foams, gels, liquids, sprays and aerosols. These delivery systems are generally used to treat skin inflammations, soft-tissue contusions, parasites, fungal and bacterial topical infection and topical analgesia. The limitation with this type of delivery system is that systemic drugs are generally not suitable for this type of administration. Some major problems with the current state of the art relate to a lack of efficacy of systemic drugs because of the low drug flux across the skin, as observed for drugs such as testosterone, amlodipine, fentanyl, buprenorphine and many others. Other drugs, such as glyceryl trinitrate, Nitrobid™ (a drug for the treatment of angina), are difficult to deliver by these systems due to the inability to adequately control the rate of drug delivery, or the requirement for a very large application area. Other problems with the poor dermal penetration of drugs is that the drug can be easily washed off or transferred to clothes, other surfaces or other animals.
- The dermal delivery of drugs may represent the oldest form of drug delivery in human history. Resins and animal fats were probably used by humans in early times to treat damage to the skin resulting from injuries and burns. Such substances for local delivery of active substances remained largely unchanged until as late as this century. The concept of transdermal systemic drug delivery was first seriously advocated by Dr Alejandro Zaffaroni in U.S. Pat. Nos. 3,598,122, 3,731,683 and 3,797,494 from the early 1970s. Transdermal systemic drug delivery provides an effective method of achieving improved bioavailability for physiologically active substances where the drugs are poorly absorbed by traditional routes of delivery. It can also be used where oral dosing is poorly tolerated or not possible.
- Transdermal formulations are however limited. For example polar drugs tend to penetrate the skin too slowly. Since most drugs are of a polar nature this limitation is significant, as is the fact that many drugs cause irritation at the site of topical application.
- Two main methods are known for assisting the rate of penetration of drugs across the skin. The first is to increase the thermodynamic activity of the drug. The thermodynamic activity of a drug in a dermal formulation is proportional to the concentration of the drug and the selection of the vehicle. According to the laws of thermodynamics, the maximum activity of a drug is related to that of the pure drug crystal. The second method involves the use of compounds known as penetration enhancers to increase the permeability of the dermal surface and has generally proven to be more convenient and effective.
- Since the early 1970s the main focus of transdermal systemic drug delivery has been, and still is, on transdermal patch devices. These patch devices are like bandages which are attached to the surface of intact skin for prolonged periods of time to allow a desired systemic delivery of a drug or other physiologically active agent. These transdermal patch devices occlude the skin and trap the drug, together with volatiles and vehicle excipients, between the skin and an outer impermeable backing membrane. The membrane prevents the evaporation or diffusion of vehicle excipients, volatiles and drug into an environment other than the target skin site. The prolonged length of time required for transfer of the drug and excipients from the patch into the skin can and often does result in local skin irritation. The irritation is caused by prolonged contact on the skin by the drug, volatiles, vehicle excipients, or the adhesive used to attach the patch device to the skin. The occlusive nature of the patch device also restricts the natural ability of the skin to “breathe”, increasing the risk of irritation. With added problems of complex and costly manufacturing processes for transdermal patch devices there is a need for improved transdermal drug delivery systems.
- The rate of drug delivery across a dermal surface can be increased by dermal penetration enhancers. The problem with most known dermal penetration enhancers is that they are often toxic, irritating or allergenic. These enhancers tend to be proton accepting solvents such as dimethylsulfoxide and dimethyacetamide. More recently, 2-pyrrolidine, N,N-diethyl-m-toluamide (Deet), 1-dodecal-azacycloheptane-2-one (Azone®), N,N-dimethylformamide, N-methyl-2-pyrrolidine and calcium thioglycolate have been reported as effective enhancers. However, difficulties remain with such dermal enhancers because the problem of irritation at the site of application has not been overcome.
- The most critical problem with these compounds however is their toxicity. If a compound when used as a dermal enhancer is toxic, irritating or allergenic, then that compound is unsuitable for application to the animal body. Dimethyl sulfoxide and dimethyl acetamide are not clinically acceptable for these reasons. Although Deet and Azone® have lower reported toxicities, their toxicity is still such that they are not widely used. It is possible that Azone® may be employed as a dermal penetration enhancer if the amount applied is sufficiently small so as not to be appreciably toxic, irritating or allergenic to the animal.
- The thermodynamic activity of a drug can be increased by employing supersaturated systems which give rise to unusually high thermodynamic potentials [Coldman, et al., J. Pharm. Sci., 58(9), 119, 1969]. However, topical vehicles relying on supersaturation, have the major limitation of formulation instability, both prior to and during application to the skin. As such, they are of limited clinical value within a non-occlusive volatile:non-volatile delivery vehicle, because as soon as the formulation comes into contact with a person's clothing or the like, the drug often precipitates; hence the formulation is no longer supersaturated and any enhanced percutaneous absorption ceases.
- Other workers such as Kondo, et al., [J. Pharmacobio-Dyn., 10, 743, 1987] who were using supersaturation to achieve enhanced transdermal drug delivery, have relied on the use of anti-nucleating polymers to stabilize the formulation. However, the applied drug formulations stabilised with polymers formed an appreciable surface mass on the skin which remained there over a prolonged duration of many hours, not a few minutes. So while Kondo advocated the use of a metered spray to deliver these formulations, in reality it would be impossible to obtain a non-occlusive delivery system with a short application time and still maintain a clinically useful transdermal penetration enhancement.
- German patent application DE 4334553-A1 to Jenapharm GmbH discloses a pharmaceutical liquid system consisting of a drug (diclofenac), a lipophilic phase, a volatile component and appropriate antioxidants, preservatives or stabilisers. This system relies on supersaturation to increase the flux rate of dermal absorption. An application chamber is used to prevent accidental precipitation of the supersaturated drug delivery system over the application time of 150 minutes.
- Japanese patent JP 61-268631 to Showa Denko KK discloses dermal penetration enhancers suitable for use with water-soluble drugs. The dermal penetration enhancers disclosed include 1-5 carbon fatty acid esters of para-aminobenzoic acid but their chemical structures are quite distinct from the compounds used in the present invention, and the physicochemical properties of the 1-5 carbon fatty acid esters of para-aminobenzoic acid are markedly different to those of the present invention. For example the octanol-water partition coefficients for all the 1-5 carbon fatty acid esters of para-aminobenzoic acid are at least 200 fold lower than those of the present invention. Also the preferred dermal penetration enhancer disclosed in JP 61-268631 is the 2 carbon fatty acid ester of para-aminobenzoic acid (or Benzocaine) which has an octanol-water partition coefficient which is more than 8000 fold lower than those of the present invention. Unlike those. of the present invention, the preferred dermal penetration enhancer disclosed in JP 61-268631 has significant pharmacological properties in that it is a local anaesthetic, which has also been reported to cause irritant and allergic skin reactions. The compounds used in the present invention fulfil the ideal properties of a dermal penetration enhancer in that they are non-irritant and pharmacologically inert [Barry, B. W. Vehicle Effect: What Is an Enhancer? In: Topical Drug Bioavailability, Bioequivalence, and Penetration. Shah, V. P.; Maibach, H. I. Eds. Plenum Press: New York, 1993; pp 261-276.].
- It was not surprising then to find that in previous studies [Feldmann, et al., Arch. Derm., 94, 649, 1996; Coldman, et al., J. Pharm. Sci., 58(9), 119, 1969; and Bhatt, et al., Int. J. Pharm., 50, 157,1989] where low volumes of non-occlusive volatile:non-volatile vehicles had been applied to the skin, the extent of drug delivery was very limited. To date the only formulations that have been employed clinically are either for local therapies, such as topical minoxidil and topical non-steroidal anti-inflammatories, or for transdermal drug delivery of compounds which readily diffuse across the skin such as glyceryl trinitrate and isosorbide dinitrate. As the permeability coefficients of sex hormones, for example, are an order of magnitude lower than glyceryl trinitrate, a marked penetration enhancement effect would be needed to achieve clinically acceptable transdermal drug delivery.
- It is desirable to have a clinically acceptable non-occlusive transdermal drug delivery system where the drug and penetration enhancer undergoes rapid partitioning into the skin to allow a convenient application time, leaving no residual formulation on the skin surface, and maintaining good substantivity within the skin. These characteristics can overcome problems such as a loss of drug penetration or possibly a transfer of the drug from the treated individual to another upon intimate contact, such as that observed for a testosterone ointment being used for a male patient, but which caused virilization in his female sexual partner [Delance, et al., Lancet, 1, 276,-1984].
- It is an object of the present invention to overcome or at least alleviate one or more of the abovementioned disadvantages of the prior art systems.
- According to a first aspect of the present invention there is provided a transdermal drug delivery system which comprises at least one physiologically active agent or prodrug thereof and at least one dermal penetration enhancer; characterised in that the dermal penetration enhancer is a safe skin-tolerant ester sunscreen.
- The present invention also provides use of a safe skin-tolerant ester sunscreen as a dermal penetration enhancer.
- The present inventors have found a new class of dermal penetration enhancers being skin-tolerant ester sunscreens, which are generally considered safe by the FDA (U.S.). Compounds such as octyl dimethyl-para-aminobenzoate (Padimate O) and octyl salicylate have been extensively used over the last ten to twenty years as safe and effective sunscreens in concentrations up to 8% v/v for Padimate O and 5% v/v for octyl salicylate.
-
- wherein R.sup.1 is hydrogen, lower alkyl, lower alkoxy, halide, hydroxy or NR3R4;
- R2 is long chain alkyl;
- R3 and R4 are each independently hydrogen, lower alkyl or R3 and R4 together with the nitrogen atom to which they are attached form a 5- or 6-membered heterocyclic ring;
- n is 0 or 1; and
- q is 1 or 2.
- More preferably the ester is a long chain alkyl para-aminobenzoate, long chain alkyl dimethyl-para-aminobenzoate, long chain alkyl cinnamate, long chain alkyl methoxycinnamate or long chain alkyl salicylate; most preferably octyl dirnethyl-para-aminobenzoate, octyl para-methoxycinnamate, octyl salicylate or isoamyl salicylate.
- The drug delivery systems according to the invention may comprise any physiologically active agent together with the penetration enhancer incorporated into a dosage form for topical application to the skin or mucous membranes of animals. Suitable dosage forms include creams, lotions, gels, ointments, suppositories, mousses, spray, for example nasal sprays, aerosols, buccal and sublingual tablets, gingival and buccal patches or any one of a variety of transdermal devices for use in the continuous administration of systematically active drugs by absorption through the skin, oral mucosa or other membranes. Some examples of suitable vehicles are given in U.S. Pat. Nos. 3,598,122, 3,598,123, 3,742,951, 3,814,097, 3,921,636, 3,993,072, 3,993,073, 3,996,934, 4,031,894, 4,060,084, 4,069,307, 4,201,211, 4,230,105, 4,292,299, 4,292,303, 5,323,769, 5,023,085, 5,474,783, 4,941,880 and U.S. Pat. No. 4,077,407. These patents also disclose a variety of specific systematically active agents which may also be useful in transdermal delivery in adjunct to those of this invention. These disclosures are thus hereby incorporated herein by reference.
- Physiologically active agents that may be used in the percutaneous or transdermal drug delivery system of the present invention include any locally or systemically active agents which are compatible with the dermal penetration enhancers of the present invention and which can be delivered through the skin with the assistance of the dermal penetration enhancer to achieve a desired effect. These active agents (grouped by therapeutic class) include:
- Alimentary System
- Antidiarrhoeals such as diphenoxylate, loperamide and hyoscyamine.
- Cardiovascular System
- Antihypertensives such as hydralazine, minoxidil, captopril, enalapril, clonidine, prazosin, debrisoquine, diazoxide, guanethidne, methyldopa, reserpine, trimetaphan. Calcium channel blockers such as diltiazem, felodopine, amlodipine, nitrendipine, nifedipine and verapamil.
- Antiarrhyrthmics such as amiodarone, flecainide, disopyramide, procainamide, mexiletene and quinidine.
- Antiangina agents such as glyceryl trinitrate, erythritol tetranitrate, pentaerythritol tetranitrate, mannitol hexanitrate, perhexilene, isosorbide dinitrate and nicorandil.
- Beta-adrenergic blocking agents such as alprenolol, atenolol, bupranolol, carteolol, labetalol, metoprolol, nadolol, nadoxolol, oxprenolol, pindolol, propranolol, sotalol, timolol and timolol maleate.
- Cardiotonic glycosides such as digoxin and other cardiac glycosides and theophylline derivatives.
- Adrenergic stimulants such as adrenaline, ephedrine, fenoterol, isoprenaline, orciprenaline, rimeterol, salbutamol, salmeterol, terbutaline, dobutamine, phenylephrine, phenylpropanolamine, pseudoephedrine and dopamine. Vasodilators such as cyclandelate, isoxsuprine, papaverine, dipyrimadole, isosorbide dinitrate, phentolamine, nicotinyl alcohol, co-dergocrine, nicotinic acid, glyceryl trinitrate, pentaerythritol tetranitrate and xanthinol.
- Antimigraine preparations such as ergotamine, dihydroergotamine, methysergide, pizotifen and sumatriptan.
- Drugs Affecting Blood and Haemopoietic Tissues.
- Anticoagulants and thrombolytic agents such as warfarin, dicoumarol, low molecular weight heparins such as enoxaparin; streptokinase and its active derivatives. Haemostatic agents such as aprotinin, tranexamic acid and protamine.
- Central Nervous System
- Analgesics, antipyretics including the opiod analgesics-such as buprenorphine, dextromoramide, dextropropoxyphene, fentanyl, alfentanil, sufentanil, hydromorphone, methadone, morphine, oxycodone, papaveretum, pentazocine, pethidine, phenoperidine, codeine and dihydrocodeine. Others include acetylsalicylic acid (aspirin), paracetamol, and phenazone.
- Hypnotics and sedatives such as the barbiturates, amylobarbitone, butobarbitone and pentobarbitone and other hypnotics and sedatives such as choral hydrate, chlormethiazole, hydroxyzine and meprobamate.
- Antianxiety agents such as the benzodiazepines, alprazolam, bromazepam, chlordiazepoxide, clobazam, chlorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, nitrazepam, oxazepam, temazepam and triazolam. Neuroleptic and antipsychotic drugs such as the phenothiazines, chlorpromazine, fluphenazine, pericyazine, perphenazine, promazine, thiopropazate, thioridazine and trifluoperazine and the butyrophenones, droperidol and haloperidol and the other antipsychotic drugs such as pimozide, thiothixene and lithium.
- Antidepressants such as the tricyclic antidepressants amitryptyline, clomipramine, desipramine, dothiepin, doxepin, imipramine, nortriptyline, opipramol, protriptyline and trimipramine and the tetracyclic antidepressants such as mianserin and the monoamine oxidase inhibitors such as isocarboxazid, phenelizine, tranylcypromine and moclobemide and selective serotonin re-uptake inhibitors such as fluoxetine, paroxetine, citalopram, fluvoxamine and sertraline.
- CNS Stimulants Such as Caffeine
- Anti-alzheimer's Agents Such as Tacrine
- Antiparkinson agents such as amantadine, benserazide, carbidopa, levodopa, benztropine, biperiden, benzhexol, procyclidine and dopamine-2 agonists such as S(-)-2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetrali- n (N-0923).
- Anticonvulsants such as phenytoin, valproic acid, primidone, phenobarbitone, methylphenobarbitone and carbamazepine, ethosuximide, methsuximide, phensuximide, sulthiame and clonazepam.
- Antiemetics, antinauseants such as the phenothiazines, prochloperazine, thiethylperazine and 5HT-3 receptor antagonists such as ondansetron and granisetron and others such as dimenhydrinate, diphenhydramine, metoclopramide, domperidone, hyoscine, hyoscine hydrobromide, hyoscine hydrochloride, clebopride and brompride.
- Musculoskeletal System
- Non-steroidal anti-inflammatory agents including their racemic mixtures or individual enantiomers where applicable, such as ibuprofen, flurbiprofen, ketoprofen, aclofenac, diclofenac, aloxiprin, aproxen, aspirin, diflunisal, fenoprofen, indomethacin, mefenamic acid, naproxen, phenylbutazone, piroxicam, salicylamide, salicylic acid, sulindac, desoxysulindac, tenoxicam, tramadol and ketoralac.
- Additional non-steroidal antiinflammatory agents which can be formulated in combination with the dermal penetration enhancers include salicylamide, salicylic acid, flufenisal, salsalate, triethanolamine salicylate, aminopyrine, antipyrine, oxyphenbutazone, apazone, cintazone, flufenamic acid, clonixeril, clonixin, meclofenamic acid, flunixin, colchicine, demecolcine, allopurinol, oxypurinol, benzydamine hydrochloride, dimefadane, indoxole, intrazole, mimbane hydrochloride, paranylene hydrochloride, tetrydamine, benzindopyrine hydrochlolde, fluprofen, ibufenac, naproxol, fenbufen, cinchophen, diflumidone sodium, fenamole, flutiazin, metazamide, letimide hydrochloride, nexeridine hydrochloride, octazamide, molinazole, neocinchophen, nimazole, proxazole citrate, tesicam, tesimide, tolmetin, and triflumidate.
- Antirheumatoid agents such as penicillamine, aurothioglucose, sodium aurothiomalate, methotrexate and auranofin.
- Muscle relaxants such as baclofen, diazepam, cyclobenzaprine hydrochloride, dantrolene, methocarbamol, orphenadrine and quinine.
- Agents used in gout and hyperuricaemia such as allopurinol, colchicine, probenecid and sulphinpyrazone.
- Hormones and Steroids
- Oestrogens such as oestradiol, oestriol, oestrone, ethinyloestradiol, mestranol, stilboestrol, dienoestrol, epioestriol, estropipate and zeranol. Progesterone and other progestagens such as allyloestrenol, dydrgesterone, lynoestrenol, norgestrel, norethyndrel, norethisterone, norethisterone acetate, gestodene, levonorgestrel, medroxyprogesterone and megestrol.
- Antiandrogens such as cyproterone acetate and danazol.
- Antioestrogens such as tamoxifen and epitiostanol and the aromatase inhibitors, exemestane and 4-hydroxy-androstenedione and its derivatives. Androgens and anabolic agents such as testosterone, methyltestosterone, clostebol acetate, drostanolone, furazabol, nandrolone oxandrolone, stanozolol, trenbolone acetate, dihydro-testosterone, 17-α-methyl-19-nortestosterone and fluoxymesterone. 5-alpha reductase inhibitors such as finasteride, turosteride, LY-191704 and MK-306.
- Corticosteroids such as betamethasone, betamethasone valerate, cortisone, dexamethasone, dexamethasone 21-phosphate, fludrocortisone, flumethasone, fluocinonide, fluocinonide desonide, fluocinolone, fluocinolone acetonide, fluocortolone, halcinonide, halopredone, hydrocortisone, hydrocortisone 17-valerate, hydrocortisone 17-butyrate, hydrocortisone 21-acetate methylprednisolone, prednisolone, prednisolone 21-phosphate, prednisone, triamcinolone, triamcinolone acetonide.
- Further examples of steroidal antiinflammatory agents for use in the instant compositions include include cortodoxone, fluoracetonide, fludrocortisone, difluorsone diacetate, flurandrenolone acetonide, medrysone, amcinafel, amcinafide, betamethasone and its other esters, chloroprednisone, clorcortelone, descinolone, desonide, dichlorisone, difluprednate, flucloronide,flumethasone, flunisolide, flucortolone, fluoromethalone, fluperolone, fluprednisolone, meprednisone, methylmeprednisolohe, paramethasone, cortisone acetate, hydrocortisone cyclopentylpropionate, cortodoxone, flucetonide, fludrocortisone acetate, flurandrenolone acetonide, medrysone, amcinafal, amcinafide, betamethasone, betamethasone benzoate, chloroprednisone acetate, clocortolone acetate, descinolone acetonide, desoximetasone, dichlorisone acetate, difluprednate, flucloronide, flumethasone pivalate, flunisolide acetate, fluperolone acetate, fluprednisolone valerate, paramethasone acetate, prednisolamate, prednival, triamcinolone hexacetonide, cortivazol, formocortal and nivazol.
- Pituitary hormones and their active derivatives or analogs such as corticotrophin, thyrotropin, follicle stimulating hormone (FSH), luteinising hormone (LH) and gonadotrophin releasing hormone (GnRH).
- Hypoglycaemic agents such as insulin, chlorpropamide, glibenclamide, gliclazide, glipizide, tolazamide, tolbutamide and mefformin.
- Thyroid hormones such as calcitonin, thyroxine and liothyronine and antithyroid agents such as carbimazole and propylthiouracil.
- Other miscelaneous hormone agents such as octreotide.
- Pituitary inhibitors such as bromocriptine.
- Ovulation inducers such as clomiphene.
- Genitourinary System
- Diuretics such as the thiazides, related diuretics and loop diuretics, bendrofluazide, chlorothiazide, chlorthalidone, dopamine, cyclopenthiazide, hydrochlorothiazide, indapamide, mefruside, methycholthiazide, metolazone, quinethazone, bumetanide, ethacrynic acid and frusemide and pottasium sparing diuretics, spironolactone, amiloride and triamterene.
- Antidiuretics such as desmopressin, Iypressin and vasopressin including their active derivatives or analogs.
- Obstetric drugs including agents acting on the uterus such as ergometrine, oxytociri and gemeprost.
- Prostaglandins such as alprostadil (PGE1), prostacyclin (PGI2), dinoprost (prostaglandin F2-alpha) and misoprostol.
- Antimicrobials
- Antimicrobials including the cephalosporins such as cephalexin, cefoxytin and cephalothin.
- Penicillins such as amoxycillin, amoxycillin with clavulanic acid, am picillin, bacampicillin, benzathine penicillin, benzylpenicillin, carbenicillin, cloxacillin, methicillin, phenethicillin, phenoxymethylpenicillin, flucloxacillin, mezlocillin, piperacillin, ticarcillin and azlocillin.
- Tetracyclines such as minocycline, chlortetracycline, tetracycline, demeclocycline, doxycycline, methacycline and oxytetracycline and other tetracycline-type antibiotics.
- Aminoglycosides such as amikacin, gentamicin, kanamycin, neomycin, netilmicin and tobramycin.
- Antifungais such as amorolfine, isoconazole, clotrimazole, econazole, miconazole, nystatin, terbinafine, bifonazole, amphotericin, griseofulvin, ketoconazole, fluconazole and flucytosine, salicylic acid, fezatione, ticlatone, tolnaftate, triacetin, zinc, pyrithione and sodium pyrithione.
- Quinolones such as nalidixic acid, cinoxacin, ciprofloxacin, enoxacin and norfloxacin. Sulphonamides such as phthalylsulphthiazole, sulfadoxine, sulphadiazine, sulphamethizole and sulphamethoxazole.
- Sulphones Such as Dapsone.
- Other miscellaneous antibiotics such as chloramphenicol, clindamycin, erythromycin, erythromycin ethyl carbonate, erythromycin estolate, erythromycin glucepate, erythromycin ethylsuccinate, erythromycin lactobionate, roxithromycin, lincomycin, natamycin, nitrofurantoin, spectinomycin, vancomycin, aztreonam, colistin IV, metronidazole, tinidazole, fusidic acid and trimethoprim; 2-thiopyridine N-oxide; halogen compounds, particularly iodine and iodine compounds such as iodine-PVP complex and diiodohydroxyquin; hexachlorophene; chlorhexidine; chloroamine compounds; benzoylperoxide;.
- Antituberculosis drugs such as ethambutol, isoniazid, pyrazinamide, rifampicin and clofazimine.
- Antimalarials such as rimaquine, pyrimethamine, chloroquine, hydroxychloroquine, quinine, mefloquine and halofantrine.
- Antiviral agents such as acyclovir and acyclovir prodrugs, famciclovir, zidovudine, didanosine, stavudine, lamivudine, zalcitabine, saquinavir, indinavir, ritonavir, n-docosanol, tromantadine and idoxuridine.
- Anthelmintics such as mebendazole, thiabendazole, niclosamide, praziquantel, pyrantel embonate and diethylcarbamazine.
- Cytotoxic agents such as plicamycin, cyclophosphamide, dacarbazine, fluorouracil and its prodrugs [described,for example, in International Journal of Pharmaceutics 111, 223-233 (1994)], methotrexate, procarbazine, 6-mercaptopurine and mucophenolic acid.
- Metabolism
- Anorectic and weight reducing agents including dexfenfluramine, fenfluramine, diethylpropion, mazindol and phentermine.
- Agents used in hypercalcaemia such as calcitriol, dihydrotachysterol and their active derivatives or analogs.
- Respiratory System
- Antitussives such as ethylmorphine, dextromethorphan and pholcodine.
- Expectorants such as acetylcysteine, bromhexine, emetine, guaiphenesin, ipecacuanha ans saponins.
- Decongestants such as phenylephrine, phenylpropanolamine ans pseudoephedrine.
- Bronchospasm relaxants such as ephedrine, fenoterol, orciprenaline, rimiterol, salbutamol, sodium cromoglycate, cromoglycic acid and its prodrugs [described,for example, in International Journal of Pharmaceutics .7, 63-75 (1980)], terbutaline, ipratropium bromide, salmeterol and theophylline and theophylline derivatives.
- Allergy and Immune System
- Antihistamines such as meclozine, cyclizine, chlorcyclizine, hydroxyzine, brompheniramine, chlorpheniramine, clemastine, cyproheptadine, dexchlorpheniramine, diphenhydramine, diphenylamine, doxylamine, mebhydrolin, pheniramine, tripolidine, azatadine, diphenylpyraline, methdilazine, terfenadine, astemizole, loratidine and cetirizine.
- Local anaesthetics such as bupivacaine, amethocaine, lignocaine, cinchocaine, dibucaine, mepivacaine, prilocaine and etidocaine.
- Stratum corneum lipids, such as ceramides, cholesterol and free fatty acids, for improved skin barrier repair [Man, et al. J. Invest. Dermatol., 106(5), 1096, 1996].
- Neuromuscular blocking agents such as suxamethonium, alcuronium, pancuronium, atracurium, gallamine, tubocurarine and vecuronium.
- Smoking cessation agents such as nicotine, bupropion and ibogaine.
- Insecticides and other pesticides which are suitable for local or systemic application.
- Dermatological agents, such as vitamins A and E, vitamin E acetate and vitamin E sorbate.
- Allergens for desensitisation such as house dust mite allergen.
- Nutritional agents, such as vitamins, essential amino acids and essential fats.
- Keratolytics such as the alpha-hydroxy acids, glycollic acid and salicylic acid.
- Psychicenergisers, such as 3-(2-aminopropyl)indole, 3-(2-aminobutyl)indole, and the like.
- Anti-acne agents such as containing isotretinoin, tretinoin and benzoyl peroxide.
- Anti-psoriasis agents such as containing etretinate, cyclosporin and calcipotriol.
- Anti-itch agents such as capsaicin and its derivatives such as nonivamide [Tsai, et al. Drug. Dev. Ind. Pharm., 20(4), 719, 1994].
- Anticholinergic agents, which are effective for the inhibition of axillary sweating and for the control of prickly heat. The antiperspirrant activity of agents such as methatropine nitrate, propantheline bromide, scopolamine, methscopolamine bromide, and the new class of soft antiperspirants, quaternary acyloxymethyl ammnonium salts [described, for example, by Bodor et al, J. Med. chem. 23, 474 (1980) and also in United Kingdom Specification No. 2010270, published Jun. 27, 1979].
- Other physiologically active peptides and proteins, small to medium-sized peptides, e.g., vasopressin and human growth hormone.
- Whilst it is preferred that the active agent and penetration enhancer be delivered by simultaneous administration, the penetration enhancer may be applied before or after the application of the physiologically active agent, if desired.
- The present invention also provides a transdermal drug delivery system which comprises at least one physiologically active agent or prodrug thereof, at least one dermal penetration enhancer and at least one volatile liquid; characterised in that the dermal penetration enhancer is a safe skin-tolerant ester sunscreen.
- According to a second aspect of the present invention there is provided a non-occlusive, percutaneous or transdermal drug delivery. system which comprises:
- (i) an effective amount of at least one physiologically active agent or prodrug thereof;
- (ii) at least one non-volatile dermal penetration enhancer; and.
- (iii) at least one volatile liquid; characterised in that the dermal penetration enhancer is adapted to transport the physiologically active agent across a dermal surface or mucosal membrane of an animal, including a human, when the volatile liquid evaporates, to form a reservoir or depot of a mixture comprising the penetration enhancer and the physiologically active agent or prodrug within said surface or membrane; and the dermal penetration enhancer is of low toxicity to, and is tolerated by, the dermal surface or mucosal membrane of the animal.
- The present invention also provides a method for administering at least one systemic or locally acting physiologically active agent or prodrug thereof to a animal which comprises applying an effective amount of the physiologically active agent in the form of a drug delivery system according to the present invention.
- Furthermore, the present invention provides a method for the treatment or prophylaxis of a disease or condition in a animal which comprises administering to a dermal surface or mucosal membrane of said animal in need of such treatment a therapeutically effective amount of a drug delivery system according to the present invention.
- The invention further provides apparatus for the controlled application of an aerosol or spray composition to the dermal surface or mucosal membrane of an animal, which comprises a shroud as described hereinafter.
- Preferably the animal is a human but the invention also extends to the treatment of non-human animals.
- Preferably the non-occlusive drug delivery system is not supersaturated with respect to the physiologically active agent or prodrug. As the volatile liquid of the non-occlusive drug delivery system evaporates, the resulting non-volatile composition is rapidly driven into the dermal surface or mucosal membrane. It is possible that as the volatile liquid evaporates, the non-volatile dermal penetration enhancer becomes supersaturated with respect to the active agent. However, it is preferred that any supersaturation does not occur before transport of the resulting non-volatile composition across the epidermal surface has occurred.
- It is most desirable that, after application of the non-occlusive, percutaneous or transdermal drug delivery system, the volatile component of the delivery system evaporates and the area of skin to which the drug delivery system was applied becomes touch-dry. Preferably said area of skin becomes touch-dry within 10 minutes, more preferably within 3 minutes, most preferably within 1 minute.
- The group of dermal penetration enhancing ester sunscreen compounds of the present invention are particularly suitable for non-occlusive transdermal delivery of active agents through the skin and membranes of a animal. These dermal penetration enhancing compounds are of low toxicity to the skin and are excellent promoters of percutaneous and oral mucosal (especially gingival) absorption. In addition to the dermal penetration enhancers of the present invention, known dermal penetration enhancers may be employed in the non-occlusive transdermal drug delivery system of the present invention. These known dermal penetration enhancers include laurocapram (Azone®) and laurocapram derivatives, such as those 1-alkylazacycloheptan-2-ones specified in U.S. Pat. No. 5,196,410, and oleic acid and its ester derivatives, such as methyl, ethyl, propyl, isopropyl, butyl, vinyl and glycerylmonooleate, and sorbitan esters such as sorbitan monolaurate and sorbitan monooleate, and other fatty acid esters such as isopropyl laurate, isopropyl myristate, isopropyl palmitate, diisopropyl adipate, propylene glycol monolaurate and propylene glycol monooleate, and long chain alkyl esters of 2-pyrrolidone, particularly the 1-lauryl, 1-hexyl and 1-(2-ethylhexyl) esters of 2-pyrollidene and those dermal penetration enhancers given in U.S. Pat. No. 5,082,866, particulary dodecyl (N,N-dimethylamino) acetate and dodecyl (N,N-dimethylamino) propionate and in U.S. Pat. No. 4,861,764, particularly 2-n-nonyl-1-3-dioxolane.
- Preferred known dermal penetration enhancers are laurocapram and laurocapram derivatives, such as those 1 -alkylazacycloheptan-2-ones specified in U.S. Pat. No. 5,196,410, and oleic acid and its ester derivatives, such as methyl, ethyl, propyl, isopropyl, butyl, vinyl and glycerylmonooleate, and those given in U.S. Pat. No. 5,082,866, particularly dodecyl (N,N-dimethylamino) acetate and dodecyl (N,N-dimethylamino) propionate and in U.S. Pat. No. 4,861,764, particularly 2-n-nonyl-1-3-dioxolane. Most preferred known dermal penetration enhancers are oleic acid and its ester derivatives, such as methyl, ethyl, propyl, isopropyl, butyl, vinyl and glycerylmonooleate, and those given in U.S. Pat. No. 5,082,866, particulary dodecyl (N,N-dimethylamino) acetate and dodecyl (N,N-dimethylamino) propionate and in U.S. Pat. No. 4,861,764, particularly 2-n-nonyl-1-3-dioxolane.
- Preferred volatile liquids of the present invention include safe skin-tolerant solvents such as ethanol and isopropanol. An aerosol propellant, such as dimethyl ether, may constitute a volatile liquid for the purpose of the present invention.
- Surprisingly the group of dermal penetration compounds identified enhance the absorption of active agents and prodrugs thereof through the skin and mucous membranes while avoiding the significant pharmacological disadvantages and toxicities of prior art enhancers. Additionally, the group of compounds of the invention surprisingly exhibit appreciable penetration into and substantivity for the outer layers of the skin, namely the stratum corneum which has previously presented a formidable barrier to percutaneous drug absorption.
- In drug delivery systems according to the first aspect of the present invention a pharmaceutical compounding agent, co-solvent, surfactant, emulsifier, antioxidant, preservative, stabiliser, diluent or a mixture of two or more of said components may be incorporated in these systems as is appropriate to the particular route of administration and dosage form. The amount and type of components used should be compatible with the dermal penetration enhancers of this invention as well as with the active ingredient. A co-solvent or other standard adjuvant, such as a surfactant, may be required to maintain the agent in solution or suspension at the desired concentration.
- The pharmaceutical compounding agents can include paraffin oils, esters such as isopropyl myristate, ethanol, silicone oils and vegetable oils. These are preferably used in the
range 1 to 50%. Surfactants such as ethoxylated fatty alcohols, glycerol mono stearate, phosphate esters, and other commonly used emulsifiers and surfactants preferably in the range of 0.1 to 10% may be used, as may be preservatives such as hydroxybenzoate esters for preservation of the compound preferably in amounts of 0.01% to 0.5%. Typical co-solvents and adjuvants may be ethyl alcohol, isopropyl alcohol, acetone, dimethyl ether and glycol ethers such as diethylene glycol mono ethyl ether. These may be used in amounts of 1 to 50%. - In drug delivery systems according to the second aspect of the present invention, whilst a pharmaceutical compounding agent, co-solvent, surfactant, emulsifier, antioxidant, preservative, stabiliser, diluent or a mixture of two or more of said components may be incorporated, these must be compatible with the ability of the system to become touch-dry after application.
- Because of the effect of the penetration enhancer of the invention, the dosage of the physiologically active agent may often be less than that conventionally used. It is proposed that, a dosage near the lower end of the useful range of the particular agent may be employed initially and increased as indicated from the observed response if necessary.
- The concentration of physiologically active agent used in the drug delivery system will depend on its propertes and may be equivalent to that normally utilised for the particular agent in conventional formulations. Both the amount of physiologically active agent and the amount of penetration enhancer will be influenced by the type of effect desired. For example, if a more localised effect is required in treating a superficial infection with an antibacterial agent, lower amounts of physiologically active agents and lower concentrations of enhancer may be appropriate. Where deeper penetration is desired, as in the case of local anaesthesia, a higher concentration of enhancer may be appropriate.
- Where it is desired to achieve systemic concentration of an agent, proportionately higher concentrations of the enhancer of the invention may be required in the transdermal drug delivery system of the present invention, and the amount of active substance included in the composition should be sufficient to provide the blood level desired.
- The concentration of absorption/penetration enhancer may be in the range from 10-10,000 weight percent of absorption/penetration enhancer based upon the weight of active ingredient. The ratio of penetration enhancer to active ingredient may vary considerably and will be governed as much as anything, by the pharmacological results that are required to be achieved. In principle, it is desirable that as little absorption enhancer as possible is used. On the other hand, for some actives, it may well be that the upper range of 10,000% by weight will be required. It is preferred that the penetration enhancer and active are in approximately equal proportions.
- Surprisingly, it has been found that a large range of systemic drugs can be delivered to a subject in need thereof by the non-occlusive drug delivery system and methods of the present invention. That is, the drug delivery system delivers the physiologically active agent to a animal without the need for an occlusive patch device. The efficacy of known systemic drug delivery systems, and in particular transdermal patch devices is maintained, and in some cases is increased by use of non-occlusive, percutaneous or transdermal drug delivery systems of the present invention.
- A particular advantage of the non-occlusive drug delivery system of the present invention is that patient compliance is improved as the system does not occlude the skin or membrane and therefore local irritation and allergic sensitisation problems arising from prolonged exposure of the skin to both the delivery system of occlusive transdermal patch devices and the adhesive used to affix these patches to the skin are reduced.
- The following definitions apply through this description and the claims which follow.
- The term “mucous membrane” refers generally to any of the mucous membranes in the body, absorption through the mucous membranes of the oral cavity which is of particular interest. Thus, buccal, sublingual, gingival and palatal absorption are specifically contemplated by the present invention. In a preferred embodiment, the penetration enhancers of the present invention are used to improve absorption through those oral tissues which most resemble the skin in their cellular structure, i.e. the gingiva and palate.
- The term “physiologically active agent” is used herein to refer to a broad class of useful chemical and therapeutic agents.
- The term “physiologically active” in describing the agents contemplated herein is used in a broad sense to comprehend not only agents having a direct pharmacological effect on the host, but also those having an indirect or observable effect which is useful in the medical arts.
- A “prodrug” of a physiologically active agent herein means a structurally related compound or derivative of an active compound which in the animal body is converted to the desired physiologically active compound. The prodrug itself may have little or none of the desired activity.
- The terms “percutaneous” and “transdermal” are used herein in the broadest sense to refer to being able to pass through unbroken skin.
- The term “dermal penetration enhancer” is used herein in its broadest sense to refer to an agent which improves the rate of percutaneous transport of active agents across the skin for use and delivery of active agents to organisms such as animals, whether it be for local application or systemic delivery.
- The term “non-occlusive” is used herein in its broadest sense to refer to not trapping or closing the skin to the atmosphere by means of a patch device, fixed reservoir, application chamber, tape, bandage, sticking plaster, or the like which remains on the skin at the site of application for a prolonged length of time.
- The term “stratum corneum” is used herein in its broadest sense to refer to the outer layer of the skin, which is comprised of (approximately 15) layers of terminally differentiated keratinocytes made primarily of the proteinaceous material keratin arranged in a ‘brick and mortar’ fashion with the mortar being comprised of a lipid matrix made primarily from cholesterol, ceramides and long chain fatty acids. The stratum corneum creates the rate-limiting barrier for diffusion of the active agent across the skin.
- The term “skin-depot” is used herein in its broadest sense to refer to a reservoir or deposit of active agent and dermal penetration enhancer within the stratum corneum, whether it be intra-cellular (within keratinocytes) or inter-cellular.
- The term “volatile:non-volatile liquid vehicle” is used in the art to refer to a liquid pharmaceutical vehicle comprising a volatile liquid mixed with a non-volatile liquid vehicle, such as a dermal penetration enhancer. A system or vehicle comprising a volatile liquid mixed with a non-volatile dermal penetration enhancer when described herein is used in its broadest sense to include those systems known as volatile:non-volatile liquid vehicles.
- Alkyl and alkoxy groups referred to herein may be either straight chain or branched. The term “lower alkyl” means alkyl groups containing from 1 to 5 carbon atoms. The term “lower alkoxy has a similar meaning. The term “long chain alkyl” means alkyl groups containing from 5 to 18 carbon atoms, more preferably 6 to 18 carbon atoms. The term “halide” means fluoride, chloride, bromide or iodide. The term “heterocyclic ring” is herein defined to mean a ring of carbon atoms containing at least one hetero atom, and further the ring may be saturated or unsaturated to any allowable degree.
- The term “sunscreen” is used herein in its broadest sense to refer to a chemical agent capable of-filtering out ultraviolet light.
- The non-occlusive, percutaneous or transdermal drug delivery system of the present invention enables a wide range of physiologically active agents to be delivered through the skin to achieve a desired systemic effect. The drug delivery system preferably comprises the active agent intimately mixed with a non-volatile dermal penetration enhancer and a volatile liquid. Where the drug delivery system is applied to the skin, the active agent and non-volatile liquid are thermodynamically driven into the skin as the volatile liquid evaporates. Once within the skin the non-volatile liquid may either disrupt the lipid matrix and/or act as a solubilizer to allow an enhanced penetration rate of the active agent through the skin and into the subject being treated. In this way, the dermal penetration enhancer acts as a vehicle and many systemic active agents are able to be transdermally administered to an animal.
- It is believed that the non-volatile dermal penetration enhancer is readily absorbed into the stratum corneum in sufficient quantities to form a reservoir or depot of the dermal penetration enhancer within the stratum corneum. The dermal penetration enhancer also contains the active agent to be administered and as the dermal penetration enhancer crosses through the skin to form the skin-depot, the active agent contained therein is transported through the skin and contained within the depot. These depots are believed to form within the lipid matrix of the stratum corneum wherein the lipid matrix creates a rate-limiting barrier for diffusion of the active agent across the skin and allows the dermally administered active agent to be systemically released over a period of time, usually up to 24 hours.
- Once the volatile liquid of the non-occlusive drug delivery system has evaporated, driving the mixture of non-volatile dermal penetration enhancer and active agent into the stratum corneum, the outer surface of the skin is then substantially free of active agent and non-volatile dermal penetration enhancer. Normal touching, wearing of clothes, rinsing or even washing of the skin will not, to any significant extent, affect delivery of the drug or displace either the active agent or the non-volatile dermal penetration enhancer, once the volatile liquid has evaporated.
- This is in contrast to prior-art systems where supersaturated solutions are used to increase the rate of drug permeation across the skin. Such supersaturated solutions are susceptible to ready precipitation and require stabilization, such as with polymers, or protection from external surfaces or objects which may effect nucleation.
- The rate of absorption of the physiologically active agent via the stratum corneum is increased by the non-volatile dermal penetration enhancer. The active agent may be dissolved or suspended in the dermal penetration enhancer at the time when it is being transported from the surface of the skin and into the stratum corneum. The performance of the dermal penetration enhancer to deliver a desired active agent varies with differences in both the nature of the dermal penetration enhancer and active agent. It is understood that different dermal penetration enhancers may need to be selected to be appropriate for delivery of various active agents.
- Physiologically active agents that may be used in the percutaneous or transdermal drug delivery system of the present invention include any locally or systemically active agents which are compatible with the non-volatile dermal penetration enhancers and volatile liquids of the present invention and which can be delivered through the skin with the assistance of the dermal penetration enhancer to achieve a desired effect.
- Preferred active agents include steroids and other hormone derivatives, more preferably testosterone, oestradiol, ethinyloestradiol, progesterone, norethisterone acetate and gestodene; and non-steroidal anti-inflammatory drugs, preferably ibuprofen, ketoprofen, flurbiprofen, naproxen and diclofenac; and opioid analgesics, preferably fentanyl and buprenorphine; and antinauseants, preferably prochlorperazine, metochlopramide, ondansetron and scopolamine; and antioestrogens, preferably tamoxifen and epitiostanol and the aromatase inhibitors, preferably exemestane and 4-hydroxy-androstenedione and its derivatives; and 5-alpha reductase inhibitors, preferably finasteride, turosteride, LY191704 and MK-306; and anxiolytics, preferably alprazolam; and prostaglandins, preferably alprostadil and prostacylcin and their derivatives; and melatonin; and anti-virals, preferably n-docosanol, tromantadine and lipophilic pro-drugs of acyclovir; and low molecular weight heparin, preferably enoxaparin; and anti-migraine compounds, preferably sumatriptan; and antihypertensives, preferably clonidine, amlodipine and nitrendipine; and anti-malarials, preferably primaquine; and minoxidil and minoxidil pro-drugs; and pilocarpine; and bronchodilators, preferably salbutamol, terbutaline, salmeterol; and anti-depressants, preferably ibogaine, bupropion and rolipram; and anti-alzheimer's agents, preferably fluphenazine and haloperidol; and anti-parkinson agents, preferably N-0923; and antiandrogens, preferably cyproterone acetate; and anorectic agents, preferably mazindol.
- Diseases or conditions that may be treated by using the drug delivery system and methods of the present invention include, but are not limited to, male hormone replacement in testosterone deficient hypogonadal men, female hormone replacement therapy for postmenopausal women, androgen replacement therapy for females lacking libido, male contraception, female contraception, soft tissue injury, narcotic withdrawal, severe post-operative pain, motion sickness, oestrogen dependent breast cancer, prostatic enlargement and/or prostatic cancer, alopecia and acne, anxiety disorders, male impotence, Raynauds syndrome and varicose veins, sleep disorders such as jetlag, herpes virus infections, deep vein thrombosis, migraine, high blood pressure, malaria, diagnosis of cystic fibrosis and asthma, particularly nocturnal asthma, smoking. cessation, psychotic disorders, severe postnatal depression, virilisation and obesity.
- The foregoing lists are by no means intended to be exhaustive and any physiologically active agent that is compatible with the preferred volatile liquids and non-volatile dermal penetration enhancers of the drug delivery system may be applied by the method of the present invention to treat any appropriate disease or condition.
- The drug delivery system of the present invention may be applied to the skin by means of an aerosol, spray, pump-pack, brush, swab, or other applicator. Preferably, the applicator provides either a fixed or variable metered dose application such as a metered dose aerosol, a stored-energy metered dose pump or a manual metered dose pump. The application is most preferably performed by means of a topical metered dose aerosol combined with an actuator nozzle shroud which together accurately control the amount and/or uniformity of the dose applied. One function of the shroud is to keep the nozzle at a pre-determined height above, and perpendicular to, the skin or membrane to which the drug delivery system is being applied. This function may also be achieved by means of a spacer-bar or the like. Another function of the shroud is to enclose the area above the skin or membrane in order to prevent or limit bounce-back and/or loss of the drug delivery system to the surrounding environment. Preferably the area of application defined by the shroud is substantially circular in shape.
- The drug delivery system may be propelled by either pump pack or more preferably by the use of propellants such as hydrocarbons, hydro fluorocarbons, nitrogen, nitrous oxide, carbon dioxide or ethers, preferably dimethyl ether. The non-occlusive, drug delivery system is preferably in a single phase system as this allows less complicated manufacture and ease of dose uniformity. It may also be necessary to apply a number of dosages on untreated skin to obtain the desired result.
- The invention will now be described with reference to the following examples and accompanying drawings. The examples and drawings are not to be construed as limiting the invention in any way. They are included to further illustrate the present invention and advantages thereof.
- In the drawings:
-
FIG. 1 is a diagrammatic representation showing the halves of a stainless steel flow-through diffusion cell. -
FIG. 2 is a graphical representation showing the effect of pretreatment with various enhancers on the diffusion of ketoprofen across shed snake skin. -
FIG. 3 is a graphical representation showing the effect of various enhancers on the diffusion of ketoprofen across shed snake skin. -
FIG. 4 is a graphical representation showing the diffusion of ibuprofen from gel formulations across shed snake skin. -
FIG. 5 is a graphical representation showing the clasma profile of testosterone in domestic weanling pigs after a single application of a metered dose topical aerosol. Error bars represent standard error of the mean. -
FIG. 6 is a graphical representation showing the plasma profile of estradiol in domestic weanling pigs after a single application of a metered dose topical aerosol. Error bars represent standard error of the mean. -
FIG. 7 is a graphical representation showing the plasma profile of testosterone in castrated domestic weanling pigs after the sixth once daily application of a metered dose topical aerosol. Each point represents the mean of 4 individual values and the error bars represent standard error of the mean. Testosterone levels shown are baseline subtracted and the mean baseline (±sem) onDay 1 at 0 h was 0.8 ng·ml−1±0.3 ng·ml−1. -
FIG. 8 is a graphical representation showing the predicted testosterone input across human skin in vivo and children's python snake skin in vitro. Error bars represent standard error of the mean. -
FIG. 9 is a graphical representation showing the predicted testosterone plasma concentration in hypogonadal males after once daily dosing to steady-state with a metered dose topical spray. - In the examples, the effectiveness of the penetration enhancers are illustrated by measuring the skin penetration of formulations of a number of representative physiologically active agents with the dermal penetration enhancers. Also, the skin penetration of physiologically active agents was measured with other prior art penetration enhancers as well as formulations of the physiologically active agents with common adjuvants, which serve as control formulations. The comparisons made generally consisted of measuring the relative penetration through shed snake skin of the various formulations. In every case, those formulations which contained the dermal penetration enhancers delivered more of the active agent through the skin than did the corresponding control formulation or commercial preparation.
- In Vitro Skin Diffusion Measurements
- Shed Snake Skin
- The Children's python shed snake skin was obtained during natural shedding and the dorsal skin was used. Shed snake skin has shown to be a suitable model membrane for human skin by Itoh, et al., Use of Shed Snake Skin as a Model Membrane for In Vitro Percutaneous Penetration Studies: Comparison with Human Skin, Pharm. Res., 7(10), 1042-1047, 1990; and Rigg, et al., Shed Snake Skin and Hairless Mouse Skin as Model Membranes for Human Skin During Permeation Studies, J. Invest. Dermatol., 94; 235-240, 1990.
- Full Thickness Skin
- The animals used in these investigations were obtained from the animal house at the Victorian College of Pharmacy, Monash University, Parkville, Australia.
- a. Hairless Mouse Skin
- Hairless mice of 4-8 weeks of age were used. The mouse skin was excised and full-thickness skin was isolated from the torso, the subcutaneous fat and connective tissue removed and the skin cut into circles of 2.0 cm2, then placed into the diffusion cells for flux measurements.
- b. Guinea Pig Skin
- Adult guinea pigs of either sex (weight range 500 g-750 g) were used. The hair on the back flank and back was removed with the aid of depilatory wax (Arielle®) under halothane anaesthesia. Seven days later, after the stratum corneum had completely regenerated, the guinea pigs were killed and the skin removed and placed on a chilled slab. The subcutaneous fat and connective tissue removed and the skin cut into circles and then placed into the diffusion cells for flux measurements. For in vivo experiments the guinea pigs were housed in individual cages and the topical hydroquinone formulations were applied to the hair-free areas. Each guinea pig received the test or control formulation on the corresponding contralateral site, thus allowing each animal to act as its own control.
- In Vitro Skin Diffusion Experiments in Franz-Type Cells
- The work using Hydroquinone was performed using vertical Franz diffusion cells which had an effective diffusional area of 1.3 cm2, a receiver chamber temperature of 37 or 32 degrees Celsius, and receiver chamber volume of 13 mL of normal saline.
- In Vitro Skin Diffusion Experiments in Horizontal Diffusion Cells
- A modified stainless steel flow-through diffusion cell assembly based on that first shown by Cooper in J. Pharm. Sci. 73(8), 1984, was used to perform the experiments on diffusion of the drugs from various donor compositions through the skin (either snake or hairless mouse). The flow-through diffusion cell used to perform the present experiments is shown in
FIG. 1 . The cell consists of an upper section (1) and a lower section (2). A stainless steel wire mesh support (4) is housed in a recess (5) in the lower section of the cell. The skin sample (3), cut into a circle, is gently placed over the support (4) and the two sections (1, 2) of the cells are secured together by screws (not shown), using the locating holes (9), to form a tight seal. An aperture (8) in the upper section of the cell, which has an area of 0.79 cm2 (0.5 cm in diameter) forms a well above the skin into which the topical formulation is applied. In most cases 400 microL of formulation, solution or suspension containing the drug substance to be tested was applied evenly over the skin. The bottom section of the cell is provided with inlet (6) and outlet (7) tubes which connect to the bottom of the recess (5) and through which a receptor solution was pumped by a microcassette peristaltic pump (Watson Marlow, UK) (not shown) at a constant flow rate to maintain sink conditions. The receptor solution consisted of 50% propylene glycol in water, made isotonic with 0.9% sodium chloride and preserved with 0.1% sodium azide or 0.1% sodium fluoride. To prevent air bubbles forming under the skin, the wire mesh (4) ensures turbulent receptor flow. The recess (5) is filled with receptor solution prior to placing.the skin in the cell. The receptor solution was degassed by spraying the solution into fine droplets under vacuum. while stirring at 40° C. Degassing was repeated three times. These precautions eliminated the need for a bubble chamber in the diffusion cell. The diffusion cells were set on a hollow metal heater bar which maintained normal skin temperature of 32° C. (±5° C.) means of heated, circulating water (Thermomix, Braun, Germany). Each diffusion cell had its receptor solution collected via tube (7) into polyethylene vials (6 ml liquid scintillation vials, Packard instruments, Netherlands) at two or four hour intervals for 24 hours, by means of an automated rotating fraction collector (Retriever II, ISCO, Australia). The amount of drug in each vial containing receptor solution was determined by reverse phase HPLC. Prior to analysis each vial was weighed with an analytical balance (Mettler AT261, Australia) and the volume calculated from the density of the receptor solution which was 1.0554 g/cm3 at 22° C. - The concentration of applied drug in each diffusion cell sample was measured using high pressure liquid chromatography (HPLC). The receptor solution was assayed neat, with 20 microL injected (WISP 712 autoinjector, Waters, Australia) into a freshly prepared and degassed (by filtering) mobile phase. Each drug was separated using a pre column fitted with a C18 insert and a μBandapak C18 (30 cm×3.9 nm) HPLC column (Waters). Absorbance was measured at the appropriate wavelength using a Waters tuneable absorbance detector and peak area was plotted and integrated using a Shimadzu C-R3A chromatopac integrator. The results reported for each experiment are the average values of four replicate diffusion cells uriless stated otherwise. The assay conditions used for each different drug are given in each example.
- The in vitro diffusion cell method described above was used to compare the penetration of 400 microL of 2% w/v ketoprofen in 70% v/v aqueous ethanol applied to the shed snake skin following the application of 400 microL of the different dermal penetration enhancers in a 2% v/v solution in 70% ethanol, 2 hours prior to the application of the ketoprofen. The control experiment involved application of 400 microL of 70% aqueous ethanol alone for 2 hours, followed by application of 400 microL of the 2% ketoprofen solution. Samples were assayed according to the method described previously. The detection wavelength was 255 nm and the mobile phase consisted of acetonitrile:water (55:45) made to pH 3.0 with orthophosphoric acid (BDH, Australia). Table 1 shows the mean flux of ketoprofen across the snake skin over 24 hours as determined by the linear regression of the cumulative amount of ketoprofen crossing the skin versus time (Units=microg/cm2·h).
FIG. 2 shows the representative mean cumulative amount versus time plots for ketoprofen.TABLE 1 Mean flux +/− std error p value (microg/ relative to Enhancement Enhancer type cm2 · h) control ratio Control - no 0.96 ± 0.18 — — enhancer, n = 9 Azone, n = 2 2.58 ± 0.23 0.0029 2.7 Octyl dimethyl 2.25 ± 0.14 0.0068 2.3 PABA, n = 3 Octylmethoxy 3.22 ± 0.28 0.0003 3.35 cinnamate, n = 3 Octyl salicylate, 27.66 ± 5.26 <0.0070 28.81 n = 2
NB. Enhancement ratio = mean flux enhancer/mean flux control
- Statistical significance was determined by means of a Student's t-test. Azone was selected as the standard penetration enhancer for comparison since it has been widely used in previous percutaneous penetration experiments.
- The in vitro diffusion cell method described above was used to compare the penetration of 30 microL of the commercial formulation Indospray™ (Rhone-Poulenc Rorer, Australia), which is a 1.0% w/w solution of indomethacin in 95% v/v ethanol when applied to the snake skin. 10 microL of increasing concentrations of Octyl dimethyl PABA in absolute ethanol were applied 30 mins prior to the application of the indomethacin formulation. The control experiment involved application of 10 microL of absolute ethanol alone 30 mins prior to the application of the indomethacin formulation. Samples were assayed according to the method described previously. The detection wavelength was 254 nm and the mobile phase consisted of acetonitrile:water (55% v/v:45% v/v) made to pH 3.0 with orthophosphoric acid. Table 2 shows the mean flux of indomethacin across the snake skin over 24 hours.
TABLE 2 Mean flux +/− Enhancer std error p value conc. (microg/ relative to Enhancement Enhancer type (% v/v) cm2 · h) control ratio Control - no n/a 1.24 ± 0.05 — — Enhancer Octyl dimethyl 1.6 1.43 ± 0.14 ns 1.2 PABA as above, 3.2 1.71 ± 0.32 ns 1.4 n = 3 as above 6.4 1.94 ± 0.09 0.0005 1.6
ns = not statistically significantly different
- These results demonstrate the ability of the dermal penetration enhancers to be applied alone prior to exposure of the skin to the physiologically active ingredient(s) formulations without penetration enhancers. Enhancement of percutaneous absorption is extensive, as well as being dose-dependent in manner, such that the desired level of enhancement can be achieved by utilising the appropriate dose of dermal penetration enhancer applied to the skin.
- The same protocol as Example 1 was repeated, except the dermal penetration enhancers were included in the ketoprofen formulation, such that 400 microL of 2% w/v ketoprofen and 2% v/v dermal penetration enhancer in 70% v/v aqueous ethanol was applied to the skin from the start of the diffusion experiment.
- Table 3 shows the mean flux of ketoprofen across the snake skin over 24 hours.
FIG. 3 shows the representative mean cumulative amount versus time plots for ketoprofen.TABLE 3 Mean flux +/− std error p value (microg/ relative to Enhancement Enhancer type cm2 · h) control ratio Control - no 0.78 ± 0.07 — — enhancer, n = 10 Azone, n = 2 2.84 ± 0.11 <0.0001 3.6 Octyl dimethyl 2.71 ± 0.18 <0.0001 3.5 PABA, n = 2 Octylmethoxy 2.08 ± 0.39 0.0413 2.7 cinnamate, n = 2 Octyl salicylate, n = 4 61.68 ± 14.89 <0.0059 79.1 - These results demonstrate the ability of the dermal penetration enhancers to be applied together with the physiologically active ingredient/s within the same formulation to achieve their percutaneous absorption enhancement.
- Table 4 shows the mean flux (% dose/h)+/−the standard error of the mean of hydroquinone (HQ) penetrated across full-thickness guinea pig skin in vitro from a gel formulation applied to the skin at a dose of 15 mg/cm2. Radio labelled hydroquinone (C14, Amersham) was added to each of the topical formulations. At specified
time intervals 200 microL of receptor solution was withdrawn with a micro-pipefte and replaced with 200 microL of fresh normal saline. The 200 microL samples were added to 800 microL of water which in turn was added to 10 mL of scintillation cocktail consisting of Toluene™ 1L, PPO 5 g, POPOP 0.1 g and Triton. X™ 500 mL. The scintillation counting was performed on a Packard Tricarb 460C instrument. Disintegrations per minute were determined by an external standard procedure and calculated by the data system of the instrument.TABLE 4 Enhancement ratio Flux (enhancer/ Enhancer type (% dose/h) control) PARSOL ® MCX 3% v/v 0.93 ± 0.19* 2.7 ESCALOL ® 507 3% v/v 1.02 ± 0.09* 2.9 AZONE 5% v/v, PARSOL ® 1.48 ± 0.08* 43 MCX 3% v/ v AZONE 5% v/v, ESCALOL ® 0.74 ± 0.02* 2.1 507 3% v/v PARSOL ® MCX 3% v/v, 1.30 ± 0.10* 37 ESCALOL ® 507 3% v/v Control (no enhancer) 0.35 ± 0.10 —
n > or = 10,
*statistically significantly different from control, P < 0.01 following student t-test.
- Table 5 shows the effect of hydroquinone (HQ) penetration across full-thickness guinea pig skin in vivo on the mean melanin content (mg/cm2)+/−standard error of the mean following the application of a finite dose solution (5 microL/cm2). Melanin content was measured by reflectance absorbance from the treated and untreated skin according to the methods outlined in the PhD thesis of Anderson, J. R., titled The Development of Techniques for Measuring the Bioavailability of Topical Depigmenting Agents (School of Pharmaceutics, Victorian College of Pharmacy Ltd., Parkville, Victoria, Australia, December, 1985).
TABLE 5 Enhancement Melanin p value ratio HQ concentration/ content relative to (enhancer/ Enhancer type (μg/cm2) control control) HQ 1% w/v control *57.5 ± 3.7 — HQ 1% w/v, Octyl dimethyl38.2 ± 3.1 0.002* 1.5 PABA 2% v/v HQ 2% w/v control {circumflex over ( )} 36.8 ± 8.1 — HQ 2% w/v,Azone 2% v/v39.5 ± 9.6 0.35{circumflex over ( )} 0.93
n = 8,
statistically significant differences tested for using a Student t-test.
- Table 6 shows the median amount (μg/cm2) of ibuprofen penetrated across full-thickness hairless mouse skin in vitro when 400 microL of a 2% w/v ibuprofen and 2% v/v dermal penetration enhancer in 70% v/v aqueous ethanol is applied. Again Azone was selected as the standard for comparison and the control formulation contained no penetration enhancer. The detection wavelength was 210 nm and the mobile phase consisted of acetonitrile:water (55:45) made to pH 3.0 with orthophosphoric acid.
TABLE 6 Enhancer type after 12 hours after 24 hours Octyl methoxycinnamate 2% v/v 1099* 2458* Octyl dimethyl PABA 2% v/v1123* 2981 * Azone 2% v/v 1036* 2684* Control (no enhancer) 474 1819
n = 8,
*statistically significantly different from control, p < 0.05 following ANOVA on Ranks.
- Table 7 shows the mean amount (μ/cm2)+/−standard error of the mean of testosterone penetrated across dermatomed (300 μm thickness) neonate porcine skin in vitro when 10 microL of a 12% w/v testosterone and 8% v/v of dermal penetration enhancer in absolute ethanol was applied. The detection wavelength was 241 nm and the mobile phase consisted of acetonitrile:water (55% :45%).
TABLE 7 Enhancer type after 4 hours after 24 hours Octyl dimethyl PABA 8% v/v72 ± 10* 227 ± 7* Control (no enhancer) 4 ± 1 13 ± 2* Enhancement ratio 18 17
n = 3,
*statistically significantly different from control, P < 0.003 following Student t-test.
-
FIG. 4 shows the cumulative amount of ibuprofen transferred across shed snake skin versus time for gel formulations of ibuprofen. 5 mg of each gel was applied to the skin. Samples were assayed by the HPLC method mentioned in Example 5. The gels were made to a final concentration of 5% w/w ibuprofen and 2% w/w dermal penetration enhancer by first dissolving them in 50% v/v aqueous ethanol then adding 2% w/w Sepigel-305™ (SEPPIC, Paris, France) as a gelling agent and stirring at room temperature until a gel was formed. This formulation was compared with the commercial IBUGEL™ (Dermal Laboratories, UK) formulation which contained 5% w/w ibuprofen in a ethanolic gel base formed with carbopol. As well, 2% w/w dermal penetration enhancer was added to the IBUGEL by simple mixing. The ibuprofen contents of each gel were determined by HPLC and were found to be 5.02, 5.75 and 5.43 mg/g for the gel using Sepigel-305™ and enhancer, the IBUGEL and the IBUGEL with enhancer; respectively. - Both the cumulative amounts at 12 an 24 h and the mean flux over 24 h were significantly greater (p<0.05) for both the enhanced gel formulations when compared to the commercial IBUGEL formulation. The flux enhancement ratios were 6.15 and 2.61 for the gel using Sepigel-305™ and enhancer and the IBUGEL with enhancer (n=3) respectively when compared to the IBUGEL (p<0.05).
- Table 8 shows the mean flux (g/cm2·h) of hydrocortisone penetrated across snake skin in vitro when 400 microL of 1% w/v hydrocortisone and 2% v/v octyl dimethyl PABA in 70% v/v aqueous ethanol was applied. The control formulation contained no penetration enhancer. The detection wavelength was 242 nm and the mobile phase consisted of acetonitrile:water (35%:65%).
TABLE 8 Mean flux +/− std error p value (microg/ relative to Enhancement Enhancer type cm2 · h) control ratio Control - no enhancer 0.14 ± 0.04 — — Octyl dimethyl PABA 0.79 ± 0.06 <0.0001 5.8 8% v/v - Table 9 shows the mean flux over 24 h of ketoprofen from a transdermal patch using the enhancer octyl salicylate compared with a control without enhancer. The patches were prepared by dissolving 300 mg of ketoprofen, 400 mg of penetration enhancer, 300 mg of polyethylene glycol 400 and 800 mg of hydroxypropylcellulose in 20 mL of ethanol and stirring until viscous. This was then poured onto a clean glass plate and dried at 40 degrees Celsius for 1 h. The thickness of this film was approximately 1 mm. Circles of 0.8 cm2 were then cut out of this matrix and stuck onto the middle of 2.0 cm2 circles of OPSITETM adhesive bandage. This patch was then stuck onto 2.0 cm2 pieces of snake skin and placed in the diffusion cell. The. ketoprofen content of each patch formulation was determined by HPLC in triplicate and found to be 6.99+/−0.30 mg/cm2 and 6.76+/−0.24 mg/cm2, for the control and, octyl salicylate patches respectively (mean content+/−std error, n=4).
TABLE 9 Mean flux +/− std error p value (microg/ relative to Enhancement Enhancer type cm2 · h) control ratio Control - no enhancer 0.47 ± 0.04 — — Octyl salicylate 11.70 ± 0.65 <0.0001 25.2 - In order to further illustrate the present invention and the advantages thereof, the following specific examples are given, it being understood that same are intended only as illustrative and in nowise limitative. In the examples, the effectiveness of the dermal penetration enhancers are illustrated by measuring the skin penetration of physiologically active agents. Also, the skin penetration of the dermal penetration enhancers of this invention were compared with that of other penetration enhancers as well as formulations of bio-affecting agents with common adjuvants. The comparisons made generally consisted of measuring the relative penetration through shed snake skin of the various formulations. In the examples, the in vitro skin penetration studies were performed using the same in vitro diffusion cell apparatus as previously. mentioned.
-
FIG. 5 shows the mean cumulative amount of testosterone which crosses the shed snake skin versus time. - The volume of each formulation applied to the skin was 5 microL/cm2. Each formulation contained 12% w/v testosterone in absolute ethanol. The dose was applied with a GC syringe. All except for the control formulation had a penetration enhancer added at a concentration of 8% v/v.
- Samples were assayed for testosterone by HPLC as shown before in Example 6.
- Table 10 shows the mean flux of testosterone over 24 h for each of the formulations and the degree of enhancement expressed as the ratio of the mean flux of the penetration enhancer formulation divided by the mean flux of the control formulation.
TABLE 10 Mean flux +/− std error p value (microg/ relative to Enhancement Enhancer type cm2 · h) control ratio Control - no enhancer 0.70 ± 0.03 — — Oleic acid 2.09 ± 0.08 <0.0001 3.0 Azone 2.02 ± 0.27 <0.03 2.9 Octyl dimethyl PABA 1.43 ± 0.25 <0.03 2.0 Octylsalicylate 4.18 ± 0.41 <0.03 6.0 - Table 11 shows the mean flux over 24 h and the enhancement ratios for a number of different preferred compounds after they are applied to the skin at a dose of 5 microL/cm2. The two penetration enhancers given as examples are octyl dimethyl PABA and Azone. Both penetration enhancers were again at a concentration of 8% v/v within the formulations and control was without a penetration enhancer. A concentration of 2% w/v oestradiol was used in the formulation and detection wavelength was 212 nm and the mobile phase consisted of acetonitrile:water (40%:60%). A concentration of 6% w/v progesterone was used in the formulation, the detection wavelength was 240 nm and the mobile phase consisted of acetonitrile:water (55%:45%). A concentration of 6% w/v norethisterone acetate was used in the formulation, the detection wavelength was 240 nm and the mobile phase consisted of acetonitrile:water (55%:45%) adjusted to pH 3.0 with orthophosphoric acid. A concentration of 20% ibuprofen was used in the formulation, the detection wavelength was 210 nm and the mobile phase consisted of acetonitrile:water (55%:45%) adjusted to pH 3.0 with orthophosphoric acid. A concentration of 20% flurbiprofen was used in the formulation, the detection wavelength was 247 nm and the mobile phase consisted of acetonitrile water (55%:45%) adjusted to 5 pH 3.0 with orthophosphoric acid.
TABLE 11 Meanflux +/− p value Enhance- std error cf. ment Drug Enhancer type (microg/cm2 · h) control ratio Oestradiol Control, n = 3 0.06 ± 0.01 — — Azone 0.40 ± 0.05 <0.003 6.4 Octyldimethyl 0.26 ± 0.01 < 4.1 PABA 0.0001 Progesterone Control, n × 3 0.40 ± 0.02 — — Azone, n = 3 2.17 ± 0.33 <0.05 5.4 Octyl dimethyl 0.95 +/31 0.03 < 2.4 PABA 0.0001 Norethisterone Control 0.14 ± 0.02 — — acetate Azone 0.16 ± 0.02 — 1.1 0.0001 Octyl dimethyl 1.85 +/31 0.07 < 12.8 PABA 0.0001 Ibuprofen Control 5.39 +/31 0.50 — — Azone 13.53 ± 1.38 0.0014 2.5 Octyl dimethyl 13.16 ± 1.21 0.001 2.4 PA0BA Flurbiprofen Control, n = 3 0.81 ± 0.05 — — Azone 2.05 +/31 0.42 0.0559 2.5 Octyl dimethyl 2.91 +/31 0.30 0.0023 3.6 PABA, n = 3 - The flux values obtained for these drugs are clinically relevant, given for example that in hormone replacement therapy for postmenopausal women the current transdermal delivery systems aim to provide 25 to 100 μg of estradiol per day and 250 μg of norethisterone per day (Estracombi™) and in testosterone replacement therapies the goal ranges from replacing 0.1 to 0.3 mg per day in women lacking testosterone (U.S. Pat. No. 5,460,820), to 5 to 6 mg per day in testosterone deficient hypogonadal men (Androderm.™.) and up to 6 to 10 mg per day for male contraception (ref. J. Clin. Endocrinol. Metab., Vol. 81, 4113-4121, 1996). For the NSAIDs, ibuprofen and flurbiprofen increased drug flux is desirably predicated on the basis that this will lead to higher local concentrations of the active drug at the target site of pain and inflammation.
-
FIGS. 5 and 6 show the mean plasma levels of testosterone and oestradiol respectively following application of the topical transdermal aerosols (described previously in examples 15 and 14 respectively) to domestic weanling pigs (7 to 8 weeks old) in vivo. Plasma testosterone and oestradiol levels were determined by high specificity radioimmunoassays, using commercially available assay kits. The oestradiol assay (Orion Diagnostica, Finland) was conducted according to the manufacturers' directions. The testosterone assay (Pantex, Calif., USA) was also conducted according to the directions, with the procedure modified to include an extraction step (90% diethylether/10% ethyl acetate) to remove any species specific matrix effects. The control formulations were the same aerosol systems as above, except they did not contain any dermal penetration enhancer. - The male pigs receiving the testosterone dose were surgically castrated 1 week prior to the commencement of the study to remove any interference from endogenous testosterone production and at the same time a cephalic cannula was inserted to facilitate biood sampling. These procedures were performed under general anaesthetic halothane (Fluothane™).
- The results shown are baseline subtracted, were the baseline testosterone level at time zero was 4.3 nmol/L+/−1.1 nmol/L (mean+/−std error mean) for the test group (n=4) and was <0.5 nmol/L for every pig in the control group (n=7). A single application of 9 sprays over 180 cm2 was applied at 9 am and blood samples were taken at the intervals shown over 24 h. The mean body weight of the pigs were 19.9 kg+/−0.8 kg and 17.2 kg +/−0.4 kg for the test and control groups respectively. The area under the plasma concentration versus time curve (AUC) was 2.2 fold greater (p<0.05) for the penetration enhancer formulation compared with control. The calculated results for AUC were normalised to a body weight of 20. kg assuming volume of distribution is directly proportional to body weight.
- The male pigs receiving the oestradiol dose had baseline oestradiol levels of <0.02 nmol/L for every pig in the test group (n=4) and <0.02 nmol/L for every pig in the control group (n=6). A single application of 3 sprays over 30 cm2 was applied at 9 am and blood samples were taken at the intervals shown over 24 h. The mean body weights of the pigs were 21.3 kg+/−1.0 kg and 17.5 kg+/−0.4 kg for the test and control group respectively. The area under the plasma versus time curve (AUC) was 14.1 fold greater (p<0.0003) for the penetration enhancer formulation compared with control. The calculated results for AUC were normalised to a body weight of 20 kg assuming volume of distribution is directly proportional to body weight.
- Male pigs were used as described above, and the testosterone spray was applied daily over 180 cm2 as described previously. Once daily testosterone application was performed at 9 am for 6 consecutive days, and on the sixth day blood samples were taken at the intervals shown over 24 h in
FIG. 7 . A baseline blood sample was taken at time=0 h, onday 1 and was 2.8 nmol/L+/−1.1 nmol/L (mean+/−std error mean), n=4.FIG. 7 shows the mean plasma level of testosterone versus time over 24 h. The results shown are baseline testosterone subtracted and are representative of the expected steady-state profile for testosterone. -
FIG. 8 shows the mean cumulative amount of testosterone crossing the domestic weanling pig skin in vivo, as determined by Wagner-Nelson analysis, which says that Flux=Plasma conc . . . times·Clearance (Berner B., John V. A., Pharmacokinetic Characterisation of Transdermal Delivery Systems, Clin. Pharmacokinet., 26(2): 121-134, 1994.). Clearance was determined prior to study commencement by a bolus dose of intravenous testosterone and was found to be 663 ml/h·kg+/−139 ml/h·kg which was similar to the reported value for males of 655 ml/h·kg (Mazer N. A., Heiber W. E., Moellmer J. F., Meikle A. W., Stringham J. D., Sanders S. W., Tolman K. G., Odell W. D., Enhanced transdermal delivery of testosterone: a new physiological approach for androgen replacement in hypogonadal men, J. Control. Releas., 19, 347-362, 1992). Also included for comparison inFIG. 8 are the expected in vivo penetration across human skin and the in vitro penetration of testosterone across shed snake skin. The in vivo penetration across human skin was based on a 2.2 fold lower permeability of testosterone in human skin compared with pig skin as determined in vivo (Bartek M. J., LaBudde J., Maibach H. I., Skin Permeability In Vivo: Comparison in Rat, Rabbit, Pig and Man, J. Invest. Dermatol., 58(3): 114-123,1972); -
FIG. 8 shows the controlled nature of testosterone penetration across the skin in vivo, as well as the good predictive capability of the in vitro shed snake skin diffusion model for ascertaining the likely penetration of the testosterone across human skin. It is therefore envisaged that the flux values obtained in examples 10 and 11 will be very similar to those obtained in humans in a clinical setting. - Further to this
FIG. 9 depicts the predicted plasma levels of testosterone in male subjects of a nominal weight of 70 kg based upon the clearance value of testosterone in males shown above. For comparison the 95% confidence interval of the testosterone plasma level in normal healthy adult males is given (Mazer, et al., J. Control. Releas., 19, 347-362, 1992). As shown this delivery system is quite capable of achieving the desired level of testosterone replacement in testosterone deficient hypogonadal men based upon on simple once daily application of the delivery system. - Aerosol Device
- A plastic-coated glass aerosol container of 10 ml fill volume was fitted with a pharmaceutical grade metered-dose valve of a nominated discharge volume (50 μl for the oestradiol aerosol and 100 μl for the testosterone aerosol).
- A stainless steel O-ring locks the valve in place on the aerosol container.
- The aerosol container is charged with at least one physiologically active agent, non-volatile dermal penetration enhancer, volatile liquid carrier and optionally any other diluents, carriers, surfactants or additives followed by the propellant according to any suitable process.
- A pharmaceutical grade spray nozzle and an aerosol shroud is fitted to keep the spray nozzle perpendicular to the skin at a height of 50 mm.
- Method of Aerosol Use
- 1. Hold the device upright in the palm of your preferred hand with your thumb resting gently on the actuator button.
- 2. Rest the shroud opening on the skin and depress the actuator button once and release the button. Remove the device from the skin.
- 3. Repeat steps 1 and 2 on a new area of skin until the correct number of doses have been given.
- 4. Allow the applied formulation to dry on the skin for 1 minute.
- During application of the spray, the nozzle shroud envelopes the spray, providing an effective closed system which deposits the active agent into the skin, and such that when the spray hits the surface of the skin it does not undergo any appreciable bounce-back into the atmosphere. A defined dose of active agent and penetration enhancer is forced through a uniform spray nozzle at a constant pressure form a defined height to give a uniform dose per cm2.
-
17-β-Oestradiol Metered-Dose Transdermal Aerosol Concentration Active ingredient: 17-β- Oestradiol 2% w/v Non-volatile dermal penetration enhancer: Octyl dimethyl-para-aminobenzoate 8% v/v (Escalol 507, Padimate O) Volatile liquid: Absolute ethanol (AR) 60% v/v Volatile propellant: Dimethyl ether 30% v/v to give a final formulation pressure of 2.0 kp/cm2 (30 psi). - One spray of 50 μl will apply 1 mg of 17-β-oestradiol over an area of approximately 10 cm·sup·2. 3 sprays will be administered to the forearm skin, applying a dose of 3 mg over approximately 30 cm2.
-
Testosterone Metered-Dose Transdermal Aerosol Concentration Active ingredient: Testosterone 12% w/v Non-volatile dermal penetration enhancer: Octyl dimethyl-para-aminobenzoate 8% v/v (Escalol 507, Padimate O) Volatile liquid: Absolute ethanol (AR) 50% v/v Volatile propellant: Dimethyl ether to give a final formulation pressure of 35% v/v 2.4 kp/cm2 (35 psi). - One spray of 100 μl will apply 12 mg of testosterone over an area of approximately 20 cm2. 9 sprays will be administered to a defined area of skin on the torso (rib cage), applying a dose of 108 mg over approximately 180 cm2
-
Analgesic mousse with penetration enhancement Ingredient: Concentration Ibuprofen 5% w/w 2-ethylhexyl-p- methoxycinnamate 5% w/w nonionic emulsifier 2.5% w/w ethyl alcohol (95%) 32.5% w/w purified water 50% w/ w hydrocarbon propellant 5% w/w - Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
Claims (21)
1-38. (canceled)
39. A method of contraception in a human or other animal, comprising administering to a dermal surface of said human or other animal a metered dose spray of a transdermal delivery system comprising:
(i) an effective amount of at least one physiologically active agent for male or female contraception, or a prodrug thereof;
(ii) at least one non-volatile penetration enhancer; and
(iii) at least one volatile solvent;
wherein said dermal surface becomes touch dry within 3 minutes of application of the spray.
40. The method according to claim 39 , wherein said physiologically active agent comprises at least one active agent selected from the group consisting of oestrogens, progesterone, and progestagens other than progesterone.
41. The method according to claim 40 , wherein said physiologically active agent comprises a progestagen other than progesterone.
42. The method according to claim 41 , wherein said progestagen other than progesterone comprises at least one active agent selected from the group consisting of allyloestrenol, dydrogesterone, lynoestrenol, norethisterone, norethisterone acetate, norgestrel, norethyndrel, gestodene, levonorgestrel, medroxyprogesterone, and megestrol.
43. The method according to claim 40 , wherein said physiologically active agent comprises at least one oestrogen selected from the group consisting of oestradiol, oestrone, oestriol, ethynylestradiol, mestranol, stilboestrol, dienoestrol, epioestriol, estropipate, and zeranol.
44. The method according to claim 39 , wherein said physiologically active agent comprises at least one active agent selected from the group consisting of oestradiol, progesterone, and norethisterone acetate.
45. The method according to claim 39 , wherein said metered dose spray is administered from an applicator selected from the group consisting of an aerosol and a spray pump-pack.
46. The method according to claim 45 , wherein said applicator is a fixed or variable metered dose applicator.
47. The method according to claim 39 , wherein said metered dose spray is administered from an applicator selected from the group consisting of a metered dose aerosol, a stored energy metered dose pump, and a manual metered dose pump.
48. The method according to claim 39 , wherein said metered dose spray is administered from a topical metered dose aerosol combined with an actuator nozzle shroud, whereby the amount and uniformity of the dose of said transdermal delivery system applied to said dermal surface is accurately controlled.
49. The method according to claim 39 , wherein said penetration enhancer is selected from the group consisting of laurocapram, laurocapram derivatives, oleic acid, fatty acid esters, long chain alkylesters of 2-pyrrolidone, dodecyl (N, N-dimethylamino) acetate, dodecyl (N,N-dimethylamino) propionate, 2-N-nonyl-1,3-dioxolane, and sunscreen esters.
50. The method according to claim 39 , wherein said penetration enhancer is selected from the group consisting of laurocapram, laurocapram derivatives, oleic acid, oleic acid ester derivatives, sorbitan esters, isopropyl laurate, isopropyl myristate, isopropyl palmitate, diisopropyl adipate, propylene glycol monolaurate, propylene glycol monooleate, long chain alkyl esters of 2-pyrrolidone, dodecyl (N, N-dimethylamino) acetate, dodecyl (N, N-dimethylamino) propionate, 2-N-nonyl-1,3-dioxolane, and sunscreen esters.
51. The method according to claim 39 , wherein said penetration enhancer is a sunscreen ester of formula (I)
wherein R1 is hydrogen, lower alkyl, lower alkoxy, halide, hydroxy or NR3R4;
R2 is a long chain alkyl; R3 and R4 are each independently hydrogen, lower alkyl or R3 and R4 together with the nitrogen atom to which they are attached form a 5- or 6- membered heterocyclic ring;
n is 0 or 1; and
q is 1 or2.
52. The method according to claim 51 , wherein said compound of formula I is selected from the group consisting of octyldimethyl-paraminobenzoate, octyl paramethoxycinnamate, octyl salicylate, and isoamyl salicylate.
53. The method according to claim 39 , wherein said volatile solvent is selected from the group consisting of ethanol and isopropanol.
54. The method according to claim 39 , wherein said transdermal delivery system is in a single phase system.
55. The method according to claim 39 , wherein said transdermal delivery system is not supersaturated with respect to said contraceptive agent.
56. The method according to claim 39 , wherein said transdermal delivery system further comprises a propellant.
57. The method according to claim 56 , wherein said propellant is selected from the group consisting of hydrocarbons, hydroflourocarbons, nitrogen, nitrous oxide, carbon dioxide, and ethers.
58. The method according to claim 39 , wherein said transdermal delivery system is administered from a metered dose container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/513,342 US20070071803A1 (en) | 1996-02-19 | 2006-08-31 | Dermal penetration enhancers and drug delivery systems involving same |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPN8144/96 | 1996-02-19 | ||
AUPN8144A AUPN814496A0 (en) | 1996-02-19 | 1996-02-19 | Dermal penetration enhancer |
PCT/AU1997/000091 WO1997029735A1 (en) | 1996-02-19 | 1997-02-19 | Dermal penetration enhancers and drug delivery systems involving same |
US09/125,436 US6299900B1 (en) | 1996-02-19 | 1997-02-19 | Dermal penetration enhancers and drug delivery systems involving same |
US09/910,780 US6818226B2 (en) | 1996-02-19 | 2001-07-24 | Dermal penetration enhancers and drug delivery systems involving same |
US10/759,303 US7438203B2 (en) | 1996-02-19 | 2004-01-20 | Dermal penetration enhancers and drug delivery systems involving same |
US11/513,342 US20070071803A1 (en) | 1996-02-19 | 2006-08-31 | Dermal penetration enhancers and drug delivery systems involving same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/759,303 Continuation US7438203B2 (en) | 1996-02-19 | 2004-01-20 | Dermal penetration enhancers and drug delivery systems involving same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070071803A1 true US20070071803A1 (en) | 2007-03-29 |
Family
ID=3792458
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/125,436 Expired - Lifetime US6299900B1 (en) | 1996-02-19 | 1997-02-19 | Dermal penetration enhancers and drug delivery systems involving same |
US09/910,780 Expired - Lifetime US6818226B2 (en) | 1996-02-19 | 2001-07-24 | Dermal penetration enhancers and drug delivery systems involving same |
US10/428,017 Expired - Fee Related US6964777B2 (en) | 1996-02-19 | 2003-05-02 | Transdermal delivery of antianxiety agents |
US10/759,303 Expired - Fee Related US7438203B2 (en) | 1996-02-19 | 2004-01-20 | Dermal penetration enhancers and drug delivery systems involving same |
US11/513,342 Abandoned US20070071803A1 (en) | 1996-02-19 | 2006-08-31 | Dermal penetration enhancers and drug delivery systems involving same |
US11/517,575 Expired - Fee Related US7387789B2 (en) | 1996-02-19 | 2006-09-08 | Transdermal delivery of non-steroidal anti-inflammatory drugs |
US11/905,926 Expired - Fee Related US8071075B2 (en) | 1996-02-19 | 2007-10-05 | Dermal penetration enhancers and drug delivery systems involving the same |
US11/978,556 Abandoned US20080131494A1 (en) | 1996-02-19 | 2007-10-30 | Dermal Penetration enhancers and drug delivery systems involving same |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/125,436 Expired - Lifetime US6299900B1 (en) | 1996-02-19 | 1997-02-19 | Dermal penetration enhancers and drug delivery systems involving same |
US09/910,780 Expired - Lifetime US6818226B2 (en) | 1996-02-19 | 2001-07-24 | Dermal penetration enhancers and drug delivery systems involving same |
US10/428,017 Expired - Fee Related US6964777B2 (en) | 1996-02-19 | 2003-05-02 | Transdermal delivery of antianxiety agents |
US10/759,303 Expired - Fee Related US7438203B2 (en) | 1996-02-19 | 2004-01-20 | Dermal penetration enhancers and drug delivery systems involving same |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/517,575 Expired - Fee Related US7387789B2 (en) | 1996-02-19 | 2006-09-08 | Transdermal delivery of non-steroidal anti-inflammatory drugs |
US11/905,926 Expired - Fee Related US8071075B2 (en) | 1996-02-19 | 2007-10-05 | Dermal penetration enhancers and drug delivery systems involving the same |
US11/978,556 Abandoned US20080131494A1 (en) | 1996-02-19 | 2007-10-30 | Dermal Penetration enhancers and drug delivery systems involving same |
Country Status (15)
Country | Link |
---|---|
US (8) | US6299900B1 (en) |
EP (3) | EP0901368B1 (en) |
JP (2) | JP4213211B2 (en) |
KR (1) | KR100528602B1 (en) |
AT (3) | ATE472997T1 (en) |
AU (2) | AUPN814496A0 (en) |
CA (1) | CA2244089C (en) |
DE (6) | DE69739931D1 (en) |
DK (3) | DK1769785T3 (en) |
ES (3) | ES2314538T3 (en) |
HK (3) | HK1018884A1 (en) |
LU (3) | LU91973I2 (en) |
NZ (1) | NZ330942A (en) |
PT (3) | PT1769785E (en) |
WO (1) | WO1997029735A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050175680A1 (en) * | 2002-06-25 | 2005-08-11 | Acrux Dds Pty Ltd. | Transdermal delivery rate control using amorphous pharmaceutical compositions |
US20050181032A1 (en) * | 2002-06-25 | 2005-08-18 | Acrux Dds Pty Ltd. | Metastable pharmaceutical compositions |
US20050186141A1 (en) * | 2002-06-25 | 2005-08-25 | Acrux Dds Pty Ltd. | Transdermal aerosol compositions |
US20060280783A1 (en) * | 2005-06-03 | 2006-12-14 | Acrux Dds Pty Ltd. | Method and composition for transdermal drug delivery |
US20080131494A1 (en) * | 1996-02-19 | 2008-06-05 | Acrux Dds Pty Ltd. | Dermal Penetration enhancers and drug delivery systems involving same |
US20090075963A1 (en) * | 2007-09-14 | 2009-03-19 | Drugtech Corporation | Transdermal hormone spray |
US20090098069A1 (en) * | 2007-09-14 | 2009-04-16 | Drugtech Corporation | Transdermal, alcohol-free, pharmaceutical compositions |
US20100048598A1 (en) * | 2008-08-21 | 2010-02-25 | Sateesh Kandavilli | Topical compositions comprising 5-alpha reductase inhibitors |
US20100279988A1 (en) * | 2007-11-02 | 2010-11-04 | Acrux Dds Pty Ltd. | Transdermal delivery system for hormones and steroids |
US8807861B2 (en) | 2007-01-11 | 2014-08-19 | Acrux Dds Pty Ltd. | Spreading implement |
USD749225S1 (en) | 2013-11-26 | 2016-02-09 | Acrux Dds Pty Ltd | Topical spreading applicator |
USD750788S1 (en) | 2013-11-26 | 2016-03-01 | Acrux Dds Pty Ltd | Topical spreading applicator |
Families Citing this family (364)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861571B1 (en) * | 1994-11-28 | 2005-03-01 | The Procter & Gamble Company | Article having a lotioned topsheet |
BR9509985A (en) | 1995-12-12 | 1998-11-03 | Omeros Med Sys Inc | Solution for irrigation and method for inhibiting pain, inflammation and sparse |
US6413961B1 (en) | 1995-12-12 | 2002-07-02 | Omeros Medical Systems, Inc. | Irrigation solution and method for inhibition of pain and inflammation |
US6916487B2 (en) * | 1996-02-19 | 2005-07-12 | Acrux Dds Pty Ltd | Transdermal delivery of antiemetics |
US6916486B2 (en) * | 1996-02-19 | 2005-07-12 | Acrux Dds Pty Ltd | Transdermal delivery of analgesics |
US6929801B2 (en) * | 1996-02-19 | 2005-08-16 | Acrux Dds Pty Ltd | Transdermal delivery of antiparkinson agents |
US6923983B2 (en) * | 1996-02-19 | 2005-08-02 | Acrux Dds Pty Ltd | Transdermal delivery of hormones |
US7094422B2 (en) * | 1996-02-19 | 2006-08-22 | Acrux Dds Pty Ltd. | Topical delivery of antifungal agents |
US6512010B1 (en) * | 1996-07-15 | 2003-01-28 | Alza Corporation | Formulations for the administration of fluoxetine |
US8022095B2 (en) * | 1996-08-16 | 2011-09-20 | Pozen, Inc. | Methods of treating headaches using 5-HT agonists in combination with long-acting NSAIDs |
GR1002847B (en) | 1997-05-06 | 1998-01-27 | Use of micropostol and/or micropostol acid for the preparation of a medicine for the therapeutic treatiment of problems related to the erection | |
US6767902B2 (en) * | 1997-09-17 | 2004-07-27 | The Population Council, Inc. | Androgen as a male contraceptive and non-contraceptive androgen replacement |
US20040141923A1 (en) * | 1997-10-01 | 2004-07-22 | Dugger Harry A. | Buccal, polar and non-polar spray containing alprazolam |
US20030190286A1 (en) * | 1997-10-01 | 2003-10-09 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing drugs for treating allergies or asthma |
US20050163719A1 (en) * | 1997-10-01 | 2005-07-28 | Dugger Harry A.Iii | Buccal, polar and non-polar spray containing diazepam |
EP1952802A3 (en) * | 1997-10-01 | 2009-06-17 | Novadel Pharma Inc. | Buccal, polar and non-polar spray or capsule |
US20030095925A1 (en) * | 1997-10-01 | 2003-05-22 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing drugs for treating metabolic disorders |
US20040136914A1 (en) * | 1997-10-01 | 2004-07-15 | Dugger Harry A. | Buccal, polar and non-polar spray containing ondansetron |
US20040136913A1 (en) * | 1997-10-01 | 2004-07-15 | Dugger Harry A. | Buccal, polar and non-polar spray containing sumatriptan |
US20050180923A1 (en) * | 1997-10-01 | 2005-08-18 | Dugger Harry A.Iii | Buccal, polar and non-polar spray containing testosterone |
US20090162300A1 (en) * | 1997-10-01 | 2009-06-25 | Dugger Iii Harry A | Buccal, polar and non-polar spray containing alprazolam |
US20030185761A1 (en) | 1997-10-01 | 2003-10-02 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing drugs for treating pain |
US20030082107A1 (en) * | 1997-10-01 | 2003-05-01 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing drugs for treating an infectious disease or cancer |
US20030077227A1 (en) * | 1997-10-01 | 2003-04-24 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing drugs for treating disorders of the central nervous system |
US20030077229A1 (en) * | 1997-10-01 | 2003-04-24 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing cardiovascular or renal drugs |
US20030077228A1 (en) * | 1997-10-01 | 2003-04-24 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing drugs for treating endocrine disorders |
US20030095926A1 (en) * | 1997-10-01 | 2003-05-22 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing drugs for treating disorders of the gastrointestinal tract or urinary tract |
US7632517B2 (en) * | 1997-10-01 | 2009-12-15 | Novadel Pharma Inc. | Buccal, polar and non-polar spray containing zolpidem |
US20030095927A1 (en) * | 1997-10-01 | 2003-05-22 | Dugger Harry A. | Buccal, polar and non-polar spray or capsule containing drugs for treating muscular and skeletal disorders |
US20040136915A1 (en) * | 1997-10-01 | 2004-07-15 | Dugger Harry A. | Buccal, polar and non-polar spray containing atropine |
US20050287075A1 (en) * | 1997-10-01 | 2005-12-29 | Dugger Harry A Iii | Buccal, polar and non-polar spray or capsule containing drugs for treating pain |
US20050002867A1 (en) * | 1997-10-01 | 2005-01-06 | Novadel Pharma Inc. | Buccal, polar and non-polar sprays containing propofol |
US20050281752A1 (en) * | 1997-10-01 | 2005-12-22 | Dugger Harry A Iii | Buccal, polar and non-polar spray or capsule containing drugs for treating disorders of the central nervous system |
US5968919A (en) * | 1997-10-16 | 1999-10-19 | Macrochem Corporation | Hormone replacement therapy drug formulations for topical application to the skin |
US7098206B2 (en) | 1998-01-21 | 2006-08-29 | Smithkline Beecham Corporation | Pharmaceutically active morpholinol |
US6998400B2 (en) | 1998-01-22 | 2006-02-14 | Smithkline Beecham Corporation | Pharmaceutically active morpholinol |
JP2002501892A (en) | 1998-01-29 | 2002-01-22 | セプラコア インコーポレーテッド | Pharmaceutical use of optically pure (-)-viewpropion |
CA2318921A1 (en) | 1998-01-29 | 1999-08-05 | John R. Mccullough | Pharmacological uses of optically pure (+)-bupropion |
CA2318738A1 (en) * | 1998-01-29 | 1999-08-05 | Sepracor Inc. | Methods and compositions for aiding in smoking cessation and for treating pain and other disorders using optically pure (-)-bupropion |
DE19814084B4 (en) | 1998-03-30 | 2005-12-22 | Lts Lohmann Therapie-Systeme Ag | D2 agonist-containing transdermal therapeutic system for the treatment of Parkinson's syndrome and process for its preparation |
IL124764A0 (en) * | 1998-06-04 | 1999-01-26 | Univ Ben Gurion | Topical composition for treatment of baldness |
DE19825591A1 (en) * | 1998-06-09 | 1999-12-23 | Jenapharm Gmbh | Pharmaceutical combinations to compensate for a testosterone deficit in men while protecting the prostate |
GR1003199B (en) | 1998-08-14 | 1999-09-01 | Use of micropostol and/or micropostol acid for the preparation of a medicine for the therapeutic threatment of problemes related to the female sexual malfunction | |
EP1105110B1 (en) | 1998-08-20 | 2006-10-25 | 3M Innovative Properties Company | Spray on bandage and drug delivery system |
CA2349487C (en) * | 1998-12-08 | 2007-09-11 | Planisphere Corp. | Bupropion to treat viral diseases |
GB9828480D0 (en) * | 1998-12-24 | 1999-02-17 | Dermatech Limited | Transdermal drug delivery system |
DE60036915T2 (en) | 1999-01-13 | 2008-08-07 | Alchemia Oncology Pty Ltd., Hawthorn | USE OF HYALURONAN FOR THE MANUFACTURE OF A MEDICAMENT FOR INCREASING THE EFFICACY OF CYTOTOXIC DRUGS |
US6734213B2 (en) | 1999-01-20 | 2004-05-11 | Smithkline Beecham Corporation | Pharmaceutically active morpholinol |
US6855820B2 (en) | 1999-01-20 | 2005-02-15 | Smithkline Beecham Corporation | Pharmaceutically active morpholinol |
KR100390870B1 (en) * | 1999-02-09 | 2003-07-10 | 주식회사 삼양사 | A transdermal composition an antivomiting agent and a preparation containing same |
US6342496B1 (en) | 1999-03-01 | 2002-01-29 | Sepracor Inc. | Bupropion metabolites and methods of use |
US6337328B1 (en) | 1999-03-01 | 2002-01-08 | Sepracor, Inc. | Bupropion metabolites and methods of use |
CN1350521A (en) | 1999-03-05 | 2002-05-22 | 宝洁公司 | C16 unsaturated FP-selective prostaglanding analogs |
DE19918105C1 (en) | 1999-04-22 | 2000-09-21 | Lohmann Therapie Syst Lts | Transdermal patch for administering neuroleptic agent i.e. fluphenazine, flupentixol or triflupromazine, includes matrix layer containing penetration enhancer and hydrocarbon polymer |
US6428769B1 (en) | 1999-05-04 | 2002-08-06 | Aradigm Corporation | Acute testosterone administration |
EP1175204A4 (en) * | 1999-05-04 | 2006-05-31 | Aradigm Corp | Aerosol formulations and devices for increasing libido in women via acute testosterone administration |
US6632419B2 (en) | 1999-05-04 | 2003-10-14 | Aradigm Corporation | Increasing libido in humans via acute testosterone administration |
US7258850B2 (en) | 1999-05-04 | 2007-08-21 | Aradigm Corporation | Methods and compositions for treating erectile dysfunction |
US6280763B1 (en) | 1999-05-10 | 2001-08-28 | Pierce Management, Llc | Apparatus and method for transdermal delivery of bupropion |
US6312716B1 (en) * | 1999-05-10 | 2001-11-06 | Peierce Management Llc | Patch and method for transdermal delivery of bupropion base |
US6894175B1 (en) | 1999-08-04 | 2005-05-17 | The Procter & Gamble Company | 2-Decarboxy-2-phosphinico prostaglandin derivatives and methods for their preparation and use |
US20020172693A1 (en) | 2000-03-31 | 2002-11-21 | Delong Michell Anthony | Compositions and methods for treating hair loss using non-naturally occurring prostaglandins |
US20020013294A1 (en) | 2000-03-31 | 2002-01-31 | Delong Mitchell Anthony | Cosmetic and pharmaceutical compositions and methods using 2-decarboxy-2-phosphinico derivatives |
US20020037914A1 (en) | 2000-03-31 | 2002-03-28 | Delong Mitchell Anthony | Compositions and methods for treating hair loss using C16-C20 aromatic tetrahydro prostaglandins |
US6595947B1 (en) * | 2000-05-22 | 2003-07-22 | Becton, Dickinson And Company | Topical delivery of vaccines |
US7241731B2 (en) | 2000-06-05 | 2007-07-10 | Sumitomo Electric Industries, Ltd. | Oligopeptides for promoting hair growth |
US20050008602A1 (en) * | 2000-06-05 | 2005-01-13 | Sumitomo Electric Industries, Ltd. | Oligopeptides for promoting hair growth |
US8512718B2 (en) | 2000-07-03 | 2013-08-20 | Foamix Ltd. | Pharmaceutical composition for topical application |
US9066919B2 (en) * | 2000-07-14 | 2015-06-30 | Alchemia Oncology Pty Limited | Hyaluronan as a chemo-sensitizer in the treatment of cancer |
AUPQ879500A0 (en) * | 2000-07-14 | 2000-08-10 | Meditech Research Limited | Hyaluronan as cytotoxic agent, drug presensitizer and chemo-sensitizer in the treatment of disease |
US8980290B2 (en) | 2000-08-03 | 2015-03-17 | Antares Pharma Ipl Ag | Transdermal compositions for anticholinergic agents |
US20040198706A1 (en) * | 2003-03-11 | 2004-10-07 | Carrara Dario Norberto R. | Methods and formulations for transdermal or transmucosal application of active agents |
ATE485837T1 (en) | 2000-08-03 | 2010-11-15 | Antares Pharma Ipl Ag | COMPOSITION FOR TRANSDERMAL AND/OR TRANSMUCOSAL ADMINISTRATION OF ACTIVE INGREDIENTS WHICH GUARANTEES ADEQUATE THERAPEUTIC LEVELS |
US7198801B2 (en) * | 2000-08-03 | 2007-04-03 | Antares Pharma Ipl Ag | Formulations for transdermal or transmucosal application |
DE10041478A1 (en) | 2000-08-24 | 2002-03-14 | Sanol Arznei Schwarz Gmbh | New pharmaceutical composition |
DE10066158B4 (en) * | 2000-08-24 | 2007-08-09 | Neurobiotec Gmbh | Use of a transdermal therapeutic system for the treatment of Restless Legs Syndrome |
DE10053397A1 (en) | 2000-10-20 | 2002-05-02 | Schering Ag | Use of a dopaminergic active ingredient for the treatment of dopaminerg treatable diseases |
DE10041479A1 (en) * | 2000-08-24 | 2002-03-14 | Sanol Arznei Schwarz Gmbh | New pharmaceutical composition for the administration of N-0923 |
DE10042411A1 (en) * | 2000-08-30 | 2002-03-28 | Lohmann Therapie Syst Lts | Transdermal therapeutic system for the delivery of exemestane |
SI1315502T1 (en) * | 2000-08-30 | 2010-07-30 | Unimed Pharmaceuticals Llc | Method for treating erectile dysfunction and increasing libido in men |
US20040092494A9 (en) * | 2000-08-30 | 2004-05-13 | Dudley Robert E. | Method of increasing testosterone and related steroid concentrations in women |
US6503894B1 (en) | 2000-08-30 | 2003-01-07 | Unimed Pharmaceuticals, Inc. | Pharmaceutical composition and method for treating hypogonadism |
BR0113625A (en) * | 2000-09-08 | 2003-07-22 | Pharmacia Italia Spa | Exemestane as a chemoprevention agent |
DE10064453A1 (en) * | 2000-12-16 | 2002-07-04 | Schering Ag | Use of a dopaminergic active ingredient for the treatment of dopaminerg treatable diseases |
US20020177626A1 (en) | 2001-01-19 | 2002-11-28 | Cook Graham D. | Treatment of sleep disturbances |
FR2815256A1 (en) * | 2001-01-23 | 2002-04-19 | Oreal | Composition for cosmetic use comprises at least one derivative of sapogenin, preferably of hecogenin, and at least one solubilizing agent such as organic lipophilic UV filters |
JP3767392B2 (en) * | 2001-02-05 | 2006-04-19 | 日産自動車株式会社 | Engine camshaft rotation phase detection device and cylinder intake air amount calculation device |
US20020172732A1 (en) * | 2001-03-21 | 2002-11-21 | Wies Ter Laak | Composition comprising cocoa |
US20030027793A1 (en) * | 2001-05-08 | 2003-02-06 | Thomas Lauterback | Transdermal treatment of parkinson's disease |
US20030026830A1 (en) * | 2001-05-08 | 2003-02-06 | Thomas Lauterback | Transdermal therapeutic system for parkinson's disease inducing high plasma levels of rotigotine |
US7090830B2 (en) | 2001-05-24 | 2006-08-15 | Alexza Pharmaceuticals, Inc. | Drug condensation aerosols and kits |
CA2446904A1 (en) | 2001-05-24 | 2003-04-03 | Alexza Molecular Delivery Corporation | Delivery of drug esters through an inhalation route |
US7645442B2 (en) | 2001-05-24 | 2010-01-12 | Alexza Pharmaceuticals, Inc. | Rapid-heating drug delivery article and method of use |
US7585493B2 (en) | 2001-05-24 | 2009-09-08 | Alexza Pharmaceuticals, Inc. | Thin-film drug delivery article and method of use |
US7766013B2 (en) | 2001-06-05 | 2010-08-03 | Alexza Pharmaceuticals, Inc. | Aerosol generating method and device |
US7458374B2 (en) | 2002-05-13 | 2008-12-02 | Alexza Pharmaceuticals, Inc. | Method and apparatus for vaporizing a compound |
US20070122353A1 (en) | 2001-05-24 | 2007-05-31 | Hale Ron L | Drug condensation aerosols and kits |
US7498019B2 (en) | 2001-05-24 | 2009-03-03 | Alexza Pharmaceuticals, Inc. | Delivery of compounds for the treatment of headache through an inhalation route |
EP1408896B1 (en) * | 2001-06-22 | 2016-01-20 | CPEX Pharmaceuticals, Inc. | Pharmaceutical composition |
US7244703B2 (en) | 2001-06-22 | 2007-07-17 | Bentley Pharmaceuticals, Inc. | Pharmaceutical compositions and methods for peptide treatment |
WO2003018023A1 (en) | 2001-08-23 | 2003-03-06 | Bruce Frome | Compositions and methods for targeting cerebral circulation and treatment of headache |
US20040138239A1 (en) * | 2001-08-23 | 2004-07-15 | Bruce Frome | Compositions and methods for targeting cerebral circulation and treatment of headache |
DE10141650C1 (en) | 2001-08-24 | 2002-11-28 | Lohmann Therapie Syst Lts | Safe transdermal therapeutic system for administration of fentanyl or analogous analgesics, having matrix layer of carboxy group-free polyacrylate adhesive providing high permeation rate |
WO2003018062A1 (en) * | 2001-08-27 | 2003-03-06 | Meditech Research Limited | Improved therapeutic protocols |
US6723077B2 (en) | 2001-09-28 | 2004-04-20 | Hewlett-Packard Development Company, L.P. | Cutaneous administration system |
US20040120964A1 (en) * | 2001-10-29 | 2004-06-24 | Mikszta John A. | Needleless vaccination using chimeric yellow fever vaccine-vectored vaccines against heterologous flaviviruses |
CA2464994A1 (en) * | 2001-10-29 | 2003-06-26 | Becton, Dickinson And Company | Method and device for the delivery of a substance |
US7037513B1 (en) | 2005-01-31 | 2006-05-02 | Aquea Scientific Corporation | Bodywash additives |
US7025952B1 (en) | 2005-01-31 | 2006-04-11 | Aquea Scientific Corporation | Methods of preparation and use of bodywashes containing additives |
US6998113B1 (en) | 2005-01-31 | 2006-02-14 | Aquea Scientific Corporation | Bodywashes containing additives |
US20060173709A1 (en) * | 2005-01-31 | 2006-08-03 | Traynor Daniel H | Bodywash additive business methods |
PL370889A1 (en) | 2001-12-20 | 2005-05-30 | Femmepharma, Inc. | Vaginal delivery of drugs |
US20040097871A1 (en) * | 2002-01-03 | 2004-05-20 | Israel Yerushalmy | Apparatus for treating sleep disorders |
US20030143165A1 (en) * | 2002-01-25 | 2003-07-31 | Allan Evans | NSAID-containing topical formulations that demonstrate chemopreventive activity |
US20030161802A1 (en) * | 2002-02-05 | 2003-08-28 | Flammer Linda J. | Anti-dandruff and anti-itch compositions containing sensate and sensate enhancer-containing compounds |
AU2003238543B2 (en) * | 2002-06-25 | 2008-02-28 | Acrux Dds Pty Ltd | Transdermal aerosol compositions |
AUPS317302A0 (en) * | 2002-06-25 | 2002-07-18 | Drug Delivery Solutions Pty Ltd | Metastable pharmaceutical compositions |
AUPS317102A0 (en) * | 2002-06-25 | 2002-07-18 | Drug Delivery Solutions Pty Ltd | Transdermal aerosol compositions |
NZ537359A (en) * | 2002-06-25 | 2006-10-27 | Cosmeceutic Solutions Pty Ltd | Topical cosmetic compositions for transdermal delivery |
US8246980B2 (en) * | 2002-07-30 | 2012-08-21 | Ucb Pharma Gmbh | Transdermal delivery system |
US8246979B2 (en) | 2002-07-30 | 2012-08-21 | Ucb Pharma Gmbh | Transdermal delivery system for the administration of rotigotine |
EP1386605A1 (en) * | 2002-07-30 | 2004-02-04 | Schwarz Pharma Ag | Improved transdermal delivery system for the administration of rotigotine |
DE10234673B4 (en) | 2002-07-30 | 2007-08-16 | Schwarz Pharma Ag | Hot-melt TTS for the administration of rotigotine and process for its preparation, and use of rotigotine in the manufacture of a hot-melt TTS |
WO2004037225A2 (en) | 2002-10-25 | 2004-05-06 | Foamix Ltd. | Cosmetic and pharmaceutical foam |
IL152486A0 (en) | 2002-10-25 | 2003-05-29 | Meir Eini | Alcohol-free cosmetic and pharmaceutical foam carrier |
US7700076B2 (en) | 2002-10-25 | 2010-04-20 | Foamix, Ltd. | Penetrating pharmaceutical foam |
US8900554B2 (en) | 2002-10-25 | 2014-12-02 | Foamix Pharmaceuticals Ltd. | Foamable composition and uses thereof |
US9668972B2 (en) | 2002-10-25 | 2017-06-06 | Foamix Pharmaceuticals Ltd. | Nonsteroidal immunomodulating kit and composition and uses thereof |
US9211259B2 (en) | 2002-11-29 | 2015-12-15 | Foamix Pharmaceuticals Ltd. | Antibiotic kit and composition and uses thereof |
US7704518B2 (en) | 2003-08-04 | 2010-04-27 | Foamix, Ltd. | Foamable vehicle and pharmaceutical compositions thereof |
US8486376B2 (en) | 2002-10-25 | 2013-07-16 | Foamix Ltd. | Moisturizing foam containing lanolin |
US9265725B2 (en) | 2002-10-25 | 2016-02-23 | Foamix Pharmaceuticals Ltd. | Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof |
US10117812B2 (en) | 2002-10-25 | 2018-11-06 | Foamix Pharmaceuticals Ltd. | Foamable composition combining a polar solvent and a hydrophobic carrier |
US20080138296A1 (en) | 2002-10-25 | 2008-06-12 | Foamix Ltd. | Foam prepared from nanoemulsions and uses |
US7820145B2 (en) | 2003-08-04 | 2010-10-26 | Foamix Ltd. | Oleaginous pharmaceutical and cosmetic foam |
US8119150B2 (en) | 2002-10-25 | 2012-02-21 | Foamix Ltd. | Non-flammable insecticide composition and uses thereof |
US8119109B2 (en) | 2002-10-25 | 2012-02-21 | Foamix Ltd. | Foamable compositions, kits and methods for hyperhidrosis |
US20040086579A1 (en) * | 2002-11-05 | 2004-05-06 | Higgins James W. | Dietary supplement comprising parthenolide |
US7192614B2 (en) | 2002-11-05 | 2007-03-20 | Gelstat Corporation | Compositions and methods of treatment to alleviate or prevent migrainous headaches and their associated symptoms |
US7374772B2 (en) * | 2002-11-07 | 2008-05-20 | Bommarito Alexander A | Topical antifungal treatment |
NZ540208A (en) * | 2002-11-26 | 2007-09-28 | Alexza Pharmaceuticals Inc | Treatment of headache with antipsychotics delivered by inhalation |
CN101371843B (en) | 2002-11-26 | 2012-09-26 | 艾利斯达医药品公司 | Use of loxapine and amoxapine for the preparation of a medicament for the treatment of pain |
US20040105818A1 (en) | 2002-11-26 | 2004-06-03 | Alexza Molecular Delivery Corporation | Diuretic aerosols and methods of making and using them |
US7913688B2 (en) | 2002-11-27 | 2011-03-29 | Alexza Pharmaceuticals, Inc. | Inhalation device for producing a drug aerosol |
SI1426049T1 (en) | 2002-12-02 | 2005-08-31 | Sanol Arznei Schwarz Gmbh | Iontophoretic delivery of rotigotine for the treatment of Parkinson's disease |
US20040220198A1 (en) * | 2002-12-20 | 2004-11-04 | Kasturi Haldar | Methods for treating malaria by modulation of G protein function |
US9173836B2 (en) | 2003-01-02 | 2015-11-03 | FemmeParma Holding Company, Inc. | Pharmaceutical preparations for treatments of diseases and disorders of the breast |
AU2004203700B2 (en) * | 2003-01-02 | 2007-06-21 | Femmepharma Holding Company, Inc. | Pharmaceutical preparations for treatments of diseases and disorders of the breast |
US20040247707A1 (en) * | 2003-01-06 | 2004-12-09 | Le Roy Charles Richard | Pearl blue fast acting, long lasting topical pain relief cream |
WO2004064841A1 (en) | 2003-01-23 | 2004-08-05 | Shire Holdings Ag | Formulation and methods for the treatment of thrombocythemia |
EP1444976A1 (en) * | 2003-02-10 | 2004-08-11 | Novadel Pharma Inc. | Buccal, polar and non-polar spray or capsule |
ITFI20030070A1 (en) * | 2003-03-18 | 2004-09-19 | Berlin Chemie Ag | STABILIZED TOPICAL FORMULATIONS CONTAINING KETOPROFENE |
EP2907503A1 (en) | 2003-04-10 | 2015-08-19 | Neurogesx, Inc. | Methods and compositions for administration of TRPV1 agonists |
US7632531B2 (en) * | 2003-04-11 | 2009-12-15 | International Flavors & Fragnances Inc. | Alkyldienamides exhibiting taste and sensory effect in flavor compositions |
US7361376B2 (en) * | 2003-04-11 | 2008-04-22 | International Flavors & Fragrances Inc. | Alkyldienamides exhibiting taste and sensory effect in flavor compositions |
US7575739B2 (en) | 2003-04-28 | 2009-08-18 | Foamix Ltd. | Foamable iodine composition |
WO2004104493A2 (en) | 2003-05-21 | 2004-12-02 | Alexza Pharmaceuticals, Inc. | Methods of controlling uniformity of substrate temperature and self-contained heating unit and drug-supply unit employing same |
US20040247705A1 (en) * | 2003-06-06 | 2004-12-09 | Roberts Stephen C. | Transdermal compositions and methods of treatment to alleviate or prevent migrainous headaches and their associated symptoms |
US20040247706A1 (en) * | 2003-06-06 | 2004-12-09 | Roberts Stephen C. | Transdermal dietary supplement comprising parthenolide |
US8883769B2 (en) * | 2003-06-18 | 2014-11-11 | White Mountain Pharma, Inc. | Methods for the treatment of fibromyalgia and chronic fatigue syndrome |
US20040259852A1 (en) * | 2003-06-18 | 2004-12-23 | White Hillary D. | Trandsdermal compositions and methods for treatment of fibromyalgia and chronic fatigue syndrome |
EP1488787A1 (en) * | 2003-06-20 | 2004-12-22 | Berlin-Chemie Ag | Topical stabilized formulations containing ketoprofen |
CA2433101A1 (en) * | 2003-06-23 | 2004-12-23 | Igor Gonda | Method of treatment of a female suffering from androgen insufficiency |
US20050037040A1 (en) * | 2003-08-13 | 2005-02-17 | Moshe Arkin | Topical compositions of urea and ammonium lactate |
US20050042182A1 (en) * | 2003-08-13 | 2005-02-24 | Moshe Arkin | Topical compositions of urea |
US20050036953A1 (en) * | 2003-08-13 | 2005-02-17 | Moshe Arkin | Topical compositions of ammonium lactate |
US6884906B2 (en) * | 2003-07-01 | 2005-04-26 | International Flavors & Fragrances Inc. | Menthyl half acid ester derivatives, processes for preparing same, and uses thereof for their cooling/refreshing effect in consumable materials |
US7141686B2 (en) * | 2003-07-10 | 2006-11-28 | International Flavors & Fragrances Inc. | E2, E4, Z8-undecatrienoic acid and ester and carboxamide derivatives thereof, organoleptic uses thereof and processes for preparing same |
US20050020552A1 (en) * | 2003-07-16 | 2005-01-27 | Chaim Aschkenasy | Pharmaceutical composition and method for transdermal drug delivery |
US20050042268A1 (en) * | 2003-07-16 | 2005-02-24 | Chaim Aschkenasy | Pharmaceutical composition and method for transdermal drug delivery |
US20050025833A1 (en) * | 2003-07-16 | 2005-02-03 | Chaim Aschkenasy | Pharmaceutical composition and method for transdermal drug delivery |
DE10334188B4 (en) | 2003-07-26 | 2007-07-05 | Schwarz Pharma Ag | Use of rotigotine to treat depression |
JP2007500711A (en) | 2003-07-28 | 2007-01-18 | アルザ・コーポレーシヨン | Transdermal warfarin-containing delivery system |
US8486374B2 (en) | 2003-08-04 | 2013-07-16 | Foamix Ltd. | Hydrophilic, non-aqueous pharmaceutical carriers and compositions and uses |
US8795693B2 (en) | 2003-08-04 | 2014-08-05 | Foamix Ltd. | Compositions with modulating agents |
AU2004264974A1 (en) * | 2003-08-15 | 2005-02-24 | Arius Two, Inc. | Adhesive bioerodible transmucosal drug delivery system |
US20060018852A1 (en) | 2003-08-22 | 2006-01-26 | L'oreal | Compositions containing topical active agents and pentylene glycol |
US20050043283A1 (en) * | 2003-08-22 | 2005-02-24 | L'oreal S.A. | Compositions containing topical active agents and pentylene glycol |
US20060263350A1 (en) * | 2003-09-26 | 2006-11-23 | Fairfield Clinical Trials Llc | Combination antihistamine medication |
US8007839B2 (en) * | 2003-10-03 | 2011-08-30 | International Flavors & Fragrances | Conjugated dienamides, methods of production thereof, compositions containing same and uses thereof |
US7329767B2 (en) * | 2003-10-03 | 2008-02-12 | International Flavors & Fragrances Inc. | Conjugated dienamides, methods of production thereof, compositions containing same and uses thereof |
US7387788B1 (en) | 2003-10-10 | 2008-06-17 | Antares Pharma Ipl Ag | Pharmaceutical compositions of nicotine and methods of use thereof |
PL1670433T3 (en) * | 2003-10-10 | 2013-03-29 | Ferring Bv | Transdermal pharmaceutical formulation for minimizing skin residues |
KR100552650B1 (en) * | 2003-11-17 | 2006-02-20 | 아이큐어 주식회사 | Pyroxycam-containing anti-inflammatory analgesic plaster |
EP1703938A1 (en) * | 2003-12-10 | 2006-09-27 | Acrux DDS Pty Ltd | Method of treatment for undesired effect following transdermal or topical drug delivery |
EP1541136A1 (en) * | 2003-12-10 | 2005-06-15 | Schering AG | UV light-stable semi-solid transdermal systems comprising a photosensitive active agent and an UV-absorbing component |
US20050129756A1 (en) * | 2003-12-10 | 2005-06-16 | Hans-Peter Podhaisky | UV-stable, liquid or semisolid transdermal pharmaceutical preparation with light sensitive active ingredient |
EP1547592A1 (en) | 2003-12-23 | 2005-06-29 | Schwarz Pharma Ag | Intranasal formulation of rotigotine |
DE10361258A1 (en) | 2003-12-24 | 2005-07-28 | Schwarz Pharma Ag | Use of substituted 2-aminotetralins for the preventive treatment of Parkinson's disease |
DE102004014841B4 (en) | 2004-03-24 | 2006-07-06 | Schwarz Pharma Ag | Use of rotigotine for the treatment and prevention of Parkinson-Plus syndrome |
US7425340B2 (en) | 2004-05-07 | 2008-09-16 | Antares Pharma Ipl Ag | Permeation enhancing compositions for anticholinergic agents |
US7540286B2 (en) | 2004-06-03 | 2009-06-02 | Alexza Pharmaceuticals, Inc. | Multiple dose condensation aerosol devices and methods of forming condensation aerosols |
US8741332B2 (en) | 2004-06-07 | 2014-06-03 | Nuvo Research Inc. | Compositions and methods for dermally treating neuropathic pain |
US8741333B2 (en) | 2004-06-07 | 2014-06-03 | Nuvo Research Inc. | Compositions and methods for treating dermatitis or psoriasis |
US8907153B2 (en) | 2004-06-07 | 2014-12-09 | Nuvo Research Inc. | Adhesive peel-forming formulations for dermal delivery of drugs and methods of using the same |
US20060002989A1 (en) * | 2004-06-10 | 2006-01-05 | Ahmed Salah U | Formulations of sumatriptan for absorption across biological membranes, and methods of making and using the same |
US7700608B2 (en) * | 2004-08-04 | 2010-04-20 | Shire Holdings Ag | Quinazoline derivatives and their use in the treatment of thrombocythemia |
US20060030574A1 (en) * | 2004-08-04 | 2006-02-09 | Shire Holdings Ag | Quinazoline derivatives useful for the treatment of peripheral arterial disease and as phosphodiesterase inhibitors |
CA2576961A1 (en) | 2004-08-12 | 2006-03-02 | Alexza Pharmaceuticals, Inc. | Aerosol drug delivery device incorporating percussively activated heat packages |
KR20070072867A (en) * | 2004-09-01 | 2007-07-06 | 넥스메드 홀딩스 인코포레이티드 | Percutaneous antiemetic delivery system, methods and compositions thereof |
US7427421B2 (en) * | 2004-09-10 | 2008-09-23 | International Flavors & Fragrances Inc. | Saturated and unsaturated N-alkamides exhibiting taste and flavor enhancement effect in flavor compositions |
US7541055B2 (en) * | 2004-09-10 | 2009-06-02 | International Flavors & Fragrances Inc. | Saturated and unsaturated N-alkamides exhibiting taste and flavor enhancement effect in flavor compositions |
US8252320B2 (en) | 2004-10-21 | 2012-08-28 | Durect Corporation | Transdermal delivery system for sufentanil |
ES2385386T3 (en) | 2004-10-21 | 2012-07-24 | Durect Corporation | Transdermal Administration Systems |
US7001592B1 (en) * | 2005-01-31 | 2006-02-21 | Aquea Scientific Corporation | Sunscreen compositions and methods of use |
WO2006084312A1 (en) * | 2005-02-09 | 2006-08-17 | Acrux Dds Pty Ltd | Method of promoting hair growth |
CN101189000A (en) * | 2005-02-14 | 2008-05-28 | 纽罗吉斯克斯公司 | Device for delivery of TRPV1 agonists |
EP2767163A1 (en) | 2005-02-17 | 2014-08-20 | Abbott Laboratories | Transmucosal administration of drug compositions for treating and preventing disorders in animals |
US20080112904A1 (en) * | 2005-03-08 | 2008-05-15 | Daniel Henry Traynor | Sunscreen Compositions And Methods Of Use |
US8252754B2 (en) | 2005-03-21 | 2012-08-28 | The Trustees Of Columbia University In The City Of New York | Neuronal pain pathway |
AU2006227561B2 (en) * | 2005-03-24 | 2011-06-09 | Ensign Laboratories Pty Ltd | Sunscreen aerosol spray |
WO2006099687A1 (en) * | 2005-03-24 | 2006-09-28 | Ensign Laboratories Pty Ltd | Sunscreen aerosol spray |
EP1865933B1 (en) * | 2005-03-30 | 2015-11-04 | Vanderbilt Royalty Sub L.P. | Low-concentration capsaicin patch and methods for treating neuropathic pain |
US20060222692A1 (en) * | 2005-03-31 | 2006-10-05 | Fairfield Clinical Trials Llc | Method and compositions for transdermal administration of antimicrobial medications |
WO2007124250A2 (en) | 2006-04-21 | 2007-11-01 | Antares Pharma Ipl Ag | Methods of treating hot flashes with formulations for transdermal or transmucosal application |
CA2608344C (en) * | 2005-05-16 | 2017-07-04 | Steven Kritzler | Method and composition for use in preparation of a patient for surgery |
US8067399B2 (en) | 2005-05-27 | 2011-11-29 | Antares Pharma Ipl Ag | Method and apparatus for transdermal or transmucosal application of testosterone |
EA019214B1 (en) | 2005-06-03 | 2014-02-28 | АКРУКС ДиДиЭс ПиТиУай ЭлТиДи | Method of treatment or prevention of diseases caused by androgen deficit in adult men |
JP4696701B2 (en) | 2005-06-07 | 2011-06-08 | ソニー株式会社 | Resistance circuit |
KR101306635B1 (en) * | 2005-06-27 | 2013-10-11 | 밸리언트 인터내셔널(바베이도스) 에스알엘 | Modified-release formulations of a bupropion salt |
KR100699582B1 (en) | 2005-07-11 | 2007-03-23 | 삼성전기주식회사 | Output buffer circuit |
JP5465431B2 (en) * | 2005-07-27 | 2014-04-09 | アルケミア オンコロジー ピーティーワイ リミテッド | Treatment protocol with hyaluronan |
AU2005334836B2 (en) * | 2005-07-28 | 2012-04-12 | Academisch Ziekenhuis Leiden H.O.D.N. Lumc | Sensitization of immune system against haptenized melanoma antigens |
EP1922077A4 (en) * | 2005-09-07 | 2013-03-06 | Alchemia Oncology Pty Ltd | Therapeutic compositions comprising hyaluronan and therapeutic antibodies as well as methods of treatment |
PT3456329T (en) | 2005-10-12 | 2025-02-25 | Besins Healthcare Lu Sarl | IMPROVED TESTOSTERONE GEL AND METHOD OF USE |
US20070087055A1 (en) * | 2005-10-14 | 2007-04-19 | David Jan | Directly compressible extended release alprazolam formulation |
US20080319370A1 (en) * | 2005-11-04 | 2008-12-25 | Acrux Dds Pty Ltd. | Method and System for Transdermal Drug Delivery |
US20070117828A1 (en) * | 2005-11-21 | 2007-05-24 | Schering-Plough Animal Health Corp. | Pharmaceutical compositions |
GB0524961D0 (en) * | 2005-12-07 | 2006-01-18 | Pharmakodex Ltd | Transdermal administration of active agents for systemic effect |
GB0524962D0 (en) * | 2005-12-07 | 2006-01-18 | Pharmakodex Ltd | Topical pharmaceutical compositions |
GB0524958D0 (en) * | 2005-12-07 | 2006-01-18 | Pharmakodex Ltd | Transdermal administration of active agents |
EP1962795A1 (en) * | 2005-12-07 | 2008-09-03 | PharmaKodex Ltd | Topical compositions for paediatric use |
WO2007070643A2 (en) * | 2005-12-14 | 2007-06-21 | Zars, Inc. | Compositions and methods for treating dermatological conditions |
WO2007070679A2 (en) * | 2005-12-14 | 2007-06-21 | Zars, Inc. | Compositions and methods for dermally treating pain |
US9017717B2 (en) * | 2006-01-16 | 2015-04-28 | Peach Technologies Llc | Bandage for facilitating transdermal respiration and healing |
KR20140147142A (en) | 2006-01-24 | 2014-12-29 | 가부시키가이샤 아루떼꾸 우에노 | Pharmaceutical composition comprising a bi-cyclic compound and method for stabilizing the bi-cyclic compound |
WO2007095586A2 (en) | 2006-02-14 | 2007-08-23 | The Trustees Of Columbia University In The City Of New York | Neuronal pain pathway modulators |
DE102006010329A1 (en) * | 2006-03-06 | 2007-09-13 | Höltge, Michael, Dipl.-Med. | Hormonal contraceptive, comprises combination preparation of testosterone, gestogen, and esterogen, in the form of single, double or multi-phase preparation |
US20080044462A1 (en) * | 2006-04-06 | 2008-02-21 | Collegium Pharmaceutical, Inc. Delaware | Stabilized transdermal bupropion preparations |
CA2649895C (en) * | 2006-04-19 | 2013-03-26 | Novadel Pharma Inc. | Stable hydroalcoholic oral spray formulations and methods |
US9468600B2 (en) | 2006-05-26 | 2016-10-18 | Dr. Holmquist Healthcare, LLC | Compositions for the transdermal delivery of physiologically active agents |
TW200815045A (en) * | 2006-06-29 | 2008-04-01 | Jazz Pharmaceuticals Inc | Pharmaceutical compositions of ropinirole and methods of use thereof |
US20080090850A1 (en) * | 2006-10-13 | 2008-04-17 | Anderson Mark E | Herpetic neuralgia topical treatment |
DE102006050558B4 (en) | 2006-10-26 | 2009-03-26 | Lts Lohmann Therapie-Systeme Ag | Transdermal therapeutic system containing norelgestromin for contraception and hormone replacement |
US20080260655A1 (en) | 2006-11-14 | 2008-10-23 | Dov Tamarkin | Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses |
US7910597B2 (en) * | 2006-11-28 | 2011-03-22 | Shire Llc | Substituted quinazolines |
US8304420B2 (en) | 2006-11-28 | 2012-11-06 | Shire Llc | Substituted quinazolines for reducing platelet count |
WO2008079295A1 (en) * | 2006-12-22 | 2008-07-03 | Novadel Pharma Inc. | Stable anti-nausea oral spray formulations and methods |
CN101711231B (en) * | 2007-01-08 | 2014-03-12 | 安德鲁科技有限公司 | Compounds with (substituted phenyl)-propenal moiety, their derivatives, biological activity, and uses thereof |
JP5319121B2 (en) | 2007-01-30 | 2013-10-16 | 株式会社東芝 | Medical support system and medical support device |
EP2121088B1 (en) | 2007-03-09 | 2016-07-13 | Alexza Pharmaceuticals, Inc. | Heating unit for use in a drug delivery device |
CA2682200C (en) | 2007-03-19 | 2015-01-13 | Vita Sciences, Llc | Transdermal patch and method for delivery of vitamin b12 |
WO2008128280A1 (en) * | 2007-04-20 | 2008-10-30 | Acrux Dds Pty Ltd | Method and system for transdermal administration of volatile active |
EP2152247A4 (en) * | 2007-05-10 | 2012-12-26 | Novadel Pharma Inc | Anti-insomnia compositions and methods |
WO2008144734A1 (en) * | 2007-05-21 | 2008-11-27 | Aquea Scientific Corporation | Highly charged microcapsules |
DE102007032468A1 (en) | 2007-07-10 | 2009-01-15 | Brätter, Christian, Dr. | Transdermal therapeutic systems containing the active substance anastrozole |
HU227970B1 (en) * | 2007-07-10 | 2012-07-30 | Egis Gyogyszergyar Nyrt | Pharmaceutical compositions containing silicones of high volatility |
US8636982B2 (en) | 2007-08-07 | 2014-01-28 | Foamix Ltd. | Wax foamable vehicle and pharmaceutical compositions thereof |
US9439857B2 (en) | 2007-11-30 | 2016-09-13 | Foamix Pharmaceuticals Ltd. | Foam containing benzoyl peroxide |
WO2009090495A2 (en) | 2007-12-07 | 2009-07-23 | Foamix Ltd. | Oil and liquid silicone foamable carriers and formulations |
US8518376B2 (en) | 2007-12-07 | 2013-08-27 | Foamix Ltd. | Oil-based foamable carriers and formulations |
CA2712120A1 (en) | 2008-01-14 | 2009-07-23 | Foamix Ltd. | Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses |
WO2009092040A2 (en) * | 2008-01-17 | 2009-07-23 | Gary Dean Bennett | Topical pain formulation |
US8123082B2 (en) * | 2008-01-22 | 2012-02-28 | McNeil-AB | Hand-held dispensing device |
JP2011510059A (en) * | 2008-01-25 | 2011-03-31 | ビー アンド ティー エッセ.エッレ.エッレ. | Use of transesterified olive oil in the cosmetics field |
JP4879928B2 (en) * | 2008-03-25 | 2012-02-22 | 帝國製薬株式会社 | Aqueous patch containing ketoprofen lysine salt |
US20090259176A1 (en) * | 2008-04-09 | 2009-10-15 | Los Gatos Research, Inc. | Transdermal patch system |
WO2009158477A1 (en) * | 2008-06-25 | 2009-12-30 | Us Worldmeds Llc | Skin patches and sustained-release formulations comprising lofexidine for transdermal and oral delivery |
WO2010033878A2 (en) | 2008-09-19 | 2010-03-25 | David Brown | Solute concentration measurement device and related methods |
US8748177B2 (en) * | 2008-09-30 | 2014-06-10 | The Hospital For Sick Children | Compositions for proliferation of cells and related methods |
WO2010039949A1 (en) | 2008-10-02 | 2010-04-08 | Mylan Inc. | Method of making a multilayer adhesive laminate |
US9226918B2 (en) * | 2008-12-04 | 2016-01-05 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for treating or preventing narcotic withdrawal symptoms |
EP2401587A2 (en) | 2009-02-27 | 2012-01-04 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US9250106B2 (en) | 2009-02-27 | 2016-02-02 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
CA2760186C (en) | 2009-04-28 | 2019-10-29 | Foamix Ltd. | Foamable vehicle and pharmaceutical compositions comprising aprotic polar solvents and uses thereof |
US20100298397A1 (en) * | 2009-05-19 | 2010-11-25 | Singh Nikhilesh N | Method of treatment of obsessive compulsive disorder with ondansetron |
US9517023B2 (en) * | 2009-06-01 | 2016-12-13 | Profusa, Inc. | Method and system for directing a localized biological response to an implant |
WO2011013008A2 (en) | 2009-07-29 | 2011-02-03 | Foamix Ltd. | Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses |
WO2011013009A2 (en) | 2009-07-29 | 2011-02-03 | Foamix Ltd. | Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses |
US8926561B2 (en) | 2009-07-30 | 2015-01-06 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US9849142B2 (en) | 2009-10-02 | 2017-12-26 | Foamix Pharmaceuticals Ltd. | Methods for accelerated return of skin integrity and for the treatment of impetigo |
BR112012007473A2 (en) | 2009-10-02 | 2019-05-07 | Foamix Ltd | tetracycline topical compositions and methods of use |
WO2011044540A1 (en) | 2009-10-09 | 2011-04-14 | Nuvo Research Inc. | Topical formulation comprising etoricoxib and a zwitterionic surfactant |
US8784368B2 (en) * | 2009-11-13 | 2014-07-22 | The Invention Science Fund I, Llc | Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject |
US8894630B2 (en) * | 2009-11-13 | 2014-11-25 | The Invention Science Fund I, Llc | Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject |
US8439896B2 (en) * | 2009-11-13 | 2013-05-14 | The Invention Science Fund I, Llc | Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject |
CA2796575C (en) | 2010-04-13 | 2018-05-15 | Relmada Therapeutics, Inc. | Dermal pharmaceutical compositions of 1-methyl-2',6'-pipecoloxylidide and method of use |
US8962595B2 (en) * | 2010-05-04 | 2015-02-24 | Nexmed Holdings, Inc. | Compositions of small molecule therapeutics |
US10010272B2 (en) | 2010-05-27 | 2018-07-03 | Profusa, Inc. | Tissue-integrating electronic apparatus |
US20120022033A1 (en) * | 2010-07-23 | 2012-01-26 | Biosante Pharmaceuticals, Inc. | Methods for decreasing cardiovascular risk in postmenopausal women |
EP2616061A4 (en) | 2010-09-17 | 2014-03-12 | Brassica Prot Products Llc | Formulations for treatment with glucosinolate |
CN105147300B (en) | 2010-10-06 | 2019-09-03 | 普罗弗萨股份有限公司 | Tissue integration sensor |
WO2012048455A1 (en) * | 2010-10-12 | 2012-04-19 | 武汉大学 | Transdermal absorption patch of antiviral drug and its preparation method |
SE535588C2 (en) * | 2010-10-29 | 2012-10-02 | Redsense Medical Ab | Detection of blood leakage by detecting the presence of volatiles |
US9642863B2 (en) | 2010-11-18 | 2017-05-09 | White Mountain Pharma, Inc. | Methods for treating chronic or unresolvable pain and/or increasing the pain threshold in a subject and pharmaceutical compositions for use therein |
US20120322828A1 (en) | 2011-02-15 | 2012-12-20 | Eli Lilly And Company | Methods for controlling pain in equines using a transdermal solution of fentanyl |
CA2827435C (en) | 2011-02-15 | 2018-11-27 | Eli Lilly And Company | Methods for controlling pain in canines using a transdermal solution of fentanyl |
US9119793B1 (en) | 2011-06-28 | 2015-09-01 | Medicis Pharmaceutical Corporation | Gastroretentive dosage forms for doxycycline |
EP2747693B1 (en) * | 2011-08-26 | 2018-05-09 | ON Light Sciences, Inc. | Tattoo removal system and method |
US9301920B2 (en) | 2012-06-18 | 2016-04-05 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
ES2885523T3 (en) | 2011-11-23 | 2021-12-14 | Therapeuticsmd Inc | Natural combination hormone replacement formulations and therapies |
CN103181956B (en) * | 2011-12-30 | 2015-04-29 | 天津市山佳医药科技有限公司 | Percutaneous absorption plaster for treating degenerative osteoarthropathy |
US9180242B2 (en) | 2012-05-17 | 2015-11-10 | Tandem Diabetes Care, Inc. | Methods and devices for multiple fluid transfer |
US20150196640A1 (en) | 2012-06-18 | 2015-07-16 | Therapeuticsmd, Inc. | Progesterone formulations having a desirable pk profile |
US10806740B2 (en) | 2012-06-18 | 2020-10-20 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
US20130338122A1 (en) | 2012-06-18 | 2013-12-19 | Therapeuticsmd, Inc. | Transdermal hormone replacement therapies |
US10806697B2 (en) | 2012-12-21 | 2020-10-20 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US11154535B2 (en) | 2012-07-31 | 2021-10-26 | Egis Pharmaceuticals Plc | Transdermal formulation containing COX inhibitors |
US10045935B2 (en) | 2012-07-31 | 2018-08-14 | Egis Pharmaceuticals Plc | Transdermal formulation containing COX inhibitors |
US10045965B2 (en) | 2012-07-31 | 2018-08-14 | Egis Pharmaceuticals Plc | Transdermal formulation containing COX inhibitors |
SG11201501850VA (en) | 2012-09-21 | 2015-04-29 | Intensity Therapeutics Inc | Method of treating cancer |
US9694050B2 (en) | 2012-10-21 | 2017-07-04 | University Of Rochester | THY1 (CD90) as a novel therapy to control adipose tissue accumulation |
EP2916814B1 (en) | 2012-11-06 | 2020-02-12 | Colabs International Corporation | Composition containing a cellulose derived capsule with a sunscreen |
US11724134B2 (en) | 2012-11-06 | 2023-08-15 | CoLabs International Corporation | Compositions containing a cellulose derived capsule with a sunscreen active agent |
US10322301B2 (en) | 2012-11-06 | 2019-06-18 | CoLabs International Corporation | Compositions containing a cellulose derived capsule with a sunscreen active agent |
US11707421B2 (en) | 2012-11-06 | 2023-07-25 | Colabs Int'l Corp. | Compositions containing a flexible derived capsule with an active agent |
US11491088B2 (en) | 2012-11-06 | 2022-11-08 | CoLabs International Corporation | Compositions containing a capsule with a moisturizing agent |
US11690793B2 (en) | 2012-11-06 | 2023-07-04 | Colabs Int'l Corp. | Composition containing a cellulose derived capsule with a sunscreen |
US9180091B2 (en) | 2012-12-21 | 2015-11-10 | Therapeuticsmd, Inc. | Soluble estradiol capsule for vaginal insertion |
US11266661B2 (en) | 2012-12-21 | 2022-03-08 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US11246875B2 (en) | 2012-12-21 | 2022-02-15 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10568891B2 (en) | 2012-12-21 | 2020-02-25 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10537581B2 (en) | 2012-12-21 | 2020-01-21 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10471072B2 (en) | 2012-12-21 | 2019-11-12 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10729714B2 (en) | 2013-02-11 | 2020-08-04 | Glycanova As | Basidiomycete-derived cream for treatment of skin diseases |
US9173998B2 (en) | 2013-03-14 | 2015-11-03 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
WO2014158988A1 (en) | 2013-03-14 | 2014-10-02 | Profusa, Inc. | Method and device for correcting optical signals |
US10842802B2 (en) | 2013-03-15 | 2020-11-24 | Medicis Pharmaceutical Corporation | Controlled release pharmaceutical dosage forms |
JP2016523608A (en) | 2013-06-06 | 2016-08-12 | プロフサ,インコーポレイテッド | Apparatus and method for detecting optical signal from embedded sensor |
USD752287S1 (en) | 2013-12-09 | 2016-03-22 | Amneal Pharmaceuticals Llc | Applicator for applying a liquid to a surface |
US9227044B2 (en) | 2013-12-09 | 2016-01-05 | Amneal Pharmaceuticals Llc | Applicator for applying a fluid to a surface |
CN105848730B (en) * | 2013-12-24 | 2019-12-13 | 宝洁公司 | Cosmetic compositions and methods providing enhanced penetration of skin care actives |
US9561233B2 (en) | 2014-03-13 | 2017-02-07 | Demerx, Inc. | Use of ibogaine for the treatment of pain |
KR102364378B1 (en) | 2014-05-21 | 2022-02-16 | 에스케이케미칼 주식회사 | Transdermal composition comprising rotigotine with improved the stability |
JP2017516768A (en) | 2014-05-22 | 2017-06-22 | セラピューティックスエムディー インコーポレーテッドTherapeuticsmd, Inc. | Natural combination hormone replacement therapy and therapy |
CN105658223B (en) | 2014-05-23 | 2018-12-04 | 特里普海尔公司 | For reducing alopecia and/or increasing the composition of hair regeneration |
US11696883B2 (en) | 2014-05-23 | 2023-07-11 | Triple Hair Inc. | Compositions for reducing hair loss and/or increasing hair regrowth |
US20160022643A1 (en) * | 2014-07-22 | 2016-01-28 | Professional Compounding Centers Of America | Oral Transmucosal Compositions including Aromatase Inhibitors for Low Testosterone Levels in Men |
US9592239B2 (en) | 2014-09-12 | 2017-03-14 | Demerx, Inc. | Methods and compositions for ibogaine treatment of impulse control disorder, anxiety-related disorders, violence and/or anger, or regulating food intake |
AU2016211330A1 (en) | 2015-01-28 | 2017-08-03 | Chrono Therapeutics Inc. | Drug delivery methods and systems |
SG11201707784XA (en) | 2015-03-23 | 2017-10-30 | Biopharmx Inc | Pharmaceutical tetracycline composition for dermatological use |
US20160307158A1 (en) * | 2015-04-16 | 2016-10-20 | Linkedin Corporation | Aggregating and transforming user actions into social signal features for a job recommendation engine |
PL3347009T3 (en) | 2015-07-08 | 2022-02-07 | Triple Hair Inc. | Composition comprising resveratrol and melatonin for reducing hair loss and/or increasing hair regrowth |
US10328087B2 (en) | 2015-07-23 | 2019-06-25 | Therapeuticsmd, Inc. | Formulations for solubilizing hormones |
GB201604484D0 (en) | 2016-03-16 | 2016-04-27 | Antibiotx Aps And Københavns Uni University Of Copenhagen | Topical antibacterial compositions |
WO2017173044A1 (en) | 2016-04-01 | 2017-10-05 | Therapeuticsmd Inc. | Steroid hormone compositions in medium chain oils |
BR112018070199A2 (en) | 2016-04-01 | 2019-01-29 | Therapeuticsmd Inc | pharmaceutical composition of steroid hormone |
US10549129B2 (en) | 2016-06-24 | 2020-02-04 | The Procter & Gamble Company | Cosmetic compositions and methods providing enhanced penetration of skin care actives |
MX2020012139A (en) | 2016-09-08 | 2021-01-29 | Vyne Pharmaceuticals Inc | Compositions and methods for treating rosacea and acne. |
KR102499141B1 (en) | 2016-10-31 | 2023-02-13 | 신신제약 주식회사 | Percutaneous absorption system for the treatment of sleep disorders |
WO2018118197A1 (en) * | 2016-12-21 | 2018-06-28 | Richard Postrel | Healthier aging in domesticated animals |
US11331018B2 (en) | 2016-12-22 | 2022-05-17 | Profusa, Inc. | System and single-channel biosensor for and method of determining analyte value |
US11285306B2 (en) | 2017-01-06 | 2022-03-29 | Morningside Venture Investments Limited | Transdermal drug delivery devices and methods |
US10396053B2 (en) * | 2017-11-17 | 2019-08-27 | General Electric Company | Semiconductor logic device and system and method of embedded packaging of same |
EP3737374B1 (en) * | 2018-01-10 | 2024-04-03 | Celista Pharmaceuticals Llc | Testosterone transdermal spray with film |
CA3090277A1 (en) | 2018-02-02 | 2019-08-08 | Alexza Pharmaceuticals, Inc. | Electrical condensation aerosol device |
AU2019279884B2 (en) | 2018-05-29 | 2025-01-30 | Morningside Venture Investments Limited | Drug delivery methods and systems |
EP3813786A4 (en) | 2018-06-27 | 2022-06-29 | Colabs International Corporation | Compositions comprising silicon dioxide-based particles including one or more agents |
WO2020010205A1 (en) | 2018-07-05 | 2020-01-09 | Celista Pharmaceuticals Llc | Testosterone and estradiol transdermal spray |
CA3119992A1 (en) * | 2018-11-16 | 2020-05-22 | Morningside Venture Investments Limited | Thermally regulated transdermal drug delivery system |
WO2020243538A1 (en) * | 2019-05-31 | 2020-12-03 | Primo Pharmatech Llc | Unit dosage form for transmucosal drug delivery of an active pharmaceutical ingredient |
US11633405B2 (en) | 2020-02-07 | 2023-04-25 | Therapeuticsmd, Inc. | Steroid hormone pharmaceutical formulations |
KR102503159B1 (en) | 2020-04-29 | 2023-02-23 | 신신제약 주식회사 | Percutaneous absorbers containing melatonin |
US11977085B1 (en) | 2023-09-05 | 2024-05-07 | Elan Ehrlich | Date rape drug detection device and method of using same |
Citations (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2868691A (en) * | 1956-03-21 | 1959-01-13 | Riker Laboratories Inc | Self-propelling compositions for inhalation therapy containing a salt of isoproterenol or epinephrine |
US3306252A (en) * | 1963-12-03 | 1967-02-28 | Johnson & Johnson | Shielded aerosol medicament dispenser |
US3989816A (en) * | 1975-06-19 | 1976-11-02 | Nelson Research & Development Company | Vehicle composition containing 1-substituted azacycloheptan-2-ones |
US4299826A (en) * | 1979-10-12 | 1981-11-10 | The Procter & Gamble Company | Anti-acne composition |
US4310511A (en) * | 1980-10-02 | 1982-01-12 | Massachusetts General Hospital | Sunscreen compositions containing Δ5,7 steroidal dienes |
US4440777A (en) * | 1981-07-07 | 1984-04-03 | Merck & Co., Inc. | Use of eucalyptol for enhancing skin permeation of bio-affecting agents |
US4557934A (en) * | 1983-06-21 | 1985-12-10 | The Procter & Gamble Company | Penetrating topical pharmaceutical compositions containing 1-dodecyl-azacycloheptan-2-one |
US4563346A (en) * | 1984-03-14 | 1986-01-07 | Charles Of The Ritz Group Ltd. | Topical delivery system and skin treatment compositions employing such system |
US4663157A (en) * | 1985-02-28 | 1987-05-05 | The Proctor & Gamble Company | Sunscreen compositions |
US4699779A (en) * | 1986-02-18 | 1987-10-13 | Victor Palinczar | Waterproof sunscreen compositions |
US4704406A (en) * | 1985-06-24 | 1987-11-03 | Klinge Pharma Gmbh | Sprayable pharmaceutical composition for topical use |
US4820724A (en) * | 1986-03-31 | 1989-04-11 | University Of Southern California | Dual phase solvent carrier system |
US4824676A (en) * | 1984-10-11 | 1989-04-25 | Schering Corporation | Physiological means of enhancing transdermal delivery of drugs |
US4938951A (en) * | 1980-12-30 | 1990-07-03 | Union Carbide Chemicals And Plastics Company Inc. | Potentiation of topical compositions wherein a uniform microdispersion of active agent is formed |
US4946671A (en) * | 1987-10-22 | 1990-08-07 | The Procter & Gamble Company | Photoprotection compositions comprising sorbohydroxamic acid and an anti-inflammatory agent |
US4954487A (en) * | 1979-01-08 | 1990-09-04 | The Procter & Gamble Company | Penetrating topical pharmaceutical compositions |
US4959205A (en) * | 1989-03-23 | 1990-09-25 | Collagen Corporation | Composition and method for treatment of dermal inflammation |
US4975272A (en) * | 1976-11-10 | 1990-12-04 | Voyt Walter F | Method of and composition for the prevention of solar radiation exposure-induced formation of carcinogenic skin lipid degradation products |
US5008111A (en) * | 1984-10-11 | 1991-04-16 | Schering Corporation | Physiological means of enhancing transdermal delivery of drugs |
US5030442A (en) * | 1987-03-30 | 1991-07-09 | Liposome Technology, Inc. | Non-crystalline minoxidil composition |
US5034386A (en) * | 1986-01-31 | 1991-07-23 | Whitby Research, Inc. | Methods for administration using 1-substituted azacycloalkanes |
US5036100A (en) * | 1987-03-13 | 1991-07-30 | Pharlyse S.A. Societe Anonyme | Pharmaceutical method and preparation containing indomethacin |
US5082866A (en) * | 1988-06-01 | 1992-01-21 | Odontex, Inc. | Biodegradable absorption enhancers |
US5100918A (en) * | 1989-05-25 | 1992-03-31 | Sterling Drug, Inc. | Prevention or treatment of sunburn using the S(+) isomer of ibuprofen |
US5122519A (en) * | 1989-06-27 | 1992-06-16 | American Cyanamid Company | Stable, cosmetically acceptable topical gel formulation and method of treatment for acne |
US5192534A (en) * | 1988-12-30 | 1993-03-09 | L'oreal | Composition for inducing and stimulating hair growth and/or retarding its loss, based on pyrimidine derivatives and sunscreens |
US5256647A (en) * | 1986-01-31 | 1993-10-26 | Whitby Research, Inc. | Compositions comprising 1-substituted azacycloalkanes |
US5413794A (en) * | 1992-01-24 | 1995-05-09 | Lintec Corporation | Percutaneous absorption promoter, a tape plaster and a method of promoting percutaneous absorpton |
US5426210A (en) * | 1991-05-09 | 1995-06-20 | Shiseido Co., Ltd. | Adduct of cinnamic acid and glycerin, ultraviolet absorbent and external preparation for skin |
US5446025A (en) * | 1992-06-12 | 1995-08-29 | Abbott Laboratories | Formulations and method of the percutaneous administration of leuprolide |
US5449519A (en) * | 1994-08-09 | 1995-09-12 | Revlon Consumer Products Corporation | Cosmetic compositions having keratolytic and anti-acne activity |
US5487898A (en) * | 1991-08-26 | 1996-01-30 | Abbott Laboratories | Compositions and method for the sublingual or buccal administration therapeutic agents |
US5508168A (en) * | 1994-05-16 | 1996-04-16 | Hoffmann-La Roche Inc. | Methods and reagents for the detection of herpes simplex virus, treponema pallidum, and haemophilus ducreyi |
US5573754A (en) * | 1989-12-04 | 1996-11-12 | Richardson-Vicks Inc. | Photoprotective compositions |
US5674912A (en) * | 1991-03-01 | 1997-10-07 | Warner-Lambert Company | Sunscreen-wound healing compositions and methods for preparing and using same |
US5679374A (en) * | 1993-12-30 | 1997-10-21 | L'oreal | Anti-acne composition for the simultaneous treatment of the surface layers and deep layers of the skin, and use thereof |
US5804168A (en) * | 1997-01-29 | 1998-09-08 | Murad; Howard | Pharmaceutical compositions and methods for protecting and treating sun damaged skin |
US5951967A (en) * | 1995-06-08 | 1999-09-14 | Lancaster Group Gmbh | Multi-phase light screening agent, process for its production and for its application to the skin |
US6010716A (en) * | 1995-03-30 | 2000-01-04 | Sanofi | Pharmaceutical composition for transdermal administration |
US6126920A (en) * | 1995-03-03 | 2000-10-03 | Medeva Europe Plc | Method of treating a skin disease with a corticosteroid-containing pharmaceutical composition |
US6211250B1 (en) * | 1996-11-22 | 2001-04-03 | Soltec Research Pty Ltd. | Percutaneous delivery system |
US6299900B1 (en) * | 1996-02-19 | 2001-10-09 | Monash University | Dermal penetration enhancers and drug delivery systems involving same |
US6387383B1 (en) * | 2000-08-03 | 2002-05-14 | Dow Pharmaceutical Sciences | Topical low-viscosity gel composition |
US6399093B1 (en) * | 1999-05-19 | 2002-06-04 | Advanced Medical Instruments | Method and composition to treat musculoskeletal disorders |
US6475467B1 (en) * | 1998-08-04 | 2002-11-05 | Jago Research Ag | Medicinal aerosol formulations |
US6503894B1 (en) * | 2000-08-30 | 2003-01-07 | Unimed Pharmaceuticals, Inc. | Pharmaceutical composition and method for treating hypogonadism |
US6682757B1 (en) * | 2000-11-16 | 2004-01-27 | Euro-Celtique, S.A. | Titratable dosage transdermal delivery system |
US20040096405A1 (en) * | 1996-02-19 | 2004-05-20 | Monash University | Topical delivery of anti-alopecia agents |
US6743448B2 (en) * | 2000-12-11 | 2004-06-01 | Abraham H. Kryger | Topical testosterone formulations and associated methods |
US20040175416A1 (en) * | 2003-02-20 | 2004-09-09 | Besins International Belgique | Pharmaceutical composition for transdermal or transmucous administration |
US20040202705A1 (en) * | 1999-11-04 | 2004-10-14 | Xel Herbaceucticals, Inc. | Transdermal administration of huperzine |
US20050002868A1 (en) * | 2003-06-23 | 2005-01-06 | Acrux Dds Pty Ltd. | Method of treatment of a female suffering from androgen insufficiency |
US20050020552A1 (en) * | 2003-07-16 | 2005-01-27 | Chaim Aschkenasy | Pharmaceutical composition and method for transdermal drug delivery |
US20050042268A1 (en) * | 2003-07-16 | 2005-02-24 | Chaim Aschkenasy | Pharmaceutical composition and method for transdermal drug delivery |
US20050049233A1 (en) * | 2000-08-30 | 2005-03-03 | Dudley Robert E. | Method for treating erectile dysfunction and increasing libido in men |
US6916487B2 (en) * | 1996-02-19 | 2005-07-12 | Acrux Dds Pty Ltd | Transdermal delivery of antiemetics |
US6916486B2 (en) * | 1996-02-19 | 2005-07-12 | Acrux Dds Pty Ltd | Transdermal delivery of analgesics |
US6923983B2 (en) * | 1996-02-19 | 2005-08-02 | Acrux Dds Pty Ltd | Transdermal delivery of hormones |
US20050175680A1 (en) * | 2002-06-25 | 2005-08-11 | Acrux Dds Pty Ltd. | Transdermal delivery rate control using amorphous pharmaceutical compositions |
US6929801B2 (en) * | 1996-02-19 | 2005-08-16 | Acrux Dds Pty Ltd | Transdermal delivery of antiparkinson agents |
US20050181032A1 (en) * | 2002-06-25 | 2005-08-18 | Acrux Dds Pty Ltd. | Metastable pharmaceutical compositions |
US20050186141A1 (en) * | 2002-06-25 | 2005-08-25 | Acrux Dds Pty Ltd. | Transdermal aerosol compositions |
US20050196414A1 (en) * | 2004-03-03 | 2005-09-08 | Essentia Biosystems, Inc. | Compositions and methods for topical application and transdermal delivery of botulinum toxins |
US20060153905A1 (en) * | 2003-10-10 | 2006-07-13 | Carrara R D N | Transdermal pharmaceutical formulation for minimizing skin residues |
US7094422B2 (en) * | 1996-02-19 | 2006-08-22 | Acrux Dds Pty Ltd. | Topical delivery of antifungal agents |
US20060280783A1 (en) * | 2005-06-03 | 2006-12-14 | Acrux Dds Pty Ltd. | Method and composition for transdermal drug delivery |
Family Cites Families (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB867904A (en) * | 1959-07-27 | 1961-05-10 | Farmilai Farmaceutici Soc | Spraying apparatus |
US3211250A (en) * | 1962-12-21 | 1965-10-12 | Garfield A Wood | Seat-actuated brake and switch arrangement for motor vehicles |
US3993073A (en) | 1969-04-01 | 1976-11-23 | Alza Corporation | Novel drug delivery device |
US3598123A (en) | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3797494A (en) | 1969-04-01 | 1974-03-19 | Alza Corp | Bandage for the administration of drug by controlled metering through microporous materials |
US3598122A (en) | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US4069307A (en) | 1970-10-01 | 1978-01-17 | Alza Corporation | Drug-delivery device comprising certain polymeric materials for controlled release of drug |
AT330643B (en) * | 1971-04-23 | 1976-07-12 | Laake Oy | AEROSOL DEVICE |
US3731683A (en) | 1971-06-04 | 1973-05-08 | Alza Corp | Bandage for the controlled metering of topical drugs to the skin |
US3996934A (en) | 1971-08-09 | 1976-12-14 | Alza Corporation | Medical bandage |
US3742951A (en) | 1971-08-09 | 1973-07-03 | Alza Corp | Bandage for controlled release of vasodilators |
BE795384A (en) | 1972-02-14 | 1973-08-13 | Ici Ltd | DRESSINGS |
US3921636A (en) | 1973-01-15 | 1975-11-25 | Alza Corp | Novel drug delivery device |
US3993072A (en) | 1974-08-28 | 1976-11-23 | Alza Corporation | Microporous drug delivery device |
US4077407A (en) | 1975-11-24 | 1978-03-07 | Alza Corporation | Osmotic devices having composite walls |
US4031894A (en) | 1975-12-08 | 1977-06-28 | Alza Corporation | Bandage for transdermally administering scopolamine to prevent nausea |
US4060084A (en) | 1976-09-07 | 1977-11-29 | Alza Corporation | Method and therapeutic system for providing chemotherapy transdermally |
US4201211A (en) | 1977-07-12 | 1980-05-06 | Alza Corporation | Therapeutic system for administering clonidine transdermally |
DK534178A (en) | 1977-12-16 | 1979-06-17 | Interx Research Corp | ANTICHOLINERGIC AGENTS WITH SECTIONING EFFECT |
JPS5562012A (en) | 1978-11-06 | 1980-05-10 | Teijin Ltd | Slow-releasing preparation |
US4230105A (en) | 1978-11-13 | 1980-10-28 | Merck & Co., Inc. | Transdermal delivery of drugs |
US4291015A (en) | 1979-08-14 | 1981-09-22 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing a vasodilator |
JPS60155111A (en) * | 1983-10-20 | 1985-08-15 | Hisamitsu Pharmaceut Co Inc | Stable pharmaceutical for external use containing "ketoprofen(r)" |
JPS61268631A (en) | 1985-05-22 | 1986-11-28 | Showa Denko Kk | Dermal external drug having improved percutaneous absorbability |
EP0189861A3 (en) | 1985-01-26 | 1988-02-17 | Showa Denko Kabushiki Kaisha | Percutaneous absorption accelerator for ionic water-soluble medicine |
US5023252A (en) * | 1985-12-04 | 1991-06-11 | Conrex Pharmaceutical Corporation | Transdermal and trans-membrane delivery of drugs |
LU86368A1 (en) * | 1986-03-24 | 1987-11-11 | Oreal | PROCESS FOR PREPARING AND DISPENSING A PRODUCT COMPRISING AT LEAST TWO COMPONENTS, AND DEVICE FOR IMPLEMENTING SAME |
US5196410A (en) | 1986-10-31 | 1993-03-23 | Pfizer Inc. | Transdermal flux enhancing compositions |
US4861764A (en) | 1986-11-17 | 1989-08-29 | Macro Chem. Corp. | Percutaneous absorption enhancers, compositions containing same and method of use |
US5179079A (en) * | 1986-12-16 | 1993-01-12 | Novo Nordisk A/S | Nasal formulation and intranasal administration therewith |
US4940586A (en) * | 1987-02-26 | 1990-07-10 | Alza Corporation | Skin permeation enhancer compositions using sucrose esters |
EP0281395A3 (en) * | 1987-03-06 | 1990-10-10 | Richardson-Vicks, Inc. | Improved skin moisturizing emulsions |
US5082656A (en) * | 1987-04-30 | 1992-01-21 | Abbott Laboratories | Topical antibacterial compositions containing penetration enchancers |
US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
US4954332A (en) * | 1987-10-22 | 1990-09-04 | The Procter & Gamble Company | Photoprotection compositions comprising tocopherol sorbate and an anti-inflammatory agent |
US5474783A (en) | 1988-03-04 | 1995-12-12 | Noven Pharmaceuticals, Inc. | Solubility parameter based drug delivery system and method for altering drug saturation concentration |
IE62871B1 (en) * | 1988-03-08 | 1995-03-08 | Warner Lambert Co | Compositions with enhanced penetration |
US5017365A (en) * | 1988-05-09 | 1991-05-21 | Solarcare Technologies Corporation | Sunscreen composition and applicator system |
US5164406A (en) | 1988-06-02 | 1992-11-17 | Bristol-Myers Squibb Co. | Method for enhancing transdermal penetration and compositions useful therein |
US5487989A (en) | 1988-08-31 | 1996-01-30 | Bioenergy International, L.C. | Ethanol production by recombinant hosts |
US5332577A (en) * | 1988-12-27 | 1994-07-26 | Dermamed | Transdermal administration to humans and animals |
US4917882A (en) | 1989-03-16 | 1990-04-17 | Amway Corporation | Gel-type sunscreen composition |
US5093360A (en) * | 1989-04-07 | 1992-03-03 | Yu Ruey J | Retinal, derivatives and their therapeutic use |
IT8920486A0 (en) * | 1989-05-12 | 1989-05-12 | Isf Spa | PHARMACEUTICAL COMPOSITIONS. |
DK0404334T3 (en) * | 1989-05-19 | 1994-03-14 | Beecham Group Plc | Aerosol preparations for topical use |
FR2648133B1 (en) * | 1989-06-08 | 1992-02-21 | Sanofi Sa | N-SUBSTITUTED LAURAMIDES, THEIR PREPARATION AND COMPOSITIONS CONTAINING THEM |
US5219877A (en) * | 1989-09-25 | 1993-06-15 | Bristol-Myers Squibb Company | Lauryl alcohol as skin penetration enhancer for topical imidazole agents |
US5023085A (en) | 1989-11-29 | 1991-06-11 | Pfizer Inc. | Transdermal flux enhancers in combination with iontophoresis in topical administration of pharmaceuticals |
US5115805A (en) | 1990-02-23 | 1992-05-26 | Cygnus Therapeutic Systems | Ultrasound-enhanced delivery of materials into and through the skin |
SG45171A1 (en) * | 1990-03-21 | 1998-01-16 | Boehringer Ingelheim Int | Atomising devices and methods |
ATE156353T1 (en) * | 1990-09-05 | 1997-08-15 | Ciba Geigy Ag | ARACHIDONIC ACID METABOLISM-INHIBITING DIPHENYL COMPOUNDS AND THEIR USE IN PHARMACEUTICAL COMPOSITIONS |
US5202125A (en) | 1990-12-10 | 1993-04-13 | Theratech, Inc. | Method and systems for administering nitroglycerin transdermally at enhanced transdermal fluxes |
TW213418B (en) | 1991-05-02 | 1993-09-21 | Kuko Seiyaku Kk | |
TW206918B (en) | 1991-05-11 | 1993-06-01 | Kuko Seiyaku Kk | |
US5212199A (en) * | 1991-05-17 | 1993-05-18 | Theratech, Inc. | Sorbitan esters as skin permeation enhancers |
AU2259692A (en) * | 1991-07-03 | 1993-02-11 | Sano Corporation | Composition and method for transdermal delivery of diclofenac |
EG20380A (en) | 1991-10-16 | 1999-02-28 | Richardson Vicks Inc | Enhanced skin penetration system for improved topical delivery of drugs |
CA2122271C (en) | 1991-11-25 | 1998-06-23 | Roy L. Blank | Use of salicylic acid for regulating skin wrinkles and/or skin atrophy |
CA2122923C (en) | 1991-11-25 | 1999-01-19 | Roy L. Blank | Compositions for regulating skin wrinkles and/or skin atrophy |
AU671811B2 (en) | 1991-12-18 | 1996-09-12 | Warner-Lambert Company | A process for the preparation of a solid dispersion |
EP0581587A3 (en) | 1992-07-31 | 1995-05-17 | Tanabe Seiyaku Co | Base for transdermal administration. |
JP3453843B2 (en) * | 1993-06-08 | 2003-10-06 | ソニー株式会社 | Disk unit |
FR2708000B1 (en) * | 1993-07-22 | 1995-08-25 | Pechiney Aluminium | Electro-refined aluminum with low uranium, thorium and rare earth content. |
US5460820B1 (en) | 1993-08-03 | 1999-08-03 | Theratech Inc | Method for providing testosterone and optionally estrogen replacement therapy to women |
DE4334553C2 (en) | 1993-10-11 | 1998-05-20 | Synopharm Gmbh Pharmazeutische | Liquid pharmaceutical system for percutaneous application |
DE4400770C1 (en) * | 1994-01-13 | 1995-02-02 | Lohmann Therapie Syst Lts | Plaster containing an active substance for delivery of oestradiol with at least one penetration enhancer, method of producing it and its use |
US5508023A (en) * | 1994-04-11 | 1996-04-16 | The Center For Innovative Technology | Pharmaceutically acceptable agents for solubilizing, wetting, emulsifying, or lubricating in metered dose inhaler formulations which use HFC-227 propellant |
US5505935A (en) * | 1994-05-09 | 1996-04-09 | Elizabeth Arden Company, Division Of Conopco, Inc. | Sunscreen compositions |
US6004969A (en) | 1996-04-15 | 1999-12-21 | National Science Council | Transdermal delivery of buprenorphine preparations |
IT1294748B1 (en) | 1997-09-17 | 1999-04-12 | Permatec Tech Ag | FORMULATION FOR A TRANSDERMAL DEVICE |
US5968919A (en) | 1997-10-16 | 1999-10-19 | Macrochem Corporation | Hormone replacement therapy drug formulations for topical application to the skin |
US6101716A (en) * | 1998-02-12 | 2000-08-15 | Schulz; Steven L. | Evaporative cooler solar retrofit kit |
PL196413B1 (en) | 1999-02-05 | 2007-12-31 | Cipla Ltd | Topical sprays comprising a film forming composition |
WO2001041755A2 (en) | 1999-12-02 | 2001-06-14 | The Regents Of The University Of Michigan | Topical compositions comprising thalidomide for the treatment of inflammatory diseases |
US6432415B1 (en) | 1999-12-17 | 2002-08-13 | Axrix Laboratories, Inc. | Pharmaceutical gel and aerosol formulations and methods to administer the same to skin and mucosal surfaces |
US20040198706A1 (en) | 2003-03-11 | 2004-10-07 | Carrara Dario Norberto R. | Methods and formulations for transdermal or transmucosal application of active agents |
IN191090B (en) | 2000-08-29 | 2003-09-20 | Ranbanx Lab Ltd | |
SI1315502T1 (en) | 2000-08-30 | 2010-07-30 | Unimed Pharmaceuticals Llc | Method for treating erectile dysfunction and increasing libido in men |
PL360992A1 (en) | 2000-08-30 | 2004-09-20 | Unimed Pharmaceuticals,Inc. | Method of increasing testosterone and related steroid concentrations in women |
WO2004091631A1 (en) | 2002-03-15 | 2004-10-28 | Unimed Pharmaceuticals, Inc. | Androgen pharmaceutical composition and method for treating depression |
US20030199584A1 (en) | 2002-04-11 | 2003-10-23 | Ahluwalia Gurpreet S. | Reduction of hair growth |
US6923226B2 (en) * | 2003-07-01 | 2005-08-02 | Patrick Wesley Bartlett | Device for preventing entry of an unleaded gas fill nozzle in a diesel fuel filler neck |
US20050025833A1 (en) | 2003-07-16 | 2005-02-03 | Chaim Aschkenasy | Pharmaceutical composition and method for transdermal drug delivery |
JP2007511544A (en) | 2003-11-19 | 2007-05-10 | アクルックス・ディ・ディ・エス・プロプライエタリー・リミテッド | Compositions and methods for prevention or treatment of amyloidosis |
US20050123575A1 (en) | 2003-12-03 | 2005-06-09 | Eilon Asculai | Spreadable compositions for topical use, an improved process of making same and methods of using same |
WO2006128022A2 (en) * | 2005-05-25 | 2006-11-30 | Transcept Pharmaceuticals, Inc. | Solid compositions and methods for treating middle-of-the night insomnia |
-
1996
- 1996-02-19 AU AUPN8144A patent/AUPN814496A0/en not_active Abandoned
-
1997
- 1997-02-19 AT AT06025287T patent/ATE472997T1/en active
- 1997-02-19 AT AT05022951T patent/ATE410136T1/en active
- 1997-02-19 DE DE69739931T patent/DE69739931D1/en not_active Expired - Lifetime
- 1997-02-19 AT AT97904304T patent/ATE324865T1/en active
- 1997-02-19 EP EP97904304A patent/EP0901368B1/en not_active Expired - Lifetime
- 1997-02-19 DK DK06025287.1T patent/DK1769785T3/en active
- 1997-02-19 PT PT06025287T patent/PT1769785E/en unknown
- 1997-02-19 JP JP52883497A patent/JP4213211B2/en not_active Expired - Fee Related
- 1997-02-19 US US09/125,436 patent/US6299900B1/en not_active Expired - Lifetime
- 1997-02-19 EP EP05022951A patent/EP1674068B1/en not_active Expired - Lifetime
- 1997-02-19 EP EP06025287A patent/EP1769785B1/en not_active Expired - Lifetime
- 1997-02-19 DK DK05022951T patent/DK1674068T3/en active
- 1997-02-19 DE DE69735804T patent/DE69735804T2/en not_active Expired - Lifetime
- 1997-02-19 ES ES05022951T patent/ES2314538T3/en not_active Expired - Lifetime
- 1997-02-19 PT PT05022951T patent/PT1674068E/en unknown
- 1997-02-19 DE DE69739037T patent/DE69739037D1/en not_active Expired - Lifetime
- 1997-02-19 PT PT97904304T patent/PT901368E/en unknown
- 1997-02-19 ES ES97904304T patent/ES2262173T3/en not_active Expired - Lifetime
- 1997-02-19 DK DK97904304T patent/DK0901368T3/en active
- 1997-02-19 AU AU17134/97A patent/AU706967B2/en not_active Expired
- 1997-02-19 CA CA002244089A patent/CA2244089C/en not_active Expired - Lifetime
- 1997-02-19 ES ES06025287T patent/ES2348313T3/en not_active Expired - Lifetime
- 1997-02-19 WO PCT/AU1997/000091 patent/WO1997029735A1/en active IP Right Grant
- 1997-02-19 KR KR1019980706443A patent/KR100528602B1/en not_active Expired - Lifetime
- 1997-02-19 NZ NZ330942A patent/NZ330942A/en not_active IP Right Cessation
-
1999
- 1999-09-11 HK HK99103965A patent/HK1018884A1/en unknown
-
2001
- 2001-07-24 US US09/910,780 patent/US6818226B2/en not_active Expired - Lifetime
-
2003
- 2003-05-02 US US10/428,017 patent/US6964777B2/en not_active Expired - Fee Related
-
2004
- 2004-01-20 US US10/759,303 patent/US7438203B2/en not_active Expired - Fee Related
-
2006
- 2006-08-24 HK HK07109591.7A patent/HK1101553A1/en unknown
- 2006-08-24 HK HK06109387A patent/HK1087355A1/en not_active IP Right Cessation
- 2006-08-31 US US11/513,342 patent/US20070071803A1/en not_active Abandoned
- 2006-09-08 US US11/517,575 patent/US7387789B2/en not_active Expired - Fee Related
-
2007
- 2007-07-17 JP JP2007185782A patent/JP2007326867A/en active Pending
- 2007-10-05 US US11/905,926 patent/US8071075B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/978,556 patent/US20080131494A1/en not_active Abandoned
-
2012
- 2012-04-03 DE DE201212000021 patent/DE122012000021I1/en active Pending
- 2012-04-03 DE DE201212000019 patent/DE122012000019I1/en active Pending
- 2012-04-03 DE DE201212000020 patent/DE122012000020I1/en active Pending
- 2012-04-04 LU LU91973C patent/LU91973I2/en unknown
- 2012-04-04 LU LU91972C patent/LU91972I2/en unknown
- 2012-04-04 LU LU91971C patent/LU91971I2/en unknown
Patent Citations (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2868691A (en) * | 1956-03-21 | 1959-01-13 | Riker Laboratories Inc | Self-propelling compositions for inhalation therapy containing a salt of isoproterenol or epinephrine |
US3306252A (en) * | 1963-12-03 | 1967-02-28 | Johnson & Johnson | Shielded aerosol medicament dispenser |
US3989816A (en) * | 1975-06-19 | 1976-11-02 | Nelson Research & Development Company | Vehicle composition containing 1-substituted azacycloheptan-2-ones |
US4975272A (en) * | 1976-11-10 | 1990-12-04 | Voyt Walter F | Method of and composition for the prevention of solar radiation exposure-induced formation of carcinogenic skin lipid degradation products |
US4954487A (en) * | 1979-01-08 | 1990-09-04 | The Procter & Gamble Company | Penetrating topical pharmaceutical compositions |
US4299826A (en) * | 1979-10-12 | 1981-11-10 | The Procter & Gamble Company | Anti-acne composition |
US4310511A (en) * | 1980-10-02 | 1982-01-12 | Massachusetts General Hospital | Sunscreen compositions containing Δ5,7 steroidal dienes |
US4938951A (en) * | 1980-12-30 | 1990-07-03 | Union Carbide Chemicals And Plastics Company Inc. | Potentiation of topical compositions wherein a uniform microdispersion of active agent is formed |
US4440777A (en) * | 1981-07-07 | 1984-04-03 | Merck & Co., Inc. | Use of eucalyptol for enhancing skin permeation of bio-affecting agents |
US4557934A (en) * | 1983-06-21 | 1985-12-10 | The Procter & Gamble Company | Penetrating topical pharmaceutical compositions containing 1-dodecyl-azacycloheptan-2-one |
US4563346A (en) * | 1984-03-14 | 1986-01-07 | Charles Of The Ritz Group Ltd. | Topical delivery system and skin treatment compositions employing such system |
US4824676A (en) * | 1984-10-11 | 1989-04-25 | Schering Corporation | Physiological means of enhancing transdermal delivery of drugs |
US5008111A (en) * | 1984-10-11 | 1991-04-16 | Schering Corporation | Physiological means of enhancing transdermal delivery of drugs |
US4663157A (en) * | 1985-02-28 | 1987-05-05 | The Proctor & Gamble Company | Sunscreen compositions |
US4704406A (en) * | 1985-06-24 | 1987-11-03 | Klinge Pharma Gmbh | Sprayable pharmaceutical composition for topical use |
US5256647A (en) * | 1986-01-31 | 1993-10-26 | Whitby Research, Inc. | Compositions comprising 1-substituted azacycloalkanes |
US5034386A (en) * | 1986-01-31 | 1991-07-23 | Whitby Research, Inc. | Methods for administration using 1-substituted azacycloalkanes |
US4699779A (en) * | 1986-02-18 | 1987-10-13 | Victor Palinczar | Waterproof sunscreen compositions |
US4820724A (en) * | 1986-03-31 | 1989-04-11 | University Of Southern California | Dual phase solvent carrier system |
US5036100A (en) * | 1987-03-13 | 1991-07-30 | Pharlyse S.A. Societe Anonyme | Pharmaceutical method and preparation containing indomethacin |
US5030442A (en) * | 1987-03-30 | 1991-07-09 | Liposome Technology, Inc. | Non-crystalline minoxidil composition |
US4946671A (en) * | 1987-10-22 | 1990-08-07 | The Procter & Gamble Company | Photoprotection compositions comprising sorbohydroxamic acid and an anti-inflammatory agent |
US5082866A (en) * | 1988-06-01 | 1992-01-21 | Odontex, Inc. | Biodegradable absorption enhancers |
US5192534A (en) * | 1988-12-30 | 1993-03-09 | L'oreal | Composition for inducing and stimulating hair growth and/or retarding its loss, based on pyrimidine derivatives and sunscreens |
US4959205A (en) * | 1989-03-23 | 1990-09-25 | Collagen Corporation | Composition and method for treatment of dermal inflammation |
US5100918A (en) * | 1989-05-25 | 1992-03-31 | Sterling Drug, Inc. | Prevention or treatment of sunburn using the S(+) isomer of ibuprofen |
US5122519A (en) * | 1989-06-27 | 1992-06-16 | American Cyanamid Company | Stable, cosmetically acceptable topical gel formulation and method of treatment for acne |
US5573754A (en) * | 1989-12-04 | 1996-11-12 | Richardson-Vicks Inc. | Photoprotective compositions |
US5674912A (en) * | 1991-03-01 | 1997-10-07 | Warner-Lambert Company | Sunscreen-wound healing compositions and methods for preparing and using same |
US5426210A (en) * | 1991-05-09 | 1995-06-20 | Shiseido Co., Ltd. | Adduct of cinnamic acid and glycerin, ultraviolet absorbent and external preparation for skin |
US5487898A (en) * | 1991-08-26 | 1996-01-30 | Abbott Laboratories | Compositions and method for the sublingual or buccal administration therapeutic agents |
US5413794A (en) * | 1992-01-24 | 1995-05-09 | Lintec Corporation | Percutaneous absorption promoter, a tape plaster and a method of promoting percutaneous absorpton |
US5446025A (en) * | 1992-06-12 | 1995-08-29 | Abbott Laboratories | Formulations and method of the percutaneous administration of leuprolide |
US5679374A (en) * | 1993-12-30 | 1997-10-21 | L'oreal | Anti-acne composition for the simultaneous treatment of the surface layers and deep layers of the skin, and use thereof |
US5508168A (en) * | 1994-05-16 | 1996-04-16 | Hoffmann-La Roche Inc. | Methods and reagents for the detection of herpes simplex virus, treponema pallidum, and haemophilus ducreyi |
US5449519A (en) * | 1994-08-09 | 1995-09-12 | Revlon Consumer Products Corporation | Cosmetic compositions having keratolytic and anti-acne activity |
US5449519C1 (en) * | 1994-08-09 | 2001-05-01 | Revlon Consumer Prod Corp | Cosmetic compositions having keratolytic and anti-acne activity |
US6126920A (en) * | 1995-03-03 | 2000-10-03 | Medeva Europe Plc | Method of treating a skin disease with a corticosteroid-containing pharmaceutical composition |
US6010716A (en) * | 1995-03-30 | 2000-01-04 | Sanofi | Pharmaceutical composition for transdermal administration |
US5951967A (en) * | 1995-06-08 | 1999-09-14 | Lancaster Group Gmbh | Multi-phase light screening agent, process for its production and for its application to the skin |
US20040146469A1 (en) * | 1996-02-19 | 2004-07-29 | Monash University | Dermal penetration enhancers and drug delivery systems involving same |
US7438203B2 (en) * | 1996-02-19 | 2008-10-21 | Acrux Dds Pty Ltd | Dermal penetration enhancers and drug delivery systems involving same |
US6299900B1 (en) * | 1996-02-19 | 2001-10-09 | Monash University | Dermal penetration enhancers and drug delivery systems involving same |
US20080152597A1 (en) * | 1996-02-19 | 2008-06-26 | Acrux Dds Pty Ltd. | Dermal penetration enhancers and drug delivery systems involving the same |
US6923983B2 (en) * | 1996-02-19 | 2005-08-02 | Acrux Dds Pty Ltd | Transdermal delivery of hormones |
US6916486B2 (en) * | 1996-02-19 | 2005-07-12 | Acrux Dds Pty Ltd | Transdermal delivery of analgesics |
US6916487B2 (en) * | 1996-02-19 | 2005-07-12 | Acrux Dds Pty Ltd | Transdermal delivery of antiemetics |
US6998138B2 (en) * | 1996-02-19 | 2006-02-14 | Acrux Dds Pty. Ltd. | Topical delivery of anti-alopecia agents |
US6929801B2 (en) * | 1996-02-19 | 2005-08-16 | Acrux Dds Pty Ltd | Transdermal delivery of antiparkinson agents |
US20040096405A1 (en) * | 1996-02-19 | 2004-05-20 | Monash University | Topical delivery of anti-alopecia agents |
US7387789B2 (en) * | 1996-02-19 | 2008-06-17 | Acrux Dds Pty. Ltd. | Transdermal delivery of non-steroidal anti-inflammatory drugs |
US7094422B2 (en) * | 1996-02-19 | 2006-08-22 | Acrux Dds Pty Ltd. | Topical delivery of antifungal agents |
US20080131494A1 (en) * | 1996-02-19 | 2008-06-05 | Acrux Dds Pty Ltd. | Dermal Penetration enhancers and drug delivery systems involving same |
US6964777B2 (en) * | 1996-02-19 | 2005-11-15 | Acrux Dds Pty Ltd | Transdermal delivery of antianxiety agents |
US6818226B2 (en) * | 1996-02-19 | 2004-11-16 | Acrux Dds Pty. Ltd. | Dermal penetration enhancers and drug delivery systems involving same |
US6211250B1 (en) * | 1996-11-22 | 2001-04-03 | Soltec Research Pty Ltd. | Percutaneous delivery system |
US5804168A (en) * | 1997-01-29 | 1998-09-08 | Murad; Howard | Pharmaceutical compositions and methods for protecting and treating sun damaged skin |
US6475467B1 (en) * | 1998-08-04 | 2002-11-05 | Jago Research Ag | Medicinal aerosol formulations |
US6399093B1 (en) * | 1999-05-19 | 2002-06-04 | Advanced Medical Instruments | Method and composition to treat musculoskeletal disorders |
US20040202705A1 (en) * | 1999-11-04 | 2004-10-14 | Xel Herbaceucticals, Inc. | Transdermal administration of huperzine |
US6387383B1 (en) * | 2000-08-03 | 2002-05-14 | Dow Pharmaceutical Sciences | Topical low-viscosity gel composition |
US20050049233A1 (en) * | 2000-08-30 | 2005-03-03 | Dudley Robert E. | Method for treating erectile dysfunction and increasing libido in men |
US6503894B1 (en) * | 2000-08-30 | 2003-01-07 | Unimed Pharmaceuticals, Inc. | Pharmaceutical composition and method for treating hypogonadism |
US6682757B1 (en) * | 2000-11-16 | 2004-01-27 | Euro-Celtique, S.A. | Titratable dosage transdermal delivery system |
US20040081685A1 (en) * | 2000-11-16 | 2004-04-29 | Euro-Celtique, S.A. | Titratable dosage transdermal delivery system |
US6743448B2 (en) * | 2000-12-11 | 2004-06-01 | Abraham H. Kryger | Topical testosterone formulations and associated methods |
US20050181032A1 (en) * | 2002-06-25 | 2005-08-18 | Acrux Dds Pty Ltd. | Metastable pharmaceutical compositions |
US20050186141A1 (en) * | 2002-06-25 | 2005-08-25 | Acrux Dds Pty Ltd. | Transdermal aerosol compositions |
US20050175680A1 (en) * | 2002-06-25 | 2005-08-11 | Acrux Dds Pty Ltd. | Transdermal delivery rate control using amorphous pharmaceutical compositions |
US20040175416A1 (en) * | 2003-02-20 | 2004-09-09 | Besins International Belgique | Pharmaceutical composition for transdermal or transmucous administration |
US20050002868A1 (en) * | 2003-06-23 | 2005-01-06 | Acrux Dds Pty Ltd. | Method of treatment of a female suffering from androgen insufficiency |
US20050042268A1 (en) * | 2003-07-16 | 2005-02-24 | Chaim Aschkenasy | Pharmaceutical composition and method for transdermal drug delivery |
US20050020552A1 (en) * | 2003-07-16 | 2005-01-27 | Chaim Aschkenasy | Pharmaceutical composition and method for transdermal drug delivery |
US20060153905A1 (en) * | 2003-10-10 | 2006-07-13 | Carrara R D N | Transdermal pharmaceutical formulation for minimizing skin residues |
US20050196414A1 (en) * | 2004-03-03 | 2005-09-08 | Essentia Biosystems, Inc. | Compositions and methods for topical application and transdermal delivery of botulinum toxins |
US20060280783A1 (en) * | 2005-06-03 | 2006-12-14 | Acrux Dds Pty Ltd. | Method and composition for transdermal drug delivery |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080131494A1 (en) * | 1996-02-19 | 2008-06-05 | Acrux Dds Pty Ltd. | Dermal Penetration enhancers and drug delivery systems involving same |
US8071075B2 (en) | 1996-02-19 | 2011-12-06 | Acrux Dds Pty Ltd. | Dermal penetration enhancers and drug delivery systems involving the same |
US20100166674A1 (en) * | 2002-06-25 | 2010-07-01 | Acrux Dds Pty Ltd | Transdermal delivery rate control using amorphous pharmaceutical compositions |
US20050181032A1 (en) * | 2002-06-25 | 2005-08-18 | Acrux Dds Pty Ltd. | Metastable pharmaceutical compositions |
US20050186141A1 (en) * | 2002-06-25 | 2005-08-25 | Acrux Dds Pty Ltd. | Transdermal aerosol compositions |
US8357393B2 (en) | 2002-06-25 | 2013-01-22 | Acrux Dds Pty Ltd. | Transdermal delivery rate control using amorphous pharmaceutical compositions |
US20050175680A1 (en) * | 2002-06-25 | 2005-08-11 | Acrux Dds Pty Ltd. | Transdermal delivery rate control using amorphous pharmaceutical compositions |
US8784878B2 (en) | 2002-06-25 | 2014-07-22 | Acrux DDS Pty Ltc. | Transdermal delivery rate control using amorphous pharmaceutical compositions |
US8993520B2 (en) | 2005-06-03 | 2015-03-31 | Acrux Dds Pty Ltd | Method and composition for transdermal drug delivery |
US9180194B2 (en) | 2005-06-03 | 2015-11-10 | Acrux Dds Pty Ltd | Method and composition for transdermal drug delivery |
US20100322884A1 (en) * | 2005-06-03 | 2010-12-23 | Acrux Dds Pty Ltd | Method and composition for transdermal drug delivery |
US20060280783A1 (en) * | 2005-06-03 | 2006-12-14 | Acrux Dds Pty Ltd. | Method and composition for transdermal drug delivery |
US8435944B2 (en) | 2005-06-03 | 2013-05-07 | Acrux Dds Pty Ltd. | Method and composition for transdermal drug delivery |
US8807861B2 (en) | 2007-01-11 | 2014-08-19 | Acrux Dds Pty Ltd. | Spreading implement |
US9289586B2 (en) | 2007-01-11 | 2016-03-22 | Acrux Dds Pty Ltd | Spreading implement |
US20090075963A1 (en) * | 2007-09-14 | 2009-03-19 | Drugtech Corporation | Transdermal hormone spray |
US20090098069A1 (en) * | 2007-09-14 | 2009-04-16 | Drugtech Corporation | Transdermal, alcohol-free, pharmaceutical compositions |
US20100297032A1 (en) * | 2007-11-02 | 2010-11-25 | Acrux Dds Pty Ltd. | Transdermal delivery system |
US20100279988A1 (en) * | 2007-11-02 | 2010-11-04 | Acrux Dds Pty Ltd. | Transdermal delivery system for hormones and steroids |
US9078810B2 (en) | 2007-11-02 | 2015-07-14 | Acrux Dds Pty Ltd | Transdermal delivery system |
US20100048598A1 (en) * | 2008-08-21 | 2010-02-25 | Sateesh Kandavilli | Topical compositions comprising 5-alpha reductase inhibitors |
USD749225S1 (en) | 2013-11-26 | 2016-02-09 | Acrux Dds Pty Ltd | Topical spreading applicator |
USD750788S1 (en) | 2013-11-26 | 2016-03-01 | Acrux Dds Pty Ltd | Topical spreading applicator |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8071075B2 (en) | Dermal penetration enhancers and drug delivery systems involving the same | |
US9180194B2 (en) | Method and composition for transdermal drug delivery | |
US20090098069A1 (en) | Transdermal, alcohol-free, pharmaceutical compositions | |
US20070255197A1 (en) | Method of Treatment for Undesired Effect Following Transdermal or Topical Drug Delivery | |
CA2610708C (en) | Method and composition for transdermal drug delivery | |
US20080319370A1 (en) | Method and System for Transdermal Drug Delivery | |
AU5258999A (en) | Dermal penetration enhancers and drug delivery systems involv ing same | |
AU2006254742B2 (en) | Method and composition for transdermal drug delivery | |
AU2011202787B2 (en) | Method and composition for transdermal drug delivery | |
AU2004296100A1 (en) | Method of treatment for undesired effect following transdermal or topical drug delivery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACRUX DDS PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REED, BARRY LEONARD;MORGAN, TIMOTHY MATTHIAS;FINNIN, BARRIE CHARLES;REEL/FRAME:018675/0461;SIGNING DATES FROM 20061106 TO 20061117 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |