US20070068397A1 - Apparatus in a spinning mill for transporting a can-less fibre sliver package - Google Patents
Apparatus in a spinning mill for transporting a can-less fibre sliver package Download PDFInfo
- Publication number
- US20070068397A1 US20070068397A1 US11/605,379 US60537906A US2007068397A1 US 20070068397 A1 US20070068397 A1 US 20070068397A1 US 60537906 A US60537906 A US 60537906A US 2007068397 A1 US2007068397 A1 US 2007068397A1
- Authority
- US
- United States
- Prior art keywords
- sliver
- fibre sliver
- fibre
- transport
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 362
- 238000009987 spinning Methods 0.000 title claims abstract description 37
- 238000003860 storage Methods 0.000 claims abstract description 48
- 238000000151 deposition Methods 0.000 claims description 34
- 239000004753 textile Substances 0.000 claims description 17
- 238000009434 installation Methods 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 238000011143 downstream manufacturing Methods 0.000 claims description 2
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 20
- 230000008021 deposition Effects 0.000 description 16
- 238000006073 displacement reaction Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 7
- 238000007383 open-end spinning Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000010036 direct spinning Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000012432 intermediate storage Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007378 ring spinning Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H9/00—Arrangements for replacing or removing bobbins, cores, receptacles, or completed packages at paying-out or take-up stations ; Combination of spinning-winding machine
- D01H9/18—Arrangements for replacing or removing bobbins, cores, receptacles, or completed packages at paying-out or take-up stations ; Combination of spinning-winding machine for supplying bobbins, cores, receptacles, or completed packages to, or transporting from, paying-out or take-up stations ; Arrangements to prevent unwinding of roving from roving bobbins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H54/00—Winding, coiling, or depositing filamentary material
- B65H54/76—Depositing materials in cans or receptacles
- B65H54/80—Apparatus in which the depositing device or the receptacle is rotated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H67/00—Replacing or removing cores, receptacles, or completed packages at paying-out, winding, or depositing stations
- B65H67/04—Arrangements for removing completed take-up packages and or replacing by cores, formers, or empty receptacles at winding or depositing stations; Transferring material between adjacent full and empty take-up elements
- B65H67/0428—Arrangements for removing completed take-up packages and or replacing by cores, formers, or empty receptacles at winding or depositing stations; Transferring material between adjacent full and empty take-up elements for cans, boxes and other receptacles
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G23/00—Feeding fibres to machines; Conveying fibres between machines
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H9/00—Arrangements for replacing or removing bobbins, cores, receptacles, or completed packages at paying-out or take-up stations ; Combination of spinning-winding machine
- D01H9/18—Arrangements for replacing or removing bobbins, cores, receptacles, or completed packages at paying-out or take-up stations ; Combination of spinning-winding machine for supplying bobbins, cores, receptacles, or completed packages to, or transporting from, paying-out or take-up stations ; Arrangements to prevent unwinding of roving from roving bobbins
- D01H9/185—Transporting cans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- the invention relates to an apparatus in a spinning room for transporting a can-less fibre sliver package between a sliver-delivering spinning machine, such as a draw frame, or a storage means and a further processing device or a further storage means.
- a sliver-delivering spinning machine such as a draw frame, or a storage means and a further processing device or a further storage means.
- the invention provides an apparatus in a spinning room for transporting a fibre sliver package, comprising a support for receiving a can-less sliver package, the support being substantially unenclosed; and a transport apparatus for transporting the support and at least one can-less sliver package thereon from a sliver package delivery station selected from a sliver-delivering machine and a sliver package storage station to a sliver package receiving station selected from a sliver-fed machine and a further sliver package storage station; wherein the transport apparatus is guidable by a track or along a path, or is freely movable.
- a plurality of processing machines can be linked to one another in an elegant way.
- Sliver-delivering machines for example a draw frame, or storage means can advantageously be so positioned that they are arranged along a common path of the transport apparatus.
- a further particular advantage is obtained because a plurality of subsequent processing machines, for example spinning machines, can be served selectively.
- the fibre sliver package is displaceable (unloadable) from the sliver package delivery station onto a support, for example a transport pallet or the like, which is transportable by the transport apparatus.
- a support for example a transport pallet or the like
- the support is movable in the lateral direction for receiving a further fibre sliver package.
- more than one fibre sliver package is displaceable (unloadable) onto the support, for example a transport pallet.
- the number of fibre sliver packages preferably 3, 4, 6 or 8, on the support, for example a transport pallet, corresponds to the number of fibre sliver packages to be supplied to the downstream processing device.
- the support is a standard pallet.
- the support for example a transport pallet
- a supporting element for example a supporting wall
- the supporting element is associated with a side face of the first deposited (unloaded) fibre sliver package.
- the supporting element is in fixed position.
- the supporting element is mounted on the support, for example a transport pallet.
- the supporting element is in the form of walls, rods, transport belts or the like.
- the supporting element consists of, or is coated with, a material that promotes sliding.
- the supporting element for example a supporting wall or the like, is inclinable, or is inclined by about from 5 to 100.
- the support for example a transport pallet
- the support for example a transport pallet, has on its underside insertion openings for transport apparatus and/or for coupling to transport apparatus, for example fork-lift trucks.
- the support for example a transport pallet, has slots, guide means or the like into which the driver elements, forks or the like are able to enter.
- the support is displaceable transversely by lateral movement to receive the next fibre sliver package.
- the support for example a transport pallet
- the support for example a transport pallet, provided (loaded) with deposited fibre sliver packages is exchangeable for a support provided with empty storage positions.
- a support for example a transport pallet, provided (loaded) with deposited fibre sliver packages is movable out of a discharge region in which fibre sliver is deposited to form fiber sliver packages by displacement, for example horizontal pushing.
- an empty support for example a transport pallet
- a support for example a transport pallet
- provided (loaded) with deposited fibre sliver packages is transportable to a further textile machine, for example a spinning machine, or to a magazine.
- the transport may be effected manually, for example by means of a fork-lift truck.
- the transport apparatus is track-guided, for example by means of an induction loop or the like.
- Other means of guiding the transport apparatus along a path are also possible, for example the transport apparatus may be rail-guided.
- the transport apparatus may instead be freely movable.
- the support provided (loaded) with deposited fibre sliver packages is positionable directly on the transport apparatus.
- the transport apparatus may be a wagon or the like.
- the transport apparatus may be a fork-lift truck or the like.
- the transport apparatus is drivable back and forth by means of drive means, for example a drive motor.
- the fibre sliver package is displaceable (unloadable) into a press, for example a bale press.
- the displacement is effected by pushing.
- the sliver ends of the fibre sliver packages are joinable to one another.
- the sliver ends of the fibre sliver packages are positioned for joining.
- the sliver ends may be joinable to one another manually, or by means of a device.
- the sliver end of the lowermost layer of one fibre sliver package is joinable to the sliver end of the uppermost layer of the other (adjacent) fibre sliver package.
- a single total fibre sliver package consisting of a plurality of individual fibre sliver packages can be created.
- At least one side element associated with the support, storage means or the transport apparatus is inclinable by about from 5 to 100.
- at least one side element for example a wall or the like, is inclined by about from 5 to 100.
- the apparatus is a can-less apparatus.
- the fibre sliver package discharge out of a sliver delivering machine and/or the transport to a subsequent processing device or a storage means is effected without cans, containers or the like.
- the deposited fibre sliver (sliver bundle) is movable by mechanical means, which effects the displacement of the fibre sliver (sliver bundle) out of the discharge region without additional cans, containers or the like.
- the mechanical means is a pressure device, for example a pusher or the like.
- the fibre sliver is deposited by a sliver delivering machine in ring form to form fibre sliver packages.
- the or each sliver package is
- the fibre sliver package is transferred onto the support.
- the support for the fibre sliver package is associated with a transport device, for example a suspended conveyor or the like.
- the fibre sliver package is displaceable jolt-free or substantially jolt-free during deposit of sliver to form a fibre sliver package and/or during transport thereof
- the alteration in the speed of the displacement device on acceleration and braking paths takes place substantially continuously (steplessly).
- the displacement device is associated with a controllable drive device, for example a drive motor.
- the controllable drive device is connected to an electronic open-loop and closed-loop control device.
- the driven displacement device is able to effect stable displacement of the fibre sliver package.
- the fibre sliver package is can-less.
- the fibre sliver package is elongate in cross-section.
- there is a supporting wall or the like which is able to support the fibre sliver package during displacement thereof onto the support and/or a side element associated with the support, which supporting wall or the like and/or side element is inclinable or inclined about a horizontal axis.
- the fibre sliver package is displaceable in a stably supported state.
- the fibre sliver package is supportable at the centre of gravity or above the centre of gravity.
- the support and an associated supporting element are approximately L-shaped.
- the support can be elevated on the side remote from the supporting element.
- a pneumatic cylinder or the like can be used for elevation.
- said elevation is able to effect inclination of a fibre sliver package against the supporting element and/or against a further fibre sliver package, thereby transferring the sliver package into a stable position.
- the drive device for displacing a receiving support surface during deposition of sliver to form a fibre sliver package.
- the drive device has a toothed belt and toothed belt wheels.
- the drive device comprises a pneumatic cylinder or the like.
- a number of fibre sliver packages appropriate to further processing is transportable together on the support, for example a transport pallet.
- a plurality of processing devices, for examples machines, and/or storage means can be served by a rail- or track-guided transport apparatus.
- the processing devices, for example machines, and/or storage means are so positioned that they are arranged along a common path for the transport apparatus.
- the transport of the support, for example a transport pallet, to a storage device is effected.
- the transport of the support for example a transport pallet, to feed positions (unwinding positions) provided on the further processing machines is effected.
- the feed position may be, for example, the lattice (feed table) of a draw frame, of a flyer, or of a combing preparation machine.
- the feed position may be, for example, the spinning position of a spinning machine (direct spinning).
- the transport of the support for example a transport pallet, to a press for compression of the fibre sliver package is effected.
- the fibre sliver packages are provided with an identification mark, for example a barcode, colour marker or the like.
- the identification mark may relate to, for example, the production conditions, the fibre material quality, or test values.
- the identification mark advantageously allows a mixture of fibre sliver packages to be assembled at the feed positions.
- the assembly of fibre sliver packages to form a mixture can be effected at predetermined positions of the feed positions.
- the invention also provides an apparatus in a spinning room for transporting a can-less fibre sliver package between a sliver-delivering spinning machine, for example a draw flame, or a storage means and a further processing device, especially a sliver-fed spinning machine, or a further storage means, having a support for receiving the can-less fibre sliver package, the support being substantially unenclosed, and in which the support and the can-less fibre sliver package are transportable in common, wherein there is a transport apparatus for the common transport of the support and at least one stably positioned can-less fibre sliver package, the transport apparatus being track-guided or path-guided or being freely movable.
- the invention provides a textile processing installation comprising a multiplicity of textile fibre processing devices and a transportation arrangement for transporting can-less fibre sliver packages between said textile fibre processing devices,
- the transportation arrangement comprising one or more carriage devices and one or more supports receivable on said carriage devices,
- the transport arrangement being adapted to deliver a support to any one of the fibre processing devices and to transport a support, with at least one can-less fibre sliver package received thereon, from any one of the textile fibre processing devices to a further textile fibre processing device,
- the can-less fibre sliver package being stably positioned on the support during transport.
- FIG. 1 a is a diagrammatic side view of an exemplary draw frame incorporating an exemplary apparatus according to the present invention, using a support plate for depositing fibre sliver in the form of a can-less fibre sliver package, in one end position beneath the rotary plate;
- FIG. 1 b shows the exemplary apparatus according to FIG. 1 a but in the other end position beneath the rotary plate;
- FIG. 2 shows the exemplary apparatus according to FIGS. 1 a and 1 b, but outside the sliver delivery device;
- FIGS. 3 a, 3 b, and 3 c show a plan view ( FIG. 3 a ), a side view ( FIG. 3 b ), and a front view ( FIG. 3 c ), of the can-less fibre sliver package deposited on the support plate;
- FIG. 4 shows an exemplary embodiment of the apparatus according to the invention with a block circuit diagram comprising an electronic control and regulation device, to which there are connected a controllable drive motor for the horizontal displacement device of the support plate, a controllable drive motor for the vertical displacement device of the support plate and a controllable drive motor for the rotary plate;
- FIG. 5 is a perspective view of the outlet region of an exemplary draw frame having a support plate and a can-less fibre sliver package in the sliver-depositing area;
- FIGS. 6 a and 6 b show an exemplary embodiment of the support plate with through-openings for cone-shaped fixing elements in the engaged position ( FIG. 6 a ) and in the disengaged position ( FIG. 6 b );
- FIG. 7 a shows an exemplary embodiment of the support plate with groove-shaped recesses
- FIGS. 7 b and 7 c show the support plate according to FIG. 7 a with lifting elements for the fibre sliver package, lowered out of engagement ( FIG. 7 b ) and raised into engagement ( FIG. 7 c );
- FIG. 8 is a perspective view of the outlet region of the discharge region downstream of the draw frame, with a support plate and a can-less fibre sliver package above a transport pallet;
- FIG. 8 a is a perspective view of the discharge region according to FIG. 8 viewed towards the supporting wall on the transport pallet;
- FIG. 8 b is a perspective view of an exemplary device for causing a discharged sliver package to adopt an inclined position
- FIG. 9 shows an exemplary storage device with a conveyor belt, on which there are arranged one after the other—in each case with an inclined supporting wall—an empty transport pallet, a transport pallet partially loaded with fibre sliver packages, and a transport pallet fully loaded with fibre sliver packages;
- FIGS. 10 a to 10 e show diagrammatic plan views of the discharge of a can-less fibre sliver package onto a transport pallet;
- FIG. 10 ′ is a front view of a portion of the arrangement shown in FIG. 10 c;
- FIG. 11 shows four can-less fibre sliver packages arranged one next to the other on a transport pallet, the respective sliver ends of the lowermost and uppermost layers of adjacent fibre sliver packages being joined to one another;
- FIG. 12 shows a transport pallet inclined transversely with respect to the direction of the longitudinal axes of the fibre sliver packages on a fork-lift truck, the forks engaging under the transport pallet transversely with respect to the longitudinal axes;
- FIG. 13 shows a transport pallet inclined transversely with respect to the direction of the longitudinal axis of the fibre sliver packages, the forks of a fork-lift truck engaging under the transport pallet in the direction of the longitudinal axes of the fibre sliver packages;
- FIG. 14 is a diagrammatic view of an exemplary system having six draw frames, two transport vehicles and a press for can-less fibre sliver packages;
- FIG. 15 is a diagrammatic view of an exemplary draw frame having an upstream feed table (lattice), on which there are eight (independent) can-less fibre sliver packages on two transport pallets;
- FIG. 16 is a diagrammatic view of an exemplary draw frame having an upstream feed table on which there are located eight can-less fibre sliver packages on eight respective transport pallets;
- FIG. 17 is a diagrammatic view of an exemplary system having a plurality of flat cards, each with a flat card drafting system, a plurality of storage means for can-less fibre sliver packages, having a plurality of supports for transporting can-less fibre sliver packages inside the system, transport vehicles and a plurality of spinning machines (direct spinning);
- FIG. 18 is a diagrammatic side view of an exemplary flat card incorporating an exemplary apparatus according to the present invention.
- FIG. 19 is a diagrammatic side view of an exemplary flyer incorporating an exemplary apparatus according to the present invention.
- FIG. 20 is a diagrammatic plan view of an exemplary combing preparation machine incorporating an exemplary apparatus according to the present invention.
- FIG. 21 is a diagrammatic plan view of an exemplary combing machine incorporating an exemplary apparatus according to the present invention.
- FIGS. 1 a and 1 b show an exemplary draw frame 1 , for example, a Trützschler draw frame TD 03.
- the fibre sliver 12 passes through a rotary plate 3 and is then deposited in rings on a base which moves back and forth in the direction of arrows A and B to form a can-less fibre sliver package 5 .
- Support plate 4 can have, for example, a rectangular top face 4 1 . Referring to FIG.
- the support plate 4 can be driven by a controllable drive motor 6 which is connected to an electronic control and regulation device 7 , for example, a machine controller.
- reference numeral 8 denotes a cover sheet of the sliver-depositing device which is adjoined by the rotary plate panel 9 .
- K denotes the working direction (flow of fibre material) inside the draw frame 1 , while the fibre sliver is delivered by the rotary plate 3 substantially in the vertical direction.
- Reference numeral 10 denotes the depositing area
- reference numeral 11 denotes the region outside the depositing area 10 .
- the depositing area 10 for the fibre sliver comprises the region g in accordance with FIG. 1 b.
- FIG. 1 a shows one end position
- FIG. 1 b shows the other end position of the support plate 4 which moves back and forth horizontally in directions A, B beneath the rotary plate 3 during deposition of the fibre sliver 12 .
- the fibre sliver package 5 is moved back and forth, corresponding to directions A, B, in the direction of arrows C, D beneath the rotary plate 3 .
- the support plate 4 travels back in the direction of arrow B, the support plate 4 being accelerated, driven at a constant speed and then braked. Switching over between the back and forth movements is effected by the control device 7 in conjunction with the drive motor 6 (see FIG. 4 ).
- the variable-speed electric motor 6 drives the support plate 4 at a jolt-free or nearly jolt-free speed.
- the acceleration and the braking are jolt-free or nearly jolt-free.
- the speed between acceleration and braking is constant.
- the fibre sliver package 5 remains stable both during the back and forth movement in the depositing area 10 according to FIG. 1 a and 1 b and during the movement out of the depositing area 10 according to FIG. 2 .
- the movements are so controlled that the production rate achieved is as high as possible, without the fibre sliver package 5 (sliver bundle) slipping or even tipping over.
- the control device 7 controls the back and forth movement of the support plate 4 in order to produce a stable can-less fibre sliver package 5 .
- the rotary plate 3 rotates in a fixed position and deposits the fibre sliver 12 on the support plate 4 at a substantially constant deposition force.
- the constant delivery force is achieved, among other factors, by delivery of a constant amount of fibre sliver 12 per fibre material layer of the fibre sliver 12 .
- each layer of fibre sliver rings receives a substantially constant amount of fibre sliver 12 either during the forward movement or during the backward movement. Because the amount of fibre sliver 12 per layer is constant, stability of the fibre sliver package 5 is achieved.
- the amount by which the support plate 4 moves back and forth is also controlled by the increasing stability of the fibre sliver package 5 .
- the control means 7 brakes the support plate 4 , the support plate 4 reaching border region 402 a or 402 b (see FIGS. 3 a, 3 b ) of the fibre sliver package 5 , and accelerates the support plate 4 whenever the support plate 4 leaves the border region 402 a or 402 b.
- the control means 7 controls the support plate 4 at a constant speed.
- the border region 402 a or 402 b is the location at each end of the fibre sliver package 5 where the fibre sliver rings deposited on the support plate 4 do not completely overlap one another.
- the border region 402 a or 402 b can be located shortly before the turn-round point of the movement of the support plate 4 at each end of the fibre sliver package 5 .
- the rearward edge of each fibre sliver ring is also arranged from above on the forward edge of the previously deposited fibre band ring.
- the control device 7 brakes the support plate 4 so that more fibre sliver 12 can be deposited in the border region 402 a or 402 b and accelerates the support plate 4 to a constant speed in the non-border region 404 .
- the braking of the support plate 4 results in an increase in the amount of fibre sliver deposited in the border region 402 a or 402 b, because the rotary plate 3 delivers the fibre sliver 12 at a constant rate irrespective of the movement of the support plate 4 .
- the non-uniform speed of the support plate 4 allows a substantially uniform amount of fibre sliver 12 which is deposited in both border regions 402 a and 402 b and in the non-border region 404 ( FIGS. 3 a, 3 b ) of the fibre sliver package 5 for each layer of fibre sliver 12 during the back and forth movement of the support plate 4 .
- the non-uniform speed of the support plate 4 results in a substantially uniform density of fibre sliver 12 at all points of the fibre sliver package 5 .
- the uniform density of the fibre sliver 12 enables the fibre sliver package 5 to be formed stably on the support surface 4 and allows the fibre sliver package 5 to be accelerated and braked forwards and backwards, avoiding the possibility of the can-less laterally unsupported fibre sliver package 5 becoming unstable or at risk of tipping over.
- the support plate 4 moves out of the sliver delivery device in the direction of arrow I.
- the control means 7 controls the movement of the support plate 4 so that a switch-over is made from the back and forth movement (arrows A, B) for the sliver deposition to the outward movement (arrow I) out of the depositing area 10 into the discharge region 1 .
- FIG. 3 a shows a plan view of a ring-shaped fibre sliver package 5 which has been deposited freely on the top face 4 1 of the support plate 4 .
- FIG. 3 b shows a side view of the fibre sliver package 5 which is arranged freely on the support plate 4 .
- FIG. 3 c shows a front view of the fibre sliver package 5 , which has been positioned freely on the support plate 4 .
- the fibre sliver package 5 is formed from fibre sliver rings stacked in a substantially rectangular shape. The rectangular shape of the fibre sliver package 5 is created by the way in which the fibre sliver 12 has been deposited.
- the rotation of the rotary plate 3 by which the fibre sliver 12 is delivered forms a layer of overlapping rings of fibre sliver 12 on a receiving surface 41 of the support plate 4 , and the back and forth movement of the support plate 4 under the control of the control device 7 establishes the locations at which the fibre sliver rings are formed on the receiving surface 4 i.
- the movement of the support plate 4 has the effect that the deposited fibre sliver rings are arranged on the receiving surface 41 of the support plate 4 staggered relative to one another and partly overlapping one another, which creates the substantially rectangular shape of the fibre sliver package 5 , seen in plan view.
- the fibre sliver package 5 At each end of the fibre sliver package 5 , caused by the change in the direction of the back and forth movement of the support plate 4 , the fibre sliver package 5 has rounded ends to the rectangular shape, as FIG. 3 a clearly shows.
- the rectangular shape of the fibre sliver package 5 is advantageous, because, as compared with conically or cylindrically shaped fibre sliver packages, it promotes the stability of the fibre sliver package 5 .
- FIG. 3 a shows a plan view of the fibre sliver 12 of the fibre sliver package 5 deposited in a ring arrangement.
- FIGS. 3 b and 3 c show in side view and in front view, respectively, the fibre sliver package 5 standing freely, that is to say without a can, container or the like, on the upper face 4 1 of the support plate 4 .
- the length according to FIG. 3 a is denoted by reference letter a
- the width according to FIG. 3 c by reference letter b
- the height according to FIG. 3 c by reference letter c.
- Reference numeral 55 ( FIG. 3 a ) denotes the upper face, reference numeral 51 ( FIG. 3 b ) a long side face and reference numeral 53 ( FIG. 3 c ) a short end face of the substantially cuboidal fibre sliver package 5 which is of substantially rectangular cross-section.
- the other long side face 52 , the other short end face 54 and the base surface 56 are not shown.
- an electronic control and regulation device 7 for example, a machine controller.
- the electronic control and regulation device 7 can be connected to a controllable drive motor 6 for the horizontal displacement of the support plate 4 , a controllable drive motor 13 for the vertical displacement of the support plate 4 , and a controllable drive motor 14 for the rotary plate 3 .
- a raising and lowering device is mounted on a carriage 20 , which raising and lowering device consists of a framework, guide rollers 18 a, 18 b, and a flexible transport element, which can be moved in the direction of arrows L and M.
- the vertically displaceable support plate 4 (see arrows E, F in FIG. 1 a ) includes two driver elements 15 a, 15 b.
- driver elements 15 a, 15 b which are arranged on the opposite narrow sides of the support plate 4 , rest on support elements 16 a, 16 b, which are attached to perpendicularly arranged flexible transport elements, for example toothed belts 17 a, 17 b circulating around toothed belt wheels.
- One of the guide rollers 18 a is driven by a motor 13 .
- the motor 13 is in the form of a reversible motor, which can run at different speeds and in both directions of rotation.
- the driver elements 15 a, 15 b lie on the support elements 16 a, 16 b located at the bottom, so that upward displacement of the support elements 16 a, 16 b brings about an upward movement of the driver elements 15 a, 15 b and accordingly of the support plate 4 .
- the transport elements 16 a, 16 b are attached, for example, by means of holding elements 19 a, 19 b of the framework, to the carriage 20 , which is moved horizontally back and forth in the direction of arrows O, P by a circulating transport element 21 , for example a toothed belt circulating around toothed belt wheels.
- the rotary plate 3 held by the fixed rotary plate panel 9 deposits fibre sliver 12 on the support plate 4 , the resulting fibre sliver package 5 standing on the support plate 4 and being moved back and forth in the direction of arrows A, B (see FIG. 1 a ).
- the upper fibre sliver rings of the fibre sliver package 5 are constantly in contact with the underside 9 a of the rotary plate panel 9 .
- the deposited fibre sliver 12 of the fibre sliver package 5 presses against the underside 9 a and against the lower cover face 3 a of the rotary plate 3 .
- the control and regulation device 7 regulates the speed of the motor 13 so that the force exerted by the uppermost layer of the fibre sliver 12 remains constant.
- the speed of the motor 13 is such that the rate (amount) of downward movement of the support elements 16 a, 16 b, which are attached to the flexible transport elements 17 a, 17 b, in conjunction with the speed of fibre sliver deposition by the rotary plate 3 driven by the motor 14 ensures uniform compression of the fibre sliver 12 in each height position of the downwardly moving support plate 4 .
- the support plate 4 is displaced downwards by a pre-set amount.
- This pre-set amount can correspond to the thickness of a single layer of the fibre sliver.
- the can-less fibre sliver package 5 is pressed against the lower faces 9 a and 3 a of the rotary plate panel 9 and the rotary plate 3 during the horizontal back and forth movement as a consequence of the resilience inherent in the fibre sliver 12 and as a consequence of the pressing force of the displaceable support plate 4 .
- the fibre sliver package 5 is accordingly stabilized actively and passively during the horizontal back and forth movement.
- FIG. 4 shows the carriage 20 with the holding devices 19 a, 19 b.
- the holding elements 19 a, 19 b hold two belts 17 a, 17 b, which are able to move the support plate 4 upwards or downwards in the direction of arrows L, M.
- the can-less fibre sliver package 5 is arranged on the top face 4 1 of the support plate 4 .
- the support plate 4 is moved back and forth in the direction of arrows A, B (see FIGS. 1 a and 1 b ). Once each corresponding end position has been reached, the support plate 4 is displaced downwards in direction E ( FIG.
- the substantially constant space relates to the region between the upper side of the laterally unsupported fibre sliver package 5 and the base surface 3 a of the rotary plate 3 and produces a constant force pressure per deposited fibre sliver layer.
- the substantially constant space allows only substantially constant room for fibre sliver 12 deposited for each fibre sliver layer.
- a fibre sliver layer represents the amount of fibre sliver 12 that is deposited onto the fibre sliver package 5 between a pair of movement turn-around points for the support plate 4 (that is to say from one point at which the support plate 4 changes direction to the next subsequent point at which the support plate changes direction).
- Deposition of the fibre sliver 12 in the substantially constant space allows a substantially constant density of fibre sliver 12 at all locations within the fibre sliver package 5 , which promotes the stability of the fibre sliver package 5 .
- the substantially constant space formed by lowering the support plate 4 (see arrow E in FIG. 1 a ) is filled directly and immediately by the fibre sliver 12 constantly flowing in from the rotary plate 3 .
- the upper side of the fibre sliver package 5 presses, with no spacing, against the base surface 3 a of the rotary plate 3 and against the base surface 9 a of the rotary plate panels 9 .
- the deposited fibre sliver mass of the fibre sliver package 5 is pressed against the lower faces 3 a and 9 a as a consequence of the resilience inherent in the fibre sliver 12 and as a consequence of the biasing force of the displaceable support plate 4 .
- this results in pre-compaction of the fibre sliver package 5 which is advantageous for further discharge and further transport of the fibre sliver package 5 .
- FIG. 5 shows a fibre sliver package 5 a on a support plate 4 during sliver deposition in the depositing area 10 .
- Reference numeral 20 denotes the carriage (guide device, holding device) which is movable back and forth horizontally.
- the fibre sliver package 5 a is displaced horizontally in direction C, D of its longitudinal axis (see FIG. 1 a ), that is to say in the direction of its long side faces.
- the length of the path g (see FIG.
- FIGS. 6 a and 6 b an exemplary embodiment 4 . 1 of the support plate 4 is shown.
- Through-holes 4 . 1 . 1 can be arranged in the top face 4 1 of the support plate 4 . 1 .
- a plate 23 can be arranged on the opposite side of support plate 4 . 1 , and can include conical lugs having tips 23 . 1 .
- the tips 23 . 1 can project through the through holes 4 . 1 . 1 .
- the plate 23 can be raised and lowered in the direction of arrows Q 1 , Q 2 ( FIG. 6 b ) so that when the plate 23 is lowered in direction Q 2 the tips 23 . 1 become disengaged from the holes 4 . 1 .
- the tips 23 . 1 project through the holes 4 . 1 . 1 for a short time only at the start of fibre sliver deposition, so that the first layer of fibre sliver deposited is held on the regularly smooth top face 41 and does not slide off the top face 41 .
- the tips 23 . 1 are lowered out of engagement in direction Q 2 , so that at a later stage during discharge the fibre sliver package 5 can slide down from the top face 41 without problems.
- FIGS. 7 a to 7 c show another exemplary embodiment of a support plate.
- the top face 41 of the support plate 4 . 2 can define longitudinal grooves 4 . 2 . 1 .
- elongate lifting rods 24 a, 24 b or the like can be inserted in direction R 1 , R 2 underneath the lower side of the fibre sliver package 5 .
- the lifting rods 24 a, 24 b can be raised in direction S 1 , S 2 , with the result that the lower side of the fibre sliver package 5 is lifted away from top face 41 of the support plate 4 . 2 , so that the support plate 4 . 2 can be displaced in direction W underneath the fibre sliver package 5 and without frictional contact with the fibre sliver package 5 (see also FIG. 10 d ).
- the support plate (hidden from view), together with a fibre sliver package 5 d, can be located in the discharge region above the top face 25 1 of the transport pallet 25 .
- the transport pallet 25 Transverse to the longitudinal axis of the fibre sliver packages 5 b, 5 c, that is to say in the direction of their short side or end faces 53 , 54 (shown, e.g., in FIGS. 3 a - 3 c ), the transport pallet 25 can be inclined at an angle ⁇ of, for example, approximately 7° to the horizontal.
- a supporting wall 26 for example, a smooth sheet metal wall or the like.
- the supporting wall 26 can form an angle of about 90° with respect to the top face 25 of the transport pallet 25 .
- the fibre sliver package 5 c can lean against the support wall 26 .
- the adjacent fibre sliver package 5 b can lean against the inclined fibre sliver package 5 c in contact therewith.
- the fibre sliver packages 5 b, 5 c are supported stably on the transport pallet 25 and are secured against tipping over and the like. As also shown in FIG.
- the smooth side wall 22 b is displaceable in the direction of arrows T 1 , T 2 , so that during the discharge of the fibre sliver package 5 d troublesome frictional contact with the stored fibre sliver package 5 b can be avoided.
- an exemplary supporting element 98 for example, a perpendicular supporting wall, which can be inclined by about 5 to 10° in the horizontal direction about a pivot bearing 99 , in order to incline the discharged fibre sliver package 5 d against the stored and inclined fibre sliver package 5 b.
- One or more of the supporting walls 22 b, 98 can be adapted to couple and decouple with the receiving support surface (hidden from view).
- an exemplary storage apparatus is shown in the form of a belt storage.
- a conveyor belt 29 endlessly circulates around two guide rollers 28 a, 28 b driven by a motor 27 .
- On the upper belt portion 29 there are arranged, one after the other in direction U 1 and lying horizontally on the belt, an empty transport pallet 25 a, a transport pallet 25 b loaded with a fibre sliver package 5 c, and a transport pallet 25 c fully loaded with four fibre sliver packages 5 b, 5 c, 5 d, 5 e.
- each transport pallet 25 a, 25 b, 25 c there is mounted a supporting wall 26 a, 26 b, 26 c or the like, which can be arranged inclined at an angle , of about from 5° to 10° relative to the vertical.
- the fibre sliver packages 5 b, 5 c, 5 d, 5 e can be positioned stably on the transport pallets 25 b and 25 c.
- the upper belt portion 29 1 moves in direction U 1 by the width b (see FIG. 3 c ) of a fibre sliver package 5 .
- the already full transport pallet 25 c can be sported away.
- the upper belt portion 29 1 is moved in direction U 1 so that the full transport pallet 25 b moves into the position for being transported away and the empty transport pallet 25 a moves into the (middle) position for discharge of the fibre sliver packages 5 .
- a fresh empty transport pallet (not shown) is then placed on the upper belt portion 29 1 .
- a support plate 4 In accordance with FIG. 10 a, driven by the motor 6 , in the course of being discharged from the sliver-depositing area 10 , a support plate 4 , together with a can-less fibre sliver package 5 d, is moved horizontally in direction I and arrives at a position spaced apart by distance h above the top face 25 1 of the transport pallet 25 (see FIG. 10 ′) and in parallel next to a fibre sliver package 5 c already being stored on the top face 25 1 ( FIG. 10 b ). A holding-back element 27 is then displaced horizontally in direction V 1 from a position outside the transport pallet 25 ( FIG. 10 b ) to a position in front of the end face 54 (see FIG.
- the fibre sliver package 5 d is deposited on the surface 25 , of the transport pallet 25 .
- the distance h between the lower face 42 of the support plate 4 and the upper side 25 , of the transport pallet 25 (see FIG. 10 ′) is small, so that when sliding off the support plate 4 the fibre sliver package 5 d is lowered onto the transport pallet 25 without problems.
- the holding-back element 27 is moved back horizontally in direction V 2 ( FIG. 10 e ).
- the support plate 4 can be rotated (not shown) about its longitudinal axis through an angle of about from 5° to 10°, so that the fibre sliver package 5 d is inclined in the direction towards and parallel to the side face of the deposited, inclined fibre sliver package 5 c.
- the rotation of the support plate 4 assists the downward sliding movement of the fibre sliver package 5 d from the top face 4 1 .
- a sheet metal wall or the like can be adapted to move horizontally into the region above the transport pallet 25 , and incline about its longitudinal axis, causing the fibre sliver package 5 d to incline in the direction towards and parallel to the side face of the fibre sliver package 5 .
- FIG. 11 four can-less fibre sliver packages 5 a to 5 d are arranged one next to the other on the top face 25 1 of a transport pallet 25 .
- the sliver end or the end of the last ring of fibre sliver of a top layer (top face 55 ) is joined to the sliver end or the end of the first ring of fibre sliver of a base layer (base surface 56 ) of adjacent fibre sliver packages.
- base surface 56 base surface 56
- the sliver end of the last ring of fibre sliver of the top layer (top face 55 ) of fibre sliver package 5 a is joined to the sliver end of the first ring of fibre sliver of the base layer (base surface 56 ) of fibre sliver package 5 b.
- a single total fibre sliver package comprising a plurality of individual fibre sliver packages 5 a to 5 d is created.
- all fibre sliver packages of the total fibre sliver package, beginning with the top layer (top face 55 ) of fibre sliver package 5 d, can be worked off one after the other in a single operation and without interruptions.
- a fork-lift truck 31 for transporting the transport pallet 25 with fibre sliver packages 5 a to 5 d arranged on its top face 25 1 .
- the transport pallet 25 can be inclined at an angle ⁇ to the horizontal.
- the correspondingly inclined forks 32 of the fork-lift truck 31 can engage under the transport pallet 25 transverse to the longitudinal axes of the fibre sliver packages 5 a to 5 d.
- the side faces of the fibre sliver packages 5 a to 5 d and the supporting wall 26 can be inclined at an angle relative to the vertical.
- the bundle 5 ′ comprising fibre sliver packages 5 a to 5 d can be supported stably for transport and secured against slipping, tipping over or the like, for example, by virtue of its being inclined relative to the vertical, its leaning against the supporting wall 26 , and its being supported above the centre of gravity of the bundle 5 ′ or its having a low centre of gravity below the supporting means.
- the exemplary configuration of FIG. 13 can use the fork-lift truck 31 of FIG. 12 , or a similar transport vehicle.
- Transport pallet 25 supports fibre sliver packages 5 a to 5 d.
- Transport pallet 25 can be inclined by an angle ⁇ transversely with respect to the direction of the longitudinal axes of the fibre sliver packages 5 a to 5 d.
- the forks 32 a, 32 b of the fork-lift truck (not shown) can engage under the fibre sliver packages 5 a to 5 d in the direction of their longitudinal axes.
- the forks 32 a, 32 b are rotatable about a common longitudinal axis which extends in the longitudinal orientation thereof.
- draw frames 1 a to 1 f for example Trützschler TD 03, can be arranged in a row one next to the other.
- a lattice 35 feed table
- Each lattice 35 can have six round cans 36 .
- Reference numbers 35 and 36 are shown for draw frame 1 a only.
- Each set of six round cans 36 can supply six fibre slivers to be drafted to the drafting system 2 (see FIG. 1 a ) of a respective draw frame 1 a to 1 f.
- each draw frame 1 a to 1 f can-less fibre sliver packages 5 are produced in the respective depositing area 10 (see, e.g., FIGS. 1 a, 1 b, 2 , and 5 ).
- the draw frames 1 a to 1 f can be both sliver-fed and sliver-delivering spinning machines.
- a rail guide 37 On the respective other side and along the storage devices 30 a to 30 f there can be arranged a rail guide 37 on which (in accordance with the example shown in FIG. 14 ) two driven transport vehicles 38 a, 38 b are moved back and forth in the direction of arrows W 1 , W 2 .
- the storage devices 30 a to 30 f can be positioned so that they lie in a common path with the transport vehicles 38 a, 38 b.
- At an end region of the rail guide 37 (for example, in the region to the right of the storage device 30 f in FIG.
- a conveyor device 39 e.g., a roller conveyor, conveyor belt or the like
- a second conveyor device 40 e.g., a roller belt, conveyor belt or the like
- the conveyor device 39 leads to a press 41 having a binding device 42 , downstream of which there can be arranged scales 43 and a labelling device 44 .
- a further conveyor device 45 for forwarding and transporting the bound fibre sliver packages 5 , which can consist of a bundle 5 ′ of a plurality of individual fibre sliver packages.
- the transport vehicle 38 a carries two transport pallets 25 a, 25 b each having a bundle 5 ′, 5 ′′ of four can-less fibre sliver packages 5 , the transport pallets 25 a, 25 b having been conveyed out of the storage device 30 a and loaded onto the transport vehicle 38 a.
- the storage device 30 a there are two empty storage positions for two empty transport pallets 25 ′.
- the storage devices 30 b to 30 e there are two empty transport pallets 25 ′ for receiving can-less fibre sliver packages 5 or bundles 5 ′.
- the storage device 30 f two empty storage positions for two empty transport pallets 25 ′ are shown.
- the transport vehicle 38 a can travel to one end of the conveyor device 39 , where pallets 25 a, 25 b, holding bundles 5 ′, 5 ′′, are loaded one after the other and forwarded to the press 41 in the direction of arrow X.
- the bundles 5 ′, 5 ′′ can be provided with base and cover boards (not shown), for example of corrugated cardboard, fibreboard or the like, pressed, bound, removed from the transport pallets 25 , and discharged onto the conveyor device 45 in the form of bound bundles.
- the empty transport pallets 25 ′ separated from the bundles 5 ′, 5 ′′ can be conveyed by means of a cross-conveyor 46 to the conveyor device 40 from where they are loaded in direction Y onto one of the transport vehicles 38 a or 38 b.
- a feed table 35 (lattice) which can be associated with two transport pallets 25 a, 25 b.
- a feed table 35 (lattice) which can be associated with two transport pallets 25 a, 25 b.
- Four independent can-less fibre sliver packages 5 . 1 to 5 . 4 are stably arranged one next to the other on the transport pallet 25 a, and four independent can-less fibre sliver packages 5 . 5 to 5 . 8 are stably arranged one next to the other on the transport pallet 25 b.
- the fibre sliver packages 5 . 1 to 5 . 8 can be worked off individually. For example, in the case of four fibre sliver packages 5 .
- the draw frame 1 can be supplied with eight fibre slivers (cf. the fibre slivers 82 in FIG. 20 ). Such an arrangement can create a space-optimised version.
- upstream of the inlet of the draw frame 1 for example a Trützschler TD 03, there can be arranged the feed table 35 (lattice) which can be associated with eight transport pallets 25 a to 25 h.
- the feed table 35 (lattice) which can be associated with eight transport pallets 25 a to 25 h.
- the packages 5 . 1 are joined to one another by their sliver ends. In that way, the fibre sliver packages on a transport pallet, for example fibre sliver packages 5 .
- each lattice 35 may be supplied with can-less fibre sliver packages 5 , for example in the manner shown in FIGS. 15 or 16 .
- the apparatus according to the invention can be used in so-called direct spinning.
- the method of automating the yarn production process, especially in spinning mills having rotor-spinning machines, can advantageously be based on the use of can-less fibre sliver packages having elongate cross-sections.
- Such a fibre sliver package can be precisely and stably positioned on an elongated support (e.g., support 25 described previously) in a selected operating position of the rotor-spinning machine by readily available means.
- the automatic process of yarn production can be controlled by a control centre 50 which determines the appropriate time for exchange of the supports, for example, transport pallets 25 , under the spinning positions of the rotor-spinning machines 51 a to 51 d.
- the control centre 50 can operate on the basis of the sum of two logic signals.
- the logic signals can represent, for example, the reaching or exceeding of a predetermined spinning time of a spinning position, so that the spinning operation can be interrupted at that spinning position.
- the control centre 50 can draw on the knowledge of information relating to the pure spinning time of the individual spinning positions since the last exchange of the supports 25 of the spinning position in question.
- the spinning mill can have at least one flat card 52 a to 52 c, for example a Trützschler TC 03.
- Each flat card can contain an integrated drafting system 53 a to 53 c, for example a Trützschler IDF, and a rotary plate 54 a to 54 c.
- Each flat card 52 a to 52 c can be associated with a storage device 55 a, 55 b, 55 c for transport pallets loaded with fibre sliver packages, and for empty transport pallets.
- the storage devices 55 a, 55 b, 55 c can be in the form of belt storage means, for example, in the manner shown in FIG. 9 .
- the signals from the control centre 50 and the reactions of the sensors from and/or to at least one automatically controlled transport carriage 57 can be transmitted by the induction loop.
- the transport carriage 57 can have at least one transport pallet 25 for each of the can-less fibre sliver packages 5 .
- Reference numeral 58 denotes an intermediate storage means (buffer) for transport pallets having can-less fibre sliver packages and for empty transport pallets.
- the rotor-spinning machines 51 a to 51 d are sliver-fed spinning machines.
- FIG. 18 shows the flat card 52 , for example, a Trützschler flat card TC 03, as a sliver-delivering spinning room machine, having a feed roller 60 , feed table 61 , lickers-in 62 a, 62 b, 62 c, cylinder 63 , doffer 64 , stripper roller 65 , nip rollers 66 , 67 , web guide element 68 , web funnel 69 , delivery rollers 70 , 71 , and revolving card top 59 .
- a Trützschler flat card TC 03 as a sliver-delivering spinning room machine
- a sliver-depositing device 72 Downstream of the outlet of the flat card 52 , there can be arranged a sliver-depositing device 72 , in which the rotating rotary plate 54 is located in a rotary plate panel 73 , above which there is arranged the drafting system 53 , for example, a Trützschler IDF.
- the fibre sliver 74 produced by the flat card 52 can pass by way of a sliver funnel through the drafting system 53 , through a sliver funnel with delivery rollers, then through the sliver channel of the rotary plate 54 , and is ultimately deposited in the form of a can-less fibre sliver package 5 on a support plate 4 .
- the support plate 4 can be moved back and forth horizontally in directions A, B during deposition.
- the support plate can be lowered in direction E after each stroke.
- the fibre sliver package 5 can be stably positioned in a manner corresponding to that shown previously, for example, in
- FIG. 19 shows a flyer 75 (a sliver-fed spinning room machine) having a spindle and spool device 76 , a flyer drafting system 77 , and an upstream feed table 35 (lattice). Beneath the lattice 35 there are four can-less fibre sliver packages 5 a to 5 d, the fibre sliver packages 5 a, 5 b being stably positioned on a transport pallet 25 a and the fibre sliver packages 5 c, 5 d being stably positioned on a transport pallet 25 b.
- a combing preparation machine 80 (a sliver-fed and sliver-delivering spinning room machine) has two feed tables 35 a, 35 b (lattice) arranged parallel to one another.
- the combing preparation machine also has six transport pallets 25 1 to 25 6 carrying stably positioned can-less fibre sliver packages 5 1 to 5 6 (only 5 1 shown) being arranged beneath the feed table 35 a, and six transport pallets 25 7 to 25 12 carrying stably positioned can-less fibre sliver packages 5 7 to 5 12 (not shown) being arranged beneath the feed table 35 b.
- the feed tables 35 a, 35 b can have a guide pulley 81 above each of the fibre sliver packages 5 1 to 5 12 .
- the drafting systems 83 a, 83 b can be arranged one after the other. From the drafting system 83 a, the fibre sliver web that has been formed is guided over the web table 84 and, at the outlet of the drafting system 83 b, laid one on top of the other with the fibre sliver web produced therein.
- the two fibre sliver webs are drawn into a downstream drafting system 83 c, and the fibre material produced in the drafting system 83 c is deposited, using a downstream rotary plate 84 , in rings on a substantially rectangular support plate 4 which is movable back and forth in the longitudinal direction to form a can-less fibre sliver package 5 .
- the fibre sliver package 5 can be stably positioned in a manner corresponding to that shown previously, for example, in FIGS. 1 a, 1 b and 4 .
- the can-less fibre sliver package 5 can then be supplied to a combing machine (see FIG. 21 ).
- a combing machine 90 has six combing heads 91 a to 91 f arranged in a row one next to the other.
- Each combing head 91 a to 91 f can be associated with a transport pallet 25 1 to 25 6 , there being two of the can-less fibre sliver packages 5 1 to 5 12 (only 5 1 illustrated) stably positioned on each transport pallet 25 1 to 25 6 .
- the fibre slivers that have been deposited in rings are withdrawn from the fibre sliver packages 5 1 to 5 12 which, when seen in plan view, are substantially rectangular.
- a lattice framework 93 with guide pulleys see FIG. 20 ).
- the fibre slivers 92 are combed in the combing heads 91 a to 91 f and supplied by way of the sliver table 94 to a drafting system 95 , in which the fibre slivers 92 are combined to form a single fibre sliver 96 .
- a rotary plate 97 deposits the fibre sliver 96 in ring form in the form of a can-less fibre sliver package 5 on a substantially rectangular support plate 4 which is movable back and forth in the longitudinal direction.
- the fibre sliver package 5 can be stably positioned in a manner corresponding to that shown previously, for example, in FIGS. 1 a, 1 b, and 4 .
- the can-less fibre sliver package can then be supplied to a spinning machine or a storage means.
- the afore-mentioned components, as well as the fibre sliver packages 5 can be provided singly or multiply, as required.
- the component names used herein are not to be interpreted in the narrow sense of the words, but are to be understood as being synonyms for a certain kind of machine or system component.
- the term “draw frame” represents one or more sliver-delivering or sliver-producing machine(s).
- the fibre sliver packages 5 have a substantially rectangular shape in the configurations shown.
- spinning machines can be used as sliver-fed (sliver-processing) spinning machines, for example, ring-spinning or open-end spinning machines, but also draw frames, flyers, combing preparation machines or combing machines, which are supplied with fibre slivers for the production of fibre structures (roving, wound lap, fibre sliver, yarn).
- sliver-processing sliver-processing
- FIG. 17 an open-end spinning machine has been chosen solely as an exemplary embodiment.
- the particular construction of the storage devices is, in principle, also of no significance for the present invention; in principle, a storage position for the fibre sliver packages 5 is sufficient for that purpose.
- the fibre sliver packages 5 produced in the draw frame 1 are preferably arranged as a group on a support by means of which they are always transported back and forth as a complete unit between the individual components of the system.
- a plurality of transport vehicles can be provided, each of which is able to receive a group of can-less fibre sliver packages 5 in the form of a unit, which it conveys from the (sliver-delivering or sliver-producing) draw frame 1 to a sliver-processing or sliver-consuming textile machine for further processing or to intermediate storage.
- the transport vehicles are in the form of automatic units, the drive means of which are not shown for reasons of clarity of the drawings, which can travel along a path between the individual components of the system.
- the term “path” or “track” is not to be understood in the narrow sense of the word; it is intended also to include infrared or ultrasonic guide means or the like. If the transport vehicle is steered manually, the term “path” also includes any kind of route along which the transport vehicle is or can be transported.
- cans also called spinning cans
- cans are hollow bodies (containers) which can be used for the deposition, housing, and removal of fibre slivers.
- the cans can be forwarded, transported, stored, and supplied.
- Such cans can be in the form of rectangular cans enclosed on all sides by walls, that is to say having four side walls and a base wall, with the exception of the open upper side, which is used as a filling and removal opening for the fibre sliver.
- the invention relates to can-less fibre sliver packages 5 , that is to say there are no cans, containers or the like for the fibre sliver.
- the fibre sliver is deposited, withdrawn, forwarded, stored and supplied in the form of a can-less fibre sliver package 5 .
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Preliminary Treatment Of Fibers (AREA)
Abstract
In an apparatus in a spinning mill for transporting a can-less fibre sliver package between a sliver-delivering spinning machine, for example a draw frame, or a storage means and a further processing device or a further storage means, having a support for receiving the can-less fibre sliver package, the support being substantially unenclosed, the support and the can-less fibre sliver package are transportable in common. In order to effect simple transport of the can-less fibre sliver package, there is a transport device for common transport of the support and at least one stably positioned fibre sliver package, the transport device being track-guided or freely movable.
Description
- This application claims priority of German Application No. 10 2006 012 483.9, filed Mar. 16, 2006. This application is additionally a continuation-in-part of U.S. application Ser. No. 11/247,276, filed Oct. 12, 2005, which application is a continuation-in-part of U.S. application Ser. No. 10/350,016, filed Jan. 24, 2003, (now abandoned), the latter application claiming priority from German Patent Application No. 10205061.9 filed Feb. 7, 2002, which priority is also claimed in the present application. The contents of all of the foregoing applications are incorporated herein by reference in their entirety.
- The invention relates to an apparatus in a spinning room for transporting a can-less fibre sliver package between a sliver-delivering spinning machine, such as a draw frame, or a storage means and a further processing device or a further storage means.
- In earlier U.S. application Ser. No. 10/250,016 there was disclosed an apparatus having a support for receiving the can-less fibre sliver package, the support being substantially unenclosed, and in which the support and the can-less fibre sliver package are transportable.
- It is an aim of the present invention to improve such an apparatus to the effect that the transport of the can-less fibre sliver package is effected in a simple manner.
- The invention provides an apparatus in a spinning room for transporting a fibre sliver package, comprising a support for receiving a can-less sliver package, the support being substantially unenclosed; and a transport apparatus for transporting the support and at least one can-less sliver package thereon from a sliver package delivery station selected from a sliver-delivering machine and a sliver package storage station to a sliver package receiving station selected from a sliver-fed machine and a further sliver package storage station; wherein the transport apparatus is guidable by a track or along a path, or is freely movable.
- Because there is a transport apparatus for common transport which is track-guided, path-guided or freely movable, a plurality of processing machines can be linked to one another in an elegant way. Sliver-delivering machines, for example a draw frame, or storage means can advantageously be so positioned that they are arranged along a common path of the transport apparatus. A further particular advantage is obtained because a plurality of subsequent processing machines, for example spinning machines, can be served selectively.
- Advantageously, the fibre sliver package is displaceable (unloadable) from the sliver package delivery station onto a support, for example a transport pallet or the like, which is transportable by the transport apparatus. Advantageously, after the displacement (unloading) of the fibre sliver package the support, for example a transport pallet, is movable in the lateral direction for receiving a further fibre sliver package.
- Advantageously, more than one fibre sliver package is displaceable (unloadable) onto the support, for example a transport pallet. Advantageously, the number of fibre sliver packages, preferably 3, 4, 6 or 8, on the support, for example a transport pallet, corresponds to the number of fibre sliver packages to be supplied to the downstream processing device. Advantageously, the support is a standard pallet.
- Advantageously, the support, for example a transport pallet, is associated with a supporting element, for example a supporting wall, mounted on one side. Advantageously, the supporting element is associated with a side face of the first deposited (unloaded) fibre sliver package. Advantageously, the supporting element is in fixed position. Advantageously, the supporting element is mounted on the support, for example a transport pallet. Advantageously, the supporting element is in the form of walls, rods, transport belts or the like. Advantageously, the supporting element consists of, or is coated with, a material that promotes sliding. Advantageously, the supporting element, for example a supporting wall or the like, is inclinable, or is inclined by about from 5 to 100.
- Advantageously, the support, for example a transport pallet, is inclinable or is inclined by an angle preferably of from 5 to 100. Advantageously, the support, for example a transport pallet, has on its underside insertion openings for transport apparatus and/or for coupling to transport apparatus, for example fork-lift trucks. Advantageously, the support, for example a transport pallet, has slots, guide means or the like into which the driver elements, forks or the like are able to enter.
- Advantageously, after deposition of a fibre sliver package on the support, for example a transport pallet, the support is displaceable transversely by lateral movement to receive the next fibre sliver package. Advantageously, on the support, for example a transport pallet, there is, as required, at least one empty storage position for a fibre sliver package or at least one storage position having a fibre sliver package. Advantageously, there is in each case an empty storage position onto which a fibre sliver package is displaceable (unloadable) and/or at least one reserve storage position for deposited fibre sliver packages and/or at least one empty storage position for a fibre sliver package to be displaced (unloaded).
- Advantageously, the support, for example a transport pallet, provided (loaded) with deposited fibre sliver packages is exchangeable for a support provided with empty storage positions.
- Advantageously, a support, for example a transport pallet, provided (loaded) with deposited fibre sliver packages is movable out of a discharge region in which fibre sliver is deposited to form fiber sliver packages by displacement, for example horizontal pushing.
- Advantageously, an empty support, for example a transport pallet, is movable into the discharge region by displacement, for example horizontal pushing. Advantageously, a support, for example a transport pallet, provided (loaded) with deposited fibre sliver packages is transportable to a further textile machine, for example a spinning machine, or to a magazine. The transport may be effected manually, for example by means of a fork-lift truck.
- Advantageously, the transport apparatus is track-guided, for example by means of an induction loop or the like. Other means of guiding the transport apparatus along a path are also possible, for example the transport apparatus may be rail-guided. The transport apparatus may instead be freely movable.
- Advantageously, the support provided (loaded) with deposited fibre sliver packages is positionable directly on the transport apparatus. The transport apparatus may be a wagon or the like. The transport apparatus may be a fork-lift truck or the like. Advantageously, the transport apparatus is drivable back and forth by means of drive means, for example a drive motor. Advantageously, the fibre sliver package is displaceable (unloadable) into a press, for example a bale press. Advantageously, the displacement is effected by pushing.
- Advantageously, the sliver ends of the fibre sliver packages are joinable to one another. Advantageously, the sliver ends of the fibre sliver packages are positioned for joining. For example, the sliver ends may be joinable to one another manually, or by means of a device. Advantageously, in the case of fibre sliver packages that are arranged one next to the other, the sliver end of the lowermost layer of one fibre sliver package is joinable to the sliver end of the uppermost layer of the other (adjacent) fibre sliver package. Advantageously, by joining together the sliver ends, a single total fibre sliver package consisting of a plurality of individual fibre sliver packages can be created.
- Advantageously, at least one side element associated with the support, storage means or the transport apparatus, for example a wall or the like, is inclinable by about from 5 to 100. Advantageously, at least one side element, for example a wall or the like, is inclined by about from 5 to 100.
- Advantageously, the apparatus is a can-less apparatus. Advantageously, in respect of the fibre sliver package discharge out of a sliver delivering machine and/or the transport to a subsequent processing device or a storage means is effected without cans, containers or the like. Advantageously, the deposited fibre sliver (sliver bundle) is movable by mechanical means, which effects the displacement of the fibre sliver (sliver bundle) out of the discharge region without additional cans, containers or the like. Advantageously, the mechanical means is a pressure device, for example a pusher or the like.
- Advantageously, the fibre sliver is deposited by a sliver delivering machine in ring form to form fibre sliver packages. Advantageously, the or each sliver package is
- Advantageously, the fibre sliver package is transferred onto the support. Advantageously, the support for the fibre sliver package is associated with a transport device, for example a suspended conveyor or the like. Advantageously, the fibre sliver package is displaceable jolt-free or substantially jolt-free during deposit of sliver to form a fibre sliver package and/or during transport thereof Advantageously, the alteration in the speed of the displacement device on acceleration and braking paths takes place substantially continuously (steplessly).
- Advantageously, the displacement device is associated with a controllable drive device, for example a drive motor. Advantageously, the controllable drive device is connected to an electronic open-loop and closed-loop control device. Advantageously, the driven displacement device is able to effect stable displacement of the fibre sliver package. Preferably, the fibre sliver package is can-less. Advantageously, the fibre sliver package is elongate in cross-section. Advantageously, there is a supporting wall or the like which is able to support the fibre sliver package during displacement thereof onto the support and/or a side element associated with the support, which supporting wall or the like and/or side element is inclinable or inclined about a horizontal axis. The fibre sliver package is displaceable in a stably supported state. Advantageously, the fibre sliver package is supportable at the centre of gravity or above the centre of gravity.
- Advantageously, the support and an associated supporting element are approximately L-shaped. Advantageously, the support can be elevated on the side remote from the supporting element. Advantageously, a pneumatic cylinder or the like can be used for elevation. Advantageously, said elevation is able to effect inclination of a fibre sliver package against the supporting element and/or against a further fibre sliver package, thereby transferring the sliver package into a stable position.
- Advantageously, there is a drive device for displacing a receiving support surface during deposition of sliver to form a fibre sliver package. Advantageously, the drive device has a toothed belt and toothed belt wheels. Advantageously, the drive device comprises a pneumatic cylinder or the like. Advantageously, a number of fibre sliver packages appropriate to further processing is transportable together on the support, for example a transport pallet.
- Advantageously, a plurality of processing devices, for examples machines, and/or storage means can be served by a rail- or track-guided transport apparatus. Advantageously, the processing devices, for example machines, and/or storage means are so positioned that they are arranged along a common path for the transport apparatus. Advantageously, the transport of the support, for example a transport pallet, to a storage device is effected.
- Advantageously, the transport of the support, for example a transport pallet, to feed positions (unwinding positions) provided on the further processing machines is effected. The feed position may be, for example, the lattice (feed table) of a draw frame, of a flyer, or of a combing preparation machine. The feed position may be, for example, the spinning position of a spinning machine (direct spinning). Advantageously, the transport of the support, for example a transport pallet, to a press for compression of the fibre sliver package is effected.
- Advantageously, the fibre sliver packages are provided with an identification mark, for example a barcode, colour marker or the like. The identification mark may relate to, for example, the production conditions, the fibre material quality, or test values. The identification mark advantageously allows a mixture of fibre sliver packages to be assembled at the feed positions. Preferably, the assembly of fibre sliver packages to form a mixture can be effected at predetermined positions of the feed positions.
- The invention also provides an apparatus in a spinning room for transporting a can-less fibre sliver package between a sliver-delivering spinning machine, for example a draw flame, or a storage means and a further processing device, especially a sliver-fed spinning machine, or a further storage means, having a support for receiving the can-less fibre sliver package, the support being substantially unenclosed, and in which the support and the can-less fibre sliver package are transportable in common, wherein there is a transport apparatus for the common transport of the support and at least one stably positioned can-less fibre sliver package, the transport apparatus being track-guided or path-guided or being freely movable.
- Furthermore, the invention provides a textile processing installation comprising a multiplicity of textile fibre processing devices and a transportation arrangement for transporting can-less fibre sliver packages between said textile fibre processing devices,
- the transportation arrangement comprising one or more carriage devices and one or more supports receivable on said carriage devices,
- the transport arrangement being adapted to deliver a support to any one of the fibre processing devices and to transport a support, with at least one can-less fibre sliver package received thereon, from any one of the textile fibre processing devices to a further textile fibre processing device,
- the can-less fibre sliver package being stably positioned on the support during transport.
- The invention will be described in greater detail below with reference to the exemplary embodiments shown in the drawings, wherein:
-
FIG. 1 a is a diagrammatic side view of an exemplary draw frame incorporating an exemplary apparatus according to the present invention, using a support plate for depositing fibre sliver in the form of a can-less fibre sliver package, in one end position beneath the rotary plate; -
FIG. 1 b shows the exemplary apparatus according toFIG. 1 a but in the other end position beneath the rotary plate; -
FIG. 2 shows the exemplary apparatus according toFIGS. 1 a and 1 b, but outside the sliver delivery device; -
FIGS. 3 a, 3 b, and 3 c show a plan view (FIG. 3 a), a side view (FIG. 3 b), and a front view (FIG. 3 c), of the can-less fibre sliver package deposited on the support plate; -
FIG. 4 shows an exemplary embodiment of the apparatus according to the invention with a block circuit diagram comprising an electronic control and regulation device, to which there are connected a controllable drive motor for the horizontal displacement device of the support plate, a controllable drive motor for the vertical displacement device of the support plate and a controllable drive motor for the rotary plate; -
FIG. 5 is a perspective view of the outlet region of an exemplary draw frame having a support plate and a can-less fibre sliver package in the sliver-depositing area; -
FIGS. 6 a and 6 b show an exemplary embodiment of the support plate with through-openings for cone-shaped fixing elements in the engaged position (FIG. 6 a) and in the disengaged position (FIG. 6 b); -
FIG. 7 a shows an exemplary embodiment of the support plate with groove-shaped recesses; -
FIGS. 7 b and 7 c show the support plate according toFIG. 7 a with lifting elements for the fibre sliver package, lowered out of engagement (FIG. 7 b) and raised into engagement (FIG. 7 c); -
FIG. 8 is a perspective view of the outlet region of the discharge region downstream of the draw frame, with a support plate and a can-less fibre sliver package above a transport pallet; -
FIG. 8 a is a perspective view of the discharge region according toFIG. 8 viewed towards the supporting wall on the transport pallet; -
FIG. 8 b is a perspective view of an exemplary device for causing a discharged sliver package to adopt an inclined position; -
FIG. 9 shows an exemplary storage device with a conveyor belt, on which there are arranged one after the other—in each case with an inclined supporting wall—an empty transport pallet, a transport pallet partially loaded with fibre sliver packages, and a transport pallet fully loaded with fibre sliver packages; -
FIGS. 10 a to 10 e show diagrammatic plan views of the discharge of a can-less fibre sliver package onto a transport pallet; -
FIG. 10 ′ is a front view of a portion of the arrangement shown inFIG. 10 c; -
FIG. 11 shows four can-less fibre sliver packages arranged one next to the other on a transport pallet, the respective sliver ends of the lowermost and uppermost layers of adjacent fibre sliver packages being joined to one another; -
FIG. 12 shows a transport pallet inclined transversely with respect to the direction of the longitudinal axes of the fibre sliver packages on a fork-lift truck, the forks engaging under the transport pallet transversely with respect to the longitudinal axes; -
FIG. 13 shows a transport pallet inclined transversely with respect to the direction of the longitudinal axis of the fibre sliver packages, the forks of a fork-lift truck engaging under the transport pallet in the direction of the longitudinal axes of the fibre sliver packages; -
FIG. 14 is a diagrammatic view of an exemplary system having six draw frames, two transport vehicles and a press for can-less fibre sliver packages; -
FIG. 15 is a diagrammatic view of an exemplary draw frame having an upstream feed table (lattice), on which there are eight (independent) can-less fibre sliver packages on two transport pallets; -
FIG. 16 is a diagrammatic view of an exemplary draw frame having an upstream feed table on which there are located eight can-less fibre sliver packages on eight respective transport pallets; -
FIG. 17 is a diagrammatic view of an exemplary system having a plurality of flat cards, each with a flat card drafting system, a plurality of storage means for can-less fibre sliver packages, having a plurality of supports for transporting can-less fibre sliver packages inside the system, transport vehicles and a plurality of spinning machines (direct spinning); -
FIG. 18 is a diagrammatic side view of an exemplary flat card incorporating an exemplary apparatus according to the present invention; -
FIG. 19 is a diagrammatic side view of an exemplary flyer incorporating an exemplary apparatus according to the present invention; -
FIG. 20 is a diagrammatic plan view of an exemplary combing preparation machine incorporating an exemplary apparatus according to the present invention; and -
FIG. 21 is a diagrammatic plan view of an exemplary combing machine incorporating an exemplary apparatus according to the present invention. - Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. While specific exemplary embodiments are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without departing from the spirit and scope of the invention. All references cited herein are incorporated by reference as if each had been individually incorporated.
-
FIGS. 1 a and 1 b show anexemplary draw frame 1, for example, a Trützschler draw frame TD 03. A plurality of fibre slivers, coming from an upstream lattice (feed table), enter adrafting system 2, are drafted therein and, after the outlet of thedrafting system 2, are combined to form afibre sliver 12. Thefibre sliver 12 passes through arotary plate 3 and is then deposited in rings on a base which moves back and forth in the direction of arrows A and B to form a can-lessfibre sliver package 5.Support plate 4 can have, for example, a rectangulartop face 4 1. Referring toFIG. 4 , thesupport plate 4 can be driven by a controllable drive motor 6 which is connected to an electronic control and regulation device 7, for example, a machine controller. Referring back toFIGS. 1 a, 1 b,reference numeral 8 denotes a cover sheet of the sliver-depositing device which is adjoined by therotary plate panel 9. K denotes the working direction (flow of fibre material) inside thedraw frame 1, while the fibre sliver is delivered by therotary plate 3 substantially in the vertical direction.Reference numeral 10 denotes the depositing area,reference numeral 11 denotes the region outside the depositingarea 10. The depositingarea 10 for the fibre sliver comprises the region g in accordance withFIG. 1 b. Thesupport plate 4 is moved horizontally back and forth beneath therotary plate 3 while thefibre sliver 12 is being deposited.FIG. 1 a shows one end position andFIG. 1 b shows the other end position of thesupport plate 4 which moves back and forth horizontally in directions A, B beneath therotary plate 3 during deposition of thefibre sliver 12. Thefibre sliver package 5 is moved back and forth, corresponding to directions A, B, in the direction of arrows C, D beneath therotary plate 3. Once the end position shown inFIG. 1 a has been reached, thesupport plate 4 travels in the direction of arrow A, thesupport plate 4 being accelerated, driven at a constant speed and then braked. Once the end position shown inFIG. 1 b has been reached, thesupport plate 4 travels back in the direction of arrow B, thesupport plate 4 being accelerated, driven at a constant speed and then braked. Switching over between the back and forth movements is effected by the control device 7 in conjunction with the drive motor 6 (seeFIG. 4 ). - The variable-speed electric motor 6 drives the
support plate 4 at a jolt-free or nearly jolt-free speed. In particular, the acceleration and the braking are jolt-free or nearly jolt-free. The speed between acceleration and braking is constant. By that, it is meant that thefibre sliver package 5 remains stable both during the back and forth movement in the depositingarea 10 according toFIG. 1 a and 1 b and during the movement out of the depositingarea 10 according toFIG. 2 . The movements are so controlled that the production rate achieved is as high as possible, without the fibre sliver package 5 (sliver bundle) slipping or even tipping over. - While the
fibre sliver 12 is being deposited, the control device 7 (seeFIG. 4 ) controls the back and forth movement of thesupport plate 4 in order to produce a stable can-lessfibre sliver package 5. In accordance with one exemplary embodiment, therotary plate 3 rotates in a fixed position and deposits thefibre sliver 12 on thesupport plate 4 at a substantially constant deposition force. The constant delivery force is achieved, among other factors, by delivery of a constant amount offibre sliver 12 per fibre material layer of thefibre sliver 12. If, for example, therotary plate 3deposits fibre sliver 12 on thesupport plate 4 or on top of already deposited fibre sliver rings, each layer of fibre sliver rings receives a substantially constant amount offibre sliver 12 either during the forward movement or during the backward movement. Because the amount offibre sliver 12 per layer is constant, stability of thefibre sliver package 5 is achieved. - The amount by which the
support plate 4 moves back and forth is also controlled by the increasing stability of thefibre sliver package 5. Whenever thesupport plate 4 reaches the turn-round point of either the forward or backward movement, the control means 7 brakes thesupport plate 4, thesupport plate 4 reachingborder region FIGS. 3 a, 3 b) of thefibre sliver package 5, and accelerates thesupport plate 4 whenever thesupport plate 4 leaves theborder region border regions fibre sliver package 5, the control means 7 controls thesupport plate 4 at a constant speed. Theborder region fibre sliver package 5 where the fibre sliver rings deposited on thesupport plate 4 do not completely overlap one another. - The
border region support plate 4 at each end of thefibre sliver package 5. In contrast, in thenon-border region 404, either during the forward or return movement of thesupport plate 4, the rearward edge of each fibre sliver ring is also arranged from above on the forward edge of the previously deposited fibre band ring. - With regard to the small amount of fibre sliver that is deposited in the
border region support plate 4 so thatmore fibre sliver 12 can be deposited in theborder region support plate 4 to a constant speed in thenon-border region 404. The braking of thesupport plate 4 results in an increase in the amount of fibre sliver deposited in theborder region rotary plate 3 delivers thefibre sliver 12 at a constant rate irrespective of the movement of thesupport plate 4. Whenever thesupport plate 4 is braked,more fibre sliver 12 can be deposited at that point, which corresponds to the non-overlapping fibre sliver rings close to the turn-round points. The non-uniform speed of thesupport plate 4 allows a substantially uniform amount offibre sliver 12 which is deposited in bothborder regions FIGS. 3 a, 3 b) of thefibre sliver package 5 for each layer offibre sliver 12 during the back and forth movement of thesupport plate 4. The non-uniform speed of thesupport plate 4 results in a substantially uniform density offibre sliver 12 at all points of thefibre sliver package 5. The uniform density of thefibre sliver 12 enables thefibre sliver package 5 to be formed stably on thesupport surface 4 and allows thefibre sliver package 5 to be accelerated and braked forwards and backwards, avoiding the possibility of the can-less laterally unsupportedfibre sliver package 5 becoming unstable or at risk of tipping over. - After the deposition of the
fibre sliver package 5 on thesurface 4 is complete, as shown inFIG. 2 , thesupport plate 4, together with thefibre sliver package 5, moves out of the sliver delivery device in the direction of arrow I. The control means 7 controls the movement of thesupport plate 4 so that a switch-over is made from the back and forth movement (arrows A, B) for the sliver deposition to the outward movement (arrow I) out of the depositingarea 10 into thedischarge region 1. -
FIG. 3 a shows a plan view of a ring-shapedfibre sliver package 5 which has been deposited freely on thetop face 4 1 of thesupport plate 4.FIG. 3 b shows a side view of thefibre sliver package 5 which is arranged freely on thesupport plate 4.FIG. 3 c shows a front view of thefibre sliver package 5, which has been positioned freely on thesupport plate 4. As shown inFIGS. 3 a to 3 c, thefibre sliver package 5 is formed from fibre sliver rings stacked in a substantially rectangular shape. The rectangular shape of thefibre sliver package 5 is created by the way in which thefibre sliver 12 has been deposited. The rotation of therotary plate 3 by which thefibre sliver 12 is delivered forms a layer of overlapping rings offibre sliver 12 on a receivingsurface 41 of thesupport plate 4, and the back and forth movement of thesupport plate 4 under the control of the control device 7 establishes the locations at which the fibre sliver rings are formed on the receiving surface 4i. The movement of thesupport plate 4 has the effect that the deposited fibre sliver rings are arranged on the receivingsurface 41 of thesupport plate 4 staggered relative to one another and partly overlapping one another, which creates the substantially rectangular shape of thefibre sliver package 5, seen in plan view. At each end of thefibre sliver package 5, caused by the change in the direction of the back and forth movement of thesupport plate 4, thefibre sliver package 5 has rounded ends to the rectangular shape, asFIG. 3 a clearly shows. The rectangular shape of thefibre sliver package 5 is advantageous, because, as compared with conically or cylindrically shaped fibre sliver packages, it promotes the stability of thefibre sliver package 5. -
FIG. 3 a shows a plan view of thefibre sliver 12 of thefibre sliver package 5 deposited in a ring arrangement.FIGS. 3 b and 3 c show in side view and in front view, respectively, thefibre sliver package 5 standing freely, that is to say without a can, container or the like, on theupper face 4 1 of thesupport plate 4. In respect of the dimensions of thefibre sliver package 5, the length according toFIG. 3 a is denoted by reference letter a, the width according toFIG. 3 c by reference letter b and the height according toFIG. 3 c by reference letter c. With regard to the dimensions of thesupport plate 4, the length according toFIG. 3 a is denoted by reference letter d, the width according toFIG. 3 a by reference letter e and the height according toFIG. 3 c by reference letter f. Reference numeral 55 (FIG. 3 a) denotes the upper face, reference numeral 51 (FIG. 3 b) a long side face and reference numeral 53 (FIG. 3 c) a short end face of the substantially cuboidalfibre sliver package 5 which is of substantially rectangular cross-section. The otherlong side face 52, the othershort end face 54 and thebase surface 56 are not shown. - According to
FIG. 4 , there is shown an electronic control and regulation device 7, for example, a machine controller. The electronic control and regulation device 7 can be connected to a controllable drive motor 6 for the horizontal displacement of thesupport plate 4, a controllable drive motor 13 for the vertical displacement of thesupport plate 4, and acontrollable drive motor 14 for therotary plate 3. A raising and lowering device is mounted on acarriage 20, which raising and lowering device consists of a framework, guiderollers FIG. 1 a) includes twodriver elements driver elements support plate 4, rest onsupport elements toothed belts guide rollers 18 a is driven by a motor 13. The motor 13 is in the form of a reversible motor, which can run at different speeds and in both directions of rotation. On arrival of anempty support plate 4, thedriver elements support elements support elements driver elements support plate 4. Thetransport elements elements carriage 20, which is moved horizontally back and forth in the direction of arrows O, P by a circulatingtransport element 21, for example a toothed belt circulating around toothed belt wheels. - The
rotary plate 3 held by the fixedrotary plate panel 9deposits fibre sliver 12 on thesupport plate 4, the resultingfibre sliver package 5 standing on thesupport plate 4 and being moved back and forth in the direction of arrows A, B (seeFIG. 1 a). During the ongoing fibre sliver deposition, the upper fibre sliver rings of thefibre sliver package 5 are constantly in contact with theunderside 9 a of therotary plate panel 9. The depositedfibre sliver 12 of thefibre sliver package 5 presses against theunderside 9 a and against thelower cover face 3 a of therotary plate 3. In order that a pre-determined constant pressing force is exerted vertically on the depositedfibre sliver 12, the control and regulation device 7 regulates the speed of the motor 13 so that the force exerted by the uppermost layer of thefibre sliver 12 remains constant. In other words, the speed of the motor 13 is such that the rate (amount) of downward movement of thesupport elements flexible transport elements rotary plate 3 driven by themotor 14 ensures uniform compression of thefibre sliver 12 in each height position of the downwardly movingsupport plate 4. After each stroke g (seeFIG. 1 b) in the horizontal direction, thesupport plate 4 is displaced downwards by a pre-set amount. This pre-set amount can correspond to the thickness of a single layer of the fibre sliver. The can-lessfibre sliver package 5 is pressed against the lower faces 9 a and 3 a of therotary plate panel 9 and therotary plate 3 during the horizontal back and forth movement as a consequence of the resilience inherent in thefibre sliver 12 and as a consequence of the pressing force of thedisplaceable support plate 4. Thefibre sliver package 5 is accordingly stabilized actively and passively during the horizontal back and forth movement. -
FIG. 4 shows thecarriage 20 with the holdingdevices elements belts support plate 4 upwards or downwards in the direction of arrows L, M. The can-lessfibre sliver package 5 is arranged on thetop face 4 1 of thesupport plate 4. During fibre sliver deposition, thesupport plate 4 is moved back and forth in the direction of arrows A, B (seeFIGS. 1 a and 1 b). Once each corresponding end position has been reached, thesupport plate 4 is displaced downwards in direction E (FIG. 1 a) by less than the thickness of a fibre sliver, for example, 10 mm, with the aid of the drive motor 13, in order to create a substantially constant space (or room) for the next layer of fibre sliver material to be substantially immediately deposited into. The substantially constant space relates to the region between the upper side of the laterally unsupportedfibre sliver package 5 and thebase surface 3 a of therotary plate 3 and produces a constant force pressure per deposited fibre sliver layer. The substantially constant space allows only substantially constant room forfibre sliver 12 deposited for each fibre sliver layer. A fibre sliver layer represents the amount offibre sliver 12 that is deposited onto thefibre sliver package 5 between a pair of movement turn-around points for the support plate 4 (that is to say from one point at which thesupport plate 4 changes direction to the next subsequent point at which the support plate changes direction). Deposition of thefibre sliver 12 in the substantially constant space allows a substantially constant density offibre sliver 12 at all locations within thefibre sliver package 5, which promotes the stability of thefibre sliver package 5. - The substantially constant space formed by lowering the support plate 4 (see arrow E in
FIG. 1 a) is filled directly and immediately by thefibre sliver 12 constantly flowing in from therotary plate 3. During sliver deposition, the upper side of thefibre sliver package 5 presses, with no spacing, against thebase surface 3 a of therotary plate 3 and against thebase surface 9 a of therotary plate panels 9. There is constant contact. The deposited fibre sliver mass of thefibre sliver package 5 is pressed against the lower faces 3 a and 9 a as a consequence of the resilience inherent in thefibre sliver 12 and as a consequence of the biasing force of thedisplaceable support plate 4. At the same time, this results in pre-compaction of thefibre sliver package 5, which is advantageous for further discharge and further transport of thefibre sliver package 5. -
FIG. 5 shows afibre sliver package 5 a on asupport plate 4 during sliver deposition in the depositingarea 10.Reference numeral 20 denotes the carriage (guide device, holding device) which is movable back and forth horizontally. Thefibre sliver package 5 a is displaced horizontally in direction C, D of its longitudinal axis (seeFIG. 1 a), that is to say in the direction of its long side faces. Parallel to and spaced apart from aside face 5 of thesliver package 5 a, there is a fixedside wall 22 a which is independent of thecarriage 20 and prevents any falling fibre material or the like from entering the machine. The length of the path g (seeFIG. 1 b) (stroke length) is variable by means of the motor 6 (seeFIG. 4 ), so that the length a (seeFIG. 3 a) of thefibre sliver package 5 a is adjustable. Downstream of the depositingarea 10 there is arranged thedischarge region 11 in which atransport pallet 25 can be located. Twofibre sliver packages pallet 25. - Referring to
FIGS. 6 a and 6 b, an exemplary embodiment 4.1 of thesupport plate 4 is shown. Through-holes 4.1.1 can be arranged in thetop face 4 1 of the support plate 4.1. Aplate 23 can be arranged on the opposite side of support plate 4.1, and can include conical lugs having tips 23.1. As shown inFIG. 6 a, the tips 23.1 can project through the through holes 4.1.1. Theplate 23 can be raised and lowered in the direction of arrows Q1, Q2 (FIG. 6 b) so that when theplate 23 is lowered in direction Q2 the tips 23.1 become disengaged from the holes 4.1.1 according toFIG. 6 b. According toFIG. 6 a, the tips 23.1 project through the holes 4.1.1 for a short time only at the start of fibre sliver deposition, so that the first layer of fibre sliver deposited is held on the regularly smoothtop face 41 and does not slide off thetop face 41. As soon as the layer of fibre sliver is lying stably on thetop face 41, the tips 23.1 are lowered out of engagement in direction Q2, so that at a later stage during discharge thefibre sliver package 5 can slide down from thetop face 41 without problems. -
FIGS. 7 a to 7 c show another exemplary embodiment of a support plate. According toFIGS. 7 a to 7 c, thetop face 41 of the support plate 4.2 can define longitudinal grooves 4.2.1. As shown inFIG. 7 b, elongate liftingrods fibre sliver package 5. In accordance withFIG. 7 c, the liftingrods fibre sliver package 5 is lifted away fromtop face 41 of the support plate 4.2, so that the support plate 4.2 can be displaced in direction W underneath thefibre sliver package 5 and without frictional contact with the fibre sliver package 5 (see alsoFIG. 10 d). - According to
FIG. 8 , the support plate (hidden from view), together with afibre sliver package 5 d, can be located in the discharge region above thetop face 25 1 of thetransport pallet 25. Transverse to the longitudinal axis of thefibre sliver packages FIGS. 3 a-3 c), thetransport pallet 25 can be inclined at an angle α of, for example, approximately 7° to the horizontal. As shown inFIG. 8 a, on theside face 252 of thetransport pallet 25 close to the base, there can be mounted a supportingwall 26, for example, a smooth sheet metal wall or the like. The supportingwall 26 can form an angle of about 90° with respect to thetop face 25 of thetransport pallet 25. As a result, thefibre sliver package 5 c can lean against thesupport wall 26. The adjacentfibre sliver package 5 b can lean against the inclinedfibre sliver package 5 c in contact therewith. By virtue of their inclination, thefibre sliver packages transport pallet 25 and are secured against tipping over and the like. As also shown inFIG. 8 a, thesmooth side wall 22 b is displaceable in the direction of arrows T1, T2, so that during the discharge of thefibre sliver package 5 d troublesome frictional contact with the storedfibre sliver package 5 b can be avoided. According toFIG. 8 b, there is shown an exemplary supportingelement 98, for example, a perpendicular supporting wall, which can be inclined by about 5 to 10° in the horizontal direction about a pivot bearing 99, in order to incline the dischargedfibre sliver package 5 d against the stored and inclinedfibre sliver package 5 b. One or more of the supportingwalls - According to
FIG. 9 , an exemplary storage apparatus is shown in the form of a belt storage. Aconveyor belt 29 endlessly circulates around twoguide rollers motor 27. On theupper belt portion 29, there are arranged, one after the other in direction U1 and lying horizontally on the belt, anempty transport pallet 25 a, atransport pallet 25 b loaded with afibre sliver package 5 c, and atransport pallet 25 c fully loaded with fourfibre sliver packages end face 25 2 of eachtransport pallet wall wall 26, thefibre sliver packages transport pallets fibre sliver package 5 has been unloaded onto thetransport pallet 25 b, theupper belt portion 29 1 moves in direction U1 by the width b (seeFIG. 3 c) of afibre sliver package 5. During or after the loading of thetransport pallet 25 b, the alreadyfull transport pallet 25 c can be sported away. Once thetransport pallet 25 b has been loaded with fourfibre sliver packages 5, theupper belt portion 29 1 is moved in direction U1 so that thefull transport pallet 25 b moves into the position for being transported away and theempty transport pallet 25 a moves into the (middle) position for discharge of the fibre sliver packages 5. A fresh empty transport pallet (not shown) is then placed on theupper belt portion 29 1. - In accordance with
FIG. 10 a, driven by the motor 6, in the course of being discharged from the sliver-depositingarea 10, asupport plate 4, together with a can-lessfibre sliver package 5 d, is moved horizontally in direction I and arrives at a position spaced apart by distance h above thetop face 25 1 of the transport pallet 25 (seeFIG. 10 ′) and in parallel next to afibre sliver package 5 c already being stored on the top face 25 1 (FIG. 10 b). A holding-back element 27 is then displaced horizontally in direction V1 from a position outside the transport pallet 25 (FIG. 10 b) to a position in front of the end face 54 (seeFIG. 10 c) of thefibre sliver package 5 d (by a drive device not shown) and spaced apart by distance i above thetop face 4 1 of the support plate 4 (seeFIG. 10 ′). Then, driven by the motor 6, thesupport plate 4 is moved back alone, without thefibre sliver package 5 d, horizontally in direction J beneath the holding-back element 27 (seeFIG. 10 d). In the course of that movement in direction J, thefibre sliver package 5 d, held in place by the holding-back element 27, slides off thesmooth surface 4 1 of thesupport plate 4, so that thefibre sliver package 5 d is removed from thesupport plate 4. At the same time, as shown inFIG. 10 d, thefibre sliver package 5 d is deposited on thesurface 25, of thetransport pallet 25. The distance h between thelower face 42 of thesupport plate 4 and theupper side 25, of the transport pallet 25 (seeFIG. 10 ′) is small, so that when sliding off thesupport plate 4 thefibre sliver package 5 d is lowered onto thetransport pallet 25 without problems. Finally, the holding-back element 27 is moved back horizontally in direction V2 (FIG. 10 e). - In the position according to
FIG. 10 c, thesupport plate 4 can be rotated (not shown) about its longitudinal axis through an angle of about from 5° to 10°, so that thefibre sliver package 5 d is inclined in the direction towards and parallel to the side face of the deposited, inclinedfibre sliver package 5 c. The rotation of thesupport plate 4 assists the downward sliding movement of thefibre sliver package 5 d from thetop face 4 1. - Alternatively (or additionally) a sheet metal wall or the like can be adapted to move horizontally into the region above the
transport pallet 25, and incline about its longitudinal axis, causing thefibre sliver package 5 d to incline in the direction towards and parallel to the side face of thefibre sliver package 5. - According to
FIG. 11 , four can-lessfibre sliver packages 5 a to 5 d are arranged one next to the other on thetop face 25 1 of atransport pallet 25. The sliver end or the end of the last ring of fibre sliver of a top layer (top face 55) is joined to the sliver end or the end of the first ring of fibre sliver of a base layer (base surface 56) of adjacent fibre sliver packages. In the example shown inFIG. 11 , the sliver end of the last ring of fibre sliver of the top layer (top face 55) offibre sliver package 5 a is joined to the sliver end of the first ring of fibre sliver of the base layer (base surface 56) offibre sliver package 5 b. The same applies to the sliver ends and the joining together thereof in respect of the furtherfibre sliver packages fibre sliver packages 5 a to 5 d is created. When supplied to and worked off on sliver-fed machines (e.g., those shown in FIGS. 15 to 17 and 19 to 21), all fibre sliver packages of the total fibre sliver package, beginning with the top layer (top face 55) offibre sliver package 5 d, can be worked off one after the other in a single operation and without interruptions. - In accordance with
FIG. 12 , there is a fork-lift truck 31 for transporting thetransport pallet 25 withfibre sliver packages 5 a to 5 d arranged on itstop face 25 1. Transverse to the direction of the longitudinal axis of thefibre sliver packages 5 a to 5 d (e.g., parallel to the short end faces of thefibre sliver packages 5 a to 5 d), thetransport pallet 25 can be inclined at an angle γ to the horizontal. The correspondinglyinclined forks 32 of the fork-lift truck 31 can engage under thetransport pallet 25 transverse to the longitudinal axes of thefibre sliver packages 5 a to 5 d. The side faces of thefibre sliver packages 5 a to 5 d and the supportingwall 26 can be inclined at an angle relative to the vertical. Thebundle 5′ comprisingfibre sliver packages 5 a to 5 d can be supported stably for transport and secured against slipping, tipping over or the like, for example, by virtue of its being inclined relative to the vertical, its leaning against the supportingwall 26, and its being supported above the centre of gravity of thebundle 5′ or its having a low centre of gravity below the supporting means. - The exemplary configuration of
FIG. 13 can use the fork-lift truck 31 ofFIG. 12 , or a similar transport vehicle.Transport pallet 25 supportsfibre sliver packages 5 a to 5 d.Transport pallet 25 can be inclined by an angle δ transversely with respect to the direction of the longitudinal axes of thefibre sliver packages 5 a to 5 d. Theforks fibre sliver packages 5 a to 5 d in the direction of their longitudinal axes. Theforks - Referring to
FIG. 14 , sixdraw frames 1 a to 1 f, for example Trützschler TD 03, can be arranged in a row one next to the other. A lattice 35 (feed table) can be located at the inlet of eachdraw frame 1 a to 1 f. Eachlattice 35 can have sixround cans 36.Reference numbers draw frame 1 a only. Each set of sixround cans 36 can supply six fibre slivers to be drafted to the drafting system 2 (seeFIG. 1 a) of arespective draw frame 1 a to 1 f. At the outlet of eachdraw frame 1 a to 1 f, can-lessfibre sliver packages 5 are produced in the respective depositing area 10 (see, e.g.,FIGS. 1 a, 1 b, 2, and 5). The draw frames 1 a to 1 f can be both sliver-fed and sliver-delivering spinning machines. After the outlet of eachdraw frame 1 a to 1 f there can be arespective storage device 30 a to 30 f, to which, from one side, the can-lessfibre sliver packages 5 produced in thedraw frame 1 a to 1 f are discharged and in which the can-lessfibre sliver packages 5 are stored ontransport pallets 25. On the respective other side and along thestorage devices 30 a to 30 f there can be arranged arail guide 37 on which (in accordance with the example shown inFIG. 14 ) two driventransport vehicles storage devices 30 a to 30 f can be positioned so that they lie in a common path with thetransport vehicles storage device 30 f inFIG. 14 ) there can be arranged, transversely with respect to therail guide 37, a conveyor device 39 (e.g., a roller conveyor, conveyor belt or the like) fortransport pallets 25 loaded with fibre sliver packages 5 (full pallets). There can also be a second conveyor device 40 (e.g., a roller belt, conveyor belt or the like) forempty transport pallets 25. Theconveyor device 39 leads to apress 41 having abinding device 42, downstream of which there can be arranged scales 43 and a labelling device 44. After that there can be provided afurther conveyor device 45 for forwarding and transporting the boundfibre sliver packages 5, which can consist of abundle 5′ of a plurality of individual fibre sliver packages. - In the exemplary embodiment shown in
FIG. 14 , thetransport vehicle 38 a carries twotransport pallets bundle 5′, 5″ of four can-lessfibre sliver packages 5, thetransport pallets storage device 30 a and loaded onto thetransport vehicle 38 a. Accordingly, in thestorage device 30 a there are two empty storage positions for twoempty transport pallets 25′. In each of thestorage devices 30 b to 30 e there are twoempty transport pallets 25′ for receiving can-lessfibre sliver packages 5 orbundles 5′. In thestorage device 30 f, two empty storage positions for twoempty transport pallets 25′ are shown. On thetransport vehicle 38 b there can be arranged twoempty pallets 25′, 25″. In operation, thetransport vehicle 38 a can travel to one end of theconveyor device 39, wherepallets bundles 5′, 5″, are loaded one after the other and forwarded to thepress 41 in the direction of arrow X. At thepress 41, thebundles 5′, 5″ can be provided with base and cover boards (not shown), for example of corrugated cardboard, fibreboard or the like, pressed, bound, removed from thetransport pallets 25, and discharged onto theconveyor device 45 in the form of bound bundles. Theempty transport pallets 25′ separated from thebundles 5′, 5″ can be conveyed by means of a cross-conveyor 46 to theconveyor device 40 from where they are loaded in direction Y onto one of thetransport vehicles - In accordance with the exemplary embodiment of
FIG. 15 , at the inlet of adraw frame 1, for example a Trützschler TD 03, there can be arranged a feed table 35 (lattice) which can be associated with twotransport pallets transport pallet 25 a, and four independent can-less fibre sliver packages 5.5 to 5.8 are stably arranged one next to the other on thetransport pallet 25 b. The fibre sliver packages 5.1 to 5.8 can be worked off individually. For example, in the case of four fibre sliver packages 5.1 to 5.4 and 5.5. to 5.8 ontransport pallets draw frame 1 can be supplied with eight fibre slivers (cf. the fibre slivers 82 inFIG. 20 ). Such an arrangement can create a space-optimised version. - In accordance with
FIG. 16 , upstream of the inlet of thedraw frame 1, for example a Trützschler TD 03, there can be arranged the feed table 35 (lattice) which can be associated with eighttransport pallets 25 a to 25 h. On eachtransport pallet 25 a to 25 h there can be stably arranged one next to the other four can-less fibre sliver packages, for example fibre sliver packages 5.1 ontransport pallet 25 a. In accordance with the exemplary embodiment shown inFIG. 11 , the packages 5.1 are joined to one another by their sliver ends. In that way, the fibre sliver packages on a transport pallet, for example fibre sliver packages 5.1 ontransport pallet 25 a, are unwound one after the other without interruption, bringing the advantage of long sliver run lengths. Where there are four fibre sliver packages on each transport pallet, the run time for a total fibre sliver package is quadrupled. Such an arrangement can optimize efficiency. - Reverting to
FIG. 14 , the draw frames 1 a to 1 f shown there may be sliver-fed and sliver-delivering spinning machines, and instead of being supplied withround cans 36, eachlattice 35 may be supplied with can-lessfibre sliver packages 5, for example in the manner shown in FIGS. 15 or 16. - Referring to
FIG. 17 , the apparatus according to the invention can be used in so-called direct spinning. The method of automating the yarn production process, especially in spinning mills having rotor-spinning machines, can advantageously be based on the use of can-less fibre sliver packages having elongate cross-sections. Such a fibre sliver package can be precisely and stably positioned on an elongated support (e.g.,support 25 described previously) in a selected operating position of the rotor-spinning machine by readily available means. The automatic process of yarn production can be controlled by acontrol centre 50 which determines the appropriate time for exchange of the supports, for example,transport pallets 25, under the spinning positions of the rotor-spinningmachines 51 a to 51 d. For example, thecontrol centre 50 can operate on the basis of the sum of two logic signals. The logic signals can represent, for example, the reaching or exceeding of a predetermined spinning time of a spinning position, so that the spinning operation can be interrupted at that spinning position. To optimise the process of exchanging thesupports 25, thecontrol centre 50 can draw on the knowledge of information relating to the pure spinning time of the individual spinning positions since the last exchange of thesupports 25 of the spinning position in question. - As the loading station for the
supports 25, the spinning mill can have at least oneflat card 52 a to 52 c, for example a Trützschler TC 03. Each flat card can contain anintegrated drafting system 53 a to 53 c, for example a Trützschler IDF, and arotary plate 54 a to 54 c. Eachflat card 52 a to 52 c can be associated with astorage device storage devices FIG. 9 . Between the rotor-spinningmachines 51 a to 51 d and thestorage devices 55 a to 55 c there can be installed in the plane of the floor of the spinning mill aninduction loop 56. The signals from thecontrol centre 50 and the reactions of the sensors from and/or to at least one automatically controlledtransport carriage 57 can be transmitted by the induction loop. Thetransport carriage 57 can have at least onetransport pallet 25 for each of the can-less fibre sliver packages 5.Reference numeral 58 denotes an intermediate storage means (buffer) for transport pallets having can-less fibre sliver packages and for empty transport pallets. The rotor-spinningmachines 51 a to 51 d are sliver-fed spinning machines. -
FIG. 18 shows theflat card 52, for example, a Trützschler flat card TC 03, as a sliver-delivering spinning room machine, having afeed roller 60, feed table 61, lickers-in 62 a, 62 b, 62 c,cylinder 63,doffer 64,stripper roller 65, niprollers web guide element 68,web funnel 69,delivery rollers card top 59. Downstream of the outlet of theflat card 52, there can be arranged a sliver-depositingdevice 72, in which the rotatingrotary plate 54 is located in arotary plate panel 73, above which there is arranged thedrafting system 53, for example, a Trützschler IDF. Thefibre sliver 74 produced by theflat card 52 can pass by way of a sliver funnel through thedrafting system 53, through a sliver funnel with delivery rollers, then through the sliver channel of therotary plate 54, and is ultimately deposited in the form of a can-lessfibre sliver package 5 on asupport plate 4. Thesupport plate 4 can be moved back and forth horizontally in directions A, B during deposition. The support plate can be lowered in direction E after each stroke. Thefibre sliver package 5 can be stably positioned in a manner corresponding to that shown previously, for example, inFIGS. 1 a, 1 b, and 4. -
FIG. 19 shows a flyer 75 (a sliver-fed spinning room machine) having a spindle andspool device 76, aflyer drafting system 77, and an upstream feed table 35 (lattice). Beneath thelattice 35 there are four can-lessfibre sliver packages 5 a to 5 d, thefibre sliver packages transport pallet 25 a and thefibre sliver packages transport pallet 25 b. - Referring to
FIG. 20 , a combing preparation machine 80 (a sliver-fed and sliver-delivering spinning room machine) has two feed tables 35 a, 35 b (lattice) arranged parallel to one another. The combing preparation machine also has sixtransport pallets 25 1 to 25 6 carrying stably positioned can-lessfibre sliver packages 5 1 to 5 6 (only 5 1 shown) being arranged beneath the feed table 35 a, and sixtransport pallets 25 7 to 25 12 carrying stably positioned can-lessfibre sliver packages 5 7 to 5 12 (not shown) being arranged beneath the feed table 35 b. The feed tables 35 a, 35 b can have aguide pulley 81 above each of thefibre sliver packages 5 1 to 5 12. The fibre slivers 82 withdrawn from thefibre sliver packages 5 1 to 5 12, after being guided by the guide pulleys 81, can pass into twodrafting systems preparation machine 80. The draftingsystems drafting system 83 a, the fibre sliver web that has been formed is guided over the web table 84 and, at the outlet of thedrafting system 83 b, laid one on top of the other with the fibre sliver web produced therein. The two fibre sliver webs are drawn into adownstream drafting system 83 c, and the fibre material produced in thedrafting system 83 c is deposited, using a downstreamrotary plate 84, in rings on a substantiallyrectangular support plate 4 which is movable back and forth in the longitudinal direction to form a can-lessfibre sliver package 5. Thefibre sliver package 5 can be stably positioned in a manner corresponding to that shown previously, for example, inFIGS. 1 a, 1 b and 4. The can-lessfibre sliver package 5 can then be supplied to a combing machine (seeFIG. 21 ). - Referring to
FIG. 21 , a combingmachine 90 has six combingheads 91 a to 91 f arranged in a row one next to the other. Each combinghead 91 a to 91 f can be associated with atransport pallet 25 1 to 25 6, there being two of the can-lessfibre sliver packages 5 1 to 5 12 (only 5 1 illustrated) stably positioned on eachtransport pallet 25 1 to 25 6. The fibre slivers that have been deposited in rings are withdrawn from thefibre sliver packages 5 1 to 5 12 which, when seen in plan view, are substantially rectangular. For that purpose, above thefibre sliver packages 5 1 to 5 12 there is alattice framework 93 with guide pulleys (seeFIG. 20 ). The fibre slivers 92 are combed in the combingheads 91 a to 91 f and supplied by way of the sliver table 94 to adrafting system 95, in which the fibre slivers 92 are combined to form asingle fibre sliver 96. In the down-stream sliver deposition step, arotary plate 97 deposits thefibre sliver 96 in ring form in the form of a can-lessfibre sliver package 5 on a substantiallyrectangular support plate 4 which is movable back and forth in the longitudinal direction. Thefibre sliver package 5 can be stably positioned in a manner corresponding to that shown previously, for example, inFIGS. 1 a, 1 b, and 4. The can-less fibre sliver package can then be supplied to a spinning machine or a storage means. - The afore-mentioned components, as well as the
fibre sliver packages 5, can be provided singly or multiply, as required. The component names used herein are not to be interpreted in the narrow sense of the words, but are to be understood as being synonyms for a certain kind of machine or system component. For example, in the context of the present invention the term “draw frame” represents one or more sliver-delivering or sliver-producing machine(s). Thefibre sliver packages 5 have a substantially rectangular shape in the configurations shown. Various kinds of spinning machines can be used as sliver-fed (sliver-processing) spinning machines, for example, ring-spinning or open-end spinning machines, but also draw frames, flyers, combing preparation machines or combing machines, which are supplied with fibre slivers for the production of fibre structures (roving, wound lap, fibre sliver, yarn). For the explanation inFIG. 17 , an open-end spinning machine has been chosen solely as an exemplary embodiment. The particular construction of the storage devices is, in principle, also of no significance for the present invention; in principle, a storage position for thefibre sliver packages 5 is sufficient for that purpose. Thefibre sliver packages 5 produced in thedraw frame 1 are preferably arranged as a group on a support by means of which they are always transported back and forth as a complete unit between the individual components of the system. According to the exemplary embodiments shown inFIG. 14 and 17, a plurality of transport vehicles can be provided, each of which is able to receive a group of can-lessfibre sliver packages 5 in the form of a unit, which it conveys from the (sliver-delivering or sliver-producing)draw frame 1 to a sliver-processing or sliver-consuming textile machine for further processing or to intermediate storage. In the exemplary embodiments shown in FIGS. 14 and 17, the transport vehicles are in the form of automatic units, the drive means of which are not shown for reasons of clarity of the drawings, which can travel along a path between the individual components of the system. The term “path” or “track” is not to be understood in the narrow sense of the word; it is intended also to include infrared or ultrasonic guide means or the like. If the transport vehicle is steered manually, the term “path” also includes any kind of route along which the transport vehicle is or can be transported. - In spinning, cans, also called spinning cans, are hollow bodies (containers) which can be used for the deposition, housing, and removal of fibre slivers. The cans can be forwarded, transported, stored, and supplied. Such cans can be in the form of rectangular cans enclosed on all sides by walls, that is to say having four side walls and a base wall, with the exception of the open upper side, which is used as a filling and removal opening for the fibre sliver. In contrast, the invention relates to can-less
fibre sliver packages 5, that is to say there are no cans, containers or the like for the fibre sliver. The fibre sliver is deposited, withdrawn, forwarded, stored and supplied in the form of a can-lessfibre sliver package 5. - The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described.
Claims (28)
1. An apparatus in a spinning room for transporting a fibre sliver package, comprising:
a support for receiving a can-less sliver package, the support being substantially unenclosed; and
a transport apparatus for transporting the support and at least one can-less sliver package thereon from a sliver package delivery station selected from a sliver-delivering machine and a sliver package storage station to a sliver package receiving station selected from a sliver-fed machine and a further sliver package storage station; wherein the transport apparatus is guidable by a track or along a path, or is freely movable.
2. An apparatus according to claim 1 , in which at least one stably positioned fibre sliver package is transferred onto the support.
3. An apparatus according to claim 1 , in which the fibre sliver package is displaceable onto the support from a depositing area in which sliver is deposited by the sliver-delivery machine.
4. An apparatus according to claim 2 , in which more than one fibre sliver package is displaceable onto the support.
5. An apparatus according to claim 1 , in which the number of fibre sliver packages that can be accommodated on the transport apparatus corresponds to the number of fibre sliver packages to be supplied to the downstream processing device.
6. An apparatus according to claim 1 , in which the support has on its underside insertion openings for connecting with at least one element of the transport apparatus.
7. An apparatus according to claim 6 , in which the support has slots or guide means into which driver elements are able to enter.
8. An apparatus according to claim 1 , in which one or more supports filled with deposited fibre sliver packages is exchangeable for one or more supports provided with empty storage positions.
9. An apparatus according to claim 1 , in which sliver is deposited directly onto a said support in a depositing area in which sliver is deposited by the sliver-delivering machine, and the support loaded with one or more fibre sliver packages so formed, is movable out of the depositing area.
10. An apparatus according to claim 11 , in which an empty support is movable into the depositing area.
11. An apparatus according to claim 1 , in which one or more said supports loaded with deposited fibre sliver packages is transportable to a further textile machine or to a magazine.
12. An apparatus according to claim 1 , in which the transport apparatus comprises at least one mobile transport apparatus.
13. An apparatus according to claim 12 , in which the transport apparatus is track-guided.
14. An apparatus according to claim 12 , in which the transport device is rail-guided or is track-guided by means of an induction loop.
15. An apparatus according to claim 12 , in which the transport apparatus is freely movable.
16. An apparatus according to claim 12 , in which a said support loaded with deposited fibre sliver packages is positionable directly on a said transport apparatus.
17. An apparatus according to claim 12 , in which the transport apparatus is a wagon or a fork-lift truck.
18. An apparatus according to claim 1 , in which the transport apparatus is a rail- or track-guided transport which serves a plurality of processing devices and/or storage means.
19. An apparatus according to claim 1 , in which there are a plurality of processing devices and/or storage means which are so positioned that they are arranged along a common path for the transport device.
20. An apparatus according to claim 1 , in which the transport apparatus is arranged to transport the support, loaded with the fibre sliver package(s), to a storage device or to a feed position provided on at least one sliver-fed processing machine.
21. An apparatus according to claim 19 , in which the processing devices include a press for compression of fibre sliver packages, to which the transport device can transport the fibre sliver package(s).
22. An apparatus according to claim 1 , in which the discharge of the fibre sliver packages out of a sliver delivering machine and transport of the fibre sliver package(s) and the support on the transport apparatus to a subsequent processing device or a storage means is effected without cans or containers.
23. An apparatus according to claim 1 , in which the support is a standard pallet.
24. A textile processing installation comprising a multiplicity of textile fibre processing devices and a transportation arrangement for transporting can-less fibre sliver packages between said textile fibre processing devices,
the transportation arrangement comprising one or more carriage devices and one or more supports receivable on said carriage devices,
the transport arrangement being adapted to deliver a support to any one of the fibre processing devices and to transport a support, with at least one can-less fibre sliver package received thereon, from any one of the textile fibre processing devices to a further textile fibre processing device,
the can-less fibre sliver package being stably positioned on the support during transport.
25. A textile processing installation according to claim 24 , wherein each carriage device is arranged to transport a plurality of supports.
26. A textile processing installation according to claim 24 , wherein a plurality of supports are delivered to a fibre processing device.
27. A textile processing installation according to claim 24 , in which the at least one carriage device is track-guided, rail-guided or is track-guided by means of an induction loop.
28. A textile processing installation according to claim 24 , in which the at least one carriage device is freely movable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/605,379 US20070068397A1 (en) | 2002-02-07 | 2006-11-29 | Apparatus in a spinning mill for transporting a can-less fibre sliver package |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10205061.9 | 2002-02-07 | ||
DE10205061A DE10205061A1 (en) | 2002-02-07 | 2002-02-07 | Device on a spinning preparation machine, in particular a draw frame or card, in which a sliver is released and deposited at the exit |
US10/350,016 US20030146331A1 (en) | 2002-02-07 | 2003-01-24 | Sliver discharge device |
US11/247,276 US7748658B2 (en) | 2002-02-07 | 2005-10-12 | Sliver discharge device |
DE102006012483A DE102006012483A1 (en) | 2005-10-12 | 2006-03-16 | Device in a spinning mill for transporting a careless sliver pack |
DE102006012483.9 | 2006-03-16 | ||
US11/605,379 US20070068397A1 (en) | 2002-02-07 | 2006-11-29 | Apparatus in a spinning mill for transporting a can-less fibre sliver package |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/247,276 Continuation-In-Part US7748658B2 (en) | 2002-02-07 | 2005-10-12 | Sliver discharge device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070068397A1 true US20070068397A1 (en) | 2007-03-29 |
Family
ID=37892309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/605,379 Abandoned US20070068397A1 (en) | 2002-02-07 | 2006-11-29 | Apparatus in a spinning mill for transporting a can-less fibre sliver package |
Country Status (1)
Country | Link |
---|---|
US (1) | US20070068397A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060027695A1 (en) * | 2002-02-07 | 2006-02-09 | Trutzschler Gmbh & Co. Kg | Silver discharge device |
US20070063088A1 (en) * | 2002-02-07 | 2007-03-22 | Trutzchler Gmbh & Co. Kg | Apparatus in a spinning room for making available a can-less fibre sliver package (feed material) for a sliver-fed spinning machine, for example a draw frame |
US20070063089A1 (en) * | 2002-02-07 | 2007-03-22 | Fa. Trutzschler Gmbh & Co.Kg | Apparatus on a spinning machine, especially a spinning preparation machine, for depositing fibre sliver |
US20070069059A1 (en) * | 2002-02-07 | 2007-03-29 | Trutzschler Gmbh & Co. Kg | Apparatus in a spinning room for transporting a can-less fiber sliver package |
US20070069058A1 (en) * | 2002-02-07 | 2007-03-29 | Trutzschler Gmbh & Co. Kg | Apparatus on a spinning machine, especially a spinning preparation machine, for depositing and discharging fibre sliver |
US20070074631A1 (en) * | 2005-09-19 | 2007-04-05 | Trutzschler Gmbh & Co. Kg | System and method for packaging cotton sliver |
US20080029637A1 (en) * | 2002-02-07 | 2008-02-07 | Trutzschler Gmbh & Co.Kg | Apparatus on a spinning room machine, especially a spinning preparation machine, for depositing and discharging fibre sliver |
US20080244871A1 (en) * | 2007-04-03 | 2008-10-09 | Truetzschler Gmbh & Co. Kg | Apparatus on a spinning room machine, especially a spinning preparation machine, for depositing fibre sliver |
GB2431671B (en) * | 2005-10-12 | 2010-08-18 | Truetzschler Gmbh & Co Kg | Apparatus in a spinning mill for transporting a can-less fibre sliver package |
EP3255184A1 (en) | 2016-05-24 | 2017-12-13 | Trützschler GmbH & Co. KG | Stretching system for textile fibres |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1948615A (en) * | 1930-12-09 | 1934-02-27 | John W Clark | Package of expansible material and wrapper therefor |
US2425301A (en) * | 1942-10-19 | 1947-08-12 | Mead Corp | Packaging and method and means for forming the same |
US3060518A (en) * | 1960-04-05 | 1962-10-30 | Mackie & Sons Ltd J | Apparatus for doffing coiled sliver |
US3226794A (en) * | 1962-04-11 | 1966-01-04 | Erb Ernst | Device for forming and depositing continuous rings of threads about a center for the purpose of forming a package of thread material |
US3281913A (en) * | 1964-08-10 | 1966-11-01 | Eastman Kodak Co | Apparatus and method for handling yarn bundles |
US3482795A (en) * | 1967-03-16 | 1969-12-09 | Mackie & Sons Ltd J | Winding apparatus |
US3496862A (en) * | 1967-02-07 | 1970-02-24 | Taylor Wordsworth & Co Ltd | Methods of and apparatus for consolidating textile slivers |
US3509687A (en) * | 1963-12-02 | 1970-05-05 | Fur Patentdienst Anstalt | Apparatus for filling containers |
US3541752A (en) * | 1968-06-07 | 1970-11-24 | Irving Ness | Packaging of compressible goods |
US3808641A (en) * | 1970-05-01 | 1974-05-07 | Schubert & Salzer Maschinen | Can changing devices |
US4683619A (en) * | 1985-09-10 | 1987-08-04 | Trutzschler Gmbh & Co. Kg | Apparatus for can changing |
US4723344A (en) * | 1985-04-13 | 1988-02-09 | Trutzschler Gmbh & Co. Kg | Method and apparatus for opening fiber bales |
US4891918A (en) * | 1987-11-16 | 1990-01-09 | Lov-Cot Industries, Incorporated | Cotton bale storage |
US5125210A (en) * | 1987-06-10 | 1992-06-30 | Autefa Mashinen Fabrik Gmbh | Procedure and device for the wrapping os compressed bales |
US5200269A (en) * | 1990-06-01 | 1993-04-06 | E. I. Du Pont De Nemours And Company | Apparatus and method for baling cut fibers and product |
US5446946A (en) * | 1993-05-14 | 1995-09-05 | Trutzschler Gmbh & Co. Kg | Method and apparatus for vertically displacing a shiftable bottom of a coiler can |
US5528797A (en) * | 1994-05-13 | 1996-06-25 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Device to swivel a traversing flat can on a textile machine which delivers a fiber sliver |
US5560179A (en) * | 1994-04-02 | 1996-10-01 | Trutzschler Gmbh & Co. Kg | Apparatus for handling flat coiler cans before, during and after filling by a sliver producing textile processing machine |
US5575040A (en) * | 1993-05-14 | 1996-11-19 | Trutzschler Gmbh & Co. Kg | Apparatus for controlling sliver deposition in a coiler can |
US5581849A (en) * | 1994-05-13 | 1996-12-10 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Process for positioning a fiber sliver on a flat can |
US5595049A (en) * | 1994-08-11 | 1997-01-21 | Trutzschler Gmbh & Co. Kg | Method and apparatus for depositing sliver from a sliver-producing machine into a coiler can |
US5787553A (en) * | 1996-05-09 | 1998-08-04 | W, Schlafhorst Ag & Co. | Sliver can with manipulated bottom wall |
US5826812A (en) * | 1997-01-08 | 1998-10-27 | Belmont Textile Machinery Co., Inc. | Coiler apparatus and method |
US5829100A (en) * | 1996-03-25 | 1998-11-03 | Rosink Gmbh & Co. Kg | Sliver can spring plate retaining device |
US6182425B1 (en) * | 1998-03-27 | 2001-02-06 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Process and apparatus for filling cans with fiber band |
US6334237B1 (en) * | 1999-04-07 | 2002-01-01 | Kiti International Corporation | Sliver accommodation-conical method and device |
US6345417B2 (en) * | 2000-01-29 | 2002-02-12 | Trützschler GmbH Co. KG | Sliver trumpet for forming a sliver from a fiber web |
US6425163B1 (en) * | 2000-08-16 | 2002-07-30 | TRüTZSCHLER GMBH & CO. KG | Coiler can having a vertically movable bottom |
US20060065554A1 (en) * | 2004-09-28 | 2006-03-30 | Magnolia Manufacturing Company, Inc. | System and method for packaging cotton sliver |
-
2006
- 2006-11-29 US US11/605,379 patent/US20070068397A1/en not_active Abandoned
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1948615A (en) * | 1930-12-09 | 1934-02-27 | John W Clark | Package of expansible material and wrapper therefor |
US2425301A (en) * | 1942-10-19 | 1947-08-12 | Mead Corp | Packaging and method and means for forming the same |
US3060518A (en) * | 1960-04-05 | 1962-10-30 | Mackie & Sons Ltd J | Apparatus for doffing coiled sliver |
US3226794A (en) * | 1962-04-11 | 1966-01-04 | Erb Ernst | Device for forming and depositing continuous rings of threads about a center for the purpose of forming a package of thread material |
US3509687A (en) * | 1963-12-02 | 1970-05-05 | Fur Patentdienst Anstalt | Apparatus for filling containers |
US3281913A (en) * | 1964-08-10 | 1966-11-01 | Eastman Kodak Co | Apparatus and method for handling yarn bundles |
US3496862A (en) * | 1967-02-07 | 1970-02-24 | Taylor Wordsworth & Co Ltd | Methods of and apparatus for consolidating textile slivers |
US3482795A (en) * | 1967-03-16 | 1969-12-09 | Mackie & Sons Ltd J | Winding apparatus |
US3541752A (en) * | 1968-06-07 | 1970-11-24 | Irving Ness | Packaging of compressible goods |
US3808641A (en) * | 1970-05-01 | 1974-05-07 | Schubert & Salzer Maschinen | Can changing devices |
US4723344A (en) * | 1985-04-13 | 1988-02-09 | Trutzschler Gmbh & Co. Kg | Method and apparatus for opening fiber bales |
US4683619A (en) * | 1985-09-10 | 1987-08-04 | Trutzschler Gmbh & Co. Kg | Apparatus for can changing |
US5125210A (en) * | 1987-06-10 | 1992-06-30 | Autefa Mashinen Fabrik Gmbh | Procedure and device for the wrapping os compressed bales |
US4891918A (en) * | 1987-11-16 | 1990-01-09 | Lov-Cot Industries, Incorporated | Cotton bale storage |
US5200269A (en) * | 1990-06-01 | 1993-04-06 | E. I. Du Pont De Nemours And Company | Apparatus and method for baling cut fibers and product |
US5491877A (en) * | 1993-05-14 | 1996-02-20 | Trutzschler Gmbh & Co. Kg | Apparatus for vertically displacing a shiftable bottom of a coiler can |
US5575040A (en) * | 1993-05-14 | 1996-11-19 | Trutzschler Gmbh & Co. Kg | Apparatus for controlling sliver deposition in a coiler can |
US5446946A (en) * | 1993-05-14 | 1995-09-05 | Trutzschler Gmbh & Co. Kg | Method and apparatus for vertically displacing a shiftable bottom of a coiler can |
US5560179A (en) * | 1994-04-02 | 1996-10-01 | Trutzschler Gmbh & Co. Kg | Apparatus for handling flat coiler cans before, during and after filling by a sliver producing textile processing machine |
US5528797A (en) * | 1994-05-13 | 1996-06-25 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Device to swivel a traversing flat can on a textile machine which delivers a fiber sliver |
US5581849A (en) * | 1994-05-13 | 1996-12-10 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Process for positioning a fiber sliver on a flat can |
US5595049A (en) * | 1994-08-11 | 1997-01-21 | Trutzschler Gmbh & Co. Kg | Method and apparatus for depositing sliver from a sliver-producing machine into a coiler can |
US5829100A (en) * | 1996-03-25 | 1998-11-03 | Rosink Gmbh & Co. Kg | Sliver can spring plate retaining device |
US5787553A (en) * | 1996-05-09 | 1998-08-04 | W, Schlafhorst Ag & Co. | Sliver can with manipulated bottom wall |
US5826812A (en) * | 1997-01-08 | 1998-10-27 | Belmont Textile Machinery Co., Inc. | Coiler apparatus and method |
US6182425B1 (en) * | 1998-03-27 | 2001-02-06 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Process and apparatus for filling cans with fiber band |
US6334237B1 (en) * | 1999-04-07 | 2002-01-01 | Kiti International Corporation | Sliver accommodation-conical method and device |
US6345417B2 (en) * | 2000-01-29 | 2002-02-12 | Trützschler GmbH Co. KG | Sliver trumpet for forming a sliver from a fiber web |
US6425163B1 (en) * | 2000-08-16 | 2002-07-30 | TRüTZSCHLER GMBH & CO. KG | Coiler can having a vertically movable bottom |
US20060065554A1 (en) * | 2004-09-28 | 2006-03-30 | Magnolia Manufacturing Company, Inc. | System and method for packaging cotton sliver |
US7410051B2 (en) * | 2004-09-28 | 2008-08-12 | Magnolia Manufacturing Company, Inc. | System and method for packaging cotton sliver |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080029637A1 (en) * | 2002-02-07 | 2008-02-07 | Trutzschler Gmbh & Co.Kg | Apparatus on a spinning room machine, especially a spinning preparation machine, for depositing and discharging fibre sliver |
US20070063088A1 (en) * | 2002-02-07 | 2007-03-22 | Trutzchler Gmbh & Co. Kg | Apparatus in a spinning room for making available a can-less fibre sliver package (feed material) for a sliver-fed spinning machine, for example a draw frame |
US20070063089A1 (en) * | 2002-02-07 | 2007-03-22 | Fa. Trutzschler Gmbh & Co.Kg | Apparatus on a spinning machine, especially a spinning preparation machine, for depositing fibre sliver |
US20070069059A1 (en) * | 2002-02-07 | 2007-03-29 | Trutzschler Gmbh & Co. Kg | Apparatus in a spinning room for transporting a can-less fiber sliver package |
US20070069058A1 (en) * | 2002-02-07 | 2007-03-29 | Trutzschler Gmbh & Co. Kg | Apparatus on a spinning machine, especially a spinning preparation machine, for depositing and discharging fibre sliver |
US20060027695A1 (en) * | 2002-02-07 | 2006-02-09 | Trutzschler Gmbh & Co. Kg | Silver discharge device |
US7748658B2 (en) | 2002-02-07 | 2010-07-06 | Truetzschler Gmbh & Co. Kg | Sliver discharge device |
US20070074631A1 (en) * | 2005-09-19 | 2007-04-05 | Trutzschler Gmbh & Co. Kg | System and method for packaging cotton sliver |
US7748315B2 (en) | 2005-09-19 | 2010-07-06 | Truetzschler Gmbh & Co., Kg | System and method for packaging cotton sliver |
GB2431671B (en) * | 2005-10-12 | 2010-08-18 | Truetzschler Gmbh & Co Kg | Apparatus in a spinning mill for transporting a can-less fibre sliver package |
US20080244871A1 (en) * | 2007-04-03 | 2008-10-09 | Truetzschler Gmbh & Co. Kg | Apparatus on a spinning room machine, especially a spinning preparation machine, for depositing fibre sliver |
US7788771B2 (en) | 2007-04-03 | 2010-09-07 | Truetzschler Gmbh & Co. Kg | Apparatus on a spinning room machine, especially a spinning preparation machine, for depositing fibre sliver |
EP3255184A1 (en) | 2016-05-24 | 2017-12-13 | Trützschler GmbH & Co. KG | Stretching system for textile fibres |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070068397A1 (en) | Apparatus in a spinning mill for transporting a can-less fibre sliver package | |
US20070063088A1 (en) | Apparatus in a spinning room for making available a can-less fibre sliver package (feed material) for a sliver-fed spinning machine, for example a draw frame | |
US20070069058A1 (en) | Apparatus on a spinning machine, especially a spinning preparation machine, for depositing and discharging fibre sliver | |
US20070063089A1 (en) | Apparatus on a spinning machine, especially a spinning preparation machine, for depositing fibre sliver | |
US20080029637A1 (en) | Apparatus on a spinning room machine, especially a spinning preparation machine, for depositing and discharging fibre sliver | |
US20070069059A1 (en) | Apparatus in a spinning room for transporting a can-less fiber sliver package | |
CH699606B1 (en) | An apparatus for transporting a can-less fiber sliver package in a spinning mill. | |
US20030146331A1 (en) | Sliver discharge device | |
GB2431169A (en) | Transport device in a spinning room | |
GB2431414A (en) | Transporting canless sliver packages in a spinning room | |
JPH06305640A (en) | Device to take out figure wound bobbin from machine to manufacture figure wound bobbin and to supply freshly bobbin to the machine | |
GB2431171A (en) | Can-less sliver delivery apparatus | |
GB2431170A (en) | Can-less sliver delivery apparatus | |
GB2431671A (en) | Transporting can-less sliver packages in a spinning room | |
GB2431172A (en) | Can-less sliver delivery apparatus | |
JPH06136624A (en) | Method and equipment for feeding sliver to fine spinning part of spinning frame | |
CZ2006610A3 (en) | Spinning machine apparatus, particularly preparatory spinning machine apparatus for storing and feeding fiber sliver o | |
JPH08309307A (en) | Automatic sheet washing machine | |
JPH0812061A (en) | Conveying device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TRUTZSCHLER GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHLICHTER, STEFAN;REEL/FRAME:018646/0459 Effective date: 20061030 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |