US20070066961A1 - Airway balloon dilator - Google Patents
Airway balloon dilator Download PDFInfo
- Publication number
- US20070066961A1 US20070066961A1 US11/231,457 US23145705A US2007066961A1 US 20070066961 A1 US20070066961 A1 US 20070066961A1 US 23145705 A US23145705 A US 23145705A US 2007066961 A1 US2007066961 A1 US 2007066961A1
- Authority
- US
- United States
- Prior art keywords
- balloon
- outer balloon
- airway
- stenosis
- support member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000031481 Pathologic Constriction Diseases 0.000 claims abstract description 43
- 230000036262 stenosis Effects 0.000 claims abstract description 36
- 208000037804 stenosis Diseases 0.000 claims abstract description 36
- 230000010339 dilation Effects 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 206010023862 Laryngeal stenosis Diseases 0.000 description 7
- 238000002399 angioplasty Methods 0.000 description 6
- 210000000621 bronchi Anatomy 0.000 description 6
- 210000003437 trachea Anatomy 0.000 description 6
- 208000014674 injury Diseases 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 206010010356 Congenital anomaly Diseases 0.000 description 3
- 210000000867 larynx Anatomy 0.000 description 3
- 231100000241 scar Toxicity 0.000 description 3
- 238000002627 tracheal intubation Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 208000006601 tracheal stenosis Diseases 0.000 description 2
- 208000000884 Airway Obstruction Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010004485 Berylliosis Diseases 0.000 description 1
- 208000023355 Chronic beryllium disease Diseases 0.000 description 1
- 206010011416 Croup infectious Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 208000000616 Hemoptysis Diseases 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- 201000001970 Laryngostenosis Diseases 0.000 description 1
- 206010061876 Obstruction Diseases 0.000 description 1
- 240000001398 Typha domingensis Species 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 201000010549 croup Diseases 0.000 description 1
- 238000000315 cryotherapy Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002647 laser therapy Methods 0.000 description 1
- 208000018773 low birth weight Diseases 0.000 description 1
- 231100000533 low birth weight Toxicity 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 208000026438 poor feeding Diseases 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000002278 reconstructive surgery Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 230000002966 stenotic effect Effects 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/104—Balloon catheters used for angioplasty
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1086—Balloon catheters with special features or adapted for special applications having a special balloon surface topography, e.g. pores, protuberances, spikes or grooves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/109—Balloon catheters with special features or adapted for special applications having balloons for removing solid matters, e.g. by grasping or scraping plaque, thrombus or other matters that obstruct the flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/10—Trunk
- A61M2210/1025—Respiratory system
- A61M2210/1028—Larynx
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/10—Trunk
- A61M2210/1025—Respiratory system
- A61M2210/1032—Trachea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/10—Trunk
- A61M2210/1025—Respiratory system
- A61M2210/1035—Bronchi
Definitions
- the present invention relates to medical care for the larynx, trachea or bronchi to relieve a stenosis.
- the invention relates to a device for performing dilation of the larynx, trachea or bronchi.
- Subglottic stenosis is a congenital or acquired narrowing of the subglottic airway.
- subglottic stenosis was rare, and most cases occurred in adults.
- the incidence of acquired subglottic stenosis began to dramatically increase in the neonatal population, most likely the result of increased survival of low-birth-weight infants and the increased use of intubation in this population.
- Airway balloon dilation has been shown to be a safe and effective palliative procedure for treatment of mild congenital and acquired stenosis of the trachea and bronchi.
- Dilation of luminal human anatomy to treat stenoses can be dated back to the 16 th Century with esophageal “bougie” dilation.
- Specific medical applications of luminal balloon dilation range from alimentary canal and airway dilation to dilation of the vasculature.
- Airway dilation dates back over 100 years ago with the invention and subsequent use of the first beveled rigid bronchoscopes for stricture management.
- Airway balloon dilation can be used to quickly re-establish tracheal or bronchial luminal patency to restore airflow in a way that doesn't cause excessive trauma to the patient.
- Literature has reported the use of balloon dilation for the treatment of benign strictures of the airway.
- Fibrotic strictures such as those secondary to tuberculosis, long-term endotracheal or tracheostomy tube placement, berylliosis, Wegener's granulomatosis, or sarcoidosis have been shown to be treatable with airway balloon dilation therapy with general success. Additionally, balloon dilation has been useful in treating strictures secondary to major surgical interventions such as lung transplantation, sleeve resection, bronchial re-implantation, and lobectomy. For the purpose of treating strictures secondary to malignant obstruction, dilation therapy can be used alone or in combination with other techniques such as surgical resection, cryotherapy, laser therapy, and stent placement, depending on the desired outcome for the patient.
- Treatment with airway dilation can involve the clinician inserting increasingly larger tubes into the airway (e.g. endotracheal tubes or cat-tail (bougie) dilators), which creates significant shear forces on the airway mucosa.
- endotracheal tubes or cat-tail (bougie) dilators e.g. endotracheal tubes or cat-tail (bougie) dilators
- a procedure sometimes induces unwanted trauma to the airway in the form of deep lacerations and hemoptysis.
- current dilation practices do not permit dilation of a tracheal stenosis that is distal to a narrowing of the proximal airway (i.e. a mild subglottic stenosis).
- angioplasty balloons Current airway balloon dilation procedures are typically carried out using angioplasty balloons; however, several limitations to the use of angioplasty balloons become evident when used on the airway. For example, it may be difficult to adequately ventilate the patient during the dilation period, since the typical angioplasty balloon does not include a connection to an oxygen source. Further, the shape of the angioplasty balloon may predispose the balloon to slide out of place during dilation, or the balloon may be limited to the amount of pressure that can be applied before the balloon bursts. Also, the typical angioplasty balloon can usually stretch the airway lumen but not permanently dilate it. Other factors associated with failure of airway balloon dilation include previous attempts at endoscopic repair, circumferential scarring, and loss of cartilaginous support.
- a balloon dilator for the airway of a patient that is able to allow ventilation of the patient during balloon inflation. It would also be helpful to provide an airway balloon dilator that can provide increased inflation pressures during balloon dilation of the airway without balloon rupture. Further, it would be beneficial to provide a balloon that will not slip out of place in the patient's airway during balloon inflation. Finally, it is desirable to provide an airway balloon dilator that is capable of controlled cutting of scar tissue.
- the present invention provides an airway balloon dilator for use to quickly re-establish laryngeal, tracheal or bronchial luminal patency to restore airflow in a way that avoids excessive trauma to the patient.
- One aspect of the invention provides an apparatus for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the apparatus comprising a central axis, a hollow core adapted to allow the patient to be ventilated therethrough, an inflatable outer balloon having an external surface, and at least one inflatable inner balloon, the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon.
- Another aspect of the invention provides a method for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the method comprising: (1) inserting an apparatus into the airway, the apparatus including a central axis, a hollow core adapted to allow the patient to be ventilated therethrough, an inflatable outer balloon having an external surface, and at least one inflatable inner balloon, the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon; (2) advancing the apparatus within the airway until the outer balloon is across the stenosis; and (3) inflating the balloon to cause and allow the external surface of the balloon to expand upon and dilate the stenosis.
- Another aspect of the invention provides an apparatus for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the apparatus comprising a central axis, a hollow core adapted to allow the patient to be ventilated therethrough, an inflatable, dumbbell-shaped outer balloon having an external surface, at least one inflatable inner balloon, a flexible support member mounted along the central axis of the apparatus and on the external surface of the outer balloon, the flexible support member being substantially compliant with the external surface of the outer balloon during movement therewith, and at least one microsurgical blade attached to the support member and adapted to form an effective cutting edge upon inflation of the outer balloon, the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon, the dumbbell shape of the outer balloon adapted to hold the outer balloon in position over the stenosis, and the at least one blade adapted to form an
- FIG. 1 is a perspective view of one embodiment of the balloon dilator of the present invention.
- FIG. 2 is a perspective view of one embodiment of the balloon dilator in which the outer balloon has a dumbbell shape and multiple inner balloons.
- FIG. 3 is a perspective view of a flexible support member having microsurgical blades, the support member adapted to fit over the outer balloon according to one aspect of the invention.
- one embodiment of the present invention is an apparatus 10 for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the apparatus comprising an inflatable outer balloon 12 which has an external surface 14 .
- the apparatus also comprises a central axis 16 , a hollow core 18 , and at least one inflatable inner balloon 20 adapted to inflate inside the outer balloon.
- the apparatus 10 is typically insertable into the airway of a patient for movement of the balloons 12 , 20 between a deflated configuration and an inflated configuration.
- the inner balloon 20 is designed to inflate inside the outer balloon 12 yet separately from the outer balloon, adding the ability of the apparatus to produce high dilation pressures without balloon rupture.
- the hollow core 18 traverses the entire apparatus 10 .
- the hollow core connects via a proximal ISO connector to an oxygen source such as an anesthesia circuit or the like, and is designed to allow the patient to be ventilated upon inflation of the balloons during the procedure, when the airway is otherwise occluded.
- the hollow core 18 is typically in the form of a central ventilating tube which is necessarily strong to prevent the pressure of the balloons from crushing the ventilating tube.
- the structure of the hollow core 18 is typically similar to a small endotracheal tube with a dilating cuff, and the tube may be reinforced, e.g. with wire, in the area of the cuff.
- one embodiment of the invention is a balloon dilator apparatus 30 in which the inflatable outer balloon 32 is dumbbell-shaped.
- This dumbbell shape typically has a variable thickness at the proximal 34 and distal 36 ends of the balloon which allows the outer balloon 32 to stay in position over the stenosis during inflation.
- the apparatus 30 can include a plurality of inner balloons 40 , 42 , 44 , wherein inner balloon 44 is contained inside inner balloon 42 , which is contained inside inner balloon 40 . All of the inner balloons 40 , 42 , 44 are contained inside outer balloon 32 , and are typically separately inflatable. Such an embodiment could be used with larger diameter outer balloons, e.g. between about 10 to about 20 mm.
- the inner balloons 40 , 42 , 44 can be either dumbbell shaped or a “double cone” shape as seen with most angioplasty type balloons, and are inflated sequentially if higher pressures cannot be achieved by the outer balloon. Having a balloon dilator that incorporates multiple interconnected smaller balloons can achieve the desired pressure without risking balloon rupture during inflation.
- the proximal 34 and distal 36 ends of the outer balloon 32 inflate first, forming the “dumbbell” shape, thereby trapping the stenotic airway segment at the central portion 38 of the balloon 32 , so that the outer balloon 32 does not slip out of position. Then, as the pressure in the balloon is increased, the central portion 38 of the balloon fully inflates at the site of the stenosis.
- one embodiment of the invention can include a flexible support member 50 that can fit over the apparatus, specifically fitting over the outer balloon.
- the flexible support member 50 is typically made of a polyurethane material and includes a central axis 56 mounted along the central axis of the apparatus.
- the support member is adapted to fit over the external surface of the outer balloon, and is typically substantially compliant therewith during inflation and deflation.
- Support member 50 also includes at least one microsurgical blade, and in FIG. 3 two surgical blades 52 are attached. Blades 52 form an effective cutting edge upon inflation of the outer balloon.
- Blades 52 are typically made of stainless steel, and are elongated and permanently mounted on the flexible support member 50 .
- the blade axis 54 is parallel to the central axis 56 of the support member 50 , which is substantially parallel to the central axis of the apparatus.
- Having surgical blades 52 present on the apparatus during dilation typically permits controlled cutting or lysis of any scar tissue present in the patient's airway.
- the blades 52 should be clearly marked so that users can avoid inadvertently cutting themselves during placement of the support member 50 over the outer balloon.
- the blades 52 lay flat on the surface of the support member prior to use and prior to inflation of the outer balloon 12 , and then when the outer balloon reaches a certain pressure upon inflation the blades 52 will typically “stand up” or otherwise protrude or expose their cutting edge atop the flexible support member 50 .
- the exposed edge of the blade 52 typically only protrudes between about 0.2 to about 0.4 mm, and the length of the blade is typically less than the length of the outer balloon 12 .
- each of the blades being separated from the other blades so that each blade is free to move from a relatively flat position to a cutting position on the flexible support member upon inflation of the outer balloon.
- the airway balloon dilation procedure is typically performed at the site of a stenosis in the airway of a patient (i.e. the larynx, trachea or bronchi).
- the surgeon or clinician first inserts the apparatus 10 into the airway, then advances the apparatus within the airway until the outer balloon 12 is across the stenosis.
- the surgeon or clinician inflates the outer balloon 12 to cause and allow the external surface 14 of the outer balloon 12 to expand upon and dilate the stenosis.
- the inner balloon 20 is then slowly inflated. Typically the inner balloon 20 is inflated after the inflation of the outer balloon 12 .
- the balloons are typically inflated from between about 30 to about 120 seconds.
- the apparatus 10 can also be threaded over a guidewire (not shown) which fits through the hollow core 18 and is positioned across the stenosis. Repeat inflation-deflation cycles can be done if airway narrowing remains after the initial attempt.
- the size of the balloon is first selected by the clinician, which depends upon the size of the stenosis in the patient's airway.
- the balloon size is typically between about 10 mm to about 40 mm in length.
- the outer balloon is positioned over the stenosis and then each balloon is individually dilated to the desired pressure with a balloon pump, typically to between about 8 to about 20 atmospheres. After these pressures are maintained for a predetermined period of time, typically between about 60 to about 180 seconds, the balloons are deflated and the clinician determines if repeat inflation is necessary. Repeat inflation can be safely performed if there is no obvious trauma to the airway.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Child & Adolescent Psychology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
A medical apparatus for widening a stenosis in the airway of a patient which includes a central hollow core, an inflatable outer balloon, and at least one inner balloon inside the outer balloon. The apparatus also can include a flexible support member mounted on the external surface of the outer balloon with at least one microsurgical blade. The outer balloon can be dumbbell-shaped to keep the balloon in position over the stenosis when the balloon is inflated. The hollow core allows the patient to be ventilated during the procedure, the inner balloon(s) allow higher dilation pressures to be generated from inside the outer balloon, and the blade can form an effective cutting edge upon inflation of the outer balloon.
Description
- The present invention relates to medical care for the larynx, trachea or bronchi to relieve a stenosis. In particular, the invention relates to a device for performing dilation of the larynx, trachea or bronchi.
- Management of stenosis of the trachea and bronchi, including laryngotracheal and subglottic stenosis, is one of the most challenging problems for the head and neck surgeon. Subglottic stenosis is a congenital or acquired narrowing of the subglottic airway. In the early twentieth century subglottic stenosis was rare, and most cases occurred in adults. In the 1960's the incidence of acquired subglottic stenosis began to dramatically increase in the neonatal population, most likely the result of increased survival of low-birth-weight infants and the increased use of intubation in this population. In addition, long term intubation has become an accepted alternative to tracheotomy, leading to more and more incidences of tracheal stenosis. Accordingly, the management of this condition has undergone a revolution, and reconstructive surgery efforts have been directed towards this population.
- Most patients with stenosis of the airway are referred to and are treated at large academic centers by physicians specialty trained in this area. There is a wide range of presentation of subglottic stenosis with similarities and differences in the pediatric age group compared to adults. If the stenosis is severe and congenital, the patient will show signs of airway distress at birth. More commonly, the pediatric patient with subglottic stenosis is a neonate in the intensive care unit who has failed extubation, usually multiple times. Occasionally patients will present in clinic with a tracheotomy and the report of some airway obstruction. Infants with mild subglottic stenosis may present with recurrent croup-like illnesses and poor feeding. Adults usually have a history of prior intubation with symptoms of progressive shortness of breath and noisy breathing.
- Airway balloon dilation has been shown to be a safe and effective palliative procedure for treatment of mild congenital and acquired stenosis of the trachea and bronchi. Dilation of luminal human anatomy to treat stenoses can be dated back to the 16th Century with esophageal “bougie” dilation. Specific medical applications of luminal balloon dilation range from alimentary canal and airway dilation to dilation of the vasculature. Airway dilation dates back over 100 years ago with the invention and subsequent use of the first beveled rigid bronchoscopes for stricture management. The use of balloons to dilate airway strictures emerged in the mid-1980's with reports describing more specific utility of this procedure exclusively and in combination with other treatment modalities for airway stenosis. It was not until the early 1990's that the first balloon dilation involving flexible bronchoscopy was described.
- Airway balloon dilation can be used to quickly re-establish tracheal or bronchial luminal patency to restore airflow in a way that doesn't cause excessive trauma to the patient. According to Poiseuille's Law, an increase in a tube's radius (such as the trachea or bronchus) can increase airflow by a power of 4 (airflow =radius of the tube4). That is, very small increases in the luminal diameter of the airway can lead to large increases in airflow through the lungs. Literature has reported the use of balloon dilation for the treatment of benign strictures of the airway. Fibrotic strictures, such as those secondary to tuberculosis, long-term endotracheal or tracheostomy tube placement, berylliosis, Wegener's granulomatosis, or sarcoidosis have been shown to be treatable with airway balloon dilation therapy with general success. Additionally, balloon dilation has been useful in treating strictures secondary to major surgical interventions such as lung transplantation, sleeve resection, bronchial re-implantation, and lobectomy. For the purpose of treating strictures secondary to malignant obstruction, dilation therapy can be used alone or in combination with other techniques such as surgical resection, cryotherapy, laser therapy, and stent placement, depending on the desired outcome for the patient.
- Treatment with airway dilation can involve the clinician inserting increasingly larger tubes into the airway (e.g. endotracheal tubes or cat-tail (bougie) dilators), which creates significant shear forces on the airway mucosa. Although safe when performed by a skilled clinician, such a procedure sometimes induces unwanted trauma to the airway in the form of deep lacerations and hemoptysis. Further, current dilation practices do not permit dilation of a tracheal stenosis that is distal to a narrowing of the proximal airway (i.e. a mild subglottic stenosis).
- Current airway balloon dilation procedures are typically carried out using angioplasty balloons; however, several limitations to the use of angioplasty balloons become evident when used on the airway. For example, it may be difficult to adequately ventilate the patient during the dilation period, since the typical angioplasty balloon does not include a connection to an oxygen source. Further, the shape of the angioplasty balloon may predispose the balloon to slide out of place during dilation, or the balloon may be limited to the amount of pressure that can be applied before the balloon bursts. Also, the typical angioplasty balloon can usually stretch the airway lumen but not permanently dilate it. Other factors associated with failure of airway balloon dilation include previous attempts at endoscopic repair, circumferential scarring, and loss of cartilaginous support.
- In light of the foregoing, it would be advantageous to provide a balloon dilator for the airway of a patient that is able to allow ventilation of the patient during balloon inflation. It would also be helpful to provide an airway balloon dilator that can provide increased inflation pressures during balloon dilation of the airway without balloon rupture. Further, it would be beneficial to provide a balloon that will not slip out of place in the patient's airway during balloon inflation. Finally, it is desirable to provide an airway balloon dilator that is capable of controlled cutting of scar tissue.
- The present invention provides an airway balloon dilator for use to quickly re-establish laryngeal, tracheal or bronchial luminal patency to restore airflow in a way that avoids excessive trauma to the patient.
- One aspect of the invention provides an apparatus for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the apparatus comprising a central axis, a hollow core adapted to allow the patient to be ventilated therethrough, an inflatable outer balloon having an external surface, and at least one inflatable inner balloon, the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon.
- Another aspect of the invention provides a method for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the method comprising: (1) inserting an apparatus into the airway, the apparatus including a central axis, a hollow core adapted to allow the patient to be ventilated therethrough, an inflatable outer balloon having an external surface, and at least one inflatable inner balloon, the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon; (2) advancing the apparatus within the airway until the outer balloon is across the stenosis; and (3) inflating the balloon to cause and allow the external surface of the balloon to expand upon and dilate the stenosis.
- Another aspect of the invention provides an apparatus for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the apparatus comprising a central axis, a hollow core adapted to allow the patient to be ventilated therethrough, an inflatable, dumbbell-shaped outer balloon having an external surface, at least one inflatable inner balloon, a flexible support member mounted along the central axis of the apparatus and on the external surface of the outer balloon, the flexible support member being substantially compliant with the external surface of the outer balloon during movement therewith, and at least one microsurgical blade attached to the support member and adapted to form an effective cutting edge upon inflation of the outer balloon, the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon, the dumbbell shape of the outer balloon adapted to hold the outer balloon in position over the stenosis, and the at least one blade adapted to form an effective cutting edge upon inflation of the outer balloon.
- The nature and advantages of the present invention will be more fully appreciated from the following drawings, detailed description and claims.
- The accompanying drawings illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description given below, serve to explain the principles of the invention.
-
FIG. 1 is a perspective view of one embodiment of the balloon dilator of the present invention. -
FIG. 2 is a perspective view of one embodiment of the balloon dilator in which the outer balloon has a dumbbell shape and multiple inner balloons. -
FIG. 3 is a perspective view of a flexible support member having microsurgical blades, the support member adapted to fit over the outer balloon according to one aspect of the invention. - As illustrated in
FIG. 1 , one embodiment of the present invention is anapparatus 10 for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the apparatus comprising an inflatableouter balloon 12 which has anexternal surface 14. The apparatus also comprises acentral axis 16, ahollow core 18, and at least one inflatableinner balloon 20 adapted to inflate inside the outer balloon. Theapparatus 10 is typically insertable into the airway of a patient for movement of theballoons inner balloon 20 is designed to inflate inside theouter balloon 12 yet separately from the outer balloon, adding the ability of the apparatus to produce high dilation pressures without balloon rupture. - As shown in
FIG. 1 , thehollow core 18 traverses theentire apparatus 10. Typically the hollow core connects via a proximal ISO connector to an oxygen source such as an anesthesia circuit or the like, and is designed to allow the patient to be ventilated upon inflation of the balloons during the procedure, when the airway is otherwise occluded. Thehollow core 18 is typically in the form of a central ventilating tube which is necessarily strong to prevent the pressure of the balloons from crushing the ventilating tube. The structure of thehollow core 18 is typically similar to a small endotracheal tube with a dilating cuff, and the tube may be reinforced, e.g. with wire, in the area of the cuff. - As illustrated in
FIG. 2 , one embodiment of the invention is aballoon dilator apparatus 30 in which the inflatableouter balloon 32 is dumbbell-shaped. This dumbbell shape typically has a variable thickness at the proximal 34 and distal 36 ends of the balloon which allows theouter balloon 32 to stay in position over the stenosis during inflation. In the embodiment ofFIG. 2 , theapparatus 30 can include a plurality ofinner balloons inner balloon 44 is contained insideinner balloon 42, which is contained insideinner balloon 40. All of theinner balloons outer balloon 32, and are typically separately inflatable. Such an embodiment could be used with larger diameter outer balloons, e.g. between about 10 to about 20 mm. In this embodiment, theinner balloons - During inflation, the proximal 34 and distal 36 ends of the
outer balloon 32 inflate first, forming the “dumbbell” shape, thereby trapping the stenotic airway segment at thecentral portion 38 of theballoon 32, so that theouter balloon 32 does not slip out of position. Then, as the pressure in the balloon is increased, thecentral portion 38 of the balloon fully inflates at the site of the stenosis. - As illustrated in
FIG. 3 , one embodiment of the invention can include aflexible support member 50 that can fit over the apparatus, specifically fitting over the outer balloon. Theflexible support member 50 is typically made of a polyurethane material and includes acentral axis 56 mounted along the central axis of the apparatus. The support member is adapted to fit over the external surface of the outer balloon, and is typically substantially compliant therewith during inflation and deflation.Support member 50 also includes at least one microsurgical blade, and inFIG. 3 twosurgical blades 52 are attached.Blades 52 form an effective cutting edge upon inflation of the outer balloon.Blades 52 are typically made of stainless steel, and are elongated and permanently mounted on theflexible support member 50. In use, when thesupport member 50 is placed over the outer balloon, the blade axis 54 is parallel to thecentral axis 56 of thesupport member 50, which is substantially parallel to the central axis of the apparatus. - Having
surgical blades 52 present on the apparatus during dilation typically permits controlled cutting or lysis of any scar tissue present in the patient's airway. Theblades 52 should be clearly marked so that users can avoid inadvertently cutting themselves during placement of thesupport member 50 over the outer balloon. In one embodiment, theblades 52 lay flat on the surface of the support member prior to use and prior to inflation of theouter balloon 12, and then when the outer balloon reaches a certain pressure upon inflation theblades 52 will typically “stand up” or otherwise protrude or expose their cutting edge atop theflexible support member 50. Once fully deployed, the exposed edge of theblade 52 typically only protrudes between about 0.2 to about 0.4 mm, and the length of the blade is typically less than the length of theouter balloon 12. Typically there are a plurality of blades which are able to work together to embed into the stenosis or scar at a substantially uniform depth. For example, three blades could be permanently mounted on the flexible support member, each of the blades being separated from the other blades so that each blade is free to move from a relatively flat position to a cutting position on the flexible support member upon inflation of the outer balloon. - In practice, the airway balloon dilation procedure is typically performed at the site of a stenosis in the airway of a patient (i.e. the larynx, trachea or bronchi). Using the apparatus shown in
FIG. 1 , the surgeon or clinician first inserts theapparatus 10 into the airway, then advances the apparatus within the airway until theouter balloon 12 is across the stenosis. At this point, the surgeon or clinician inflates theouter balloon 12 to cause and allow theexternal surface 14 of theouter balloon 12 to expand upon and dilate the stenosis. To increase dilation pressures, theinner balloon 20 is then slowly inflated. Typically theinner balloon 20 is inflated after the inflation of theouter balloon 12. Under direct visualization, the balloons are typically inflated from between about 30 to about 120 seconds. Theapparatus 10 can also be threaded over a guidewire (not shown) which fits through thehollow core 18 and is positioned across the stenosis. Repeat inflation-deflation cycles can be done if airway narrowing remains after the initial attempt. - During balloon dilation, the size of the balloon is first selected by the clinician, which depends upon the size of the stenosis in the patient's airway. The balloon size is typically between about 10 mm to about 40 mm in length. The outer balloon is positioned over the stenosis and then each balloon is individually dilated to the desired pressure with a balloon pump, typically to between about 8 to about 20 atmospheres. After these pressures are maintained for a predetermined period of time, typically between about 60 to about 180 seconds, the balloons are deflated and the clinician determines if repeat inflation is necessary. Repeat inflation can be safely performed if there is no obvious trauma to the airway.
- While the present invention has been illustrated by the description of embodiments and examples thereof, it is not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will be readily apparent to those skilled in the art. Accordingly, departures may be made from such details without departing from the scope or spirit of the invention.
Claims (19)
1. An apparatus for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the apparatus comprising:
a central axis;
a hollow core adapted to allow the patient to be ventilated therethrough;
an inflatable outer balloon having an external surface; and
at least one inflatable inner balloon,
the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon.
2. The apparatus according to claim 1 , wherein the inflatable outer balloon is dumbbell-shaped to hold the outer balloon in position over the stenosis.
3. The apparatus according to claim 1 , comprising a plurality of inner balloons.
4. The apparatus according to claim 3 , wherein there are three inner balloons including a first inner balloon contained inside a second inner balloon, the second inner balloon being contained inside a third inner balloon, all inner balloons being contained inside the outer balloon and being separately inflatable.
5. The apparatus according to claim 1 , further comprising a flexible support member mounted along the central axis of the apparatus and on the external surface of the outer balloon, the flexible support member being substantially compliant with the external surface of the outer balloon during movement therewith, and at least one microsurgical blade attached to the support member and adapted to form an effective cutting edge upon inflation of the outer balloon.
6. The apparatus according to claim 5 , wherein the apparatus comprises a plurality of blades adapted to embed into the stenosis at a substantially uniform depth.
7. The apparatus according to claim 5 , wherein the support member is made of a polyurethane material.
8. The apparatus according to claim 5 , wherein the at least one blade is made of stainless steel.
9. The apparatus according to claim 5 , wherein the at least one blade includes a blade axis, the at least one blade being elongated and mounted on the support member with the blade axis substantially parallel to the central axis of the apparatus.
10. A method for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the method comprising:
(1) inserting an apparatus into the airway, the apparatus including a central axis, a hollow core adapted to allow the patient to be ventilated therethrough, an inflatable outer balloon having an external surface, and at least one inflatable inner balloon, the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon;
(2) advancing the apparatus within the airway until the outer balloon is positioned within the area of the stenosis; and
(3) inflating the balloon to cause and allow the external surface of the balloon to expand upon and dilate the stenosis.
11. The method according to claim 10 , wherein the apparatus further comprises a flexible support member mounted along the central axis of the apparatus and on the external surface of the outer balloon, the flexible support member being substantially compliant with the external surface of the outer balloon during movement therewith, and at least one microsurgical blade attached to the support member and adapted to form an effective cutting edge upon inflation of the outer balloon, wherein the inflating step allows the at least one blade to form an effective cutting edge upon inflation of the outer balloon.
12. The method according to claim 11 , wherein the apparatus comprises a plurality of blades adapted to embed into the stenosis at a substantially uniform depth.
13. The method according to claim 10 , wherein the advancing step comprises the steps of:
(i) inserting a guidewire into the airway of the patient; and
(ii) tracking the guidewire with the apparatus to position the outer balloon across the stenosis.
14. The method according to claim 10 , further comprising the steps of:
(4) deflating the balloons after a predetermined amount of time;
(5) repeating steps (1) through (4) if airway narrowing remains after the initial attempt to dilate the stenosis fails; and
(6) removing the apparatus from the patient.
15. An apparatus for performing an airway balloon dilation procedure at the site of a stenosis in the airway of a patient, the apparatus comprising:
a central axis;
a hollow core adapted to allow.the patient to be ventilated therethrough;
an inflatable, dumbbell-shaped outer balloon having an external surface;
at least one inflatable inner balloon;
a flexible support member mounted along the central axis of the apparatus and on the external surface of the outer balloon, the flexible support member being substantially compliant with the external surface of the outer balloon during movement therewith; and
at least one microsurgical blade attached to the support member and adapted to form an effective cutting edge upon inflation of the outer balloon, the apparatus being insertable into the airway of a patient for movement of the balloons therein between a deflated configuration and an inflated configuration, the at least one inner balloon configured to inflate inside the outer balloon yet separately from the outer balloon, the dumbbell shape of the outer balloon adapted to hold the outer balloon in position over the stenosis, and the at least one blade adapted to form an effective cutting edge upon inflation of the outer balloon.
16. The apparatus according to claim 15 , wherein the apparatus comprises a plurality of blades adapted to embed into the stenosis at a substantially uniform depth.
17. The apparatus according to claim 15 , wherein the support member is made, of a polyurethane material.
18. The apparatus according to claim 15 , wherein the at least one blade is made of stainless steel.
19. The apparatus according to claim 15 , wherein the at least one blade includes a blade axis, the at least one blade being elongated and mounted on the support member with the blade axis substantially parallel to the central axis of the apparatus.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/231,457 US20070066961A1 (en) | 2005-09-21 | 2005-09-21 | Airway balloon dilator |
US11/533,562 US7591830B2 (en) | 2005-09-21 | 2006-09-20 | Airway balloon dilator |
PCT/US2006/036869 WO2007035888A2 (en) | 2005-09-21 | 2006-09-21 | Airway balloon dilator |
JP2008532394A JP2009508659A (en) | 2005-09-21 | 2006-09-21 | Airway balloon dilator |
AU2006292163A AU2006292163A1 (en) | 2005-09-21 | 2006-09-21 | Airway balloon dilator |
EP06815129.9A EP1942979B1 (en) | 2005-09-21 | 2006-09-21 | Airway balloon dilator |
CA2623952A CA2623952C (en) | 2005-09-21 | 2006-09-21 | Airway balloon dilator |
US12/052,983 US7771446B2 (en) | 2005-09-21 | 2008-03-21 | Balloon dilator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/231,457 US20070066961A1 (en) | 2005-09-21 | 2005-09-21 | Airway balloon dilator |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/533,562 Continuation-In-Part US7591830B2 (en) | 2005-09-21 | 2006-09-20 | Airway balloon dilator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070066961A1 true US20070066961A1 (en) | 2007-03-22 |
Family
ID=37885203
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/231,457 Abandoned US20070066961A1 (en) | 2005-09-21 | 2005-09-21 | Airway balloon dilator |
US11/533,562 Active 2026-02-17 US7591830B2 (en) | 2005-09-21 | 2006-09-20 | Airway balloon dilator |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/533,562 Active 2026-02-17 US7591830B2 (en) | 2005-09-21 | 2006-09-20 | Airway balloon dilator |
Country Status (3)
Country | Link |
---|---|
US (2) | US20070066961A1 (en) |
JP (1) | JP2009508659A (en) |
CA (1) | CA2623952C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120302825A1 (en) * | 2010-11-28 | 2012-11-29 | Cook Medical Technologies Llc | Methods of Treating Tissue within a Bodily Passage |
US20140200504A1 (en) * | 2013-01-15 | 2014-07-17 | Krishna Rocha-Singh | Apparatus and method for delivering intraluminal therapy |
JP2015042312A (en) * | 2008-04-16 | 2015-03-05 | アビオメド インコーポレイテッド | Method and apparatus for implanting endoluminal prosthesis such as prosthetic valve |
US9027552B2 (en) | 2012-07-31 | 2015-05-12 | Covidien Lp | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
US9956384B2 (en) | 2014-01-24 | 2018-05-01 | Cook Medical Technologies Llc | Articulating balloon catheter and method for using the same |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
CN113057719A (en) * | 2019-12-30 | 2021-07-02 | 先健科技(深圳)有限公司 | Balloon catheter |
CN114099917A (en) * | 2021-11-12 | 2022-03-01 | 新疆维吾尔自治区人民医院 | A kind of urethral nondestructive dilator and using method thereof |
US11324954B2 (en) | 2019-06-28 | 2022-05-10 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
CN118490948A (en) * | 2024-05-23 | 2024-08-16 | 杭州坦帕医疗科技有限公司 | Adjustable double-layer cuff plugging device |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9034025B2 (en) * | 2005-05-23 | 2015-05-19 | Ostial Corporation | Balloon catheters and methods for use |
US7771446B2 (en) * | 2005-09-21 | 2010-08-10 | Rutter Michael John | Balloon dilator |
US20090157161A1 (en) * | 2007-10-24 | 2009-06-18 | Edwards Lifesciences Corporation | Percutaneous Nitinol Stent Extraction Device |
US8945142B2 (en) | 2008-08-27 | 2015-02-03 | Cook Medical Technologies Llc | Delivery system for implanting nasal ventilation tube |
US8382746B2 (en) | 2008-11-21 | 2013-02-26 | C2 Therapeutics, Inc. | Cryogenic ablation system and method |
US20100256630A1 (en) * | 2009-04-07 | 2010-10-07 | Angiodynamics, Inc. | Irreversible electroporation (ire) for esophageal disease |
CN103118610B (en) | 2010-08-30 | 2016-03-02 | 西努赛斯公司 | For expanding paranasal sinuses opening and the device being used for the treatment of sinusitis |
US8899225B2 (en) * | 2011-01-19 | 2014-12-02 | Cook Medical Technologies Llc | Percutaneous dilational device having balloon retention mechanism |
WO2013090619A1 (en) | 2011-12-15 | 2013-06-20 | The Board Of Trustees Of The Leland Stanford Junior University | Devices and methods for preventing tracheal aspiration |
EP2819740A4 (en) | 2012-02-29 | 2015-11-25 | Sinusys Corp | Devices and methods for dilating a paranasal sinus opening and for treating sinusitis |
US9956383B2 (en) | 2013-03-15 | 2018-05-01 | Cook Medical Technologies Llc | Medical devices and methods for providing access to a bodily passage during dilation |
US9687263B2 (en) | 2013-05-30 | 2017-06-27 | SinuSys Corporation | Devices and methods for inserting a sinus dilator |
US9050073B2 (en) * | 2013-11-01 | 2015-06-09 | C2 Therapeutics, Inc. | Cryogenic balloon ablation system |
WO2015073279A1 (en) | 2013-11-15 | 2015-05-21 | Ciel Medical, Inc. | Devices and methods for airway suctioning |
US10286190B2 (en) | 2013-12-11 | 2019-05-14 | Cook Medical Technologies Llc | Balloon catheter with dynamic vessel engaging member |
US10369312B2 (en) | 2015-02-10 | 2019-08-06 | Cook Medical Technologies Llc | Low maintenance endotracheal tube device and method for preventing ventilator associated pneumonia and tracheal ischemia |
US9414878B1 (en) | 2015-05-15 | 2016-08-16 | C2 Therapeutics, Inc. | Cryogenic balloon ablation system |
CN105727415A (en) * | 2016-05-06 | 2016-07-06 | 邹弘 | Multifunctional trachea cannula |
EP3457969B1 (en) | 2016-05-20 | 2024-07-03 | Pentax of America, Inc. | Cryogenic ablation system with rotatable and translatable catheter |
US10433857B2 (en) * | 2016-06-24 | 2019-10-08 | Bryan Medical, Inc. | Balloon dilation catheter |
WO2018129455A1 (en) | 2017-01-09 | 2018-07-12 | Boston Scientific Scimed, Inc. | Guidewire with tactile feel |
WO2019202605A1 (en) * | 2018-04-18 | 2019-10-24 | Lalu JOSEPH | Multipurpose vaginal occlusion and distension device with distension controller |
EP3801729A4 (en) * | 2018-06-01 | 2022-04-13 | Endo RX, LLC | Dilation device and method of use |
US20230190295A1 (en) * | 2019-03-08 | 2023-06-22 | William Chase | Bleeding control device |
CN110236611B (en) * | 2019-06-06 | 2025-04-22 | 江阴市康捷医疗科技有限公司 | Medical incision expansion protective sleeve |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3173418A (en) * | 1961-01-10 | 1965-03-16 | Ostap E Baran | Double-wall endotracheal cuff |
US3348542A (en) * | 1964-12-02 | 1967-10-24 | Richard R Jackson | Anesthetic articles |
US3693624A (en) * | 1969-10-02 | 1972-09-26 | Donald P Shiley | Tracheotomy tube |
US4289128A (en) * | 1978-06-29 | 1981-09-15 | Willy Rusch Gmbh & Co. Kg. | Laryngeal tube |
US4484579A (en) * | 1982-07-19 | 1984-11-27 | University Of Pittsburgh | Commissurotomy catheter apparatus and method |
US4511354A (en) * | 1980-05-07 | 1985-04-16 | Medical Research Associates, Ltd. | Hydrocarbon block copolymer with dispersed polysiloxane |
US4791923A (en) * | 1984-02-21 | 1988-12-20 | Bivona Surgical Instruments, Inc. | Tracheal tubes |
US4953548A (en) * | 1987-02-02 | 1990-09-04 | Mallinckrodt, Inc. | Laser resistant ventilating device with locking ferrule |
US4983167A (en) * | 1988-11-23 | 1991-01-08 | Harvinder Sahota | Balloon catheters |
US5040531A (en) * | 1987-02-02 | 1991-08-20 | Mallinckrodt Medical, Inc. | Laser resistant ventilating device |
US5196024A (en) * | 1990-07-03 | 1993-03-23 | Cedars-Sinai Medical Center | Balloon catheter with cutting edge |
US5222966A (en) * | 1990-02-28 | 1993-06-29 | Devices For Vascular Intervention, Inc. | Balloon connection and inflation lumen for atherectomy catheter |
US5251619A (en) * | 1991-12-04 | 1993-10-12 | Lee Myung Ho | Tonometric tracheal tube |
US5320634A (en) * | 1990-07-03 | 1994-06-14 | Interventional Technologies, Inc. | Balloon catheter with seated cutting edges |
US5392774A (en) * | 1992-11-06 | 1995-02-28 | Nissho Corporation | Emergency resuscitation apparatus |
US5638813A (en) * | 1995-06-07 | 1997-06-17 | Augustine Medical, Inc. | Tracheal tube with self-supporting tracheal tube cuff |
US5904679A (en) * | 1989-01-18 | 1999-05-18 | Applied Medical Resources Corporation | Catheter with electrosurgical cutter |
US6632231B2 (en) * | 2001-08-23 | 2003-10-14 | Scimed Life Systems, Inc. | Segmented balloon catheter blade |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3499450A (en) | 1967-10-25 | 1970-03-10 | Dow Corning | Pediatric size tracheal tube |
US3640282A (en) | 1970-08-06 | 1972-02-08 | Jack M Kamen | Tracheal tube with normally expanded balloon cuff |
-
2005
- 2005-09-21 US US11/231,457 patent/US20070066961A1/en not_active Abandoned
-
2006
- 2006-09-20 US US11/533,562 patent/US7591830B2/en active Active
- 2006-09-21 JP JP2008532394A patent/JP2009508659A/en not_active Withdrawn
- 2006-09-21 CA CA2623952A patent/CA2623952C/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3173418A (en) * | 1961-01-10 | 1965-03-16 | Ostap E Baran | Double-wall endotracheal cuff |
US3348542A (en) * | 1964-12-02 | 1967-10-24 | Richard R Jackson | Anesthetic articles |
US3693624A (en) * | 1969-10-02 | 1972-09-26 | Donald P Shiley | Tracheotomy tube |
US4289128A (en) * | 1978-06-29 | 1981-09-15 | Willy Rusch Gmbh & Co. Kg. | Laryngeal tube |
US4511354A (en) * | 1980-05-07 | 1985-04-16 | Medical Research Associates, Ltd. | Hydrocarbon block copolymer with dispersed polysiloxane |
US4484579A (en) * | 1982-07-19 | 1984-11-27 | University Of Pittsburgh | Commissurotomy catheter apparatus and method |
US4791923A (en) * | 1984-02-21 | 1988-12-20 | Bivona Surgical Instruments, Inc. | Tracheal tubes |
US5040531A (en) * | 1987-02-02 | 1991-08-20 | Mallinckrodt Medical, Inc. | Laser resistant ventilating device |
US4953548A (en) * | 1987-02-02 | 1990-09-04 | Mallinckrodt, Inc. | Laser resistant ventilating device with locking ferrule |
US4983167A (en) * | 1988-11-23 | 1991-01-08 | Harvinder Sahota | Balloon catheters |
US5904679A (en) * | 1989-01-18 | 1999-05-18 | Applied Medical Resources Corporation | Catheter with electrosurgical cutter |
US5222966A (en) * | 1990-02-28 | 1993-06-29 | Devices For Vascular Intervention, Inc. | Balloon connection and inflation lumen for atherectomy catheter |
US5196024A (en) * | 1990-07-03 | 1993-03-23 | Cedars-Sinai Medical Center | Balloon catheter with cutting edge |
US5320634A (en) * | 1990-07-03 | 1994-06-14 | Interventional Technologies, Inc. | Balloon catheter with seated cutting edges |
US5251619A (en) * | 1991-12-04 | 1993-10-12 | Lee Myung Ho | Tonometric tracheal tube |
US5392774A (en) * | 1992-11-06 | 1995-02-28 | Nissho Corporation | Emergency resuscitation apparatus |
US5638813A (en) * | 1995-06-07 | 1997-06-17 | Augustine Medical, Inc. | Tracheal tube with self-supporting tracheal tube cuff |
US6632231B2 (en) * | 2001-08-23 | 2003-10-14 | Scimed Life Systems, Inc. | Segmented balloon catheter blade |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015042312A (en) * | 2008-04-16 | 2015-03-05 | アビオメド インコーポレイテッド | Method and apparatus for implanting endoluminal prosthesis such as prosthetic valve |
US20120302825A1 (en) * | 2010-11-28 | 2012-11-29 | Cook Medical Technologies Llc | Methods of Treating Tissue within a Bodily Passage |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US10806879B2 (en) | 2012-04-27 | 2020-10-20 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US11642042B2 (en) | 2012-07-09 | 2023-05-09 | Covidien Lp | Systems and methods for missed breath detection and indication |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
US9027552B2 (en) | 2012-07-31 | 2015-05-12 | Covidien Lp | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation |
US9370644B2 (en) | 2013-01-15 | 2016-06-21 | Krishna Rocha-Singh | Apparatus and method for delivering intraluminal therapy |
US8827953B2 (en) * | 2013-01-15 | 2014-09-09 | Krishna Rocha-Singh | Apparatus and method for delivering intraluminal therapy |
US20140200504A1 (en) * | 2013-01-15 | 2014-07-17 | Krishna Rocha-Singh | Apparatus and method for delivering intraluminal therapy |
US9956384B2 (en) | 2014-01-24 | 2018-05-01 | Cook Medical Technologies Llc | Articulating balloon catheter and method for using the same |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
US10940281B2 (en) | 2014-10-27 | 2021-03-09 | Covidien Lp | Ventilation triggering |
US11712174B2 (en) | 2014-10-27 | 2023-08-01 | Covidien Lp | Ventilation triggering |
US11324954B2 (en) | 2019-06-28 | 2022-05-10 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
US12036409B2 (en) | 2019-06-28 | 2024-07-16 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
CN113057719A (en) * | 2019-12-30 | 2021-07-02 | 先健科技(深圳)有限公司 | Balloon catheter |
CN114099917A (en) * | 2021-11-12 | 2022-03-01 | 新疆维吾尔自治区人民医院 | A kind of urethral nondestructive dilator and using method thereof |
CN118490948A (en) * | 2024-05-23 | 2024-08-16 | 杭州坦帕医疗科技有限公司 | Adjustable double-layer cuff plugging device |
Also Published As
Publication number | Publication date |
---|---|
JP2009508659A (en) | 2009-03-05 |
CA2623952C (en) | 2014-09-16 |
US7591830B2 (en) | 2009-09-22 |
CA2623952A1 (en) | 2007-03-29 |
US20070066962A1 (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7591830B2 (en) | Airway balloon dilator | |
US7771446B2 (en) | Balloon dilator | |
US9095364B2 (en) | Device and method for dilating an airway stenosis | |
US20200008821A1 (en) | Balloon dilation catheter | |
CN108135717B (en) | Improve lung airflow | |
Ahn et al. | Surgical outcomes of post intubational or post tracheostomy tracheal stenosis: report of 18 cases in single institution | |
EP1942979B1 (en) | Airway balloon dilator | |
Othersen Jr et al. | A new method of treatment for complete tracheal rings in an infant: endoscopic laser division and balloon dilation | |
Cooper | Management of Complex Airway Problems | |
Hsieh et al. | Flexible endoscopic diagnosis and treatment of esophageal stenosis in children with noninvasive ventilation support | |
US10179227B2 (en) | Resilient tube over dilator balloon | |
Balakrishnan et al. | Balloon dilation of the airway | |
WO2023168123A1 (en) | Balloon dilation catheter | |
Kunadharaju et al. | A Novel Interdisciplinary Approach to the Successful Treatment of Cotton-Myer Grade 4 Membranous Suprastomal Tracheal Stenosis Using Flexible Bronchoscopy and T-tube Placement | |
Singh et al. | Tracheostomy from Insertion to de cannulation | |
Tsai et al. | Experience with removing Palmaz stents with a rigid bronchoscope | |
Chhajed et al. | Balloon dilatation using flexible bronchoscopy for the management of benign and malignant airway stenoses | |
Sapkota et al. | Nepal’s First Laser Bronchoscopy: A Case Report | |
Belafsky et al. | Office airway surgery | |
Ramming et al. | Surgical management of extensive tracheal lesions | |
George III et al. | Anesthesia for the management of subglottic stenosis and tracheal resection | |
Eliachar et al. | Emergency Management of Tracheal Stenosis: Retrograde Tracheal Bougienage | |
Osborne et al. | Tracheal ring herniation following percutaneous dilatational tracheostomy and its resection under endoscopic control | |
Sandhu et al. | Laryngotracheal stenosis | |
Bhavana et al. | Management of suprastomal tracheal obstruction following: a case report |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHILDREN'S HOSPITAL MEDICAL CENTER, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RUTTER, MICHAEL JOHN;REEL/FRAME:017109/0163 Effective date: 20050918 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |