US20070066718A1 - Superabsorbent polymer with high permeability - Google Patents
Superabsorbent polymer with high permeability Download PDFInfo
- Publication number
- US20070066718A1 US20070066718A1 US11/469,718 US46971806A US2007066718A1 US 20070066718 A1 US20070066718 A1 US 20070066718A1 US 46971806 A US46971806 A US 46971806A US 2007066718 A1 US2007066718 A1 US 2007066718A1
- Authority
- US
- United States
- Prior art keywords
- weight
- superabsorbent polymer
- sanitary article
- polymer
- thermoplastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000035699 permeability Effects 0.000 title claims abstract description 59
- 229920000247 superabsorbent polymer Polymers 0.000 title claims description 110
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 55
- 230000014759 maintenance of location Effects 0.000 claims abstract description 38
- 239000000178 monomer Substances 0.000 claims abstract description 23
- 239000002253 acid Substances 0.000 claims abstract description 17
- 229920000642 polymer Polymers 0.000 claims description 61
- 239000000203 mixture Substances 0.000 claims description 56
- 239000002245 particle Substances 0.000 claims description 54
- -1 polyethylene Polymers 0.000 claims description 42
- 239000000843 powder Substances 0.000 claims description 39
- 239000003431 cross linking reagent Substances 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 238000004132 cross linking Methods 0.000 claims description 24
- 239000004416 thermosoftening plastic Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 19
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 239000004094 surface-active agent Substances 0.000 claims description 12
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 claims description 11
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 10
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 10
- 239000004743 Polypropylene Substances 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 9
- 239000000428 dust Substances 0.000 claims description 9
- 230000035515 penetration Effects 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 239000003607 modifier Substances 0.000 claims description 8
- 229920000728 polyester Polymers 0.000 claims description 8
- 238000006386 neutralization reaction Methods 0.000 claims description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 3
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical group O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 27
- 229920006037 cross link polymer Polymers 0.000 abstract description 6
- 239000000499 gel Substances 0.000 description 40
- 239000000243 solution Substances 0.000 description 28
- 238000012360 testing method Methods 0.000 description 25
- 239000002250 absorbent Substances 0.000 description 20
- 230000002745 absorbent Effects 0.000 description 20
- 239000004583 superabsorbent polymers (SAPs) Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 239000012085 test solution Substances 0.000 description 11
- 239000012530 fluid Substances 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 210000002700 urine Anatomy 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- 229920003169 water-soluble polymer Polymers 0.000 description 6
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229920004142 LEXAN™ Polymers 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 5
- 239000010839 body fluid Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000007669 thermal treatment Methods 0.000 description 5
- 239000004418 Lexan Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000000452 restraining effect Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- BLDFSDCBQJUWFG-UHFFFAOYSA-N 2-(methylamino)-1,2-diphenylethanol Chemical compound C=1C=CC=CC=1C(NC)C(O)C1=CC=CC=C1 BLDFSDCBQJUWFG-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000178343 Butea superba Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 235000001911 Ehretia microphylla Nutrition 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010021639 Incontinence Diseases 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 239000004708 Very-low-density polyethylene Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007046 ethoxylation reaction Methods 0.000 description 2
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- 229920001866 very low density polyethylene Polymers 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- BXAAQNFGSQKPDZ-UHFFFAOYSA-N 3-[1,2,2-tris(prop-2-enoxy)ethoxy]prop-1-ene Chemical compound C=CCOC(OCC=C)C(OCC=C)OCC=C BXAAQNFGSQKPDZ-UHFFFAOYSA-N 0.000 description 1
- ZWAPMFBHEQZLGK-UHFFFAOYSA-N 5-(dimethylamino)-2-methylidenepentanamide Chemical compound CN(C)CCCC(=C)C(N)=O ZWAPMFBHEQZLGK-UHFFFAOYSA-N 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910014813 CaC2 Inorganic materials 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229920005628 alkoxylated polyol Polymers 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- IQIJRJNHZYUQSD-UHFFFAOYSA-N ethenyl(phenyl)diazene Chemical compound C=CN=NC1=CC=CC=C1 IQIJRJNHZYUQSD-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L magnesium chloride Substances [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002175 menstrual effect Effects 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- OEIXGLMQZVLOQX-UHFFFAOYSA-N trimethyl-[3-(prop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCNC(=O)C=C OEIXGLMQZVLOQX-UHFFFAOYSA-N 0.000 description 1
- 229940096522 trimethylolpropane triacrylate Drugs 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/126—Polymer particles coated by polymer, e.g. core shell structures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
Definitions
- the invention relates to superabsorbent polymers which absorb water, aqueous liquids and blood wherein the superabsorbent polymers of the present invention have improved properties, in particular an improved relationship between gel bed permeability and fluid retention including achieving higher gel bed permeability without the disadvantages of low retention that are characteristic of higher gel strengths.
- the superabsorbent polymers of the present invention may be coated with a thermoplastic polymer.
- the present invention also relates to preparation of these superabsorbent polymers and their use as absorbents in hygiene articles and in industrial fields.
- Superabsorbent refers to a water-swellable, water-insoluble, organic or inorganic material capable of absorbing at least about 10 times its weight and up to about 30 times its weight in an aqueous solution containing 0.9 weight percent sodium chloride solution in water.
- a superabsorbent polymer is a crosslinked polymer which is capable of absorbing large amounts of aqueous liquids and body fluids, such as urine or blood, with swelling and the formation of hydrogels, and of retaining them under a certain pressure in accordance with the general definition of superabsorbent.
- the superabsorbent polymers that are currently commercially available are crosslinked polyacrylic acids or crosslinked starch-acrylic acid graft polymers, in which some of the carboxyl groups are neutralized with sodium hydroxide solution or potassium hydroxide solution.
- these polymers are chiefly used for incorporation into sanitary articles, such as babies' diapers, incontinence products or sanitary towels.
- Permeability is a measure of the effective connectedness of a porous structure, be it a mat of fiber of a slab of foam or, in this case, crosslinked polymers and may be specified in terms of the void fraction and extent of connectedness of the superabsorbent polymer.
- Gel permeability is a property of the mass of particles as a whole and is related to particle size distribution, particle shape, and the connectedness of the open pores, shear modulus and surface modification of the swollen gel. In practical terms, the permeability of the superabsorbent polymer is a measure of how rapidly liquid flows through the mass of swollen particles.
- gel blocking is a well-known problem that may be associated with the use of superabsorbent polymers in absorbent articles such as diapers.
- Gel blocking occurs when rapid expansion of the superabsorbent polymer particles around the point of entry of body fluid into an absorbent article causes a closing of the interstitial spaces and pores in the SAP-fluff matrix. Since the transport of liquid by diffusion through swollen hydrogel is much slower than transport through the interstitial spaces, a sealing effect occurs in the area of fluid entry. This effect is referred to as gel blocking.
- next generation diaper constructions there is less fiber material, or potentially none at all, in the absorber layer to assist in transportation of the liquid or maintenance of an open, fluid permeable structure.
- the superabsorbent polymer of these next generation diaper constructions must have a sufficiently high stability in the swollen state, generally called gel strength, so the swollen gel has a sufficient amount of capillary spaces through which liquid can be transported.
- the degree of crosslinking ofthe polymer may be increased, which necessarily results in a reduction in the swellability and the retention capacity.
- current art has taught to increase the amount of crosslinking and have higher gel strength achieved, typically having a shear modulus of greater than 9,500 dynes/cm 2 .
- the absorption and retention values of the superabsorbent polymers are reduced to undesirably low levels. It is an important goal of the art of making superabsorbent polymers to develop a polymer having a high absorption and retention capacity for liquid in the after-surface crosslinking stage and increased permeability properties. It has been found that by using new surface modifications to the SAP particles, results of higher permeabilities without very high gel strengths and the undesirable associated low absorption values are achieved.
- the present invention includes a superabsorbent polymer including from about 55 to about 99.9 wt. % of polymerizable unsaturated acid group containing monomers; from about 0.001 to about 5.0 wt. % of internal crosslinking agent; from about 0.001 to about 5.0 wt. % of surface crosslinking agent applied to the particle surface; from 0 to about 5 wt. % of a penetration modifier immediately before, during or immediately after the surface crosslinking step; from 0 to about 5 wt.
- thermoplastic polymer having a thermoplastic melt temperature wherein the thermoplastic polymer is applied on the particle surface coincident with or followed by a temperature at least the thermoplastic melt temperature or greater, wherein the superabsorbent polymer has the characteristics of centrifuge retention capacity of about 25 g/g or more; and a gel bed permeability II of about 300 ⁇ 10 ⁇ 9 cm 2 or more, or in the alternative, a gel bed permeability I of about 500 ⁇ 10 ⁇ 9 cm 2 or more and a shear modulus of less than about 9500 dynes/cm 2 .
- GBP I is at least about [54000e ⁇ 0.18x +100] ⁇ 10 ⁇ 9 cm 2 ; or the GBP I is at least about [54000e ⁇ 0.175x +100] ⁇ 10 ⁇ 9 cm 2 ; or the GBP I is at least about [54000e ⁇ 0.17x +100] ⁇ 10 ⁇ 9 cm 2 ; or wherein GBP I is at least about [54000e ⁇ 0.165x +100] ⁇ 10 ⁇ 9 cm 2 .
- the present invention is directed to absorbent compositions or sanitary articles that may contain superabsorbent polymers of the present invention.
- FIG. 1 is a cross-section of apparatus for conducting a Permeability Test
- FIG. 2 is a section taken in the plane of line 2 - 2 of FIG. 1 ;
- FIG. 3 is an elevation view of apparatus for conduction a Shear Modulus Test.
- a suitable superabsorbent polymer may be selected from natural, biodegradable, synthetic and modified natural polymers and materials.
- the term crosslinked used in reference to the superabsorbent polymer refers to any means for effectively rendering normally water-soluble materials substantially water-insoluble but swellable.
- Such a crosslinking means can include for example, physical entanglement, crystalline domains, covalent bonds, ionic complexes and associations, hydrophilic associations such as hydrogen bonding, hydrophobic associations or Van der Waals forces.
- Superabsorbent polymers include internal crosslinking and surface crosslinking.
- the superabsorbent polymer is a crosslinked polymer comprising a) from about 55 to about 99.9 wt. % of polymerizable unsaturated acid group containing monomers; b) from about 0.001 to about 5.0 wt. % of internal crosslinking agent; c) from about 0.001 to about 5.0 wt. % of surface crosslinking agent applied to the particle surface; d) from 0 to about 5 wt. % of a penetration modifier applied to the surface of the particle immediately before, during or immediately after the surface crosslinking step; e) from 0 to about 5 wt.
- thermoplastic polymer having a thermoplastic melt temperature wherein the thermoplastic polymer is applied on the particle surface coincident with or followed by a temperature at least the thermoplastic melt temperature or greater, wherein the superabsorbent polymer has a degree of neutralization of more than about 25%; a centrifuge retention capacity from about 25 g/g or more; and a gel bed permeability II of about 200 ⁇ 10 ⁇ 9 cm 2 or more, or in the alternative, a gel bed permeability I of about 500 ⁇ 10 ⁇ 9 cm 2 or more.
- Other embodiments include, but not limited to, include a superabsorbent polymer according to the present invention wherein GBP I is at least about [54000e ⁇ 0.18x +100] ⁇ 10 ⁇ 9 cm 2 ; or the GBP I is at least about [54000e ⁇ 0.175x +100] ⁇ 10 ⁇ 9 cm 2 ; or the GBP I is at least about [54000e ⁇ 0.17x +100] ⁇ 10 ⁇ 9 cm 2 ; or wherein GBP I is at least about [54000e ⁇ 0.165x +100] ⁇ 10 ⁇ 9 cm 2 .
- the superabsorbent polymer of the present invention is obtained by the initial polymerization of from about 55 to about 99.9 wt.
- Suitable monomers include those containing carboxyl groups, such as acrylic acid, methacrylic acid or 2-acrylamido-2-methylpropanesulfonic acid, or mixtures of these monomers are preferred here. It is preferable for at least about 50-weight. %, and more preferably at least about 75 wt. % of the acid groups to be carboxyl groups.
- the acid groups are neutralized to the extent of at least about 25 mol %, that is, the acid groups are preferably present as sodium, potassium or ammonium salts.
- the degree of neutralization is preferably at least about 50 mol %. It is preferred to obtain polymers obtained by polymerization of acrylic acid or methacrylic acid, the carboxyl groups of which are neutralized to the extent of 50-80 mol %, in the presence of internal crosslinking agents.
- monomers which can be used for the preparation of the absorbent polymers according to the invention, are 0-40 wt. % of ethylenically unsaturated monomers which can be copolymerized with a), such as e.g. acrylamide, methacrylamide, hydroxyethyl acrylate, dimethylaminoalkyl (meth)-acrylate, ethoxylated (meth)-acrylates, dimethylaminopropylacrylamide or acrylamidopropyltrimethylammonium chloride. More than 40 wt. % of these monomers can impair the swellability of the polymers.
- a such as e.g. acrylamide, methacrylamide, hydroxyethyl acrylate, dimethylaminoalkyl (meth)-acrylate, ethoxylated (meth)-acrylates, dimethylaminopropylacrylamide or acrylamidopropyltrimethylammonium chloride. More than 40
- the internal crosslinking agent has at least two ethylenically unsaturated double bonds or one ethylenically unsaturated double bond and one functional group which is reactive towards acid groups of the polymerizable unsaturated acid group containing monomers or several functional groups which are reactive towards acid groups can be used as the internal crosslinking component and which is present during the polymerization of the polymerizable unsaturated acid group containing monomers.
- Examples of internal crosslinking agents include aliphatic unsaturated amides, such as methylenebisacryl- or -methacrylamide or ethylenebisacrylamide, and furthermore aliphatic esters of polyols or alkoxylated polyols with ethylenically unsaturated acids, such as di(meth)acrylates or tri(meth)acrylates of butanediol or ethylene glycol, polyglycols or trimethylolpropane, di- and triacrylate esters of trimethylolpropane which is preferably oxyalkylated, preferably ethoxylated, with 1 to 30 mol of alkylene oxide, acrylate and methacrylate esters of glycerol and pentaerythritol and of glycerol and pentaerythritol oxyethylated with preferably 1 to 30 mol of ethylene oxide and furthermore allyl compounds, such as allyl (meth)acrylate, al
- Ionic crosslinkers such as multivalent metal salts may also be employed. Mixtures of the crosslinking agents mentioned can also be employed.
- the content of the internal crosslinking agents is from about 0.01 to about 5 wt. %, and preferably from about 0.1 to about 3.0 wt. %, based on the total amount of the polymerizable unsaturated acid group containing monomers.
- the usual initiators such as e.g. azo or peroxo compounds, redox systems or UV initiators, (sensitizers), and/or radiation are used for initiation of the free-radical polymerization.
- the absorbent polymers are surface crosslinked after polymerization.
- Surface crosslinking is any process that increases the crosslink density ofthe polymer matrix in the vicinity of the superabsorbent particle surface with respect to the crosslinking density of the particle interior.
- the absorbent polymers are typically surface crosslinked by the addition of a surface crosslinking agent.
- Preferred surface crosslinking agents include chemicals with one or more functional groups, which are reactive towards pendant groups of the polymer chains, typically the acid groups.
- the content of the surface crosslinking agents is from about 0.01 to about 5 wt. %, and preferably from about 0. 1 to about 3.0 wt. %, based on the weight of the dry polymer.
- a heating step is preferred after addition of the surface crosslinking agent.
- the present invention includes coating the particulate superabsorbent polymer with an alkylene carbonate followed by heating to effect surface crosslinking to improve the surface crosslinking density and the gel strength characteristics. More specifically a surface crosslinking agent is coated onto the particulate by mixing the polymer with an aqueous alcoholic solution of the alkylene carbonate surface cross linking agent.
- the amount of alcohol is determined by the solubility of the alkylene carbonate and is kept as low as possible for technical reasons, for instance protection against explosions. Suitable alcohols are methanol, ethanol, butanol, or butyl glycol as well as mixtures of these alcohols.
- the preferred solvent is water, which typically is used in an amount of 0.3 to 5.0% by weight, relative to particulate superabsorbent polymer.
- the alkylene carbonate surface cross linking agent is dissolved in water, without any alcohol. It is also possible to apply the alkylene carbonate surface cross linking agent from a powder mixture, for example, with an inorganic carrier material, such as SiO 2 , or in the vapor state by sublimation of the alkylene carbonate.
- the alkylene carbonate has to be distributed evenly on the particulate superabsorbent polymer.
- mixing is effected in suitable mixers, such as fluidized bed mixers, paddle mixers, rotary drum mixers, or twin-worm mixers. It is also possible to carry out the coating of the particular superabsorbent polymer during one of the process steps in the production of the particulate superabsorbent polymer.
- a particularly suitable process for this purpose is the inverse suspension polymerization process.
- the thermal treatment which follows the coating treatment, is carried out as follows.
- the thermal treatment is at a temperature between 100 and 300° C.
- the thermal treatment is at a temperature between 150 and 250° C.
- the treatment temperature depends on the dwell time and the kind of alkylene carbonate.
- the thermal treatment is carried out for one hour or longer.
- a few minutes e.g., 0.5 to 5 minutes, are sufficient to achieve the desired surface cross linking properties.
- the thermal treatment may be carried out in conventional dryers or ovens.
- particles are then used by way of example of the physical form of superabsorbent polymers, the invention is not limited to this form and is applicable to other forms such as fibers, foams, films, beads, rods and the like.
- the absorbent polymers according to the invention can include from 0 to about 5 wt % of a penetration modifier that is added immediately before, during or immediately after the surface crosslinking agent.
- penetration modifiers include compounds which alter the penetration depth of surface-modifying agents into the superabsorbent polymer particle, fiber, film, foam or bead by changing the viscosity, surface tension, ionic character or adhesion of said agents or medium in which these agents are applied.
- Preferred penetration modifiers are, polyethylene glycols, tetraethylene glycol dimethyl ether, monovalent metal salts, surfactants, water soluble polymers, thermoplastic resins or blends thereof.
- the absorbent polymers according to the invention can include from 0 to about 5 wt % of a multivalent metal salt, based on the weight of the mixture, on the surface of the polymer.
- the multivalent metal salt is preferably water soluble.
- preferred metal cations include the cations of Al, Fe, Zr, Mg and Zn.
- the metal cation has a valence of at least +3, with Al being most preferred.
- Examples of preferred anions in the multivalent metal salt include halides, chlorohydrates, sulfates, nitrates and acetates, with chlorides, sulfates, chlorohydrates and acetates being preferred, chlorohydrates and sulfates being more preferred and sulfates being the most preferred.
- Aluminum sulfate is the most preferred multivalent metal salt and is readily commercially available. The preferred form of aluminum sulfate is hydrated aluminum sulfate, preferably aluminum sulfate having from 12 to 14 waters of hydration. Mixtures of multivalent metal salts can be employed.
- the polymer and multivalent metal salt suitably are mixed by dry blending, or preferably in solution, using means well known to those skilled in the art. Aqueous solutions are preferred. With dry blending, a binder may be employed in an amount which sufficient to ensure that a substantially uniform mixture of the salt and the superabsorbent polymer is maintained.
- the binder may be water or a nonvolatile organic compound having a boiling point of at least 150° C. Examples of binders include water, polyols such as propylene glycol, glycerin and poly(ethylene glycol).
- the absorbent polymers according to the invention can comprise include from about 0.01 to about 5 wt % of water-insoluble, inorganic powder.
- insoluble, inorganic powders include silicon dioxide, silicic acid, silicates, titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, calcium phosphate, clays, diatomataceous earth, zeolites, bentonite, kaolin, hydrotalcite, activated clays, etc.
- the insoluble inorganic powder additive may be a single compound or a mixture of compounds selected from the above list. Of all these examples, microscopic noncrystal silicon dioxide or aluminum oxide preferred. Further, a preferred particle diameter of the inorganic powder is 1,000 ⁇ m or smaller, and more preferably 100 ⁇ m or smaller.
- the superabsorbent polymer according to the invention may also include the addition of from 0 to about 5 wt % of a surfactant to the polymer particle surface. It is preferred that these be added immediately prior to, during or immediately after the surface crosslinking step.
- surfactants include anionic, non-ionic, cationic and amphoteric surface active agents, such as fatty acid salts, coco amines and amides and their salts, alkylsulfuric ester salts, alkylbenzene sulfonic acid salts, dialkyl sulfo-succinate, alkyl phosphate salt, and polyoxyethylene alkyl sulfate salt; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxy sorbitan fatty acid ester, polyoxyethylene alkylamine, fatty acid esters, and oxyethylene-oxypropylene block polymer; alkyl amine salts, quaternary ammonium salts; and lauryl dimethylamine oxide.
- surfactants may be used individually, or in combination.
- the superabsorbent polymers may also include from 0 to about 30 wt. % of water-soluble polymers, such as partly or completely hydrolysed polyvinyl acetate, polyvinylpyrrolidone, starch or starch derivatives, polyglycols or polyacrylic acids, preferably in polymerized-in form.
- the molecular weight of these polymers is not critical as long as they are water-soluble.
- Preferred water-soluble polymers are starch and polyvinyl alcohol.
- the preferred content of such water-soluble polymers in the absorbent polymer according to the invention is 0-30 wt. %, preferably 0-5 wt. %, based on the total amount of components a) to d).
- the water-soluble polymers, preferably synthetic polymers, such as polyvinyl alcohol can also serve as a graft base for the monomers to be polymerized.
- the superabsorbent polymer of the present invention includes from about 0.01 to 5wt % of a thermoplastic polymer having a thermoplastic melt temperature wherein the thermoplastic polymer is applied on the particle surface coincident with or followed by a temperature at about the thermoplastic melt temperature.
- the thermoplastic polymer preferably is a polymer that may be in a solid or emulsion state.
- thermoplastic polymers suitable for this invention may include but are not limited to polyolefin, polyethylene, polyester, polyamide, polyurethane, styrene polybutadiene, linear low density polyethylene (LLDPE), ethylene acrylic acid copolymer (EAA), ethylene alkyl methacrylate copolymer (EMA), polypropylene (PP), ethylene vinyl acetate copolymer (EVA) and blends of all families of polyolefins, such as blends of PP, EVA, EMA, EEA, EBA, HDPE, MDPE, LDPE, LLDPE, and/or VLDPE, may also be advantageously employed.
- polyolefin as used herein generally includes, but is not limited to, materials such as polyethylene, ethylene vinyl acetate copolymer and the like, the homopolymers, copolymers, terpolymers, etc., thereof, and blends and modifications thereof.
- polyolefin shall include all possible structures thereof, which includes, but is not limited to, isotatic, synodiotactic and random symmetries.
- Copolymers include random and block copolymers.
- Ethylene acrylic acid copolymer EAA, polyester and EVA are preferred thermoplastic polymers for use in the present invention.
- blends of all families of polyolefins such as blends of PP, EVA, EMA, EEA, EBA, HDPE, MDPE, LDPE, LLDPE, and/or VLDPE, may also be advantageously employed.
- a single additive may be a surfactant, viscosity modifier and react to crosslink polymer chains.
- the superabsorbent polymers may also include from 0 to about 2.0 wt % of dedusting agents, such as hydrophilic and hydrophobic dedusting agents such as those described in U.S. Pat. Nos. 6,090,875 and 5,994,440 may also be employed in the process of the invention.
- dedusting agents such as hydrophilic and hydrophobic dedusting agents such as those described in U.S. Pat. Nos. 6,090,875 and 5,994,440 may also be employed in the process of the invention.
- additives of the superabsorbent polymers according to the invention may optionally be employed, such as odor-binding substances, such as cyclodextrins, zeolites, inorganic or organic salts and similar materials; anti-caking additives, flow modification agents and the like.
- the polymers according to the invention are preferably prepared by two methods.
- the polymers can be prepared continuously or discontinuously in a large-scale industrial manner by the abovementioned known process, the after-crosslinking according to the invention being carried out accordingly.
- the partly neutralized monomer preferably acrylic acid
- the partly neutralized monomer is converted into a gel by free-radical polymerization in aqueous solution in the presence of crosslinking agents and optionally further components, and the gel is comminuted, dried, ground and sieved off to the desired particle size.
- This solution polymerization can be carried out continuously or discontinuously.
- Inverse suspension and emulsion polymerization can also be used for preparation of the products according to the invention.
- an aqueous, partly neutralized solution of monomers preferably acrylic acid
- a hydrophobic, organic solvent with the aid of protective colloids and/or emulsifiers and the polymerization is started by free radical initiators.
- the internal crosslinking agents either are dissolved in the monomer solution and are metered in together with this, or are added separately and optionally during the polymerization.
- the addition of a water-soluble polymer d) as the graft base optionally takes place via the monomer solution or by direct introduction into the oily phase.
- Internal crosslinking can be carried out by polymerizing-in a polyfunctional crosslinking agent dissolved in the monomer solution and/or by reaction of suitable crosslinking agents with functional groups of the polymer during the polymerization steps.
- the superabsorbent polymer is used in the form of discrete particles.
- Superabsorbent polymer particles can be of any suitable shape, for example, spiral or semi-spiral, cubic, rod-like, polyhedral etc. Particle shapes having a large greatest dimension/smallest dimension ratio, like needles, flakes or fibers are also contemplated for use herein. Conglomerates of particles of superabsorbent polymers may also be used.
- a superabsorbent Preproduct as used herein is produced by repeating including all the steps or making a superabsorbent up to and including drying the material and coarse grounding it a crusher and removing particles greater than 850 microns and smaller than 150 microns.
- the superabsorbent Preproduct may be substantially homogenously blended under ambient conditions together with the thermoplastic polymer, inorganic powder and multivalent metal salt, as well as other additives, by a mixer such as a cement mixer, screw mixer, sigma blade, fluidizing mixer or a rotary drum mixer.
- a mixer such as a cement mixer, screw mixer, sigma blade, fluidizing mixer or a rotary drum mixer.
- One type of mixer is a Red Lion model ‘BigCat,’ type B concrete mixer available from Home Depot.
- Time for blending is about 20 minutes. Blend time in a rapid fluidizing mixer can be reduced to less than a minute.
- the homogenous blended product is then fed into a paddle dryer wherein the blended product is heated and further mixed. In particular, the blended product is heated to a temperature from about 150° C. to about 225° C., preferably from about 170° C. to about 200° C.
- Residence time for the blended product in the heated paddle dryer is from about 10 to about 60 minutes. The required residence time
- the superabsorbent polymer of the present invention has certain characteristics, or properties, as measured by Gel Bed Permeability (GBP), Centrifuge Retention Capacity (CRC) and Dust Value.
- GBP Gel Bed Permeability Test
- CRC Centrifuge Retention Capacity
- Dust Value Dust Value.
- the Gel Bed Permeability Test (GBP) is a measurement of the permeability of a swollen bed of superabsorbent material in cm 2 (e.g., separate from the absorbent structure) under a confining pressure after what is commonly referred to as “free swell” conditions.
- free swell means that the superabsorbent material is allowed to swell without a swell restraining load upon absorbing test solution as will be described.
- the Centrifuge Retention Capacity Test measures the ability of the superabsorbent material to retain liquid therein after being saturated and subjected to centrifugation under controlled conditions.
- the resultant retention capacity is stated as grams of liquid retained per gram weight of the sample (g/g).
- the graph shows a relationship between gel bed permeability and centrifuge retention capacity.
- the polymers according to the invention can be employed in many products including sanitary towels, diapers or in wound coverings, they have the property that they rapidly absorb large amounts of menstrual blood, urine or other body fluids. Since the agents according to the invention retain the absorbed liquids even under pressure and additionally are capable of distributing further liquid within the construction in the swollen state, they are more preferably employed in higher concentrations, in respect of the hydrophilic fiber material, such as e.g. fluff, than was hitherto possible. They are also suitable for use as a homogeneous superabsorber layer without fluff content within the diaper construction, as a result of which particularly thin diapers are possible. The polymers are furthermore suitable for use in hygiene articles (incontinence products) for adults.
- the polymers according to the invention are also employed in absorbent articles that are suitable for further uses.
- the polymers of this invention can be used in absorbent compositions for absorbents for water or aqueous liquids, preferably in constructions for absorption of body fluids, in foamed and non-foamed sheet-like structures, in packaging materials, in constructions for plant growing, as soil improvement agents or as active compound carriers.
- they are processed to a web by mixing with paper or fluff or synthetic fibers or by distributing the superabsorbent polymers between substrates of paper, fluff or non-woven textiles or by processing into carrier materials.
- absorbent compositions such as wound dressings, packaging, agricultural absorbents, food trays and pads, and the like.
- the superabsorbent polymers according to the invention show a significant improvement in permeability, i.e. an improvement in the transportation of liquid in the swollen state, while maintaining high absorption and retention capacity.
- Gel Bed Permeability I(GBPI) Test determines the permeability of a swollen bed of superabsorbent polymer under what is commonly referred to as “free swell” conditions.
- free swell means that the superabsorbent polymer is allowed to swell without a swell restraining load upon absorbing test solution as will be described.
- a suitable apparatus for conducting a Permeability Test is shown in FIG. 1 and 2 and indicated generally as 28 .
- the test apparatus 28 comprises a sample container, generally indicated at 30 , and a piston, generally indicated at 36 .
- the piston 36 comprises a cylindrical LEXAN® shaft 38 having a concentric cylindrical hole 40 bored down the longitudinal axis ofthe shaft. Both ends ofthe shaft 38 are machined to provide upper and lower ends respectively designated 42 , 46 .
- a weight, indicated as 48 rests on one end 42 and has a cylindrical hole 48 a bored through at least a portion of its center.
- a circular piston head 50 is positioned on the other end 46 and is provided with a concentric inner ring of seven holes 60 , each having a diameter of about 0.95 cm, and a concentric outer ring of fourteen holes 54 , also each having a diameter of about 0.25 cm.
- the holes 54 , 60 are bored from the top to the bottom of the piston head 50 .
- the piston head 50 also has a cylindrical hole 62 bored in the center thereof to receive end 46 of the shaft 38 .
- the bottom of the piston head 50 may also be covered with a biaxially stretched 400 mesh stainless steel screen 64 .
- the sample container 30 comprises a cylinder 34 and a 100 mesh stainless steel cloth screen 66 that is biaxially stretched to tautness and attached to the lower end of the cylinder.
- a superabsorbent polymer sample, indicated as 68 in FIG. 1 is supported on the screen 66 within the cylinder 34 during testing.
- the cylinder 34 may be bored from a transparent LEXAN rod of equivalent material, or it may be cut from a LEXAN tubing or equivalent material, and has an inner diameter of about 6 cm (e.g., a cross sectional area of about 28.27 cm2), a wall thickness of about 0.5 cm and a height of approximately 5 cm. Drainage holes (not shown) are formed in the sidewall ofthe cylinder 34 at a height of approximately 4.0 cm above the screen 66 to allow liquid to drain from the cylinder to thereby maintain a fluid level in the sample container at approximately 4.0 cm above screen 66 .
- the piston head 50 is machined from a LEXAN rod or equivalent material and has a height of approximately 16 mm and a diameter sized such that it fits within the cylinder 34 with minimum wall clearance but still slides freely.
- the shaft 38 is machined from a LEXAN rod or equivalent material and has an outer diameter of about 2.22 cm and an inner diameter of about 0.64 cm.
- the shaft upper end 42 is approximately 2.54 cm long and approximately 1.58 cm in diameter, forming an annular shoulder 47 to support the weight 48 .
- the annular weight 48 has an inner diameter of about 1.59 cm so that it slips onto the upper end 42 of the shaft 38 and rests on the annular shoulder 47 formed thereon.
- the annular weight 48 can be made from stainless steel or from other suitable materials resistant to corrosion in the presence ofthe test solution, which is 0.9 weight percent sodium chloride solutions in distilled water.
- the combined weight of the piston 36 and annular weight 48 equals approximately 596 grams (g), which corresponds to a pressure applied to the absorbent structure sample 68 of about 0.3 pounds per square inch (psi), or about 20.7 grams/cm 2 , over a sample area of about 28.27cm 2 .
- the sample container 30 When the test solution flows through the test apparatus during testing as described below, the sample container 30 generally rests on a 16 mesh rigid stainless steel support screen (not shown). Alternatively, the sample container 30 may rest on a support ring (not shown) diametrically sized substantially the same as the cylinder 34 so that the support ring does not restrict flow from the bottom of the container.
- the piston 36 To conduct the Gel Bed Permeability I Test under “free swell” conditions, the piston 36 , with the weight 48 seated thereon, is placed in an empty sample container 30 and the height from the bottom of the weight 48 to the top of the cylinder 34 is measured using a caliper of suitable gauge accurate to 0.01 mm. It is important to measure the height of each sample container 30 empty and to keep track of which piston 36 and weight 48 is used when using multiple test apparatus. The same piston 36 and weight 48 should be used for measurement when the superabsorbent polymer sample 68 is water swollen following saturation.
- the sample to be tested is prepared from superabsorbent material particles which are prescreened through a U.S. standard 30 mesh screen and retained on a U.S. standard 50 mesh screen.
- the test sample comprises particles sized in the range of about 300 to about 600 microns.
- the particles can be prescreened by hand or automatically.
- Approximately 0.9 grams of the sample is placed in the sample container 30 , and the container, without the piston 36 and weight 48 therein, is then submerged in the test solution for a time period of about 60 minutes to saturate the sample and allow the sample to swell free of any restraining load.
- the piston 36 and weight 48 assembly is place on the saturated sample 68 in the sample container 30 and then the sample container 30 , piston 36 , weight 48 , and sample 68 are removed from the solution.
- the thickness of the saturated sample 68 is determined by again measuring the height from the bottom of the weight 48 to the top of the cylinder 34 , using the same caliper or gauge used previously provided that the zero point is unchanged from the initial height measurement.
- the height measurement obtained from measuring the empty sample container 30 , piston 36 , and weight 48 is subtracted from the height measurement obtained after saturating the sample 68 .
- the resulting value is the thickness, or height “H” of the swollen sample.
- the permeability measurement is initialed by delivering a flow of the test solution into the sample container 30 with the saturated sample 68 , piston 36 , and weight 48 inside.
- the flow rate of test solution into the container is adjusted to maintain a fluid height of about 4.0 cm above the bottom of the sample container.
- the quantity of solution passing through the sample 68 versus time is measured gravimetrically. Data points are collected every second for at least twenty seconds once the fluid level has been stabilized to and maintained at about 4.0 cm in height.
- the flow rate Q through the swollen sample 68 is determined in units of grams/second (g/g) by a linear least-square fit of fluid passing through the sample 68 (in grams) versus time (in seconds).
- Rho liquid density (g/cm 2 )
- g gravitational acceleration, nominally 981 cm/sec 2
- h fluid height. e.g., 4.0 cm for the Permeability Test described herein.
- the Gel Bed Permeability II (GBPII) test is the same as GBPI except for the following differences.
- One difference is in the length of the cylinder 34 .
- the fluid height is 4 cm and in GBPII is 7.8 cm.
- Cylinder in GBPII is 10 cm tall.
- three discharge ports are present and centered at 7.8 cm above the screen. These ports are 120° apart about the cylinder diameter, with the saline entry port being 1.2 cm (centered) above the midpoint between the discharge ports.
- GBP I values can be calculated from GBP II measurements as follows
- Calc GBPI is approximately equal to 1.5 ⁇ GBPII
- the Centrifuge Retention Capacity (CRC) Test measures the ability of the superabsorbent polymer to retain liquid therein after being saturated and subjected to centrifugation under controlled conditions. The resultant retention capacity is stated as grams of liquid retained per gram weight of the sample (g/g).
- the sample to be tested is prepared from particles which is pre-screened through a U.S. standard 30 mesh screen and retained on a U.S. standard 50 mesh screen.
- the superabsorbent polymer sample comprises particles sized in the range of about 300 to about 600 microns. The particles can be pre-screened by hand or automatically.
- the retention capacity is measured by placing about 0.2 grams of the pre-screened superabsorbent polymer sample into a water-permeable bag that will contain the sample while allowing a test solution (0.9 weight percent sodium chloride in distilled water) to be freely absorbed by the sample.
- a heat-sealable tea bag material such as that available from Dexter Corporation of Windsor Locks, Connecticut, U.S.A., as model designation 1234T heat sealable filter paper works well for most applications.
- the bag is formed by folding a 5-inch by 3-inch sample of the bag material in half and heat-sealing two of the open edges to form a 2.5-inch by 3-inch rectangular pouch. The heat seals should be about 0.25 inches inside the edge of the material. After the sample is placed in the pouch, the remaining open edge of the pouch is also heat-sealed. Empty bags are also made to serve as controls. Three samples are prepared for each superabsorbent polymer to be tested.
- the sealed bags are placed submerged in a pan or the test solution at 23° C., making sure that the bags are held down until they are completely wetted. After wetting, the samples remain in the solution for about 30 minutes, at which time they are removed from the solution and temporarily laid on a non-absorbent flat surface.
- the wet bags are then placed into the basket of a suitable centrifuge capable of subjecting the samples to a g-force of about 350.
- a suitable centrifuge is a Clay Adams Dynac II, model #0103, having a water collection basket, a digital rpm gauge, and a machined drainage basket adapted to hold and drain the flat bag samples. Where multiple samples are centrifuged, the samples must be placed in opposing positions within the centrifuge to balance the basket when spinning.
- the bags (including the wet, empty bags) are centrifuged at about 1,600 rpm (e.g., to achieve a target g-force of about 350), for 3 minutes.
- the bags are removed and weighed, with the empty bags (controls) being weighed first, followed by the bags containing the superabsorbent polymer samples.
- the amount of solution retained by the superabsorbent polymer sample is the centrifuge retention capacity (CRC) of the superabsorbent polymer, expressed as grams of fluid per gram of superabsorbent polymer. More particularly, the retention capacity is determined as:
- the superabsorbent polymer also suitably has a gel bed permeability (GBP) as determined by the Gel Bed Permeability Test described previously of at least [54000e ⁇ 0.18x +100] ⁇ 10 ⁇ 9 cm 2 , where x is the numeric value of centrifuge retention capacity; preferably GBP is at least about [54000e ⁇ 0.175x +100] ⁇ 10 ⁇ 9 cm 2 and more preferably GBP is at least about [54000e ⁇ 0.17x +100] ⁇ 10 ⁇ 9 cm 2 and most preferably GBP is at least about [54000e ⁇ 0.165x +100] ⁇ 10 ⁇ 9 cm 2 .
- GBP gel bed permeability
- the Shear Modulus Test measures the gel strength, or gel deformation tendency, of the superabsorbent material.
- the shear modulus is measured using a Rank Brothers Pulse Shearometer, shown in FIG. 3 and generally referred to as 70, that comprises a circular lower plate, 72 onto which the swollen superabsorbent polymer is placed.
- a Rank Brothers Pulse Shearometer shown in FIG. 3 and generally referred to as 70, that comprises a circular lower plate, 72 onto which the swollen superabsorbent polymer is placed.
- the Simple Solution to Shear Modulus Measurements for the Rank Pulse ShearometerTM.
- the instrument is constructed in such a way that a torsional shear wave can be propagated between a pair of parallel disks 72 and 74 .
- Each disc is mounted on a piezoelectric transducer: one being used to initiate the shear wave, the other to detect the arrival of this wave a short time later.
- the separation of the disks can be varied by means of a screw adjustment and then measured with a dial gauge.
- the propagation time of the shear wave is measured for each given disk separation. It is then possible to determine the wave velocity from the slope of a graph of propagation time plotted against disk separation.
- G is the shear modulus in Nm ⁇ 2 ;
- p is the density of the superabsorbent polymer sample in kg.m ⁇ 3 and
- V is the wave propagation velocity in ms ⁇ 1 ,
- the sample being tested is swollen to its gel volume in a syntheticsynthetic urine. Excess free synthetic urine is removed from the sample by blotting on two paper towels for exactly one minute, strain.
- the elasticity of the material may be related to the velocity of the wave in the following manner:
- V is the propagation velocity of light
- ⁇ is the density of the superabsorbent polymer
- n is the ratio of the wavelength to the critical damping length.
- Preparation for performing the shear modulus test includes preparing synthetic urine which is made of 1% aqueous Triton X-100, 7.50 g; sodium chloride 30.00 g; anhydrous CaC 2 , 0.68 g; MgCl 2 6H 2 0 1.80 g; and DI water 3000.0 g.
- the spatula is used to spread the polymer out over the paper towelling, only lightly pressing the polymer onto the towel. No more force is applied than that required to distribute the polymer.
- the polymer is scraped up with the spatula and returned to the beaker after 60 seconds.
- the beaker is covered with foil or film until the sample is measured.
- the shear moduli of the samples are measured within one hour of sample preparation.
- the sample is transferred to a shearometer tube and placed on the lower disk 72 , filling the shearometer tube to a height of at least 18 mm above the lower disk.
- the top disk 74 assembly is lowered slowly until the top disk is exactly a distance of 12 mm from the bottom disk.
- the shear modulus G′ is measured and recorded by measuring the time required for the torsional wave to pass through the SAP at plate distances of 12 mm to 6 mm, measured at 1 mm decreasing increments.
- the slope of the linear time to disk separation distance plot provides the shear wave velocity used to calculate the shear modulus, G′.
- Dust Values are measured on a Dustview Unit available from Palas GmbH of Germany. Palas equipment is found at http://www.palas.de/engl/commun/part.htm. All that is required is for the operator to load 30 grams of test powder or SAP product into the funnel, and push a button.
- the Dustview Unit analyses the sample and issues a report.
- the dust values should be about 10 or less, and preferably about 4 or less.
- Graph 1 shows an entirely different relationship exists between centrifuge retention capacity and permeability as measured as GBP I. Graph 1 shows much higher permeability at much higher CRC values. The permeability is often double, triple or even quadruple what was shown for prior art.
- the monomer solution was then polymerized with a mixture of 100 ppm hydrogen peroxide, 200 ppm azo-bis-(2-amidino-propene)dihydrochloride, 200 ppm sodiumpersulfate and 40 ppm ascorbic acid (all aqueous solutions) under adiabatic conditions and held near T max for 25 minutes.
- the resulting gel was chopped and extruded with a Hobarth 4M6 commercial extruder, followed by drying in a Procter & Schwartz Model 062 forced air oven at 175° C. for 10 minutes with upflow and 6 minutes with downflow air on a 20 in ⁇ 40 in perforated metal tray to a final product moisture level of less than 5 wt %.
- the dried material was coarse ground in a Prodeva Model 315-S crusher, milled in an MPI 666-F three stage roller mill and sieved with an Minox MTS 600DS3V to remove particles greater than 850 microns and smaller than 150 microns.
- Blends for surface cross-linking were prepared in one of two methods depending on whether the thermoplastic was a powder or emulsion/solution and with and without silica:
- Superabsorbent Preproduct based on Example 1 was fed into a continuous mixer capable of fluidizing the Preproduct in air. Concurrent additives streams were also fed into the fluidized mix of air and Preproduct, depending on the desired amount of silica or polymer and for homogeneously coating the SAP Preproduct particles.
- the EC/SAP Preproduct ratio (1.5/100) was held constant for all conditions.
- thermoplastic emulsions were added into the 35% EC solution. Feed rates and EC/polymer blend concentrations appear in Table 2..
- 31.8 kilograms of thermoplastic coated Preproduct was heated in a paddle dryer for 25 minutes at 183-186° at 20 rpm.
- Example 5a contained no silica whereas Example 5b includes silica.
- thermoplastic polymer shown in Table 2 for examples 7-10.
- the blended powder mix was then fluidized in air and sprayed with 4.3% of a 35% aqueous ethylene carbonate solution and 0.4% silica.
- 31.8 kg of thermoplastic coated Preproduct were heated in a paddle drier for 25 minutes to 183-186° and at 20 rpm.
- Ethylene acrylic acid is commercially available from Michelman Chemicals, Inc. as Michem Prime 48525R
- Ethylene Vinyl Acetate is commercially available from AIR PRODUCTS AND CHEMICALS, INC. CORPORATION as Airflex 315;
- Polyester adhesive is commercially available from SCHATTI & CO. LIMITED as SchaettiFix 1370;
- Polyester adhesive is commercially available from SCHATTI & CO. LIMITED as SchaettiFix 386;
- Polyester adhesive is commercially available from HULS AKTIENGESELLSCHAFT as Vestamelt 4481;
- Polyester adhesive is commercially available from HULS AKTIENGESELLSCHAFT as Vestamelt 4480
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- This application is a continuation of prior application Ser. No. 10/699,205, filed on Oct. 31, 2003, currently pending.
- The invention relates to superabsorbent polymers which absorb water, aqueous liquids and blood wherein the superabsorbent polymers of the present invention have improved properties, in particular an improved relationship between gel bed permeability and fluid retention including achieving higher gel bed permeability without the disadvantages of low retention that are characteristic of higher gel strengths. The superabsorbent polymers of the present invention may be coated with a thermoplastic polymer. The present invention also relates to preparation of these superabsorbent polymers and their use as absorbents in hygiene articles and in industrial fields.
- Superabsorbent refers to a water-swellable, water-insoluble, organic or inorganic material capable of absorbing at least about 10 times its weight and up to about 30 times its weight in an aqueous solution containing 0.9 weight percent sodium chloride solution in water. A superabsorbent polymer is a crosslinked polymer which is capable of absorbing large amounts of aqueous liquids and body fluids, such as urine or blood, with swelling and the formation of hydrogels, and of retaining them under a certain pressure in accordance with the general definition of superabsorbent.
- The superabsorbent polymers that are currently commercially available are crosslinked polyacrylic acids or crosslinked starch-acrylic acid graft polymers, in which some of the carboxyl groups are neutralized with sodium hydroxide solution or potassium hydroxide solution. As a result of these characteristic properties, these polymers are chiefly used for incorporation into sanitary articles, such as babies' diapers, incontinence products or sanitary towels.
- For fit, comfort and aesthetic reasons and from environmental aspects, there is an increasing trend to make sanitary articles smaller and thinner. This is being accomplished by reducing the content of the high volume fluff fiber of these articles. To ensure a constant total retention capacity of body fluids in the sanitary articles, more superabsorbent polymer content is being used in these sanitary articles. As a result of this, superabsorbent polymers must have increased permeability characteristics while retaining other characteristics such as adequate absorption and retention.
- Permeability is a measure of the effective connectedness of a porous structure, be it a mat of fiber of a slab of foam or, in this case, crosslinked polymers and may be specified in terms of the void fraction and extent of connectedness of the superabsorbent polymer. Gel permeability is a property of the mass of particles as a whole and is related to particle size distribution, particle shape, and the connectedness of the open pores, shear modulus and surface modification of the swollen gel. In practical terms, the permeability of the superabsorbent polymer is a measure of how rapidly liquid flows through the mass of swollen particles. Low permeability indicates that liquid cannot flow readily through the superabsorbent polymer, which is generally referred to gel blocking, and that any forced flow of liquid (such as a second application of urine during use of the diaper) must take an alternate path (e.g., diaper leakage).
- In particular, gel blocking is a well-known problem that may be associated with the use of superabsorbent polymers in absorbent articles such as diapers. Gel blocking occurs when rapid expansion of the superabsorbent polymer particles around the point of entry of body fluid into an absorbent article causes a closing of the interstitial spaces and pores in the SAP-fluff matrix. Since the transport of liquid by diffusion through swollen hydrogel is much slower than transport through the interstitial spaces, a sealing effect occurs in the area of fluid entry. This effect is referred to as gel blocking.
- Transportation of liquid through swollen superabsorbent polymer particles themselves follows the laws of diffusion and is a very slow process which plays no role in the distribution of the liquid in the use situation of the sanitary article. In superabsorbent polymers, which cannot maintain an open bed structure to effect capillary transportation because of a lack of gel stability, the separation of the particles from one another has been ensured by embedding the superabsorbent polymer into a fiber matrix.
- In diaper constructions, for what is called the next generation, there is less fiber material, or potentially none at all, in the absorber layer to assist in transportation of the liquid or maintenance of an open, fluid permeable structure. The superabsorbent polymer of these next generation diaper constructions must have a sufficiently high stability in the swollen state, generally called gel strength, so the swollen gel has a sufficient amount of capillary spaces through which liquid can be transported.
- To obtain a superabsorbent polymer with high gel strength, the degree of crosslinking ofthe polymer may be increased, which necessarily results in a reduction in the swellability and the retention capacity. To achieve the increased permeabilities needed in extremely thin, next generation articles with low fiber content, current art has taught to increase the amount of crosslinking and have higher gel strength achieved, typically having a shear modulus of greater than 9,500 dynes/cm2. However the absorption and retention values of the superabsorbent polymers are reduced to undesirably low levels. It is an important goal of the art of making superabsorbent polymers to develop a polymer having a high absorption and retention capacity for liquid in the after-surface crosslinking stage and increased permeability properties. It has been found that by using new surface modifications to the SAP particles, results of higher permeabilities without very high gel strengths and the undesirable associated low absorption values are achieved.
- It is therefore an object of the present invention to provide an absorbing polymer composition that exhibits excellent properties such as capabilities of maintaining high liquid permeability and liquid retention even when the superabsorbent polymer is increased in percent by weight based on the absorbent structure.
- The present invention includes a superabsorbent polymer including from about 55 to about 99.9 wt. % of polymerizable unsaturated acid group containing monomers; from about 0.001 to about 5.0 wt. % of internal crosslinking agent; from about 0.001 to about 5.0 wt. % of surface crosslinking agent applied to the particle surface; from 0 to about 5 wt. % of a penetration modifier immediately before, during or immediately after the surface crosslinking step; from 0 to about 5 wt. % of a multivalent metal salt on the surface; from about 0 to 2 wt % surfactant on the surface; and optionally from about 0.01 to about 5 wt % of an insoluble, inorganic powder and from about 0.01 to about 5wt % of a thermoplastic polymer having a thermoplastic melt temperature wherein the thermoplastic polymer is applied on the particle surface coincident with or followed by a temperature at least the thermoplastic melt temperature or greater, wherein the superabsorbent polymer has the characteristics of centrifuge retention capacity of about 25 g/g or more; and a gel bed permeability II of about 300×10−9 cm2 or more, or in the alternative, a gel bed permeability I of about 500×10−9 cm2 or more and a shear modulus of less than about 9500 dynes/cm2.
- Other embodiments include, but not limited to, include a superabsorbent polymer according to the present invention wherein GBP I is at least about [54000e−0.18x+100]×10−9 cm2; or the GBP I is at least about [54000e−0.175x+100]×10−9 cm2; or the GBP I is at least about [54000e−0.17x+100]×10−9 cm2; or wherein GBP I is at least about [54000e−0.165x+100]×10−9 cm2.
- In addition the present invention is directed to absorbent compositions or sanitary articles that may contain superabsorbent polymers of the present invention.
-
FIG. 1 is a cross-section of apparatus for conducting a Permeability Test; -
FIG. 2 is a section taken in the plane of line 2-2 ofFIG. 1 ; and -
FIG. 3 is an elevation view of apparatus for conduction a Shear Modulus Test. - A suitable superabsorbent polymer may be selected from natural, biodegradable, synthetic and modified natural polymers and materials. The term crosslinked used in reference to the superabsorbent polymer refers to any means for effectively rendering normally water-soluble materials substantially water-insoluble but swellable. Such a crosslinking means can include for example, physical entanglement, crystalline domains, covalent bonds, ionic complexes and associations, hydrophilic associations such as hydrogen bonding, hydrophobic associations or Van der Waals forces. Superabsorbent polymers include internal crosslinking and surface crosslinking.
- In one embodiment of the present invention, the superabsorbent polymer is a crosslinked polymer comprising a) from about 55 to about 99.9 wt. % of polymerizable unsaturated acid group containing monomers; b) from about 0.001 to about 5.0 wt. % of internal crosslinking agent; c) from about 0.001 to about 5.0 wt. % of surface crosslinking agent applied to the particle surface; d) from 0 to about 5 wt. % of a penetration modifier applied to the surface of the particle immediately before, during or immediately after the surface crosslinking step; e) from 0 to about 5 wt. % of a multivalent metal salt on the surface; f) optionally from about 0.01 to about 5 wt % of an insoluble, inorganic powder, g) from about 0 to about 2% surface active agent on the surface, and h) from about 0.01 to 5wt % of a thermoplastic polymer having a thermoplastic melt temperature wherein the thermoplastic polymer is applied on the particle surface coincident with or followed by a temperature at least the thermoplastic melt temperature or greater, wherein the superabsorbent polymer has a degree of neutralization of more than about 25%; a centrifuge retention capacity from about 25 g/g or more; and a gel bed permeability II of about 200×10−9 cm2 or more, or in the alternative, a gel bed permeability I of about 500×10−9 cm2 or more.
- Other embodiments include, but not limited to, include a superabsorbent polymer according to the present invention wherein GBP I is at least about [54000e−0.18x+100]×10−9 cm2; or the GBP I is at least about [54000e−0.175x+100]×10−9 cm2; or the GBP I is at least about [54000e−0.17x+100]×10−9 cm2; or wherein GBP I is at least about [54000e−0.165x+100]×10−9 cm2. The superabsorbent polymer of the present invention is obtained by the initial polymerization of from about 55 to about 99.9 wt. % of polymerizable unsaturated acid group containing monomers. Suitable monomers include those containing carboxyl groups, such as acrylic acid, methacrylic acid or 2-acrylamido-2-methylpropanesulfonic acid, or mixtures of these monomers are preferred here. It is preferable for at least about 50-weight. %, and more preferably at least about 75 wt. % of the acid groups to be carboxyl groups. The acid groups are neutralized to the extent of at least about 25 mol %, that is, the acid groups are preferably present as sodium, potassium or ammonium salts. The degree of neutralization is preferably at least about 50 mol %. It is preferred to obtain polymers obtained by polymerization of acrylic acid or methacrylic acid, the carboxyl groups of which are neutralized to the extent of 50-80 mol %, in the presence of internal crosslinking agents.
- Further monomers, which can be used for the preparation of the absorbent polymers according to the invention, are 0-40 wt. % of ethylenically unsaturated monomers which can be copolymerized with a), such as e.g. acrylamide, methacrylamide, hydroxyethyl acrylate, dimethylaminoalkyl (meth)-acrylate, ethoxylated (meth)-acrylates, dimethylaminopropylacrylamide or acrylamidopropyltrimethylammonium chloride. More than 40 wt. % of these monomers can impair the swellability of the polymers.
- The internal crosslinking agent has at least two ethylenically unsaturated double bonds or one ethylenically unsaturated double bond and one functional group which is reactive towards acid groups of the polymerizable unsaturated acid group containing monomers or several functional groups which are reactive towards acid groups can be used as the internal crosslinking component and which is present during the polymerization of the polymerizable unsaturated acid group containing monomers.
- Examples of internal crosslinking agents include aliphatic unsaturated amides, such as methylenebisacryl- or -methacrylamide or ethylenebisacrylamide, and furthermore aliphatic esters of polyols or alkoxylated polyols with ethylenically unsaturated acids, such as di(meth)acrylates or tri(meth)acrylates of butanediol or ethylene glycol, polyglycols or trimethylolpropane, di- and triacrylate esters of trimethylolpropane which is preferably oxyalkylated, preferably ethoxylated, with 1 to 30 mol of alkylene oxide, acrylate and methacrylate esters of glycerol and pentaerythritol and of glycerol and pentaerythritol oxyethylated with preferably 1 to 30 mol of ethylene oxide and furthermore allyl compounds, such as allyl (meth)acrylate, alkoxylated allyl (meth)acrylate reacted with preferably 1 to 30 mol of ethylene oxide, triallyl cyanurate, triallyl isocyanurate, maleic acid diallyl ester, poly-allyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, diols, polyols, hydroxy allyl or acrylate compounds and allyl esters of phosphoric acid or phosphorous acid, and furthermore monomers which are capable of crosslinking, such as N-methylol compounds of unsaturated amides, such as of methacrylamide or acrylamide, and the ethers derived there from. Ionic crosslinkers such as multivalent metal salts may also be employed. Mixtures of the crosslinking agents mentioned can also be employed. The content of the internal crosslinking agents is from about 0.01 to about 5 wt. %, and preferably from about 0.1 to about 3.0 wt. %, based on the total amount of the polymerizable unsaturated acid group containing monomers.
- The usual initiators, such as e.g. azo or peroxo compounds, redox systems or UV initiators, (sensitizers), and/or radiation are used for initiation of the free-radical polymerization.
- The absorbent polymers are surface crosslinked after polymerization. Surface crosslinking is any process that increases the crosslink density ofthe polymer matrix in the vicinity of the superabsorbent particle surface with respect to the crosslinking density of the particle interior. The absorbent polymers are typically surface crosslinked by the addition of a surface crosslinking agent. Preferred surface crosslinking agents include chemicals with one or more functional groups, which are reactive towards pendant groups of the polymer chains, typically the acid groups. The content of the surface crosslinking agents is from about 0.01 to about 5 wt. %, and preferably from about 0. 1 to about 3.0 wt. %, based on the weight of the dry polymer. A heating step is preferred after addition of the surface crosslinking agent.
- Generally the present invention includes coating the particulate superabsorbent polymer with an alkylene carbonate followed by heating to effect surface crosslinking to improve the surface crosslinking density and the gel strength characteristics. More specifically a surface crosslinking agent is coated onto the particulate by mixing the polymer with an aqueous alcoholic solution of the alkylene carbonate surface cross linking agent. The amount of alcohol is determined by the solubility of the alkylene carbonate and is kept as low as possible for technical reasons, for instance protection against explosions. Suitable alcohols are methanol, ethanol, butanol, or butyl glycol as well as mixtures of these alcohols. The preferred solvent is water, which typically is used in an amount of 0.3 to 5.0% by weight, relative to particulate superabsorbent polymer. In some instances, the alkylene carbonate surface cross linking agent is dissolved in water, without any alcohol. It is also possible to apply the alkylene carbonate surface cross linking agent from a powder mixture, for example, with an inorganic carrier material, such as SiO2, or in the vapor state by sublimation of the alkylene carbonate.
- To achieve the desired surface cross linking properties, the alkylene carbonate has to be distributed evenly on the particulate superabsorbent polymer. For this purpose, mixing is effected in suitable mixers, such as fluidized bed mixers, paddle mixers, rotary drum mixers, or twin-worm mixers. It is also possible to carry out the coating of the particular superabsorbent polymer during one of the process steps in the production of the particulate superabsorbent polymer. A particularly suitable process for this purpose is the inverse suspension polymerization process.
- The thermal treatment, which follows the coating treatment, is carried out as follows. In general, the thermal treatment is at a temperature between 100 and 300° C. However, if the preferred alkylene carbonates are used, then the thermal treatment is at a temperature between 150 and 250° C. The treatment temperature depends on the dwell time and the kind of alkylene carbonate. At a temperature of 150° C., the thermal treatment is carried out for one hour or longer. On the other hand, at a temperature of 250° C., a few minutes, e.g., 0.5 to 5 minutes, are sufficient to achieve the desired surface cross linking properties. The thermal treatment may be carried out in conventional dryers or ovens.
- While particles are then used by way of example of the physical form of superabsorbent polymers, the invention is not limited to this form and is applicable to other forms such as fibers, foams, films, beads, rods and the like.
- The absorbent polymers according to the invention can include from 0 to about 5 wt % of a penetration modifier that is added immediately before, during or immediately after the surface crosslinking agent. Examples of penetration modifiers include compounds which alter the penetration depth of surface-modifying agents into the superabsorbent polymer particle, fiber, film, foam or bead by changing the viscosity, surface tension, ionic character or adhesion of said agents or medium in which these agents are applied. Preferred penetration modifiers are, polyethylene glycols, tetraethylene glycol dimethyl ether, monovalent metal salts, surfactants, water soluble polymers, thermoplastic resins or blends thereof.
- The absorbent polymers according to the invention can include from 0 to about 5 wt % of a multivalent metal salt, based on the weight of the mixture, on the surface of the polymer. The multivalent metal salt is preferably water soluble. Examples of preferred metal cations include the cations of Al, Fe, Zr, Mg and Zn. Preferably, the metal cation has a valence of at least +3, with Al being most preferred. Examples of preferred anions in the multivalent metal salt include halides, chlorohydrates, sulfates, nitrates and acetates, with chlorides, sulfates, chlorohydrates and acetates being preferred, chlorohydrates and sulfates being more preferred and sulfates being the most preferred. Aluminum sulfate is the most preferred multivalent metal salt and is readily commercially available. The preferred form of aluminum sulfate is hydrated aluminum sulfate, preferably aluminum sulfate having from 12 to 14 waters of hydration. Mixtures of multivalent metal salts can be employed.
- The polymer and multivalent metal salt suitably are mixed by dry blending, or preferably in solution, using means well known to those skilled in the art. Aqueous solutions are preferred. With dry blending, a binder may be employed in an amount which sufficient to ensure that a substantially uniform mixture of the salt and the superabsorbent polymer is maintained. The binder may be water or a nonvolatile organic compound having a boiling point of at least 150° C. Examples of binders include water, polyols such as propylene glycol, glycerin and poly(ethylene glycol).
- The absorbent polymers according to the invention can comprise include from about 0.01 to about 5 wt % of water-insoluble, inorganic powder. Examples of insoluble, inorganic powders include silicon dioxide, silicic acid, silicates, titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, calcium phosphate, clays, diatomataceous earth, zeolites, bentonite, kaolin, hydrotalcite, activated clays, etc. The insoluble inorganic powder additive may be a single compound or a mixture of compounds selected from the above list. Of all these examples, microscopic noncrystal silicon dioxide or aluminum oxide preferred. Further, a preferred particle diameter of the inorganic powder is 1,000 μm or smaller, and more preferably 100 μm or smaller.
- The superabsorbent polymer according to the invention may also include the addition of from 0 to about 5 wt % of a surfactant to the polymer particle surface. It is preferred that these be added immediately prior to, during or immediately after the surface crosslinking step.
- Examples of such surfactants include anionic, non-ionic, cationic and amphoteric surface active agents, such as fatty acid salts, coco amines and amides and their salts, alkylsulfuric ester salts, alkylbenzene sulfonic acid salts, dialkyl sulfo-succinate, alkyl phosphate salt, and polyoxyethylene alkyl sulfate salt; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxy sorbitan fatty acid ester, polyoxyethylene alkylamine, fatty acid esters, and oxyethylene-oxypropylene block polymer; alkyl amine salts, quaternary ammonium salts; and lauryl dimethylamine oxide. However, it is not necessary to restrict the surfactant to those mentioned above. Such surfactants may be used individually, or in combination.
- The superabsorbent polymers may also include from 0 to about 30 wt. % of water-soluble polymers, such as partly or completely hydrolysed polyvinyl acetate, polyvinylpyrrolidone, starch or starch derivatives, polyglycols or polyacrylic acids, preferably in polymerized-in form. The molecular weight of these polymers is not critical as long as they are water-soluble. Preferred water-soluble polymers are starch and polyvinyl alcohol. The preferred content of such water-soluble polymers in the absorbent polymer according to the invention is 0-30 wt. %, preferably 0-5 wt. %, based on the total amount of components a) to d). The water-soluble polymers, preferably synthetic polymers, such as polyvinyl alcohol, can also serve as a graft base for the monomers to be polymerized.
- The superabsorbent polymer of the present invention includes from about 0.01 to 5wt % of a thermoplastic polymer having a thermoplastic melt temperature wherein the thermoplastic polymer is applied on the particle surface coincident with or followed by a temperature at about the thermoplastic melt temperature. The thermoplastic polymer preferably is a polymer that may be in a solid or emulsion state. Typical thermoplastic polymers suitable for this invention may include but are not limited to polyolefin, polyethylene, polyester, polyamide, polyurethane, styrene polybutadiene, linear low density polyethylene (LLDPE), ethylene acrylic acid copolymer (EAA), ethylene alkyl methacrylate copolymer (EMA), polypropylene (PP), ethylene vinyl acetate copolymer (EVA) and blends of all families of polyolefins, such as blends of PP, EVA, EMA, EEA, EBA, HDPE, MDPE, LDPE, LLDPE, and/or VLDPE, may also be advantageously employed.
- The term “polyolefin” as used herein generally includes, but is not limited to, materials such as polyethylene, ethylene vinyl acetate copolymer and the like, the homopolymers, copolymers, terpolymers, etc., thereof, and blends and modifications thereof. The term “polyolefin” shall include all possible structures thereof, which includes, but is not limited to, isotatic, synodiotactic and random symmetries. Copolymers include random and block copolymers. Ethylene acrylic acid copolymer EAA, polyester and EVA are preferred thermoplastic polymers for use in the present invention. Nevertheless, blends of all families of polyolefins, such as blends of PP, EVA, EMA, EEA, EBA, HDPE, MDPE, LDPE, LLDPE, and/or VLDPE, may also be advantageously employed.
- It is sometimes desirable to employ surface additives that perform several roles during surface modifications. For example, a single additive may be a surfactant, viscosity modifier and react to crosslink polymer chains.
- The superabsorbent polymers may also include from 0 to about 2.0 wt % of dedusting agents, such as hydrophilic and hydrophobic dedusting agents such as those described in U.S. Pat. Nos. 6,090,875 and 5,994,440 may also be employed in the process of the invention.
- Further additives of the superabsorbent polymers according to the invention may optionally be employed, such as odor-binding substances, such as cyclodextrins, zeolites, inorganic or organic salts and similar materials; anti-caking additives, flow modification agents and the like.
- The polymers according to the invention are preferably prepared by two methods. The polymers can be prepared continuously or discontinuously in a large-scale industrial manner by the abovementioned known process, the after-crosslinking according to the invention being carried out accordingly.
- According to the first method, the partly neutralized monomer, preferably acrylic acid, is converted into a gel by free-radical polymerization in aqueous solution in the presence of crosslinking agents and optionally further components, and the gel is comminuted, dried, ground and sieved off to the desired particle size. This solution polymerization can be carried out continuously or discontinuously.
- Inverse suspension and emulsion polymerization can also be used for preparation of the products according to the invention. According to these processes, an aqueous, partly neutralized solution of monomers, preferably acrylic acid, is dispersed in a hydrophobic, organic solvent with the aid of protective colloids and/or emulsifiers and the polymerization is started by free radical initiators. The internal crosslinking agents either are dissolved in the monomer solution and are metered in together with this, or are added separately and optionally during the polymerization. The addition of a water-soluble polymer d) as the graft base optionally takes place via the monomer solution or by direct introduction into the oily phase. The water is then removed azeotropically from the mixture and the polymer is filtered off and optionally dried. Internal crosslinking can be carried out by polymerizing-in a polyfunctional crosslinking agent dissolved in the monomer solution and/or by reaction of suitable crosslinking agents with functional groups of the polymer during the polymerization steps.
- In one embodiment, the superabsorbent polymer is used in the form of discrete particles. Superabsorbent polymer particles can be of any suitable shape, for example, spiral or semi-spiral, cubic, rod-like, polyhedral etc. Particle shapes having a large greatest dimension/smallest dimension ratio, like needles, flakes or fibers are also contemplated for use herein. Conglomerates of particles of superabsorbent polymers may also be used.
- A superabsorbent Preproduct as used herein is produced by repeating including all the steps or making a superabsorbent up to and including drying the material and coarse grounding it a crusher and removing particles greater than 850 microns and smaller than 150 microns.
- The superabsorbent Preproduct may be substantially homogenously blended under ambient conditions together with the thermoplastic polymer, inorganic powder and multivalent metal salt, as well as other additives, by a mixer such as a cement mixer, screw mixer, sigma blade, fluidizing mixer or a rotary drum mixer. One type of mixer is a Red Lion model ‘BigCat,’ type B concrete mixer available from Home Depot. Time for blending is about 20 minutes. Blend time in a rapid fluidizing mixer can be reduced to less than a minute. The homogenous blended product is then fed into a paddle dryer wherein the blended product is heated and further mixed. In particular, the blended product is heated to a temperature from about 150° C. to about 225° C., preferably from about 170° C. to about 200° C. Residence time for the blended product in the heated paddle dryer is from about 10 to about 60 minutes. The required residence time will be dependent on the desired properties of the superabsorbent polymer.
- The superabsorbent polymer of the present invention has certain characteristics, or properties, as measured by Gel Bed Permeability (GBP), Centrifuge Retention Capacity (CRC) and Dust Value. The Gel Bed Permeability Test (GBP), is a measurement of the permeability of a swollen bed of superabsorbent material in cm2 (e.g., separate from the absorbent structure) under a confining pressure after what is commonly referred to as “free swell” conditions. The term “free swell” means that the superabsorbent material is allowed to swell without a swell restraining load upon absorbing test solution as will be described.
- The Centrifuge Retention Capacity Test (CRC) measures the ability of the superabsorbent material to retain liquid therein after being saturated and subjected to centrifugation under controlled conditions. The resultant retention capacity is stated as grams of liquid retained per gram weight of the sample (g/g).
- As shown in Graph 1, the graph shows a relationship between gel bed permeability and centrifuge retention capacity. The products according to the invention with this outstanding combination of properties of very high GBP values, high CRC without an undesirably high shear modulus achieved by over crosslinking can be prepared without the use of toxicologically unacceptable substances.
- The polymers according to the invention can be employed in many products including sanitary towels, diapers or in wound coverings, they have the property that they rapidly absorb large amounts of menstrual blood, urine or other body fluids. Since the agents according to the invention retain the absorbed liquids even under pressure and additionally are capable of distributing further liquid within the construction in the swollen state, they are more preferably employed in higher concentrations, in respect of the hydrophilic fiber material, such as e.g. fluff, than was hitherto possible. They are also suitable for use as a homogeneous superabsorber layer without fluff content within the diaper construction, as a result of which particularly thin diapers are possible. The polymers are furthermore suitable for use in hygiene articles (incontinence products) for adults.
- The preparation of laminates in the broadest sense, and of extruded and coextruded, wet- and dry-bonded, as well as subsequently bonded, structures are possible as further preparation processes. A combination of these possible processes with one another is also possible.
- The polymers according to the invention are also employed in absorbent articles that are suitable for further uses. In particular, the polymers of this invention can be used in absorbent compositions for absorbents for water or aqueous liquids, preferably in constructions for absorption of body fluids, in foamed and non-foamed sheet-like structures, in packaging materials, in constructions for plant growing, as soil improvement agents or as active compound carriers. For this, they are processed to a web by mixing with paper or fluff or synthetic fibers or by distributing the superabsorbent polymers between substrates of paper, fluff or non-woven textiles or by processing into carrier materials.
- They are further suited for use in absorbent compositions such as wound dressings, packaging, agricultural absorbents, food trays and pads, and the like.
- Surprisingly, the superabsorbent polymers according to the invention show a significant improvement in permeability, i.e. an improvement in the transportation of liquid in the swollen state, while maintaining high absorption and retention capacity.
- As used herein, there are two tests used to measure the Gel Bed Permeability, Gel Bed Permeability I (GBPI) and Gel Bed Permeability II (GBPII). Gel Bed Permeability I(GBPI) Test determines the permeability of a swollen bed of superabsorbent polymer under what is commonly referred to as “free swell” conditions. The term “free swell” means that the superabsorbent polymer is allowed to swell without a swell restraining load upon absorbing test solution as will be described. A suitable apparatus for conducting a Permeability Test is shown in
FIG. 1 and 2 and indicated generally as 28. Thetest apparatus 28 comprises a sample container, generally indicated at 30, and a piston, generally indicated at 36. Thepiston 36 comprises a cylindricalLEXAN® shaft 38 having a concentriccylindrical hole 40 bored down the longitudinal axis ofthe shaft. Both ends oftheshaft 38 are machined to provide upper and lower ends respectively designated 42, 46. A weight, indicated as 48, rests on oneend 42 and has acylindrical hole 48 a bored through at least a portion of its center. - A
circular piston head 50 is positioned on theother end 46 and is provided with a concentric inner ring of sevenholes 60, each having a diameter of about 0.95 cm, and a concentric outer ring of fourteenholes 54, also each having a diameter of about 0.25 cm. Theholes piston head 50. Thepiston head 50 also has acylindrical hole 62 bored in the center thereof to receiveend 46 of theshaft 38. The bottom of thepiston head 50 may also be covered with a biaxially stretched 400 meshstainless steel screen 64. - The
sample container 30 comprises acylinder 34 and a 100 mesh stainlesssteel cloth screen 66 that is biaxially stretched to tautness and attached to the lower end of the cylinder. A superabsorbent polymer sample, indicated as 68 inFIG. 1 , is supported on thescreen 66 within thecylinder 34 during testing. - The
cylinder 34 may be bored from a transparent LEXAN rod of equivalent material, or it may be cut from a LEXAN tubing or equivalent material, and has an inner diameter of about 6 cm (e.g., a cross sectional area of about 28.27 cm2), a wall thickness of about 0.5 cm and a height of approximately 5 cm. Drainage holes (not shown) are formed in the sidewall ofthecylinder 34 at a height of approximately 4.0 cm above thescreen 66 to allow liquid to drain from the cylinder to thereby maintain a fluid level in the sample container at approximately 4.0 cm abovescreen 66. Thepiston head 50 is machined from a LEXAN rod or equivalent material and has a height of approximately 16 mm and a diameter sized such that it fits within thecylinder 34 with minimum wall clearance but still slides freely. Theshaft 38 is machined from a LEXAN rod or equivalent material and has an outer diameter of about 2.22 cm and an inner diameter of about 0.64 cm. - The shaft
upper end 42 is approximately 2.54 cm long and approximately 1.58 cm in diameter, forming anannular shoulder 47 to support theweight 48. Theannular weight 48 has an inner diameter of about 1.59 cm so that it slips onto theupper end 42 of theshaft 38 and rests on theannular shoulder 47 formed thereon. Theannular weight 48 can be made from stainless steel or from other suitable materials resistant to corrosion in the presence ofthe test solution, which is 0.9 weight percent sodium chloride solutions in distilled water. The combined weight of thepiston 36 andannular weight 48 equals approximately 596 grams (g), which corresponds to a pressure applied to theabsorbent structure sample 68 of about 0.3 pounds per square inch (psi), or about 20.7 grams/cm2, over a sample area of about 28.27cm2. - When the test solution flows through the test apparatus during testing as described below, the
sample container 30 generally rests on a 16 mesh rigid stainless steel support screen (not shown). Alternatively, thesample container 30 may rest on a support ring (not shown) diametrically sized substantially the same as thecylinder 34 so that the support ring does not restrict flow from the bottom of the container. - To conduct the Gel Bed Permeability I Test under “free swell” conditions, the
piston 36, with theweight 48 seated thereon, is placed in anempty sample container 30 and the height from the bottom of theweight 48 to the top of thecylinder 34 is measured using a caliper of suitable gauge accurate to 0.01 mm. It is important to measure the height of eachsample container 30 empty and to keep track of whichpiston 36 andweight 48 is used when using multiple test apparatus. Thesame piston 36 andweight 48 should be used for measurement when thesuperabsorbent polymer sample 68 is water swollen following saturation. - The sample to be tested is prepared from superabsorbent material particles which are prescreened through a U.S. standard 30 mesh screen and retained on a U.S. standard 50 mesh screen. As a result, the test sample comprises particles sized in the range of about 300 to about 600 microns. The particles can be prescreened by hand or automatically. Approximately 0.9 grams of the sample is placed in the
sample container 30, and the container, without thepiston 36 andweight 48 therein, is then submerged in the test solution for a time period of about 60 minutes to saturate the sample and allow the sample to swell free of any restraining load. - At the end of this period, the
piston 36 andweight 48 assembly is place on the saturatedsample 68 in thesample container 30 and then thesample container 30,piston 36,weight 48, andsample 68 are removed from the solution. The thickness of the saturatedsample 68 is determined by again measuring the height from the bottom of theweight 48 to the top of thecylinder 34, using the same caliper or gauge used previously provided that the zero point is unchanged from the initial height measurement. The height measurement obtained from measuring theempty sample container 30,piston 36, andweight 48 is subtracted from the height measurement obtained after saturating thesample 68. The resulting value is the thickness, or height “H” of the swollen sample. - The permeability measurement is initialed by delivering a flow of the test solution into the
sample container 30 with the saturatedsample 68,piston 36, andweight 48 inside. The flow rate of test solution into the container is adjusted to maintain a fluid height of about 4.0 cm above the bottom of the sample container. The quantity of solution passing through thesample 68 versus time is measured gravimetrically. Data points are collected every second for at least twenty seconds once the fluid level has been stabilized to and maintained at about 4.0 cm in height. The flow rate Q through theswollen sample 68 is determined in units of grams/second (g/g) by a linear least-square fit of fluid passing through the sample 68 (in grams) versus time (in seconds). - Permeability in cm is obtained by the following equation:
K=[Q*H*Mu]/[A*Rho*P] - where K=Permeability (cm2), Q=flow rate (g/rate), H=height of sample (cm), Mu=liquid viscosity (poise) (approximately one centipoise for the test solution used with the Test), A=cross-sectional area for liquid flow (cm2), Rho=liquid density (g/cm3), for the test solution used with this Test) and P=hydrostatic pressure (dynes/cm2) (normally approximately 3.923 dynes/cm2). The hydrostatic pressure is calculated from
P=Rho*g*h - where Rho=liquid density (g/cm2), g=gravitational acceleration, nominally 981 cm/sec2, and h=fluid height. e.g., 4.0 cm for the Permeability Test described herein.
- Minimums of three samples are tested and the results are averaged to determine the gel bed permeability of the sample. The samples are tested at 23±1 degrees Celsius at 50±2 percent relative humidity.
- The Gel Bed Permeability II (GBPII) test is the same as GBPI except for the following differences. One difference is in the length of the
cylinder 34. In GBPI the fluid height is 4 cm and in GBPII is 7.8 cm. Cylinder in GBPII is 10 cm tall. In addition, in GBPII, three discharge ports are present and centered at 7.8 cm above the screen. These ports are 120° apart about the cylinder diameter, with the saline entry port being 1.2 cm (centered) above the midpoint between the discharge ports. It addition, GBP I values can be calculated from GBP II measurements as follows - Calc GBPI is approximately equal to 1.5×GBPII
- Centrifuge Retention Capacity Test The Centrifuge Retention Capacity (CRC) Test measures the ability of the superabsorbent polymer to retain liquid therein after being saturated and subjected to centrifugation under controlled conditions. The resultant retention capacity is stated as grams of liquid retained per gram weight of the sample (g/g). The sample to be tested is prepared from particles which is pre-screened through a U.S. standard 30 mesh screen and retained on a U.S. standard 50 mesh screen. As a result, the superabsorbent polymer sample comprises particles sized in the range of about 300 to about 600 microns. The particles can be pre-screened by hand or automatically.
- The retention capacity is measured by placing about 0.2 grams of the pre-screened superabsorbent polymer sample into a water-permeable bag that will contain the sample while allowing a test solution (0.9 weight percent sodium chloride in distilled water) to be freely absorbed by the sample. A heat-sealable tea bag material, such as that available from Dexter Corporation of Windsor Locks, Connecticut, U.S.A., as model designation 1234T heat sealable filter paper works well for most applications. The bag is formed by folding a 5-inch by 3-inch sample of the bag material in half and heat-sealing two of the open edges to form a 2.5-inch by 3-inch rectangular pouch. The heat seals should be about 0.25 inches inside the edge of the material. After the sample is placed in the pouch, the remaining open edge of the pouch is also heat-sealed. Empty bags are also made to serve as controls. Three samples are prepared for each superabsorbent polymer to be tested.
- The sealed bags are placed submerged in a pan or the test solution at 23° C., making sure that the bags are held down until they are completely wetted. After wetting, the samples remain in the solution for about 30 minutes, at which time they are removed from the solution and temporarily laid on a non-absorbent flat surface.
- The wet bags are then placed into the basket of a suitable centrifuge capable of subjecting the samples to a g-force of about 350. One suitable centrifuge is a Clay Adams Dynac II, model #0103, having a water collection basket, a digital rpm gauge, and a machined drainage basket adapted to hold and drain the flat bag samples. Where multiple samples are centrifuged, the samples must be placed in opposing positions within the centrifuge to balance the basket when spinning. The bags (including the wet, empty bags) are centrifuged at about 1,600 rpm (e.g., to achieve a target g-force of about 350), for 3 minutes. The bags are removed and weighed, with the empty bags (controls) being weighed first, followed by the bags containing the superabsorbent polymer samples. The amount of solution retained by the superabsorbent polymer sample, taking into account the solution retained by the bag itself, is the centrifuge retention capacity (CRC) of the superabsorbent polymer, expressed as grams of fluid per gram of superabsorbent polymer. More particularly, the retention capacity is determined as:
-
- sample/bag after centrifuge−empty bag after centrifuge−dry sample weight dry sample weight
- The three samples are tested and the results are averaged to determine the retention capacity (CRC) of the superabsorbent polymer.
- The superabsorbent polymer also suitably has a gel bed permeability (GBP) as determined by the Gel Bed Permeability Test described previously of at least [54000e−0.18x+100]×10−9 cm2, where x is the numeric value of centrifuge retention capacity; preferably GBP is at least about [54000e−0.175x+100]×10−9 cm2 and more preferably GBP is at least about [54000e−0.17x+100]×10−9 cm2 and most preferably GBP is at least about [54000e−0.165x+100]×10−9 cm2.
- The Shear Modulus Test measures the gel strength, or gel deformation tendency, of the superabsorbent material. The shear modulus is measured using a Rank Brothers Pulse Shearometer, shown in
FIG. 3 and generally referred to as 70, that comprises a circular lower plate, 72 onto which the swollen superabsorbent polymer is placed. For this case reference is made to the operating manual “The Simple Solution to Shear Modulus Measurements” for the Rank Pulse Shearometer™. The instrument is constructed in such a way that a torsional shear wave can be propagated between a pair ofparallel disks
G=ρV 2 - wherein G is the shear modulus in Nm −2; p is the density of the superabsorbent polymer sample in kg.m −3 and V is the wave propagation velocity in ms−1,
- The sample being tested is swollen to its gel volume in a syntheticsynthetic urine. Excess free synthetic urine is removed from the sample by blotting on two paper towels for exactly one minute, strain.
- The shear modulus (G′) of the superabsorbent sample is calculated from the following formula:
G′=Density×(shear wave velocity)×(shear wave velocity). - The elasticity of the material may be related to the velocity of the wave in the following manner: For a passage of a shear wave through the superabsorbent polymer, the storage component of the dynamic modulus (the elasticity), G′, can be represented by the following equation:
G′=[V 2ρ(1−n 2)]/(1+n 2)2 - wherein V is the propagation velocity of light; ρ is the density of the superabsorbent polymer; and n is the ratio of the wavelength to the critical damping length. Measurements of shear modulus can be obtained through consultancy groups such as the Bristol Colloid Center, University of Bristol, Bristol UK. In addition Rank Shearometers are offered on the Internet.
- Preparation for performing the shear modulus test includes preparing synthetic urine which is made of 1% aqueous Triton X-100, 7.50 g; sodium chloride 30.00 g; anhydrous CaC2, 0.68 g; MgCl26H20 1.80 g; and DI water 3000.0 g.
- About 90 g of synthetic urine are placed into 3 large beakers. Then about 3.00 g of SAP is placed into aluminum weighing pans. The SAP is added to a first beaker of stirring synthetic urine and begins timing. Each sample is allowed to swell to its equilibrium value, typically for 30 minutes. Each sample was stirred to ensure uniform fluid distribution. A large metal spatula was used to remove the hydrated superabsorbent polymer from the beakers and spread evenly on 2 Wipe Alls L20 Kimtowels®, available from Kimberly-Clark, which are folded in half and stacked. The superabsorbent polymer samples are blotted for exactly 60 seconds on the Wipe Alls. The spatula is used to spread the polymer out over the paper towelling, only lightly pressing the polymer onto the towel. No more force is applied than that required to distribute the polymer. The polymer is scraped up with the spatula and returned to the beaker after 60 seconds. The beaker is covered with foil or film until the sample is measured.
- The shear moduli of the samples are measured within one hour of sample preparation. The sample is transferred to a shearometer tube and placed on the
lower disk 72, filling the shearometer tube to a height of at least 18 mm above the lower disk. Thetop disk 74 assembly is lowered slowly until the top disk is exactly a distance of 12 mm from the bottom disk. The shear modulus G′ is measured and recorded by measuring the time required for the torsional wave to pass through the SAP at plate distances of 12 mm to 6 mm, measured at 1 mm decreasing increments. The slope of the linear time to disk separation distance plot provides the shear wave velocity used to calculate the shear modulus, G′. - As used herein Dust Values are measured on a Dustview Unit available from Palas GmbH of Germany. Palas equipment is found at http://www.palas.de/engl/produkte/part.htm. All that is required is for the operator to load 30 grams of test powder or SAP product into the funnel, and push a button. The Dustview Unit analyses the sample and issues a report. The dust values should be about 10 or less, and preferably about 4 or less.
- The following examples are provided to illustrate the invention, and do not limit the scope of the claims. Unless otherwise stated all parts and percentages are by weight. Examples 1-31 of U.S. patent application Ser. No. 10/424,195, filed on Apr. 25, 2003 are incorporated in their entirety into this application.
- As can be seen in Graph 1, the typical relationship between retention as measured by centrifuge retention capacity and permeability as measured by GBP I can be described approximately by GBP I=, [54000e−0.2275x, where x =CRC. Permeabilities greater than 500×10−9 cm2 are only achieved at very low retention values, that is CRCs of less than about 25 g/g. In the present invention, Graph 1 shows an entirely different relationship exists between centrifuge retention capacity and permeability as measured as GBP I. Graph 1 shows much higher permeability at much higher CRC values. The permeability is often double, triple or even quadruple what was shown for prior art.
- In an insulated, flat-bottomed reaction vessel, 1866.7 g of 50% NaOH was added to 3090.26 g of distilled water and cooled to 25° C. 800 g of acrylic acid was then added to caustic solution and the solution again cooled to 25° C. A second solution of 1600 g of acrylic acid containing 120 g of 50wt. % methoxypolyethyleneglycol(750)monomethacrylate in acrylic acid and 14.4 g of trimethylolpropanetriacrylate with 3 moles of ethoxylation were then added to the first solution, followed by cooling to 15° C., the addition of 14.4 g of hydroxymonoallyl ether with 10 moles of ethoxylation, and additional cooling to 5° C., all while stirring. The monomer solution was then polymerized with a mixture of 100 ppm hydrogen peroxide, 200 ppm azo-bis-(2-amidino-propene)dihydrochloride, 200 ppm sodiumpersulfate and 40 ppm ascorbic acid (all aqueous solutions) under adiabatic conditions and held near Tmax for 25 minutes. The resulting gel was chopped and extruded with a Hobarth 4M6 commercial extruder, followed by drying in a Procter & Schwartz Model 062 forced air oven at 175° C. for 10 minutes with upflow and 6 minutes with downflow air on a 20 in×40 in perforated metal tray to a final product moisture level of less than 5 wt %. The dried material was coarse ground in a Prodeva Model 315-S crusher, milled in an MPI 666-F three stage roller mill and sieved with an Minox MTS 600DS3V to remove particles greater than 850 microns and smaller than 150 microns.
- In accordance with Table 3 for Comparative Example 1 and Examples 2 to 4, 225 g of the Preproduct was blended at ambient conditions with amounts of a 25% emulsion of ethylene acrylic acid copolymer salt as shown in Table 1. In particular, the Preproduct was fluidized. A spray solution was prepared containing ethylene carbonate, EAA and water in accordance with the amounts given in Table 1. The spray solution was sprayed onto the fluidized Preproduct. Then, 0.9 grams of fumed silica (Aerosil 200) was added to the sprayed Preproduct. The total mixture was fluidized for about 1 minute. Four crystallizing dishes were pre-heated in a forced-air convection oven to about 205° C. For each condition, 25 grams of the SAP of Comparative Example 1 and Examples 2-4 were put into each crystallizing dish. The oven door was closed and the temperature set point reduced to 190° C. The samples remained in the oven for 25 minutes The Dust Values of the Comparative Example 1 and Examples 2-4 were measured and are found in Table 1. The aim is to have lower Dust Values. It can be seen from Table 1, that superabsorbent polymers coated with thermoplastic polymers of the present invention have lower Dust Values then the uncoated superabsorbent polymer of the comparative example.
TABLE 1 Comparative Example 1 and Examples 2 to 4. Amount of Preproduct EC Water EAA solution Silica Dust EAA (%) Grams (grams) (grams) (grams) (grams) Value Comparative 0% 225 3.38 8.62 0 0.9 4.7 Example 1 Example 2 0.07% 225 3.38 7.95 0.68 0.9 3.3 Example 3 0.15% 225 3.38 7.28 1.35 0.9 2.28 Example 4 0.3% 225 3.38 5.93 2.7 0.9 1.16 - Blends for surface cross-linking were prepared in one of two methods depending on whether the thermoplastic was a powder or emulsion/solution and with and without silica:
- Thermoplastic Emulsions (Examples 5-6):
- Superabsorbent Preproduct based on Example 1 was fed into a continuous mixer capable of fluidizing the Preproduct in air. Concurrent additives streams were also fed into the fluidized mix of air and Preproduct, depending on the desired amount of silica or polymer and for homogeneously coating the SAP Preproduct particles. The EC/SAP Preproduct ratio (1.5/100) was held constant for all conditions. For conditions for examples 5-6, thermoplastic emulsions were added into the 35% EC solution. Feed rates and EC/polymer blend concentrations appear in Table 2.. For each condition, 31.8 kilograms of thermoplastic coated Preproduct was heated in a paddle dryer for 25 minutes at 183-186° at 20 rpm. Example 5a contained no silica whereas Example 5b includes silica.
- Thermoplastic Powders (Examples 7-10)
- 31.8 kilograms of superabsorbent Preproduct was evenly blended with the amount of thermoplastic polymer shown in Table 2 for examples 7-10. The blended powder mix was then fluidized in air and sprayed with 4.3% of a 35% aqueous ethylene carbonate solution and 0.4% silica. For each condition, 31.8 kg of thermoplastic coated Preproduct were heated in a paddle drier for 25 minutes to 183-186° and at 20 rpm.
TABLE 2 Examples 5 to 10 EC Composition and Feedrate 35% EC thermoplastic thermo- Preproduct silica solution, polymer EC Shear plastic thermoplastic silica, feed rate, feedrate, % emulsion, % in blend, Modulus Calc Example polymer polymer, % % kg/min g/min in blend blend g/min G′ CRC GBP II GBP I 5a Michem 0.125 0 1.6 0 89.6 10.4 76.8 5165 27.1 952 1421 Prime 48525R 5b Michem 0.125 0.4 1.6 6.4 89.6 10.4 76.8 5907 26.2 777 1160 Prime 48525R 6 Airflex 315 0.3 0.4 2 8 92.6 7.4 93.2 5630 28.2 967 1443 7 Vestamelt 0.3 0.4 1.6 6.4 100 0 68.8 5517 27.1 844 1260 4481 8 SchaettiFix 0.3 0.4 1.6 6.4 100 0 68.8 6118 26.7 817 1219 1370 9 SchaettiFix 0.3 0.4 1.6 6.4 100 0 68.8 NR 25.5 885 1321 386 10 Vestamelt 0.15 0.4 2 8 100 0 68.8 4815 891 1330 4680 - Ethylene acrylic acid is commercially available from Michelman Chemicals, Inc. as Michem Prime 48525R
- Ethylene Vinyl Acetate is commercially available from AIR PRODUCTS AND CHEMICALS, INC. CORPORATION as Airflex 315;
- Polyester adhesive is commercially available from SCHATTI & CO. LIMITED as SchaettiFix 1370;
- Polyester adhesive is commercially available from SCHATTI & CO. LIMITED as SchaettiFix 386;
- Polyester adhesive is commercially available from HULS AKTIENGESELLSCHAFT as Vestamelt 4481; and
- Polyester adhesive is commercially available from HULS AKTIENGESELLSCHAFT as Vestamelt 4480
Claims (30)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/469,718 US7777093B2 (en) | 2003-10-31 | 2006-09-01 | Superabsorbent polymer with high permeability |
US12/830,890 US20100279860A1 (en) | 2003-10-31 | 2010-07-06 | Superabsorbent polymer with high permeability |
US13/939,567 US8883881B2 (en) | 2003-10-31 | 2013-07-11 | Superabsorbent polymer with high permeability |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/699,205 US7173086B2 (en) | 2003-10-31 | 2003-10-31 | Superabsorbent polymer with high permeability |
US11/469,718 US7777093B2 (en) | 2003-10-31 | 2006-09-01 | Superabsorbent polymer with high permeability |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/699,205 Continuation US7173086B2 (en) | 2003-10-31 | 2003-10-31 | Superabsorbent polymer with high permeability |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/830,890 Continuation US20100279860A1 (en) | 2003-10-31 | 2010-07-06 | Superabsorbent polymer with high permeability |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070066718A1 true US20070066718A1 (en) | 2007-03-22 |
US7777093B2 US7777093B2 (en) | 2010-08-17 |
Family
ID=34550885
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/699,205 Expired - Lifetime US7173086B2 (en) | 2003-10-31 | 2003-10-31 | Superabsorbent polymer with high permeability |
US11/469,718 Expired - Fee Related US7777093B2 (en) | 2003-10-31 | 2006-09-01 | Superabsorbent polymer with high permeability |
US12/830,890 Abandoned US20100279860A1 (en) | 2003-10-31 | 2010-07-06 | Superabsorbent polymer with high permeability |
US13/939,567 Expired - Lifetime US8883881B2 (en) | 2003-10-31 | 2013-07-11 | Superabsorbent polymer with high permeability |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/699,205 Expired - Lifetime US7173086B2 (en) | 2003-10-31 | 2003-10-31 | Superabsorbent polymer with high permeability |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/830,890 Abandoned US20100279860A1 (en) | 2003-10-31 | 2010-07-06 | Superabsorbent polymer with high permeability |
US13/939,567 Expired - Lifetime US8883881B2 (en) | 2003-10-31 | 2013-07-11 | Superabsorbent polymer with high permeability |
Country Status (7)
Country | Link |
---|---|
US (4) | US7173086B2 (en) |
EP (1) | EP1680460B1 (en) |
JP (1) | JP5188710B2 (en) |
CN (1) | CN100480304C (en) |
BR (1) | BRPI0416100B8 (en) |
TW (1) | TWI281869B (en) |
WO (1) | WO2005044900A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080234420A1 (en) * | 2007-03-23 | 2008-09-25 | Smith Scott J | High permeability superabsorbent polymer compositions |
US20090191408A1 (en) * | 2008-01-30 | 2009-07-30 | Gonglu Tian | Superabsorbent polymer compositions having a triggering composition |
US20100075844A1 (en) * | 2006-12-18 | 2010-03-25 | Frank Loeker | Water-absorbing polymer structures produced using polymer dispersions |
US10195584B2 (en) | 2013-01-29 | 2019-02-05 | Nippon Shokubai Co., Ltd. | Water absorbent resin material, and method for producing same |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19909653A1 (en) | 1999-03-05 | 2000-09-07 | Stockhausen Chem Fab Gmbh | Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use |
US7169843B2 (en) * | 2003-04-25 | 2007-01-30 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
DE10334286B4 (en) * | 2003-07-25 | 2006-01-05 | Stockhausen Gmbh | Powdered, water-absorbing polymers with fine particles bound by means of thermoplastic adhesives, process for their preparation and chemical products and compounds containing them |
EP1651706A1 (en) * | 2003-08-06 | 2006-05-03 | The Procter & Gamble Company | Coated water-swellable material |
EP1651283B1 (en) * | 2003-08-06 | 2011-03-16 | The Procter & Gamble Company | Absorbent article comprising coated water-swellable material |
KR20060060001A (en) | 2003-08-06 | 2006-06-02 | 바스프 악티엔게젤샤프트 | Water swellable materials, including coated water swellable polymers |
EP1518567B1 (en) * | 2003-09-25 | 2017-06-28 | The Procter & Gamble Company | Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles |
US7173086B2 (en) * | 2003-10-31 | 2007-02-06 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
US7662745B2 (en) * | 2003-12-18 | 2010-02-16 | Kimberly-Clark Corporation | Stretchable absorbent composites having high permeability |
US20050235336A1 (en) * | 2004-04-15 | 2005-10-20 | Kenneth Ma | Data storage system and method that supports personal video recorder functionality |
US8580953B2 (en) | 2004-06-21 | 2013-11-12 | Evonik Degussa Gmbh | Water-absorbing polysaccharide and method for producing the same |
US7247215B2 (en) | 2004-06-30 | 2007-07-24 | Kimberly-Clark Worldwide, Inc. | Method of making absorbent articles having shaped absorbent cores on a substrate |
US7938813B2 (en) * | 2004-06-30 | 2011-05-10 | Kimberly-Clark Worldwide, Inc. | Absorbent article having shaped absorbent core formed on a substrate |
US7772456B2 (en) | 2004-06-30 | 2010-08-10 | Kimberly-Clark Worldwide, Inc. | Stretchable absorbent composite with low superaborbent shake-out |
WO2006023698A2 (en) * | 2004-08-20 | 2006-03-02 | Polymer Group, Inc. | Unitized fibrous constructs having functional circumferential retaining elements |
US20060069365A1 (en) * | 2004-09-30 | 2006-03-30 | Sperl Michael D | Absorbent composite having selective regions for improved attachment |
US20060173432A1 (en) * | 2005-02-01 | 2006-08-03 | Laumer Jason M | Absorbent articles comprising polyamine-coated superabsorbent polymers |
US20060173431A1 (en) * | 2005-02-01 | 2006-08-03 | Laumer Jason M | Absorbent articles comprising polyamine-coated superabsorbent polymers |
CA2596864C (en) * | 2005-02-04 | 2012-05-08 | The Procter & Gamble Company | Absorbent structure with improved water-swellable material |
MX2007009415A (en) | 2005-02-04 | 2007-08-17 | Procter & Gamble | Absorbent structure with improved water-absorbing material. |
CN101115509A (en) * | 2005-02-04 | 2008-01-30 | 宝洁公司 | Absorbent structure with improved absorbent material |
TWI353360B (en) | 2005-04-07 | 2011-12-01 | Nippon Catalytic Chem Ind | Production process of polyacrylic acid (salt) wate |
EP1776967B2 (en) † | 2005-10-21 | 2013-03-13 | The Procter & Gamble Company | Absorbent articles having increased absorption and retention capacity for proteinaceous or serous body fluids |
US20070135785A1 (en) * | 2005-12-12 | 2007-06-14 | Jian Qin | Absorbent articles comprising thermoplastic coated superabsorbent polymer materials |
US7812082B2 (en) * | 2005-12-12 | 2010-10-12 | Evonik Stockhausen, Llc | Thermoplastic coated superabsorbent polymer compositions |
TWI394789B (en) | 2005-12-22 | 2013-05-01 | Nippon Catalytic Chem Ind | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
EP1837348B9 (en) | 2006-03-24 | 2020-01-08 | Nippon Shokubai Co.,Ltd. | Water-absorbing resin and method for manufacturing the same |
US20090261023A1 (en) * | 2006-09-25 | 2009-10-22 | Basf Se | Method for the Classification of Water Absorbent Polymer Particles |
US7863350B2 (en) | 2007-01-22 | 2011-01-04 | Maxwell Chase Technologies, Llc | Food preservation compositions and methods of use thereof |
US7935860B2 (en) * | 2007-03-23 | 2011-05-03 | Kimberly-Clark Worldwide, Inc. | Absorbent articles comprising high permeability superabsorbent polymer compositions |
DE102007024080A1 (en) | 2007-05-22 | 2008-11-27 | Evonik Stockhausen Gmbh | Process for gentle mixing and coating of superabsorbents |
US7816426B2 (en) * | 2007-07-16 | 2010-10-19 | Evonik Stockhausen, Llc | Superabsorbent polymer compositions having color stability |
WO2009016055A2 (en) | 2007-07-27 | 2009-02-05 | Basf Se | Water-absorbing polymeric particles and method for the production thereof |
WO2009154568A1 (en) * | 2008-06-20 | 2009-12-23 | Agency For Science, Technology And Research | Water swellable and water soluble polymers and use thereof |
US8436090B2 (en) * | 2008-09-16 | 2013-05-07 | Nippon Shokubai Co., Ltd. | Production method and method for enhancing liquid permeability of water-absorbing resin |
US8222477B2 (en) * | 2008-10-20 | 2012-07-17 | Evonik Stockhausen, Llc | Superabsorbent polymer containing clay, particulate, and method of making same |
US7910688B2 (en) | 2008-10-22 | 2011-03-22 | Evonik Stockhausen Inc. | Recycling superabsorbent polymer fines |
CN102292362A (en) * | 2008-11-21 | 2011-12-21 | 巴斯夫欧洲公司 | Method for producing permeable water-absorbing polymer particles through polymerization of drops of a monomer solution |
US8361926B2 (en) * | 2008-11-25 | 2013-01-29 | Evonik Stockhausen, Llc | Water-absorbing polysaccharide and method for producing the same |
EP2399944B2 (en) | 2009-02-17 | 2019-08-07 | Nippon Shokubai Co., Ltd. | Polyacrylic acid-based water-absorbing resin powder and method for producing the same |
EP2238957A1 (en) * | 2009-04-10 | 2010-10-13 | The Procter & Gamble Company | Absorbent core |
US9207357B2 (en) | 2009-06-22 | 2015-12-08 | The Trustees Of Princeton University | Non-crystalline materials having complete photonic, electronic, or phononic band gaps |
JP5766186B2 (en) † | 2009-06-26 | 2015-08-19 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing water-absorbing polymer particles having a low tendency to solidify and a high absorption under pressure |
DE102009028156A1 (en) | 2009-07-31 | 2011-02-03 | Evonik Stockhausen Gmbh | Foamable O / W emulsion |
DE102009040949A1 (en) * | 2009-09-11 | 2011-03-31 | Evonik Stockhausen Gmbh | Plasma modification of water-absorbing polymer structures |
WO2011034147A1 (en) | 2009-09-16 | 2011-03-24 | 株式会社日本触媒 | Method for producing water absorbent resin powder |
CN102548654A (en) | 2009-09-29 | 2012-07-04 | 株式会社日本触媒 | Particulate water absorbent and process for production thereof |
WO2011078298A1 (en) | 2009-12-24 | 2011-06-30 | 株式会社日本触媒 | Water-absorbable polyacrylic acid resin powder, and process for production thereof |
WO2011115221A1 (en) | 2010-03-17 | 2011-09-22 | 株式会社日本触媒 | Method of producing absorbent resin |
EP2371869A1 (en) | 2010-03-30 | 2011-10-05 | Evonik Stockhausen GmbH | A process for the production of a superabsorbent polymer |
EP2557095B1 (en) | 2010-04-07 | 2016-10-05 | Nippon Shokubai Co., Ltd. | Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder |
EP2565219B1 (en) | 2010-04-27 | 2018-06-27 | Nippon Shokubai Co., Ltd. | Method for producing polyacrylic acid (salt)-based water absorbent resin powder |
KR101989142B1 (en) | 2010-09-30 | 2019-06-13 | 가부시기가이샤 닛뽕쇼꾸바이 | Particulate water absorbent and production method for same |
DE102011004815A1 (en) | 2011-02-28 | 2012-08-30 | Evonik Stockhausen Gmbh | Skin and hand cleanser containing superabsorbent particles |
US8802786B2 (en) | 2011-04-21 | 2014-08-12 | Evonik Corporation | Particulate superabsorbent polymer composition having improved performance properties |
US8999884B2 (en) * | 2011-06-01 | 2015-04-07 | The Procter & Gamble Company | Absorbent structures with coated water-absorbing material |
US8664151B2 (en) | 2011-06-01 | 2014-03-04 | The Procter & Gamble Company | Articles comprising reinforced polyurethane coating agent |
JP5599513B2 (en) | 2011-06-29 | 2014-10-01 | 株式会社日本触媒 | Polyacrylic acid (salt) water-absorbing resin powder and method for producing the same |
JP5551836B2 (en) | 2011-11-16 | 2014-07-16 | 株式会社日本触媒 | Method for producing polyacrylic acid (salt) water-absorbing resin |
US8420567B1 (en) | 2011-12-30 | 2013-04-16 | Evonik Stockhausen, Llc | Process for superabsorbent polymer and crosslinker composition |
WO2013101197A1 (en) | 2011-12-30 | 2013-07-04 | Evonik Stockhausen, Llc | Superabsorbent polymer with crosslinker |
WO2014021432A1 (en) | 2012-08-01 | 2014-02-06 | 株式会社日本触媒 | Process for producing polyacrylic acid (salt)-based water-absorbing resin |
EP2912110B1 (en) | 2012-10-24 | 2018-12-05 | Evonik Degussa GmbH | Scent- and colour-stable water-absorbing composition |
WO2014084281A1 (en) | 2012-11-27 | 2014-06-05 | 株式会社日本触媒 | Method for producing polyacrylic acid (salt)-based water-absorbing resin |
US9302248B2 (en) | 2013-04-10 | 2016-04-05 | Evonik Corporation | Particulate superabsorbent polymer composition having improved stability |
US9375507B2 (en) * | 2013-04-10 | 2016-06-28 | Evonik Corporation | Particulate superabsorbent polymer composition having improved stability |
KR101495845B1 (en) * | 2013-09-30 | 2015-02-25 | 주식회사 엘지화학 | Super absorbent polymer and preparation method for super absorbent polymer |
DE102015203639A1 (en) | 2014-03-05 | 2015-09-10 | Evonik Degussa Gmbh | Superabsorbent polymers with improved odor control properties and process for their preparation |
KR101684649B1 (en) * | 2014-06-13 | 2016-12-08 | 주식회사 엘지화학 | Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom |
JP2016030832A (en) | 2014-07-25 | 2016-03-07 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | Adhesion inhibiting process aid and its use in manufacturing water absorptive particle |
EP3000486B1 (en) * | 2014-09-23 | 2017-11-08 | Evonik Degussa GmbH | Super absorber production using certain conveying machines |
US10285866B2 (en) | 2015-01-16 | 2019-05-14 | Lg Chem, Ltd. | Super absorbent polymer |
KR101799091B1 (en) * | 2015-01-23 | 2017-11-17 | 주식회사 엘지화학 | Super absorbent polymer and preparation method thereof |
CN105561370B (en) * | 2015-04-28 | 2019-02-15 | 安徽省科晟生物科技有限公司 | A kind of hemostatic material and preparation method thereof |
KR101953764B1 (en) * | 2016-11-04 | 2019-03-04 | 주식회사 엘지화학 | Super absorbent polymer and preparation method thereof |
KR102112832B1 (en) * | 2017-03-02 | 2020-05-19 | 주식회사 엘지화학 | Super absorbent polymer and its preparation method |
CN110628051B (en) * | 2019-11-20 | 2020-10-30 | 山东诺尔生物科技有限公司 | Water-absorbent resin for manufacturing absorbent paper by wet method and preparation method thereof |
KR20220117238A (en) * | 2019-12-13 | 2022-08-23 | 스미토모 세이카 가부시키가이샤 | Absorbent resin particles and absorbent body |
CN113004550B (en) * | 2019-12-19 | 2022-07-12 | 万华化学集团股份有限公司 | Absorbent polymer with high liquidity and low caking tendency and preparation method thereof |
US20230320347A1 (en) | 2020-09-08 | 2023-10-12 | Council Of Scientific And Industrial Research | Flocculant based disinfection process for pathogenic medical waste disposal |
TWI805461B (en) | 2022-08-04 | 2023-06-11 | 臺灣塑膠工業股份有限公司 | Superabsorbent polymer and method for producing the same |
WO2024073392A1 (en) | 2022-09-26 | 2024-04-04 | Csp Technologies, Inc. | Use of nonvolatile antimicrobials in food packaging |
JP7642729B2 (en) | 2023-06-28 | 2025-03-10 | 臺灣塑膠工業股▲ふん▼有限公司 | Manufacturing method of water-absorbent resin |
EP4484471A1 (en) * | 2023-06-29 | 2025-01-01 | Formosa Plastics Corporation | Method of forming superabsorbent polymer |
Citations (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4392908A (en) * | 1980-01-25 | 1983-07-12 | Lever Brothers Company | Process for making absorbent articles |
US5368918A (en) * | 1990-08-30 | 1994-11-29 | Nippon Shokubai Co., Ltd. | Absorbent material comprising absorbent polymeric particulate material coated with synthetic pulp |
US5407442A (en) * | 1990-02-12 | 1995-04-18 | Karapasha; Nancy | Carbon-containing odor controlling compositions |
US5409771A (en) * | 1990-06-29 | 1995-04-25 | Chemische Fabrik Stockhausen Gmbh | Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles |
US5420218A (en) * | 1992-06-16 | 1995-05-30 | Nippon Shokubai Co., Ltd. | Resinous particles, method for production thereof, and uses therefor |
US5422405A (en) * | 1992-12-16 | 1995-06-06 | Nippon Shokubai Co., Ltd. | Method for production of absorbent resin |
US5451613A (en) * | 1993-09-17 | 1995-09-19 | Nalco Chemical Company | Superabsorbent polymer having improved absorption rate and absorption under pressure |
US5567744A (en) * | 1992-05-23 | 1996-10-22 | Sumitomo Seika Chemicals Co., Ltd. | High water-absorbent resin composition |
US5599335A (en) * | 1994-03-29 | 1997-02-04 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5672419A (en) * | 1993-02-24 | 1997-09-30 | Sanyo Chemical Industries, Inc. | Water absorbent composition and material |
US5731365A (en) * | 1994-07-22 | 1998-03-24 | Hoechst Ag | Hydrophilic, highly swellable hydrogels |
US5760080A (en) * | 1994-06-13 | 1998-06-02 | Nippon Shokubai Co., Ltd. | Absorbing agent, process of manufacturing same, and absorbent product containing same |
US5840321A (en) * | 1995-07-07 | 1998-11-24 | Clariant Gmbh | Hydrophilic, highly swellable hydrogels |
US5851672A (en) * | 1994-02-17 | 1998-12-22 | The Procter & Gamble Company | Absorbent materials having modified surface characteristics and methods for making the same |
US5859074A (en) * | 1994-11-09 | 1999-01-12 | The Procter & Gamble Co. | Treating interparticle bonded aggregates with latex to increase flexibility of porous, absorbent macrostructures |
US5994440A (en) * | 1993-03-29 | 1999-11-30 | The Dow Chemical Company | Absorbent polymer having reduced dusting tendencies |
US6027536A (en) * | 1996-02-14 | 2000-02-22 | Akzo Nobel N.V. | Method for the preparation of a material with high water and salt solutions absorbency |
US6072101A (en) * | 1997-11-19 | 2000-06-06 | Amcol International Corporation | Multicomponent superabsorbent gel particles |
US6072024A (en) * | 1997-03-21 | 2000-06-06 | Mitsui Chemicals, Inc. | Production process of cross-linked polyaspartic acid resin |
US6090875A (en) * | 1996-02-16 | 2000-07-18 | The Dow Chemical Company | Dust control of absorbent polymers |
US6229062B1 (en) * | 1999-04-29 | 2001-05-08 | Basf Aktiengesellschaft Corporation | Superabsorbent polymer containing odor controlling compounds and methods of making the same |
US6245693B1 (en) * | 1996-12-20 | 2001-06-12 | The Procter & Gamble Company | Laminated composite absorbent structure comprising odor control means |
US20010049514A1 (en) * | 1998-12-31 | 2001-12-06 | Richard Norris Dodge | Absorbent composites with enhanced intake properties |
US20020039869A1 (en) * | 2000-07-24 | 2002-04-04 | Felix Achille | Thermoplastic superabsorbent polymer blend compositions and their preparation |
US20020045869A1 (en) * | 1998-12-31 | 2002-04-18 | Dodge Richard Norris | Absorbent composites comprising superabsorbent materials |
US6375644B2 (en) * | 1998-06-03 | 2002-04-23 | Uni-Charm Corporation | Body exudates absorbent article having exposed zone of alternating troughs or crests |
US6376011B1 (en) * | 1999-04-16 | 2002-04-23 | Kimberly-Clark Worldwide, Inc. | Process for preparing superabsorbent-containing composites |
US20020090453A1 (en) * | 2000-10-25 | 2002-07-11 | Synergistic Ventures, Inc. | Highly absorbent products and process of making such products |
US6423046B1 (en) * | 1998-12-01 | 2002-07-23 | Uni-Charm Corporation | Absorbent article |
US6441266B1 (en) * | 1997-04-18 | 2002-08-27 | The Procter & Gamble Company | Absorbent members for body fluids using hydrogel-forming absorbent polymer |
US6495612B1 (en) * | 1998-06-09 | 2002-12-17 | The Procter & Gamble Company | Shape-formed, three dimensional, moisture vapor permeable, liquid impermeable articles |
US6498201B1 (en) * | 1998-06-09 | 2002-12-24 | The Procter & Gamble Company | Low viscosity thermoplastic compositions for structures with enhanced moisture vapor permeability and the utilisation thereof in absorbent articles |
US20030012928A1 (en) * | 2000-03-02 | 2003-01-16 | Malowaniec Krzysztor D. | Absorbent structure and method for producing the same |
US20030040729A1 (en) * | 2000-03-02 | 2003-02-27 | Malowaniec Krzysztof D. | Absorbent structure and method of producing the same |
US6534561B1 (en) * | 1998-06-09 | 2003-03-18 | The Procter & Gamble Company | Low viscosity thermoplastic compositions for moisture vapor permeable structures and the utilization thereof in absorbent articles |
US6534572B1 (en) * | 1998-05-07 | 2003-03-18 | H. B. Fuller Licensing & Financing, Inc. | Compositions comprising a thermoplastic component and superabsorbent polymer |
US20030065296A1 (en) * | 2001-02-26 | 2003-04-03 | Kaiser Thomas A. | Absorbent material of water absorbent polymer, thermoplastic polymer, and water and method for making same |
US20030088220A1 (en) * | 2001-11-05 | 2003-05-08 | The Procter & Gamble Company | Articles comprising impregnated thermoplastic members and method of manufacturing the articles |
US20030109628A1 (en) * | 2001-12-11 | 2003-06-12 | The Procter & Gamble Company | Liquid absorbing thermoplastic materials and the utilization thereof in absorbent articles |
US20030134552A1 (en) * | 2002-01-15 | 2003-07-17 | Mehawej Fouad D. | Superabsorbent thermoplastic composition and article including same |
US20030175418A1 (en) * | 2000-10-25 | 2003-09-18 | Synergistic Ventures, Inc. | Highly absorbent products and process of making such products |
US20030207639A1 (en) * | 2002-05-02 | 2003-11-06 | Tingdong Lin | Nonwoven web with improved adhesion and reduced dust formation |
US20040054343A1 (en) * | 2002-09-18 | 2004-03-18 | Barnett Larry N. | Horizontal density gradient absorbent system for personal care products |
US20040058159A1 (en) * | 2002-09-24 | 2004-03-25 | The Procter & Gamble Company | Liquid absorbent thermoplastic composition comprising superabsorbent material particles of substantially angle-lacking shape |
US6716514B2 (en) * | 1998-01-26 | 2004-04-06 | The Procter & Gamble Company | Disposable article with enhanced texture |
US20040078015A1 (en) * | 2002-06-17 | 2004-04-22 | Copat Marcelo S. | Extruded super absorbent web |
US6730057B2 (en) * | 2001-03-16 | 2004-05-04 | The Procter & Gamble Company | Flushable tampon applicators |
US20040121681A1 (en) * | 2002-12-23 | 2004-06-24 | Kimberly-Clark Worldwide, Inc. | Absorbent articles containing an activated carbon substrate |
US20040180998A1 (en) * | 2002-12-23 | 2004-09-16 | The Procter & Gamble Company | Polymeric compositions for moisture vapour permeable structures with improved structural stability and structures comprising said compositions |
US20040222553A1 (en) * | 2003-05-05 | 2004-11-11 | The Procter & Gamble Company | Method for making a stretch composite |
US20040236295A1 (en) * | 2000-10-25 | 2004-11-25 | Synergistic Ventures, Inc. | Absorbent products, irrigation, erosion control, and root growth control |
US20050013992A1 (en) * | 2001-11-21 | 2005-01-20 | Azad Michael M | Crosslinked polyamine coating on superabsorbent hydrogels |
US20050043696A1 (en) * | 2003-08-06 | 2005-02-24 | The Procter & Gamble Company | Coated water-swellable material |
US6867345B2 (en) * | 1998-12-11 | 2005-03-15 | Uni-Charm Corporation | Disposable body fluid absorbent article having longitudinal side groove |
US20050065237A1 (en) * | 2003-08-06 | 2005-03-24 | The Procter & Gamble Company | Process for making surface treated absorbent gelling material |
US6906131B2 (en) * | 2001-09-17 | 2005-06-14 | Stockhausen Gmbh & Co. Kg | Cellulose material with improved absorbency |
US7163969B2 (en) * | 2003-10-14 | 2007-01-16 | Stockhausen, Inc. | Superabsorbent polymer aqueous paste and coating |
US7169843B2 (en) * | 2003-04-25 | 2007-01-30 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
US7173086B2 (en) * | 2003-10-31 | 2007-02-06 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
US20070066754A1 (en) * | 2003-07-25 | 2007-03-22 | Frank Loeker | Powdery water-absorbing polymers with fine particles bound by thermoplastic adhesives |
US20070135554A1 (en) * | 2005-12-12 | 2007-06-14 | Stan Mcintosh | Thermoplastic coated superabsorbent polymer compositions |
US7241820B2 (en) * | 2000-10-30 | 2007-07-10 | Stockhausen Gmbh | Absorbing structure having improved blocking properties |
US20070255243A1 (en) * | 2006-04-28 | 2007-11-01 | Kaun James M | Dimensionally stable stretchable absorbent composite |
US7291674B2 (en) * | 2003-10-28 | 2007-11-06 | Stockhausen, Inc. | Superabsorbent polymer |
US7312286B2 (en) * | 2005-12-02 | 2007-12-25 | Stockhausen, Inc. | Flexible superabsorbent binder polymer composition |
US20080009616A1 (en) * | 2004-06-21 | 2008-01-10 | Markus Frank | Water-Absorbing Polysaccharide and Method for Producing the Same |
US7335713B2 (en) * | 2005-12-02 | 2008-02-26 | Stockhausen, Inc. | Method for preparing a flexible superabsorbent binder polymer composition |
US20080221237A1 (en) * | 2005-02-01 | 2008-09-11 | Basf Aktiengesellschaft | Polyamine-Coated Superabsorbent Polymers |
US20080234420A1 (en) * | 2007-03-23 | 2008-09-25 | Smith Scott J | High permeability superabsorbent polymer compositions |
US20090023848A1 (en) * | 2007-07-16 | 2009-01-22 | Iqbal Ahmed | Superabsorbent polymer compositions having color stability |
US20090134357A1 (en) * | 2005-02-28 | 2009-05-28 | Gunther Bub | Acrylic acid, water-absorbent polymer structures based on renewable resources and method for producing said structures |
US20090191408A1 (en) * | 2008-01-30 | 2009-07-30 | Gonglu Tian | Superabsorbent polymer compositions having a triggering composition |
US7579402B2 (en) * | 2003-11-12 | 2009-08-25 | Evonik Stockhausen, Inc. | Superabsorbent polymer having delayed free water absorption |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2222780C3 (en) | 1972-05-10 | 1975-05-07 | Vereinigte Papierwerke Schickedanz & Co, 8500 Nuernberg | Process for determining finely divided hydrocolloid swelling substances to be used in hygiene articles on documents |
CA1280398C (en) * | 1986-02-05 | 1991-02-19 | Hideharu Shirai | Water-absorbent resin and process for producing the same |
KR910008293B1 (en) * | 1988-05-13 | 1991-10-12 | 주식회사 럭키 | High absorptive resin |
JP2579814B2 (en) | 1989-03-16 | 1997-02-12 | 三洋化成工業株式会社 | Water absorbing agent and method for producing the same |
JPH05507511A (en) * | 1990-05-19 | 1993-10-28 | ザ・ダウ・ケミカル・カンパニー | Water-absorbing resin particles for absorbent structures |
GB9011250D0 (en) | 1990-05-19 | 1990-07-11 | Ball Jeffrey M | Attachment of absorbent granules or fibres in open structure webs |
TW387902B (en) | 1992-06-16 | 2000-04-21 | Nippon Catalytic Chem Ind | Resinous particles, method for production thereof, and uses therefor |
JP2909692B2 (en) * | 1993-02-24 | 1999-06-23 | 三洋化成工業株式会社 | Water absorbing agent |
JP3330716B2 (en) * | 1994-02-16 | 2002-09-30 | 三菱化学株式会社 | Superabsorbent polymer composition |
GB9322119D0 (en) * | 1993-10-27 | 1993-12-15 | Allied Colloids Ltd | Superabsorbent polymers and products containing them |
DE69526576T2 (en) | 1994-02-17 | 2003-01-02 | The Procter & Gamble Company, Cincinnati | ABSORBENT PRODUCTS PROVIDE WITH ABSORBENT MATERIALS WITH IMPROVED ABSORPTION PROPERTIES |
AUPM931094A0 (en) | 1994-11-09 | 1994-12-01 | Procter & Gamble Company, The | Treating interparticle bonded aggregates with latex to increase flexibility of porous, absorbent macrostructures |
EP0802238B1 (en) * | 1995-11-02 | 2006-03-08 | Nippon Shokubai Co., Ltd. | Water absorbent resin, absorbent material, and process for the production thereof |
JP3847371B2 (en) * | 1996-03-06 | 2006-11-22 | 株式会社日本触媒 | Water-absorbent resin composition, method for producing the same, and hygiene article using the same |
US6107358A (en) * | 1996-08-23 | 2000-08-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and method for production thereof |
EP0850617B1 (en) | 1996-12-20 | 2001-10-24 | The Procter & Gamble Company | A laminated composite absorbent structure comprising odour control means |
US6008205A (en) | 1997-04-04 | 1999-12-28 | The Brigham & Women's Hospital, Inc. | Polyisoprenyl phosphate stable analogs for regulation of neutrophil responses |
US6060149A (en) | 1997-09-12 | 2000-05-09 | The Procter & Gamble Company | Multiple layer wiping article |
JP4047443B2 (en) * | 1998-04-03 | 2008-02-13 | 株式会社日本触媒 | Water absorbent resin composition and method for producing the same |
JPH11290682A (en) * | 1998-04-10 | 1999-10-26 | Sanyo Chem Ind Ltd | Water absorbent |
US6124391A (en) * | 1998-08-18 | 2000-09-26 | Stockhausen Gmbh & Co. Kg | Superabsorbent polymers having anti-caking characteristics |
CA2293864A1 (en) | 1998-12-31 | 2000-06-30 | Sandra Marie Yarbrough | Absorbent composites comprising superabsorbent materials |
DE19909838A1 (en) * | 1999-03-05 | 2000-09-07 | Stockhausen Chem Fab Gmbh | Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use |
KR100333972B1 (en) * | 1999-05-24 | 2002-04-24 | 송성원 | A water-absorbent resin compound, and a process of preparing the same |
JP4308382B2 (en) * | 1999-10-01 | 2009-08-05 | 株式会社日本触媒 | Water absorbing agent and method for producing the same |
DE10010269C1 (en) | 2000-03-02 | 2001-07-26 | Hartmann Paul Ag | Disposable hygiene article, e.g. diaper, sanitary towel or incontinence pad, has liquid up-take, distribution and intermediate storage layer of thermoplastic polymer, extruded with addition of blowing agent |
JP3987348B2 (en) * | 2001-01-26 | 2007-10-10 | 株式会社日本触媒 | Manufacturing method of water-absorbing agent |
JP2002226599A (en) * | 2001-02-05 | 2002-08-14 | Sanyo Chem Ind Ltd | Method for producing water-absorbing resin |
JP2002346381A (en) | 2001-05-23 | 2002-12-03 | Enex Co Ltd | Water-absorbing and -retaining fine particle material and method for manufacturing the same |
US6727345B2 (en) * | 2001-07-03 | 2004-04-27 | Nippon Shokubai Co., Ltd. | Continuous production process for water-absorbent resin powder and powder surface detector used therefor |
US6716894B2 (en) * | 2001-07-06 | 2004-04-06 | Nippon Shokubai Co., Ltd. | Water-absorbent resin powder and its production process and uses |
WO2003043670A1 (en) | 2001-11-21 | 2003-05-30 | Basf Aktiengesellschaft | Crosslinked polyamine coating on superabsorbent hydrogels |
JP2003183528A (en) * | 2001-12-21 | 2003-07-03 | San-Dia Polymer Ltd | Absorbent, absorber and absorptive product using the same |
WO2003065958A1 (en) * | 2002-02-04 | 2003-08-14 | Nippon Shokubai Co., Ltd. | Absorptive material, method for producing the same and absorptive article using the same |
US6670035B2 (en) | 2002-04-05 | 2003-12-30 | Arteva North America S.A.R.L. | Binder fiber and nonwoven web |
FR2838445B1 (en) | 2002-04-16 | 2004-07-09 | Rkw Guial | COMPLEX BOTH GAS PERMEABLE AND WATERPROOF, AT LEAST IN PART, WITH AQUEOUS LIQUIDS |
AU2003229743A1 (en) | 2002-05-01 | 2003-11-17 | Basf Aktiengesellschaft | Plasticized superabsorbent polymer sheets and use thereof in hygienic articles |
AU2003251453A1 (en) | 2002-07-23 | 2004-02-09 | Wagner, Werner | Method for the production of a water-absorbing web-shaped material |
JP4266685B2 (en) | 2003-03-31 | 2009-05-20 | 大王製紙株式会社 | Body fluid absorbent article |
WO2004096301A2 (en) | 2003-04-24 | 2004-11-11 | Dow Global Technologies Inc. | Fluid-absorbent compositions and articles, porous articles, and methods for making the same |
US20040214499A1 (en) * | 2003-04-25 | 2004-10-28 | Kimberly-Clark Worldwide, Inc. | Absorbent structure with superabsorbent material |
CN2819951Y (en) | 2005-06-16 | 2006-09-27 | 千宝实业股份有限公司 | Far Infrared Energy Mat |
DE102006060156A1 (en) * | 2006-12-18 | 2008-06-19 | Evonik Stockhausen Gmbh | Water-absorbing polymer structures produced using polymer dispersions |
US8222477B2 (en) * | 2008-10-20 | 2012-07-17 | Evonik Stockhausen, Llc | Superabsorbent polymer containing clay, particulate, and method of making same |
US7910688B2 (en) | 2008-10-22 | 2011-03-22 | Evonik Stockhausen Inc. | Recycling superabsorbent polymer fines |
US8361926B2 (en) * | 2008-11-25 | 2013-01-29 | Evonik Stockhausen, Llc | Water-absorbing polysaccharide and method for producing the same |
US8802786B2 (en) | 2011-04-21 | 2014-08-12 | Evonik Corporation | Particulate superabsorbent polymer composition having improved performance properties |
JP5507511B2 (en) | 2011-08-30 | 2014-05-28 | 日立アプライアンス株式会社 | refrigerator |
US8420567B1 (en) | 2011-12-30 | 2013-04-16 | Evonik Stockhausen, Llc | Process for superabsorbent polymer and crosslinker composition |
-
2003
- 2003-10-31 US US10/699,205 patent/US7173086B2/en not_active Expired - Lifetime
-
2004
- 2004-10-28 CN CN200480039464.8A patent/CN100480304C/en not_active Expired - Lifetime
- 2004-10-28 WO PCT/US2004/035879 patent/WO2005044900A1/en active Application Filing
- 2004-10-28 BR BRPI0416100A patent/BRPI0416100B8/en active IP Right Grant
- 2004-10-28 EP EP04796683.3A patent/EP1680460B1/en not_active Expired - Lifetime
- 2004-10-28 JP JP2006538268A patent/JP5188710B2/en not_active Expired - Lifetime
- 2004-10-29 TW TW093132928A patent/TWI281869B/en not_active IP Right Cessation
-
2006
- 2006-09-01 US US11/469,718 patent/US7777093B2/en not_active Expired - Fee Related
-
2010
- 2010-07-06 US US12/830,890 patent/US20100279860A1/en not_active Abandoned
-
2013
- 2013-07-11 US US13/939,567 patent/US8883881B2/en not_active Expired - Lifetime
Patent Citations (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4392908A (en) * | 1980-01-25 | 1983-07-12 | Lever Brothers Company | Process for making absorbent articles |
US5407442A (en) * | 1990-02-12 | 1995-04-18 | Karapasha; Nancy | Carbon-containing odor controlling compositions |
US5409771A (en) * | 1990-06-29 | 1995-04-25 | Chemische Fabrik Stockhausen Gmbh | Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles |
US5599763A (en) * | 1990-08-30 | 1997-02-04 | Nippon Shokubai Co., Ltd. | Absorbent material, absorbent body, and method for production thereof |
US5368918A (en) * | 1990-08-30 | 1994-11-29 | Nippon Shokubai Co., Ltd. | Absorbent material comprising absorbent polymeric particulate material coated with synthetic pulp |
US5567744A (en) * | 1992-05-23 | 1996-10-22 | Sumitomo Seika Chemicals Co., Ltd. | High water-absorbent resin composition |
US5420218A (en) * | 1992-06-16 | 1995-05-30 | Nippon Shokubai Co., Ltd. | Resinous particles, method for production thereof, and uses therefor |
US5422405A (en) * | 1992-12-16 | 1995-06-06 | Nippon Shokubai Co., Ltd. | Method for production of absorbent resin |
US5672419A (en) * | 1993-02-24 | 1997-09-30 | Sanyo Chemical Industries, Inc. | Water absorbent composition and material |
US5716707A (en) * | 1993-02-24 | 1998-02-10 | Sanyo Chemical Industries, Ltd. | Water absorbent compositon and material |
US5994440A (en) * | 1993-03-29 | 1999-11-30 | The Dow Chemical Company | Absorbent polymer having reduced dusting tendencies |
US5451613A (en) * | 1993-09-17 | 1995-09-19 | Nalco Chemical Company | Superabsorbent polymer having improved absorption rate and absorption under pressure |
US5462972A (en) * | 1993-09-17 | 1995-10-31 | Nalco Chemical Company | Superabsorbent polymer having improved absorption rate and absorption under pressure |
US5851672A (en) * | 1994-02-17 | 1998-12-22 | The Procter & Gamble Company | Absorbent materials having modified surface characteristics and methods for making the same |
US5599335A (en) * | 1994-03-29 | 1997-02-04 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5760080A (en) * | 1994-06-13 | 1998-06-02 | Nippon Shokubai Co., Ltd. | Absorbing agent, process of manufacturing same, and absorbent product containing same |
US5731365A (en) * | 1994-07-22 | 1998-03-24 | Hoechst Ag | Hydrophilic, highly swellable hydrogels |
US5859074A (en) * | 1994-11-09 | 1999-01-12 | The Procter & Gamble Co. | Treating interparticle bonded aggregates with latex to increase flexibility of porous, absorbent macrostructures |
US5840321A (en) * | 1995-07-07 | 1998-11-24 | Clariant Gmbh | Hydrophilic, highly swellable hydrogels |
US6027536A (en) * | 1996-02-14 | 2000-02-22 | Akzo Nobel N.V. | Method for the preparation of a material with high water and salt solutions absorbency |
US6090875A (en) * | 1996-02-16 | 2000-07-18 | The Dow Chemical Company | Dust control of absorbent polymers |
US6245693B1 (en) * | 1996-12-20 | 2001-06-12 | The Procter & Gamble Company | Laminated composite absorbent structure comprising odor control means |
US6072024A (en) * | 1997-03-21 | 2000-06-06 | Mitsui Chemicals, Inc. | Production process of cross-linked polyaspartic acid resin |
US6441266B1 (en) * | 1997-04-18 | 2002-08-27 | The Procter & Gamble Company | Absorbent members for body fluids using hydrogel-forming absorbent polymer |
US6072101A (en) * | 1997-11-19 | 2000-06-06 | Amcol International Corporation | Multicomponent superabsorbent gel particles |
US6716514B2 (en) * | 1998-01-26 | 2004-04-06 | The Procter & Gamble Company | Disposable article with enhanced texture |
US6534572B1 (en) * | 1998-05-07 | 2003-03-18 | H. B. Fuller Licensing & Financing, Inc. | Compositions comprising a thermoplastic component and superabsorbent polymer |
US6375644B2 (en) * | 1998-06-03 | 2002-04-23 | Uni-Charm Corporation | Body exudates absorbent article having exposed zone of alternating troughs or crests |
US6495612B1 (en) * | 1998-06-09 | 2002-12-17 | The Procter & Gamble Company | Shape-formed, three dimensional, moisture vapor permeable, liquid impermeable articles |
US6534561B1 (en) * | 1998-06-09 | 2003-03-18 | The Procter & Gamble Company | Low viscosity thermoplastic compositions for moisture vapor permeable structures and the utilization thereof in absorbent articles |
US6498201B1 (en) * | 1998-06-09 | 2002-12-24 | The Procter & Gamble Company | Low viscosity thermoplastic compositions for structures with enhanced moisture vapor permeability and the utilisation thereof in absorbent articles |
US6423046B1 (en) * | 1998-12-01 | 2002-07-23 | Uni-Charm Corporation | Absorbent article |
US6867345B2 (en) * | 1998-12-11 | 2005-03-15 | Uni-Charm Corporation | Disposable body fluid absorbent article having longitudinal side groove |
US20020045869A1 (en) * | 1998-12-31 | 2002-04-18 | Dodge Richard Norris | Absorbent composites comprising superabsorbent materials |
US20010049514A1 (en) * | 1998-12-31 | 2001-12-06 | Richard Norris Dodge | Absorbent composites with enhanced intake properties |
US6376011B1 (en) * | 1999-04-16 | 2002-04-23 | Kimberly-Clark Worldwide, Inc. | Process for preparing superabsorbent-containing composites |
US6229062B1 (en) * | 1999-04-29 | 2001-05-08 | Basf Aktiengesellschaft Corporation | Superabsorbent polymer containing odor controlling compounds and methods of making the same |
US20030093051A1 (en) * | 2000-03-02 | 2003-05-15 | Malowaniec Krzysztof D. | Single-use absorbent sanitary article |
US20030040729A1 (en) * | 2000-03-02 | 2003-02-27 | Malowaniec Krzysztof D. | Absorbent structure and method of producing the same |
US20030012928A1 (en) * | 2000-03-02 | 2003-01-16 | Malowaniec Krzysztor D. | Absorbent structure and method for producing the same |
US20020039869A1 (en) * | 2000-07-24 | 2002-04-04 | Felix Achille | Thermoplastic superabsorbent polymer blend compositions and their preparation |
US20020090453A1 (en) * | 2000-10-25 | 2002-07-11 | Synergistic Ventures, Inc. | Highly absorbent products and process of making such products |
US20030175418A1 (en) * | 2000-10-25 | 2003-09-18 | Synergistic Ventures, Inc. | Highly absorbent products and process of making such products |
US20040236295A1 (en) * | 2000-10-25 | 2004-11-25 | Synergistic Ventures, Inc. | Absorbent products, irrigation, erosion control, and root growth control |
US7427650B2 (en) * | 2000-10-30 | 2008-09-23 | Stockhausen Gmbh | Absorbing structure having improved blocking properties |
US7241820B2 (en) * | 2000-10-30 | 2007-07-10 | Stockhausen Gmbh | Absorbing structure having improved blocking properties |
US20030065296A1 (en) * | 2001-02-26 | 2003-04-03 | Kaiser Thomas A. | Absorbent material of water absorbent polymer, thermoplastic polymer, and water and method for making same |
US6730057B2 (en) * | 2001-03-16 | 2004-05-04 | The Procter & Gamble Company | Flushable tampon applicators |
US7482058B2 (en) * | 2001-09-17 | 2009-01-27 | Evonik Stockhausen Gmbh | Cellulose material with improved absorbency |
US6906131B2 (en) * | 2001-09-17 | 2005-06-14 | Stockhausen Gmbh & Co. Kg | Cellulose material with improved absorbency |
US20030088220A1 (en) * | 2001-11-05 | 2003-05-08 | The Procter & Gamble Company | Articles comprising impregnated thermoplastic members and method of manufacturing the articles |
US20050013992A1 (en) * | 2001-11-21 | 2005-01-20 | Azad Michael M | Crosslinked polyamine coating on superabsorbent hydrogels |
US20030109628A1 (en) * | 2001-12-11 | 2003-06-12 | The Procter & Gamble Company | Liquid absorbing thermoplastic materials and the utilization thereof in absorbent articles |
US20030134552A1 (en) * | 2002-01-15 | 2003-07-17 | Mehawej Fouad D. | Superabsorbent thermoplastic composition and article including same |
US20030207639A1 (en) * | 2002-05-02 | 2003-11-06 | Tingdong Lin | Nonwoven web with improved adhesion and reduced dust formation |
US20040078015A1 (en) * | 2002-06-17 | 2004-04-22 | Copat Marcelo S. | Extruded super absorbent web |
US20040054343A1 (en) * | 2002-09-18 | 2004-03-18 | Barnett Larry N. | Horizontal density gradient absorbent system for personal care products |
US20040058159A1 (en) * | 2002-09-24 | 2004-03-25 | The Procter & Gamble Company | Liquid absorbent thermoplastic composition comprising superabsorbent material particles of substantially angle-lacking shape |
US20040180998A1 (en) * | 2002-12-23 | 2004-09-16 | The Procter & Gamble Company | Polymeric compositions for moisture vapour permeable structures with improved structural stability and structures comprising said compositions |
US20040121681A1 (en) * | 2002-12-23 | 2004-06-24 | Kimberly-Clark Worldwide, Inc. | Absorbent articles containing an activated carbon substrate |
US7169843B2 (en) * | 2003-04-25 | 2007-01-30 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
US20070167560A1 (en) * | 2003-04-25 | 2007-07-19 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
US20040222553A1 (en) * | 2003-05-05 | 2004-11-11 | The Procter & Gamble Company | Method for making a stretch composite |
US20070066754A1 (en) * | 2003-07-25 | 2007-03-22 | Frank Loeker | Powdery water-absorbing polymers with fine particles bound by thermoplastic adhesives |
US20050043696A1 (en) * | 2003-08-06 | 2005-02-24 | The Procter & Gamble Company | Coated water-swellable material |
US20050065237A1 (en) * | 2003-08-06 | 2005-03-24 | The Procter & Gamble Company | Process for making surface treated absorbent gelling material |
US7488541B2 (en) * | 2003-10-14 | 2009-02-10 | Evonik Stockhausen, Inc. | Superabsorbent polymer aqueous paste and coating |
US7163969B2 (en) * | 2003-10-14 | 2007-01-16 | Stockhausen, Inc. | Superabsorbent polymer aqueous paste and coating |
US7291674B2 (en) * | 2003-10-28 | 2007-11-06 | Stockhausen, Inc. | Superabsorbent polymer |
US7173086B2 (en) * | 2003-10-31 | 2007-02-06 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
US7579402B2 (en) * | 2003-11-12 | 2009-08-25 | Evonik Stockhausen, Inc. | Superabsorbent polymer having delayed free water absorption |
US20080009616A1 (en) * | 2004-06-21 | 2008-01-10 | Markus Frank | Water-Absorbing Polysaccharide and Method for Producing the Same |
US20080221237A1 (en) * | 2005-02-01 | 2008-09-11 | Basf Aktiengesellschaft | Polyamine-Coated Superabsorbent Polymers |
US20090134357A1 (en) * | 2005-02-28 | 2009-05-28 | Gunther Bub | Acrylic acid, water-absorbent polymer structures based on renewable resources and method for producing said structures |
US7399813B2 (en) * | 2005-12-02 | 2008-07-15 | Stockhaussen, Inc. | Flexible superabsorbent binder polymer composition |
US7335713B2 (en) * | 2005-12-02 | 2008-02-26 | Stockhausen, Inc. | Method for preparing a flexible superabsorbent binder polymer composition |
US7312286B2 (en) * | 2005-12-02 | 2007-12-25 | Stockhausen, Inc. | Flexible superabsorbent binder polymer composition |
US20070135554A1 (en) * | 2005-12-12 | 2007-06-14 | Stan Mcintosh | Thermoplastic coated superabsorbent polymer compositions |
US20080021130A1 (en) * | 2005-12-12 | 2008-01-24 | Stockhausen Gmbh | Thermoplastic coated superabsorbent polymer compositions |
US20070255243A1 (en) * | 2006-04-28 | 2007-11-01 | Kaun James M | Dimensionally stable stretchable absorbent composite |
US20080234420A1 (en) * | 2007-03-23 | 2008-09-25 | Smith Scott J | High permeability superabsorbent polymer compositions |
US20090023848A1 (en) * | 2007-07-16 | 2009-01-22 | Iqbal Ahmed | Superabsorbent polymer compositions having color stability |
US20090191408A1 (en) * | 2008-01-30 | 2009-07-30 | Gonglu Tian | Superabsorbent polymer compositions having a triggering composition |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100075844A1 (en) * | 2006-12-18 | 2010-03-25 | Frank Loeker | Water-absorbing polymer structures produced using polymer dispersions |
US8906824B2 (en) | 2006-12-18 | 2014-12-09 | Evonik Degussa Gmbh | Water-absorbing polymer structures produced using polymer dispersions |
US20080234420A1 (en) * | 2007-03-23 | 2008-09-25 | Smith Scott J | High permeability superabsorbent polymer compositions |
US8236884B2 (en) | 2007-03-23 | 2012-08-07 | Evonik Stockhausen, Llc | High permeability superabsorbent polymer compositions |
US8519041B2 (en) | 2007-03-23 | 2013-08-27 | Evonik Stockhausen, Llc | High permeability superabsorbent polymer compositions |
US8822582B2 (en) | 2007-03-23 | 2014-09-02 | Evonik Corporation | High permeability superabsorbent polymer compositions |
US20090191408A1 (en) * | 2008-01-30 | 2009-07-30 | Gonglu Tian | Superabsorbent polymer compositions having a triggering composition |
US8318306B2 (en) | 2008-01-30 | 2012-11-27 | Evonik Stockhausen, Llc | Superabsorbent polymer compositions having a triggering composition |
US8734948B2 (en) | 2008-01-30 | 2014-05-27 | Evonik Stockhausen, Llc | Superabsorbent polymer compositions having a triggering composition |
US10195584B2 (en) | 2013-01-29 | 2019-02-05 | Nippon Shokubai Co., Ltd. | Water absorbent resin material, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
US20130310251A1 (en) | 2013-11-21 |
EP1680460A1 (en) | 2006-07-19 |
CN100480304C (en) | 2009-04-22 |
BRPI0416100A (en) | 2007-01-02 |
JP2007510045A (en) | 2007-04-19 |
CN1902265A (en) | 2007-01-24 |
US20050096435A1 (en) | 2005-05-05 |
US20100279860A1 (en) | 2010-11-04 |
EP1680460B1 (en) | 2016-09-21 |
TW200520797A (en) | 2005-07-01 |
JP5188710B2 (en) | 2013-04-24 |
BRPI0416100B8 (en) | 2022-08-23 |
US8883881B2 (en) | 2014-11-11 |
US7777093B2 (en) | 2010-08-17 |
US7173086B2 (en) | 2007-02-06 |
TWI281869B (en) | 2007-06-01 |
WO2005044900A1 (en) | 2005-05-19 |
BRPI0416100B1 (en) | 2015-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7777093B2 (en) | Superabsorbent polymer with high permeability | |
US7795345B2 (en) | Superabsorbent polymer with high permeability | |
US7906585B2 (en) | Thermoplastic coated superabsorbent polymer compositions | |
US9375507B2 (en) | Particulate superabsorbent polymer composition having improved stability | |
US8822582B2 (en) | High permeability superabsorbent polymer compositions | |
US9302248B2 (en) | Particulate superabsorbent polymer composition having improved stability | |
US20150283284A1 (en) | Superabsorbent polymer having fast absorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: EVONIK STOCKHAUSEN, LLC,NORTH CAROLINA Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK STOCKHAUSEN, INC.;REEL/FRAME:024592/0335 Effective date: 20091022 Owner name: EVONIK STOCKHAUSEN, LLC, NORTH CAROLINA Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK STOCKHAUSEN, INC.;REEL/FRAME:024592/0335 Effective date: 20091022 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: EVONIK DEGUSSA CORPORATION, NEW JERSEY Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:EVONIK STOCKHAUSEN, LLC;EVONIK DEGUSSA CORPORATION;REEL/FRAME:033823/0936 Effective date: 20121218 |
|
AS | Assignment |
Owner name: EVONIK CORPORATION, NEW JERSEY Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK DEGUSSA CORPORATION;REEL/FRAME:033837/0102 Effective date: 20130101 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180817 |