+

US20070037106A1 - Method and apparatus to promote non-stationary flame - Google Patents

Method and apparatus to promote non-stationary flame Download PDF

Info

Publication number
US20070037106A1
US20070037106A1 US11/202,070 US20207005A US2007037106A1 US 20070037106 A1 US20070037106 A1 US 20070037106A1 US 20207005 A US20207005 A US 20207005A US 2007037106 A1 US2007037106 A1 US 2007037106A1
Authority
US
United States
Prior art keywords
stream
oxidant
fuel
feed port
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/202,070
Inventor
William Kobayashi
Abilio Tasca
James Meagher
Mark Kailburn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Priority to US11/202,070 priority Critical patent/US20070037106A1/en
Assigned to PRAXAIR TECHNOLOGY, INC. reassignment PRAXAIR TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TASCA, ABILIO, KOBAYASHI, WILLIAM THORU, KAILBURN, MARK ALLEN, MEAGHER, JAMES PATRICK
Priority to MX2008002070A priority patent/MX2008002070A/en
Priority to PCT/US2006/031060 priority patent/WO2007021760A1/en
Priority to EP06801050A priority patent/EP1934522A1/en
Priority to CNA2006800332570A priority patent/CN101263342A/en
Priority to RU2008109237/06A priority patent/RU2008109237A/en
Priority to KR1020087005967A priority patent/KR20080045191A/en
Priority to CA002618782A priority patent/CA2618782A1/en
Priority to BRPI0614309-1A priority patent/BRPI0614309A2/en
Publication of US20070037106A1 publication Critical patent/US20070037106A1/en
Priority to NO20081251A priority patent/NO20081251L/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D91/00Burners specially adapted for specific applications, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D91/00Burners specially adapted for specific applications, not otherwise provided for
    • F23D91/02Burners specially adapted for specific applications, not otherwise provided for for use in particular heating operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2204/00Burners adapted for simultaneous or alternative combustion having more than one fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00006Liquid fuel burners using pure oxygen or O2-enriched air as oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00012Liquid or gas fuel burners with flames spread over a flat surface, either premix or non-premix type, e.g. "Flächenbrenner"
    • F23D2900/00013Liquid or gas fuel burners with flames spread over a flat surface, either premix or non-premix type, e.g. "Flächenbrenner" with means for spreading the flame in a fan or fishtail shape over a melting bath
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05021Wall blocks adapted for burner openings

Definitions

  • the present invention relates to methods and apparatus useful in carrying out combustion.
  • the one or more burners used for this purpose each generate a flame that extends outward from the burner in a fixed position, such as extending from a side wall of a furnace across and over the top of a portion of the material to be heated.
  • a fixed position such as extending from a side wall of a furnace across and over the top of a portion of the material to be heated.
  • the present invention provides a method and apparatus that are useful in permitting combustion to be carried out in a manner that affords a more uniform temperature of the surface of the material to be heated, or heated and melted.
  • One aspect of the present invention is burner apparatus comprising
  • auxiliary stream supply apparatus for injecting an auxiliary stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through said auxiliary feed ports non-sequentially; provided that at least one of said first stream and said auxiliary stream comprises fuel and at least one of said first stream and said auxiliary stream comprises oxidant, and
  • Another aspect of the present invention is a combustion method comprising
  • (C) providing three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines,
  • the first stream comprises material selected from the group consisting of fuel, oxidant, and mixtures thereof
  • the second streams comprises material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof.
  • the “axis” of a port is the centerline of the path that fluid injected out of that port follows in the absence of influence by intersecting fluid flows.
  • material is “inert” if it does not participate in the combustion of fuel and oxidant, and a stream of material is “inert” if it does not contain material that participates in the combustion of fuel and oxidant.
  • FIG. 1 is a front view of an embodiment of the apparatus of the present invention.
  • FIG. 2 is a cross-sectional view of the embodiment of FIG. 1 , seen from above.
  • FIG. 3 is a cross-sectional view of the embodiment of FIG. 1 , seen from the side.
  • FIG. 4 is a cross-sectional view of the embodiment of FIG. 1 , seen from the side opposite the side from which FIG. 3 is seen.
  • FIG. 5 is a front view of another embodiment of the apparatus of the present invention.
  • FIG. 6 is a cross-sectional view of the embodiment of FIG. 5 , seen from above.
  • Burner 20 is preferably formed of refractory material that is capable of retaining its shape and composition when exposed to the temperatures of 1000° F. to 3000° F. to which the burner may be exposed. Examples of such materials include alumina, silica, AZS (alumina-zirconia-silica), mullite, zirconia, and zirconite. Burner 20 can be part of a roof, side wall or bottom of an enclosure such as a furnace in which the desired combustion is carried out.
  • Central feed port 9 and outer ports 1 through 8 open in the front 22 of burner 20 .
  • Central feed port 9 and the outer ports may be, but are not required to be, in the same plane, so long as the other characteristics described herein are observed.
  • Central feed port 9 can comprise one opening as shown in FIG. 1 , or can comprise two or more openings (preferably 1 to 8, more preferably 1 to 3) openings which should be located close to each other so that material ejected out the openings merges in the form of a flow of the ejected material having one axis 39 of flow. Examples include multiple single holes, or concentrically arranged annular openings.
  • outer ports greater than 2 outer ports may be present, more than about 30 outer ports are usually not necessary. Three to 20 outer ports are usually satisfactory, and preferably 6 to 12 outer ports may be provided.
  • the distance from the central feed port 9 to each outer port can be the same, but this is not necessary.
  • each outer port that is provided can be a different distance from central feed port 9 , or some outer ports can be one given distance from central feed port 9 while another group of outer ports can be a second given distance from port 9 . That is, the outer ports can be arrayed in the form of one circle around port 9 , as shown in FIG. 1 , or they may be arrayed in the form of two circles of different diameters, or they may be arrayed in the form of an ellipse, or two ellipses, or a rectangle, or two rectangles, and so forth.
  • the surface that contains the ports can be planar (flat) or concave or convex, preferably planar (flat) or concave.
  • the surface on which the ports lie can be spherical, ellipsoidal or a polyhedron shape.
  • Every outer port has an axis, and the axis of every outer port converges or diverges with respect to the axis 39 of the central feed port 9 .
  • the axis of an outer port “converges” with respect to the axis of the central feed port if those two axes intersect downstream of front 22
  • the axis of an outer port “diverges” with respect to the axis of the central feed port if those two axes intersect upstream of front 22 , that is, inside or behind burner 20 .
  • the axes of all outer ports all converge, or the axes of all outer ports all diverge, with respect to the axis of the central feed port. More preferably, the axes of all outer ports all converge with respect to the axis of the central feed port.
  • the angle at which the axis of each outer port converges or diverges with respect to the axis of the central fuel port is typically 5 to 85 degrees and preferably 10 to 75 degrees.
  • Outer port axes that converge with respect to the central fuel port axis can be parallel to each other, or converge toward each other, or converge toward the same point on the central feed port axis.
  • the outer port axes do not necessarily have to converge toward the same point: for instance, if the intent is to promote a moving flame that moves half way on an elliptical contour and half way on a circular contour, the axes of the outer ports would not converge toward the same point on the central feed port axis.
  • central feed port 9 is connected by supply line 19 through burner 20 to first supply apparatus, schematically represented as 40 , which provides and injects the material forming the first stream into supply line 19 so that it is ejected out through central feed port 9 .
  • Supply line 19 and central feed port 9 are aligned so that the first stream ejected out of port 9 follows axis 39 .
  • axis 39 of port 9 is perpendicular to surface 22 .
  • Each outer port is connected by its own corresponding separate supply line through burner 20 to supply apparatus, schematically represented as 50 , which provides and injects material into each supply line so that the material is ejected as second streams out of the outer ports in the manner described herein.
  • Each supply line is unbranched and connects supply apparatus 50 at one of its ends to its own outer port at its other end.
  • Unbranched supply lines provide the advantages of no diversion of material into branch lines or through valves controlling access to branch lines. Using outer ports fed by unbranched supply lines enables more reliable and reproducible control of the flame pattern in the manner described herein.
  • FIGS. 2, 3 and 4 not all passages connecting to outer ports are shown, for ease of reference and disclosure.
  • outer ports 2 and 3 are fed by supply lines 12 and 13 , respectively, and outer ports 7 and 8 are fed by supply lines 17 and 18 , respectively.
  • Supply line 1 that feeds outer port 1 is not shown in FIG. 2 , so that supply line 19 can be shown, but supply line 11 is shown in FIGS. 3 and 4 .
  • outer ports 1 and 2 are fed by supply lines 11 and 12 , respectively, and outer ports 7 and 8 are fed by supply lines 17 and 18 , respectively.
  • Supply line 13 feeding outer port 3 is not shown in FIG. 3 so that supply line 19 can be shown.
  • outer ports 1 and 8 are fed by supply lines 11 and 18 , respectively, and outer ports 6 and 5 are fed by supply lines 16 and 15 , respectively.
  • Supply line 17 feeding outer port 7 is not shown in FIG. 4 so that supply line 19 can be shown.
  • the supply lines feeding to the outer ports can proceed straight through burner 20 , as shown in FIGS. 1-4 , but they can instead be constructed to include a first portion, ending at the outer port, whose axis is at a converging or diverging angle with respect to the axis of the central feed port, and to include a second portion intersecting with the first portion within burner 20 wherein the axis of the second portion is parallel to supply line 19 or is at some other angle with respect to the axis of the first portion.
  • the supply lines feeding the outer ports are preferably formed by drilling into the material from which the burner 20 is fabricated.
  • the supply lines feeding the outer ports and the supply line 19 feeding the central feed port are lined with protective material such as metal.
  • the supply lines can also be created by casting a refractory block with large opening and inserting removable nozzles.
  • a nozzle or orifice can be provided through which the stream is ejected.
  • the axis of the nozzle or orifice is the axis of that outer port.
  • the nozzles or orifices provided for this use may be adjustable so that the axis of each nozzle or orifice can be moved without having to replace or redrill the supply line that feeds to the outer port.
  • the material ejected as the first stream and the material ejected as the second stream must, after they have been mixed together, be capable of combusting in the presence of an external or embodied source of ignition or in a combustion chamber at temperatures higher than the self ignition temperature of fuel present in the mixture.
  • the material ejected as the first stream and the material ejected as the second stream both comprise material which participates in combustion of the mixture that is formed of the first and second streams.
  • the first stream can comprise fuel, in which case the second stream comprises oxidant or a premixed mixture of fuel and oxidant.
  • the first stream can comprise oxidant, in which case the second stream comprises fuel or a premixed mixture of fuel and oxidant.
  • both of the first stream and the second stream comprise premixed mixtures of fuel and oxidant.
  • the first stream comprises fuel and the second stream comprises oxidant.
  • the material ejected as the first stream comprises fuel or a mixture of fuel and oxidant
  • the second stream is “inert”, that is, it does not contain material which participates in combustion of the mixture that is formed of the first and second streams.
  • Examples of such material that could be ejected as the second stream include nitrogen, argon, carbon dioxide, water (liquid or, preferably, vapor), helium, and mixtures thereof.
  • Suitable fuels include combustible hydrocarbons whether gaseous, liquid, or particulate solid in form.
  • gaseous fuels include natural gas, vaporized LPG (liquefied petroleum gas), propane, butane, and gaseous mixtures that contain carbon monoxide, hydrogen, or both carbon monoxide and hydrogen, such as coke oven gas, blast furnace gas, electric arc furnace gas, and coal gas.
  • Suitable liquid fuels include fuel oil and diesel oil. Liquid fuel should be atomized as it emerges from its port (whether the central feed port or outer ports).
  • Suitable solid fuels include coal of any rank or mixtures of rank, and petroleum coke.
  • the fuel When the fuel is solid, it should have been reduced in particle size so that it is capable of being fed out of the port with a suitable carrier gas such as transport air, as is used when feeding pulverized coal to the combustion chamber of a coal-fired electricity generating power plant.
  • a suitable carrier gas such as transport air
  • the oxidant should be a stream that contains 5 vol. % to 100 vol. % oxygen, and preferably 10 vol. % to 100 vol. % oxygen.
  • Air is a preferred oxidant, as is oxygen-enriched air by which is meant air to which oxygen has been added to raise the oxygen content above that of air to e.g. at least 20 vol. % or 25 vol. % or even at least 50 vol. %.
  • Another preferred oxidant is a gaseous stream containing at least 80 vol. % oxygen or even at least 95 vol. % or even at least 98 vol. % oxygen.
  • Oxidant having this higher oxygen content can be provided from storage tanks that contain compressed oxygen gas, from storage tanks that contain liquid oxygen and provide the oxygen by vaporization of suitable amounts of the liquid oxygen, or from on-site air separation units that produce high-purity oxygen from air, or from an oxygen pipeline.
  • Other gaseous components (such as the aforementioned materials that do not participate in combustion) can likewise be provided from storage tanks, supply trucks, or pipelines
  • the supply apparatus 40 that injects into supply line 19 the material that is ejected from port 9 as the first stream, and the supply apparatus 50 that injects into the supply lines the material that is ejected from the outer ports as the second streams include a suitable source of fuel, or oxidant, or premixed fuel and oxidant, or non-combusting material, as the case may be, as well as suitable apparatus for propelling the material to and through its port(s).
  • Suitable devices for gaseous material include fans and blowers.
  • Suitable devices for liquids and particulate solids include atomizers and blowers having the ability to perform the necessary function of delivering the material to and through the port(s) with the desired velocity.
  • the additional capabilities of supply apparatus 50 are described below.
  • the velocity of the first stream ejected by the central feed port should typically be 5 to 1600 feet per second, and preferably 10 to 900 feet per second.
  • the velocity of the second stream ejected by each outer ports should typically be 5 to 2000 feet per second and preferably 10 to 900 feet per second.
  • the temperature of the mixture of the first and second streams should typically be up to 3000° F., and preferably up to 2000° F.
  • a second stream is ejected from one outer port, or from a group of adjacently located outer ports, with sufficient momentum to deflect the ejected first stream from the axis along which it would otherwise be traveling in the absence of that deflection, while at that same point in time material is either not being ejected from other outer ports, or is being ejected from other outer ports but not with enough momentum to deflect the first stream from its axis, and then (2) a second stream is ejected from a different outer port, or from a different group of adjacently located outer ports, with sufficient momentum to deflect the first stream (in a direction different from the direction it was previously deflected) from the axis along which it would otherwise be traveling in the absence of that deflection, while at that same point in time material is either not being ejected from other outer ports, or is being ejected from other outer ports but not with enough momentum to deflect the first stream from its axis, following which the ejection of
  • the flow of second streams of material that deflect the flow from the central feed port can occasionally be reduced, or interrupted, so that the ejected first stream of material flows along the axis of the central feed port temporarily, following which a second stream is again ejected from an outer port or group of outer ports to again deflect the first stream.
  • supply apparatus 50 that injects material into the supply lines for ejection from the respective outer ports as the second streams includes mechanism for sequentially varying the supply line or lines into which the material is injected, with a high enough velocity, to sequentially vary the outer port or ports through which the second stream is ejected at any point in time with a momentum high enough to deflect the first stream being ejected from the central feed port from its axis.
  • each supply line that supplies material to become a second stream ejected from an outer port with its own valve that regulates the amount and/or the velocity of this material that can reach the outer port.
  • a valve is switchable between two positions: a position which permits greater flow, that is, flow sufficient to eject material at a momentum sufficient to deflect the first stream from its axis, and a position which permits no flow at all, or flow at a rate that is not capable of deflecting the first stream from its axis.
  • the two positions can be preset.
  • valve positions are directed by a controller such as a programmable logic controller (PLC) which automatically directs the status of each valve, i.e. whether it will permit greater or lesser flow through the valve.
  • PLC programmable logic controller
  • the actual mechanism by which each valve is alternated between permitting relatively more and relatively less flow can employ, for instance, solenoid or pneumatic or motorized actuation.
  • this material flows through the various valves as they are opened (as directed by the controller), flows at a velocity and/or mass flow rate corresponding to the relative degree to which each valve is open, and flows at a lower rate or not at all as the valves are closed down or completely closed off.
  • Another alternative for sequentially controlling the flow of material comprising the second stream through the outer ports employs a single-valve mechanism, situated between the individual supply lines and an upstream common source of supply of the second stream material, that includes a movable piece such as a rotatable diverter.
  • the movable piece contains a principal opening through which the second stream material can flow into an outer port supply line with which the principal opening is aligned at any particular point in time.
  • the movable piece otherwise blocks flow to the other outer port supply lines, or optionally also includes additional openings which are aligned with one or more of the other outer port supply lines when the principal opening is aligned with one of the outer port supply lines.
  • the movable piece and the outer port supply lines are positioned with respect to each other so that the movable piece can be moved (for instance, rotated around its own axis) so as to bring outer port supply lines into alignment with the principal opening in a sequence that enables the material comprising the second stream to flow to a sequence of outer ports.
  • rotation of the movable piece aligns the principal opening with a sequence of outer port supply lines while permitting the second stream to flow into no other outer port supply lines, or in lesser quantities into other outer port supply lines, depending on whether any of the aforesaid additional openings are provided.
  • Such a single rotary valve system can be electronically or pneumatically controlled.
  • a variable frequency driver would drive an electric motor which turns the rotary valve, and the rotational speed would be controlled by a PLC.
  • a pneumatically operated rotary valve the supply pressure of the compressed driving fluid would be varied and controlled.
  • the second stream is provided in sequence through an outer port or to a group of adjacent outer ports at a momentum sufficient to deflect the first stream from its axis.
  • the sequential feeding of second streams having that momentum sequentially changes the outer port or outer ports which is or are ejecting the second streams that deflects the first stream, which in turn sequentially changes the direction in which the first stream is deflected.
  • the sequence of first stream-deflecting flows of second streams preferably proceeds around and around the array of outer ports, from one outer port and then from its nearest neighbor and then from that outer port's nearest neighbor and so forth, such as out of outer ports 1 through 8 in the numerical sequence in which they are numbered in FIG.
  • the sequence of outer ports from which first stream-deflecting flows of second streams are ejected can skip from one outer port to another non-adjacent outer port, then to another that is adjacent or non-adjacent, and so forth.
  • the sequence can be repetitive, or it can be randomized so that there is no regularity to which outer port will be the next to eject a second stream to deflect the flow of the first stream.
  • the sequence, whether regular or randomized, can be programmed into and carried out by the PLC.
  • the direction of flow of the first stream-deflecting flow of the second stream changes often enough that a complete sequence of direction changes occurs in 0.03 to 30 minutes, preferably 0.1 to 10 minutes.
  • the present invention can be carried out by ejecting first stream-deflecting flows of material as the second stream from one outer port at a time, it is also possible and often is preferred to eject the second streams from a pair of adjacent outer ports at a time, or from a group of three outer ports comprising a middle port and an adjacent port on each side of the middle port. That is, referring to FIG. 1 , the second stream that deflects the first stream can come from any one of outer ports 1 through 8 , or from two adjacent ports at a time such as from ports 1 and 2 , then from ports 2 and 3 , then from ports 3 and 4 , and so forth.
  • the flows can come from ports 1 , 2 and 3 , then from ports 2 , 3 and 4 , then from ports 3 , 4 and 5 , and so forth.
  • the number of outer ports from which a second stream is directed to deflect the first stream can be from only 1 up to 1 less than the total number of outer ports, and preferably from 1 to 4 outer ports.
  • the ratio of the momentum of the stream ejected by the outer port or outer ports which deflect the first stream, to the momentum of the first stream from the central feed port, is typically 1.01 to 20 and preferably 1.1 to 10.
  • the exit openings of the ports can vary in shape (geometry) and area as long as the streams are ejected within an effective velocity range (which for the first stream ejected from the central feed port is a velocity typically between 5 to 1600 feet per second, and preferably 10 to 900 feet per second; and for the second stream ejected by outer ports is a velocity between 5 to 2000 feet per second, and preferably 10 to 900 feet per second).
  • the distance between the outer port to the center port can vary from outer port to outer port.
  • the outer ports should lie on a circular or elliptical pattern.
  • the first stream-deflecting second stream or streams deflects the first stream from its axis by “pushing” it from its axis.
  • the first stream-deflecting second stream or streams deflects the first stream from its axis by drawing or aspirating the first stream toward the second stream(s). In either situation, the second stream or streams intersects with and mixes with the first stream.
  • the mixture that forms of the first and second streams combusts and forms a flame.
  • the direction in which the first stream is deflected (by the second stream or streams) becomes the direction in which the mixture of the first and second streams extends which in turn is the direction that the flame extends.
  • the orientation of the flame with respect to the axis of the central feed port changes with each intersection between the first stream and a first stream-deflecting second stream coming from a different outer port or group of outer ports.
  • This behavior continually provides the desired heat of combustion to the material being heated and to the enclosure in which the combustion is occurring, but does so in a way that provides a more uniform temperature distribution because the continually shifting orientation of the flame avoids the creation of “hot spots” or regions which become overheated because of the uninterrupted proximity to the hottest regions of the flame. This in turn permits combustion conditions that provide a hotter average flame temperature, since there is less need to be constrained by avoidance of “hot spots”.
  • the ratio (or proportion) of material in the first and second streams needs to be appropriate to maintaining combustion of the mixture that forms upon intersection and mixing of the first and second streams.
  • the ratio of the total amount of oxygen fed to the amount of fuel fed must be from 0.5 to 10 times the stoichiometric ratio, where the stoichiometric ratio is defined as the mole amount of oxygen per mole of fuel that is required to completely combust the fuel to CO 2 and H 2 O.
  • the stoichiometric ratio defined in this way for combustion of methane is 2, so the ratio of oxygen to methane to establish in each mixture of first and second combustant that is formed is 2 ⁇ (0.5 to 10) or 1 to 20.
  • the distance between the axis of the central feed port and the nearest outer port is typically 3 to 24 inches and preferably 6 to 18 inches.
  • the present invention is advantageous in that it can be carried out using staged combustion techniques that help reduce production of nitrogen oxides. Staging can be effected by permitting the injection of small amounts of material through the outer ports that are not involved at a given point of time in deflecting the first stream.
  • a preferred alternative embodiment, illustrated in FIGS. 5 and 6 includes one or more auxiliary feed ports through which a stream is ejected to help stabilize the flame and control formation of nitrogen oxides.
  • a preferred auxiliary feed port is an annular orifice 60 around the central feed port 9 . Instead, the annular orifice 60 can be replaced by a series of distinct openings arrayed around the central feed port 9 .
  • the one or more auxiliary feed ports are closer to the central feed port than any of the outer ports are.
  • the auxiliary feed port or ports are fed through auxiliary supply line 58 from auxiliary feed source 56 .
  • the stream ejected by the central feed port 9 comprises fuel, oxidant, or a mixture of fuel and oxidant
  • the auxiliary feed port or ports 60 eject fuel, oxidant, or a mixture of fuel and oxidant, provided that at least one of the central feed port and the auxiliary feed port(s) ejects fuel and at least one of the central feed port and the auxiliary port(s) ejects oxidant.
  • the material fed to the central feed port and the material fed to the auxiliary port(s) by their respective sources of supply 40 and 56 are provided and injected by means of apparatus known in this technical field.
  • auxiliary feed port or ports 60 The material fed to auxiliary feed port or ports 60 is fed non-sequentially, that is, the rate at which material is fed to and through the auxiliary feed port(s) does not vary during operation, and does not fluctuate between different rates during operation..
  • the invention provides many other advantages.
  • Another advantage is the ability to point the flame in a pre-determined direction for a pre-determined period of time. That is, the flame does not need to be moving constantly.
  • the frequency of the changes of flame orientation, and the period of time the flame points in any given direction can be set, for instance, at the moment the furnace is charged and according to the way the furnace has been charged (for instance, the flame can stay pointed to a given direction where there is a greater amount of charged material to be heated, or where there is more freshly charged material that is initially at a lower temperature.
  • Additional benefits of the invention include:
  • the direction of the flame and the intensity of the flame are determined by independent jets, i.e., do not rely on nozzle design, gas mixing, fluid flow pattern, and material reliability against degradation factors such as chemical attack or spalling, and is less sensitive to variations in operating parameters that would affect flame stability.
  • the flame stability and characteristics are determined by fixed and robust gas injection ports.
  • the greater uniformity of temperature avoids localized high temperature regions or spots since the heat is transferred evenly around the burner (or melting or heating surface) and not only on one stripe across the charge. The heat is evenly and gently distributed over the charge. This also permits a potentially lower oxidation rate when heating materials susceptible to oxidation due to localized high temperature and high oxygen partial pressure, such as aluminum and steel.
  • the invention also provides economic advantages including low fabrication cost, yield improvement in applications where oxidation is a concern, such as aluminum melting and steel reheating, and low specific fuel consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

A burner has a central port and 3 or more outer ports whose axes are angled toward or away from the central port axis. Sequentially varying the outer port(s) from which material is injected at a high enough momentum to deflect the flame from the axis of the central port changes the orientation of the flame with respect to the central port axis.

Description

    FIELD OF THE INVENTION
  • The present invention relates to methods and apparatus useful in carrying out combustion.
  • BACKGROUND OF THE INVENTION
  • Many industrial processes require subjecting material to elevated temperatures on the order of 1000° F. to 3000° F. Examples of such processes include melting aluminum and other metals, maintaining molten metal in the molten state, melting glassmaking materials, and maintaining glass in the molten state. To generate the required elevated temperature, processes requiring such elevated temperatures often combust carbonaceous fuel, in one or more burners each of which produces a flame situated close enough to the material that the heat of combustion establishes the desired elevated temperature in the material.
  • Typically the one or more burners used for this purpose each generate a flame that extends outward from the burner in a fixed position, such as extending from a side wall of a furnace across and over the top of a portion of the material to be heated. Such arrangements are not necessarily as efficient as possible, because the temperatures at various points around the outer surface of the flame and along the length of the flame are not uniform so that there is a region of the flame that has the highest temperature and heat flux to the material. This lack of uniformity means that the position of the burner relative to the material being heated, and the conditions under which the burner is operated, must be set so that the highest temperatures and heat flux generated by the burner are not so high as to produce unwanted results such as “hot spots”0 in the material or the enclosure in which the combustion is being carried out, excessive oxidation of the material, or damage to the enclosure. However, doing so often requires accepting temperatures at other points around the flame that are not as high as could be tolerated, and thereby requires accepting less than optimum performance of the burner.
  • This lack of efficiency has heretofore been considered acceptable for a number of reasons including the absence of a useful method and apparatus that can provide greater uniformity of temperature.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides a method and apparatus that are useful in permitting combustion to be carried out in a manner that affords a more uniform temperature of the surface of the material to be heated, or heated and melted.
  • One aspect of the present invention is burner apparatus comprising
  • (A) a central feed port having an axis;
  • (B) first supply apparatus for injecting a first stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through the central feed port along the axis of the central feed port;
  • (C) three or more outer ports, each having an axis which converges or diverges with respect to the axis of the central feed port; and
  • (D) three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines whereby said material is sequentially ejected from different ones of said outer ports as a sequence of second streams having a momentum sufficient to deflect the first stream from the axis of said central feed port.
  • A preferred embodiment of the burner apparatus of the present invention comprises
  • (A) a central feed port having an axis;
  • (B) three or more outer ports, each having an axis which converges or diverges with respect to the axis of the central feed port;
  • (C) one or more auxiliary feed ports situated closer to the central feed port than any of said outer ports are;
  • (D) first supply apparatus for injecting a first stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through the central feed port along the axis of said central feed port;
  • (E) auxiliary stream supply apparatus for injecting an auxiliary stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through said auxiliary feed ports non-sequentially; provided that at least one of said first stream and said auxiliary stream comprises fuel and at least one of said first stream and said auxiliary stream comprises oxidant, and
  • (F) three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines whereby said material is sequentially ejected from different ones of said outer ports as a sequence of second streams having a momentum sufficient to deflect the first stream from the axis of said central feed port.
  • Another aspect of the present invention is a combustion method comprising
  • (A) injecting a first stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through a central feed port that has an axis, along the axis of said central feed port;
  • (B) providing three or more outer ports each having an axis which converges or diverges with respect to the axis of the central feed port;
  • (C) providing three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines,
  • (D) sequentially injecting said material into different ones of said supply lines and thereby sequentially ejecting said material through different ones of one or more of said outer ports as a sequence of second streams having sufficient momentum to deflect said injected first stream from the axis of said central feed port and to form a mixture with the deflected first stream, and
  • (E) combusting the mixture of first and second streams.
  • A preferred embodiment of the method of the present invention comprises
  • (A) injecting a first stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through a central feed port that has an axis, along the axis of said central feed port;
  • (B) providing three or more outer ports each having an axis which converges or diverges with respect to the axis of the central feed port;
  • (C) providing one or more auxiliary feed ports situated closer to the central feed port than any of said outer ports are;
  • (D) injecting an auxiliary stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through said auxiliary feed ports non-sequentially; provided that at least one of said first stream and said auxiliary stream comprises fuel and at least one of said first stream and said auxiliary stream comprises oxidant,
  • (E) providing three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines,
  • (F) sequentially injecting said material into different ones of said supply lines and thereby sequentially ejecting said material through different ones of one or more of said outer ports as a sequence of second streams having sufficient momentum to deflect said injected first stream from the axis of said central feed port and to form a mixture with the deflected first stream, and
  • (G) combusting the mixture of first and second streams.
  • Preferably, the first stream comprises material selected from the group consisting of fuel, oxidant, and mixtures thereof, and the second streams comprises material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof.
  • As used herein, the “axis” of a port is the centerline of the path that fluid injected out of that port follows in the absence of influence by intersecting fluid flows.
  • As used herein, material is “inert” if it does not participate in the combustion of fuel and oxidant, and a stream of material is “inert” if it does not contain material that participates in the combustion of fuel and oxidant.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front view of an embodiment of the apparatus of the present invention.
  • FIG. 2 is a cross-sectional view of the embodiment of FIG. 1, seen from above.
  • FIG. 3 is a cross-sectional view of the embodiment of FIG. 1, seen from the side.
  • FIG. 4 is a cross-sectional view of the embodiment of FIG. 1, seen from the side opposite the side from which FIG. 3 is seen.
  • FIG. 5 is a front view of another embodiment of the apparatus of the present invention.
  • FIG. 6 is a cross-sectional view of the embodiment of FIG. 5, seen from above.
  • DETAILE DESCRIPTION OF THE INVENTION
  • The burner according to the present invention is generally referred to as 20 in FIGS. 1-4. Burner 20 is preferably formed of refractory material that is capable of retaining its shape and composition when exposed to the temperatures of 1000° F. to 3000° F. to which the burner may be exposed. Examples of such materials include alumina, silica, AZS (alumina-zirconia-silica), mullite, zirconia, and zirconite. Burner 20 can be part of a roof, side wall or bottom of an enclosure such as a furnace in which the desired combustion is carried out.
  • Central feed port 9 and outer ports 1 through 8 open in the front 22 of burner 20. Central feed port 9 and the outer ports may be, but are not required to be, in the same plane, so long as the other characteristics described herein are observed. Central feed port 9 can comprise one opening as shown in FIG. 1, or can comprise two or more openings (preferably 1 to 8, more preferably 1 to 3) openings which should be located close to each other so that material ejected out the openings merges in the form of a flow of the ejected material having one axis 39 of flow. Examples include multiple single holes, or concentrically arranged annular openings.
  • While any number of outer ports greater than 2 outer ports may be present, more than about 30 outer ports are usually not necessary. Three to 20 outer ports are usually satisfactory, and preferably 6 to 12 outer ports may be provided. The distance from the central feed port 9 to each outer port can be the same, but this is not necessary. Instead, each outer port that is provided can be a different distance from central feed port 9, or some outer ports can be one given distance from central feed port 9 while another group of outer ports can be a second given distance from port 9. That is, the outer ports can be arrayed in the form of one circle around port 9, as shown in FIG. 1, or they may be arrayed in the form of two circles of different diameters, or they may be arrayed in the form of an ellipse, or two ellipses, or a rectangle, or two rectangles, and so forth.
  • The surface that contains the ports can be planar (flat) or concave or convex, preferably planar (flat) or concave. For concave and convex cases, the surface on which the ports lie can be spherical, ellipsoidal or a polyhedron shape.
  • Every outer port has an axis, and the axis of every outer port converges or diverges with respect to the axis 39 of the central feed port 9. As used herein, the axis of an outer port “converges” with respect to the axis of the central feed port if those two axes intersect downstream of front 22, and the axis of an outer port “diverges” with respect to the axis of the central feed port if those two axes intersect upstream of front 22, that is, inside or behind burner 20. Preferably, the axes of all outer ports all converge, or the axes of all outer ports all diverge, with respect to the axis of the central feed port. More preferably, the axes of all outer ports all converge with respect to the axis of the central feed port.
  • The angle at which the axis of each outer port converges or diverges with respect to the axis of the central fuel port is typically 5 to 85 degrees and preferably 10 to 75 degrees. Outer port axes that converge with respect to the central fuel port axis can be parallel to each other, or converge toward each other, or converge toward the same point on the central feed port axis. The outer port axes do not necessarily have to converge toward the same point: for instance, if the intent is to promote a moving flame that moves half way on an elliptical contour and half way on a circular contour, the axes of the outer ports would not converge toward the same point on the central feed port axis.
  • Referring to FIGS. 2, 3 and 4, central feed port 9 is connected by supply line 19 through burner 20 to first supply apparatus, schematically represented as 40, which provides and injects the material forming the first stream into supply line 19 so that it is ejected out through central feed port 9. Supply line 19 and central feed port 9 are aligned so that the first stream ejected out of port 9 follows axis 39. Preferably, axis 39 of port 9 is perpendicular to surface 22.
  • Each outer port is connected by its own corresponding separate supply line through burner 20 to supply apparatus, schematically represented as 50, which provides and injects material into each supply line so that the material is ejected as second streams out of the outer ports in the manner described herein.
  • Each supply line is unbranched and connects supply apparatus 50 at one of its ends to its own outer port at its other end. Unbranched supply lines provide the advantages of no diversion of material into branch lines or through valves controlling access to branch lines. Using outer ports fed by unbranched supply lines enables more reliable and reproducible control of the flame pattern in the manner described herein.
  • In FIGS. 2, 3 and 4, not all passages connecting to outer ports are shown, for ease of reference and disclosure. As shown in FIG. 2, outer ports 2 and 3 are fed by supply lines 12 and 13, respectively, and outer ports 7 and 8 are fed by supply lines 17 and 18, respectively. Supply line 1 that feeds outer port 1 is not shown in FIG. 2, so that supply line 19 can be shown, but supply line 11 is shown in FIGS. 3 and 4. As shown in FIG. 3, outer ports 1 and 2 are fed by supply lines 11 and 12, respectively, and outer ports 7 and 8 are fed by supply lines 17 and 18, respectively. Supply line 13 feeding outer port 3 is not shown in FIG. 3 so that supply line 19 can be shown. As shown in FIG. 4, outer ports 1 and 8 are fed by supply lines 11 and 18, respectively, and outer ports 6 and 5 are fed by supply lines 16 and 15, respectively. Supply line 17 feeding outer port 7 is not shown in FIG. 4 so that supply line 19 can be shown.
  • The supply lines feeding to the outer ports can proceed straight through burner 20, as shown in FIGS. 1-4, but they can instead be constructed to include a first portion, ending at the outer port, whose axis is at a converging or diverging angle with respect to the axis of the central feed port, and to include a second portion intersecting with the first portion within burner 20 wherein the axis of the second portion is parallel to supply line 19 or is at some other angle with respect to the axis of the first portion.
  • The supply lines feeding the outer ports are preferably formed by drilling into the material from which the burner 20 is fabricated. Preferably, the supply lines feeding the outer ports and the supply line 19 feeding the central feed port are lined with protective material such as metal. The supply lines can also be created by casting a refractory block with large opening and inserting removable nozzles.
  • In an alternate embodiment, at the opening of some or all outer ports a nozzle or orifice can be provided through which the stream is ejected. In such cases, the axis of the nozzle or orifice is the axis of that outer port. The nozzles or orifices provided for this use may be adjustable so that the axis of each nozzle or orifice can be moved without having to replace or redrill the supply line that feeds to the outer port.
  • The material ejected as the first stream and the material ejected as the second stream must, after they have been mixed together, be capable of combusting in the presence of an external or embodied source of ignition or in a combustion chamber at temperatures higher than the self ignition temperature of fuel present in the mixture.
  • In one embodiment, the material ejected as the first stream and the material ejected as the second stream both comprise material which participates in combustion of the mixture that is formed of the first and second streams. For instance, the first stream can comprise fuel, in which case the second stream comprises oxidant or a premixed mixture of fuel and oxidant. Instead, the first stream can comprise oxidant, in which case the second stream comprises fuel or a premixed mixture of fuel and oxidant. In another alternative, both of the first stream and the second stream comprise premixed mixtures of fuel and oxidant. Preferably, the first stream comprises fuel and the second stream comprises oxidant.
  • In another embodiment, the material ejected as the first stream comprises fuel or a mixture of fuel and oxidant, and the second stream is “inert”, that is, it does not contain material which participates in combustion of the mixture that is formed of the first and second streams. Examples of such material that could be ejected as the second stream include nitrogen, argon, carbon dioxide, water (liquid or, preferably, vapor), helium, and mixtures thereof.
  • Suitable fuels include combustible hydrocarbons whether gaseous, liquid, or particulate solid in form. Suitable gaseous fuels include natural gas, vaporized LPG (liquefied petroleum gas), propane, butane, and gaseous mixtures that contain carbon monoxide, hydrogen, or both carbon monoxide and hydrogen, such as coke oven gas, blast furnace gas, electric arc furnace gas, and coal gas. Suitable liquid fuels include fuel oil and diesel oil. Liquid fuel should be atomized as it emerges from its port (whether the central feed port or outer ports). Suitable solid fuels include coal of any rank or mixtures of rank, and petroleum coke. When the fuel is solid, it should have been reduced in particle size so that it is capable of being fed out of the port with a suitable carrier gas such as transport air, as is used when feeding pulverized coal to the combustion chamber of a coal-fired electricity generating power plant.
  • The oxidant should be a stream that contains 5 vol. % to 100 vol. % oxygen, and preferably 10 vol. % to 100 vol. % oxygen. Air is a preferred oxidant, as is oxygen-enriched air by which is meant air to which oxygen has been added to raise the oxygen content above that of air to e.g. at least 20 vol. % or 25 vol. % or even at least 50 vol. %. Another preferred oxidant is a gaseous stream containing at least 80 vol. % oxygen or even at least 95 vol. % or even at least 98 vol. % oxygen. Oxidant having this higher oxygen content can be provided from storage tanks that contain compressed oxygen gas, from storage tanks that contain liquid oxygen and provide the oxygen by vaporization of suitable amounts of the liquid oxygen, or from on-site air separation units that produce high-purity oxygen from air, or from an oxygen pipeline. Other gaseous components (such as the aforementioned materials that do not participate in combustion) can likewise be provided from storage tanks, supply trucks, or pipelines
  • The supply apparatus 40 that injects into supply line 19 the material that is ejected from port 9 as the first stream, and the supply apparatus 50 that injects into the supply lines the material that is ejected from the outer ports as the second streams, include a suitable source of fuel, or oxidant, or premixed fuel and oxidant, or non-combusting material, as the case may be, as well as suitable apparatus for propelling the material to and through its port(s). Suitable devices for gaseous material include fans and blowers. Suitable devices for liquids and particulate solids include atomizers and blowers having the ability to perform the necessary function of delivering the material to and through the port(s) with the desired velocity. The additional capabilities of supply apparatus 50 are described below.
  • The velocity of the first stream ejected by the central feed port should typically be 5 to 1600 feet per second, and preferably 10 to 900 feet per second. The velocity of the second stream ejected by each outer ports should typically be 5 to 2000 feet per second and preferably 10 to 900 feet per second.
  • The temperature of the mixture of the first and second streams should typically be up to 3000° F., and preferably up to 2000° F.
  • In accordance with the present invention, in sequence (1) a second stream is ejected from one outer port, or from a group of adjacently located outer ports, with sufficient momentum to deflect the ejected first stream from the axis along which it would otherwise be traveling in the absence of that deflection, while at that same point in time material is either not being ejected from other outer ports, or is being ejected from other outer ports but not with enough momentum to deflect the first stream from its axis, and then (2) a second stream is ejected from a different outer port, or from a different group of adjacently located outer ports, with sufficient momentum to deflect the first stream (in a direction different from the direction it was previously deflected) from the axis along which it would otherwise be traveling in the absence of that deflection, while at that same point in time material is either not being ejected from other outer ports, or is being ejected from other outer ports but not with enough momentum to deflect the first stream from its axis, following which the ejection of second streams continues from a periodically changing outer port or group of outer ports. It should be noted that the flow of second streams of material that deflect the flow from the central feed port can occasionally be reduced, or interrupted, so that the ejected first stream of material flows along the axis of the central feed port temporarily, following which a second stream is again ejected from an outer port or group of outer ports to again deflect the first stream.
  • To carry out this function, supply apparatus 50 that injects material into the supply lines for ejection from the respective outer ports as the second streams includes mechanism for sequentially varying the supply line or lines into which the material is injected, with a high enough velocity, to sequentially vary the outer port or ports through which the second stream is ejected at any point in time with a momentum high enough to deflect the first stream being ejected from the central feed port from its axis.
  • These functions can be performed in any of several ways. One way is to provide each supply line that supplies material to become a second stream ejected from an outer port with its own valve that regulates the amount and/or the velocity of this material that can reach the outer port. Such a valve is switchable between two positions: a position which permits greater flow, that is, flow sufficient to eject material at a momentum sufficient to deflect the first stream from its axis, and a position which permits no flow at all, or flow at a rate that is not capable of deflecting the first stream from its axis. The two positions can be preset.
  • In these and other embodiments in which flow is regulated by a valve on each supply line, the valve positions are directed by a controller such as a programmable logic controller (PLC) which automatically directs the status of each valve, i.e. whether it will permit greater or lesser flow through the valve. The actual mechanism by which each valve is alternated between permitting relatively more and relatively less flow can employ, for instance, solenoid or pneumatic or motorized actuation. When the material comprising the second stream is applied under pressure to the upstream sides of the valves, this material flows through the various valves as they are opened (as directed by the controller), flows at a velocity and/or mass flow rate corresponding to the relative degree to which each valve is open, and flows at a lower rate or not at all as the valves are closed down or completely closed off.
  • Another alternative for sequentially controlling the flow of material comprising the second stream through the outer ports employs a single-valve mechanism, situated between the individual supply lines and an upstream common source of supply of the second stream material, that includes a movable piece such as a rotatable diverter. The movable piece contains a principal opening through which the second stream material can flow into an outer port supply line with which the principal opening is aligned at any particular point in time. The movable piece otherwise blocks flow to the other outer port supply lines, or optionally also includes additional openings which are aligned with one or more of the other outer port supply lines when the principal opening is aligned with one of the outer port supply lines. The movable piece and the outer port supply lines are positioned with respect to each other so that the movable piece can be moved (for instance, rotated around its own axis) so as to bring outer port supply lines into alignment with the principal opening in a sequence that enables the material comprising the second stream to flow to a sequence of outer ports. When the material comprising the second stream is applied under pressure upstream of the movable piece, rotation of the movable piece aligns the principal opening with a sequence of outer port supply lines while permitting the second stream to flow into no other outer port supply lines, or in lesser quantities into other outer port supply lines, depending on whether any of the aforesaid additional openings are provided.
  • Such a single rotary valve system can be electronically or pneumatically controlled. With electronic control, a variable frequency driver would drive an electric motor which turns the rotary valve, and the rotational speed would be controlled by a PLC. To control a pneumatically operated rotary valve, the supply pressure of the compressed driving fluid would be varied and controlled.
  • Using either of these control schemes or any other control scheme that achieves the same function, the second stream is provided in sequence through an outer port or to a group of adjacent outer ports at a momentum sufficient to deflect the first stream from its axis. The sequential feeding of second streams having that momentum sequentially changes the outer port or outer ports which is or are ejecting the second streams that deflects the first stream, which in turn sequentially changes the direction in which the first stream is deflected. The sequence of first stream-deflecting flows of second streams preferably proceeds around and around the array of outer ports, from one outer port and then from its nearest neighbor and then from that outer port's nearest neighbor and so forth, such as out of outer ports 1 through 8 in the numerical sequence in which they are numbered in FIG. 1, with flow out of outer port 8 being followed by flow out of outer port 1, and so on. Alternatively, the sequence of outer ports from which first stream-deflecting flows of second streams are ejected can skip from one outer port to another non-adjacent outer port, then to another that is adjacent or non-adjacent, and so forth. Furthermore, the sequence can be repetitive, or it can be randomized so that there is no regularity to which outer port will be the next to eject a second stream to deflect the flow of the first stream. The sequence, whether regular or randomized, can be programmed into and carried out by the PLC.
  • Typically, the direction of flow of the first stream-deflecting flow of the second stream changes often enough that a complete sequence of direction changes occurs in 0.03 to 30 minutes, preferably 0.1 to 10 minutes.
  • While the present invention can be carried out by ejecting first stream-deflecting flows of material as the second stream from one outer port at a time, it is also possible and often is preferred to eject the second streams from a pair of adjacent outer ports at a time, or from a group of three outer ports comprising a middle port and an adjacent port on each side of the middle port. That is, referring to FIG. 1, the second stream that deflects the first stream can come from any one of outer ports 1 through 8, or from two adjacent ports at a time such as from ports 1 and 2, then from ports 2 and 3, then from ports 3 and 4, and so forth. Alternatively, the flows can come from ports 1, 2 and 3, then from ports 2, 3 and 4, then from ports 3, 4 and 5, and so forth. Indeed, the number of outer ports from which a second stream is directed to deflect the first stream can be from only 1 up to 1 less than the total number of outer ports, and preferably from 1 to 4 outer ports.
  • The ratio of the momentum of the stream ejected by the outer port or outer ports which deflect the first stream, to the momentum of the first stream from the central feed port, is typically 1.01 to 20 and preferably 1.1 to 10.
  • The exit openings of the ports can vary in shape (geometry) and area as long as the streams are ejected within an effective velocity range (which for the first stream ejected from the central feed port is a velocity typically between 5 to 1600 feet per second, and preferably 10 to 900 feet per second; and for the second stream ejected by outer ports is a velocity between 5 to 2000 feet per second, and preferably 10 to 900 feet per second).
  • The distance between the outer port to the center port can vary from outer port to outer port. Preferably, the outer ports should lie on a circular or elliptical pattern.
  • Of the total amount of material ejected as second stream through all outer ports at any point in time, typically 10 to 100% and preferably 50 to 100% of that amount should be ejected by the outer port or ports that are providing the momentum to deflect the first stream.
  • When the axes of the outer ports converge with respect to the axis of the central feed port, the first stream-deflecting second stream or streams deflects the first stream from its axis by “pushing” it from its axis. When the axes of the outer ports diverge with respect to the axis of the central feed port, the first stream-deflecting second stream or streams deflects the first stream from its axis by drawing or aspirating the first stream toward the second stream(s). In either situation, the second stream or streams intersects with and mixes with the first stream.
  • Once ignited, the mixture that forms of the first and second streams combusts and forms a flame. The direction in which the first stream is deflected (by the second stream or streams) becomes the direction in which the mixture of the first and second streams extends which in turn is the direction that the flame extends. Thus, the orientation of the flame with respect to the axis of the central feed port changes with each intersection between the first stream and a first stream-deflecting second stream coming from a different outer port or group of outer ports. For example, carrying out the present invention with a burner like that shown in FIGS. 1-4, and ejecting the second stream from the outer ports in the numerical sequence of ports 1 through 8 in that order, then as one looks at the front of the burner in the view provided in FIG. 1 the flame would be deflected so that the flame would obscure port 5, then port 6, then port 7, then port 8 (at which point the first stream-deflecting flow of second stream would be from port 4) and so forth as the flame would continue to appear to sweep out a cone whose vertex would be at port 9.
  • This behavior continually provides the desired heat of combustion to the material being heated and to the enclosure in which the combustion is occurring, but does so in a way that provides a more uniform temperature distribution because the continually shifting orientation of the flame avoids the creation of “hot spots” or regions which become overheated because of the uninterrupted proximity to the hottest regions of the flame. This in turn permits combustion conditions that provide a hotter average flame temperature, since there is less need to be constrained by avoidance of “hot spots”.
  • The ratio (or proportion) of material in the first and second streams needs to be appropriate to maintaining combustion of the mixture that forms upon intersection and mixing of the first and second streams. Thus, for each mixture of fuel and oxidant that forms as the flame changes orientation by ejection of second stream from each sequentially differing outer port, taking into account oxidant entering the flame from the surroundings plus any oxidant fed through any auxiliary feed port(s) plus oxidant fed in the first and second streams, the ratio of the total amount of oxygen fed to the amount of fuel fed must be from 0.5 to 10 times the stoichiometric ratio, where the stoichiometric ratio is defined as the mole amount of oxygen per mole of fuel that is required to completely combust the fuel to CO2 and H2O. For instance, the stoichiometric ratio defined in this way for combustion of methane is 2, so the ratio of oxygen to methane to establish in each mixture of first and second combustant that is formed is 2×(0.5 to 10) or 1 to 20.
  • The distance between the axis of the central feed port and the nearest outer port is typically 3 to 24 inches and preferably 6 to 18 inches.
  • In addition to providing the advantage of a more uniform temperature profile of the surface of the material to be heated, or heated and melted, and for the resulting heating that the flame provides, the present invention is advantageous in that it can be carried out using staged combustion techniques that help reduce production of nitrogen oxides. Staging can be effected by permitting the injection of small amounts of material through the outer ports that are not involved at a given point of time in deflecting the first stream.
  • A preferred alternative embodiment, illustrated in FIGS. 5 and 6, includes one or more auxiliary feed ports through which a stream is ejected to help stabilize the flame and control formation of nitrogen oxides. A preferred auxiliary feed port is an annular orifice 60 around the central feed port 9. Instead, the annular orifice 60 can be replaced by a series of distinct openings arrayed around the central feed port 9. The one or more auxiliary feed ports are closer to the central feed port than any of the outer ports are. The auxiliary feed port or ports are fed through auxiliary supply line 58 from auxiliary feed source 56. In this embodiment, the stream ejected by the central feed port 9 comprises fuel, oxidant, or a mixture of fuel and oxidant, and the auxiliary feed port or ports 60 eject fuel, oxidant, or a mixture of fuel and oxidant, provided that at least one of the central feed port and the auxiliary feed port(s) ejects fuel and at least one of the central feed port and the auxiliary port(s) ejects oxidant. The material fed to the central feed port and the material fed to the auxiliary port(s) by their respective sources of supply 40 and 56 are provided and injected by means of apparatus known in this technical field.
  • The material fed to auxiliary feed port or ports 60 is fed non-sequentially, that is, the rate at which material is fed to and through the auxiliary feed port(s) does not vary during operation, and does not fluctuate between different rates during operation..
  • The invention provides many other advantages. One is that the present invention provides a flame with wide coverage to transfer heat more efficiently to the material being heated. Also, flame direction can be changed easily, even during operation of the burner, without requiring any change to the hardware (bumer and/or flow control valves), simply by changing the directions to the controller that governs the sequential feeding through the outer ports.
  • Another advantage is the ability to point the flame in a pre-determined direction for a pre-determined period of time. That is, the flame does not need to be moving constantly. The frequency of the changes of flame orientation, and the period of time the flame points in any given direction can be set, for instance, at the moment the furnace is charged and according to the way the furnace has been charged (for instance, the flame can stay pointed to a given direction where there is a greater amount of charged material to be heated, or where there is more freshly charged material that is initially at a lower temperature.
  • Additional benefits of the invention include:
    • Fewer “hot spots” are formed in the refractory wall, which can increase the furnace life.
    • Promoting more uniform heat transfer pattern means fewer “cold spots”, which can lead to increased melt rate or heat rate.
    • Fewer burners are required due to the uniform heat transfer pattern, thus affording equivalent production for a lower investment.
    • A burner installed in the roof leaves more locations in the side wall to install peep holes, service doors, and charging doors.
    • A burner with moving flame installed in the roof allows the design of the combustion system to be optimized for the furnace geometry.
  • The direction of the flame and the intensity of the flame are determined by independent jets, i.e., do not rely on nozzle design, gas mixing, fluid flow pattern, and material reliability against degradation factors such as chemical attack or spalling, and is less sensitive to variations in operating parameters that would affect flame stability. The flame stability and characteristics are determined by fixed and robust gas injection ports. The greater uniformity of temperature avoids localized high temperature regions or spots since the heat is transferred evenly around the burner (or melting or heating surface) and not only on one stripe across the charge. The heat is evenly and gently distributed over the charge. This also permits a potentially lower oxidation rate when heating materials susceptible to oxidation due to localized high temperature and high oxygen partial pressure, such as aluminum and steel.
  • Other advantages include high flame stability and reduced downtime, because in the unlikely event of clogging of an outer port, the sequence of injection can be revised to avoid using that port until suitable repairs can be made.
  • The invention also provides economic advantages including low fabrication cost, yield improvement in applications where oxidation is a concern, such as aluminum melting and steel reheating, and low specific fuel consumption.

Claims (26)

1. Burner apparatus comprising
(A) a central feed port having an axis;
(B) first supply apparatus for injecting a first stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through the central feed port along the axis of the central feed port;
(C) three or more outer ports, each having an axis which converges or diverges with respect to the axis of the central feed port; and
(D) three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines whereby said material is sequentially ejected from different ones of said outer ports as a sequence of second streams having a momentum sufficient to deflect the first stream from the axis of said central feed port.
2. Apparatus according to claim 1 wherein the central feed port has one opening.
3. Apparatus according to claim 1 wherein the central feed port has 2 to 8 openings.
4. Apparatus according to claim 1 wherein the first stream comprises fuel and the second stream comprises oxidant.
5. Apparatus according to claim 1 wherein the first stream comprises oxidant and the second stream comprises fuel.
6. Apparatus according to claim 1 wherein the first stream comprises a mixture of fuel and oxidant.
7. Apparatus according to claim 1 wherein the second stream comprises a mixture of fuel and oxidant.
8. Apparatus according to claim 1 wherein the first stream comprises fuel and the second stream does not contain material that participates in the combustion of said fuel and oxidant.
9. Burner apparatus comprising
(A) a central feed port having an axis;
(B) three or more outer ports, each having an axis which converges or diverges with respect to the axis of the central feed port;
(C) one or more auxiliary feed ports situated closer to the central feed port than any of said outer ports are;
(D) first supply apparatus for injecting a first stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through the central feed port along the axis of said central feed port;
(E) auxiliary stream supply apparatus for injecting an auxiliary stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through said auxiliary feed ports non-sequentially; provided that at least one of said first stream and said auxiliary stream comprises fuel and at least one of said first stream and said auxiliary stream comprises oxidant, and
(F) three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines whereby said material is sequentially ejected from different ones of said outer ports as a sequence of second streams having a momentum sufficient to deflect the first stream from the axis of said central feed port.
10. Apparatus according to claim 9 wherein said one or more auxiliary feed ports is an annular orifice around the central feed port.
11. Apparatus according to claim 9 wherein the streams injected by said controllable supply apparatus do not contain material that participates in the combustion of said fuel and oxidant.
12. Apparatus according to claim 9 wherein said first stream comprises fuel, said second stream comprises oxidant, and the streams injected by said controllable supply apparatus comprise oxidant.
13. Apparatus according to claim 9 wherein said first stream comprises fuel, said second stream comprises oxidant, and the streams injected by said controllable supply apparatus do not contain material that participates in the combustion of said fuel and oxidant.
14. A combustion method comprising
(A) injecting a first stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through a central feed port that has an axis, along the axis of said central feed port;
(B) providing three or more outer ports each having an axis which converges or diverges with respect to the axis of the central feed port;
(C) providing three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines,
(D) sequentially injecting said material into different ones of said supply lines and thereby sequentially ejecting said material through different ones of one or more of said outer ports as a sequence of second streams having sufficient momentum to deflect said injected first stream from the axis of said central feed port and to form a mixture with the deflected first stream, and
(E) combusting the mixture of first and second streams.
15. A method according to claim 14 wherein the central feed port has one opening.
16. A method according to claim 14 wherein the central feed port has 2 to 8 openings.
17. A method according to claim 14 wherein the first stream comprises fuel and the second stream comprises oxidant.
18. A method according to claim 14 wherein the first stream comprises oxidant and the second stream comprises fuel.
19. A method according to claim 14 wherein the first stream comprises a mixture of fuel and oxidant.
20. A method according to claim 14 wherein the second stream comprises a mixture of fuel and oxidant.
21. A method according to claim 14 wherein the first stream comprises fuel and the second stream does not contain material that participates in the combustion of said fuel and oxidant.
22. A combustion method comprising
(A) injecting a first stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through a central feed port that has an axis, along the axis of said central feed port;
(B) providing three or more outer ports each having an axis which converges or diverges with respect to the axis of the central feed port;
(C) providing one or more auxiliary feed ports situated closer to the central feed port than any of said outer ports are;
(D) injecting an auxiliary stream comprising material selected from the group consisting of fuel, oxidant, and mixtures thereof, through said auxiliary feed ports non-sequentially; provided that at least one of said first stream and said auxiliary stream comprises fuel and at least one of said first stream and said auxiliary stream comprises oxidant,
(E) providing three or more unbranched supply lines, equal in number to the number of outer ports, wherein one end of each of said supply lines is connected to a different one of said supply ports and the other end of each of said supply lines is connected to a controllable supply apparatus for sequentially injecting material selected from the group consisting of fuel, oxidant, inert material, and mixtures thereof, into and through different ones of said supply lines,
(F) sequentially injecting said material into different ones of said supply lines and thereby sequentially ejecting said material through different ones of one or more of said outer ports as a sequence of second streams having sufficient momentum to deflect said injected first stream from the axis of said central feed port and to form a mixture with the deflected first stream, and
(G) combusting the mixture of first and second streams.
23. A method according to claim 22 wherein said one or more auxiliary feed ports is an annular orifice around the central feed port.
24. A method according to claim 22 wherein the streams injected by said controllable supply apparatus do not contain material that participates in the combustion of said fuel and oxidant.
25. A method according to claim 22 wherein said first stream comprises fuel, said second stream comprises oxidant; and the streams injected by said controllable supply apparatus comprise oxidant.
26. A method according to claim 22 wherein said first stream comprises fuel, said second stream comprises oxidant, and the streams injected by said controllable supply apparatus do not contain material that participates in the combustion of said fuel and oxidant.
US11/202,070 2005-08-12 2005-08-12 Method and apparatus to promote non-stationary flame Abandoned US20070037106A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US11/202,070 US20070037106A1 (en) 2005-08-12 2005-08-12 Method and apparatus to promote non-stationary flame
BRPI0614309-1A BRPI0614309A2 (en) 2005-08-12 2006-08-10 burner and combustion method
CNA2006800332570A CN101263342A (en) 2005-08-12 2006-08-10 Method and apparatus to promote non-stationary flame
PCT/US2006/031060 WO2007021760A1 (en) 2005-08-12 2006-08-10 Method and apparatus to promote non-stationary flame
EP06801050A EP1934522A1 (en) 2005-08-12 2006-08-10 Method and apparatus to promote non-stationary flame
MX2008002070A MX2008002070A (en) 2005-08-12 2006-08-10 Method and apparatus to promote non-stationary flame.
RU2008109237/06A RU2008109237A (en) 2005-08-12 2006-08-10 METHOD AND DEVICE FOR SUPPORTING NON-STATIONARY FLAME
KR1020087005967A KR20080045191A (en) 2005-08-12 2006-08-10 Method and apparatus for promoting nonstop flames
CA002618782A CA2618782A1 (en) 2005-08-12 2006-08-10 Method and apparatus to promote non-stationary flame
NO20081251A NO20081251L (en) 2005-08-12 2008-03-10 Method and apparatus for promoting a non-stationary flame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/202,070 US20070037106A1 (en) 2005-08-12 2005-08-12 Method and apparatus to promote non-stationary flame

Publications (1)

Publication Number Publication Date
US20070037106A1 true US20070037106A1 (en) 2007-02-15

Family

ID=37489857

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/202,070 Abandoned US20070037106A1 (en) 2005-08-12 2005-08-12 Method and apparatus to promote non-stationary flame

Country Status (10)

Country Link
US (1) US20070037106A1 (en)
EP (1) EP1934522A1 (en)
KR (1) KR20080045191A (en)
CN (1) CN101263342A (en)
BR (1) BRPI0614309A2 (en)
CA (1) CA2618782A1 (en)
MX (1) MX2008002070A (en)
NO (1) NO20081251L (en)
RU (1) RU2008109237A (en)
WO (1) WO2007021760A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080017108A1 (en) * 2006-06-30 2008-01-24 Czerniak Michael R Gas combustion apparatus
FR2927148A1 (en) * 2008-02-05 2009-08-07 Saint Gobain COMBUSTION PROCESS AND GASEOUS FUEL INJECTOR WITH LOW PRESSURE PERIPHERAL JETS CONVERTING TO A HIGH PRESSURE CENTRAL JET WITH LOW NOX EMISSION.
WO2009092950A3 (en) * 2008-01-10 2009-10-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Glass furnace and glass making method
US20090311639A1 (en) * 2006-07-06 2009-12-17 L'air Liquide Societe Anonyme Pour L'etude Et L'ex Ploitation Des Procedes Georges Claude Method for Heating a Charge
EP2141129A1 (en) * 2008-07-02 2010-01-06 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Burner assembly with enhanced flexibility
US20120009533A1 (en) * 2007-02-08 2012-01-12 James Patrick Meagher Multi-output valve and burner useful to promote non-stationary flame
US20130236846A1 (en) * 2010-09-14 2013-09-12 Osaka Gas Co., Ltd. Combustion Device for Melting Furnace, and Melting Furnace
EP2746657A1 (en) * 2012-12-19 2014-06-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for combusting fuel and burner therefor
EP2913586A1 (en) * 2014-02-28 2015-09-02 Air Products And Chemicals, Inc. Transient heating burner and method
US20160245514A1 (en) * 2013-11-20 2016-08-25 Tenova S.P.A. Self-regenerating industrial burner and industrial furnace for carrying out self-regenerating combustion processes
WO2016136101A1 (en) * 2015-02-27 2016-09-01 大陽日酸株式会社 Gas fuel burner and method for heating with gas fuel burner
US20170030581A1 (en) * 2015-07-31 2017-02-02 Nuvera Fuel Cells, LLC Burner assembly with low nox emissions
JPWO2018180694A1 (en) * 2017-03-27 2019-11-21 Jfeスチール株式会社 Heating apparatus and heating method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022732A (en) * 2010-12-11 2011-04-20 巨石集团有限公司 Burner for heating glass metal
CA2892231A1 (en) * 2013-02-14 2014-08-21 Clearsign Combustion Corporation Selectable dilution low nox burner
CN104764012B (en) * 2015-04-01 2017-07-21 深圳智慧能源技术有限公司 Pluralities of fuel combusts burner altogether
US9657945B2 (en) * 2015-05-26 2017-05-23 Air Products And Chemicals, Inc. Selective oxy-fuel boost burner system and method for a regenerative furnace
US9689612B2 (en) * 2015-05-26 2017-06-27 Air Products And Chemicals, Inc. Selective oxy-fuel burner and method for a rotary furnace
CN113983463B (en) * 2021-12-08 2022-06-21 北京瑞晨航宇能源科技有限公司 Pure oxygen combustor and combustion method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2369236A (en) * 1941-05-10 1945-02-13 Servel Inc Gas burner
US5060867A (en) * 1987-04-16 1991-10-29 Luminis Pty. Ltd. Controlling the motion of a fluid jet
US5110285A (en) * 1990-12-17 1992-05-05 Union Carbide Industrial Gases Technology Corporation Fluidic burner
US5302112A (en) * 1993-04-09 1994-04-12 Xothermic, Inc. Burner apparatus and method of operation thereof
US5554022A (en) * 1994-10-14 1996-09-10 Xothermic, Inc. Burner apparatus and method
US5769624A (en) * 1992-09-18 1998-06-23 Luminis Pty. Ltd Variable flame burner configuration
US5833447A (en) * 1995-07-17 1998-11-10 L'air Liquide, Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges Claude Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
US5944507A (en) * 1997-05-07 1999-08-31 The Boc Group Plc Oxy/oil swirl burner
US5975886A (en) * 1996-11-25 1999-11-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
US6334770B1 (en) * 1998-10-13 2002-01-01 Stein Heurtey Fluid-fuel furnace burner for iron and steel products
US6685102B1 (en) * 1997-11-18 2004-02-03 Luminis Pty., Ltd. Oscillating jets

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2369236A (en) * 1941-05-10 1945-02-13 Servel Inc Gas burner
US5060867A (en) * 1987-04-16 1991-10-29 Luminis Pty. Ltd. Controlling the motion of a fluid jet
US5110285A (en) * 1990-12-17 1992-05-05 Union Carbide Industrial Gases Technology Corporation Fluidic burner
US5769624A (en) * 1992-09-18 1998-06-23 Luminis Pty. Ltd Variable flame burner configuration
US5302112A (en) * 1993-04-09 1994-04-12 Xothermic, Inc. Burner apparatus and method of operation thereof
US5554022A (en) * 1994-10-14 1996-09-10 Xothermic, Inc. Burner apparatus and method
US5833447A (en) * 1995-07-17 1998-11-10 L'air Liquide, Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges Claude Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
US6068468A (en) * 1995-07-17 2000-05-30 American Air Liquide, Inc. Refractory block for use in a burner assembly
US5975886A (en) * 1996-11-25 1999-11-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
US6074197A (en) * 1996-11-25 2000-06-13 American Air Liquide, Inc. Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
US5944507A (en) * 1997-05-07 1999-08-31 The Boc Group Plc Oxy/oil swirl burner
US6685102B1 (en) * 1997-11-18 2004-02-03 Luminis Pty., Ltd. Oscillating jets
US6334770B1 (en) * 1998-10-13 2002-01-01 Stein Heurtey Fluid-fuel furnace burner for iron and steel products

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080017108A1 (en) * 2006-06-30 2008-01-24 Czerniak Michael R Gas combustion apparatus
US9115016B2 (en) * 2006-07-06 2015-08-25 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Method for heating a charge
US20090311639A1 (en) * 2006-07-06 2009-12-17 L'air Liquide Societe Anonyme Pour L'etude Et L'ex Ploitation Des Procedes Georges Claude Method for Heating a Charge
US8235709B2 (en) * 2007-02-08 2012-08-07 Praxair Technology, Inc. Multi-output valve and burner useful to promote non-stationary flame
US20120009533A1 (en) * 2007-02-08 2012-01-12 James Patrick Meagher Multi-output valve and burner useful to promote non-stationary flame
WO2009092950A3 (en) * 2008-01-10 2009-10-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Glass furnace and glass making method
JP2011510902A (en) * 2008-02-05 2011-04-07 サン−ゴバン グラス フランス Low nitrogen oxide gas injector
US20110061642A1 (en) * 2008-02-05 2011-03-17 Saint-Gobain Glass France Low-nox gas injector
WO2009101326A3 (en) * 2008-02-05 2010-07-01 Saint-Gobain Glass France Low-nox gas injector
EA017499B1 (en) * 2008-02-05 2012-12-28 Сэн-Гобэн Гласс Франс LOW-NOx GAS INJECTOR
FR2927148A1 (en) * 2008-02-05 2009-08-07 Saint Gobain COMBUSTION PROCESS AND GASEOUS FUEL INJECTOR WITH LOW PRESSURE PERIPHERAL JETS CONVERTING TO A HIGH PRESSURE CENTRAL JET WITH LOW NOX EMISSION.
WO2010000771A3 (en) * 2008-07-02 2010-08-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Burner assembly with enhanced flexibility
CN102083758A (en) * 2008-07-02 2011-06-01 乔治洛德方法研究和开发液化空气有限公司 Burner assembly with enhanced flexibility
US20110195367A1 (en) * 2008-07-02 2011-08-11 L'air Liquide Societe Anonyme Pour L'etude Et L'ex Ploitation Des Procedes Georges Claude Burner Assembly with Enhanced Flexibility
EP2141129A1 (en) * 2008-07-02 2010-01-06 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Burner assembly with enhanced flexibility
US20130236846A1 (en) * 2010-09-14 2013-09-12 Osaka Gas Co., Ltd. Combustion Device for Melting Furnace, and Melting Furnace
US9822970B2 (en) * 2010-09-14 2017-11-21 Osaka Gas Co., Ltd. Combustion device for melting furnace, and melting furnace
WO2014096072A1 (en) * 2012-12-19 2014-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and combusting fuel and burner therefor
EP2746657A1 (en) * 2012-12-19 2014-06-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for combusting fuel and burner therefor
US10101025B2 (en) 2012-12-19 2018-10-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and combusting fuel and burner therefor
US10288285B2 (en) * 2013-11-20 2019-05-14 Tenova S.P.A. Self-regenerating industrial burner and industrial furnace for carrying out self-regenerating combustion processes
US20160245514A1 (en) * 2013-11-20 2016-08-25 Tenova S.P.A. Self-regenerating industrial burner and industrial furnace for carrying out self-regenerating combustion processes
KR101730700B1 (en) * 2014-02-28 2017-04-26 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Transient heating burner and method
EP2913586A1 (en) * 2014-02-28 2015-09-02 Air Products And Chemicals, Inc. Transient heating burner and method
US9976741B2 (en) 2014-02-28 2018-05-22 Air Products And Chemicals, Inc. Transient heating burner and method
RU2670345C2 (en) * 2014-02-28 2018-10-22 Эр Продактс Энд Кемикалз, Инк. Burner with migratory heating and method
US9360257B2 (en) 2014-02-28 2016-06-07 Air Products And Chemicals, Inc. Transient heating burner and method
JP2016161167A (en) * 2015-02-27 2016-09-05 大陽日酸株式会社 Gaseous fuel burner and method for heating gaseous combustion burner
WO2016136101A1 (en) * 2015-02-27 2016-09-01 大陽日酸株式会社 Gas fuel burner and method for heating with gas fuel burner
US10677459B2 (en) 2015-02-27 2020-06-09 Taiyo Nippon Sanso Corporation Gas fuel burner and method for heating with gas fuel burner
US20170030581A1 (en) * 2015-07-31 2017-02-02 Nuvera Fuel Cells, LLC Burner assembly with low nox emissions
US10197269B2 (en) * 2015-07-31 2019-02-05 Nuvera Fuel Cells, LLC Burner assembly with low NOx emissions
JPWO2018180694A1 (en) * 2017-03-27 2019-11-21 Jfeスチール株式会社 Heating apparatus and heating method

Also Published As

Publication number Publication date
CN101263342A (en) 2008-09-10
KR20080045191A (en) 2008-05-22
WO2007021760A1 (en) 2007-02-22
MX2008002070A (en) 2008-04-22
BRPI0614309A2 (en) 2011-03-22
CA2618782A1 (en) 2007-02-22
NO20081251L (en) 2008-05-02
RU2008109237A (en) 2009-09-20
WO2007021760A8 (en) 2008-03-20
EP1934522A1 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
US8235709B2 (en) Multi-output valve and burner useful to promote non-stationary flame
EP1934522A1 (en) Method and apparatus to promote non-stationary flame
CN100467947C (en) Combustion system with high heat transfer and low NOx
EP0754912B1 (en) Combustion process and apparatus therefor containing separate injection of fuel and oxidant streams
US5984667A (en) Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
US7896647B2 (en) Combustion with variable oxidant low NOx burner
CN103547864B (en) Distributed combustion method and burner
CN102597628B (en) Solid fuel burner
CN101415993A (en) Integration of oxy-fuel and air-fuel combustion
EP2329190B1 (en) Method for generating combustion by means of a burner assembly
PL200214B1 (en) Combustion method comprising separate injections of fuel and oxidant and burner assembly therefor
CN102439363A (en) Combustion system with precombustor for recycled flue gas
EP2310744B1 (en) Burner assembly and method of combustion
CN111417822B (en) Oxidant-multi-fuel burner nozzle capable of being used for solid fuel and gas fuel
CN101484752A (en) Burner the direction and/or size of the flame of which can be varied, and method of implementing it
CN201242149Y (en) Burner system
CA2805298A1 (en) Distributed combustion process and burner
US8500440B2 (en) Burner block for producing flat flame
US20220003407A1 (en) Burner, furnace and method of generating a flame

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRAXAIR TECHNOLOGY, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBAYASHI, WILLIAM THORU;TASCA, ABILIO;MEAGHER, JAMES PATRICK;AND OTHERS;REEL/FRAME:017174/0832;SIGNING DATES FROM 20051206 TO 20051222

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载