US20070034067A1 - Apparatus and process for cutting of extruded material - Google Patents
Apparatus and process for cutting of extruded material Download PDFInfo
- Publication number
- US20070034067A1 US20070034067A1 US11/583,278 US58327806A US2007034067A1 US 20070034067 A1 US20070034067 A1 US 20070034067A1 US 58327806 A US58327806 A US 58327806A US 2007034067 A1 US2007034067 A1 US 2007034067A1
- Authority
- US
- United States
- Prior art keywords
- cutting
- cutting blade
- blade holder
- secured
- blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D7/00—Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D7/26—Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
- B26D7/2628—Means for adjusting the position of the cutting member
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/01—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
- B26D1/12—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
- B26D1/25—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member
- B26D1/26—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member moving about an axis substantially perpendicular to the line of cut
- B26D1/28—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member moving about an axis substantially perpendicular to the line of cut and rotating continuously in one direction during cutting
- B26D1/29—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member moving about an axis substantially perpendicular to the line of cut and rotating continuously in one direction during cutting with cutting member mounted in the plane of a rotating disc, e.g. for slicing beans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D7/00—Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D7/26—Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
- B26D7/2614—Means for mounting the cutting member
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/869—Means to drive or to guide tool
- Y10T83/8789—With simple revolving motion only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9372—Rotatable type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9372—Rotatable type
- Y10T83/9377—Mounting of tool about rod-type shaft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9372—Rotatable type
- Y10T83/9396—Shear type
- Y10T83/9401—Cutting edge wholly normal to axis of rotation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9372—Rotatable type
- Y10T83/9403—Disc type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9457—Joint or connection
Definitions
- the present invention relates generally to the cutting of materials produced in a manufacturing process, and more particularly to materials produced in extrusion manufacturing processes.
- the invention relates generally to the cutting of materials during a manufacturing process, and more particularly, cutting materials delivered from an extrusion process.
- a cutting blade is made of a single piece of high-grade metal, often hardened, which has cutting edges formed integrally with the body portion, the cutting edges being sharpened by using grinding, machining, or similar techniques.
- the prior art discloses cutting blades made of a single cast, died or cut material that is then sharpened along the edge.
- One practical drawback of this conventional technology is that when the cutting edge(s) becomes dull, the production process must be shut down so that the cutting blade may be removed, sharpened and re-installed, or replaced with a new blade. Further, dull blades can lead to misshapen products.
- the cost of blades, along with the cost of lost production time when the process had to be stopped for the blades to be replaced can be high, in part because the entire cutting mechanism is made from a single, relatively expensive, material.
- the tolerance between the blade and extruder equipment is very tight, frequently less than a few thousandths of an inch, to ensure precise metering of product.
- Harder materials, such as various forms of carbide are not suitable for use as a single, integral piece because the carbide is too brittle to be worked in this configuration, and such large pieces of carbide would be very expensive.
- the present invention accordingly, provides for bonding individual cutting blades to a securing mechanism to produce a less expensive cutting mechanism that is light-weight enough to not distort the product being cut.
- a cutting blade holder with at least two channels in the edge is used, and a cutting blade is inserted in each channel on the cutting blade holder, and bonded to the cutting blade holder.
- each cutting blade may be bonded to a separate cutting blade holder, with at least two such assemblies secured to a rotatable cup attachable to a rotating mechanism such as an extruder shaft.
- the cutting blade holder circumscribes a circular opening that fits over the end or hub of the extrusion machinery.
- the cutting blade holder circumscribes a slot that can be attached to a commercially available cup or cutter head that fits over the end or hub of the extrusion machinery.
- An advantage achieved with the present invention is that only the cutting blades need to be made of a high-quality, wear-resistant metal, such as tungsten carbide or carbide coated metals.
- the cutting blade holder may be made of a material such as a mild steel, which may be bonded to the cutting blades, thus reducing overall material costs substantially.
- the cutting blades may be readily secured into the cutting blade holder by means such as brazing or use of a bonding material, which bonds the cutting blade holder and cutting blade materials together when heated. This reduces the time necessary to secure blades to the cutting blade holder by eliminating the need to drill holes in the cutting blades and cutting blade holder and then using screws or other fastening hardware to hold the pieces together. Depending on the bonding material used, this process may be reversed and repeated when replacement blades need to be secured to the cutting blade holder.
- a further advantage achieved with the present invention is that the weight of the assembled cutting blade assembly is less than those in which cutting blades are secured to the cutting blade holder with screws or other mechanical devices, resulting in fewer problems of deformation of the cut product being produced due to the weight of the cutting blade assembly. This is especially important with products that are very lightweight, fine or small in size, and therefore more likely to be deformed.
- the cutting blade may be sharpened on both sides so that when the cutting edge on one side of the blades becomes dull, the cutting blade holder may be reversed on the mounting hub. This lengthens the amount of time a cutting mechanism may be used before it must be removed and sharpened, resulting in less down time on production lines.
- another advantage achieved with the present invention is that when old cutting blades may not be sharpened again and ultimately need to be replaced, the old cutting blades may be de-bonded, and the cutting blade holder may be reused with new cutting blades secured thereto, further reducing costs.
- Another advantage achieved with the present invention is that after the cutting blade is secured into the cutting blade holder, the cutting blade may be sharpened as necessary to ensure the cutting edge is flat and perpendicular to the material being cut, thus ensuring the material is not deformed when it is being cut.
- Another advantage achieved with the present invention is that the number cutting blades around the diameter of the extrusion drive machinery may be increased because the width and weight of the cutting blade assembly is reduced. More cutting blades results in more frequent cuts, and thus reduces the speed at which the cutting mechanism needs to rotate for a given size of cut, which reduces the wear on the equipment.
- the rotating speed is typically between 1 and 1500 revolutions per minute (RPM), with 600 RPM being an optimal rotating speed.
- FIG. 1 is an exploded view of one arrangement of the present invention showing a cutting blade assembly.
- FIG. 2 is a view of a cutting blade assembly secured to an extrusion device that embodies the features of one arrangement of the present invention.
- FIG. 3 is a cross-section view a portion of a cutting blade assembly taken along line 3 - 3 of FIG. 2 , showing the positioning of the cutting blade in relation to the cutting blade holder.
- FIG. 4 is a view of another arrangement of the present invention.
- FIG. 5 is a view showing the cutting blade and cutting blade holder in an alternative arrangement of the present invention.
- the reference numeral 10 designates, in general, a cutting blade assembly embodying features of one arrangement of the present invention.
- the cutting blade assembly 10 includes a cutting blade holder made of a first material 12 , with channels 14 into which a cutting blade 20 is inserted and secured by means of a bonding material 30 .
- the cutting blade holder 12 is preferably made of a material such as a mild steel or other material that is relatively inexpensive. Typically, such materials have a coefficient of thermal expansion of 0.000007 in./degree Fahrenheit.
- the cutting blade holder 12 defines a center opening 12 a and holes 12 b .
- the number of channels 14 in the cutting blade holder 12 may be varied to adapt the cutting blade assembly 10 to the material being cut, and the frequency of cuts to be made in the material.
- the cutting blade 20 is preferably made of a second material different from the first material, such as carbide, tungsten carbide or the like that can be sharpened and will retain a sharp edge.
- the cutting blade 20 is aligned in the channel 14 in the cutting blade holder 12 , and secured by means of a bonding material 30 , such as solder and the like, that preferably chemically bonds to the materials of the cutting blade holder 12 and cutting blade 20 .
- the bonding material 30 used must be heated to stimulate the chemical reaction, and the bond becomes permanent when the material 30 is returned to normal room temperature.
- the cutting blade holder 12 is preferably configured with a number of channels 14 angularly spaced apart from each other about the center opening 12 a of the cutting blade holder 12 , each of which channels is configured for receiving a cutting blade 20 , to be secured in the channel 14 with a bonding material 30 .
- the cutting blade holder 12 defines a center opening 12 a and drilled holes 12 b for use in mounting on a machine shaft 40 .
- the cutting blade 20 has a sharpened edge 20 a cut at an angle such that the cutting edge is parallel to the face 12 c of the cutting blade holder 12 . If the cutting blade assembly is to be such that both sides may be used for cutting, both sides of the cutting blade 20 are sharpened, and an opposing edge 20 b of the cutting blade 20 is also cut at an angle such that the cutting edge is parallel to a face 12 d of the cutting blade holder 12 .
- the centerline of the channel 14 is centered in the thickness of the edge of the cutting blade holder 12 .
- the cutting blade 20 is preferably made of tungsten-carbide, carbide, or other like hardened materials, or made of a less hard material and coated with carbide, tungsten-carbide or other like hardened materials to provide a sharp, long-lasting cutting edge.
- cutting blades 20 are inclined at an angle ⁇ with respect to a plane defined by the face 12 c of the cutting blade holder, and the blades extend past such plane by a height H. Accordingly, when the cutting blade assembly 10 is placed on a planar surface, such as a flat table, it is supported on the cutting blades 20 .
- each blade must be a repeatable distance from the face of the extruder die when attached for use. To achieve this result, each blade is measured for deviation from a common plane.
- the maximum deviation from a common plane between blades is less than 0.005 inches, preferably less than 0.002 inches, and more preferably less than 0.001 inches.
- the initial cutting edges of the blades rotate in a planar space not wider than 0.005 inches, preferably not wider than 0.002 inches, and most preferably not wider than 0.001 inches.
- the reference numeral 50 designates, in general, a cutting blade assembly embodying features of another arrangement of the present invention.
- the cutting blade assembly 50 includes a cutting blade holder 52 , with a channel 54 along one end into which a cutting blade 60 is inserted and secured by means of a bonding material 30 .
- the cutting blade holder 52 is preferably made of a material such as a mild steel or other material that is inexpensive.
- the cutting blade holder 52 defines a center opening 52 a used to secure the cutting blade assembly 50 to a commercially available cup 80 , which is not separately claimed as part of the present invention, by means of a fastening mechanism 82 , such as a bolt, machine screw, or the like.
- the number of cutting blade assemblies 50 attached to the cup 80 may be varied to adapt the cutting blade assembly 50 to the material being cut, and the frequency of cuts to be made in the material.
- the cup 80 is mounted to the hub end of an extrusion device.
- the cutting blade 60 is preferably made of a material such as carbide, tungsten carbide or the like that can be sharpened and will retain a sharp edge.
- the cutting blade 60 is aligned in the channel 54 in the cutting blade holder 52 , and secured by means of a bonding material 30 , such as solder and the like, that preferably chemically bonds to the materials of the cutting blade holder 52 and cutting blade 60 .
- the bonding material 30 used must be heated to stimulate the chemical reaction, and the bond becomes permanent when the bonding material 30 is returned to normal room temperature.
- the cutting blade assembly 50 comprises a cutting blade holder 52 , a cutting blade 60 , and bonding material 30 .
- the cutting blade holder 52 is preferably made of a material such as a mild steel or other material that is inexpensive.
- the cutting blade holder 52 defines a center opening 52 a used to secure the cutting blade assembly 50 .
- a channel 54 is contained in end of the cutting blade holder 52 .
- the cutting blade 60 has a sharpened edge 60 a cut at an angle to the channel 54 that is appropriate for the extrusion mechanism and material being extruded.
- the cutting blade 60 is preferably made of tungsten-carbide, carbide, or other like hardened materials, or made of a less hard material and coated with carbide, tungsten-carbide or other like hardened materials to provide a sharp, long-lasting cutting edge.
- the cutting blade assembly 10 , 50 may be attached to a shaft of a machine other than an extrusion machine, or may be secured in a different manner than attaching to a machine shaft.
- the cutting blade holder 12 , 52 and cutting blades 20 , 60 may be made of a variety of materials, metallic or non-metallic, as appropriate to the cutting function being performed.
- the bonding material 30 may be solder, or some other glue, bonding material or the like that bonds well with the materials of which the cutting blade holder 12 , 52 and the cutting blade 20 , 60 are made.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Milling Processes (AREA)
- Crushing And Pulverization Processes (AREA)
- Drilling Tools (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
A rotating cutting apparatus comprising a cutting blade holder with at least one hole on the outside diameter of the cutting blade holder into which cutting blades are inserted and bonded to the cutting blade holder. The cutting blade holder encloses a center hole, so that the rotating cutting apparatus can be mounted to a drive shaft of machinery or secured to a cup that can be mounted to the drive shaft of machinery and driven by the machinery. The cutting blade holder can be made of a less expensive material, with only the cutting blade being made of higher-grade materials that maintains its cutting edge well. Additionally, in some arrangements of the present invention, the cutting blade may be sharpened on two sides so that the rotating cutting apparatus can be used for longer periods of time.
Description
- This Application is a Divisional Application of U.S. patent application Ser. No. 09/777,735, filed on Feb. 6, 2001, which is hereby incorporated by reference for all purposes.
- The present invention relates generally to the cutting of materials produced in a manufacturing process, and more particularly to materials produced in extrusion manufacturing processes.
- The invention relates generally to the cutting of materials during a manufacturing process, and more particularly, cutting materials delivered from an extrusion process.
- It is known in manufacturing to produce a material in a continuously extruded stream, and cut the material to a desired size(s) as it leaves the extruder. In extrusion manufacturing processes, cutting blades may be used to cut materials being extruded, with the cutting blades often being mounted to the hub, or end, of extrusion machinery.
- Conventionally, a cutting blade is made of a single piece of high-grade metal, often hardened, which has cutting edges formed integrally with the body portion, the cutting edges being sharpened by using grinding, machining, or similar techniques. The prior art discloses cutting blades made of a single cast, died or cut material that is then sharpened along the edge. One practical drawback of this conventional technology is that when the cutting edge(s) becomes dull, the production process must be shut down so that the cutting blade may be removed, sharpened and re-installed, or replaced with a new blade. Further, dull blades can lead to misshapen products. The cost of blades, along with the cost of lost production time when the process had to be stopped for the blades to be replaced can be high, in part because the entire cutting mechanism is made from a single, relatively expensive, material.
- The foregoing problems have been mitigated in some cases where the blades are sharpened on both sides, which reduces the frequency of sharpening, but the blades are still expensive. With such a configuration, when the initial edges become dull, the entire cutting head is removed, reversed, and reattached so that a new set of sharp edges are available for use. To compensate for such expense, separate cutting blades, which may be sharpened or replaced individually, may be attached to a cutting blade holder, which is secured to the hub or end of the extrusion machinery. Generally, cutting blades are attached to the cutting blade holder using screws. Difficulty occurs when the screws used to attach the blades loosen during use. This requires the process to be shut down so that the screws can be tightened or replaced. Also, the tolerance between the blade and extruder equipment is very tight, frequently less than a few thousandths of an inch, to ensure precise metering of product. Harder materials, such as various forms of carbide, are not suitable for use as a single, integral piece because the carbide is too brittle to be worked in this configuration, and such large pieces of carbide would be very expensive.
- What is needed, therefore, is a method and apparatus for cutting extruded materials that enables cutting blades to have longer cutting life, and that are relatively easy and inexpensive to replace when the cutting edge is no longer sharp.
- The present invention, accordingly, provides for bonding individual cutting blades to a securing mechanism to produce a less expensive cutting mechanism that is light-weight enough to not distort the product being cut. To this end, a cutting blade holder with at least two channels in the edge is used, and a cutting blade is inserted in each channel on the cutting blade holder, and bonded to the cutting blade holder. Alternatively, each cutting blade may be bonded to a separate cutting blade holder, with at least two such assemblies secured to a rotatable cup attachable to a rotating mechanism such as an extruder shaft.
- In one arrangement, the cutting blade holder circumscribes a circular opening that fits over the end or hub of the extrusion machinery. In an alternative arrangement of the invention, the cutting blade holder circumscribes a slot that can be attached to a commercially available cup or cutter head that fits over the end or hub of the extrusion machinery.
- An advantage achieved with the present invention is that only the cutting blades need to be made of a high-quality, wear-resistant metal, such as tungsten carbide or carbide coated metals. The cutting blade holder may be made of a material such as a mild steel, which may be bonded to the cutting blades, thus reducing overall material costs substantially.
- Another advantage achieved with the present invention is that the cutting blades may be readily secured into the cutting blade holder by means such as brazing or use of a bonding material, which bonds the cutting blade holder and cutting blade materials together when heated. This reduces the time necessary to secure blades to the cutting blade holder by eliminating the need to drill holes in the cutting blades and cutting blade holder and then using screws or other fastening hardware to hold the pieces together. Depending on the bonding material used, this process may be reversed and repeated when replacement blades need to be secured to the cutting blade holder.
- A further advantage achieved with the present invention is that the weight of the assembled cutting blade assembly is less than those in which cutting blades are secured to the cutting blade holder with screws or other mechanical devices, resulting in fewer problems of deformation of the cut product being produced due to the weight of the cutting blade assembly. This is especially important with products that are very lightweight, fine or small in size, and therefore more likely to be deformed.
- Still another advantage achieved with the present invention is that in certain arrangements, the cutting blade may be sharpened on both sides so that when the cutting edge on one side of the blades becomes dull, the cutting blade holder may be reversed on the mounting hub. This lengthens the amount of time a cutting mechanism may be used before it must be removed and sharpened, resulting in less down time on production lines.
- As a result of the foregoing, another advantage achieved with the present invention is that when old cutting blades may not be sharpened again and ultimately need to be replaced, the old cutting blades may be de-bonded, and the cutting blade holder may be reused with new cutting blades secured thereto, further reducing costs.
- Another advantage achieved with the present invention is that after the cutting blade is secured into the cutting blade holder, the cutting blade may be sharpened as necessary to ensure the cutting edge is flat and perpendicular to the material being cut, thus ensuring the material is not deformed when it is being cut.
- Another advantage achieved with the present invention is that the number cutting blades around the diameter of the extrusion drive machinery may be increased because the width and weight of the cutting blade assembly is reduced. More cutting blades results in more frequent cuts, and thus reduces the speed at which the cutting mechanism needs to rotate for a given size of cut, which reduces the wear on the equipment. The rotating speed is typically between 1 and 1500 revolutions per minute (RPM), with 600 RPM being an optimal rotating speed.
-
FIG. 1 is an exploded view of one arrangement of the present invention showing a cutting blade assembly. -
FIG. 2 is a view of a cutting blade assembly secured to an extrusion device that embodies the features of one arrangement of the present invention. -
FIG. 3 is a cross-section view a portion of a cutting blade assembly taken along line 3-3 ofFIG. 2 , showing the positioning of the cutting blade in relation to the cutting blade holder. -
FIG. 4 is a view of another arrangement of the present invention. -
FIG. 5 is a view showing the cutting blade and cutting blade holder in an alternative arrangement of the present invention. - Referring now to
FIG. 1 , thereference numeral 10 designates, in general, a cutting blade assembly embodying features of one arrangement of the present invention. As viewed inFIG. 1 , thecutting blade assembly 10 includes a cutting blade holder made of afirst material 12, withchannels 14 into which acutting blade 20 is inserted and secured by means of abonding material 30. Thecutting blade holder 12 is preferably made of a material such as a mild steel or other material that is relatively inexpensive. Typically, such materials have a coefficient of thermal expansion of 0.000007 in./degree Fahrenheit. Thecutting blade holder 12 defines a center opening 12 a andholes 12 b. The number ofchannels 14 in thecutting blade holder 12 may be varied to adapt thecutting blade assembly 10 to the material being cut, and the frequency of cuts to be made in the material. Thecutting blade 20 is preferably made of a second material different from the first material, such as carbide, tungsten carbide or the like that can be sharpened and will retain a sharp edge. Thecutting blade 20 is aligned in thechannel 14 in thecutting blade holder 12, and secured by means of a bondingmaterial 30, such as solder and the like, that preferably chemically bonds to the materials of thecutting blade holder 12 and cuttingblade 20. In some cases, the bondingmaterial 30 used must be heated to stimulate the chemical reaction, and the bond becomes permanent when thematerial 30 is returned to normal room temperature. - Referring now to
FIG. 2 , an assembled view of a first arrangement of thecutting blade assembly 10, it can be seen that thecutting blade holder 12 is preferably configured with a number ofchannels 14 angularly spaced apart from each other about the center opening 12 a of thecutting blade holder 12, each of which channels is configured for receiving acutting blade 20, to be secured in thechannel 14 with abonding material 30. Thecutting blade holder 12 defines a center opening 12 a and drilledholes 12 b for use in mounting on amachine shaft 40. - Referring now to
FIG. 3 , it can be seen that in a first arrangement of the present invention, thecutting blade 20 has a sharpenededge 20 a cut at an angle such that the cutting edge is parallel to theface 12 c of thecutting blade holder 12. If the cutting blade assembly is to be such that both sides may be used for cutting, both sides of thecutting blade 20 are sharpened, and anopposing edge 20 b of thecutting blade 20 is also cut at an angle such that the cutting edge is parallel to aface 12 d of thecutting blade holder 12. The centerline of thechannel 14 is centered in the thickness of the edge of thecutting blade holder 12. Thecutting blade 20 is preferably made of tungsten-carbide, carbide, or other like hardened materials, or made of a less hard material and coated with carbide, tungsten-carbide or other like hardened materials to provide a sharp, long-lasting cutting edge. - Typically, cutting
blades 20 are inclined at an angle α with respect to a plane defined by theface 12 c of the cutting blade holder, and the blades extend past such plane by a height H. Accordingly, when thecutting blade assembly 10 is placed on a planar surface, such as a flat table, it is supported on thecutting blades 20. For precise, repeatable cuts, each blade must be a repeatable distance from the face of the extruder die when attached for use. To achieve this result, each blade is measured for deviation from a common plane. Typically, the maximum deviation from a common plane between blades is less than 0.005 inches, preferably less than 0.002 inches, and more preferably less than 0.001 inches. Thus, in use, the initial cutting edges of the blades rotate in a planar space not wider than 0.005 inches, preferably not wider than 0.002 inches, and most preferably not wider than 0.001 inches. - Referring now to
FIG. 4 , thereference numeral 50 designates, in general, a cutting blade assembly embodying features of another arrangement of the present invention. As viewed inFIG. 4 , thecutting blade assembly 50 includes acutting blade holder 52, with achannel 54 along one end into which acutting blade 60 is inserted and secured by means of abonding material 30. Thecutting blade holder 52 is preferably made of a material such as a mild steel or other material that is inexpensive. Thecutting blade holder 52 defines a center opening 52 a used to secure thecutting blade assembly 50 to a commerciallyavailable cup 80, which is not separately claimed as part of the present invention, by means of afastening mechanism 82, such as a bolt, machine screw, or the like. The number ofcutting blade assemblies 50 attached to thecup 80 may be varied to adapt thecutting blade assembly 50 to the material being cut, and the frequency of cuts to be made in the material. Thecup 80 is mounted to the hub end of an extrusion device. Thecutting blade 60 is preferably made of a material such as carbide, tungsten carbide or the like that can be sharpened and will retain a sharp edge. Thecutting blade 60 is aligned in thechannel 54 in thecutting blade holder 52, and secured by means of abonding material 30, such as solder and the like, that preferably chemically bonds to the materials of thecutting blade holder 52 and cuttingblade 60. In some cases, thebonding material 30 used must be heated to stimulate the chemical reaction, and the bond becomes permanent when thebonding material 30 is returned to normal room temperature. - Referring now to
FIG. 5 , it can be seen that thecutting blade assembly 50 comprises acutting blade holder 52, acutting blade 60, andbonding material 30. Thecutting blade holder 52 is preferably made of a material such as a mild steel or other material that is inexpensive. Thecutting blade holder 52 defines a center opening 52 a used to secure thecutting blade assembly 50. Achannel 54 is contained in end of thecutting blade holder 52. Thecutting blade 60 has a sharpenededge 60 a cut at an angle to thechannel 54 that is appropriate for the extrusion mechanism and material being extruded. Thecutting blade 60 is preferably made of tungsten-carbide, carbide, or other like hardened materials, or made of a less hard material and coated with carbide, tungsten-carbide or other like hardened materials to provide a sharp, long-lasting cutting edge. - It is understood that the present invention can take many forms and embodiments. The embodiments described herein are intended to illustrate rather than to limit the invention. Accordingly, several variations may be made in the foregoing without departing from the spirit or the scope of the invention. For example, the
cutting blade assembly cutting blade holder blades bonding material 30 may be solder, or some other glue, bonding material or the like that bonds well with the materials of which thecutting blade holder cutting blade - Although illustrative embodiments of the invention have been shown and described, a wide range of modification, change, and substitution is contemplated in the foregoing disclosure and in some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
Claims (13)
1. An apparatus for cutting extruded materials comprising:
a generally cylindrical body adapted for rotation about its central axis;
a plurality of channels formed in the exterior of the body, the channels extending longitudinally and generally parallel to the central axis;
an adjustment member disposed and removably secured in each channel, wherein one end of the adjustment member extends beyond the end of the body; and
a cutting blade secured to the end of the adjustment member and extending transversely from the adjustment member, the cutting blade having a cutting edge.
2. The apparatus of claim 1 , wherein at least a portion of each cutting member is made of a material that is responsive to an inductive heating process.
3. The apparatus of claim 1 , wherein at least a portion of each cutting member is made of a material that has a co-efficient of thermal expansion less than 0.000007 inch/degree Fahrenheit.
4. The apparatus of claim 1 , wherein at least a portion of each cutting blade is forged.
5. The apparatus of claim 1 , wherein at least a portion of each cutting blade is cast.
6. The apparatus of claim 5 , wherein each cutting blade is formed of a carbide material secured to a substrate.
7. An apparatus for cutting extruded materials comprising:
a body adapted to rotate about a first axis;
a plurality of channels formed in the body, wherein each channel includes:
a pair of generally parallel sides; and
a connecting side that is connected to each parallel side and having at least one arcuate edge; and
a plurality of cutting members, wherein each cutting member:
is secured in one of the channels;
has a holder; and
has a blade extending transversely from the holder.
8. The apparatus of claim 7 , wherein the body is generally cylindrical.
9. The apparatus of claim 7 , wherein at least a portion of each cutting member is made of a material that is responsive to an inductive heating process.
10. The apparatus of claim 7 , wherein at least a portion of each cutting member is made of a material that has a co-efficient of thermal expansion less than 0.000007 inch/degree Fahrenheit.
11. The apparatus of claim 7 , wherein at least a portion of each cutting member is forged.
12. The apparatus of claim 7 , wherein the blade is brazed to the holder.
13. The apparatus of claim 12 , wherein each blade is formed of a carbide material secured to a substrate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/583,278 US20070034067A1 (en) | 2001-02-06 | 2006-10-18 | Apparatus and process for cutting of extruded material |
US12/482,282 US20090249934A1 (en) | 2001-02-06 | 2009-06-10 | Apparatus and Process for Cutting of Extruded Material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/777,735 US7181993B2 (en) | 2001-02-06 | 2001-02-06 | Apparatus and process for cutting of extruded material |
US11/583,278 US20070034067A1 (en) | 2001-02-06 | 2006-10-18 | Apparatus and process for cutting of extruded material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/777,735 Division US7181993B2 (en) | 2001-02-06 | 2001-02-06 | Apparatus and process for cutting of extruded material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/482,282 Division US20090249934A1 (en) | 2001-02-06 | 2009-06-10 | Apparatus and Process for Cutting of Extruded Material |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070034067A1 true US20070034067A1 (en) | 2007-02-15 |
Family
ID=25111092
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/777,735 Expired - Lifetime US7181993B2 (en) | 2001-02-06 | 2001-02-06 | Apparatus and process for cutting of extruded material |
US10/465,422 Expired - Lifetime US7258044B2 (en) | 2001-02-06 | 2003-06-19 | Apparatus and process for cutting of extruded material |
US10/465,375 Expired - Lifetime US7121181B2 (en) | 2001-02-06 | 2003-06-19 | Apparatus and process for cutting extruded material |
US11/583,278 Abandoned US20070034067A1 (en) | 2001-02-06 | 2006-10-18 | Apparatus and process for cutting of extruded material |
US12/482,282 Abandoned US20090249934A1 (en) | 2001-02-06 | 2009-06-10 | Apparatus and Process for Cutting of Extruded Material |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/777,735 Expired - Lifetime US7181993B2 (en) | 2001-02-06 | 2001-02-06 | Apparatus and process for cutting of extruded material |
US10/465,422 Expired - Lifetime US7258044B2 (en) | 2001-02-06 | 2003-06-19 | Apparatus and process for cutting of extruded material |
US10/465,375 Expired - Lifetime US7121181B2 (en) | 2001-02-06 | 2003-06-19 | Apparatus and process for cutting extruded material |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/482,282 Abandoned US20090249934A1 (en) | 2001-02-06 | 2009-06-10 | Apparatus and Process for Cutting of Extruded Material |
Country Status (1)
Country | Link |
---|---|
US (5) | US7181993B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040035270A1 (en) * | 2001-02-06 | 2004-02-26 | Williams Edward E. | Apparatus and process for cutting of extruded material |
CN110000832A (en) * | 2019-03-08 | 2019-07-12 | 南安市柳信光电科技有限公司 | Machine is safely prepared using the particulate polyvinyl chloride of centrifugal force air-dispersing |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060121142A1 (en) * | 2004-02-27 | 2006-06-08 | Jmp Industries, Inc. | Pulse wave modulator cutting assembly |
US7674102B2 (en) * | 2004-02-27 | 2010-03-09 | Jmp Industries, Inc. | Extruder system and cutting assembly |
US8186991B2 (en) | 2004-02-27 | 2012-05-29 | Jmp Industries, Inc. | Extruder system and cutting assembly |
USD582445S1 (en) * | 2008-06-04 | 2008-12-09 | Yanase Kabushiki Kaisha | Abrasive disc |
WO2010148208A1 (en) * | 2009-06-17 | 2010-12-23 | Gala Industries, Inc. | Solid one-piece cutter hub and blade combination |
JP5572009B2 (en) * | 2010-06-07 | 2014-08-13 | 株式会社神戸製鋼所 | Knife holder for underwater cut granulator |
EP2668011A4 (en) | 2011-01-25 | 2014-10-15 | Oxane Materials Inc | Extrusion process for proppant production |
US9283621B2 (en) | 2012-06-21 | 2016-03-15 | Deere & Company | Method for forming a composite article |
CN102756410B (en) * | 2012-07-06 | 2015-07-08 | 莆田标准木业有限公司 | Fixed structure of tool apron of disc-type chipper and cutter head device using same |
CN103341876B (en) * | 2013-07-02 | 2015-12-09 | 上海南崛中药机械制造有限公司 | A kind of medicine cutter |
JP6718446B2 (en) * | 2014-11-14 | 2020-07-08 | エーエムエヌ ディーピーアイ | Granulating knife with removable blade |
SE540174C2 (en) * | 2015-11-25 | 2018-04-24 | Berg Ind Ab | Arrangement for cutting paper board sheets, and machine comprising said arrangement |
JP6639013B2 (en) * | 2016-03-14 | 2020-02-05 | 株式会社神戸製鋼所 | Resin pelletizer device and cavitation monitoring method |
CN105835249B (en) * | 2016-05-19 | 2018-07-24 | 东莞市博展机械科技有限公司 | Vertical pelleter |
CN107247353A (en) * | 2017-07-13 | 2017-10-13 | 京东方科技集团股份有限公司 | A kind of cutter device |
CN107932414B (en) * | 2017-12-11 | 2019-06-14 | 广州市科翰生物技术有限公司 | Medical machinery process units |
CN110405833B (en) * | 2019-08-01 | 2021-01-08 | 无锡市世亿电子科技有限公司 | Waste treatment device suitable for carrier band production |
JP7590173B2 (en) * | 2020-12-18 | 2024-11-26 | 株式会社日本製鋼所 | Cutter blade and manufacturing method thereof |
Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1395622A (en) * | 1918-12-10 | 1921-11-01 | Emory O Williams | Feed-cutter |
US1762111A (en) * | 1928-01-14 | 1930-06-03 | O K Tool Co Inc | Angular serrated adjustable cutter |
US2365407A (en) * | 1942-01-09 | 1944-12-19 | Deere & Co | Cutterhead |
US3196487A (en) * | 1963-07-18 | 1965-07-27 | Du Pont | Melt cutter apparatus |
US3230582A (en) * | 1963-02-27 | 1966-01-25 | Black Clawson Co | Plastic pelletizer |
US3266090A (en) * | 1964-11-04 | 1966-08-16 | Du Pont | Melt cutter apparatus |
US3299917A (en) * | 1964-10-12 | 1967-01-24 | Portland Iron Works | Circular saw |
US3317957A (en) * | 1965-06-11 | 1967-05-09 | Nrm Corp | Pelletizer |
US3341892A (en) * | 1965-02-23 | 1967-09-19 | Midland Ross Corp | Pelletizing apparatus |
US3624830A (en) * | 1969-11-28 | 1971-11-30 | Hi Life Packing Co | Food-processing apparatus |
US3785417A (en) * | 1972-02-18 | 1974-01-15 | Black & Decker Mfg Co | Cutterhead with replaceable inserts |
US4123207A (en) * | 1976-03-29 | 1978-10-31 | Gala Industries, Inc. | Underwater pelletizer and heat exchanger die plate |
US4179255A (en) * | 1978-03-13 | 1979-12-18 | E. I. Du Pont De Nemours And Company | Melt cutter apparatus |
US4212617A (en) * | 1979-04-30 | 1980-07-15 | Nabisco, Inc. | Apparatus for producing a flow of short cheese strands |
US4251198A (en) * | 1979-04-27 | 1981-02-17 | Gala Industries, Inc. | Cutter hub with replaceable knife blades for underwater pelletizer |
US4252519A (en) * | 1979-11-16 | 1981-02-24 | Monsanto Company | Extrusion die blade |
US4281980A (en) * | 1980-01-18 | 1981-08-04 | Monsanto Company | Expansion deformable extrusion die blade |
US4300877A (en) * | 1979-01-10 | 1981-11-17 | Sterling Extruder Corp. | Underwater pelletizer |
US4319507A (en) * | 1973-09-26 | 1982-03-16 | Hitachi Metals, Ltd. | Shearing device |
US4330227A (en) * | 1979-08-31 | 1982-05-18 | Stellram S.A. | Cutting tool with interchangeable insert-holding cartridges |
US4462293A (en) * | 1982-09-27 | 1984-07-31 | Gunzner Fred G | Wear-resistant and shock-resistant tools and method of manufacture thereof |
US4529370A (en) * | 1981-11-09 | 1985-07-16 | Thomas R. Vigil | Pelletizer |
US4569810A (en) * | 1983-07-06 | 1986-02-11 | Atochem | Apparatus and methods for immersed-head cutting of thermoplastics |
US4621996A (en) * | 1985-04-24 | 1986-11-11 | Gala Industries, Inc. | Removable die center for extrusion dies |
US4680191A (en) * | 1985-02-05 | 1987-07-14 | Frito-Lay, Inc. | Cross-cut extrusion method |
US4692069A (en) * | 1984-11-15 | 1987-09-08 | Walter Kieninger Gmbh | Cutter head |
US4726275A (en) * | 1983-05-10 | 1988-02-23 | Synthaxe Limited | Electronic musical instrument |
US4728275A (en) * | 1986-09-18 | 1988-03-01 | Arco Chemical Company | Multi-bladed disc cutter for underwater pelletizers |
US4800792A (en) * | 1984-06-08 | 1989-01-31 | Montedison S.P.A. | Cutting device for hot granulation of thermoplastic polymers |
US4995767A (en) * | 1988-10-11 | 1991-02-26 | North American Products, Corp. | Face milling cutter with indexable inserts |
US5054354A (en) * | 1989-10-31 | 1991-10-08 | Leon Kubis | Saw blade |
US5191819A (en) * | 1990-06-20 | 1993-03-09 | Kabushiki Kaisha Hoshi Plastic | Cutter assembly for strand cutting machine and resin material cutting assembly |
US5320793A (en) * | 1991-10-31 | 1994-06-14 | Lombard Marco H | Process for manufacturing an extruded and cut product containing material not suited to be severed |
US5338559A (en) * | 1991-08-22 | 1994-08-16 | Schaaf Heinz Josef | Method and apparatus for making expanded food stuffs |
US5358399A (en) * | 1992-04-09 | 1994-10-25 | The Japan Steel Works, Ltd. | Cutter holder device in a pelletizer |
US5367928A (en) * | 1991-10-18 | 1994-11-29 | Grapha-Holding Ag | Method of and implement for cutting books at the backbones |
US5593702A (en) * | 1995-12-15 | 1997-01-14 | Shell Oil Company | Underwater pelletizer having shroud element mounted to die face |
US5611983A (en) * | 1995-04-28 | 1997-03-18 | Shell Oil Company | Process for pelletizing polymer |
US5629028A (en) * | 1995-11-07 | 1997-05-13 | The Conair Group, Inc. | Underwater pelletizer having sealed heat transfer tubes embedded in extrusion die |
US5667343A (en) * | 1993-03-18 | 1997-09-16 | Sandvik Ab | Face milling cutter with recesses for adjustable insert holders |
US5788426A (en) * | 1997-03-05 | 1998-08-04 | Ultra Tool Corporation | Cutting tool cartridge holder |
US5927129A (en) * | 1997-04-23 | 1999-07-27 | Daimler-Benz Aktiengesellschaft | Apparatus and process for making cut extruded hollow profiles |
US5947805A (en) * | 1994-05-03 | 1999-09-07 | Norton Company | Accessory for an angle grinder |
US6189584B1 (en) * | 1998-08-12 | 2001-02-20 | Douglas Scott Cayce | Disposable carbide blade assembly for universal rotary cutter |
US6244852B1 (en) * | 1996-07-04 | 2001-06-12 | Gaplast Gmbh | Method of producing a receptacle and a receptacle having pressure compensating openings |
US6310314B2 (en) * | 1999-12-27 | 2001-10-30 | Wintersteiger Gmbh | Procedure for fastening a carbide tooth at a saw blade |
US6488456B1 (en) * | 1998-12-29 | 2002-12-03 | Iscar Ltd. | Slotting cutter |
US6536320B2 (en) * | 1998-11-19 | 2003-03-25 | Eastman Kodak Company | Slitter cutting element and method of making same |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1125537A (en) * | 1914-05-09 | 1915-01-19 | Clyde M Hoover | Milling-machine blade. |
US2188743A (en) * | 1939-04-07 | 1940-01-30 | Apex Tool & Cutter Company Inc | Milling cutter |
US2791276A (en) * | 1954-09-02 | 1957-05-07 | Gen Motors Corp | Cloth cutting machine |
CA955127A (en) * | 1970-08-26 | 1974-09-24 | Teijin Limited | Knives for the gru-gru cutter |
US3828409A (en) * | 1973-04-23 | 1974-08-13 | Comstock & Wescott | Reversibly mountable book cutter |
AU530322B2 (en) * | 1978-10-10 | 1983-07-14 | Applied Power Inc. | Vehicle repair apparatus |
JPS5945483B2 (en) * | 1981-10-01 | 1984-11-07 | 雅男 窪田 | rotary planer tool |
DE3629157A1 (en) * | 1986-08-27 | 1988-03-03 | Leitz Geb Gmbh & Co | KNIFE HEAD, ESPECIALLY PLANER KNIFE HEAD |
JP3120395B2 (en) * | 1993-03-10 | 2000-12-25 | 東京エレクトロン株式会社 | Processing equipment |
US6279440B1 (en) * | 1996-05-30 | 2001-08-28 | Kimberly-Clark Worldwide, Inc. | Heavy duty knife apparatus and cutting method |
ES2327369T3 (en) * | 1998-02-12 | 2009-10-28 | Surfacine Development Company, Llc | DISINFECTING COMPOUNDS THAT PROVIDE PROLONGED BIOCIDE ACTION. |
US6883412B1 (en) * | 1998-12-29 | 2005-04-26 | Sheffield Saw & Tool Co., Inc. | Method of fabricating circular saw blades with cutting teeth composed of ultrahard tool material |
US6488564B1 (en) * | 1999-03-02 | 2002-12-03 | James R. Gray | Brassiere protecting against eletrostatic field induced tissue degradation |
US7181993B2 (en) * | 2001-02-06 | 2007-02-27 | Good Earth Tool Company | Apparatus and process for cutting of extruded material |
US7267540B2 (en) * | 2006-01-26 | 2007-09-11 | Gala Industries, Inc. | Steep angle cutter hub with blunt edge blades |
-
2001
- 2001-02-06 US US09/777,735 patent/US7181993B2/en not_active Expired - Lifetime
-
2003
- 2003-06-19 US US10/465,422 patent/US7258044B2/en not_active Expired - Lifetime
- 2003-06-19 US US10/465,375 patent/US7121181B2/en not_active Expired - Lifetime
-
2006
- 2006-10-18 US US11/583,278 patent/US20070034067A1/en not_active Abandoned
-
2009
- 2009-06-10 US US12/482,282 patent/US20090249934A1/en not_active Abandoned
Patent Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1395622A (en) * | 1918-12-10 | 1921-11-01 | Emory O Williams | Feed-cutter |
US1762111A (en) * | 1928-01-14 | 1930-06-03 | O K Tool Co Inc | Angular serrated adjustable cutter |
US2365407A (en) * | 1942-01-09 | 1944-12-19 | Deere & Co | Cutterhead |
US3230582A (en) * | 1963-02-27 | 1966-01-25 | Black Clawson Co | Plastic pelletizer |
US3196487A (en) * | 1963-07-18 | 1965-07-27 | Du Pont | Melt cutter apparatus |
US3299917A (en) * | 1964-10-12 | 1967-01-24 | Portland Iron Works | Circular saw |
US3266090A (en) * | 1964-11-04 | 1966-08-16 | Du Pont | Melt cutter apparatus |
US3341892A (en) * | 1965-02-23 | 1967-09-19 | Midland Ross Corp | Pelletizing apparatus |
US3317957A (en) * | 1965-06-11 | 1967-05-09 | Nrm Corp | Pelletizer |
US3624830A (en) * | 1969-11-28 | 1971-11-30 | Hi Life Packing Co | Food-processing apparatus |
US3785417A (en) * | 1972-02-18 | 1974-01-15 | Black & Decker Mfg Co | Cutterhead with replaceable inserts |
US4319507A (en) * | 1973-09-26 | 1982-03-16 | Hitachi Metals, Ltd. | Shearing device |
US4123207A (en) * | 1976-03-29 | 1978-10-31 | Gala Industries, Inc. | Underwater pelletizer and heat exchanger die plate |
US4179255A (en) * | 1978-03-13 | 1979-12-18 | E. I. Du Pont De Nemours And Company | Melt cutter apparatus |
US4300877A (en) * | 1979-01-10 | 1981-11-17 | Sterling Extruder Corp. | Underwater pelletizer |
US4251198A (en) * | 1979-04-27 | 1981-02-17 | Gala Industries, Inc. | Cutter hub with replaceable knife blades for underwater pelletizer |
US4212617A (en) * | 1979-04-30 | 1980-07-15 | Nabisco, Inc. | Apparatus for producing a flow of short cheese strands |
US4330227A (en) * | 1979-08-31 | 1982-05-18 | Stellram S.A. | Cutting tool with interchangeable insert-holding cartridges |
US4252519A (en) * | 1979-11-16 | 1981-02-24 | Monsanto Company | Extrusion die blade |
US4281980A (en) * | 1980-01-18 | 1981-08-04 | Monsanto Company | Expansion deformable extrusion die blade |
US4529370A (en) * | 1981-11-09 | 1985-07-16 | Thomas R. Vigil | Pelletizer |
US4462293A (en) * | 1982-09-27 | 1984-07-31 | Gunzner Fred G | Wear-resistant and shock-resistant tools and method of manufacture thereof |
US4726275A (en) * | 1983-05-10 | 1988-02-23 | Synthaxe Limited | Electronic musical instrument |
US4569810A (en) * | 1983-07-06 | 1986-02-11 | Atochem | Apparatus and methods for immersed-head cutting of thermoplastics |
US4800792A (en) * | 1984-06-08 | 1989-01-31 | Montedison S.P.A. | Cutting device for hot granulation of thermoplastic polymers |
US4692069A (en) * | 1984-11-15 | 1987-09-08 | Walter Kieninger Gmbh | Cutter head |
US4680191A (en) * | 1985-02-05 | 1987-07-14 | Frito-Lay, Inc. | Cross-cut extrusion method |
US4621996A (en) * | 1985-04-24 | 1986-11-11 | Gala Industries, Inc. | Removable die center for extrusion dies |
US4728275A (en) * | 1986-09-18 | 1988-03-01 | Arco Chemical Company | Multi-bladed disc cutter for underwater pelletizers |
US4995767A (en) * | 1988-10-11 | 1991-02-26 | North American Products, Corp. | Face milling cutter with indexable inserts |
US5054354A (en) * | 1989-10-31 | 1991-10-08 | Leon Kubis | Saw blade |
US5191819A (en) * | 1990-06-20 | 1993-03-09 | Kabushiki Kaisha Hoshi Plastic | Cutter assembly for strand cutting machine and resin material cutting assembly |
US5338559A (en) * | 1991-08-22 | 1994-08-16 | Schaaf Heinz Josef | Method and apparatus for making expanded food stuffs |
US5367928A (en) * | 1991-10-18 | 1994-11-29 | Grapha-Holding Ag | Method of and implement for cutting books at the backbones |
US5320793A (en) * | 1991-10-31 | 1994-06-14 | Lombard Marco H | Process for manufacturing an extruded and cut product containing material not suited to be severed |
US5358399A (en) * | 1992-04-09 | 1994-10-25 | The Japan Steel Works, Ltd. | Cutter holder device in a pelletizer |
US5667343A (en) * | 1993-03-18 | 1997-09-16 | Sandvik Ab | Face milling cutter with recesses for adjustable insert holders |
US5947805A (en) * | 1994-05-03 | 1999-09-07 | Norton Company | Accessory for an angle grinder |
US5611983A (en) * | 1995-04-28 | 1997-03-18 | Shell Oil Company | Process for pelletizing polymer |
US5629028A (en) * | 1995-11-07 | 1997-05-13 | The Conair Group, Inc. | Underwater pelletizer having sealed heat transfer tubes embedded in extrusion die |
US5593702A (en) * | 1995-12-15 | 1997-01-14 | Shell Oil Company | Underwater pelletizer having shroud element mounted to die face |
US6244852B1 (en) * | 1996-07-04 | 2001-06-12 | Gaplast Gmbh | Method of producing a receptacle and a receptacle having pressure compensating openings |
US5788426A (en) * | 1997-03-05 | 1998-08-04 | Ultra Tool Corporation | Cutting tool cartridge holder |
US5927129A (en) * | 1997-04-23 | 1999-07-27 | Daimler-Benz Aktiengesellschaft | Apparatus and process for making cut extruded hollow profiles |
US6189584B1 (en) * | 1998-08-12 | 2001-02-20 | Douglas Scott Cayce | Disposable carbide blade assembly for universal rotary cutter |
US6536320B2 (en) * | 1998-11-19 | 2003-03-25 | Eastman Kodak Company | Slitter cutting element and method of making same |
US6488456B1 (en) * | 1998-12-29 | 2002-12-03 | Iscar Ltd. | Slotting cutter |
US6310314B2 (en) * | 1999-12-27 | 2001-10-30 | Wintersteiger Gmbh | Procedure for fastening a carbide tooth at a saw blade |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040035270A1 (en) * | 2001-02-06 | 2004-02-26 | Williams Edward E. | Apparatus and process for cutting of extruded material |
US7258044B2 (en) * | 2001-02-06 | 2007-08-21 | Good Earth Tool Company | Apparatus and process for cutting of extruded material |
CN110000832A (en) * | 2019-03-08 | 2019-07-12 | 南安市柳信光电科技有限公司 | Machine is safely prepared using the particulate polyvinyl chloride of centrifugal force air-dispersing |
Also Published As
Publication number | Publication date |
---|---|
US20020104419A1 (en) | 2002-08-08 |
US20030209119A1 (en) | 2003-11-13 |
US7121181B2 (en) | 2006-10-17 |
US7181993B2 (en) | 2007-02-27 |
US7258044B2 (en) | 2007-08-21 |
US20040035270A1 (en) | 2004-02-26 |
US20090249934A1 (en) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070034067A1 (en) | Apparatus and process for cutting of extruded material | |
US7637732B2 (en) | Die for extruding material | |
US5738156A (en) | Removable cutting blades for a helical cutterhead | |
US5934973A (en) | Semiconductor wafer dicing saw | |
US4219291A (en) | Segmented helical rotary cutter and method of making same | |
US4436006A (en) | Method for cutting lead wires | |
US4614463A (en) | Cutter having removable cutting blades | |
WO2008010414A1 (en) | Cutting oscillator, oscillating cutting unit, machining apparatus, shaping mold and optical device | |
US5667344A (en) | CVD diamond cutting tools with oriented crystal grain boundaries | |
JP2000225511A (en) | Cutter and manufacturing method thereof | |
US5370023A (en) | Cutting tool for turning parallel grooves | |
US20210245263A1 (en) | Rotary cutting tool and cartridge | |
JP4350926B2 (en) | Shank tool with blade-like fixed elements | |
US5368078A (en) | Finger joint cutter blade | |
US4645390A (en) | Cutting tool for making holes | |
US5165319A (en) | Cutting knife with multiple insert blades | |
EP1311349A1 (en) | Adjustable cutting mechanism | |
JP2006068998A (en) | Work cutting fixing tool and cutting method using the same | |
US20070173183A1 (en) | Cutting tool with integrated abrasive trimming elements | |
US8783150B2 (en) | Device for trimming a print product | |
KR20170028046A (en) | Fly-cut wheel assembly | |
US20020062725A1 (en) | Cutting tool | |
JP2011218486A (en) | Machining tool for finishing | |
JPH07223108A (en) | Front milling cutter | |
CN117259804A (en) | Cutter structure for turning slotted hole in end face of pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |