US20070032675A1 - Forming a dielectric layer using a hydrocarbon-containing precursor - Google Patents
Forming a dielectric layer using a hydrocarbon-containing precursor Download PDFInfo
- Publication number
- US20070032675A1 US20070032675A1 US11/580,399 US58039906A US2007032675A1 US 20070032675 A1 US20070032675 A1 US 20070032675A1 US 58039906 A US58039906 A US 58039906A US 2007032675 A1 US2007032675 A1 US 2007032675A1
- Authority
- US
- United States
- Prior art keywords
- precursor
- functional group
- substituted
- dielectric layer
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 69
- 229930195733 hydrocarbon Natural products 0.000 title abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 title abstract description 11
- 239000004215 Carbon black (E152) Substances 0.000 title abstract description 10
- 125000000524 functional group Chemical group 0.000 claims description 37
- 229910052710 silicon Inorganic materials 0.000 claims description 19
- 239000010703 silicon Substances 0.000 claims description 18
- 125000003545 alkoxy group Chemical group 0.000 claims description 8
- 238000010507 β-hydride elimination reaction Methods 0.000 claims description 6
- 239000003361 porogen Substances 0.000 claims description 4
- 239000003446 ligand Substances 0.000 claims description 3
- 239000012634 fragment Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 4
- 238000007740 vapor deposition Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000000151 deposition Methods 0.000 description 12
- 230000008021 deposition Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 125000001183 hydrocarbyl group Chemical group 0.000 description 8
- -1 for example Chemical group 0.000 description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000001994 activation Methods 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 2
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical group [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- YRAJNWYBUCUFBD-UHFFFAOYSA-N 2,2,6,6-tetramethylheptane-3,5-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(C)(C)C YRAJNWYBUCUFBD-UHFFFAOYSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- IEMFXXNBAKZYOX-UHFFFAOYSA-N triethoxy-(3-methyl-3-bicyclo[2.2.1]heptanyl)silane Chemical compound C1CC2C([Si](OCC)(OCC)OCC)(C)CC1C2 IEMFXXNBAKZYOX-UHFFFAOYSA-N 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/312—Organic layers, e.g. photoresist
- H01L21/3121—Layers comprising organo-silicon compounds
- H01L21/3122—Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31633—Deposition of carbon doped silicon oxide, e.g. SiOC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02203—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
- H01L21/02216—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
Definitions
- the present invention relates to forming layers on a substrate and more particularly to forming a dielectric layer using a hydrocarbon-containing material.
- Semiconductor devices typically include metal layers that are insulated from each other by dielectric layers. It is desirable that these dielectric layers which are made of an insulative material have a relatively low dielectric constant. While such dielectric layers may be made of various materials, silicon dioxide is one material used, however it has a higher dielectric constant than is desired for forming advanced semiconductor devices.
- One material used to provide a low dielectric constant (K eff ) is a carbon doped oxide (CDO).
- CDO films are formed using a vapor deposition process. It is desirable however, to obtain a dielectric layer having a lower K eff than possible using conventional vapor deposition processing and precursor materials.
- Certain materials used as dielectric films may be instead formed using a spin-on process. While such spin-on materials may have a relatively low K eff , they typically have poor mechanical strength and may suffer from structural integrity problems during subsequent processing. Thus there is a need for a dielectric layer that has reliable mechanical strength for subsequent processing and a relatively low dielectric constant upon device completion.
- FIGS. 1A-1B are chemical structures of substituted precursors in accordance with various embodiments of the present invention.
- FIGS. 2A-2C are chemical structures of substituted precursors in accordance with various embodiments of the present invention.
- FIGS. 3A-3E are chemical structures of substituted precursors in accordance with various embodiments of the present invention.
- FIG. 4 is an example plasma enhanced chemical vapor deposition reaction in accordance with one embodiment of the present invention.
- FIGS. 5A-5B are chemical structures of substituted precursors in accordance with several embodiments of the present invention.
- FIG. 6 is an example plasma enhanced chemical vapor deposition in accordance with a second embodiment of the present invention.
- a dielectric layer may be deposited using a hydrocarbon substituted silicon-based precursor (a “substituted precursor”).
- the hydrocarbon substituents may vary in chain length, branching, sterics, C/H ratio, heteroatoms and other chemical attributes to control resulting material composition and engineering properties (e.g., activation energy (E a ), carbon to silicon (C/Si) ratio, rate of degradation, and K eff ) .
- large hydrocarbon substituents may act as porogenic functional groups.
- a percentage of a substituted precursor may be co-deposited with conventional silicon oxide and CDO precursor(s) (hereafter “conventional precursors”), which include, but are not limited to tetraethylorthosilicate (TEOS), TOMCATS, dimethyldimethoxysilane (DMDMOS), and OMCTS.
- TEOS tetraethylorthosilicate
- TOMCATS tetraethylorthosilicate
- DMDMOS dimethyldimethoxysilane
- OMCTS tetraethylorthosilicate
- the percentage of substituted precursor to conventional precursor may vary from a minimal amount (e.g., less than 5%) to 100%. This percentage may vary based upon the morphology, mechanical strength, C/Si ratio, and/or the porogenic characteristics desired of the dielectric film.
- the percentage of substituted precursor to conventional precursor may be between approximately 10% to approximately 50%.
- the dielectric layer After deposition of the dielectric layer, various subsequent processing may be performed. For example, metal interconnects may be formed in or on the dielectric layer via a dual damascene or other process.
- post-treatment the hydrocarbon functionality of the substituted precursors may be removed (hereafter referred to as “post-treatment”) to form a dielectric layer with greater porosity and a lower dielectric constant. While the dielectric constant obtained may vary in different embodiments, in certain embodiments, the dielectric constant may be reduced to below 3.0 and even 2.5. More so, in embodiments in which the substituted precursor includes a large moiety, the dielectric constant may be reduced to approximately 2.0.
- a dielectric layer may be deposited using various techniques, including for example physical vapor deposition (PVD), chemical vapor deposition, (CVD), or plasma enhanced chemical vapor deposition (PECVD).
- PVD physical vapor deposition
- CVD chemical vapor deposition
- PECVD plasma enhanced chemical vapor deposition
- One example deposition may be thermal deposition of a substituted precursor with a conventional molecular precursor such as TEOS, TMOS, and the like.
- deposition may be accomplished via plasma assisted deposition of a substituted precursor with a molecular precursor such as TEOS, DMDMOS, and the like.
- the reaction of a substituted precursor and a silane-based precursor with an oxygen source such as oxygen or water
- an oxygen source such as oxygen or water
- a mixture of any of the above techniques may be used to deposit the dielectric layer (e.g., an interlayer dielectric (ILD)).
- an oxygen source such as oxygen or water
- Deposition of the dielectric layer may be accomplished using a conventional reaction chamber operating at conventional temperatures and pressures.
- the thickness of the deposited dielectric layer may be between approximately 100 Angstroms and approximately 10,000 Angstroms.
- the substituted precursor may be engineered to take up additional space in the CDO lattice and modulate its engineering properties (including K eff , decomposition temperature, decomposition speed, E a , mechanical strength, porosity, pore structure, film uniformity, modulus, hardness, adhesion, cohesive strength, and the like).
- the substituted precursor may have the general formula [R 2 ] 4-x Si[R 1 ] x , where x equals one, two, or three;
- R 1 may be a functional group that forms Si—O bonds during deposition (i.e., a silanating/alkoxy silanating functional group), for example, H, a halogen, OCH 3 , OCH 2 CH 3 , or an alkoxy;
- R 2 may provide porogen functionality via a bulky carbon-based functional group, for example, norbornyl, neopentyl, adamantyl, cyclopentadienyl, methyl adamantyl, an alicyclic, a heterocyclic, a branched alkyl, a straight chain alkyl, or an aromatic.
- x 1 (a single silanating group
- the substituted precursor may have the general formula [R 2 X] 4-x Si[R 1 ] x , where X is a heteroatom, such as O, N, or S, for example; and x, R 1 and R 2 may be as above.
- the substituted precursor may have the general formula [R 2 ] x Si[R 1 ] y , where R 1 , R 2 and x are as above and y is one or two, depending on the value of x.
- a substituted precursor may be norbornyl trimethoxysilane.
- a substituted precursor may be adamantyl trimethoxysilane.
- a substituted precursor may be dicyclopentadienyl trimethoxysilane.
- substituted precursors may include trietoxynorbornylsilane, tethered cage, substituted cage (2-methyl-2-(triethoxysilyl)norbornane), aryl functionality (benzyl and phenyl), straight chain, and branched chain, and fluorocarbon substitutions. More so, derivatives or analogs of these compounds may also be used as substituted precursors in certain embodiments.
- silicon content of the precursors of FIGS. 2A-2C is shown as single silicon atoms, it is to be understood that in other embodiments dimeric and oligomeric species, such as disilanes, diazides, silsesquioxanes and others, may be used. Hydrocarbon substituents may have many possible substitution patterns in such multinuclear systems.
- Heteroatom substituents may serve several functions, including direction of plasma activation and energy transfer during deposition, promotion of reactivity at specific locations, as well as modulation of decomposition rate and mechanism, and the thermal and mechanical properties of the deposited film.
- Examples of heteroatoms and functionality include halogen, nitrogen, nitro group, diazo group, and azo group, for example.
- films may be deposited using multiple substituted precursors having differing activation energies for degradation and differing amounts of hydrocarbon bulk available for loss.
- FIGS. 3A-3E shown are example substituted precursors for use in forming dielectric layers in accordance with other embodiments of the present invention.
- a substituted precursor may be tertbutoxy trimethoxysilane.
- a substituted precursor may be isoproxy trimethoxysilane.
- a substituted precursor in a third embodiment may be alpha methyl norbornyl oxytrimethoxysilane.
- a substituted precursor in a fourth embodiment may be norbornyl oxytrimethoxysilane.
- a substituted precursor in a fifth embodiment may be adamantyl methoxy trimethoxysilane.
- the hydrocarbons are bound to the silicon through a linker moiety (e.g., oxygen). In other embodiments, other derivatives or analogs may be bound to the silicon.
- the precursor may have multiple different hydrocarbon functionalities.
- two of these sites may be silanating functional groups to form the silicon-oxygen backbone of the dielectric layer, while a third site may be an organic functional group that is desired to be incorporated into the dielectric layer, and a fourth site may be a sacrificial functional group.
- Such a precursor is depicted in FIG. 4 .
- a third site may be a functional group that attaches to the silicon molecule at one or two points (denoted by R in FIG. 4 ).
- a ring structure such as a tetra-substituted carbon in the beta position or another structure stabilized against beta-hydride elimination may be used.
- FIG. 5A depicts a norbornyl-functionalized trimethoxysilane
- FIG. 5B depicts a ⁇ , ⁇ -dimethylnorbornyl trimethoxysilane, which is stabilized against beta-hydride elimination.
- This third site may be a sterically large molecule.
- this third site may be an electron-accepting functional group, for example, a phenyl group, such as a benzene ring, or an amide group having a conjugated double bond or an alternating double bond single bond structure.
- the third site may be a polydentate ligand or other functional group which is multiply bonded to the silicon atom.
- ligands include, but are not limited to, 2,4-pentanedioate (acetyl acetonate; acac), 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), dipivaloylmethane (dpm), and bipyridine (bpy).
- a fourth site attached to the silicon molecule may be, for example, an alkoxy, an alkyl, a sacrificial functional group or the same functional group chosen for the third site (denoted as X in FIG. 4 ).
- the third and fourth sites may be functional groups having different reaction pathways.
- one functional group may be very reactive and be the primary reaction pathway for monomer activation and subsequent film deposition, in accordance with the scheme depicted in FIG. 4 .
- the second functional group may be large and unreactive so that it may be incorporated into the film and may be selected to avoid common plasma reaction pathways, such as beta hydride elimination or hydrolysis, in certain embodiments.
- sacrificial components that decompose preferentially may include, but are not limited to, halogens, olefins, functional groups highly susceptible to beta-hydride elimination such as ethyl or ethoxy groups, or other functional groups (e.g., a precursor with two different organic functional ethoxy groups, either of which may be susceptible to post-treatment if incorporated into the film).
- reactions may be modulated by steric hindrance of surface reactions or by electronic effects of substituents groups.
- Si—H or Si—R (where R is a small functional group) may be susceptible to attack by water (i.e., hydrolysis) to create a new hydroxyl group, which can act as an active site for film growth.
- a much larger functional group that can block access to reactive sites will not react and will be incorporated into the film.
- surface reactions of the film may be prevented during film growth, enabling incorporation of organic porogens which may be later removed from the film.
- hydroxyl-substituted functional groups may also be used (such groups may be chemically bound to the film at more than one site).
- the precursor may be stabilized during deposition by adding a sacrificial functional group that will fragment preferentially during decomposition, leaving the rest of the molecule (including the organic porogen) intact.
- a precursor may have the sacrificial functional group attached directly to the silicon (shown as X in FIG. 4 ) or attached to the organic portion (also shown as X in FIG. 6 ).
- a silicon molecule has four sites attached thereto, namely two alkoxy groups, a third site which is a functional group (R) desired to be incorporated into the dielectric film, and a fourth site which is a sacrificial functional group (X).
- X may be a functional group which is especially labile under plasma deposition conditions, such as a halogen, an olefin (e.g., a vinyl group), or a moiety susceptible to beta-hydride elimination (e.g., an ethyl group).
- the sacrificial functional group shown as X* after the reaction is not incorporated into the dielectric film.
- FIG. 6 shown is an example PECVD reaction in accordance with a second embodiment of the present invention.
- a silicon molecule has four sites attached thereto.
- a methyl group and an organic moiety e.g., the benzene ring shown in FIG. 6
- the sacrificial functional group (X) is attached to the organic moiety, rather than the silicon molecule itself.
- X represents a functional group which is especially labile under plasma deposition conditions.
- the sacrificial functional group (shown as X* after the reaction) is not incorporated into the dielectric film. While FIG. 6 shows a sacrificial group attached to an aromatic functionality which is attached directly to the silicon, other aromatic groups or non-aromatic groups may be used and thus incorporated into the film during deposition.
- reaction conditions may be chosen so that the reaction/decomposition of one functional group is much faster than the other so that organic functional groups may be included in the film. These groups may be removed during later post-treatment to reduce the dielectric constant of the film.
- the dielectric layer may be used as a substrate for desired subsequent processing.
- a dual damascene process may be performed to form metal interconnects in the dielectric layer.
- Certain embodiments of the present invention may provide hydrocarbon bulk for loss, and subsequent removal of the hydrocarbon bulk may increase the porosity of the dielectric layer.
- the K eff decreases.
- the stoichiometry of the original film (and thus the ratio of precursors) depends upon the desired final K eff .
- the dielectric layer may be subjected to an additional process (the aforementioned “post-treatment”) to remove the hydrocarbon substitutions in the matrix (and the accompanying bulk).
- post-treatment the aforementioned “post-treatment”
- hydrocarbon removal may occur at other points in the process flow, such as after chemical mechanical planarization, if a particular integration scheme dictates.
- the substituted precursor may be removed to provide for increased porosity in one embodiment.
- the substituted precursor includes a large cage, for example, a methyl-based precursor
- a greater portion of the substituted precursor i.e., the methyl group
- the dielectric layer after the removal process.
- the removal process may be aided by a photo-acid generator or other catalysts in certain embodiments.
- an acid or other catalyst may be co-deposited with the precursors which may later aid in removal of the substituted precursor.
- Such acids may include Lewis and Br ⁇ nsted acids, for example.
- the removal process may include a plasma etch or ashing process. Such etching or ashing may be performed using conventional parameters and materials.
- hydrocarbon substituted structures may be in a polymer or oligomer form and may be co-deposited (along with conventional polymers or oligomers) on a substrate via a spin-on technique.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
In one embodiment, the present invention includes introducing a precursor containing hydrocarbon substituents and optionally a second conventional or hydrocarbon-containing precursor into a vapor deposition apparatus; and forming a dielectric layer having the hydrocarbon substituents on a substrate within the vapor deposition apparatus from the precursor(s). In certain embodiments, at least a portion of the hydrocarbon substituents may be later removed from the dielectric layer to reduce density thereof.
Description
- This application is a divisional of U.S. patent application Ser. No. 10/377,061, filed on Feb. 28, 2003.
- The present invention relates to forming layers on a substrate and more particularly to forming a dielectric layer using a hydrocarbon-containing material.
- Semiconductor devices typically include metal layers that are insulated from each other by dielectric layers. It is desirable that these dielectric layers which are made of an insulative material have a relatively low dielectric constant. While such dielectric layers may be made of various materials, silicon dioxide is one material used, however it has a higher dielectric constant than is desired for forming advanced semiconductor devices. One material used to provide a low dielectric constant (Keff) is a carbon doped oxide (CDO). Typically, CDO films are formed using a vapor deposition process. It is desirable however, to obtain a dielectric layer having a lower Keff than possible using conventional vapor deposition processing and precursor materials.
- Certain materials used as dielectric films may be instead formed using a spin-on process. While such spin-on materials may have a relatively low Keff, they typically have poor mechanical strength and may suffer from structural integrity problems during subsequent processing. Thus there is a need for a dielectric layer that has reliable mechanical strength for subsequent processing and a relatively low dielectric constant upon device completion.
-
FIGS. 1A-1B are chemical structures of substituted precursors in accordance with various embodiments of the present invention. -
FIGS. 2A-2C are chemical structures of substituted precursors in accordance with various embodiments of the present invention. -
FIGS. 3A-3E are chemical structures of substituted precursors in accordance with various embodiments of the present invention. -
FIG. 4 is an example plasma enhanced chemical vapor deposition reaction in accordance with one embodiment of the present invention. -
FIGS. 5A-5B are chemical structures of substituted precursors in accordance with several embodiments of the present invention. -
FIG. 6 is an example plasma enhanced chemical vapor deposition in accordance with a second embodiment of the present invention. - In one embodiment of the present invention, a dielectric layer may be deposited using a hydrocarbon substituted silicon-based precursor (a “substituted precursor”). In various embodiments, the hydrocarbon substituents may vary in chain length, branching, sterics, C/H ratio, heteroatoms and other chemical attributes to control resulting material composition and engineering properties (e.g., activation energy (Ea), carbon to silicon (C/Si) ratio, rate of degradation, and Keff) . In some embodiments, large hydrocarbon substituents may act as porogenic functional groups.
- In other embodiments, a percentage of a substituted precursor may be co-deposited with conventional silicon oxide and CDO precursor(s) (hereafter “conventional precursors”), which include, but are not limited to tetraethylorthosilicate (TEOS), TOMCATS, dimethyldimethoxysilane (DMDMOS), and OMCTS. The percentage of substituted precursor to conventional precursor may vary from a minimal amount (e.g., less than 5%) to 100%. This percentage may vary based upon the morphology, mechanical strength, C/Si ratio, and/or the porogenic characteristics desired of the dielectric film. In certain embodiments, the percentage of substituted precursor to conventional precursor may be between approximately 10% to approximately 50%.
- After deposition of the dielectric layer, various subsequent processing may be performed. For example, metal interconnects may be formed in or on the dielectric layer via a dual damascene or other process. After the desired subsequent processing has been completed, the hydrocarbon functionality of the substituted precursors may be removed (hereafter referred to as “post-treatment”) to form a dielectric layer with greater porosity and a lower dielectric constant. While the dielectric constant obtained may vary in different embodiments, in certain embodiments, the dielectric constant may be reduced to below 3.0 and even 2.5. More so, in embodiments in which the substituted precursor includes a large moiety, the dielectric constant may be reduced to approximately 2.0.
- In different embodiments, a dielectric layer may be deposited using various techniques, including for example physical vapor deposition (PVD), chemical vapor deposition, (CVD), or plasma enhanced chemical vapor deposition (PECVD). One example deposition may be thermal deposition of a substituted precursor with a conventional molecular precursor such as TEOS, TMOS, and the like. Similarly, deposition may be accomplished via plasma assisted deposition of a substituted precursor with a molecular precursor such as TEOS, DMDMOS, and the like. Alternately, the reaction of a substituted precursor and a silane-based precursor with an oxygen source (such as oxygen or water), or a mixture of any of the above techniques may be used to deposit the dielectric layer (e.g., an interlayer dielectric (ILD)).
- Deposition of the dielectric layer may be accomplished using a conventional reaction chamber operating at conventional temperatures and pressures. In certain embodiments, the thickness of the deposited dielectric layer may be between approximately 100 Angstroms and approximately 10,000 Angstroms.
- In certain embodiments, the substituted precursor may be engineered to take up additional space in the CDO lattice and modulate its engineering properties (including Keff, decomposition temperature, decomposition speed, Ea, mechanical strength, porosity, pore structure, film uniformity, modulus, hardness, adhesion, cohesive strength, and the like).
- Design of a substituted precursor may follow one of several design motifs in accordance with various embodiments of the present invention. In one embodiment, depicted in
FIG. 1A , the substituted precursor may have the general formula [R2]4-xSi[R1]x, where x equals one, two, or three; R1 may be a functional group that forms Si—O bonds during deposition (i.e., a silanating/alkoxy silanating functional group), for example, H, a halogen, OCH3, OCH2CH3, or an alkoxy; and R2 may provide porogen functionality via a bulky carbon-based functional group, for example, norbornyl, neopentyl, adamantyl, cyclopentadienyl, methyl adamantyl, an alicyclic, a heterocyclic, a branched alkyl, a straight chain alkyl, or an aromatic. In the case of x=1 (a single silanating group), more than one precursor may be used to build the film to promote bonding between precursor molecules during the deposition process. - In another embodiment, depicted in
FIG. 1B , the substituted precursor may have the general formula [R2X]4-xSi[R1]x, where X is a heteroatom, such as O, N, or S, for example; and x, R1 and R2 may be as above. - In still another embodiment, the substituted precursor may have the general formula [R2]xSi[R1]y, where R1, R2 and x are as above and y is one or two, depending on the value of x.
- Referring now to
FIGS. 2A-2C , shown are example substituted precursors for use in forming dielectric layers in accordance with various embodiments of the present invention. As shown inFIG. 2A , in one embodiment a substituted precursor may be norbornyl trimethoxysilane. As shown inFIG. 2B , in a second embodiment a substituted precursor may be adamantyl trimethoxysilane. As shown inFIG. 2C , in a third embodiment a substituted precursor may be dicyclopentadienyl trimethoxysilane. In other embodiments, substituted precursors may include trietoxynorbornylsilane, tethered cage, substituted cage (2-methyl-2-(triethoxysilyl)norbornane), aryl functionality (benzyl and phenyl), straight chain, and branched chain, and fluorocarbon substitutions. More so, derivatives or analogs of these compounds may also be used as substituted precursors in certain embodiments. - While the silicon content of the precursors of
FIGS. 2A-2C is shown as single silicon atoms, it is to be understood that in other embodiments dimeric and oligomeric species, such as disilanes, diazides, silsesquioxanes and others, may be used. Hydrocarbon substituents may have many possible substitution patterns in such multinuclear systems. - Heteroatom substituents may serve several functions, including direction of plasma activation and energy transfer during deposition, promotion of reactivity at specific locations, as well as modulation of decomposition rate and mechanism, and the thermal and mechanical properties of the deposited film. Examples of heteroatoms and functionality include halogen, nitrogen, nitro group, diazo group, and azo group, for example.
- In certain embodiments, films may be deposited using multiple substituted precursors having differing activation energies for degradation and differing amounts of hydrocarbon bulk available for loss. Referring now to
FIGS. 3A-3E , shown are example substituted precursors for use in forming dielectric layers in accordance with other embodiments of the present invention. As shown inFIG. 3A , in one embodiment a substituted precursor may be tertbutoxy trimethoxysilane. As shown inFIG. 3B , in a second embodiment a substituted precursor may be isoproxy trimethoxysilane. As shown inFIG. 3C , in a third embodiment a substituted precursor may be alpha methyl norbornyl oxytrimethoxysilane. As shown inFIG. 3D in a fourth embodiment a substituted precursor may be norbornyl oxytrimethoxysilane. As shown inFIG. 3E , in a fifth embodiment a substituted precursor may be adamantyl methoxy trimethoxysilane. As shown inFIGS. 3A-3E , the hydrocarbons are bound to the silicon through a linker moiety (e.g., oxygen). In other embodiments, other derivatives or analogs may be bound to the silicon. - In certain embodiments in which post-treatment of a single precursor is performed, the precursor may have multiple different hydrocarbon functionalities. In one embodiment, two of these sites may be silanating functional groups to form the silicon-oxygen backbone of the dielectric layer, while a third site may be an organic functional group that is desired to be incorporated into the dielectric layer, and a fourth site may be a sacrificial functional group. Such a precursor is depicted in
FIG. 4 . - For example, in one embodiment two alkoxy groups may be attached to form the silicon-oxygen backbone. In this example, a third site may be a functional group that attaches to the silicon molecule at one or two points (denoted by R in
FIG. 4 ). For example, a ring structure, such as a tetra-substituted carbon in the beta position or another structure stabilized against beta-hydride elimination may be used. As an example,FIG. 5A depicts a norbornyl-functionalized trimethoxysilane, andFIG. 5B depicts a β,β-dimethylnorbornyl trimethoxysilane, which is stabilized against beta-hydride elimination. This third site may be a sterically large molecule. In other embodiments, this third site may be an electron-accepting functional group, for example, a phenyl group, such as a benzene ring, or an amide group having a conjugated double bond or an alternating double bond single bond structure. Alternately the third site may be a polydentate ligand or other functional group which is multiply bonded to the silicon atom. Examples of such ligands include, but are not limited to, 2,4-pentanedioate (acetyl acetonate; acac), 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), dipivaloylmethane (dpm), and bipyridine (bpy). - In various embodiments, a fourth site attached to the silicon molecule may be, for example, an alkoxy, an alkyl, a sacrificial functional group or the same functional group chosen for the third site (denoted as X in
FIG. 4 ). - In one embodiment, the third and fourth sites may be functional groups having different reaction pathways. For example, one functional group may be very reactive and be the primary reaction pathway for monomer activation and subsequent film deposition, in accordance with the scheme depicted in
FIG. 4 . The second functional group may be large and unreactive so that it may be incorporated into the film and may be selected to avoid common plasma reaction pathways, such as beta hydride elimination or hydrolysis, in certain embodiments. In certain embodiments, sacrificial components that decompose preferentially may include, but are not limited to, halogens, olefins, functional groups highly susceptible to beta-hydride elimination such as ethyl or ethoxy groups, or other functional groups (e.g., a precursor with two different organic functional ethoxy groups, either of which may be susceptible to post-treatment if incorporated into the film). - In an embodiment in which an Si-based organic precursor is reacted with an oxidizing agent, reactions may be modulated by steric hindrance of surface reactions or by electronic effects of substituents groups. In such an embodiment, Si—H or Si—R (where R is a small functional group) may be susceptible to attack by water (i.e., hydrolysis) to create a new hydroxyl group, which can act as an active site for film growth. Alternately, a much larger functional group that can block access to reactive sites will not react and will be incorporated into the film. Thus, surface reactions of the film may be prevented during film growth, enabling incorporation of organic porogens which may be later removed from the film. In addition to the organic precursors described above, hydroxyl-substituted functional groups may also be used (such groups may be chemically bound to the film at more than one site).
- As discussed above, in one embodiment the precursor may be stabilized during deposition by adding a sacrificial functional group that will fragment preferentially during decomposition, leaving the rest of the molecule (including the organic porogen) intact. Such a precursor may have the sacrificial functional group attached directly to the silicon (shown as X in
FIG. 4 ) or attached to the organic portion (also shown as X inFIG. 6 ). - Referring now to
FIG. 4 , shown is an example PECVD reaction in accordance with one embodiment of the present invention. As shown inFIG. 4 , a silicon molecule has four sites attached thereto, namely two alkoxy groups, a third site which is a functional group (R) desired to be incorporated into the dielectric film, and a fourth site which is a sacrificial functional group (X). In one embodiment, X may be a functional group which is especially labile under plasma deposition conditions, such as a halogen, an olefin (e.g., a vinyl group), or a moiety susceptible to beta-hydride elimination (e.g., an ethyl group). As shown inFIG. 4 , the sacrificial functional group (shown as X* after the reaction) is not incorporated into the dielectric film. - Referring now to
FIG. 6 , shown is an example PECVD reaction in accordance with a second embodiment of the present invention. As shown inFIG. 6 , a silicon molecule has four sites attached thereto. In this embodiment, in addition to the two alkoxy groups, a methyl group and an organic moiety (e.g., the benzene ring shown inFIG. 6 ) are attached directly to the silicon molecule. In this embodiment, the sacrificial functional group (X) is attached to the organic moiety, rather than the silicon molecule itself. As discussed above with regard toFIG. 4 , X represents a functional group which is especially labile under plasma deposition conditions. As shown inFIG. 6 , the sacrificial functional group (shown as X* after the reaction) is not incorporated into the dielectric film. WhileFIG. 6 shows a sacrificial group attached to an aromatic functionality which is attached directly to the silicon, other aromatic groups or non-aromatic groups may be used and thus incorporated into the film during deposition. - In one embodiment, reaction conditions may be chosen so that the reaction/decomposition of one functional group is much faster than the other so that organic functional groups may be included in the film. These groups may be removed during later post-treatment to reduce the dielectric constant of the film.
- In one embodiment, the dielectric layer may be used as a substrate for desired subsequent processing. For example, a dual damascene process may be performed to form metal interconnects in the dielectric layer.
- Certain embodiments of the present invention may provide hydrocarbon bulk for loss, and subsequent removal of the hydrocarbon bulk may increase the porosity of the dielectric layer. When the porosity of the dielectric layer increases, the Keff decreases. The stoichiometry of the original film (and thus the ratio of precursors) depends upon the desired final Keff.
- In one embodiment, after the metal stack (i.e., metal interconnect) is complete, the dielectric layer may be subjected to an additional process (the aforementioned “post-treatment”) to remove the hydrocarbon substitutions in the matrix (and the accompanying bulk). However, it is to be understood that in other embodiments, hydrocarbon removal may occur at other points in the process flow, such as after chemical mechanical planarization, if a particular integration scheme dictates.
- In one embodiment, thermal decomposition may be employed to remove the substituted precursor. In certain embodiments, the thermal removal may occur at temperatures between approximately 200° Celsius (C.) and approximately 500° C. The duration of such thermal removal may also vary in different embodiments, and may range from approximately one minute to approximately two hours, in certain embodiments.
- All or substantially all of the substituted precursor may be removed to provide for increased porosity in one embodiment. However, in other embodiments, particularly where the substituted precursor includes a large cage, for example, a methyl-based precursor, a greater portion of the substituted precursor (i.e., the methyl group) may remain in the dielectric layer after the removal process.
- The removal process may be aided by a photo-acid generator or other catalysts in certain embodiments. For example, an acid or other catalyst may be co-deposited with the precursors which may later aid in removal of the substituted precursor. Such acids may include Lewis and Brønsted acids, for example.
- In other embodiments, the removal process may include a plasma etch or ashing process. Such etching or ashing may be performed using conventional parameters and materials.
- While the above embodiments relate to substituted precursors, it is to be understood that in certain embodiments, hydrocarbon substituted structures may be in a polymer or oligomer form and may be co-deposited (along with conventional polymers or oligomers) on a substrate via a spin-on technique.
- While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Claims (5)
1. A precursor comprising:
silicon;
a first functional group comprising an organic porogen, the first functional group attached to the silicon; and
a sacrificial functional group attached to the silicon.
2. The precursor of claim 1 , further comprising a first alkoxy group attached to the silicon and a second alkoxy group attached to the silicon.
3. The precursor of claim 1 , wherein the sacrificial functional group fragments preferentially.
4. The precursor of claim 1 , wherein the first functional group comprises a group stabilized against beta-hydride elimination.
5. The precursor of claim 1 , wherein the first functional group comprises a polydentate ligand.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/580,399 US20070032675A1 (en) | 2003-02-28 | 2006-10-13 | Forming a dielectric layer using a hydrocarbon-containing precursor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/377,061 US7138158B2 (en) | 2003-02-28 | 2003-02-28 | Forming a dielectric layer using a hydrocarbon-containing precursor |
US11/580,399 US20070032675A1 (en) | 2003-02-28 | 2006-10-13 | Forming a dielectric layer using a hydrocarbon-containing precursor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/377,061 Division US7138158B2 (en) | 2003-02-28 | 2003-02-28 | Forming a dielectric layer using a hydrocarbon-containing precursor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070032675A1 true US20070032675A1 (en) | 2007-02-08 |
Family
ID=32908064
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/377,061 Expired - Fee Related US7138158B2 (en) | 2003-02-28 | 2003-02-28 | Forming a dielectric layer using a hydrocarbon-containing precursor |
US11/580,399 Abandoned US20070032675A1 (en) | 2003-02-28 | 2006-10-13 | Forming a dielectric layer using a hydrocarbon-containing precursor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/377,061 Expired - Fee Related US7138158B2 (en) | 2003-02-28 | 2003-02-28 | Forming a dielectric layer using a hydrocarbon-containing precursor |
Country Status (1)
Country | Link |
---|---|
US (2) | US7138158B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080116481A1 (en) * | 2006-11-21 | 2008-05-22 | Sharma Ajay K | Selective deposition of a dielectric on a self-assembled monolayer-adsorbed metal |
US20080157365A1 (en) * | 2006-12-27 | 2008-07-03 | Andrew Ott | Transistor having an etch stop layer including a metal compound that is selectively formed over a metal gate, and method therefor |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7208389B1 (en) | 2003-03-31 | 2007-04-24 | Novellus Systems, Inc. | Method of porogen removal from porous low-k films using UV radiation |
US7176144B1 (en) | 2003-03-31 | 2007-02-13 | Novellus Systems, Inc. | Plasma detemplating and silanol capping of porous dielectric films |
US7241704B1 (en) | 2003-03-31 | 2007-07-10 | Novellus Systems, Inc. | Methods for producing low stress porous low-k dielectric materials using precursors with organic functional groups |
WO2004090936A2 (en) * | 2003-04-11 | 2004-10-21 | Silecs Oy | Low-k dielectric material |
US7265061B1 (en) | 2003-05-09 | 2007-09-04 | Novellus Systems, Inc. | Method and apparatus for UV exposure of low dielectric constant materials for porogen removal and improved mechanical properties |
DE10343411B4 (en) * | 2003-09-19 | 2009-07-23 | Gallus Druckmaschinen Gmbh | Rotary printing machine and method for making freely accessible a printing cylinder or a linear guide cylinder |
US7390537B1 (en) | 2003-11-20 | 2008-06-24 | Novellus Systems, Inc. | Methods for producing low-k CDO films with low residual stress |
US7658975B2 (en) * | 2003-12-12 | 2010-02-09 | Intel Corporation | Sealing porous dielectric materials |
US7341761B1 (en) | 2004-03-11 | 2008-03-11 | Novellus Systems, Inc. | Methods for producing low-k CDO films |
US7381662B1 (en) | 2004-03-11 | 2008-06-03 | Novellus Systems, Inc. | Methods for improving the cracking resistance of low-k dielectric materials |
US7781351B1 (en) | 2004-04-07 | 2010-08-24 | Novellus Systems, Inc. | Methods for producing low-k carbon doped oxide films with low residual stress |
US7253125B1 (en) | 2004-04-16 | 2007-08-07 | Novellus Systems, Inc. | Method to improve mechanical strength of low-k dielectric film using modulated UV exposure |
US7622400B1 (en) | 2004-05-18 | 2009-11-24 | Novellus Systems, Inc. | Method for improving mechanical properties of low dielectric constant materials |
US7326444B1 (en) * | 2004-09-14 | 2008-02-05 | Novellus Systems, Inc. | Methods for improving integration performance of low stress CDO films |
US9659769B1 (en) | 2004-10-22 | 2017-05-23 | Novellus Systems, Inc. | Tensile dielectric films using UV curing |
US7563727B2 (en) * | 2004-11-08 | 2009-07-21 | Intel Corporation | Low-k dielectric layer formed from aluminosilicate precursors |
US7695765B1 (en) | 2004-11-12 | 2010-04-13 | Novellus Systems, Inc. | Methods for producing low-stress carbon-doped oxide films with improved integration properties |
US7166531B1 (en) | 2005-01-31 | 2007-01-23 | Novellus Systems, Inc. | VLSI fabrication processes for introducing pores into dielectric materials |
US7510982B1 (en) | 2005-01-31 | 2009-03-31 | Novellus Systems, Inc. | Creation of porosity in low-k films by photo-disassociation of imbedded nanoparticles |
JP4489618B2 (en) * | 2005-03-14 | 2010-06-23 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor device |
US8889233B1 (en) | 2005-04-26 | 2014-11-18 | Novellus Systems, Inc. | Method for reducing stress in porous dielectric films |
US7439179B2 (en) * | 2005-06-22 | 2008-10-21 | Intel Corporation | Healing detrimental bonds in deposited materials |
US7892985B1 (en) | 2005-11-15 | 2011-02-22 | Novellus Systems, Inc. | Method for porogen removal and mechanical strength enhancement of low-k carbon doped silicon oxide using low thermal budget microwave curing |
US7381644B1 (en) | 2005-12-23 | 2008-06-03 | Novellus Systems, Inc. | Pulsed PECVD method for modulating hydrogen content in hard mask |
US7923376B1 (en) | 2006-03-30 | 2011-04-12 | Novellus Systems, Inc. | Method of reducing defects in PECVD TEOS films |
US7906174B1 (en) | 2006-12-07 | 2011-03-15 | Novellus Systems, Inc. | PECVD methods for producing ultra low-k dielectric films using UV treatment |
US8154121B2 (en) * | 2008-02-26 | 2012-04-10 | Intel Corporation | Polymer interlayer dielectric and passivation materials for a microelectronic device |
CN104823265A (en) | 2012-10-31 | 2015-08-05 | Sba材料有限公司 | Compositions of low-K dielectric sols containing nonmetallic catalysts |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5872401A (en) | 1996-02-29 | 1999-02-16 | Intel Corporation | Deposition of an inter layer dielectric formed on semiconductor wafer by sub atmospheric CVD |
US5950107A (en) | 1996-12-17 | 1999-09-07 | Intel Corporation | In-situ pre-ILD deposition treatment to improve ILD to metal adhesion |
US5950104A (en) * | 1997-04-09 | 1999-09-07 | Vanguard International Semiconductor Corporation | Contact process using Y-contact etching |
US6054206A (en) * | 1998-06-22 | 2000-04-25 | Novellus Systems, Inc. | Chemical vapor deposition of low density silicon dioxide films |
US6383951B1 (en) * | 1998-09-03 | 2002-05-07 | Micron Technology, Inc. | Low dielectric constant material for integrated circuit fabrication |
US6171945B1 (en) * | 1998-10-22 | 2001-01-09 | Applied Materials, Inc. | CVD nanoporous silica low dielectric constant films |
US6329118B1 (en) | 1999-06-21 | 2001-12-11 | Intel Corporation | Method for patterning dual damascene interconnects using a sacrificial light absorbing material |
CN1302532C (en) * | 2000-09-13 | 2007-02-28 | 希普利公司 | Electronic device manufacture |
US6441491B1 (en) * | 2000-10-25 | 2002-08-27 | International Business Machines Corporation | Ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device containing the same |
US6583048B2 (en) * | 2001-01-17 | 2003-06-24 | Air Products And Chemicals, Inc. | Organosilicon precursors for interlayer dielectric films with low dielectric constants |
US6391777B1 (en) * | 2001-05-02 | 2002-05-21 | Taiwan Semiconductor Manufacturing Company | Two-stage Cu anneal to improve Cu damascene process |
US6989230B2 (en) * | 2002-03-29 | 2006-01-24 | Infineon Technologies Ag | Producing low k inter-layer dielectric films using Si-containing resists |
US6846515B2 (en) * | 2002-04-17 | 2005-01-25 | Air Products And Chemicals, Inc. | Methods for using porogens and/or porogenated precursors to provide porous organosilica glass films with low dielectric constants |
JP4647175B2 (en) * | 2002-04-18 | 2011-03-09 | ルネサスエレクトロニクス株式会社 | Semiconductor integrated circuit device |
-
2003
- 2003-02-28 US US10/377,061 patent/US7138158B2/en not_active Expired - Fee Related
-
2006
- 2006-10-13 US US11/580,399 patent/US20070032675A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080116481A1 (en) * | 2006-11-21 | 2008-05-22 | Sharma Ajay K | Selective deposition of a dielectric on a self-assembled monolayer-adsorbed metal |
US7790631B2 (en) | 2006-11-21 | 2010-09-07 | Intel Corporation | Selective deposition of a dielectric on a self-assembled monolayer-adsorbed metal |
US20080157365A1 (en) * | 2006-12-27 | 2008-07-03 | Andrew Ott | Transistor having an etch stop layer including a metal compound that is selectively formed over a metal gate, and method therefor |
US8120114B2 (en) | 2006-12-27 | 2012-02-21 | Intel Corporation | Transistor having an etch stop layer including a metal compound that is selectively formed over a metal gate |
US8399317B2 (en) | 2006-12-27 | 2013-03-19 | Intel Corporation | Transistor having an etch stop layer including a metal compound that is selectively formed over a metal gate, and method therefor |
Also Published As
Publication number | Publication date |
---|---|
US7138158B2 (en) | 2006-11-21 |
US20040170760A1 (en) | 2004-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7138158B2 (en) | Forming a dielectric layer using a hydrocarbon-containing precursor | |
JP3762304B2 (en) | Method for forming low dielectric constant interlayer insulating film | |
US6649540B2 (en) | Organosilane CVD precursors and their use for making organosilane polymer low-k dielectric film | |
US6583048B2 (en) | Organosilicon precursors for interlayer dielectric films with low dielectric constants | |
US7148155B1 (en) | Sequential deposition/anneal film densification method | |
US7169715B2 (en) | Forming a dielectric layer using porogens | |
US6440876B1 (en) | Low-K dielectric constant CVD precursors formed of cyclic siloxanes having in-ring SI—O—C, and uses thereof | |
JP4918190B2 (en) | Very low dielectric constant plasma enhanced CVD film | |
JP4842251B2 (en) | Techniques to promote adhesion of porous low dielectric constant films to underlying barrier layers | |
JP3515074B2 (en) | Low-κ dielectric inorganic / organic hybrid film and method for producing the same | |
KR100637560B1 (en) | Siloxane-Containing Polymer Deposition Method | |
US7790633B1 (en) | Sequential deposition/anneal film densification method | |
CN101065834B (en) | A Low-Temperature Process for Fabricating Low-K Dielectrics with Low Stress by Plasma-Enhanced Chemical Vapor Deposition | |
US6472076B1 (en) | Deposition of organosilsesquioxane films | |
JP3432783B2 (en) | Low dielectric constant multiple carbon-containing silicon oxide dielectrics for integrated circuit structures | |
CN101316945B (en) | A method to improve the ashing/wet etch damage resistance and integration stability of low dielectric constant films | |
US20080105978A1 (en) | Method for forming an ultra low dielectric film by forming an organosilicon matrix and large porogens as a template for increased porosity | |
CN101419915A (en) | Methods to obtain low k dielectric barrier with superior etch resistivity | |
TW201623669A (en) | Flowable dielectric for selective ultra low-k pore sealing | |
CN100550318C (en) | Minimize wet etching undercutting degree and the method for extremely hanging down K value (K<2.5) dielectric sealing of hole is provided | |
CN102763200A (en) | Microelectronic structures including low-k dielectrics and methods of controlling carbon distribution within the structures | |
JP2008544533A (en) | Method for forming dielectric film and novel precursor for carrying out the method | |
CN1698189A (en) | Method for Improving Cracking Threshold and Mechanical Properties of Low Dielectric Constant Materials | |
KR20210154081A (en) | Method of deposition | |
CN116490639A (en) | System and method for forming UV-cured low-K dielectric films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |