US20070023165A1 - Thermally Conductive Two-Part Adhesive Composition - Google Patents
Thermally Conductive Two-Part Adhesive Composition Download PDFInfo
- Publication number
- US20070023165A1 US20070023165A1 US11/470,085 US47008506A US2007023165A1 US 20070023165 A1 US20070023165 A1 US 20070023165A1 US 47008506 A US47008506 A US 47008506A US 2007023165 A1 US2007023165 A1 US 2007023165A1
- Authority
- US
- United States
- Prior art keywords
- component
- composition
- thermally conductive
- weight
- acrylic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 105
- 239000000853 adhesive Substances 0.000 title abstract description 22
- 230000001070 adhesive effect Effects 0.000 title abstract description 22
- 239000000178 monomer Substances 0.000 claims abstract description 38
- 239000000945 filler Substances 0.000 claims abstract description 27
- 239000011231 conductive filler Substances 0.000 claims abstract description 21
- 230000003019 stabilising effect Effects 0.000 claims abstract description 19
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 18
- 238000001723 curing Methods 0.000 claims abstract description 16
- 230000003197 catalytic effect Effects 0.000 claims abstract description 13
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 9
- 150000001875 compounds Chemical class 0.000 claims abstract description 9
- 150000002978 peroxides Chemical class 0.000 claims abstract description 9
- 150000003141 primary amines Chemical class 0.000 claims abstract description 5
- 150000003335 secondary amines Chemical class 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 150000003512 tertiary amines Chemical class 0.000 claims abstract description 5
- -1 alkoxy ester Chemical class 0.000 claims description 22
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 16
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 16
- 125000005907 alkyl ester group Chemical group 0.000 claims description 6
- 229920001519 homopolymer Polymers 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 4
- 150000001336 alkenes Chemical class 0.000 claims description 3
- 150000003926 acrylamides Chemical class 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 150000001993 dienes Chemical class 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 238000002156 mixing Methods 0.000 description 21
- 239000012190 activator Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000004411 aluminium Substances 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 229910052582 BN Inorganic materials 0.000 description 7
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- MHCLJIVVJQQNKQ-UHFFFAOYSA-N ethyl carbamate;2-methylprop-2-enoic acid Chemical compound CCOC(N)=O.CC(=C)C(O)=O MHCLJIVVJQQNKQ-UHFFFAOYSA-N 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000004519 grease Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 3
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 3
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- LCXXNKZQVOXMEH-UHFFFAOYSA-N Tetrahydrofurfuryl methacrylate Chemical compound CC(=C)C(=O)OCC1CCCO1 LCXXNKZQVOXMEH-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 231100000647 material safety data sheet Toxicity 0.000 description 3
- UICBCXONCUFSOI-UHFFFAOYSA-N n'-phenylacetohydrazide Chemical compound CC(=O)NNC1=CC=CC=C1 UICBCXONCUFSOI-UHFFFAOYSA-N 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 229950000688 phenothiazine Drugs 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 2
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 2
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- FHTACFVZIAVFCY-UHFFFAOYSA-N buta-1,3-diene;2-methylprop-2-enoic acid;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N.CC(=C)C(O)=O FHTACFVZIAVFCY-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 150000002432 hydroperoxides Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 150000004897 thiazines Chemical class 0.000 description 2
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- JUVSRZCUMWZBFK-UHFFFAOYSA-N 2-[n-(2-hydroxyethyl)-4-methylanilino]ethanol Chemical compound CC1=CC=C(N(CCO)CCO)C=C1 JUVSRZCUMWZBFK-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- XRXANEMIFVRKLN-UHFFFAOYSA-N 2-hydroperoxy-2-methylbutane Chemical compound CCC(C)(C)OO XRXANEMIFVRKLN-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- JJRDRFZYKKFYMO-UHFFFAOYSA-N 2-methyl-2-(2-methylbutan-2-ylperoxy)butane Chemical compound CCC(C)(C)OOC(C)(C)CC JJRDRFZYKKFYMO-UHFFFAOYSA-N 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- ZEWLHMQYEZXSBH-UHFFFAOYSA-N 4-[2-(2-methylprop-2-enoyloxy)ethoxy]-4-oxobutanoic acid Chemical compound CC(=C)C(=O)OCCOC(=O)CCC(O)=O ZEWLHMQYEZXSBH-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920013646 Hycar Polymers 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- YXLXNENXOJSQEI-UHFFFAOYSA-L Oxine-copper Chemical compound [Cu+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 YXLXNENXOJSQEI-UHFFFAOYSA-L 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 206010070835 Skin sensitisation Diseases 0.000 description 1
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 150000003973 alkyl amines Chemical group 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 229940119545 isobornyl methacrylate Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 235000015250 liver sausages Nutrition 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 description 1
- HKJNHYJTVPWVGV-UHFFFAOYSA-N n,n-diethyl-4-methylaniline Chemical compound CCN(CC)C1=CC=C(C)C=C1 HKJNHYJTVPWVGV-UHFFFAOYSA-N 0.000 description 1
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000002976 peresters Chemical class 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000012205 single-component adhesive Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 231100000370 skin sensitisation Toxicity 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000003513 tertiary aromatic amines Chemical class 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000012745 toughening agent Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09J133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F23/00—Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2433/00—Presence of (meth)acrylic polymer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F2013/005—Thermal joints
- F28F2013/006—Heat conductive materials
Definitions
- the present invention relates generally to thermally conductive adhesives in particular those which are useful for bonding electronic components and assisting in the dissipation therefrom of heat generated during the operation thereof.
- thermal management an increasingly important consideration, particularly with respect to packaging issues. For instance, heat build-up in electronic products leads to reduced reliability (“mean-time-to-failure”), slower performance, and reduced power-handling capabilities.
- increased reliability (“mean-time-to-failure”)
- slower performance and reduced power-handling capabilities.
- continued interest in increasing the number of electronic components on, and reducing the size of, semiconductor chips notwithstanding the desire generally to reduce power consumption thereof also contributes to the importance of thermal management.
- chip-on-board technology where semiconductor chips are mounted directly to printed circuit boards (“peb”), creates further demands on thermal management because of the more efficient use of surface area thereon (that is, greater real estate density on the pcb).
- Thermal management or heat dissipation techniques include generally convection or conduction mechanisms, where heat may be removed from electronic devices (such as operating silicon integrated circuits) by air (e.g., free flowing or forced) convection around the device, fluid (e.g., water or fluorocarbons) convection through radiators, or conduction through parts thereof which are in physical contact.
- air e.g., free flowing or forced
- fluid e.g., water or fluorocarbons
- Heat convection involves heat transfer across an interface which is proportional to (1) the amount of area exposed, (2) the temperature differential, and (3) the heat transfer coefficient, at the interface.
- Heat conduction involves heat flow per unit area over a length which is proportional to the temperature gradient across that length.
- heat conduction or thermal conductivity
- convection requires a larger surface area than conduction to allow the same amount of heat to dissipate.
- surface area is reduced, thereby rendering convection less desirable.
- a heat sink constructed from a light weight thermally conductive material, such as aluminum alloy or graphite composite, is often used with electronic devices to facilitate heat dissipation therefrom.
- the heat sink should have sufficient mass to obtain a heat capacity which does not exceed a heat flow to the environment, which itself should be matched with heat flow from devices with which the heat sink is to be used.
- Heat sinks have heretofore had varying measures of success.
- One reason for such variance is interfacial thermal resistance between the heat sink and the heat-generating electronic device.
- such resistance may be minimized by positioning at the interface junction between the electronic device and the heat sink a material having (1) high thermal conductivity, (2) intimate surface contact with the heat sink and electronic device, and (3) good durability, such as is measured by thermal cycling which detects failure or performance loss at the interface junction between the heat sink and the heat-generating device.
- Mechanical fasteners and thermally conductive greases, mica chips and ceramic insulators, pads and tapes, and adhesives have been used as such heat sinks or interface materials.
- Mechanical fasteners are durable, but often provide high interfacial thermal resistance due to microscopic interfacial voids, which are present even in highly polished surfaces.
- thermal greases Some users also consider thermal greases to be time-consuming and messy to apply, and difficult to cleanup.
- solder processes should be avoided to minimize contamination. It is also advisable to avoid placing in cleaning baths thermal grease-containing components so as to minimize wash out of the thermal grease from the interface junction, the result of which would cause both a dry junction (and hence increased thermal resistance) and bath contamination.
- Mica chips are inexpensive and have excellent dielectric strength; however, they are also brittle and easily damaged.
- mica itself has high thermal impedance, and as a result thermal greases are ordinarily also applied thereto.
- Ceramic insulators are costly and is brittle, and thus easily damaged like mica chips.
- Thermally conductive pads are laminated composite materials, which are often coated with pressure-sensitive adhesives to facilitate bonding and good thermal contact with the substrate surfaces between which they are positioned. See e.g., U.S. Pat. No. 4,574,879 (DeGree). Examples of such conductive pads include those commercially available from the W.R. Grace unit. Chomerics, Inc., Woburn, Mass. under the “CHO-THERM” trademark.
- the core of the pad generally is highly thermal conductive, while the coating itself is a compliant material having low thermal conductivity.
- thermal performance of conductive pads is often a function of mounting pressure and operating temperature, with the degree of surface penetration of the coating to the mating surfaces determining interfacial thermal resistance.
- Thermally conductive tapes perform in a like manner. See e.g., U.S. Pat. No. 5,510,174 (Litman).
- Thermally conductive adhesives are curable (as contrasted to greases which are not intended to be curable) but like greases often contain thermally conductive fillers, commercially available examples of which include those supplied by Thermoset, Indianapolis, Ind. or Creative Materials Incorporated, Tyngsboro, Mass. These adhesives perform in a similar maimer to greases, except that the adhesives, if formulated and applied properly and to appropriate surfaces, should not migrate from the interface junction.
- thermally conductive adhesives are known for use in a number of applications, such as sealants, fuser roll coatings in electrostatic copying machines, bonding media, and the like.
- Resins employed in such compositions should themselves be thermally stable, examples of which include silicone, epoxy, phenolic, vinyl and acrylic materials. Silicones are particularly desirable resins because of, for instance, their high elasticity for stress relief, low moisture uptake, ionic purity, wide-range temperature performance, and excellent electrical properties, such as electrical insulating properties.
- Improved thermal conductivity may often be attained by the addition of a conductive filler to the resin matrix.
- a conductive filler See Handbook of Fillers for Plastics, 6.1, 255, H. S. Katz and J. V. Milewski, eds., Van Nostrand Reinhold Co.,New York (1987); see also U.S. Pat. No. 4,147,669 (Shaheen) (gallium, aluminum, and gold, copper or silver in a resin); U.S. Pat. No. 4,544,696 (Streusand), U.S. Pat. No. 4,584,336 (Pate) and U.S. Pat. No.
- 4,588,768 (Streusand) (silicon nitride-containing organopolysiloxane with aluminum oxide or zinc oxide); U.S. Pat. No. 5,011,870 (Peterson) (aluminum nitride, and silicon metal and boron nitride in a polyorganosilicone resin matrix); and U.S. Pat. No. 5,352,731 (Nakano) (aluminum oxide-containing silicone rubber).]
- U.S. Pat. No. 5,430,085 (Acevedo) describes a thermally and electrically conductive caulk including a resin, such as silicone, mixed with a filler which includes 80% by weight conductive particles with a particle size in the range of 300 to 325 microns, 10% by weight conductive particles with a particle size in the range of 75 to 80 microns, and 10% by weight conductive fibres having a length in the range of 0.020 to 0.025 inches.
- a resin such as silicone
- a filler which includes 80% by weight conductive particles with a particle size in the range of 300 to 325 microns, 10% by weight conductive particles with a particle size in the range of 75 to 80 microns, and 10% by weight conductive fibres having a length in the range of 0.020 to 0.025 inches.
- 4,604,424 (Cole) describes thermally conductive silicone elastomers containing a polydiorganosiloxane, a curing agent, a platinum-containing hydrosilation catalyst, and zinc oxide and magnesium oxide fillers, the particle size of which fillers is such that substantially all of the filler particles pass through a 325 mesh screen, and the average particle size of which fillers is below 10 microns.
- the filler is composed of 50% to 90% zinc oxide, and 10% to 50% magnesium oxide, each by weight of the filler.
- Other fillers (up to 40% by weight) include aluminum oxide, ferric oxide and carbon black.
- the cured elastomers are said to resist erosion by abrasive materials to a greater extent than compositions containing aluminum oxide as the sole filler.
- another method of improving thermal conductivity provides a connection between spaced surfaces by mixing a thermally conductive filler containing a liquid metal (e.g., gallium, gallium/indium, gallium/indium/tin and/or mercury) into an unhardened matrix material (e.g., thermoplasts, thermosets, W-curable materials, epoxies and solvent-bearing materials) and thereafter hardening the matrix material.
- a liquid metal e.g., gallium, gallium/indium, gallium/indium/tin and/or mercury
- an unhardened matrix material e.g., thermoplasts, thermosets, W-curable materials, epoxies and solvent-bearing materials
- Chemical Abstracts CA 124:124432r (1996) refers to explosive compaction of aluminum nitride powders for use with silane elastomer precursors, which when polymerized are reported to have improved thermal conductivity of the so-formed polymer-ceramic composites.
- Thermally conductive adhesives eliminate the need for mechanical fasteners and clips while providing an efficient method of thermal transfer between heat generating electronics devices and their heat sinks. Examples of such applications are the bonding of transformers, transistors and other heat generating electronic components to printed circuit board assemblies or heat sinks.
- thermally conductive adhesives comprise one-component activator based systems in which the activator is solvent based. Such systems can be problematic in terms of time, as the activator must be applied to the bonding surface before the adhesive is dispensed. In addition, the use of activators can be undesirable in circumstances where the composition of the activator can lead to health and safety issues, for example skin sensitization. There is therefore a need to provide a thermally conductive adhesive system that would eliminate many of these problems but would maintain the favorable characteristics of the exiting products.
- curable compositions which are not thermally conductive in the cured state exist for many different end-use applications.
- Those compositions are formulated as one-part or two-part compositions depending on chemistry etc.
- a product that has existed for some time is Loctite product no. 3257A/B.
- This material is described in Material Safety Data Sheet (MSDS) No. 0158392 for part A and 0158925 for part B.
- MSDS Material Safety Data Sheet
- part A of the composition comprises the following components:
- This composition is described as being useful for applications where good impact and heat resistance is required such as bonding ferrites into motor cans.
- compositions that can be employed for dissipating heat generated by electronic components and the like.
- Such compositions should be relatively easy to handle, cure under desired conditions and be storage stable.
- Thermally conductive adhesives that are at present common in the market-place include single component, activator-based systems.
- activator is applied to one of the bonding faces and the single component thermally conductive adhesive is subsequently dispensed on top of the activator system.
- the activator system effects cross-linking of the single component adhesive and complete cure can be thus effected within hours or even minutes, either at ambient temperature or a temperature slightly elevated above ambient, depending on the system chosen.
- activator can lead to several processing difficulties. Firstly, many activators are solvent-based and/or contain materials which give rise to odour. This can be unpleasant for those applying the activator and can lead to respiratory issues in some instances. Secondly, the activator is applied to the bonding face manually. In many instances, this is time consuming and thus more costly than then those processes that are more fully automated. Therefore, the need to eliminate the use of activator, from both an environmental and an economic point of view, makes the composition described in this invention very desirable.
- the present invention provides a two part thermally conductive adhesive composition useful for bonding electrical components comprising:
- composition of the present invention when used for bonding purposes in the types of situations described above in which it is desirable to conduct thermal energy away from temperature sensitive parts, affords full fixturing in 5 minutes, does not use activator and exhibits thermal conductivity in the range of 0.7-2.0 W/mK.
- composition of the present invention can be used for heat sink attachment to electronic packages for example BGA and QFP.
- thermally conductive two part adhesive compositions of the present invention which may be used for the bonding of transformers, transistors and other heat generating electronic components to printed circuit board assemblies or heat sinks, include a first part comprising a resin and a second part comprising a hardener.
- the first part comprises components (i) to (v) below:
- a polymerisable monomer component which is (meth)acrylate based. Typically an amount in the range of 20-50% by weight of the total weight of the first part. More typically in the range 25-40%, even more typically in the range 30-35%.
- the polymerisable monomer is at least one selected from: (meth)acrylic acid, (meth)acrylate, di(meth)acrylate, and (meth)acrylate with hydroxyl, glycidyl, or amino groups.
- the polymerisable monomer may be at least one member selected from: alkyl acrylates, cycloalkyl acrylates, alkyl methacrylates, cycloalkyl methacrylates, alkoxy acrylates, alkoxy methacrylates, alkylene diacrylates and alkylene dimethacrylates. Desirably, the polymerisable monomer comprises at least one (meth)acrylate.
- the desirable monofunctional monomers are methyl methacrylate, lauryl methacrylate, 2-ethyl hexyl methacrylate, ethyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate and t-butyl methacrylate.
- the polymerisable monomer is at least one selected from: hydroxypropyl methacrylate, tetrahydrofurfuryl methacrylate or 2-ethylhexyl methacrylate. Suitable combinations of the forgoing can be used.
- a peroxide-based curing agent component typically in the range of 0.1-5% by weight of the total weight of the first part. More typically in the range 0.5-3% by weight of the total weight of the first part, even more typically in the range 1-1.5% by weight of the total weight of the first part.
- the peroxide based curing agent is at least one selected from: peroxides, hydroperoxides, peresters, persalts, peracids, methylethylketone hydroperoxide, and hydroperoxides formed by oxygenation of various hydrocarbons such as methylbutene, cetane and cyclohexane and various ketones and ethers.
- the peroxide based curing agent is at least one selected from: cumlene hyroperoxide, t-butylhydroperoxide, tert-amyl peroxide and 2,5-2,5-dihydroperoxy-2,5-dimethyl hexane. Even more desirably, the peroxide based curing agent is at least one selected from: cumene hydroperoxide, t-amyl hydroperoxide and t-butylhydroperoxide. Suitable combinations of the forgoing can be used.
- co-curative component typically in the range of 0.01-5% by weight of the total weight of the first part. More typically in the range 0.02-2% by weight of the total weight of the first part, even more typically in the range 0.05-1% by weight of the total weight of the first part.
- co-curative component is at least one selected from: primary, secondary or tertiary amines or compounds containing the group —CONHNH—.
- the co-curative component is at least one selected from: such as N,N-dimethyl-paratoluidine, N,N-dihydroxyethyl-p-toluidine, dimethyl aniline, diethyl aniline, N,N-diethyl-p-toluidine and 1-acetyl-2-phenylhydrazine. While tertiary aromatic amines, such as those mentioned, are particularly useful, tertiary alkyl amines are also useful. Even more desirably the co-curative component is at least one selected from: 1-acetyl-2-phenylhydrazine and tribuylamine. Suitable combinations of the forgoing can be used.
- a stabilising component typically in the range of 0.1 to 5% by weight of the total weight of the first part. More typically in the range 0.5-2% by weight of the total weight of the first part, even more typically in the range 0.8-1.2% by weight of the total weight of the first part.
- the stabilising component is at least one selected from: thiazines, quinones, organic acids and compounds containing an oxazole functionality. More desirably, the stabilising component is at least one selected from: phenothiazine, hydroquinone, oxalic acid and derivatives thereof such as hydrated salts and benzoxazole. Suitable combinations of the forgoing can be used.
- a filler component typically in the range of 20-90% by weight of the total weight of the first part. More typically in the range 25-60% by weight of the total weight of the first part, even more typically in the range 35-45% by weight of the total weight of the first part.
- the filler component may be inorganic or metallic. Desirably the filler component is constricted at least in part from one selected from: iron, aluminium, quartz, zinc, silver, gold, nickel, magnesium, boron, barium, platinum, palladium, copper, zirconium, titanium, niobium, tungsten, and silica, as well as carbon, graphite, talc, silicon carbide and the like, and combinations thereof.
- the conductive filler component is at least one selected from: quartz, silica, talc, silicon carbide. Even more desirably, the thermally filler component is at least one selected from: silica, quartz or talc. Suitable combinations of the forgoing can be used.
- the first part may contain the additional components at (i) to (iii) below:
- a toughening component in the range of 1-20% by weight of the total weight of the first part. More typically in the range 3-15% bv weight of the total weight of the first part, even more typically in the range 5-10% by weight of the total weight of the first part.
- the toughening component is at least one selected from the group consisting of: (i) a homopolymer of alkyl esters of acrylic or methacrylic acid; (ii) a homopolymer of an alkoxy ester of acrylic or methacrylic acid; (iii) a copolymer of another polymerizable monomer, such as lower alkenes with an alkyl ester of acrylic or methacrylic acid, or with an alkoxy ester of acrylic or methacrylic acid; (vi) a mixture of any of all of the above (i)-(v).
- the toughening component is at least one selected from the group consisting of: acrylonitrile butadiene methacrylic acid co-polymers such as materials sold under the trade names Hycar or NIPOL. Suitable combinations of the forgoing can be used.
- a thickening component in the range of 0.1-5% by weight of the total weight of the first part. More typically in the range 0.2-2% by weight of the total weight of the first part, even more typically in the range 0.5-1.5% by weight of the total weight of the first part.
- a dye in order to assist manufacturers, retailers and/or the end user to differentiate the first part from the second part in the range of 0.001-2% by weight of the total weight of the first part. More typically in the range 0.002-0.5% by weight of the total weight of the first part, even more typically in the range 0.005-0.01% by weight of the total weight of the first part.
- the second part comprises components (i) to (iv) below:
- a polymerisable monomer component typically in the range of 10-90% by weight of the total weight of the second part. More typically in the range 25-45% by weight of the total weight of the second part, even more typically in the range 30-35% by weight of the total weight of the second part.
- the polymerisable monomer may be acrylate or methacrylate based. Desirably the polymerisable monomer has at least one (meth)acrylate group. Desirably the polymerisable monomer is at least one selected from: (meth-)acrylic acid, (meth)acrylate, di(meth)acrylate, and (meth)acrylate with hydroxyl, glycidyl, or amino groups.
- the polymerisable monomer is at least one selected from: alkyl acrylates, cycloalkyl acrylates, alkyl methacrylates, cycloalkyl methacrylates, alkoxy acrylates, alkoxy methacrylates, alkylene diacrylates and alkylene dimethacrylates.
- alkyl acrylates cycloalkyl acrylates, alkyl methacrylates, cycloalkyl methacrylates, alkoxy acrylates, alkoxy methacrylates, alkylene diacrylates and alkylene dimethacrylates.
- the preferred monofunctional monomers are methyl methacrylate, lauryl methacrylate, 2-ethyl hexyl methacrylate, ethyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate and t-butyl methacrylate.
- the polymerisable monomer is at least one selected from: hydroxypropyl methacrylate, tetrahydrofurfuryl methacrylate or 2-ethylhexyl. Suitable combinations of the forgoing can be used.
- the polymerisable component is different from the polymerisable component of the first part outlined above. More typically, the polymerisable component is the same as the polymerisable component of the first part outlined above.
- a catalytic component for catalysing the cure reaction typically in the range of 0.01-5% by weight of the total weight of the second part. More typically in the range 0.5-2% by weight of the total weight of the second part, even more typically in the range 0.8-1.5% by weight of the total weight of the second part.
- the catalytic component is based on salts of either Cu, Zr or Co or a combination thereof and in some instances, a promoter which may be derived from esters of organic acids which may be taken from the group succinic, maleic, stearic, adipic.
- the catalytic component is at least one salt selected from: but not exclusively, d 4 or d 9 transition metals and their salts.
- the catalytic component is at least one selected from: copper, zinc, cobalt, zirconium, titanium, vanadium, iron, ruthenium, rhodium. Even more desirably, the catalytic component is at least one selected from: copper, zirconium or cobalt or combinations thereof: Suitable combinations of the forgoing can be used. It will be obvious to a person skilled in the art that the catalytic component of the second part should be selected to complement the components of the first part outlined above so that the catalytic component can catalyse the cure reaction of the composition.
- a stabilising component typically in the range of 0.1 to 5% by weight of the total weight of the second part. More typically in the range 0.5-2.0% by weight of the total weight of the second part, even more typically in the range 0.8-1.2% by weight of the total weight of the second part.
- the stabilising component is at least one selected from the group consisting of: thiazines, quinones, organic acids and compounds containing an oxazole functionality. More desirably, the stabilising component is at least one selected from: phenothiazine, hydroquinone, oxalic acid and derivatives such as hydrated salts and benzoxazole. Suitable combinations of the forgoing can be used.
- the stabilising component can be either the same or different to the stabilising component of the first part.
- a filler component typically in the range of 20-90% by weight of the total weight of the first part. More typically in the range 25-50% by weight of the total weight of the first part, even more typically in the range 35-45% by weight of the total weight of the first part.
- the thermally conductive filler component may be inorganic or metallic.
- the filler component is at least one selected from: iron, aluminium, zinc, silver, gold, nickel, magnesium, boron, barium, platinum, palladium, copper, zirconium, titanium, niobium, tungsten, silica and conductive derivatives thereof, as well as carbon, graphite, silicon carbide and the like, and combinations thereof More desirably, the thermally conductive filler component is at least one selected from: alumina, boron nitride, silicon nitride, zinc oxide. Even more desirably, the thermally conductive filler component is at least one selected from: boron nitride, alumina, silicon nitride. Suitable combinations of the forgoing can be used.
- the second part may contain the additional components (i) to (ii) below: (i) a diluent in the range of 20-50% by weight of the total weight of the second part. More typically in the range 25-45% by weight of the total weight of the second part, even more typically in the range 30-40% by weight of the total weight of the second part.
- the diluent is at least one selected from: methyl methacrylate, cyclohexyl methacrylate, tetrahydrofurfuryl methacrylate, isobornyl methacrylate, hydroxyethyl methacrylate and hydroxypropyl methacrylate, urethane methacrylate.
- the diluent is at least one selected from: methyl methacrylate and urethane methacrylate. Suitable combinations of the forgoing can be used. It would be obvious to a person skilled in the art to select the diluent to complement the other components of the composition outlined above.
- a dye in order to assist manufacturers, retailers and/or the end user to differentiate the second part from the first part in the range of 0.001-2% by weight of the total weight of the second part. More typically in the range 0.001-0.01% by weight of the total weight of the second part, even more typically in the range 0.005-0.010% by weight of the total weight of the second part.
- the dye should impart a different colour to the second part compared with the first part.
- the end user blends the first part and the second part of the composition.
- the ratio for the first part: second part is in the range of 0.5:1, to 6:1 such as 0.75:1 to 5:1, such as 2.5:1 to 2:1, about 1:1.
- the adhesive composition formed by blending the suitable ratios of the first part and the second part typically cures at a temperature in the range of about 0 to 50° C., more typically in the range of 0 to 40° C., even more typically in the range of 0 to 30° C.
- the mixture of the first part and the second part of the adhesive composition to cure in about 30 minutes from the time when the two parts were mixed, more desirably in about 15 minutes from the time when the two parts were mixed, even more desirably in about 10 minutes or less from the time when the two parts were mixed.
- Mixing can be achieved by blending,
- the fully cured material affords thermal conductivities in the range of about 0.2 to 5.0 W/mK, more desirably in the range of about 0.5 to 3.0 W/mK, even more desirably in the range of about 0.8 to 2.0 W/mK.
- the skilled person will be in a position to select the constituent components to achieve the desired end result.
- a two component mixture according to the present invention comprising a first part and a second part were prepared as follows:
- urethane methacrylate polyester resin was pre-heated to a temperature of 40° C. and a blend of 21.24 g of methacrylate resin and a blend of 7.62 g fumed silica in methacrylic monomer were added and blended. 1.77 g of acrylic acid and 8.85 g of methacryloxyethyl succinate were added. To this mixture was also added 1.29 g of a stabiliser solution comprising phenothiazine, hydroquinone, oxalic acid dihydrate and benzoxazole in triethylene glycol dimethacrylate. To this mix was added 0.012 g of 4-methoxyphenol and the whole mixture was blended until homogenous.
- a selection of fillers are added to the components first part and second part that have been prepared by the method of Example 1.
- the first part and second part are subsequently combined so as to form a composite.
- the composite material is left at room temperature (21 ° C.) for 24 hours during which time full cure is effected. Once cured, the thermal conductivities of the composites are measured.
- a mixture is formed by blending 65% by weight of the first part with 35% quartz silica (Silbond FW 300EST, supplied by Quarzwerke).
- a second mixture is formed by blending 50% by weight of the second part with 50% by weight of alumuniuin oxide (Calcinated alumina A10, 325 mesh, supplied by Alcoa Alumina and Chemicals).
- alumuniuin oxide Calcinated alumina A10, 325 mesh, supplied by Alcoa Alumina and Chemicals.
- the two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement.
- the cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature (21° C.).
- Fixturing in this instance is defined as the ease with which two grit-blasted aluminium lapshears (of thickness 1.0 mm) may be pulled apart.
- the composition of this invention will fixture so that the lap-shears may not be pulled apart after 5 minutes manually.
- full cure has taken place as determined by lap shear testing on aluminium laps.
- the resulting cured disc of material was tested for bulk thermal conductivity in accordance with ASTM C-177-63. This sample afforded a thermal conductivity of 0.60 W/mK.
- a mixture is formed by blending 65% by weight of the first part with 35% quartz silica (Silbond FhW 300EST, supplied by Quarzwerke).
- a second mixture is formed by blending 50% by weight of the second part with 50% by weight of zinc oxide (Kadox 930, supplied by Zinc Corporation of America).
- the two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement.
- the cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature (21° C.).
- a mixture is formed by blending 42% by weight of the first part with 58% quartz silica (Silbond FW 300EST, supplied by Quarzwerke).
- a second mixture is formed by blending 65% by weight of the second part with 35% by weight of boron nitride (BN SGPS grade, supplied by Denka).
- BN SGPS grade supplied by Denka.
- the two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement.
- the cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature (21° C.).
- a mixture is formed by blending 42% by weight of the first part with 58% quartz silica (Silbond FW 300EST, supplied by Quarzwerke).
- a second mixture is formed by blending 59% by weight of the second part with 41% by weight of boron nitride (BN SGPS grade, supplied by Denka).
- BN SGPS grade supplied by Denka.
- the two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement.
- the cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature.
- a mixture is formed by blending 42% by weight of the first part with 58% quartz silica (Silbond FW 300EST, supplied by Quarzwerke).
- quartz silica Silicon FW 300EST, supplied by Quarzwerke.
- a second mixture is formed by blending 59% by weight of the second part with 20.5% by weight of boron nitride (BN SGPS grade, supplied by Denka) and 20.5% of silicon nitride 9SN-F1, supplied by Denka).
- BN SGPS grade supplied by Denka
- silicon nitride 9SN-F1 supplied by Denka
- the cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature (21° C.). After 24 hours at ambient temperature, full cure has taken place as determined by lap shear testing on aluminium laps (as described above). After 24 hours, the resulting cured disc of material was tested for bulk thermal conductivity in accordance with ASTM C-177-63 (as described above). The thermal conductivity of this composite was 1.85 W/mK.
- a composition according to the present invention was prepared in the following way: The first part of the composition was prepared using the components of Table 1. TABLE 1 Components of part A Overall % weight of material in the Type of material Material first part Polymerisable monomer Hydroxypropyl 33.39 methacrylate Stabilising component hydroquinone 0.921 Tertiary alkyl Cumene hydroperoxide e.g 1.18 hydroperoxide Luperox Co-curative Tributyl amine 0.084 Co-curative 1-Acetyl-2- 0.294 phenylhydrazine Toughener Acrylonitrile butadiene 5.35 methacrylic acid co- polymer Co-curative Polyamide 0.777 Dye Dye 0.004 Thermally conductive filler Quartz (silicon dioxide, 58 epoxy-silane treated)
- the second part of the composition was prepared using the components of Table 2: TABLE 2 Components of part B Overall % weight of material in the Type of material Material
- Second part Stabilising component hydroquinone 1.298 Viscosity control reagent Premix of silica in 7.620 methacrylic monomer Promoter Methacryloxyethyl 8.850 succinate Dye Dye 0.006
- Polymerisable monomer Urethane methacrylate 15.930 polyester resin Polymerisable monomer Methacrylate resin in 21.240 monomer Polymerisable monomer Acrylic acid 1.770 Polymerisable monomer 4-methoxyphenol 0.012 Thermally conductive filler Silicon dioxide 1.064 Thermally conductive filler Boron nitride 41.000
- Both the first and the second part have a shelf life of 1 year at 5° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Polymerisation Methods In General (AREA)
Abstract
The present invention relates to a two part thermally conductive adhesive composition comprising: a first part comprising: a polymerisable monomer component which is (meth)acrylate based; a peroxide-based curing agent component; one or more co-curative components selected from: primary, secondary or tertiary amines or compounds containing the group —CONHNH—; a stabilising component; a thermally conductive filler component; and a second part comprising: a polymerisable monomer component which is acrylate or methacrylate based; a catalytic component for catalysing the cure reaction; a stabilising component; and a filler component wherein at least one part of the composition has a filler component which comprises a thermally conductive filler. The thermally conductive filler can be in the first part or the second part or both parts but is desirably in the second part. The compositions are useful for bonding heat generating components such as electrical components to a substrate such as a heat sink.
Description
- 1. Field of the Invention
- The present invention relates generally to thermally conductive adhesives in particular those which are useful for bonding electronic components and assisting in the dissipation therefrom of heat generated during the operation thereof.
- 2. Brief Description of Related Technology
- Advances in the electronic industry have made thermal management an increasingly important consideration, particularly with respect to packaging issues. For instance, heat build-up in electronic products leads to reduced reliability (“mean-time-to-failure”), slower performance, and reduced power-handling capabilities. In addition, continued interest in increasing the number of electronic components on, and reducing the size of, semiconductor chips, notwithstanding the desire generally to reduce power consumption thereof also contributes to the importance of thermal management. Also, chip-on-board technology, where semiconductor chips are mounted directly to printed circuit boards (“peb”), creates further demands on thermal management because of the more efficient use of surface area thereon (that is, greater real estate density on the pcb).
- Thermal management or heat dissipation techniques include generally convection or conduction mechanisms, where heat may be removed from electronic devices (such as operating silicon integrated circuits) by air (e.g., free flowing or forced) convection around the device, fluid (e.g., water or fluorocarbons) convection through radiators, or conduction through parts thereof which are in physical contact. A combination of such techniques is often used to maintain temperatures within design criteria.
- Heat convection involves heat transfer across an interface which is proportional to (1) the amount of area exposed, (2) the temperature differential, and (3) the heat transfer coefficient, at the interface. Heat conduction, on the other hand, involves heat flow per unit area over a length which is proportional to the temperature gradient across that length. Thus, heat conduction (or thermal conductivity) is a steady-state property measuring the ability of a certain material to transfer heat there through. All else being equal, convection requires a larger surface area than conduction to allow the same amount of heat to dissipate. Of course, with continued size reduction of electronic packaging, surface area is reduced, thereby rendering convection less desirable.
- A heat sink, constructed from a light weight thermally conductive material, such as aluminum alloy or graphite composite, is often used with electronic devices to facilitate heat dissipation therefrom. The heat sink should have sufficient mass to obtain a heat capacity which does not exceed a heat flow to the environment, which itself should be matched with heat flow from devices with which the heat sink is to be used.
- Heat sinks have heretofore had varying measures of success. One reason for such variance is interfacial thermal resistance between the heat sink and the heat-generating electronic device. Generally, such resistance may be minimized by positioning at the interface junction between the electronic device and the heat sink a material having (1) high thermal conductivity, (2) intimate surface contact with the heat sink and electronic device, and (3) good durability, such as is measured by thermal cycling which detects failure or performance loss at the interface junction between the heat sink and the heat-generating device. Mechanical fasteners and thermally conductive greases, mica chips and ceramic insulators, pads and tapes, and adhesives have been used as such heat sinks or interface materials.
- Mechanical fasteners are durable, but often provide high interfacial thermal resistance due to microscopic interfacial voids, which are present even in highly polished surfaces.
- Surface contact such fasteners may be improved using a thermal grease which penetrates such interfacial or surface voids, thereby effectively lowering interfacial thermal resistance. However, such greases generally tend to lack solvent resistance and often migrate over time out of the interface junction.
- Some users also consider thermal greases to be time-consuming and messy to apply, and difficult to cleanup. In addition, upon application of a thermal grease, solder processes should be avoided to minimize contamination. It is also advisable to avoid placing in cleaning baths thermal grease-containing components so as to minimize wash out of the thermal grease from the interface junction, the result of which would cause both a dry junction (and hence increased thermal resistance) and bath contamination.
- Mica chips are inexpensive and have excellent dielectric strength; however, they are also brittle and easily damaged. In addition, mica itself has high thermal impedance, and as a result thermal greases are ordinarily also applied thereto. Ceramic insulators are costly and is brittle, and thus easily damaged like mica chips.
- Thermally conductive pads are laminated composite materials, which are often coated with pressure-sensitive adhesives to facilitate bonding and good thermal contact with the substrate surfaces between which they are positioned. See e.g., U.S. Pat. No. 4,574,879 (DeGree). Examples of such conductive pads include those commercially available from the W.R. Grace unit. Chomerics, Inc., Woburn, Mass. under the “CHO-THERM” trademark. The core of the pad generally is highly thermal conductive, while the coating itself is a compliant material having low thermal conductivity.
- Thus, thermal performance of conductive pads is often a function of mounting pressure and operating temperature, with the degree of surface penetration of the coating to the mating surfaces determining interfacial thermal resistance. Thermally conductive tapes perform in a like manner. See e.g., U.S. Pat. No. 5,510,174 (Litman).
- Thermally conductive adhesives are curable (as contrasted to greases which are not intended to be curable) but like greases often contain thermally conductive fillers, commercially available examples of which include those supplied by Thermoset, Indianapolis, Ind. or Creative Materials Incorporated, Tyngsboro, Mass. These adhesives perform in a similar maimer to greases, except that the adhesives, if formulated and applied properly and to appropriate surfaces, should not migrate from the interface junction.
- Various thermally conductive adhesives are known for use in a number of applications, such as sealants, fuser roll coatings in electrostatic copying machines, bonding media, and the like. Resins employed in such compositions should themselves be thermally stable, examples of which include silicone, epoxy, phenolic, vinyl and acrylic materials. Silicones are particularly desirable resins because of, for instance, their high elasticity for stress relief, low moisture uptake, ionic purity, wide-range temperature performance, and excellent electrical properties, such as electrical insulating properties.
- It is often desirable, however, to enhance the thermal conductivity of such adhesives, which of course depends on the conductivity of the resin itself.
- Improved thermal conductivity may often be attained by the addition of a conductive filler to the resin matrix. [See Handbook of Fillers for Plastics, 6.1, 255, H. S. Katz and J. V. Milewski, eds., Van Nostrand Reinhold Co.,New York (1987); see also U.S. Pat. No. 4,147,669 (Shaheen) (gallium, aluminum, and gold, copper or silver in a resin); U.S. Pat. No. 4,544,696 (Streusand), U.S. Pat. No. 4,584,336 (Pate) and U.S. Pat. No. 4,588,768 (Streusand) (silicon nitride-containing organopolysiloxane with aluminum oxide or zinc oxide); U.S. Pat. No. 5,011,870 (Peterson) (aluminum nitride, and silicon metal and boron nitride in a polyorganosilicone resin matrix); and U.S. Pat. No. 5,352,731 (Nakano) (aluminum oxide-containing silicone rubber).]
- U.S. Pat. No. 5,430,085 (Acevedo) describes a thermally and electrically conductive caulk including a resin, such as silicone, mixed with a filler which includes 80% by weight conductive particles with a particle size in the range of 300 to 325 microns, 10% by weight conductive particles with a particle size in the range of 75 to 80 microns, and 10% by weight conductive fibres having a length in the range of 0.020 to 0.025 inches. U.S. Pat. No. 4,604,424 (Cole) describes thermally conductive silicone elastomers containing a polydiorganosiloxane, a curing agent, a platinum-containing hydrosilation catalyst, and zinc oxide and magnesium oxide fillers, the particle size of which fillers is such that substantially all of the filler particles pass through a 325 mesh screen, and the average particle size of which fillers is below 10 microns. The filler is composed of 50% to 90% zinc oxide, and 10% to 50% magnesium oxide, each by weight of the filler. Other fillers (up to 40% by weight) include aluminum oxide, ferric oxide and carbon black. The cured elastomers are said to resist erosion by abrasive materials to a greater extent than compositions containing aluminum oxide as the sole filler.
- In U.S. Pat. No. 5,445,308 Nelson), another method of improving thermal conductivity provides a connection between spaced surfaces by mixing a thermally conductive filler containing a liquid metal (e.g., gallium, gallium/indium, gallium/indium/tin and/or mercury) into an unhardened matrix material (e.g., thermoplasts, thermosets, W-curable materials, epoxies and solvent-bearing materials) and thereafter hardening the matrix material.
- An English-language abstract of Japanese Patent Document JP 07-292251 appears to relate to curable thermally conductive electrically insulating magnesium oxide-containing silicone compositions.
- Chemical Abstracts CA 124:124432r (1996) refers to explosive compaction of aluminum nitride powders for use with silane elastomer precursors, which when polymerized are reported to have improved thermal conductivity of the so-formed polymer-ceramic composites.
- Thermally conductive adhesives eliminate the need for mechanical fasteners and clips while providing an efficient method of thermal transfer between heat generating electronics devices and their heat sinks. Examples of such applications are the bonding of transformers, transistors and other heat generating electronic components to printed circuit board assemblies or heat sinks.
- Many commercially available thermally conductive adhesives comprise one-component activator based systems in which the activator is solvent based. Such systems can be problematic in terms of time, as the activator must be applied to the bonding surface before the adhesive is dispensed. In addition, the use of activators can be undesirable in circumstances where the composition of the activator can lead to health and safety issues, for example skin sensitization. There is therefore a need to provide a thermally conductive adhesive system that would eliminate many of these problems but would maintain the favorable characteristics of the exiting products.
- Of course many curable compositions which are not thermally conductive in the cured state exist for many different end-use applications. Those compositions are formulated as one-part or two-part compositions depending on chemistry etc.
- A product that has existed for some time is Loctite product no. 3257A/B. This material is described in Material Safety Data Sheet (MSDS) No. 0158392 for part A and 0158925 for part B. As can be seen from the MSDS the composition is a two-part composition in which part A of the composition comprises the following components:
- Part A
-
- 1. Resin
- 2. Curative
- 3. Promoter
- Part B
-
- 4. Resin
- 5. Catalyst
- This composition is described as being useful for applications where good impact and heat resistance is required such as bonding ferrites into motor cans.
- Notwithstanding the state of the art there is still a need to provide alternative thermally conductive compositions that can be employed for dissipating heat generated by electronic components and the like. Such compositions should be relatively easy to handle, cure under desired conditions and be storage stable.
- Thermally conductive adhesives that are at present common in the market-place include single component, activator-based systems. In the aforementioned systems, activator is applied to one of the bonding faces and the single component thermally conductive adhesive is subsequently dispensed on top of the activator system. The activator system effects cross-linking of the single component adhesive and complete cure can be thus effected within hours or even minutes, either at ambient temperature or a temperature slightly elevated above ambient, depending on the system chosen.
- Although very acceptable thermal conductivities are obtained from such systems, often in the range of 0.7-2.0 W/mK, the use of activator can lead to several processing difficulties. Firstly, many activators are solvent-based and/or contain materials which give rise to odour. This can be unpleasant for those applying the activator and can lead to respiratory issues in some instances. Secondly, the activator is applied to the bonding face manually. In many instances, this is time consuming and thus more costly than then those processes that are more fully automated. Therefore, the need to eliminate the use of activator, from both an environmental and an economic point of view, makes the composition described in this invention very desirable.
- The present invention provides a two part thermally conductive adhesive composition useful for bonding electrical components comprising:
-
- a first part comprising:
- (i) a polymerisable monomer component which is (meth)acrylate based;
- (ii) a peroxide-based curing agent component;
- (iii) one or more co-curative components selected from primary, secondary or tertiary amines or compounds containing the group —CONHNH—;
- (iv) a stabilising component; and;
- (v) a filler component; and;
- a second part comprising:
- (i) a polymerisable monomer component which is (meth)acrylate based;
- (ii) a catalytic component for catalysing the cure reaction;
- (iii) a stabilising component; and;
- (iv) a filler component,
where at least one part of the composition has a filler component which comprises a thermally conductive filler. The thermally conductive filler can be in the first part or the second part or both parts but is desirably in the second part.
- a first part comprising:
- The composition of the present invention, when used for bonding purposes in the types of situations described above in which it is desirable to conduct thermal energy away from temperature sensitive parts, affords full fixturing in 5 minutes, does not use activator and exhibits thermal conductivity in the range of 0.7-2.0 W/mK.
- The composition of the present invention can be used for heat sink attachment to electronic packages for example BGA and QFP.
- The thermally conductive two part adhesive compositions of the present invention, which may be used for the bonding of transformers, transistors and other heat generating electronic components to printed circuit board assemblies or heat sinks, include a first part comprising a resin and a second part comprising a hardener.
- The first part comprises components (i) to (v) below:
- (i) a polymerisable monomer component which is (meth)acrylate based. Typically an amount in the range of 20-50% by weight of the total weight of the first part. More typically in the range 25-40%, even more typically in the range 30-35%. The polymerisable monomer is at least one selected from: (meth)acrylic acid, (meth)acrylate, di(meth)acrylate, and (meth)acrylate with hydroxyl, glycidyl, or amino groups. The polymerisable monomer may be at least one member selected from: alkyl acrylates, cycloalkyl acrylates, alkyl methacrylates, cycloalkyl methacrylates, alkoxy acrylates, alkoxy methacrylates, alkylene diacrylates and alkylene dimethacrylates. Desirably, the polymerisable monomer comprises at least one (meth)acrylate.
- Among the desirable monofunctional monomers are methyl methacrylate, lauryl methacrylate, 2-ethyl hexyl methacrylate, ethyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate and t-butyl methacrylate. Even more desirably, the polymerisable monomer is at least one selected from: hydroxypropyl methacrylate, tetrahydrofurfuryl methacrylate or 2-ethylhexyl methacrylate. Suitable combinations of the forgoing can be used.
- (ii) a peroxide-based curing agent component typically in the range of 0.1-5% by weight of the total weight of the first part. More typically in the range 0.5-3% by weight of the total weight of the first part, even more typically in the range 1-1.5% by weight of the total weight of the first part. Desirably the peroxide based curing agent is at least one selected from: peroxides, hydroperoxides, peresters, persalts, peracids, methylethylketone hydroperoxide, and hydroperoxides formed by oxygenation of various hydrocarbons such as methylbutene, cetane and cyclohexane and various ketones and ethers. More desirably, the peroxide based curing agent is at least one selected from: cumlene hyroperoxide, t-butylhydroperoxide, tert-amyl peroxide and 2,5-2,5-dihydroperoxy-2,5-dimethyl hexane. Even more desirably, the peroxide based curing agent is at least one selected from: cumene hydroperoxide, t-amyl hydroperoxide and t-butylhydroperoxide. Suitable combinations of the forgoing can be used.
- (iii) at least one co-curative component typically in the range of 0.01-5% by weight of the total weight of the first part. More typically in the range 0.02-2% by weight of the total weight of the first part, even more typically in the range 0.05-1% by weight of the total weight of the first part. Desirably the co-curative component is at least one selected from: primary, secondary or tertiary amines or compounds containing the group —CONHNH—. More desirably the co-curative component is at least one selected from: such as N,N-dimethyl-paratoluidine, N,N-dihydroxyethyl-p-toluidine, dimethyl aniline, diethyl aniline, N,N-diethyl-p-toluidine and 1-acetyl-2-phenylhydrazine. While tertiary aromatic amines, such as those mentioned, are particularly useful, tertiary alkyl amines are also useful. Even more desirably the co-curative component is at least one selected from: 1-acetyl-2-phenylhydrazine and tribuylamine. Suitable combinations of the forgoing can be used.
- (iv) a stabilising component typically in the range of 0.1 to 5% by weight of the total weight of the first part. More typically in the range 0.5-2% by weight of the total weight of the first part, even more typically in the range 0.8-1.2% by weight of the total weight of the first part. Desirably the stabilising component is at least one selected from: thiazines, quinones, organic acids and compounds containing an oxazole functionality. More desirably, the stabilising component is at least one selected from: phenothiazine, hydroquinone, oxalic acid and derivatives thereof such as hydrated salts and benzoxazole. Suitable combinations of the forgoing can be used.
- (v) a filler component typically in the range of 20-90% by weight of the total weight of the first part. More typically in the range 25-60% by weight of the total weight of the first part, even more typically in the range 35-45% by weight of the total weight of the first part. The filler component may be inorganic or metallic. Desirably the filler component is constricted at least in part from one selected from: iron, aluminium, quartz, zinc, silver, gold, nickel, magnesium, boron, barium, platinum, palladium, copper, zirconium, titanium, niobium, tungsten, and silica, as well as carbon, graphite, talc, silicon carbide and the like, and combinations thereof. More desirably, the conductive filler component is at least one selected from: quartz, silica, talc, silicon carbide. Even more desirably, the thermally filler component is at least one selected from: silica, quartz or talc. Suitable combinations of the forgoing can be used.
- A person skilled in the art would be able to select the most appropriate thermally conductive filler component to use depending on the end use of the composition.
- Optionally, the first part may contain the additional components at (i) to (iii) below:
- (i) a toughening component in the range of 1-20% by weight of the total weight of the first part. More typically in the range 3-15% bv weight of the total weight of the first part, even more typically in the range 5-10% by weight of the total weight of the first part. Desirably the toughening component is at least one selected from the group consisting of: (i) a homopolymer of alkyl esters of acrylic or methacrylic acid; (ii) a homopolymer of an alkoxy ester of acrylic or methacrylic acid; (iii) a copolymer of another polymerizable monomer, such as lower alkenes with an alkyl ester of acrylic or methacrylic acid, or with an alkoxy ester of acrylic or methacrylic acid; (vi) a mixture of any of all of the above (i)-(v). Other unsaturated monomers which may be copolymerized with the alkyl and alkoxy esters of acrylic or methacrylic acid include dienes, reactive halogen-containing unsaturated compounds and other acrylic monomers such as acrylamides. More desirably, the toughening component is at least one selected from the group consisting of: acrylonitrile butadiene methacrylic acid co-polymers such as materials sold under the trade names Hycar or NIPOL. Suitable combinations of the forgoing can be used.
- (ii) a thickening component in the range of 0.1-5% by weight of the total weight of the first part. More typically in the range 0.2-2% by weight of the total weight of the first part, even more typically in the range 0.5-1.5% by weight of the total weight of the first part.
- (iii) a dye in order to assist manufacturers, retailers and/or the end user to differentiate the first part from the second part in the range of 0.001-2% by weight of the total weight of the first part. More typically in the range 0.002-0.5% by weight of the total weight of the first part, even more typically in the range 0.005-0.01% by weight of the total weight of the first part.
- The second part comprises components (i) to (iv) below:
- (i) a polymerisable monomer component typically in the range of 10-90% by weight of the total weight of the second part. More typically in the range 25-45% by weight of the total weight of the second part, even more typically in the range 30-35% by weight of the total weight of the second part. The polymerisable monomer may be acrylate or methacrylate based. Desirably the polymerisable monomer has at least one (meth)acrylate group. Desirably the polymerisable monomer is at least one selected from: (meth-)acrylic acid, (meth)acrylate, di(meth)acrylate, and (meth)acrylate with hydroxyl, glycidyl, or amino groups. More desirably, the polymerisable monomer is at least one selected from: alkyl acrylates, cycloalkyl acrylates, alkyl methacrylates, cycloalkyl methacrylates, alkoxy acrylates, alkoxy methacrylates, alkylene diacrylates and alkylene dimethacrylates. Among the preferred monofunctional monomers are methyl methacrylate, lauryl methacrylate, 2-ethyl hexyl methacrylate, ethyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate and t-butyl methacrylate. Even more desirably, the polymerisable monomer is at least one selected from: hydroxypropyl methacrylate, tetrahydrofurfuryl methacrylate or 2-ethylhexyl. Suitable combinations of the forgoing can be used. Typically the polymerisable component is different from the polymerisable component of the first part outlined above. More typically, the polymerisable component is the same as the polymerisable component of the first part outlined above.
- (ii) a catalytic component for catalysing the cure reaction typically in the range of 0.01-5% by weight of the total weight of the second part. More typically in the range 0.5-2% by weight of the total weight of the second part, even more typically in the range 0.8-1.5% by weight of the total weight of the second part. Desirably, the catalytic component is based on salts of either Cu, Zr or Co or a combination thereof and in some instances, a promoter which may be derived from esters of organic acids which may be taken from the group succinic, maleic, stearic, adipic. Desirably the catalytic component is at least one salt selected from: but not exclusively, d4 or d9 transition metals and their salts. More desirably, the catalytic component is at least one selected from: copper, zinc, cobalt, zirconium, titanium, vanadium, iron, ruthenium, rhodium. Even more desirably, the catalytic component is at least one selected from: copper, zirconium or cobalt or combinations thereof: Suitable combinations of the forgoing can be used. It will be obvious to a person skilled in the art that the catalytic component of the second part should be selected to complement the components of the first part outlined above so that the catalytic component can catalyse the cure reaction of the composition.
- (iii) a stabilising component typically in the range of 0.1 to 5% by weight of the total weight of the second part. More typically in the range 0.5-2.0% by weight of the total weight of the second part, even more typically in the range 0.8-1.2% by weight of the total weight of the second part. Desirably the stabilising component is at least one selected from the group consisting of: thiazines, quinones, organic acids and compounds containing an oxazole functionality. More desirably, the stabilising component is at least one selected from: phenothiazine, hydroquinone, oxalic acid and derivatives such as hydrated salts and benzoxazole. Suitable combinations of the forgoing can be used.
- The stabilising component can be either the same or different to the stabilising component of the first part.
- (iv) a filler component typically in the range of 20-90% by weight of the total weight of the first part. More typically in the range 25-50% by weight of the total weight of the first part, even more typically in the range 35-45% by weight of the total weight of the first part. The thermally conductive filler component may be inorganic or metallic. Desirably the filler component is at least one selected from: iron, aluminium, zinc, silver, gold, nickel, magnesium, boron, barium, platinum, palladium, copper, zirconium, titanium, niobium, tungsten, silica and conductive derivatives thereof, as well as carbon, graphite, silicon carbide and the like, and combinations thereof More desirably, the thermally conductive filler component is at least one selected from: alumina, boron nitride, silicon nitride, zinc oxide. Even more desirably, the thermally conductive filler component is at least one selected from: boron nitride, alumina, silicon nitride. Suitable combinations of the forgoing can be used.
- A person skilled in the art would be able to select the most appropriate thermally conductive filler component to use depending on the end use of the composition.
- Optionally, the second part may contain the additional components (i) to (ii) below: (i) a diluent in the range of 20-50% by weight of the total weight of the second part. More typically in the range 25-45% by weight of the total weight of the second part, even more typically in the range 30-40% by weight of the total weight of the second part. Desirably the diluent is at least one selected from: methyl methacrylate, cyclohexyl methacrylate, tetrahydrofurfuryl methacrylate, isobornyl methacrylate, hydroxyethyl methacrylate and hydroxypropyl methacrylate, urethane methacrylate. More desirably, the diluent is at least one selected from: methyl methacrylate and urethane methacrylate. Suitable combinations of the forgoing can be used. It would be obvious to a person skilled in the art to select the diluent to complement the other components of the composition outlined above.
- And/or;
- (ii) a dye in order to assist manufacturers, retailers and/or the end user to differentiate the second part from the first part in the range of 0.001-2% by weight of the total weight of the second part. More typically in the range 0.001-0.01% by weight of the total weight of the second part, even more typically in the range 0.005-0.010% by weight of the total weight of the second part. The dye should impart a different colour to the second part compared with the first part.
- To obtain an adhesive composition for use in bonding electrical components, the end user blends the first part and the second part of the composition. Typically the ratio for the first part: second part is in the range of 0.5:1, to 6:1 such as 0.75:1 to 5:1, such as 2.5:1 to 2:1, about 1:1.
- The adhesive composition formed by blending the suitable ratios of the first part and the second part typically cures at a temperature in the range of about 0 to 50° C., more typically in the range of 0 to 40° C., even more typically in the range of 0 to 30° C.
- It is desirable that the mixture of the first part and the second part of the adhesive composition to cure in about 30 minutes from the time when the two parts were mixed, more desirably in about 15 minutes from the time when the two parts were mixed, even more desirably in about 10 minutes or less from the time when the two parts were mixed. Mixing can be achieved by blending,
- Following curing of the two-part thermally conductive adhesive of the present invention, the fully cured material affords thermal conductivities in the range of about 0.2 to 5.0 W/mK, more desirably in the range of about 0.5 to 3.0 W/mK, even more desirably in the range of about 0.8 to 2.0 W/mK. The skilled person will be in a position to select the constituent components to achieve the desired end result.
- Bulk thermal conductivity measurements were carried out in accordance with ASTM-C177-63. The thermal conductivity of a cured adhesive is determined by placing a test sample between two temperature controlled heater plates. One heater is set at a higher temperature than the other to produce a heat flow through the sample. When the temperature of the sample has stabilised the thermal conductivity is electronically determined by the test apparatus. Thermal conductivity is defined here as the time rate of steady heat flow through a unit area, per temperature gradient, in the direction perpendicular to the isotherm surface. This is described in the following formula
Rs=d/k
Where Rs=thermal resistance in m2K/W -
- d=sample thickness
- k=thermal conductivity
- The present invention will be more readily appreciated with reference to the Examples which follow.
- A two component mixture according to the present invention comprising a first part and a second part were prepared as follows:
- Part A:
- 79 g of Hydroxypropylmethacrylate (HPMA 98, supplied by Rolim GmbH) and 12.7 g of a co-polymer of acrylonitrile butadiene methacrylic acid (Nipol 1072 CG treated, supplied by ContiTECH GmnbH) were dissolved over a 10 hour period at a temperature of 60° C. The batch temperature was cooled to 40° C. and 0.7 g of 1-acetyl-2-phenylhydrazine was added and mixing continued until dissolution of the solid had taken place. 2.8 g of cumene hydroperoxide (Luperox CU-90, supplied by Atofina) and 0.2 g of tributylamine were added and mixing continued until a homogenous composition was obtained. This mixture was stored at 5° C. until required for use.
- Part B:
- 15.9 g of urethane methacrylate polyester resin was pre-heated to a temperature of 40° C. and a blend of 21.24 g of methacrylate resin and a blend of 7.62 g fumed silica in methacrylic monomer were added and blended. 1.77 g of acrylic acid and 8.85 g of methacryloxyethyl succinate were added. To this mixture was also added 1.29 g of a stabiliser solution comprising phenothiazine, hydroquinone, oxalic acid dihydrate and benzoxazole in triethylene glycol dimethacrylate. To this mix was added 0.012 g of 4-methoxyphenol and the whole mixture was blended until homogenous. A blend of 0.03 g of Cu salts of C6-C19 branched fatty acids in a hydrocarbon solvent (as marketed under the brand name Soligen Copper 8, supplied by Borchers GmbH) and a blend of 1.18 g of Co (II) and zirconium salts of C6-C19 branched fatty acids in a hydrocarbon solvent (as marketed under the brand name Octa Soligen Trockner 69, supplied by Borchers GmbH) were added. The mixture was blended until homogenous and stored at 5° C. until ready for use.
- In the following examples, a selection of fillers are added to the components first part and second part that have been prepared by the method of Example 1. The first part and second part are subsequently combined so as to form a composite. The composite material is left at room temperature (21 ° C.) for 24 hours during which time full cure is effected. Once cured, the thermal conductivities of the composites are measured.
- A mixture is formed by blending 65% by weight of the first part with 35% quartz silica (Silbond FW 300EST, supplied by Quarzwerke). In a separate vessel, a second mixture is formed by blending 50% by weight of the second part with 50% by weight of alumuniuin oxide (Calcinated alumina A10, 325 mesh, supplied by Alcoa Alumina and Chemicals). The two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement. The cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature (21° C.). Fixturing in this instance is defined as the ease with which two grit-blasted aluminium lapshears (of thickness 1.0 mm) may be pulled apart. When dispensed in a 1:1 ratio and placed between two lapshears, the composition of this invention will fixture so that the lap-shears may not be pulled apart after 5 minutes manually. After 24 hours at ambient temperature, full cure has taken place as determined by lap shear testing on aluminium laps. After 24 hours, the resulting cured disc of material was tested for bulk thermal conductivity in accordance with ASTM C-177-63. This sample afforded a thermal conductivity of 0.60 W/mK.
- A mixture is formed by blending 65% by weight of the first part with 35% quartz silica (Silbond FhW 300EST, supplied by Quarzwerke). In a separate vessel, a second mixture is formed by blending 50% by weight of the second part with 50% by weight of zinc oxide (Kadox 930, supplied by Zinc Corporation of America). The two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement. The cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature (21° C.). After 24 hours at ambient temperature, full cure has taken place as determined by lap shear testing on aluminium laps (as described above). After 24 hours, the resulting cured disc of material was tested for bulk thermal conductivity in accordance with ASTM C-1 77-63 (as described above). The thermal conductivity of this composite was 0.65 W/mK.
- A mixture is formed by blending 42% by weight of the first part with 58% quartz silica (Silbond FW 300EST, supplied by Quarzwerke). In a separate vessel, a second mixture is formed by blending 65% by weight of the second part with 35% by weight of boron nitride (BN SGPS grade, supplied by Denka). The two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement. The cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature (21° C.). After 24 hours at ambient temperature, full cure has taken place as determined by lap shear testing on aluminium laps (as described above). After 24 hours, the resulting cured disc of material was tested for bulk thermal conductivity in accordance with ASTM C-177-63 (as described above). The thermal conductivity of this composite was 0.94 W/mK.
- A mixture is formed by blending 42% by weight of the first part with 58% quartz silica (Silbond FW 300EST, supplied by Quarzwerke). In a separate vessel, a second mixture is formed by blending 59% by weight of the second part with 41% by weight of boron nitride (BN SGPS grade, supplied by Denka). The two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement. The cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature. After 24 hours at ambient temperature, full cure has taken place as determined by lap shear testing on aluminium laps (as described above). After 24 hours, the resulting cured disc of material was tested for bulk thermal conductivity in accordance with ASTM C-177-63 (as described above). The thermal conductivity of this composite was 1.79 W/mK.
- A mixture is formed by blending 42% by weight of the first part with 58% quartz silica (Silbond FW 300EST, supplied by Quarzwerke). In a separate vessel, a second mixture is formed by blending 59% by weight of the second part with 20.5% by weight of boron nitride (BN SGPS grade, supplied by Denka) and 20.5% of silicon nitride 9SN-F1, supplied by Denka). The two mixtures are then added together in a 1:1 ratio and compressed between two Teflon plates. This action encourages blending of the two separate mixtures and allows the formation of a disc of material which when cured, is suitable for thermal conductivity measurement. The cure chemistry of this composition is such that good fixturing occurs within 5 minutes of adding the first mixture to the second mixture at ambient temperature (21° C.). After 24 hours at ambient temperature, full cure has taken place as determined by lap shear testing on aluminium laps (as described above). After 24 hours, the resulting cured disc of material was tested for bulk thermal conductivity in accordance with ASTM C-177-63 (as described above). The thermal conductivity of this composite was 1.85 W/mK.
- A composition according to the present invention was prepared in the following way: The first part of the composition was prepared using the components of Table 1.
TABLE 1 Components of part A Overall % weight of material in the Type of material Material first part Polymerisable monomer Hydroxypropyl 33.39 methacrylate Stabilising component hydroquinone 0.921 Tertiary alkyl Cumene hydroperoxide e.g 1.18 hydroperoxide Luperox Co-curative Tributyl amine 0.084 Co-curative 1-Acetyl-2- 0.294 phenylhydrazine Toughener Acrylonitrile butadiene 5.35 methacrylic acid co- polymer Co-curative Polyamide 0.777 Dye Dye 0.004 Thermally conductive filler Quartz (silicon dioxide, 58 epoxy-silane treated) - The second part of the composition was prepared using the components of Table 2:
TABLE 2 Components of part B Overall % weight of material in the Type of material Material second part Stabilising component hydroquinone 1.298 Viscosity control reagent Premix of silica in 7.620 methacrylic monomer Promoter Methacryloxyethyl 8.850 succinate Dye Dye 0.006 Catalytic component Blend of Co (II) and Zr 1.180 salts of C6-C19 branched fatty acids in a hydrocarbon solvent Catalytic component Blend of Cu salts of C6-C19 0.030 branched fatty acids in a hydrocarbon solvent Polymerisable monomer Urethane methacrylate 15.930 polyester resin Polymerisable monomer Methacrylate resin in 21.240 monomer Polymerisable monomer Acrylic acid 1.770 Polymerisable monomer 4-methoxyphenol 0.012 Thermally conductive filler Silicon dioxide 1.064 Thermally conductive filler Boron nitride 41.000 - Both the first and the second part have a shelf life of 1 year at 5° C.
- It is appreciated that certain features of the invention, which are for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
- The words “comprises/comprising” and the words “having/including” when used herein with reference to the present invention are used to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
Claims (24)
1. A two-part curable composition which cures to form a thermally conductive cure product comprising:
a first part comprising:
(i) at least one polymerisable (meth)acrylate-based monomer component;
(ii) a peroxide-based curing agent component;
(iii) one or more co-curative components selected from the group consisting of primary, secondary or tertiary amines or compounds containing the group —CONHNH—;
(iv) a stabilising component, and;
(v) a filler component; and
a second part comprising:
(i) at least one polymerisable (meth)acrylate-based monomer component;
(ii) a catalytic component for catalysing the cure reaction;
(iii) a stabilising component, and;
(iv) a thermally conductive filler component,
wherein at least one part of the composition has a filler component which comprises a thermally conductive filler. The thermally conductive filler can be in the first part or the second part or both parts but is desirably in the second part.
2. A composition as claimed in claim 1 wherein the first part and the second part are provided in a ratio range of about 6:1 to about 1:1, first part:second part.
3. (canceled)
4. A composition as claimed in claim 1 wherein the composition cures in a period of about 30 minutes or less from the time the first and second parts are brought together.
5. A composition as claimed in claim 1 which cures to form a cure product with a thermal conductivity in the range of from about 0.2 to about 5.0 W/mK.
6. A composition as claimed in claim 1 wherein the polymerisable monomer of the first part is present in the range of from about 20 to about 50% by weight of the total weight of the first part.
7-8. (canceled)
9. A composition as claimed in claim 1 wherein the stabilising component of the first part is present in the range of from about 0.1 to about 5% by weight of the total weight of the first part.
10. (canceled)
11. A composition as claimed in claim 1 wherein the polymerisable monomer of the second part is present in the range of from about 10 to about 90% by weIght of the total weight of the second part.
12-14. (canceled)
15. A composition as claimed in claim 1 wherein the first part further comprises at least one toughening component selected from: (i) a homopolymer of alkyl esters of acrylic or methacrylic acid; (ii) a homopolymer of an alkoxy ester Of acrylic or methacrylic acid; (iii) a copolymer of a polymerizable monomer, such as lower alkenes with an alkyl ester of acrylic or methacrylic acid, or with an alkoxy ester of acrylic or methacrylic acid; (vi) a combination of any or all of the above (i)-(v).
16-29. (canceled)
30. Use of a two-part curable composition which cures to form a thermally conductive cure product said composition comprising:
a first part comprising:
(i) at least one polymerisable (meth)acrylate based monomer component;
(ii) a peroxide-based curing agent component;
one or more co-curative components selected from the group consisting of primary, secondary or tertiary amines or compounds containing the group —CONHNH—.
(iv) a stabilising component, and;
(v) a filler component;
second part comprising:
(i) at least one polymerisable (meth) acrylate-based monomer component;
(ii) a catalytic component for catalysing the cure reaction;
(iii) a stabilising, component, and;
(iv) a filler component,
for the bonding of a heat generating component to a substrate wherein at least one part of the composition has a filler component which comprises a thermally conductive filler.
31-39. (canceled)
40. Use of the composition of claim 30 wherein the first part further comprises at least one toughening component selected from: (i) a homopolymer of alkyl esters of acrylic or methacrylic acid; (ii) a homopolymer of an alkoxy ester of acrylic or methacrylic acid; (iii) a copolymer of a polymerizable monomer, such as lower alkenes with an alkyl ester of acrylic or methacrylic acid, or with an alkoxy ester of acrylic or methacrylic acid; (vi) a combination of any or all of the above (i)-(v).
41. A composition as claimed in claim 40 wherein the toughening component is selected from: unsaturated monomers which may be copolymerized with the alkyl and alkoxy esters of acrylic or methacrylic acid include dienes, reactive halogen-containing unsaturated compounds and other acrylic monomers such as acrylamides.
42-54. (canceled)
55. Use according to claim 30 wherein the substrate comprises a heat sink.
56. Use according to claim 55 wherein the heat generating component is an electrical or electronic component.
57. Use according to claim 53 wherein the composition is used to bond the heat generating component directly to the heat sink.
58. A kit comprising the composition of claim 1 wherein the first part and second part are housed in at least one container which holds the first part and second part apart prior to use.
59. An assembly comprising a heat generating component bonded to a substrate by the cure product of a composition according to claim 1 .
60. The cure product of a composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/470,085 US20070023165A1 (en) | 2004-03-09 | 2006-09-05 | Thermally Conductive Two-Part Adhesive Composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55157704P | 2004-03-09 | 2004-03-09 | |
PCT/US2005/007915 WO2005087850A1 (en) | 2004-03-09 | 2005-03-08 | Thermally conductive two-part adhesive composition |
US11/470,085 US20070023165A1 (en) | 2004-03-09 | 2006-09-05 | Thermally Conductive Two-Part Adhesive Composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/007915 Continuation WO2005087850A1 (en) | 2004-03-09 | 2005-03-08 | Thermally conductive two-part adhesive composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070023165A1 true US20070023165A1 (en) | 2007-02-01 |
Family
ID=34975549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/470,085 Abandoned US20070023165A1 (en) | 2004-03-09 | 2006-09-05 | Thermally Conductive Two-Part Adhesive Composition |
Country Status (8)
Country | Link |
---|---|
US (1) | US20070023165A1 (en) |
EP (1) | EP1723197B1 (en) |
JP (1) | JP2007528437A (en) |
KR (1) | KR20060126838A (en) |
CN (1) | CN1946784A (en) |
AT (1) | ATE447596T1 (en) |
DE (1) | DE602005017472D1 (en) |
WO (1) | WO2005087850A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060081817A1 (en) * | 2004-10-18 | 2006-04-20 | Seiko Epson Corporation | Conductive adhesive composition |
JP2014529633A (en) * | 2011-08-03 | 2014-11-13 | ヘンケル ユーエス アイピー エルエルシー | Conductive structural adhesive |
US20150136375A1 (en) * | 2010-09-17 | 2015-05-21 | Jeffrey Skaggs McReynolds | System and Method of Producing Scalable Heat-sink Assembly |
US20150168087A1 (en) * | 2013-12-12 | 2015-06-18 | General Electric Company | Reusable phase-change thermal interface structures |
US20160072144A1 (en) * | 2013-04-29 | 2016-03-10 | Lg Chem, Ltd. | Polymer electrolyte membrane, membrane electrode assembly including polymer electrolyte membrane, and fuel cell including membrane electrode assembly |
US9707312B2 (en) | 2012-05-16 | 2017-07-18 | Heraeus Medical Gmbh | Paste-like bone cement |
US11485801B2 (en) | 2017-03-03 | 2022-11-01 | Japan U-Pica Company, Ltd. | Crystalline radical polymerizable composition for electrical and electronic component, molded article of electrical and electronic component using the composition, and method of the molded article of electrical and electronic component |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101191041B (en) * | 2006-11-29 | 2010-04-14 | 上海康达化工有限公司 | Acrylic ester adhesive |
DE102007026256A1 (en) * | 2007-06-04 | 2008-12-11 | Akemi Chemisch Technische Spezialfabrik Gmbh | Multicolor component adhesive system |
CA2689595C (en) * | 2007-06-08 | 2015-11-03 | Henkel Corporation | Room temperature curing adhesive composition having high temperature properties |
GB2482531B (en) * | 2010-08-05 | 2013-11-13 | Loctite R & D Ltd | Adhesive composition with enhanced cure through volume |
KR101192042B1 (en) | 2010-11-01 | 2012-10-17 | 삼성에스디아이 주식회사 | Battery Pack |
CN103725206B (en) * | 2014-01-06 | 2015-06-24 | 江苏东禾电声配件有限公司 | Two-component high-temperature-resisting adhesive for assembling loudspeaker and preparation method thereof |
JP6653305B2 (en) * | 2017-11-10 | 2020-02-26 | 日本ユピカ株式会社 | Crystalline radical polymerizable composition for electric / electronic parts, molded article of electric / electronic part using the composition, and method for producing molded article of electric / electronic part |
JP6630695B2 (en) * | 2017-03-03 | 2020-01-15 | 日本ユピカ株式会社 | Crystalline radical polymerizable composition for sealing electric and electronic parts, sealed body for electric and electronic parts using the composition, and method for producing the sealed body |
JP6782739B2 (en) * | 2018-07-09 | 2020-11-11 | 日本ユピカ株式会社 | A thermosetting resin composition for encapsulating an in-vehicle electronic control unit substrate, an in-vehicle electronic control unit substrate encapsulant using the composition, and a method for manufacturing the encapsulant. |
JP6782741B2 (en) * | 2018-07-18 | 2020-11-11 | 日本ユピカ株式会社 | A crystalline radically polymerizable composition for encapsulating an in-vehicle ignition coil, an in-vehicle ignition coil encapsulant using the composition, and a method for producing the encapsulant. |
JP6782742B2 (en) * | 2018-07-25 | 2020-11-11 | 日本ユピカ株式会社 | A crystalline radically polymerizable composition for encapsulating an in-vehicle power semiconductor device, an in-vehicle power semiconductor element encapsulating body using the composition, and a method for manufacturing the encapsulating body. |
CN113913147B (en) * | 2020-07-08 | 2023-12-05 | 3M创新有限公司 | Two-component heat-conducting adhesive composition and two-component heat-conducting joint filling adhesive |
KR102338814B1 (en) * | 2021-09-09 | 2021-12-14 | 정상문 | Acrylic heat dissipation adhesive |
US20240384071A1 (en) | 2021-10-04 | 2024-11-21 | Tokyo Printing Ink Mfg. Co., Ltd. | Resin composition for heat-dissipating gap filler, heat-dissipating gap filler, and article |
CN118786158A (en) * | 2022-04-07 | 2024-10-15 | Sika技术股份公司 | (Meth) acrylate based adhesives for corner bonding |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3901858A (en) * | 1970-12-04 | 1975-08-26 | Matsumoto Seiyaku Kogyo Kk | Two-component composition |
US3994764A (en) * | 1975-06-13 | 1976-11-30 | Pratt & Lambert, Inc. | Adhesive compositions |
US4147669A (en) * | 1977-03-28 | 1979-04-03 | Rockwell International Corporation | Conductive adhesive for providing electrical and thermal conductivity |
US4544696A (en) * | 1984-10-29 | 1985-10-01 | Sws Silicones Corporation | Silicone elastomers having thermally conductive properties |
US4574879A (en) * | 1984-02-29 | 1986-03-11 | The Bergquist Company | Mounting pad for solid-state devices |
US4584336A (en) * | 1984-10-29 | 1986-04-22 | Sws Silicones Corporation | Thermally conductive room temperature vulcanizable compositions |
US4588768A (en) * | 1984-10-29 | 1986-05-13 | Sws Silicones Corporation | Thermally conductive heat curable organopolysiloxane compositions |
US4604424A (en) * | 1986-01-29 | 1986-08-05 | Dow Corning Corporation | Thermally conductive polyorganosiloxane elastomer composition |
US5011870A (en) * | 1989-02-08 | 1991-04-30 | Dow Corning Corporation | Thermally conductive organosiloxane compositions |
US5298791A (en) * | 1991-08-13 | 1994-03-29 | Chomerics, Inc. | Thermally conductive electrical assembly |
US5352731A (en) * | 1991-04-26 | 1994-10-04 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive silicone rubber composition containing organo polysiloxanes with high and low polymerization degrees and spherical aluminum oxide powder |
US5430085A (en) * | 1994-11-30 | 1995-07-04 | Northrop Grumman Corporation | Thermally and electrically conductive caulk |
US5445308A (en) * | 1993-03-29 | 1995-08-29 | Nelson; Richard D. | Thermally conductive connection with matrix material and randomly dispersed filler containing liquid metal |
US5510174A (en) * | 1993-07-14 | 1996-04-23 | Chomerics, Inc. | Thermally conductive materials containing titanium diboride filler |
US6123799A (en) * | 1996-12-04 | 2000-09-26 | Nitto Denko Corporation | Thermally conductive pressure-sensitive adhesive, adhesive sheet containing the same, and method for fixing electronic part to heat-radiating member with the same |
US6433091B1 (en) * | 2001-05-10 | 2002-08-13 | Henkel Loctite Corporation | Adhesive composition |
US6462126B1 (en) * | 2000-05-10 | 2002-10-08 | Illinois Tool Works Inc. | Structural adhesive |
US6572971B2 (en) * | 2001-02-26 | 2003-06-03 | Ashland Chemical | Structural modified epoxy adhesive compositions |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS594667A (en) * | 1982-06-09 | 1984-01-11 | ロクタイト・コ−ポレ−シヨン | Two liquid solvent-free adhesive composition adhering method therewith |
US4722960A (en) * | 1983-01-18 | 1988-02-02 | Loctite Corporation | Aluminum filled compositions |
JPS61296077A (en) * | 1985-06-25 | 1986-12-26 | Three Bond Co Ltd | Electrically-conductive adhesive of two-pack contact curing type |
US4848353A (en) * | 1986-09-05 | 1989-07-18 | Minnesota Mining And Manufacturing Company | Electrically-conductive, pressure-sensitive adhesive and biomedical electrodes |
JP3127093B2 (en) | 1994-03-03 | 2001-01-22 | 信越化学工業株式会社 | Thermally conductive silicone rubber composition |
JP2001139637A (en) * | 1999-11-10 | 2001-05-22 | Denki Kagaku Kogyo Kk | Curable resin composition |
JP5059261B2 (en) * | 2001-04-09 | 2012-10-24 | 電気化学工業株式会社 | Two-component acrylic adhesive composition |
JP4832658B2 (en) * | 2001-04-11 | 2011-12-07 | 電気化学工業株式会社 | Adhesive flexible acrylic resin |
DE10212945A1 (en) * | 2002-03-22 | 2003-10-02 | Tesa Ag | Polyacrylate PSA, production and use |
JP4231952B2 (en) * | 2002-05-23 | 2009-03-04 | 株式会社トクヤマ | Adhesion kit |
DE10259549A1 (en) * | 2002-12-19 | 2004-07-08 | Tesa Ag | PSA article with at least one layer of an electrically conductive PSA and process for its production |
-
2005
- 2005-03-08 AT AT05725221T patent/ATE447596T1/en not_active IP Right Cessation
- 2005-03-08 EP EP05725221A patent/EP1723197B1/en not_active Not-in-force
- 2005-03-08 KR KR1020067020837A patent/KR20060126838A/en not_active Application Discontinuation
- 2005-03-08 JP JP2007502994A patent/JP2007528437A/en active Pending
- 2005-03-08 WO PCT/US2005/007915 patent/WO2005087850A1/en active Application Filing
- 2005-03-08 CN CNA2005800129613A patent/CN1946784A/en active Pending
- 2005-03-08 DE DE602005017472T patent/DE602005017472D1/en not_active Expired - Lifetime
-
2006
- 2006-09-05 US US11/470,085 patent/US20070023165A1/en not_active Abandoned
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3901858A (en) * | 1970-12-04 | 1975-08-26 | Matsumoto Seiyaku Kogyo Kk | Two-component composition |
US3994764A (en) * | 1975-06-13 | 1976-11-30 | Pratt & Lambert, Inc. | Adhesive compositions |
US4147669A (en) * | 1977-03-28 | 1979-04-03 | Rockwell International Corporation | Conductive adhesive for providing electrical and thermal conductivity |
US4574879A (en) * | 1984-02-29 | 1986-03-11 | The Bergquist Company | Mounting pad for solid-state devices |
US4544696A (en) * | 1984-10-29 | 1985-10-01 | Sws Silicones Corporation | Silicone elastomers having thermally conductive properties |
US4584336A (en) * | 1984-10-29 | 1986-04-22 | Sws Silicones Corporation | Thermally conductive room temperature vulcanizable compositions |
US4588768A (en) * | 1984-10-29 | 1986-05-13 | Sws Silicones Corporation | Thermally conductive heat curable organopolysiloxane compositions |
US4604424A (en) * | 1986-01-29 | 1986-08-05 | Dow Corning Corporation | Thermally conductive polyorganosiloxane elastomer composition |
US5011870A (en) * | 1989-02-08 | 1991-04-30 | Dow Corning Corporation | Thermally conductive organosiloxane compositions |
US5352731A (en) * | 1991-04-26 | 1994-10-04 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive silicone rubber composition containing organo polysiloxanes with high and low polymerization degrees and spherical aluminum oxide powder |
US5298791A (en) * | 1991-08-13 | 1994-03-29 | Chomerics, Inc. | Thermally conductive electrical assembly |
US5445308A (en) * | 1993-03-29 | 1995-08-29 | Nelson; Richard D. | Thermally conductive connection with matrix material and randomly dispersed filler containing liquid metal |
US5510174A (en) * | 1993-07-14 | 1996-04-23 | Chomerics, Inc. | Thermally conductive materials containing titanium diboride filler |
US5430085A (en) * | 1994-11-30 | 1995-07-04 | Northrop Grumman Corporation | Thermally and electrically conductive caulk |
US6123799A (en) * | 1996-12-04 | 2000-09-26 | Nitto Denko Corporation | Thermally conductive pressure-sensitive adhesive, adhesive sheet containing the same, and method for fixing electronic part to heat-radiating member with the same |
US6462126B1 (en) * | 2000-05-10 | 2002-10-08 | Illinois Tool Works Inc. | Structural adhesive |
US6572971B2 (en) * | 2001-02-26 | 2003-06-03 | Ashland Chemical | Structural modified epoxy adhesive compositions |
US6433091B1 (en) * | 2001-05-10 | 2002-08-13 | Henkel Loctite Corporation | Adhesive composition |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060081817A1 (en) * | 2004-10-18 | 2006-04-20 | Seiko Epson Corporation | Conductive adhesive composition |
US20150136375A1 (en) * | 2010-09-17 | 2015-05-21 | Jeffrey Skaggs McReynolds | System and Method of Producing Scalable Heat-sink Assembly |
JP2014529633A (en) * | 2011-08-03 | 2014-11-13 | ヘンケル ユーエス アイピー エルエルシー | Conductive structural adhesive |
US9707312B2 (en) | 2012-05-16 | 2017-07-18 | Heraeus Medical Gmbh | Paste-like bone cement |
US20160072144A1 (en) * | 2013-04-29 | 2016-03-10 | Lg Chem, Ltd. | Polymer electrolyte membrane, membrane electrode assembly including polymer electrolyte membrane, and fuel cell including membrane electrode assembly |
US20150168087A1 (en) * | 2013-12-12 | 2015-06-18 | General Electric Company | Reusable phase-change thermal interface structures |
US9826662B2 (en) * | 2013-12-12 | 2017-11-21 | General Electric Company | Reusable phase-change thermal interface structures |
US11485801B2 (en) | 2017-03-03 | 2022-11-01 | Japan U-Pica Company, Ltd. | Crystalline radical polymerizable composition for electrical and electronic component, molded article of electrical and electronic component using the composition, and method of the molded article of electrical and electronic component |
Also Published As
Publication number | Publication date |
---|---|
JP2007528437A (en) | 2007-10-11 |
EP1723197A1 (en) | 2006-11-22 |
CN1946784A (en) | 2007-04-11 |
DE602005017472D1 (en) | 2009-12-17 |
WO2005087850A1 (en) | 2005-09-22 |
EP1723197A4 (en) | 2008-06-04 |
EP1723197B1 (en) | 2009-11-04 |
ATE447596T1 (en) | 2009-11-15 |
KR20060126838A (en) | 2006-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070023165A1 (en) | Thermally Conductive Two-Part Adhesive Composition | |
US6207272B1 (en) | Peelable heat-conductive and pressure-sensitive adhesive and adhesive sheet containing the same | |
JP5437802B2 (en) | Conductive adhesive composition and bonding method using the same | |
KR100961460B1 (en) | Thermally Conductive Adhesive Compositions and Adhesion Methods | |
KR20000057373A (en) | Thermally conductive pressure-sensitive adhesive, adhesive sheet containing the same, and method for fixing electronic part to heat-radiating member with the same | |
JP2008195852A (en) | Film adhesive composition and joined structure in circuit terminal using the same composition | |
JP2002203427A (en) | Circuit connecting material, method for manufacturing circuit board using it, and circuit board | |
WO2005061615A1 (en) | Curable resin composition | |
JP2001279196A (en) | Substrate-free, thermally conductive pressure-sensitive adhesive tape or sheet and method for manufacturing the same | |
JP2006524719A (en) | Peelable adhesive composition | |
JPH0572435B2 (en) | ||
JP2002294192A (en) | Thermally conductive flame-retardant pressure- sensitive adhesive and sheet by forming the same | |
JPH11181368A (en) | Heat-conductive pressure-sensitive adhesive sheets and method for fixing electronic part to heat-radiating member by using the same | |
JP2001262079A (en) | Bonding agent of anisotropic conduction | |
WO2013122117A1 (en) | Thermoconductive adhesive sheet | |
JP2002012842A (en) | Acrylic thermoset adhesive and adhesive sheets | |
JPH11279511A (en) | Circuit connection material, connected structure of circuit terminal, and method for connecting circuit terminal | |
JP2002167555A (en) | Circuit connecting film adhesive, circuit terminal- connected structure and method for connecting circuit terminals | |
JPH11279512A (en) | Circuit connection material, connected structure of circuit terminal, and method for connecting circuit terminal | |
JP2010235953A (en) | Thermally conductive sheet and method for producing the same | |
JPH1135903A (en) | Anisotropically conductive adhesive | |
JPH11279513A (en) | Circuit connection material, connected structure of circuit terminal, and method for connecting circuit terminal | |
JP2001329241A (en) | Thermosetting type adhesive composition and adhesive sheet | |
JP2005322938A (en) | Wiring-connecting material and method for manufacturing wiring board using same | |
JPWO2017078087A1 (en) | Adhesive composition and structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |