US20060280597A1 - Rotating member, housing, bearing, gearbox, rotating machine, shaft structure, and surface treatment method - Google Patents
Rotating member, housing, bearing, gearbox, rotating machine, shaft structure, and surface treatment method Download PDFInfo
- Publication number
- US20060280597A1 US20060280597A1 US10/560,131 US56013104A US2006280597A1 US 20060280597 A1 US20060280597 A1 US 20060280597A1 US 56013104 A US56013104 A US 56013104A US 2006280597 A1 US2006280597 A1 US 2006280597A1
- Authority
- US
- United States
- Prior art keywords
- rotation member
- housing
- bearing
- group
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000004381 surface treatment Methods 0.000 title claims description 9
- 238000000576 coating method Methods 0.000 claims abstract description 41
- 239000011248 coating agent Substances 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 239000000843 powder Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000000465 moulding Methods 0.000 claims abstract description 6
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 28
- 239000012530 fluid Substances 0.000 claims description 25
- 230000001105 regulatory effect Effects 0.000 claims description 18
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 17
- 239000000314 lubricant Substances 0.000 claims description 16
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 16
- 229910003470 tongbaite Inorganic materials 0.000 claims description 16
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims description 16
- -1 cubic BN Inorganic materials 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 11
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 11
- 229910052593 corundum Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 10
- 229910052961 molybdenite Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 238000010892 electric spark Methods 0.000 claims description 6
- 238000005461 lubrication Methods 0.000 claims description 6
- 238000003754 machining Methods 0.000 claims description 5
- 229910003465 moissanite Inorganic materials 0.000 claims 7
- 239000000919 ceramic Substances 0.000 abstract description 23
- 239000007772 electrode material Substances 0.000 abstract description 15
- 229910052751 metal Inorganic materials 0.000 abstract description 12
- 239000002184 metal Substances 0.000 abstract description 12
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 9
- 150000001875 compounds Chemical class 0.000 abstract description 7
- 239000011247 coating layer Substances 0.000 description 20
- 229910052582 BN Inorganic materials 0.000 description 16
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 16
- 230000001050 lubricating effect Effects 0.000 description 16
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 16
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 150000002736 metal compounds Chemical class 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000011176 pooling Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- 229910001361 White metal Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229910021523 barium zirconate Inorganic materials 0.000 description 2
- DQBAOWPVHRWLJC-UHFFFAOYSA-N barium(2+);dioxido(oxo)zirconium Chemical compound [Ba+2].[O-][Zr]([O-])=O DQBAOWPVHRWLJC-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000009718 spray deposition Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 239000010969 white metal Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/16—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
- F01D17/162—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/16—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/1065—Grooves on a bearing surface for distributing or collecting the liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/509—Self lubricating materials; Solid lubricants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/23—Gas turbine engines
- F16C2360/24—Turbochargers
Definitions
- the present invention relates to a bearing for a rotation body, where, for example, a pulsing electric discharge is generated between a molded body molded from powder of metal compounds as an electrode and a rotation member at an engaging portion between a housing of a gear box and a rotation member of the gear box, and a coating of the electrode material is formed on the bearing by means of energy of the electric discharges.
- the present invention relates to a shaft for a variable stator which is provided in a compressor of a gas turbine, a structure of a shaft of a variable stator of a variable turbine nozzle in a turbo charger and a method for surface treatment thereof, and more particularly to a structure in which a shaft is provided with a coating layer having anti-abrasiveness and lubricity and a method for surface treatment thereof.
- FIG. 6 is a cross sectional view showing a schematic constitution of a prior accessory drive gear box 200 .
- the accessory drive gear box 200 for driving equipments such as an electric generator and a hydraulic pump is provided with a housing 202 .
- a rotation axis member (a rotation member) 206 integrally formed with a gear 204 is provided with interposing a roller bearing 208 such as a cylindrical roller bearing so as to be rotatable with respect to the housing 202 (for example, “New Aeronautical Engineering, volume 8, Jet Engine (Structure Part)”, published by Japan Aeronautical Engineers' Association, May 29, 2000, the 1st edition, the 6th printing, p99 FIG. 3-73).
- a speed reducer and such a rotation member of which has greater revolution numbers than the accessory drive gear box 200 , there is known one using a fluid bearing instead of the roller bearing.
- a compressor provided in a gas turbine is provided with a variable stator.
- abrasion occurs at a shaft of the variable stator and a clearance therebetween comes to be greater, precision of a direction angle of the variable stator decreases, therefore the whole of the variable stator has to be detached and exchanged when the abrasion of the shaft comes to be great. Therefore, there is proposed a constitution in which a detachable abrasive sleeve is provided on the shaft for protection of the shaft and a wore abrasive sleeve is exchanged to a new abrasive sleeve when the abrasive sleeve is greatly wore (for example, Japanese Patent Application Laid-open No. 2000-329139).
- the fluid bearing has a problem that, if a film of oil does not transiently exist, the housing and the rotation member directly contact each other and hence durability of the bearing may deteriorate.
- any gear box other than the accessory drive gear box and further any bearing of a machine or a device provided with a housing and a rotation member which is rotatable relative to the housing (the bearing between the housing and the rotation member).
- the constitution disclosed in the aforementioned patent publication is a constitution as shown in FIG. 7 in which a shaft portion 147 of a variable stator detachably having an abrasive sleeve 145 is fit into a cylindrical bush 143 fit in a hole provided in a housing 141 and an antifriction layer 149 made of a material of low friction is provided between an outer periphery of the abrasive sleeve 145 and an inner periphery of the bush 143 .
- the present invention based on a first aspect is a rotation member, wherein, in a rotation member rotatably or swingably engaging with a housing, a pulsing electric discharge is generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment and the rotation member in a processing liquid or a gas, and a coating of the electrode material or any substance combined from the electrode material by energy of the electric discharges is formed on an engaging portion engaging with the housing by means of energy of the electric discharges.
- the present invention based on a second aspect is a rotation member, wherein, in the rotation member recited in the first aspect, a groove for pooling a lubrication liquid is formed on the engaging portion.
- the present invention based on a third aspect is a rotation member, wherein, in the rotation member recited in the first aspect or the second aspect, the metal powder or the metal compounds or ceramics are Ti, Si, cBN (cubic boron nitride), TiC (titanium carbide), WC (tungsten carbide), SiC (silicon carbide), Cr 3 C 2 (chromium carbide), Al 2 O 3 (aluminum oxide; alumina), ZrO 2 —Y (stabilized zirconium oxide; stabilized zirconia), TiN (titane nitride), TiB (titanium boride), hexagonal BN (boron nitride), MOS 2 (molybdenum disulfide), Cr 2 O 3 , WS 2 (tungsten disulfide) and BaZrO 4 (barium zirconate).
- the metal powder or the metal compounds or ceramics are Ti, Si, cBN (cubic boron nitride),
- the present invention based on a fourth aspect is a rotation member, wherein, in the rotation member recited in any of the first through third aspect, a coating is formed in the pulsing electric discharge with rotating the rotation member.
- the present invention based on a fifth aspect is a housing, wherein, in a housing with which a rotation member rotatably or swingably engages, a pulsing electric discharge is generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment and the rotation member in a processing liquid or a gas, and a coating of the electrode material or any substance combined from the electrode material by energy of the electric discharges is formed on an engaging portion engaging with the rotation member by means of energy of the electric discharges.
- the present invention based on a sixth aspect is a housing, wherein, in the housing recited in the fifth aspect, a groove for pooling a lubrication liquid is formed on the engaging portion.
- the present invention based on a seventh aspect is a bearing for a rotation member, wherein, in a bearing of a rotation member rotatably engaging with a housing, a pulsing electric discharge is generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment and the rotation member in a processing liquid or a gas, and a coating of the electrode material or any substance combined from the electrode material by energy of the electric discharges is formed on at least one of an engaging portion engaging with the housing and a engagement subject portion of the housing having a slightly larger inner diameter than an outer diameter of the engaging portion and engaged with the engaging portion.
- the present invention based on an eighth aspect is a bearing for a rotation member, wherein, in the bearing for the rotation member recited in the seventh aspect, a groove for pooling a lubrication liquid is formed on at least one of the engaging portion and the engagement subject portion.
- the present invention based on a ninth aspect is a gear box assembly, wherein, in a gear box driven by a turbine shaft of a gas turbine, the gear box assembly has a housing supported by an engine casing of the gas turbine at the exterior of the engine casing and a rotation member provided with an engaging portion engaging with a engagement subject portion of the housing and provided to engage with the housing by the engaging portion so as to be rotatable relative to the housing in the interior of the housing, and an inner diameter of the engagement subject portion is formed slightly larger than an outer diameter of the engaging portion, and further a pulsing electric discharge is generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment and the rotation member in a processing liquid or a gas, and a coating of the electrode material or any substance combined from the electrode material by energy of the electric discharges is formed on the engaging portion of the rotation member by means of energy of the electric discharges, and a groove
- the present invention based on a tenth aspect is a rotating machine, wherein, in a rotating machine in which a rotation member is provided to be rotatable in a casing with interposing a roller bearing, a coating is formed at a portion of the rotation member engaging with the roller bearing and the coating is composed of an electrode material or any substance combined from an electrode material by energy of electric discharges where the electric discharges are pulsingly generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment in a processing liquid or a gas.
- the present invention based on an eleventh aspect is a shaft structure for variable vanes for regulating a fluid, which is integrally provided with a coating layer including ceramics or ceramics and a solid lubricant having anti-abrasiveness and lubricity on a peripheral surface of a shaft portion provided in the variable vanes for regulating the fluid.
- the present invention based on a twelfth aspect is a shaft structure for variable vanes for regulating a fluid, wherein, in the variable vanes for regulating the fluid recited in the eleventh aspect, the ceramics are ceramics including one or more of cBN, TiC, WC, SiC, Cr 3 C 2 , Al 2 O 3 , ZrO 2 —Y, TiN, TiB, and the solid lubricant is a lubricant including one or more of hexagonal BN, MOS 2 , Cr 2 O 3 , WS 2 and BaZrO 4 .
- the present invention based on a thirteenth aspect is a shaft structure for variable vanes for regulating a fluid, wherein, in the variable vanes for regulating the fluid recited in the eleventh aspect or the twelfth aspect, the variable vanes for regulating the fluid is variable stator vanes provided in a compressor and/or a turbine in a gas turbine engine or a supercharger.
- the present invention based on a fourteenth aspect is a method for surface treatment of a shaft of variable vanes for regulating a fluid, which includes generating a pulsing electric discharge between an electrode including ceramics such as cBN, TiC, WC, SiC, Cr 3 C 2 , Al 2 O 3 , ZrO 2 —Y, TiN and TiB or containing these ceramics and a solid lubricant such as hexagonal BN, MoS 2 , Cr 2 O 3 , WS 2 and BaZrO 4 and a shaft portion of the variable vanes for regulating the fluid, and forming a coating layer composed of electrode constituents or compounds combined in an electric discharge atmosphere having anti-abrasiveness and lubricity on a surface of the shaft portion.
- ceramics such as cBN, TiC, WC, SiC, Cr 3 C 2 , Al 2 O 3 , ZrO 2 —Y, TiN and TiB or containing these ceramics and a solid lubricant such as hexagonal BN
- the present invention based on a fifteenth aspect is a method for surface treatment, wherein, in the method for the surface treatment recited in the fourteenth aspect, the coating layer is formed with rotating the shaft of the variable vanes for regulating the fluid.
- FIG. 1 A cross sectional view showing a schematic constitution of an accessory drive gear box in accordance with an embodiment of the present invention.
- FIG. 2 A view showing a IIA-IIB cross section in FIG. 1 .
- FIG. 3 An explanatory drawing for embodying the present invention as variable vanes in a shaft portion of a variable stator provided in a compressor of a gas turbine engine.
- FIG. 4 An explanatory drawing explaining a case of forming a coating layer having anti-abrasiveness and lubricity on the shaft of the variable vanes.
- FIG. 5 An explanatory drawing showing a constitution of the coating layer.
- FIG. 6 A cross sectional view showing a schematic constitution of a prior accessory drive gear box.
- FIG. 7 An explanatory drawing showing a constitution of a shaft portion of a variable stator.
- FIG. 1 is a cross sectional view showing a schematic constitution of an accessory drive gear box in accordance with an embodiment of the present invention and FIG. 2 is a view showing a IIA-IIB cross section in FIG. 1 .
- An accessory drive gear box (it may be referred to as “gear box” hereinafter.) 1 is a gear box driven by a turbine shaft of a gas turbine and used for driving equipments (such as an electric generator and a hydraulic pump) of the gas turbine.
- the accessory drive gear box 1 is provided with a housing 3 , which is supported at the exterior of an engine casing of the gas turbine by the engine casing. Meanwhile, the engine casing is formed in a cylindrical shape so as to be provided with a compressor and a turbine in the interior thereof and form a gas flow path.
- a cylindrical rotation member 5 having electric conductivity is provided in the interior of the housing 3 so as to be rotatable with respect to the housing 3 .
- a gear 7 is integrally provided at a medium portion with respect to a lengthwise direction of the rotation member 5 .
- Respective gears 9 and 11 which is provided integrally with the other rotation members (not shown) provided to be rotatable with respect to the housing 3 , engage with the gear 7 .
- the rotation member 5 is made to receive a rotational force of the turbine shaft of the gas turbine via the respective gears 9 and 7 so as to rotate.
- not-shown equipments such as an electric generator and a hydraulic pump are coupled with the rotation member 5 and rotation of the rotating member 5 makes the electric generator generate electricity and the hydraulic pump generate hydraulic pressure.
- the gear 7 and the gear 11 are capable of making the other rotation members rotate.
- an engaging portion 15 formed in a cylindrical side surface and engaged with a engagement subject portion (an opening of a cylindrical side surface shape) 13 of the housing 3 is provided. Further, by engaging at the engaging portion 15 , the rotation member 5 is rotatable with respect to the housing 3 in the interior of the housing 3 .
- An inner diameter D 1 of the engagement subject portion 13 of the housing 3 is formed to be slightly larger than an outer diameter D 3 of the engaging portion 15 of the rotation member 5 and plural grooves 13 A for pooling a lubricating liquid such as a lubricating oil are formed on a surface of the engagement subject portion 13 of the housing 3 .
- the respective grooves 13 A are provided to be long in the lengthwise direction of the rotation member 5 and disposed at positions equally dividing a circumference of the engagement subject portion 13 of the cylindrical side surface shape. Meanwhile, the respective grooves 13 A may be provided at the engaging portion 15 of the rotation member 5 .
- the lubricating liquid such as the lubricating oil is supplied by a pump (now shown) driven by the rotational force of the rotation member 5 for example and, by the supplied lubricating liquid, a thin coating of the lubricating liquid is formed at a space (a narrow clearance) 17 between the engagement subject portion 13 of the housing 3 and the engaging portion 15 of the rotation member 5 so as to form a fluid bearing.
- the supply of the lubricating liquid to the grooves 13 A by the pump is carried out by, for example, using a through hole (not shown) provided in the housing 3 , one end portion of which is linked with the grooves 13 A and another end portion of which is linked with an electric discharge port of the pump via a pipe (not shown) for supplying the lubricating liquid. Furthermore, the lubricating liquid supplied to the grooves 13 A returns to the interior of the housing 3 and is again supplied to the grooves 13 A by the pump.
- the housing 3 is provided with a hole 3 A to engage with an outer peripheral portion 19 A of a cylindrical bush 19 to support the bush 19 . Further, by inserting the bush 19 into the hole 3 A of the housing 3 to be fixed, the engagement subject portion 13 of the housing 3 is formed by an inner peripheral portion 19 B of the bush 19 .
- the bush 19 is composed of a white metal or such and the housing 3 can be composed of any material lower in price than the white metal, thereby a production cost of the gear box 1 can be reduced.
- the rotation member 5 is provided with a flange 5 A and one end face 5 B of the flange 5 A is opposed to planar one end face 19 C in the lengthwise direction of the bush. Moreover, the end face 5 B and the end face 19 C are slightly separated so as to form a space (a narrow clearance) 21 .
- the engagement subject portion 13 may be referred to as an engagement subject portion in a radial direction
- the end face 5 B may be referred to as an engaging portion in the thrust direction
- the end face 19 C may be referred to as an engagement subject portion in the thrust direction.
- a fluid bearing similar to the left side is formed at another end portion in the lengthwise direction of the rotation member 5 (one end portion at the right side of FIG. 1 ).
- the hard, or small in the coefficient of friction, coating is formed on the surface of the engaging portion 15 .
- the coating is formed by making a member formed by a molded body as an electrode, making the electrode close to (for example in closeness about 0.02 mm) the engaging portion 15 of the rotation member 5 , generating pulsing small electric discharges between the electrode and the engaging portion 15 of the rotation member 5 in a processing liquid or gas, and gradually depositing the electrode material on the engaging portion 15 by means of its energy.
- an electrode for deposition which is formed from fine-powder-like ceramic, surfaces of which is coated with a material having electric conductivity, is used.
- a processing liquid containing alkane hydrocarbons such as kerosene
- a coating of substances reacted by means of energy of the electric discharge for example, a substance composed of SiC or TiC
- an electrode formed of metallic Si (a crystal of Si without having any cavities therein) may be used.
- a roller bearing is deleted and a fluid bearing is formed instead. Further, hard, or of low friction, coating is formed at the engaging portion 15 of the rotation member 5 .
- the coating is composed of deposited layers gradually formed by reciprocally carrying out small welding by the electric discharges, gradient alloy layers are formed in a thickness direction of the coating and cohesive strength between the coating and a main body portion of the rotation member 5 is hence strengthened, thereby the coating is unlikely to peel off from the main body portion of the rotation member 5 .
- durability can be made higher as compared with the prior fluid bearing and it can be installed in a smaller space (a space smaller in a radial direction of the rotation member 5 ) as compared with the prior roller bearing. Because of capability of installation in a small space, a freedom of design at a time of designing the bearing increases.
- roller bearing comes to be unnecessary, installation is made easier and the production cost can be reduced.
- the film of the lubricating liquid between the engaging portion 15 of the rotation member 5 and the engagement subject portion 13 of the housing 3 comes to be unlikely to be broken and hence the durability of the bearing is further improved.
- the engagement subject portion 13 and the grooves 13 A maybe directly, without using the bush 19 , formed in the housing 3 .
- the pump may be deleted to supply the lubricating liquid to the space 17 between the engaging portion 15 and the engagement subject portion 13 and to the space 21 by, for example, pooling an appropriate amount of the lubricating liquid in the housing 3 and stirring the lubricating liquid by the gear 7 of the rotation member 5 .
- the coating maybe formed on the engagement subject portion 13 of the housing 3 .
- the formation of the coating is carried out after formation of the grooves 13 A on the engagement subject portion 13 of the housing 3 .
- coatings from the electrode are preferably formed on the end face 5 B and the end face 19 C in the same way as the case of the engaging portion 15 and the engagement subject portion 13 .
- the coatings may be formed porous. As so formed, the coatings in themselves come to be capable of storing the lubricating liquid and hence any damages such as galling which may happen to the bearing come to be unlikely to happen.
- the present embodiment may be applied to any gear boxes other than the accessory gear box and further applied to a bearing of a machine or a device provided with a housing and a rotation member rotatable with respect to the housing (the bearing provided between the housing and the rotation member).
- the turbine of the gas turbine (the gas turbine engine) and the rotation member of the rotating machine are rotatably provided in the engine casing of the gas turbine with the interposed roller bearings
- coating from the electrode may be treated on surfaces of regions of the rotation member of the rotating machine such as a turbine or a compressor of a gas turbine, where the inner ring of the roller bearing engages.
- the coating may be formed on surfaces of regions where the rollers and such of the roller bearing contacts.
- any damages such as galling in a case of installing the rotation member of the rotating machine such as the turbine and the compressor of the gas turbine and the roller bearing and wear in a case of driving the gas turbine can be prevented.
- variable stator vanes (variable vanes) 101 an installation angle of which can be changed, are disposed in a ring-like air flow path of the axial-flow compressor in the gas turbine among rows of rotor blades (not shown) at even intervals (only one of them shown in FIG. 3 ) in a circumferential direction, and shaft portions 103 at outer tip sides with respect to the variable stator vanes 101 are rotatably supported by boss portions 107 of the casing 105 via bushes 109 .
- Shaft portions 111 provided at inner tip sides of the variable stator vanes 101 are swingably supported by boss portions 115 provided at circular bearing members 113 , which enclose a rotor (not shown) provided with the rotor blades in the axial-flow compressor.
- arms 117 which are long in directions perpendicular to the shaft portions 103 are installed to the shaft portions 103 at the outer tip sides and distal end sides of the arms 117 are pivotally connected with connection portions provided with ring members (not shown) enclosing the casing 105 .
- outer peripheral surfaces of the shaft portions 103 and 111 are provided with coating layers 119 having lubricity as well as anti-abrasiveness.
- the coating layers 119 are so constituted as to contain ceramics such as cBN, TiC, WC, SiC, Cr 3 C 2 , Al 2 O 3 , ZrO 2 —Y, TiN, TiB so as to improve the anti-abrasiveness and hexagonal BN, MOS 2 , Cr 2 O 3 , WS 2 and BaZrO 4 so as to improve the lubricity.
- the coating layers 119 are formed in a following manner. More specifically, mixing powder of Ti (about 10%) for assuring electric conductivity, powder of TiC (about 40%) as an example of the ceramics having anti-abrasiveness and powder of hexagonal BN (about 50%) as an example of a lubricant material having lubricity; and compressing and molding them for example are carried out to form a molded body electrode 121 (see FIG. 4 ).
- This molded body electrode 121 is preferably subject to heat treatment after compression and molding so as to be temporarily sintered at temperatures below the sintering temperature.
- a pulsing electric discharge is generated therebetween in a processing tank (not shown) of an electric spark machine (not shown) and then electrode constituents of the molded body electrode 121 or compounds combined in the electric discharge atmosphere move to the shaft portions 103 and 111 as basic materials and are deposited on the surfaces of the shaft portions 103 and 111 to form the coating layers 119 .
- the coating layers 119 contain TiC and hexagonal BN and the anti-abrasiveness and the lubricity are improved.
- the electrode 121 a molded body electrode wherein powder of Ti and powder of hexagonal BN are mixed, compressed and molded, or an electrode wherein the appropriate heat treatment for temporary sintering is carried out, can be used. In these cases, if a pulsing electric discharge happens between the molded body electrode 121 and the shaft portions 103 and 111 , any carbides in the processing liquid in the processing tank of the electric spark machine and a part of Ti are combined to form TiC as a compound.
- the electrode 121 may be molded by slurry pouring, MIM (Metal Injection molding),spray forming (forming by spraying) or such.
- the coating layers 119 lead to that diffusion-penetration layers 119 A in which TiC and hexagonal BN from the electrode material diffuse and penetrate to several, m depth from the base material surface are formed and deposit layers 119 B in which fine particles of the electrode material are deposited on the diffusion-penetration layers 119 A are formed.
- variable stator vanes 101 because it is constituted to provide the coating layers 119 having anti-abrasiveness and lubricity for the shaft portions 103 and 111 of the variable stator vanes 101 provided in the compressor of the gas turbine engine, swing of the variable stator vanes 101 is capable of being smoothly carried out and the anti-abrasiveness of the shaft portions 103 and 111 is improved so that an exchange life of the variable stator vanes 101 comes to be a long life, thereby the aforementioned prior problem can be solved.
- the coating layers containing ceramics having anti-lubricity and the lubricating material on the peripheral surfaces of the shaft portions provided at the variable vanes for regulating the fluid are improved and the life of the shaft portions is further improved.
- the coating layers contain ceramics such as cBN, TiC, WC, SiC, Cr 3 C 2 , Al 2 O 3 , ZrO 2 —Y, TiN, TiB and a lubricating material such as hexagonal BN, MOS 2 , Cr 2 O 3 , WS 2 and BaZrO 4 , the anti-abrasiveness and the lubricity are improved.
- a pulsing electric discharge is generated between an electrode containing ceramics such as cBN, TiC, WC, SiC, Cr 3 C 2 , Al 2 O 3 , ZrO 2 —Y, TiN, TiB and a lubricating material such as hexagonal BN, MOS 2 , Cr 2 O 3 , WS 2 and BaZrO 4 and the shaft portions of the variable vanes for regulating the fluid
- the coating layers having anti-abrasiveness and lubricity are formed so that the anti-abrasiveness and the lubricity of the shaft portions are improved and the life of the shaft portions is further improved.
- the present invention is not limited to the embodiments such as aforementioned, and for example the coating layers 119 may be applied to portions of rotation shafts of swingable vanes (variable vanes) for regulating an impact angle of exhaust gas to vanes of turbine wheels by changing the flow direction of the exhaust gas in a turbo charger which uses the exhaust gas from an engine to compress an air to be supplied to the engine.
- the coating layers 119 are applied to the portions of the rotation shafts of the swingable vanes in the turbo charger, anti-abrasiveness of the rotation shafts is improved so as to be long life as well as swing of the vanes can be smoothly carried out, thereby a similar effect is given.
- Ti, TiC and hexagonal BN are contained as constituents of the coating layers 119 , as the ceramics, instead of TiC, TiN, TiB and such maybe applied. More specifically, proper selection may be allowable as taking anti-abrasiveness, lubricity and a degree of hardening by combining with carbon into consideration.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Sliding-Contact Bearings (AREA)
- Supercharger (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Powder Metallurgy (AREA)
- Control Of Turbines (AREA)
Abstract
Description
- The present invention relates to a bearing for a rotation body, where, for example, a pulsing electric discharge is generated between a molded body molded from powder of metal compounds as an electrode and a rotation member at an engaging portion between a housing of a gear box and a rotation member of the gear box, and a coating of the electrode material is formed on the bearing by means of energy of the electric discharges.
- Moreover, for example, the present invention relates to a shaft for a variable stator which is provided in a compressor of a gas turbine, a structure of a shaft of a variable stator of a variable turbine nozzle in a turbo charger and a method for surface treatment thereof, and more particularly to a structure in which a shaft is provided with a coating layer having anti-abrasiveness and lubricity and a method for surface treatment thereof.
-
FIG. 6 is a cross sectional view showing a schematic constitution of a prior accessorydrive gear box 200. - The accessory
drive gear box 200 for driving equipments such as an electric generator and a hydraulic pump is provided with ahousing 202. - Moreover, a rotation axis member (a rotation member) 206 integrally formed with a
gear 204 is provided with interposing a roller bearing 208 such as a cylindrical roller bearing so as to be rotatable with respect to the housing 202 (for example, “New Aeronautical Engineering, volume 8, Jet Engine (Structure Part)”, published by Japan Aeronautical Engineers' Association, May 29, 2000, the 1st edition, the 6th printing, p99 FIG. 3-73). On the other hand, as a speed reducer and such, a rotation member of which has greater revolution numbers than the accessorydrive gear box 200, there is known one using a fluid bearing instead of the roller bearing. - Moreover, a compressor provided in a gas turbine is provided with a variable stator. When abrasion occurs at a shaft of the variable stator and a clearance therebetween comes to be greater, precision of a direction angle of the variable stator decreases, therefore the whole of the variable stator has to be detached and exchanged when the abrasion of the shaft comes to be great. Therefore, there is proposed a constitution in which a detachable abrasive sleeve is provided on the shaft for protection of the shaft and a wore abrasive sleeve is exchanged to a new abrasive sleeve when the abrasive sleeve is greatly wore (for example, Japanese Patent Application Laid-open No. 2000-329139).
- Meanwhile, in the prior accessory
drive gear box 200, since the bearing is composed of the roller bearing, there is a problem that the bearing is hard to be installed in a small space. - On the other hand, the fluid bearing has a problem that, if a film of oil does not transiently exist, the housing and the rotation member directly contact each other and hence durability of the bearing may deteriorate.
- The above problem may also occur to any gear box other than the accessory drive gear box and further any bearing of a machine or a device provided with a housing and a rotation member which is rotatable relative to the housing (the bearing between the housing and the rotation member).
- Moreover, the constitution disclosed in the aforementioned patent publication is a constitution as shown in
FIG. 7 in which ashaft portion 147 of a variable stator detachably having anabrasive sleeve 145 is fit into acylindrical bush 143 fit in a hole provided in ahousing 141 and anantifriction layer 149 made of a material of low friction is provided between an outer periphery of theabrasive sleeve 145 and an inner periphery of thebush 143. - In accordance with the aforementioned constitution, since the
shaft portion 147 is protected by theabrasive sleeve 145, wear of theshaft 147 maybe prevented, however, since theabrasive sleeve 145 is subject to wear, theabrasive sleeve 145 needs to be detached and exchanged. More specifically, since theshaft portion 147 is prevented from wear, the whole of the variable stator is unnecessary to be exchanged, however, there is a problem that detachment and exchange of theabrasive sleeve 145 needs to be accomplished at relatively frequent intervals. - The present invention based on a first aspect is a rotation member, wherein, in a rotation member rotatably or swingably engaging with a housing, a pulsing electric discharge is generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment and the rotation member in a processing liquid or a gas, and a coating of the electrode material or any substance combined from the electrode material by energy of the electric discharges is formed on an engaging portion engaging with the housing by means of energy of the electric discharges.
- The present invention based on a second aspect is a rotation member, wherein, in the rotation member recited in the first aspect, a groove for pooling a lubrication liquid is formed on the engaging portion.
- The present invention based on a third aspect is a rotation member, wherein, in the rotation member recited in the first aspect or the second aspect, the metal powder or the metal compounds or ceramics are Ti, Si, cBN (cubic boron nitride), TiC (titanium carbide), WC (tungsten carbide), SiC (silicon carbide), Cr3C2 (chromium carbide), Al2O3 (aluminum oxide; alumina), ZrO2—Y (stabilized zirconium oxide; stabilized zirconia), TiN (titane nitride), TiB (titanium boride), hexagonal BN (boron nitride), MOS2 (molybdenum disulfide), Cr2O3, WS2 (tungsten disulfide) and BaZrO4 (barium zirconate).
- The present invention based on a fourth aspect is a rotation member, wherein, in the rotation member recited in any of the first through third aspect, a coating is formed in the pulsing electric discharge with rotating the rotation member.
- The present invention based on a fifth aspect is a housing, wherein, in a housing with which a rotation member rotatably or swingably engages, a pulsing electric discharge is generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment and the rotation member in a processing liquid or a gas, and a coating of the electrode material or any substance combined from the electrode material by energy of the electric discharges is formed on an engaging portion engaging with the rotation member by means of energy of the electric discharges.
- The present invention based on a sixth aspect is a housing, wherein, in the housing recited in the fifth aspect, a groove for pooling a lubrication liquid is formed on the engaging portion.
- The present invention based on a seventh aspect is a bearing for a rotation member, wherein, in a bearing of a rotation member rotatably engaging with a housing, a pulsing electric discharge is generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment and the rotation member in a processing liquid or a gas, and a coating of the electrode material or any substance combined from the electrode material by energy of the electric discharges is formed on at least one of an engaging portion engaging with the housing and a engagement subject portion of the housing having a slightly larger inner diameter than an outer diameter of the engaging portion and engaged with the engaging portion.
- The present invention based on an eighth aspect is a bearing for a rotation member, wherein, in the bearing for the rotation member recited in the seventh aspect, a groove for pooling a lubrication liquid is formed on at least one of the engaging portion and the engagement subject portion.
- The present invention based on a ninth aspect is a gear box assembly, wherein, in a gear box driven by a turbine shaft of a gas turbine, the gear box assembly has a housing supported by an engine casing of the gas turbine at the exterior of the engine casing and a rotation member provided with an engaging portion engaging with a engagement subject portion of the housing and provided to engage with the housing by the engaging portion so as to be rotatable relative to the housing in the interior of the housing, and an inner diameter of the engagement subject portion is formed slightly larger than an outer diameter of the engaging portion, and further a pulsing electric discharge is generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment and the rotation member in a processing liquid or a gas, and a coating of the electrode material or any substance combined from the electrode material by energy of the electric discharges is formed on the engaging portion of the rotation member by means of energy of the electric discharges, and a groove for pooling a lubrication liquid is formed on the engagement subject portion of the housing.
- The present invention based on a tenth aspect is a rotating machine, wherein, in a rotating machine in which a rotation member is provided to be rotatable in a casing with interposing a roller bearing, a coating is formed at a portion of the rotation member engaging with the roller bearing and the coating is composed of an electrode material or any substance combined from an electrode material by energy of electric discharges where the electric discharges are pulsingly generated between a molded body molded from a metal powder or a mixture of powders of one or more of metal compounds or ceramics as an electrode or the molded body after being processed with a heat treatment in a processing liquid or a gas.
- The present invention based on an eleventh aspect is a shaft structure for variable vanes for regulating a fluid, which is integrally provided with a coating layer including ceramics or ceramics and a solid lubricant having anti-abrasiveness and lubricity on a peripheral surface of a shaft portion provided in the variable vanes for regulating the fluid.
- The present invention based on a twelfth aspect is a shaft structure for variable vanes for regulating a fluid, wherein, in the variable vanes for regulating the fluid recited in the eleventh aspect, the ceramics are ceramics including one or more of cBN, TiC, WC, SiC, Cr3C2, Al2O3, ZrO2—Y, TiN, TiB, and the solid lubricant is a lubricant including one or more of hexagonal BN, MOS2, Cr2O3, WS2 and BaZrO4.
- The present invention based on a thirteenth aspect is a shaft structure for variable vanes for regulating a fluid, wherein, in the variable vanes for regulating the fluid recited in the eleventh aspect or the twelfth aspect, the variable vanes for regulating the fluid is variable stator vanes provided in a compressor and/or a turbine in a gas turbine engine or a supercharger.
- The present invention based on a fourteenth aspect is a method for surface treatment of a shaft of variable vanes for regulating a fluid, which includes generating a pulsing electric discharge between an electrode including ceramics such as cBN, TiC, WC, SiC, Cr3C2, Al2O3, ZrO2—Y, TiN and TiB or containing these ceramics and a solid lubricant such as hexagonal BN, MoS2, Cr2O3, WS2 and BaZrO4 and a shaft portion of the variable vanes for regulating the fluid, and forming a coating layer composed of electrode constituents or compounds combined in an electric discharge atmosphere having anti-abrasiveness and lubricity on a surface of the shaft portion.
- The present invention based on a fifteenth aspect is a method for surface treatment, wherein, in the method for the surface treatment recited in the fourteenth aspect, the coating layer is formed with rotating the shaft of the variable vanes for regulating the fluid.
-
FIG. 1 A cross sectional view showing a schematic constitution of an accessory drive gear box in accordance with an embodiment of the present invention. -
FIG. 2 A view showing a IIA-IIB cross section inFIG. 1 . -
FIG. 3 An explanatory drawing for embodying the present invention as variable vanes in a shaft portion of a variable stator provided in a compressor of a gas turbine engine. -
FIG. 4 An explanatory drawing explaining a case of forming a coating layer having anti-abrasiveness and lubricity on the shaft of the variable vanes. -
FIG. 5 An explanatory drawing showing a constitution of the coating layer. -
FIG. 6 A cross sectional view showing a schematic constitution of a prior accessory drive gear box. -
FIG. 7 An explanatory drawing showing a constitution of a shaft portion of a variable stator. -
FIG. 1 is a cross sectional view showing a schematic constitution of an accessory drive gear box in accordance with an embodiment of the present invention andFIG. 2 is a view showing a IIA-IIB cross section inFIG. 1 . - An accessory drive gear box (it may be referred to as “gear box” hereinafter.) 1 is a gear box driven by a turbine shaft of a gas turbine and used for driving equipments (such as an electric generator and a hydraulic pump) of the gas turbine.
- The accessory
drive gear box 1 is provided with ahousing 3, which is supported at the exterior of an engine casing of the gas turbine by the engine casing. Meanwhile, the engine casing is formed in a cylindrical shape so as to be provided with a compressor and a turbine in the interior thereof and form a gas flow path. - A
cylindrical rotation member 5 having electric conductivity is provided in the interior of thehousing 3 so as to be rotatable with respect to thehousing 3. Agear 7 is integrally provided at a medium portion with respect to a lengthwise direction of therotation member 5. Respective gears 9 and 11, which is provided integrally with the other rotation members (not shown) provided to be rotatable with respect to thehousing 3, engage with thegear 7. Meanwhile, - Further, the
rotation member 5 is made to receive a rotational force of the turbine shaft of the gas turbine via therespective gears 9 and 7 so as to rotate. Meanwhile, not-shown equipments such as an electric generator and a hydraulic pump are coupled with therotation member 5 and rotation of the rotatingmember 5 makes the electric generator generate electricity and the hydraulic pump generate hydraulic pressure. Moreover, thegear 7 and the gear 11 are capable of making the other rotation members rotate. - At a side of one end portion for example with respect to the lengthwise direction of the rotation member 5 (one end portion at the left side of
FIG. 1 ), anengaging portion 15 formed in a cylindrical side surface and engaged with a engagement subject portion (an opening of a cylindrical side surface shape) 13 of thehousing 3 is provided. Further, by engaging at theengaging portion 15, therotation member 5 is rotatable with respect to thehousing 3 in the interior of thehousing 3. - An inner diameter D1 of the
engagement subject portion 13 of thehousing 3 is formed to be slightly larger than an outer diameter D3 of theengaging portion 15 of therotation member 5 andplural grooves 13A for pooling a lubricating liquid such as a lubricating oil are formed on a surface of theengagement subject portion 13 of thehousing 3. - The
respective grooves 13A are provided to be long in the lengthwise direction of therotation member 5 and disposed at positions equally dividing a circumference of theengagement subject portion 13 of the cylindrical side surface shape. Meanwhile, therespective grooves 13A may be provided at theengaging portion 15 of therotation member 5. - To the
grooves 13A, the lubricating liquid such as the lubricating oil is supplied by a pump (now shown) driven by the rotational force of therotation member 5 for example and, by the supplied lubricating liquid, a thin coating of the lubricating liquid is formed at a space (a narrow clearance) 17 between theengagement subject portion 13 of thehousing 3 and theengaging portion 15 of therotation member 5 so as to form a fluid bearing. - The supply of the lubricating liquid to the
grooves 13A by the pump is carried out by, for example, using a through hole (not shown) provided in thehousing 3, one end portion of which is linked with thegrooves 13A and another end portion of which is linked with an electric discharge port of the pump via a pipe (not shown) for supplying the lubricating liquid. Furthermore, the lubricating liquid supplied to thegrooves 13A returns to the interior of thehousing 3 and is again supplied to thegrooves 13A by the pump. - Moreover, the
housing 3 is provided with ahole 3A to engage with an outerperipheral portion 19A of acylindrical bush 19 to support thebush 19. Further, by inserting thebush 19 into thehole 3A of thehousing 3 to be fixed, theengagement subject portion 13 of thehousing 3 is formed by an innerperipheral portion 19B of thebush 19. - As such constituted, machining of the
engagement subject portion 13 to form thegrooves 13A can be carried out with facility. Further, thebush 19 is composed of a white metal or such and thehousing 3 can be composed of any material lower in price than the white metal, thereby a production cost of thegear box 1 can be reduced. - The
rotation member 5 is provided with aflange 5A and oneend face 5B of theflange 5A is opposed to planar oneend face 19C in the lengthwise direction of the bush. Moreover, theend face 5B and theend face 19C are slightly separated so as to form a space (a narrow clearance) 21. - Further, because the lubricant liquid supplied to the
grooves 13A by the pump passes through thespace 21, thespace 21 filled with the lubricant liquid forms a fluid bearing of therotation member 5 in a thrust direction. Therefore, theengagement subject portion 13 may be referred to as an engagement subject portion in a radial direction, theend face 5B may be referred to as an engaging portion in the thrust direction and theend face 19C may be referred to as an engagement subject portion in the thrust direction. - Moreover, a fluid bearing similar to the left side is formed at another end portion in the lengthwise direction of the rotation member 5 (one end portion at the right side of
FIG. 1 ). - Next, a coating formed on the surface of the engaging
portion 15 of therotation member 5 will be described. - On the surface of the engaging
portion 15, the hard, or small in the coefficient of friction, coating is formed. - The coating is formed by making a member formed by a molded body as an electrode, making the electrode close to (for example in closeness about 0.02 mm) the engaging
portion 15 of therotation member 5, generating pulsing small electric discharges between the electrode and the engagingportion 15 of therotation member 5 in a processing liquid or gas, and gradually depositing the electrode material on the engagingportion 15 by means of its energy. - As the electrode, for example, a porous molded body molded from a powder including one or more ceramics (compounds of metal) such as cBN (cubic boron nitride), TiC (titanium carbide), WC (tungsten carbide), SiC (silicon carbide), Cr3C2 (chromiumcarbide), Al2O3 (aluminum oxide; alumina), ZrO2—Y (stabilized zirconium oxide; stabilized zirconia), TiN (titane nitride), TiB (titanium boride) or containing these ceramics and a solid lubricant including one or more of solid lubricants such as hexagonal BN (boron nitride), MoS2 (molybdenum disulfide), Cr2O3, WS2 (tungsten disulfide) and BaZrO4 (barium zirconate) by, for example, compressing them is used. Alternatively, a molded body produced by carrying out heat treatment with the aforementioned molded body in a vacuum furnace is used. Therefore, the coating is formed from the same material as the electrode or any compound combined in the electric discharge atmosphere.
- Meanwhile, in a case where the electrode does not have electric conductivity, one uses what fine-powder-like metal and fine-powder-like ceramic are mixed and combined to form as an electrode for deposition. Alternatively, an electrode for deposition, which is formed from fine-powder-like ceramic, surfaces of which is coated with a material having electric conductivity, is used.
- Alternatively, instead of the electrodes, one may compress and mold metal powder such as Si(silicon) and Ti(titanium) and form an electrode from a compressed powder body which is formed from the compressed and molded substance by heat treatment. More specifically, a porous electrode formed by combining fine metal powder such as Si and Ti may be used. In this case, electric discharge is generated in a condition that the electrode and the engaging
portion 15 of therotation member 5 exists in a processing liquid containing alkane hydrocarbons such as kerosene and a coating of substances reacted by means of energy of the electric discharge (for example, a substance composed of SiC or TiC) is formed on the surface of the engagingportion 15 of therotation member 5. - Furthermore, instead of compressing and molding, slurry pouring, MIM (Metal Injection Molding), spray forming (forming by spraying) and such may be applied to forming of the electrode.
- Still furthermore, instead of the porous electrode formed by combining fine metal powder of Si, an electrode formed of metallic Si (a crystal of Si without having any cavities therein) may be used.
- In accordance with the
gear box 1, in the bearing between therotation member 5 and thehousing 3, a roller bearing is deleted and a fluid bearing is formed instead. Further, hard, or of low friction, coating is formed at the engagingportion 15 of therotation member 5. - Moreover, because the coating is composed of deposited layers gradually formed by reciprocally carrying out small welding by the electric discharges, gradient alloy layers are formed in a thickness direction of the coating and cohesive strength between the coating and a main body portion of the
rotation member 5 is hence strengthened, thereby the coating is unlikely to peel off from the main body portion of therotation member 5. - Therefore, even if a film of the lubricant liquid between the engaging
portion 15 of therotation member 5 and theengagement subject portion 13 of thehousing 3 does not transiently exist for some reason, in other words, if the engagingportion 15 of therotation member 5 and theengagement subject portion 13 of thehousing 3 directly contact each other, the bearing is unlikely to wear and further the bearing is insusceptible to being broken by seizing and such and, as well, the bearing can be installed in a smaller space as compared with prior arts. - More specifically, in accordance with the bearing of the
gear box 1, or in other words the fluid bearing between the rotatingmember 5 and the bush 19 (the housing 3), durability can be made higher as compared with the prior fluid bearing and it can be installed in a smaller space (a space smaller in a radial direction of the rotation member 5) as compared with the prior roller bearing. Because of capability of installation in a small space, a freedom of design at a time of designing the bearing increases. - Therefore, it may be preferably applied to a gear box of a gas turbine for an airplane, which requires space saving at a time of installation.
- Moreover, because the roller bearing comes to be unnecessary, installation is made easier and the production cost can be reduced.
- Moreover, if the lubricating liquid is forcibly supplied to a clearance between the engaging
portion 15 of therotation member 5 and theengagement subject portion 13 of thehousing 3 by using the pump, the film of the lubricating liquid between the engagingportion 15 of therotation member 5 and theengagement subject portion 13 of thehousing 3 comes to be unlikely to be broken and hence the durability of the bearing is further improved. - Meanwhile, the
engagement subject portion 13 and thegrooves 13A maybe directly, without using thebush 19, formed in thehousing 3. - Further, the pump may be deleted to supply the lubricating liquid to the
space 17 between the engagingportion 15 and theengagement subject portion 13 and to thespace 21 by, for example, pooling an appropriate amount of the lubricating liquid in thehousing 3 and stirring the lubricating liquid by thegear 7 of therotation member 5. - Furthermore, instead of formation of the coating on the engaging
portion 15 of therotation member 5, or in addition to formation of the coating on the engagingportion 15 of therotation member 5, the coating maybe formed on theengagement subject portion 13 of thehousing 3. Meanwhile, in this case, the formation of the coating is carried out after formation of thegrooves 13A on theengagement subject portion 13 of thehousing 3. - Further, coatings from the electrode are preferably formed on the
end face 5B and theend face 19C in the same way as the case of the engagingportion 15 and theengagement subject portion 13. - Moreover, the coatings may be formed porous. As so formed, the coatings in themselves come to be capable of storing the lubricating liquid and hence any damages such as galling which may happen to the bearing come to be unlikely to happen.
- Further, the present embodiment may be applied to any gear boxes other than the accessory gear box and further applied to a bearing of a machine or a device provided with a housing and a rotation member rotatable with respect to the housing (the bearing provided between the housing and the rotation member).
- By the way, the turbine of the gas turbine (the gas turbine engine) and the rotation member of the rotating machine are rotatably provided in the engine casing of the gas turbine with the interposed roller bearings, coating from the electrode may be treated on surfaces of regions of the rotation member of the rotating machine such as a turbine or a compressor of a gas turbine, where the inner ring of the roller bearing engages. Meanwhile, in a case of a roller bearing which the inner ring does not exist, the coating may be formed on surfaces of regions where the rollers and such of the roller bearing contacts.
- As such, because the coating is formed on the regions where the inner rings and such of the roller bearing engages, any damages such as galling in a case of installing the rotation member of the rotating machine such as the turbine and the compressor of the gas turbine and the roller bearing and wear in a case of driving the gas turbine can be prevented.
- In describing a second embodiment of the present invention by referring the drawings, a case where the present invention is embodied in a variable stator in a compressor provided in a gas turbine will be described. In an axial-flow compressor in a gas turbine, by changing installation angles of inflow guiding fins and upstream several stages of stator vanes, regulation of angle of incidence relative to rotor blades into appropriate values as far as possible is in general carried out.
- Referring to
FIG. 3 , variable stator vanes (variable vanes) 101, an installation angle of which can be changed, are disposed in a ring-like air flow path of the axial-flow compressor in the gas turbine among rows of rotor blades (not shown) at even intervals (only one of them shown inFIG. 3 ) in a circumferential direction, andshaft portions 103 at outer tip sides with respect to thevariable stator vanes 101 are rotatably supported byboss portions 107 of thecasing 105 viabushes 109.Shaft portions 111 provided at inner tip sides of thevariable stator vanes 101 are swingably supported byboss portions 115 provided atcircular bearing members 113, which enclose a rotor (not shown) provided with the rotor blades in the axial-flow compressor. - As well, to swing the
variable stator vanes 101 with respect to theshaft portions arms 117 which are long in directions perpendicular to theshaft portions 103 are installed to theshaft portions 103 at the outer tip sides and distal end sides of thearms 117 are pivotally connected with connection portions provided with ring members (not shown) enclosing thecasing 105. - Therefore, if the ring members are swung to the peripheral direction of the
casing 105, the distal end sides of thearms 117 is moved to the peripheral direction. It leads to that theshaft portions 103 are swung around axial centers and the installation angles are changed. - As mentioned above, repeating swings of the
shaft portions variable stator vanes 1 cause wear of theshaft portions shaft portions variable stator vanes 101 are carried out because deviation of the regulation angle of thevariable stator vanes 101 occurs. - Thus, in accordance with the present embodiment, for suppression of wear of the
shaft portions shaft portions coating layers 119 having lubricity as well as anti-abrasiveness. The coating layers 119 are so constituted as to contain ceramics such as cBN, TiC, WC, SiC, Cr3C2, Al2O3, ZrO2—Y, TiN, TiB so as to improve the anti-abrasiveness and hexagonal BN, MOS2, Cr2O3, WS2 and BaZrO4 so as to improve the lubricity. - The coating layers 119 are formed in a following manner. More specifically, mixing powder of Ti (about 10%) for assuring electric conductivity, powder of TiC (about 40%) as an example of the ceramics having anti-abrasiveness and powder of hexagonal BN (about 50%) as an example of a lubricant material having lubricity; and compressing and molding them for example are carried out to form a molded body electrode 121 (see
FIG. 4 ). This moldedbody electrode 121 is preferably subject to heat treatment after compression and molding so as to be temporarily sintered at temperatures below the sintering temperature. - After compressing and molding the molded
body electrode 121 as mentioned above, or after compressing and temporary sintering, in a condition that small spaces are kept between the moldedbody electrode 121 and theshaft portions variable stator vanes 101, as rotating theshaft portions variable stator vanes 101, a pulsing electric discharge is generated therebetween in a processing tank (not shown) of an electric spark machine (not shown) and then electrode constituents of the moldedbody electrode 121 or compounds combined in the electric discharge atmosphere move to theshaft portions shaft portions - Meanwhile, as the
electrode 121, a molded body electrode wherein powder of Ti and powder of hexagonal BN are mixed, compressed and molded, or an electrode wherein the appropriate heat treatment for temporary sintering is carried out, can be used. In these cases, if a pulsing electric discharge happens between the moldedbody electrode 121 and theshaft portions - Further, the
electrode 121 may be molded by slurry pouring, MIM (Metal Injection molding),spray forming (forming by spraying) or such. - As mentioned above, because the surfaces of the
shaft portions shaft portions penetration layers 119A in which TiC and hexagonal BN from the electrode material diffuse and penetrate to several, m depth from the base material surface are formed anddeposit layers 119B in which fine particles of the electrode material are deposited on the diffusion-penetration layers 119A are formed. - As being understood from the above description, in the present embodiment, because it is constituted to provide the coating layers 119 having anti-abrasiveness and lubricity for the
shaft portions variable stator vanes 101 provided in the compressor of the gas turbine engine, swing of thevariable stator vanes 101 is capable of being smoothly carried out and the anti-abrasiveness of theshaft portions variable stator vanes 101 comes to be a long life, thereby the aforementioned prior problem can be solved. - More specifically, because it is provided with the coating layers containing ceramics having anti-lubricity and the lubricating material on the peripheral surfaces of the shaft portions provided at the variable vanes for regulating the fluid, the anti-abrasiveness and the lubricity of the shaft portions are improved and the life of the shaft portions is further improved.
- Moreover, in the shaft structure of the variable vanes for regulating the fluid, because the coating layers contain ceramics such as cBN, TiC, WC, SiC, Cr3C2, Al2O3, ZrO2—Y, TiN, TiB and a lubricating material such as hexagonal BN, MOS2, Cr2O3, WS2 and BaZrO4, the anti-abrasiveness and the lubricity are improved.
- Moreover, because a pulsing electric discharge is generated between an electrode containing ceramics such as cBN, TiC, WC, SiC, Cr3C2, Al2O3, ZrO2—Y, TiN, TiB and a lubricating material such as hexagonal BN, MOS2, Cr2O3, WS2 and BaZrO4 and the shaft portions of the variable vanes for regulating the fluid, by forming the coating composed of the electrode constituents or the compounds combined in the electric discharge atmosphere on the shaft portions, the coating layers having anti-abrasiveness and lubricity are formed so that the anti-abrasiveness and the lubricity of the shaft portions are improved and the life of the shaft portions is further improved.
- By the way, the present invention is not limited to the embodiments such as aforementioned, and for example the coating layers 119 may be applied to portions of rotation shafts of swingable vanes (variable vanes) for regulating an impact angle of exhaust gas to vanes of turbine wheels by changing the flow direction of the exhaust gas in a turbo charger which uses the exhaust gas from an engine to compress an air to be supplied to the engine.
- If the coating layers 119 are applied to the portions of the rotation shafts of the swingable vanes in the turbo charger, anti-abrasiveness of the rotation shafts is improved so as to be long life as well as swing of the vanes can be smoothly carried out, thereby a similar effect is given.
- Meanwhile, in the aforementioned description, though it is described that Ti, TiC and hexagonal BN are contained as constituents of the coating layers 119, as the ceramics, instead of TiC, TiN, TiB and such maybe applied. More specifically, proper selection may be allowable as taking anti-abrasiveness, lubricity and a degree of hardening by combining with carbon into consideration.
- The contents of Japanese Patent Application No. 2003-166992 (filed Jun. 11, 2003) and Japanese Patent Application No. 2003-167030 (filed Jun. 11, 2003) are incorporated in this specification of the present application by reference in its entirety.
- Moreover, the present invention is not limited to the aforementioned embodiments of the invention and will be embodied in other versions by appropriate modifications.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/237,211 US20120009357A1 (en) | 2003-06-11 | 2011-09-20 | Rotation member, housing, bearing, gearbox, rotating machine, shaft structure and surface treatment method |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-166992 | 2003-06-11 | ||
JP2003166992 | 2003-06-11 | ||
JP2003167030 | 2003-06-11 | ||
JP2003-167030 | 2003-06-11 | ||
PCT/JP2004/008107 WO2004113748A1 (en) | 2003-06-11 | 2004-06-10 | Rotating member, housing, bearing, gearbox, rotating machine, shaft structure, and surface treatment method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060280597A1 true US20060280597A1 (en) | 2006-12-14 |
Family
ID=33543464
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/560,131 Abandoned US20060280597A1 (en) | 2003-06-11 | 2004-06-10 | Rotating member, housing, bearing, gearbox, rotating machine, shaft structure, and surface treatment method |
US13/237,211 Abandoned US20120009357A1 (en) | 2003-06-11 | 2011-09-20 | Rotation member, housing, bearing, gearbox, rotating machine, shaft structure and surface treatment method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/237,211 Abandoned US20120009357A1 (en) | 2003-06-11 | 2011-09-20 | Rotation member, housing, bearing, gearbox, rotating machine, shaft structure and surface treatment method |
Country Status (5)
Country | Link |
---|---|
US (2) | US20060280597A1 (en) |
EP (2) | EP1640626B1 (en) |
JP (2) | JPWO2004113748A1 (en) |
TW (1) | TWI252893B (en) |
WO (1) | WO2004113748A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060035068A1 (en) * | 2002-09-24 | 2006-02-16 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US20100086398A1 (en) * | 2002-09-24 | 2010-04-08 | Ihi Corporation | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US20100124490A1 (en) * | 2002-10-09 | 2010-05-20 | Ihi Corporation | Rotating member and method for coating the same |
US20100143030A1 (en) * | 2007-01-31 | 2010-06-10 | Koji Tanaka | Shaft antiseizing type sprocket |
US8414248B2 (en) | 2008-12-30 | 2013-04-09 | Rolls-Royce Corporation | Variable geometry vane |
CN103527264A (en) * | 2013-11-01 | 2014-01-22 | 汉美综合科技(常州)有限公司 | Sliding nozzle |
US9193007B2 (en) | 2012-02-29 | 2015-11-24 | Sumitomo Electric Industries, Ltd. | Coated rotary tool and method for manufacturing the same |
US20190068024A1 (en) * | 2016-02-15 | 2019-02-28 | Indiana University Research And Technology Corporation | High torque density electric motor/generator with rolling element |
US20200350144A1 (en) * | 2014-12-05 | 2020-11-05 | Agc Flat Glass North America, Inc. | Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces |
EP3768983B1 (en) | 2018-03-23 | 2022-01-19 | Miba Gleitlager Austria GmbH | Wind turbine gearbox and method for producing a wind turbine gearbox |
US20230175527A1 (en) * | 2020-05-06 | 2023-06-08 | Safran Helicopter Engines | Turbomachine compressor having a stationary wall provided with a shape treatment |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2885182B1 (en) * | 2005-04-28 | 2010-11-26 | Snecma Moteurs | VARIABLE-TIMING STATOR VANE, PROCESS FOR REPAIRING A DAWN |
EP2329927A4 (en) * | 2008-10-02 | 2014-06-11 | Ihi Corp | Cutter |
JP5755555B2 (en) * | 2011-12-08 | 2015-07-29 | 株式会社東芝 | Valve device, method for manufacturing valve device, and method for repairing valve device |
US20140224859A1 (en) * | 2012-02-29 | 2014-08-14 | Sumitomo Electric Industries, Ltd. | Coated rotary tool and method for manufacturing the same |
DE102013212488B4 (en) * | 2013-06-27 | 2016-01-07 | MTU Aero Engines AG | Verstellleitschaufelanordnung |
JP2016070258A (en) * | 2014-10-02 | 2016-05-09 | 株式会社Ihi | Contact type gas seal structure and turbo rotary machine |
CN106151467B (en) * | 2015-04-30 | 2018-07-20 | 徐州超杰电动车配件有限公司 | A kind of aluminium alloy gear box |
GB2538283B (en) * | 2015-05-14 | 2021-06-23 | Mahle Int Gmbh | Plain bearing and method |
CN106286378B (en) * | 2015-05-20 | 2020-12-01 | 浙江三花汽车零部件有限公司 | Centrifugal pump |
TWI568926B (en) * | 2016-04-01 | 2017-02-01 | 峰安車業股份有限公司 | Turbo rotor and manufacturing method of turbo rotor |
JP6650347B2 (en) * | 2016-06-01 | 2020-02-19 | 三菱重工業株式会社 | Turbocharger and method of manufacturing the same |
US10519809B2 (en) | 2016-10-21 | 2019-12-31 | Pratt & Whitney Canada Corp. | Liner for mounting socket of magnesium housing of aircraft engine |
JP6528288B1 (en) * | 2017-11-10 | 2019-06-12 | 三菱重工業株式会社 | Rotating machine, journal bearing |
DE102020209085A1 (en) * | 2020-07-21 | 2022-01-27 | MTU Aero Engines AG | BLADE ASSEMBLY FOR A FLUID MACHINE |
US11661861B2 (en) * | 2021-03-03 | 2023-05-30 | Garrett Transportation I Inc. | Bi-metal variable geometry turbocharger vanes and methods for manufacturing the same using laser cladding |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3711171A (en) * | 1969-12-08 | 1973-01-16 | Kacarb Products Corp | Ceramic bearings |
US3764189A (en) * | 1970-12-29 | 1973-10-09 | Mtu Muenchen Gmbh | Bearing for pivotally mounted guide vanes in thermal turbomachines |
US4371312A (en) * | 1980-04-03 | 1983-02-01 | Daimler-Benz Aktiengesellschaft | Bucket for an adjustable turbine inlet guide baffle system |
US4792277A (en) * | 1987-07-08 | 1988-12-20 | United Technologies Corporation | Split shroud compressor |
US4861228A (en) * | 1987-10-10 | 1989-08-29 | Rolls-Royce Plc | Variable stator vane assembly |
US5185216A (en) * | 1989-11-20 | 1993-02-09 | Daido Metal Company Ltd. | Composite plating film for sliding member |
US5190450A (en) * | 1992-03-06 | 1993-03-02 | Eastman Kodak Company | Gear pump for high viscosity materials |
US5660480A (en) * | 1995-12-18 | 1997-08-26 | Ntn Corporation | Externally pressurized bearing spindle |
US6096436A (en) * | 1996-04-04 | 2000-08-01 | Kennametal Inc. | Boron and nitrogen containing coating and method for making |
US6139261A (en) * | 1999-04-16 | 2000-10-31 | General Electric Company | Bushing assembly with removable wear sleeve |
US6234678B1 (en) * | 1997-12-20 | 2001-05-22 | Daido Metal Company Ltd. | Plain bearing |
US6575635B1 (en) * | 1999-11-04 | 2003-06-10 | Daido Metal Company, Ltd. | Multi-layer sliding bearing |
US6655845B1 (en) * | 2001-04-22 | 2003-12-02 | Diamicron, Inc. | Bearings, races and components thereof having diamond and other superhard surfaces |
US20040028303A1 (en) * | 2001-02-27 | 2004-02-12 | Atsushi Ueno | Synthetic resin sliding bearing |
US6764219B2 (en) * | 2002-04-02 | 2004-07-20 | The Timken Company | Full complement antifriction bearing |
US20040240991A1 (en) * | 2003-05-27 | 2004-12-02 | Bruce Robert W. | Variable stator vane bushings and washers |
US6863994B2 (en) * | 2001-02-19 | 2005-03-08 | Daido Metal Company Ltd. | Sliding bearing and method of manufacturing the same |
US6874942B2 (en) * | 2001-03-02 | 2005-04-05 | Nsk Ltd. | Rolling device |
US7021042B2 (en) * | 2002-12-13 | 2006-04-04 | United Technologies Corporation | Geartrain coupling for a turbofan engine |
US7163369B2 (en) * | 2003-05-27 | 2007-01-16 | General Electric Company | Variable stator vane bushings and washers |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3367628A (en) * | 1966-10-31 | 1968-02-06 | United Aircraft Corp | Movable vane unit |
JPS58131427A (en) * | 1982-01-29 | 1983-08-05 | Hitachi Ltd | journal bearing |
JPH0425612A (en) * | 1990-05-22 | 1992-01-29 | Iseki & Co Ltd | plain bearing |
JPH04140509A (en) * | 1990-09-28 | 1992-05-14 | Nippon Seiko Kk | Dynamic pressure fluid bearing |
JPH04308328A (en) * | 1991-04-04 | 1992-10-30 | Ishikawajima Harima Heavy Ind Co Ltd | Stator blade support structure of variable stator blade gas turbine |
JPH05125521A (en) * | 1991-10-30 | 1993-05-21 | Riken Corp | Sliding material and its manufacture |
JP3733574B2 (en) * | 1995-05-19 | 2006-01-11 | 石川島播磨重工業株式会社 | Sliding bearing of variable stator blade for gas turbine |
JPH0931628A (en) * | 1995-07-25 | 1997-02-04 | Riken Corp | Sliding member and its production |
US5858479A (en) * | 1996-01-17 | 1999-01-12 | Japan Science And Technology Corporation | Surface treating method by electric discharge |
JPH111753A (en) * | 1997-06-10 | 1999-01-06 | Ishikawajima Harima Heavy Ind Co Ltd | High temperature plain bearings |
US6602561B1 (en) * | 1998-05-13 | 2003-08-05 | Mitsubishi Denki Kabushiki Kaisha | Electrode for discharge surface treatment and manufacturing method therefor and discharge surface treatment method and device |
JP2000136827A (en) * | 1998-11-02 | 2000-05-16 | Shinshu Ceramics:Kk | Manufacture of slide member and slide member |
DE19883016T1 (en) * | 1998-11-13 | 2002-01-31 | Mitsubishi Electric Corp | Method of surface treatment using an electrical discharge and an electrode |
DE19883017B4 (en) * | 1998-11-13 | 2007-09-27 | Mitsubishi Denki K.K. | Discharge surface treating method comprises generating a pulsating discharge between an object to be surface treated and a discharge electrode containing a corrosion resistant material, e.g. chromium, in a working fluid |
DE19883021B4 (en) * | 1998-11-13 | 2006-02-02 | Mitsubishi Denki K.K. | Apparatus for discharge surface treatment comprises a number of electrodes insulated electrically from each other, and connected to a power supply |
JP2001072986A (en) * | 1999-09-03 | 2001-03-21 | Nagasaki Prefecture | Sliding member having thin carbon film coating and preparation thereof |
JP2001279465A (en) * | 2000-03-29 | 2001-10-10 | Mitsubishi Electric Corp | Surface discharge treating method, electrode for surface treatment used therefor and obtained surface treated film |
US6495002B1 (en) * | 2000-04-07 | 2002-12-17 | Hy-Tech Research Corporation | Method and apparatus for depositing ceramic films by vacuum arc deposition |
JP2002276646A (en) * | 2001-03-16 | 2002-09-25 | Hitachi Ltd | Radial bearing and transmission using the same |
JP2003129219A (en) * | 2001-10-18 | 2003-05-08 | Ntn Corp | PROCESS FOR MAKING MoS2 COMPOSITE FILM |
RU2277712C2 (en) | 2001-10-31 | 2006-06-10 | Пфайзер Продактс Инк. | Serological assay for neospora caninum |
JP2003167030A (en) | 2001-11-30 | 2003-06-13 | Matsushita Electric Ind Co Ltd | Semiconductor integrated circuit |
RU2320775C2 (en) * | 2002-09-24 | 2008-03-27 | Исикавадзима-Харима Хэви Индастриз Ко., Лтд. | Method for depositing of coating onto sliding surface of fire-resistant member, fire-resistant member, and electrode for electric discharge treatment of surface |
-
2004
- 2004-06-10 US US10/560,131 patent/US20060280597A1/en not_active Abandoned
- 2004-06-10 EP EP04745737A patent/EP1640626B1/en not_active Expired - Lifetime
- 2004-06-10 EP EP11179918A patent/EP2392833A1/en not_active Withdrawn
- 2004-06-10 WO PCT/JP2004/008107 patent/WO2004113748A1/en active Application Filing
- 2004-06-10 JP JP2005507202A patent/JPWO2004113748A1/en active Pending
- 2004-06-11 TW TW093116936A patent/TWI252893B/en not_active IP Right Cessation
-
2010
- 2010-02-15 JP JP2010030427A patent/JP2010168660A/en active Pending
-
2011
- 2011-09-20 US US13/237,211 patent/US20120009357A1/en not_active Abandoned
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3711171A (en) * | 1969-12-08 | 1973-01-16 | Kacarb Products Corp | Ceramic bearings |
US3764189A (en) * | 1970-12-29 | 1973-10-09 | Mtu Muenchen Gmbh | Bearing for pivotally mounted guide vanes in thermal turbomachines |
US4371312A (en) * | 1980-04-03 | 1983-02-01 | Daimler-Benz Aktiengesellschaft | Bucket for an adjustable turbine inlet guide baffle system |
US4792277A (en) * | 1987-07-08 | 1988-12-20 | United Technologies Corporation | Split shroud compressor |
US4861228A (en) * | 1987-10-10 | 1989-08-29 | Rolls-Royce Plc | Variable stator vane assembly |
US5185216A (en) * | 1989-11-20 | 1993-02-09 | Daido Metal Company Ltd. | Composite plating film for sliding member |
US5190450A (en) * | 1992-03-06 | 1993-03-02 | Eastman Kodak Company | Gear pump for high viscosity materials |
US5660480A (en) * | 1995-12-18 | 1997-08-26 | Ntn Corporation | Externally pressurized bearing spindle |
US6096436A (en) * | 1996-04-04 | 2000-08-01 | Kennametal Inc. | Boron and nitrogen containing coating and method for making |
US6234678B1 (en) * | 1997-12-20 | 2001-05-22 | Daido Metal Company Ltd. | Plain bearing |
US6139261A (en) * | 1999-04-16 | 2000-10-31 | General Electric Company | Bushing assembly with removable wear sleeve |
US6575635B1 (en) * | 1999-11-04 | 2003-06-10 | Daido Metal Company, Ltd. | Multi-layer sliding bearing |
US6863994B2 (en) * | 2001-02-19 | 2005-03-08 | Daido Metal Company Ltd. | Sliding bearing and method of manufacturing the same |
US20040028303A1 (en) * | 2001-02-27 | 2004-02-12 | Atsushi Ueno | Synthetic resin sliding bearing |
US6874942B2 (en) * | 2001-03-02 | 2005-04-05 | Nsk Ltd. | Rolling device |
US6655845B1 (en) * | 2001-04-22 | 2003-12-02 | Diamicron, Inc. | Bearings, races and components thereof having diamond and other superhard surfaces |
US6764219B2 (en) * | 2002-04-02 | 2004-07-20 | The Timken Company | Full complement antifriction bearing |
US7021042B2 (en) * | 2002-12-13 | 2006-04-04 | United Technologies Corporation | Geartrain coupling for a turbofan engine |
US20040240991A1 (en) * | 2003-05-27 | 2004-12-02 | Bruce Robert W. | Variable stator vane bushings and washers |
US7163369B2 (en) * | 2003-05-27 | 2007-01-16 | General Electric Company | Variable stator vane bushings and washers |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9187831B2 (en) | 2002-09-24 | 2015-11-17 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US20100086398A1 (en) * | 2002-09-24 | 2010-04-08 | Ihi Corporation | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US20060035068A1 (en) * | 2002-09-24 | 2006-02-16 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US9284647B2 (en) | 2002-09-24 | 2016-03-15 | Mitsubishi Denki Kabushiki Kaisha | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US20100124490A1 (en) * | 2002-10-09 | 2010-05-20 | Ihi Corporation | Rotating member and method for coating the same |
US20100143030A1 (en) * | 2007-01-31 | 2010-06-10 | Koji Tanaka | Shaft antiseizing type sprocket |
US8414248B2 (en) | 2008-12-30 | 2013-04-09 | Rolls-Royce Corporation | Variable geometry vane |
US9193007B2 (en) | 2012-02-29 | 2015-11-24 | Sumitomo Electric Industries, Ltd. | Coated rotary tool and method for manufacturing the same |
CN103527264A (en) * | 2013-11-01 | 2014-01-22 | 汉美综合科技(常州)有限公司 | Sliding nozzle |
US20200350144A1 (en) * | 2014-12-05 | 2020-11-05 | Agc Flat Glass North America, Inc. | Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces |
US11875976B2 (en) * | 2014-12-05 | 2024-01-16 | Agc Flat Glass North America, Inc. | Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces |
US20190068024A1 (en) * | 2016-02-15 | 2019-02-28 | Indiana University Research And Technology Corporation | High torque density electric motor/generator with rolling element |
US11682945B2 (en) * | 2016-02-15 | 2023-06-20 | Indiana University Research And Technology Corporation | High torque density electric motor/generator with rolling element |
EP3768983B1 (en) | 2018-03-23 | 2022-01-19 | Miba Gleitlager Austria GmbH | Wind turbine gearbox and method for producing a wind turbine gearbox |
US11644012B2 (en) | 2018-03-23 | 2023-05-09 | Miba Gleitlager Austria Gmbh | Wind turbine gearbox and method for producing a wind turbine gearbox |
US12140121B2 (en) | 2018-03-23 | 2024-11-12 | Miba Gleitlager Austria Gmbh | Wind turbine gearbox and method for producing a wind turbine gearbox |
US20230175527A1 (en) * | 2020-05-06 | 2023-06-08 | Safran Helicopter Engines | Turbomachine compressor having a stationary wall provided with a shape treatment |
Also Published As
Publication number | Publication date |
---|---|
EP1640626B1 (en) | 2011-11-09 |
EP1640626A1 (en) | 2006-03-29 |
JPWO2004113748A1 (en) | 2006-08-03 |
WO2004113748A1 (en) | 2004-12-29 |
TW200506236A (en) | 2005-02-16 |
US20120009357A1 (en) | 2012-01-12 |
TWI252893B (en) | 2006-04-11 |
EP1640626A4 (en) | 2007-01-17 |
EP2392833A1 (en) | 2011-12-07 |
JP2010168660A (en) | 2010-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120009357A1 (en) | Rotation member, housing, bearing, gearbox, rotating machine, shaft structure and surface treatment method | |
US5705231A (en) | Method of producing a segmented abradable ceramic coating system | |
US7445427B2 (en) | Variable stator vane assembly and bushing thereof | |
US6325380B1 (en) | Face seal assembly | |
EP0705979A1 (en) | Efficiency enhanced fluid pump or compressor | |
CN104718349B (en) | Rotor-stator assemblies for gas-turbine unit | |
EP2728212A1 (en) | Bearing device for turbocharger | |
EP2372104B1 (en) | Blade outer air seal with improved efficiency | |
JPH06507460A (en) | Turbocharger thrust bearing | |
EP2722506A1 (en) | Turbocharger | |
EP2904216A1 (en) | Aluminum based abradable material with reduced metal transfer to blades | |
EP2500606B1 (en) | Seal structure of fluid device | |
JPH0633706A (en) | Fluid machine with rotor | |
US20230265849A1 (en) | Low Coefficient of Expansion Rotors for Vacuum Boosters | |
CN100453835C (en) | Rotating parts, housings, bearings, gearboxes, rotating machinery, shaft structures and surface treatment methods | |
JPS58119926A (en) | Turbocharger bearing device | |
CN104507602B (en) | The wear-resistant coating made of the material with low surface roughness | |
EP2917613B1 (en) | Piston rod clamping system | |
US20150226110A1 (en) | Turbocharger waste-gate valve assembly wear reduction | |
JP4197286B2 (en) | Rotating shaft of rotating body and manufacturing method thereof | |
US10662943B2 (en) | External rotor pump with a surface structure having a load-bearing region and a non-load bearing region | |
KR20000022347A (en) | Piston rings and/or a piston in an internal combustion engine of the diesel type and a method of running-in of a diesel engine | |
US12104595B2 (en) | Pressure pockets on the hollow wheel | |
JP2756806B2 (en) | Thrust bearing structure of scroll compressor | |
JPH10246233A (en) | Composite coating sliding product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OCHIAI, HIROYUKI;WATANABE, MITSUTOSHI;FURUKAWA, TAKASHI;AND OTHERS;REEL/FRAME:017890/0980;SIGNING DATES FROM 20060320 TO 20060324 Owner name: ISHIKAWAJIMA-HARIMA HEAVY INDUSTRIES CO., LTD., JA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OCHIAI, HIROYUKI;WATANABE, MITSUTOSHI;FURUKAWA, TAKASHI;AND OTHERS;REEL/FRAME:017890/0980;SIGNING DATES FROM 20060320 TO 20060324 |
|
AS | Assignment |
Owner name: IHI CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:ISHIKAWAJIMA-HARIMA HEAVY INDUSTRIES CO., LTD.;REEL/FRAME:027172/0661 Effective date: 20070701 |
|
AS | Assignment |
Owner name: IHI CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITSUBISHI DENKI KABUSHIKI KAISHA;REEL/FRAME:027333/0547 Effective date: 20111125 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |