US20060270087A1 - Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD) - Google Patents
Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD) Download PDFInfo
- Publication number
- US20060270087A1 US20060270087A1 US11/444,083 US44408306A US2006270087A1 US 20060270087 A1 US20060270087 A1 US 20060270087A1 US 44408306 A US44408306 A US 44408306A US 2006270087 A1 US2006270087 A1 US 2006270087A1
- Authority
- US
- United States
- Prior art keywords
- polar
- substrate
- nitride
- plane
- growing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 8
- 229910002601 GaN Inorganic materials 0.000 title description 53
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 230000006911 nucleation Effects 0.000 claims abstract description 23
- 238000010899 nucleation Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 20
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 16
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 239000002253 acid Substances 0.000 claims abstract description 6
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 abstract description 11
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 30
- 239000010408 film Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 7
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000004630 atomic force microscopy Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 229910010092 LiAlO2 Inorganic materials 0.000 description 3
- 208000012868 Overgrowth Diseases 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011066 ex-situ storage Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910010936 LiGaO2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02516—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Definitions
- DenBaars entitled “DEFECT REDUCTION OF NON-POLAR GALLIUM NITRIDE WITH SINGLE-STEP SIDEWALL LATERAL EPITAXIAL OVERGROWTH,” attorneys' docket no. 30794.135-US-P1 (2005-565);
- the present invention relates to the growth of planar non-polar ⁇ 1-1 0 0 ⁇ m-plane gallium nitride (GaN) with metalorganic chemical vapor deposition (MOCVD).
- GaN planar non-polar ⁇ 1-1 0 0 ⁇ m-plane gallium nitride
- MOCVD metalorganic chemical vapor deposition
- Gallium nitride (GaN) and its ternary and quaternary compounds are prime candidates for fabrication of visible and ultraviolet high-power and high-performance optoelectronic devices and electronic devices. These devices are typically grown epitaxially by growth techniques including molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), or hydride vapor phase epitaxy (HVPE).
- MBE molecular beam epitaxy
- MOCVD metalorganic chemical vapor deposition
- HVPE hydride vapor phase epitaxy
- substrate is critical for achieving the desired GaN growth orientation.
- Some of the most widely used substrates for III-N growth include SiC, Al 2 O 3 , and LiAlO 2 .
- Various crystallographic orientations of these substrates are commercially available.
- FIGS. 1 ( a ) and 1 ( b ) are schematics of crystallographic directions and planes of interest in hexagonal GaN. Specifically, these schematics show the different crystallographic growth directions and also the planes of interest in the hexagonal wurtzite GaN structure, wherein FIG. 1 ( a ) shows the crystallographic directions a 1 , a 2 , a 3 , c, ⁇ 10-10> and ⁇ 11-20>, and FIG. 1 ( b ) shows planes a (11-20), m (10-10) and r (10-12).
- the fill patterns of FIG. 1 ( b ) are intended to illustrate the planes of interest, but do not represent the materials of the structure.
- Such polarization effects decrease the likelihood of electrons and holes recombining, causing the final device to perform poorly.
- One possible approach for eliminating piezoelectric polarization effects in GaN optoelectronic devices is to grow the devices on non-polar planes of the crystal such as a- ⁇ 11-20 ⁇ and m- ⁇ 1-100 ⁇ planes family of GaN. Such planes contain equal numbers of Ga and N atoms and are charge-neutral.
- Planar ⁇ 1-100 ⁇ m-plane GaN growth has been developed by HVPE and MBE methods. However, prior to the invention described herein, planar m-plane GaN growth had not been accomplished with MOCVD.
- the general purpose of the present invention is to grow planar non-polar m- ⁇ 1-100 ⁇ plane GaN material using MOCVD.
- the method includes performing a solvent clean and acid dip of an m-SiC substrate to remove oxide from the surface of the substrate ex situ prior to growth, in situ annealing of the substrate, growing an aluminum nitride (AIN) nucleation layer on the annealed substrate, and growing the non-polar m-plane GaN epitaxial layer on the nucleation layer with MOCVD.
- the present invention takes advantage of non-polar nature of m-plane GaN to eliminate polarization fields, and gives rise to flexibility in growth variables, such as temperature, pressure and precursor flows, utilizing the advantage of m-GaN stability during growth.
- FIGS. 1 ( a ) and 1 ( b ) are schematics of crystallographic directions and planes of interest in hexagonal GaN.
- FIGS. 2 ( a ) and 2 ( b ) are schematics of band bending and electron hole separation as a result of polarization.
- FIG. 3 provides a structural characterization of non-polar planar m-plane GaN on m-plane SiC, from top to bottom, wherein the crystal plane of interest is shown in a unit cell/
- FIG. 4 is a 5 ⁇ m ⁇ 5 ⁇ m atomic force microscopy (AFM) surface image with a surface roughness value 2.54 nm.
- AFM atomic force microscopy
- FIG. 5 is a graph that illustrates the xray diffraction rocking curves for on-axis and off-axis.
- FIG. 6 is a flowchart that illustrates the processing steps for growing planar m-plane III-Nitrides using MOCVD according to the preferred embodiment of the present invention.
- FIG. 7 further illustrates the results of the processing steps of FIG. 6 according to the preferred embodiment of the present invention.
- FIG. 3 illustrates the non-polar m-plane GaN (1-100) crystal plane of interest in the unit cell.
- V/III ratios of 400-5500 and 200-3000, growth pressures varying in between 50-760 Torr, and temperature series of 1100° C.-1275° C. and 1000° C.-1160° C. for AIN and GaN layers were tested, respectively.
- the optimum AIN nucleation layers, leading to best quality GaN films, were realized at temperatures over 1175° C., at relatively low pressures, and V/III ratio of ⁇ 3500 with the nucleation layer thickness below 150 nm.
- the most favorable conditions were realized at low pressures, such as below 100 Torr, at temperatures in the range of 1100° C.-1160° C., and at V/III ratios below 700 with low NH 3 vapor pressure.
- a 5 ⁇ m ⁇ 5 ⁇ m atomic force microscopy (AFM) surface image of the resulting m-plane GaN material is shown in FIG. 4 .
- the grains are oriented along the ⁇ 11-20> direction and the surface roughness value (root mean square) is ⁇ 2.54 nm for a 5 ⁇ m ⁇ 5 ⁇ m scan.
- FIG. 5 is a graph of omega (degrees) vs. counts/second showing the x-ray diffraction rocking curves on-axis and off-axis.
- on-axis (1-100) full width at half max (FWHM) values are measured as low as 0.22° and 1.2°, for a-mosaic and c-mosaic, respectively, and the off-axis (10-12) reflection has FWHM value of 0.38°.
- FWHM values On-Axis Values a-mosaic c-mosaic Off-Axis 0.22° 1.2° 0.38°
- FIG. 6 is a flowchart that illustrates the processing steps for growing a planar non polar ⁇ 1-100 ⁇ m-plane III-Nitride epitaxial film using MOCVD according to the preferred embodiment of the present invention, wherein the planar non polar m-plane III-Nitride epitaxial film may comprise a planar m-plane GaN epitaxial layer.
- FIG. 7 further illustrates the results of each of the processing steps of FIG. 6 .
- Block 600 represents a solvent clean and acid dip of a suitable substrate ( 700 ), for example, in a 1:10 diluted BHF:DI solution, to remove oxide ( 702 ) from the substrate ( 700 ) surface before loading the substrate ( 700 ) into a reactor for the growth step. (Although this step is recommended, its omission would not significantly alter the results.)
- the substrate ( 700 ) may comprise an m-SiC or any substrate that is suitable for non-polar m-plane III-Nitride growth.
- Block 602 represents in situ annealing of the substrate ( 700 ), for example, in hydrogen, prior to the growth step. (Although this step is recommended, its omission would not significantly alter the results.)
- Block 604 represents growing a nucleation layer ( 704 ) on the substrate ( 700 ).
- the nucleation layer ( 704 ) typically comprises an aluminum nitride (AIN) nucleation layer or interlayer, but may comprise any nucleation layer ( 704 ) that is appropriate for non-polar m-plane III-Nitride growth.
- the nucleation layer ( 704 ) may be grown after the annealing step, and prior to the non polar m-plane III-Nitride growth.
- Block 606 represents growing the non-polar m-plane III-Nitride epitaxial layer ( 706 ) using MOCVD.
- the non-polar m-plane III-Nitride epitaxial layer ( 706 ) typically comprises a non-polar m-plane GaN epitaxial layer, but may comprise other non-polar m-plane III-Nitride epitaxial layers as well.
- the non-polar m-plane III-Nitride epitaxial layer ( 706 ) may be grown on the nucleation layer ( 704 ), or on the substrate ( 700 ) itself.
- the end result is a device, or a free standing wafer, or a substrate, or a template, having a planar epitaxial layer of the non-polar m-plane III-Nitride.
- non-polar m-GaN on m-SiC using an AIN interlayer
- suitable substrates on which the non-polar m-plane III-Nitride epitaxial film could be formed, include, but are not limited to, 6 H or 4H m-plane SiC, freestanding m-GaN, LiGaO 2 and LiAlO 2 .
- the suitable substrate Prior to growth, the suitable substrate can be treated in many different ways in-situ or ex-situ, or it may not be treated at all.
- the non-polar epitaxial film can be nucleated and grown over different nucleation layers, such as GaN or AIN grown at various conditions and methods, or over a bare substrate.
- the epitaxial film can be any non-polar m-plane III-Nitride material including, but not limited to, GaN, AIN, AlGaN and InGaN with various thicknesses.
- the growth parameters required for the growth of non-polar m-plane III-Nitride material may vary from reactor to reactor.
- the growth of m- ⁇ 1-100 ⁇ plane GaN has been successfully demonstrated by HVPE and MBE.
- the present invention is the first-ever successful demonstration of high-quality planar non-polar m- ⁇ 1-100 ⁇ plane GaN growth by MOCVD.
- planar m-plane GaN has an advantage over growth of planar a- ⁇ 11-20 ⁇ GaN with MOCVD in terms of its stability with a large growth window. This was shown when growth variables such as temperature, pressure and precursor flows for AlN nucleation layer and GaN epitaxial film were changed.
- V/III ratios of 400-5500 and 200-3000, growth pressures varying in between 50-760 Torr, and temperature series of 1100° C.-1275° C. and 1000° C.-1160° C. for AIN and GaN layers were tested, respectively. Alterations in such conditions did not affect the crystal and surface quality significantly unlike the planar non-polar a-plane GaN films in which crystal and surface quality are extremely susceptible to change in growth conditions and constrained with small growth window.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
- This application claims the benefit under 35 U.S.C. Section 19(e) of the following co-pending and commonly-assigned U.S. patent application:
- U.S. Provisional Patent Application Ser. No. 60/685,908, filed on May 31, 2005, by Bilge M. Imer, James S. Speck and Steven P. Denbaars, entitled “GROWTH OF PLANAR NON-POLAR {1-100} M-PLANE GALLIUM NITRIDE WITH METALORGANIC CHEMICAL VAPOR DEPOSITION (MOCVD),” attorneys' docket no. 30794.136-US-P1 (2005-566);
- which application is incorporated by reference herein.
- This application is related to the following co-pending and commonly-assigned applications:
- U.S. Utility Patent Application Ser. No. ______, filed on same date herewith, by Bilge M. Imer, James S. Speck and Steven P. DenBaars, entitled “DEFECT REDUCTION OF NON-POLAR AND SEMI-POLAR III-NITRIDES WITH SIDEWALL LATERAL EPITAXIAL OVERGROWTH (SLEO),” attorneys' docket no. 30794.135-US-U1 (2005-565), which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application Ser. No. 60/685,952, filed on May 31, 2005 by Bilge M. Imer, James S. Speck and Steven P. DenBaars, entitled “DEFECT REDUCTION OF NON-POLAR GALLIUM NITRIDE WITH SINGLE-STEP SIDEWALL LATERAL EPITAXIAL OVERGROWTH,” attorneys' docket no. 30794.135-US-P1 (2005-565);
- U.S. Utility Patent Application Ser. No. 10/537,385, filed Jun. 3, 2005, by Benjamin A. Haskell, Paul T. Fini, Shigemasa Matsuda, Michael D. Craven, Steven P. DenBaars, James S. Speck, and Shuji Nakamura, entitled “GROWTH OF PLANAR, NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY,” attorneys docket number 30794.094-US-Wo (2002-225-2), which application claims priority to International Patent Application No. PCT/US03/21916, filed Jul. 15, 2003, by Benjamin A. Haskell, Paul T. Fini, Shigemasa Matsuda, Michael D. Craven, Steven P. DenBaars, James S. Speck, and Shuji Nakamura, entitled “GROWTH OF PLANAR, NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY,” attorneys docket number 30794.94-WO-U1 (2003-225-2), which application claims priority to U.S. Provisional Patent Application Ser. No. 60/433,844, filed Dec. 16, 2002, by Benjamin A. Haskell, Paul T. Fini, Shigemasa Matsuda, Michael D. Craven, Steven P. DenBaars, James S. Speck, and Shuji Nakamura, entitled “TECHNIQUE FOR THE GROWTH OF PLANAR, NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY,” attorneys docket number 30794.94-US-P1 (2003-225-1); and
- U.S. Utility Patent Application Ser. No. 10/413,691, filed Apr. 15, 2003, by Michael D. Craven and James S. Speck, entitled “NON-POLAR A-PLANE GALLIUM NITRIDE THIN FILMS GROWN BY METALORGANIC CHEMICAL VAPOR DEPOSITION,” attorneys docket number 30794.100-US-U1 (2002-294-2), which application claims priority to U.S. Provisional Patent Application Ser. No. 60/372,909, filed Apr. 15, 2002, by Michael D. Craven, Stacia Keller, Steven P. DenBaars, Tal Margalith, James S. Speck, Shuji Nakamura, and Umesh K. Mishra, entitled “NON-POLAR GALLIUM NITRIDE BASED THIN FILMS AND HETEROSTRUCTURE MATERIALS,” attorneys docket number 30794.95-US-P1 (2002-294/301/303);
- all of which applications are incorporated by reference herein.
- 1. Field of the Invention
- The present invention relates to the growth of planar non-polar {1-1 0 0} m-plane gallium nitride (GaN) with metalorganic chemical vapor deposition (MOCVD).
- 2. Description of the Related Art
- Gallium nitride (GaN) and its ternary and quaternary compounds are prime candidates for fabrication of visible and ultraviolet high-power and high-performance optoelectronic devices and electronic devices. These devices are typically grown epitaxially by growth techniques including molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), or hydride vapor phase epitaxy (HVPE).
- The selection of substrate is critical for achieving the desired GaN growth orientation. Some of the most widely used substrates for III-N growth include SiC, Al2O3, and LiAlO2. Various crystallographic orientations of these substrates are commercially available.
- FIGS. 1(a) and 1(b) are schematics of crystallographic directions and planes of interest in hexagonal GaN. Specifically, these schematics show the different crystallographic growth directions and also the planes of interest in the hexagonal wurtzite GaN structure, wherein
FIG. 1 (a) shows the crystallographic directions a1, a2, a3, c, <10-10> and <11-20>, andFIG. 1 (b) shows planes a (11-20), m (10-10) and r (10-12). The fill patterns ofFIG. 1 (b) are intended to illustrate the planes of interest, but do not represent the materials of the structure. - It is relatively easy to grow planar c-plane GaN due to its large growth stability window. Therefore, nearly all GaN-based devices are grown parallel to the polar c-axis. However, as a result of c-plane growth, each material layer suffers from separation of electrons and holes to opposite faces of the layers. Furthermore, strain at the interfaces between adjacent layers gives rise to piezoelectric polarization, causing further charge separation.
- FIGS. 2(a) and 2(b), which are schematics of band bending and electron hole separation as a result of polarization, show this effect, wherein
FIG. 2 (a) is a graph of energy (eV) vs. depth (nm) and represents a c-plane quantum well, whileFIG. 2 (b) is a graph of energy (eV) vs. depth (nm) and represents a non-polar quantum well. - Such polarization effects decrease the likelihood of electrons and holes recombining, causing the final device to perform poorly. One possible approach for eliminating piezoelectric polarization effects in GaN optoelectronic devices is to grow the devices on non-polar planes of the crystal such as a-{11-20} and m-{1-100} planes family of GaN. Such planes contain equal numbers of Ga and N atoms and are charge-neutral.
- Planar {1-100} m-plane GaN growth has been developed by HVPE and MBE methods. However, prior to the invention described herein, planar m-plane GaN growth had not been accomplished with MOCVD.
- The general purpose of the present invention is to grow planar non-polar m-{1-100} plane GaN material using MOCVD. The method includes performing a solvent clean and acid dip of an m-SiC substrate to remove oxide from the surface of the substrate ex situ prior to growth, in situ annealing of the substrate, growing an aluminum nitride (AIN) nucleation layer on the annealed substrate, and growing the non-polar m-plane GaN epitaxial layer on the nucleation layer with MOCVD. The present invention takes advantage of non-polar nature of m-plane GaN to eliminate polarization fields, and gives rise to flexibility in growth variables, such as temperature, pressure and precursor flows, utilizing the advantage of m-GaN stability during growth.
- Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
- FIGS. 1(a) and 1(b) are schematics of crystallographic directions and planes of interest in hexagonal GaN.
- FIGS. 2(a) and 2(b) are schematics of band bending and electron hole separation as a result of polarization.
-
FIG. 3 provides a structural characterization of non-polar planar m-plane GaN on m-plane SiC, from top to bottom, wherein the crystal plane of interest is shown in a unit cell/ -
FIG. 4 is a 5 μm×5 μm atomic force microscopy (AFM) surface image with a surface roughness value 2.54 nm. -
FIG. 5 is a graph that illustrates the xray diffraction rocking curves for on-axis and off-axis. -
FIG. 6 is a flowchart that illustrates the processing steps for growing planar m-plane III-Nitrides using MOCVD according to the preferred embodiment of the present invention. -
FIG. 7 further illustrates the results of the processing steps ofFIG. 6 according to the preferred embodiment of the present invention. - In the following description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
- Overview
- The growth of (Ga, In, Al, B) N materials in the polar [0001] c-direction causes lower performance in optical devices due to polarization fields causing charge separation along the primary conduction direction. Therefore, recent research has been conducted focusing on non-polar direction growth along a-[11-20] and m-[1-100] directions of these materials to eliminate such effects and so to improve the device performance significantly. While both a-plane and m-plane growth of GaN has been explored by HVPE and MBE, only non-polar a-{11-20} plane growth of GaN has been demonstrated by MOCVD. However, it has been found that the growth window for planar a-plane GaN is very small and this specific orientation is very sensitive to changes in growth variables such as pressure and precursor flows. This resulted in the exploration of a new non-polar orientation in GaN growth with MOCVD. However, for m-plane growth, substrate availability has been a problem due to high growth temperatures required in MOCVD. Commercially available substrates such as γ-LiAlO2 have melting points lower than the temperature required for MOCVD growth. With the emergence of commercially obtainable m-SiC substrates, which are stable during MOCVD growth, the current invention was made possible. The present invention is the first ever successful growth of m-{1-100} plane GaN on m-SiC by MOCVD.
- Technical Description
- The m-plane SiC substrate is annealed in hydrogen prior to growth. An AIN layer is formed as a nucleation layer before GaN film growth. Finally, a GaN layer is grown by MOCVD.
FIG. 3 illustrates the non-polar m-plane GaN (1-100) crystal plane of interest in the unit cell. - To accomplish the optimum quality m-plane GaN, V/III ratios of 400-5500 and 200-3000, growth pressures varying in between 50-760 Torr, and temperature series of 1100° C.-1275° C. and 1000° C.-1160° C. for AIN and GaN layers were tested, respectively. The m-plane, for both AIN and GaN, was stable over this wide range of temperatures, reactor pressures, and precursor flows.
- The optimum AIN nucleation layers, leading to best quality GaN films, were realized at temperatures over 1175° C., at relatively low pressures, and V/III ratio of ˜3500 with the nucleation layer thickness below 150 nm.
- For GaN layer epitaxy, the most favorable conditions were realized at low pressures, such as below 100 Torr, at temperatures in the range of 1100° C.-1160° C., and at V/III ratios below 700 with low NH3 vapor pressure.
- A 5 μm×5 μm atomic force microscopy (AFM) surface image of the resulting m-plane GaN material is shown in
FIG. 4 . The grains are oriented along the <11-20> direction and the surface roughness value (root mean square) is ˜2.54 nm for a 5 μm×5 μm scan. -
FIG. 5 is a graph of omega (degrees) vs. counts/second showing the x-ray diffraction rocking curves on-axis and off-axis. As can been seen from Table 1 below, on-axis (1-100) full width at half max (FWHM) values are measured as low as 0.22° and 1.2°, for a-mosaic and c-mosaic, respectively, and the off-axis (10-12) reflection has FWHM value of 0.38°. These roughness and FWHM values were found to not change significantly by changing growth conditions of the nucleation layer and epitaxial GaN film itself.Rocking curve FWHM values On-Axis Values a-mosaic c-mosaic Off-Axis 0.22° 1.2° 0.38° - Process Steps
-
FIG. 6 is a flowchart that illustrates the processing steps for growing a planar non polar {1-100} m-plane III-Nitride epitaxial film using MOCVD according to the preferred embodiment of the present invention, wherein the planar non polar m-plane III-Nitride epitaxial film may comprise a planar m-plane GaN epitaxial layer.FIG. 7 further illustrates the results of each of the processing steps ofFIG. 6 . -
Block 600 represents a solvent clean and acid dip of a suitable substrate (700), for example, in a 1:10 diluted BHF:DI solution, to remove oxide (702) from the substrate (700) surface before loading the substrate (700) into a reactor for the growth step. (Although this step is recommended, its omission would not significantly alter the results.) The substrate (700) may comprise an m-SiC or any substrate that is suitable for non-polar m-plane III-Nitride growth. -
Block 602 represents in situ annealing of the substrate (700), for example, in hydrogen, prior to the growth step. (Although this step is recommended, its omission would not significantly alter the results.) -
Block 604 represents growing a nucleation layer (704) on the substrate (700). The nucleation layer (704) typically comprises an aluminum nitride (AIN) nucleation layer or interlayer, but may comprise any nucleation layer (704) that is appropriate for non-polar m-plane III-Nitride growth. Moreover, the nucleation layer (704) may be grown after the annealing step, and prior to the non polar m-plane III-Nitride growth. -
Block 606 represents growing the non-polar m-plane III-Nitride epitaxial layer (706) using MOCVD. The non-polar m-plane III-Nitride epitaxial layer (706) typically comprises a non-polar m-plane GaN epitaxial layer, but may comprise other non-polar m-plane III-Nitride epitaxial layers as well. Moreover, the non-polar m-plane III-Nitride epitaxial layer (706) may be grown on the nucleation layer (704), or on the substrate (700) itself. - Preferably, the end result is a device, or a free standing wafer, or a substrate, or a template, having a planar epitaxial layer of the non-polar m-plane III-Nitride.
- Possible Modifications and Variations
- Although the preferred embodiment describes the MOCVD growth of non-polar m-GaN on m-SiC using an AIN interlayer, alternative suitable substrates, on which the non-polar m-plane III-Nitride epitaxial film could be formed, include, but are not limited to, 6H or 4H m-plane SiC, freestanding m-GaN, LiGaO2 and LiAlO2.
- Prior to growth, the suitable substrate can be treated in many different ways in-situ or ex-situ, or it may not be treated at all.
- The non-polar epitaxial film can be nucleated and grown over different nucleation layers, such as GaN or AIN grown at various conditions and methods, or over a bare substrate.
- The epitaxial film can be any non-polar m-plane III-Nitride material including, but not limited to, GaN, AIN, AlGaN and InGaN with various thicknesses.
- The growth parameters required for the growth of non-polar m-plane III-Nitride material may vary from reactor to reactor.
- Finally, it is understood that processing steps may be omitted, added or rearranged as desired.
- Such variations do not fundamentally alter the general practice of this invention.
- Advantages and Improvements
- The growth of m-{1-100} plane GaN has been successfully demonstrated by HVPE and MBE. However, the present invention is the first-ever successful demonstration of high-quality planar non-polar m-{1-100} plane GaN growth by MOCVD.
- Growth of planar m-plane GaN has an advantage over growth of planar a-{11-20} GaN with MOCVD in terms of its stability with a large growth window. This was shown when growth variables such as temperature, pressure and precursor flows for AlN nucleation layer and GaN epitaxial film were changed.
- To accomplish the optimum quality m-plane GaN, V/III ratios of 400-5500 and 200-3000, growth pressures varying in between 50-760 Torr, and temperature series of 1100° C.-1275° C. and 1000° C.-1160° C. for AIN and GaN layers were tested, respectively. Alterations in such conditions did not affect the crystal and surface quality significantly unlike the planar non-polar a-plane GaN films in which crystal and surface quality are extremely susceptible to change in growth conditions and constrained with small growth window.
- The growth stability advantage combined with the non-polar nature of m-GaN brings new possibilities in III-Nitride non-polar device research.
- The following reference is incorporated by reference herein:
- 1. “Molecular-beam epitaxy of GaN/AlxGa1-xN multiple quantum wells on R-plane (10-12) sapphire substrates,” H. M. Ng, Appl. Phys. Lett. 80, 4369 (2002)
- Conclusion
- This concludes the description of the preferred embodiment of the present invention. The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching, such as additional adjustments to the process described herein, without fundamentally deviating from the essence of the present invention. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
Claims (11)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/444,083 US7338828B2 (en) | 2005-05-31 | 2006-05-31 | Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD) |
US11/870,115 US8097481B2 (en) | 2005-05-31 | 2007-10-10 | Growth of non-polar M-plane III-nitride film using metalorganic chemical vapor deposition (MOCVD) |
US13/313,335 US8795440B2 (en) | 2005-05-31 | 2011-12-07 | Growth of non-polar M-plane III-nitride film using metalorganic chemical vapor deposition (MOCVD) |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68590805P | 2005-05-31 | 2005-05-31 | |
US11/444,083 US7338828B2 (en) | 2005-05-31 | 2006-05-31 | Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD) |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/870,115 Continuation US8097481B2 (en) | 2004-06-03 | 2007-10-10 | Growth of non-polar M-plane III-nitride film using metalorganic chemical vapor deposition (MOCVD) |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060270087A1 true US20060270087A1 (en) | 2006-11-30 |
US7338828B2 US7338828B2 (en) | 2008-03-04 |
Family
ID=37482235
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/444,083 Active US7338828B2 (en) | 2005-05-31 | 2006-05-31 | Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD) |
US11/870,115 Active 2027-11-28 US8097481B2 (en) | 2004-06-03 | 2007-10-10 | Growth of non-polar M-plane III-nitride film using metalorganic chemical vapor deposition (MOCVD) |
US13/313,335 Active US8795440B2 (en) | 2005-05-31 | 2011-12-07 | Growth of non-polar M-plane III-nitride film using metalorganic chemical vapor deposition (MOCVD) |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/870,115 Active 2027-11-28 US8097481B2 (en) | 2004-06-03 | 2007-10-10 | Growth of non-polar M-plane III-nitride film using metalorganic chemical vapor deposition (MOCVD) |
US13/313,335 Active US8795440B2 (en) | 2005-05-31 | 2011-12-07 | Growth of non-polar M-plane III-nitride film using metalorganic chemical vapor deposition (MOCVD) |
Country Status (6)
Country | Link |
---|---|
US (3) | US7338828B2 (en) |
EP (1) | EP1897120A4 (en) |
JP (2) | JP2008543087A (en) |
KR (2) | KR20080014077A (en) |
TW (1) | TWI377602B (en) |
WO (1) | WO2006130622A2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070234946A1 (en) * | 2006-04-07 | 2007-10-11 | Tadao Hashimoto | Method for growing large surface area gallium nitride crystals in supercritical ammonia and lagre surface area gallium nitride crystals |
US20080164489A1 (en) * | 2006-12-11 | 2008-07-10 | The Regents Of The University Of California | Metalorganic chemical vapor deposittion (MOCVD) growth of high performance non-polar III-nitride optical devices |
US20090008647A1 (en) * | 2007-07-06 | 2009-01-08 | Sharp Laboratories Of America Inc. | Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers |
US20090079034A1 (en) * | 2007-09-26 | 2009-03-26 | Wang Nang Wang | Non-polar iii-v nitride semiconductor and growth method |
US20090174038A1 (en) * | 2007-01-19 | 2009-07-09 | Wang Nang Wang | Production of single-crystal semiconductor material using a nanostructure template |
US20090243043A1 (en) * | 2006-03-23 | 2009-10-01 | Wang Nang Wang | Growth method using nanostructure compliant layers and hvpe for producing high quality compound semiconductor materials |
US20100012948A1 (en) * | 2008-07-16 | 2010-01-21 | Ostendo Technologies, Inc. | Growth of Planar Non-Polar M-Plane and Semi-Polar Gallium Nitride with Hydride Vapor Phase Epitaxy (HVPE) |
US20100244087A1 (en) * | 2007-11-21 | 2010-09-30 | Mitsubishi Chemical Corporation | Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element |
US20110108954A1 (en) * | 2009-11-06 | 2011-05-12 | Ostendo Technologies, Inc. | Growth of Planar Non-Polar M-Plane Gallium Nitride With Hydride Vapor Phase Epitaxy (HVPE) |
US20110179993A1 (en) * | 2009-03-06 | 2011-07-28 | Akira Inoue | Crystal growth process for nitride semiconductor, and method for manufacturing semiconductor device |
US20110203514A1 (en) * | 2008-11-07 | 2011-08-25 | The Regents Of The University Of California | Novel vessel designs and relative placements of the source material and seed crystals with respect to the vessel for the ammonothermal growth of group-iii nitride crystals |
CN102412123A (en) * | 2011-11-07 | 2012-04-11 | 中山市格兰特实业有限公司火炬分公司 | Preparation method of aluminum nitride |
CN102597340A (en) * | 2009-11-10 | 2012-07-18 | 株式会社德山 | Manufacturing method of laminated body |
CN103151247A (en) * | 2013-03-10 | 2013-06-12 | 北京工业大学 | Method for preparing non-polar GaN film on r-face sapphire substrate |
US20130337619A1 (en) * | 2012-06-18 | 2013-12-19 | Fujitsu Limited | Compound semiconductor device and method for manufacturing the same |
US20150053916A1 (en) * | 2013-08-22 | 2015-02-26 | Nanoco Technologies Ltd. | Gas Phase Enhancement of Emission Color Quality in Solid State LEDs |
CN106268521A (en) * | 2016-08-29 | 2017-01-04 | 河南飞孟金刚石工业有限公司 | A kind of synthesis technique that can improve polycrystalline diamond yield |
CN106981415A (en) * | 2017-04-19 | 2017-07-25 | 华南理工大学 | The gallium nitride film and its nanometer epitaxial lateral overgrowth method of GaN HEMTs |
CN112981368A (en) * | 2021-02-03 | 2021-06-18 | 北航(四川)西部国际创新港科技有限公司 | Improved CVD equipment and preparation method for realizing co-infiltration deposition of aluminum-silicon coating by using improved CVD equipment |
Families Citing this family (144)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9130119B2 (en) * | 2006-12-11 | 2015-09-08 | The Regents Of The University Of California | Non-polar and semi-polar light emitting devices |
TWI377602B (en) * | 2005-05-31 | 2012-11-21 | Japan Science & Tech Agency | Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd) |
JP2007277074A (en) * | 2006-01-10 | 2007-10-25 | Ngk Insulators Ltd | Manufacturing method of alminum nitride single crystal and aluminum nitride single crystal |
TWI334164B (en) * | 2006-06-07 | 2010-12-01 | Ind Tech Res Inst | Method of manufacturing nitride semiconductor substrate and composite material substrate |
US20080083431A1 (en) * | 2006-10-06 | 2008-04-10 | Mark Schwarze | Device and method for clearing debris from the front of a hood in a mechanized sweepers |
US9064706B2 (en) * | 2006-11-17 | 2015-06-23 | Sumitomo Electric Industries, Ltd. | Composite of III-nitride crystal on laterally stacked substrates |
US8458262B2 (en) * | 2006-12-22 | 2013-06-04 | At&T Mobility Ii Llc | Filtering spam messages across a communication network |
WO2010065163A2 (en) * | 2008-06-05 | 2010-06-10 | Soraa, Inc. | Highly polarized white light source by combining blue led on semipolar or nonpolar gan with yellow led on semipolar or nonpolar gan |
US8097081B2 (en) * | 2008-06-05 | 2012-01-17 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
US8871024B2 (en) | 2008-06-05 | 2014-10-28 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
US9157167B1 (en) | 2008-06-05 | 2015-10-13 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
US8847249B2 (en) * | 2008-06-16 | 2014-09-30 | Soraa, Inc. | Solid-state optical device having enhanced indium content in active regions |
US8303710B2 (en) * | 2008-06-18 | 2012-11-06 | Soraa, Inc. | High pressure apparatus and method for nitride crystal growth |
US20100006873A1 (en) * | 2008-06-25 | 2010-01-14 | Soraa, Inc. | HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN |
US20090320745A1 (en) * | 2008-06-25 | 2009-12-31 | Soraa, Inc. | Heater device and method for high pressure processing of crystalline materials |
WO2010005914A1 (en) * | 2008-07-07 | 2010-01-14 | Soraa, Inc. | High quality large area bulk non-polar or semipolar gallium based substrates and methods |
US8805134B1 (en) | 2012-02-17 | 2014-08-12 | Soraa Laser Diode, Inc. | Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices |
US7875534B2 (en) * | 2008-07-21 | 2011-01-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Realizing N-face III-nitride semiconductors by nitridation treatment |
US8124996B2 (en) * | 2008-08-04 | 2012-02-28 | Soraa, Inc. | White light devices using non-polar or semipolar gallium containing materials and phosphors |
US8284810B1 (en) | 2008-08-04 | 2012-10-09 | Soraa, Inc. | Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods |
US8979999B2 (en) * | 2008-08-07 | 2015-03-17 | Soraa, Inc. | Process for large-scale ammonothermal manufacturing of gallium nitride boules |
US8021481B2 (en) * | 2008-08-07 | 2011-09-20 | Soraa, Inc. | Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride |
US8323405B2 (en) * | 2008-08-07 | 2012-12-04 | Soraa, Inc. | Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer |
US8430958B2 (en) * | 2008-08-07 | 2013-04-30 | Soraa, Inc. | Apparatus and method for seed crystal utilization in large-scale manufacturing of gallium nitride |
US10036099B2 (en) | 2008-08-07 | 2018-07-31 | Slt Technologies, Inc. | Process for large-scale ammonothermal manufacturing of gallium nitride boules |
US8377796B2 (en) | 2008-08-11 | 2013-02-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | III-V compound semiconductor epitaxy from a non-III-V substrate |
US8803189B2 (en) * | 2008-08-11 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | III-V compound semiconductor epitaxy using lateral overgrowth |
US8148801B2 (en) | 2008-08-25 | 2012-04-03 | Soraa, Inc. | Nitride crystal with removable surface layer and methods of manufacture |
US20100295088A1 (en) * | 2008-10-02 | 2010-11-25 | Soraa, Inc. | Textured-surface light emitting diode and method of manufacture |
US8354679B1 (en) | 2008-10-02 | 2013-01-15 | Soraa, Inc. | Microcavity light emitting diode method of manufacture |
US8455894B1 (en) | 2008-10-17 | 2013-06-04 | Soraa, Inc. | Photonic-crystal light emitting diode and method of manufacture |
TWI384548B (en) * | 2008-11-10 | 2013-02-01 | Univ Nat Central | Method for producing nitride crystal film, nitride film and substrate structure |
US8461071B2 (en) * | 2008-12-12 | 2013-06-11 | Soraa, Inc. | Polycrystalline group III metal nitride with getter and method of making |
US9543392B1 (en) | 2008-12-12 | 2017-01-10 | Soraa, Inc. | Transparent group III metal nitride and method of manufacture |
USRE47114E1 (en) | 2008-12-12 | 2018-11-06 | Slt Technologies, Inc. | Polycrystalline group III metal nitride with getter and method of making |
US8987156B2 (en) | 2008-12-12 | 2015-03-24 | Soraa, Inc. | Polycrystalline group III metal nitride with getter and method of making |
US8878230B2 (en) * | 2010-03-11 | 2014-11-04 | Soraa, Inc. | Semi-insulating group III metal nitride and method of manufacture |
US20110100291A1 (en) * | 2009-01-29 | 2011-05-05 | Soraa, Inc. | Plant and method for large-scale ammonothermal manufacturing of gallium nitride boules |
TWI380368B (en) * | 2009-02-04 | 2012-12-21 | Univ Nat Chiao Tung | Manufacture method of a multilayer structure having non-polar a-plane {11-20} iii-nitride layer |
US8252662B1 (en) | 2009-03-28 | 2012-08-28 | Soraa, Inc. | Method and structure for manufacture of light emitting diode devices using bulk GaN |
US8299473B1 (en) | 2009-04-07 | 2012-10-30 | Soraa, Inc. | Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors |
US8837545B2 (en) | 2009-04-13 | 2014-09-16 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8254425B1 (en) | 2009-04-17 | 2012-08-28 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8294179B1 (en) | 2009-04-17 | 2012-10-23 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
WO2010120819A1 (en) | 2009-04-13 | 2010-10-21 | Kaai, Inc. | Optical device structure using gan substrates for laser applications |
US8634442B1 (en) | 2009-04-13 | 2014-01-21 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
US8242522B1 (en) | 2009-05-12 | 2012-08-14 | Soraa, Inc. | Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm |
US8416825B1 (en) | 2009-04-17 | 2013-04-09 | Soraa, Inc. | Optical device structure using GaN substrates and growth structure for laser applications |
US8110889B2 (en) * | 2009-04-28 | 2012-02-07 | Applied Materials, Inc. | MOCVD single chamber split process for LED manufacturing |
CN101560692A (en) * | 2009-05-13 | 2009-10-21 | 南京大学 | Growth method of non-polar plane InN material |
US8306081B1 (en) | 2009-05-27 | 2012-11-06 | Soraa, Inc. | High indium containing InGaN substrates for long wavelength optical devices |
US10108079B2 (en) | 2009-05-29 | 2018-10-23 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US8427590B2 (en) * | 2009-05-29 | 2013-04-23 | Soraa, Inc. | Laser based display method and system |
US9800017B1 (en) | 2009-05-29 | 2017-10-24 | Soraa Laser Diode, Inc. | Laser device and method for a vehicle |
US8509275B1 (en) | 2009-05-29 | 2013-08-13 | Soraa, Inc. | Gallium nitride based laser dazzling device and method |
US8247887B1 (en) | 2009-05-29 | 2012-08-21 | Soraa, Inc. | Method and surface morphology of non-polar gallium nitride containing substrates |
US9250044B1 (en) | 2009-05-29 | 2016-02-02 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser diode dazzling devices and methods of use |
US9829780B2 (en) | 2009-05-29 | 2017-11-28 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
JP2011016676A (en) * | 2009-07-07 | 2011-01-27 | Sumitomo Electric Ind Ltd | Method for producing nitride semiconductor substrate |
CN102482450B (en) | 2009-07-24 | 2013-11-20 | 提克纳有限责任公司 | Thermally conductive polymer compositions and articles made therefrom |
US9090751B2 (en) | 2009-07-24 | 2015-07-28 | Ticona Llc | Thermally conductive thermoplastic resin compositions and related applications |
US8153475B1 (en) | 2009-08-18 | 2012-04-10 | Sorra, Inc. | Back-end processes for substrates re-use |
US20110056429A1 (en) * | 2009-08-21 | 2011-03-10 | Soraa, Inc. | Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices |
US8207554B2 (en) * | 2009-09-11 | 2012-06-26 | Soraa, Inc. | System and method for LED packaging |
US8314429B1 (en) | 2009-09-14 | 2012-11-20 | Soraa, Inc. | Multi color active regions for white light emitting diode |
US8355418B2 (en) | 2009-09-17 | 2013-01-15 | Soraa, Inc. | Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates |
US8750342B1 (en) | 2011-09-09 | 2014-06-10 | Soraa Laser Diode, Inc. | Laser diodes with scribe structures |
US8933644B2 (en) | 2009-09-18 | 2015-01-13 | Soraa, Inc. | LED lamps with improved quality of light |
US9293644B2 (en) | 2009-09-18 | 2016-03-22 | Soraa, Inc. | Power light emitting diode and method with uniform current density operation |
US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
CN102630349B (en) | 2009-09-18 | 2017-06-13 | 天空公司 | Method power led and using current density operation |
US20110186887A1 (en) * | 2009-09-21 | 2011-08-04 | Soraa, Inc. | Reflection Mode Wavelength Conversion Material for Optical Devices Using Non-Polar or Semipolar Gallium Containing Materials |
US8435347B2 (en) | 2009-09-29 | 2013-05-07 | Soraa, Inc. | High pressure apparatus with stackable rings |
US9175418B2 (en) | 2009-10-09 | 2015-11-03 | Soraa, Inc. | Method for synthesis of high quality large area bulk gallium based crystals |
US8269245B1 (en) | 2009-10-30 | 2012-09-18 | Soraa, Inc. | Optical device with wavelength selective reflector |
CN102422391B (en) * | 2009-11-12 | 2013-11-27 | 松下电器产业株式会社 | Manufacturing method of nitride semiconductor device |
US20110186874A1 (en) | 2010-02-03 | 2011-08-04 | Soraa, Inc. | White Light Apparatus and Method |
US20110215348A1 (en) | 2010-02-03 | 2011-09-08 | Soraa, Inc. | Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US8716049B2 (en) * | 2010-02-23 | 2014-05-06 | Applied Materials, Inc. | Growth of group III-V material layers by spatially confined epitaxy |
US9927611B2 (en) | 2010-03-29 | 2018-03-27 | Soraa Laser Diode, Inc. | Wearable laser based display method and system |
US8451876B1 (en) | 2010-05-17 | 2013-05-28 | Soraa, Inc. | Method and system for providing bidirectional light sources with broad spectrum |
US9564320B2 (en) | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
US8803452B2 (en) | 2010-10-08 | 2014-08-12 | Soraa, Inc. | High intensity light source |
US8729559B2 (en) | 2010-10-13 | 2014-05-20 | Soraa, Inc. | Method of making bulk InGaN substrates and devices thereon |
US8816319B1 (en) | 2010-11-05 | 2014-08-26 | Soraa Laser Diode, Inc. | Method of strain engineering and related optical device using a gallium and nitrogen containing active region |
US8975615B2 (en) | 2010-11-09 | 2015-03-10 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material |
US9048170B2 (en) | 2010-11-09 | 2015-06-02 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment |
US9025635B2 (en) | 2011-01-24 | 2015-05-05 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a support member |
US9595813B2 (en) | 2011-01-24 | 2017-03-14 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a substrate member |
US8786053B2 (en) | 2011-01-24 | 2014-07-22 | Soraa, Inc. | Gallium-nitride-on-handle substrate materials and devices and method of manufacture |
US9318875B1 (en) | 2011-01-24 | 2016-04-19 | Soraa Laser Diode, Inc. | Color converting element for laser diode |
US9093820B1 (en) | 2011-01-25 | 2015-07-28 | Soraa Laser Diode, Inc. | Method and structure for laser devices using optical blocking regions |
US8643257B2 (en) | 2011-02-11 | 2014-02-04 | Soraa, Inc. | Illumination source with reduced inner core size |
US8618742B2 (en) * | 2011-02-11 | 2013-12-31 | Soraa, Inc. | Illumination source and manufacturing methods |
US8525396B2 (en) * | 2011-02-11 | 2013-09-03 | Soraa, Inc. | Illumination source with direct die placement |
US10036544B1 (en) | 2011-02-11 | 2018-07-31 | Soraa, Inc. | Illumination source with reduced weight |
US8324835B2 (en) * | 2011-02-11 | 2012-12-04 | Soraa, Inc. | Modular LED lamp and manufacturing methods |
US8884517B1 (en) | 2011-10-17 | 2014-11-11 | Soraa, Inc. | Illumination sources with thermally-isolated electronics |
US8482104B2 (en) | 2012-01-09 | 2013-07-09 | Soraa, Inc. | Method for growth of indium-containing nitride films |
CN102544276A (en) * | 2012-02-28 | 2012-07-04 | 华南理工大学 | Nonpolar GaN film grown on LiGaO2 substrate and its preparation method and application |
US9076896B2 (en) | 2012-03-21 | 2015-07-07 | Seoul Viosys Co., Ltd. | Method of fabricating nonpolar gallium nitride-based semiconductor layer, nonpolar semiconductor device, and method of fabricating the same |
JP5811009B2 (en) * | 2012-03-30 | 2015-11-11 | 豊田合成株式会社 | Group III nitride semiconductor manufacturing method and group III nitride semiconductor |
DE202013012940U1 (en) | 2012-05-04 | 2023-01-19 | Soraa, Inc. | LED lamps with improved light quality |
KR101946010B1 (en) | 2012-10-23 | 2019-02-08 | 삼성전자주식회사 | Structure having large area gallium nitride substrate and method of manufacturing the same |
US9166372B1 (en) | 2013-06-28 | 2015-10-20 | Soraa Laser Diode, Inc. | Gallium nitride containing laser device configured on a patterned substrate |
US9368939B2 (en) | 2013-10-18 | 2016-06-14 | Soraa Laser Diode, Inc. | Manufacturable laser diode formed on C-plane gallium and nitrogen material |
US9520695B2 (en) | 2013-10-18 | 2016-12-13 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser device having confinement region |
US9379525B2 (en) | 2014-02-10 | 2016-06-28 | Soraa Laser Diode, Inc. | Manufacturable laser diode |
US9362715B2 (en) | 2014-02-10 | 2016-06-07 | Soraa Laser Diode, Inc | Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material |
EP3220429A1 (en) | 2014-02-05 | 2017-09-20 | Soraa Inc. | High-performance led fabrication |
US9209596B1 (en) | 2014-02-07 | 2015-12-08 | Soraa Laser Diode, Inc. | Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates |
US9871350B2 (en) | 2014-02-10 | 2018-01-16 | Soraa Laser Diode, Inc. | Manufacturable RGB laser diode source |
US9520697B2 (en) | 2014-02-10 | 2016-12-13 | Soraa Laser Diode, Inc. | Manufacturable multi-emitter laser diode |
CN104600162B (en) * | 2014-03-24 | 2016-01-27 | 上海卓霖半导体科技有限公司 | Based on the preparation method of the nonpolar blue-ray LED epitaxial wafer of LAO substrate |
US9564736B1 (en) | 2014-06-26 | 2017-02-07 | Soraa Laser Diode, Inc. | Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode |
KR102164796B1 (en) | 2014-08-28 | 2020-10-14 | 삼성전자주식회사 | Nano-sturucture semiconductor light emitting device |
US12126143B2 (en) | 2014-11-06 | 2024-10-22 | Kyocera Sld Laser, Inc. | Method of manufacture for an ultraviolet emitting optoelectronic device |
US9246311B1 (en) | 2014-11-06 | 2016-01-26 | Soraa Laser Diode, Inc. | Method of manufacture for an ultraviolet laser diode |
US9666677B1 (en) | 2014-12-23 | 2017-05-30 | Soraa Laser Diode, Inc. | Manufacturable thin film gallium and nitrogen containing devices |
US9653642B1 (en) | 2014-12-23 | 2017-05-16 | Soraa Laser Diode, Inc. | Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes |
US10879673B2 (en) | 2015-08-19 | 2020-12-29 | Soraa Laser Diode, Inc. | Integrated white light source using a laser diode and a phosphor in a surface mount device package |
US11437775B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | Integrated light source using a laser diode |
US11437774B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | High-luminous flux laser-based white light source |
US10938182B2 (en) | 2015-08-19 | 2021-03-02 | Soraa Laser Diode, Inc. | Specialized integrated light source using a laser diode |
JP6684815B2 (en) * | 2015-09-30 | 2020-04-22 | 日本碍子株式会社 | Oriented alumina substrate for epitaxial growth |
US9787963B2 (en) | 2015-10-08 | 2017-10-10 | Soraa Laser Diode, Inc. | Laser lighting having selective resolution |
US9608160B1 (en) | 2016-02-05 | 2017-03-28 | International Business Machines Corporation | Polarization free gallium nitride-based photonic devices on nanopatterned silicon |
WO2019015754A1 (en) * | 2017-07-20 | 2019-01-24 | Swegan Ab | A heterostructure for a high electron mobility transistor and a method of producing the same |
US10771155B2 (en) | 2017-09-28 | 2020-09-08 | Soraa Laser Diode, Inc. | Intelligent visible light with a gallium and nitrogen containing laser source |
US10222474B1 (en) | 2017-12-13 | 2019-03-05 | Soraa Laser Diode, Inc. | Lidar systems including a gallium and nitrogen containing laser light source |
CN108231924A (en) * | 2018-02-28 | 2018-06-29 | 华南理工大学 | It is grown in non polarity A lGaN base MSM type ultraviolet detectors in r surface sapphire substrates and preparation method thereof |
US10551728B1 (en) | 2018-04-10 | 2020-02-04 | Soraa Laser Diode, Inc. | Structured phosphors for dynamic lighting |
US11421843B2 (en) | 2018-12-21 | 2022-08-23 | Kyocera Sld Laser, Inc. | Fiber-delivered laser-induced dynamic light system |
US11239637B2 (en) | 2018-12-21 | 2022-02-01 | Kyocera Sld Laser, Inc. | Fiber delivered laser induced white light system |
US11884202B2 (en) | 2019-01-18 | 2024-01-30 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system |
US12000552B2 (en) | 2019-01-18 | 2024-06-04 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system for a vehicle |
US12152742B2 (en) | 2019-01-18 | 2024-11-26 | Kyocera Sld Laser, Inc. | Laser-based light guide-coupled wide-spectrum light system |
US11228158B2 (en) | 2019-05-14 | 2022-01-18 | Kyocera Sld Laser, Inc. | Manufacturable laser diodes on a large area gallium and nitrogen containing substrate |
US10903623B2 (en) | 2019-05-14 | 2021-01-26 | Soraa Laser Diode, Inc. | Method and structure for manufacturable large area gallium and nitrogen containing substrate |
EP3812487A1 (en) | 2019-10-25 | 2021-04-28 | Xie, Fengjie | Non-polar iii-nitride binary and ternary materials, method for obtaining thereof and uses |
US12191626B1 (en) | 2020-07-31 | 2025-01-07 | Kyocera Sld Laser, Inc. | Vertically emitting laser devices and chip-scale-package laser devices and laser-based, white light emitting devices |
US11688601B2 (en) | 2020-11-30 | 2023-06-27 | International Business Machines Corporation | Obtaining a clean nitride surface by annealing |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5923950A (en) * | 1996-06-14 | 1999-07-13 | Matsushita Electric Industrial Co., Inc. | Method of manufacturing a semiconductor light-emitting device |
US6045626A (en) * | 1997-07-11 | 2000-04-04 | Tdk Corporation | Substrate structures for electronic devices |
US6064078A (en) * | 1998-05-22 | 2000-05-16 | Xerox Corporation | Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities |
US6069021A (en) * | 1997-05-14 | 2000-05-30 | Showa Denko K.K. | Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer |
US6072197A (en) * | 1996-02-23 | 2000-06-06 | Fujitsu Limited | Semiconductor light emitting device with an active layer made of semiconductor having uniaxial anisotropy |
US6156581A (en) * | 1994-01-27 | 2000-12-05 | Advanced Technology Materials, Inc. | GaN-based devices using (Ga, AL, In)N base layers |
US6201262B1 (en) * | 1997-10-07 | 2001-03-13 | Cree, Inc. | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
US20020074552A1 (en) * | 2000-12-14 | 2002-06-20 | Weeks T. Warren | Gallium nitride materials and methods |
US20020084467A1 (en) * | 1997-09-30 | 2002-07-04 | Krames Michael R. | Nitride semiconductor device with reduced polarization fields |
US6440823B1 (en) * | 1994-01-27 | 2002-08-27 | Advanced Technology Materials, Inc. | Low defect density (Ga, Al, In)N and HVPE process for making same |
US6468882B2 (en) * | 2000-07-10 | 2002-10-22 | Sumitomo Electric Industries, Ltd. | Method of producing a single crystal gallium nitride substrate and single crystal gallium nitride substrate |
US20030198837A1 (en) * | 2002-04-15 | 2003-10-23 | Craven Michael D. | Non-polar a-plane gallium nitride thin films grown by metalorganic chemical vapor deposition |
US20040094773A1 (en) * | 1997-04-11 | 2004-05-20 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate and nitride semiconductor device |
US20040251471A1 (en) * | 2001-10-26 | 2004-12-16 | Robert Dwilinski | Light emitting element structure using nitride bulk single crystal layer |
US20040261692A1 (en) * | 2001-10-26 | 2004-12-30 | Robert Dwilinski | Substrate for epitaxy |
US20050205884A1 (en) * | 2004-03-19 | 2005-09-22 | Lumileds Lighting U.S., Llc | Semiconductor light emitting devices including in-plane light emitting layers |
US20050245095A1 (en) * | 2002-04-15 | 2005-11-03 | The Regents Of The University Of California | Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy |
US20060138431A1 (en) * | 2002-05-17 | 2006-06-29 | Robert Dwilinski | Light emitting device structure having nitride bulk single crystal layer |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09219540A (en) * | 1996-02-07 | 1997-08-19 | Rikagaku Kenkyusho | Method of forming GaN thin film |
JPH11297631A (en) * | 1998-04-14 | 1999-10-29 | Matsushita Electron Corp | Method for growing nitride-based compound semiconductor |
US6218280B1 (en) * | 1998-06-18 | 2001-04-17 | University Of Florida | Method and apparatus for producing group-III nitrides |
JP2000068609A (en) | 1998-08-24 | 2000-03-03 | Ricoh Co Ltd | Semiconductor substrate and semiconductor laser |
JP3592553B2 (en) * | 1998-10-15 | 2004-11-24 | 株式会社東芝 | Gallium nitride based semiconductor device |
US20010047751A1 (en) * | 1998-11-24 | 2001-12-06 | Andrew Y. Kim | Method of producing device quality (a1) ingap alloys on lattice-mismatched substrates |
JP4097343B2 (en) * | 1999-01-26 | 2008-06-11 | 日亜化学工業株式会社 | Manufacturing method of nitride semiconductor laser device |
US20010042503A1 (en) * | 1999-02-10 | 2001-11-22 | Lo Yu-Hwa | Method for design of epitaxial layer and substrate structures for high-quality epitaxial growth on lattice-mismatched substrates |
JP2001007394A (en) * | 1999-06-18 | 2001-01-12 | Ricoh Co Ltd | Semiconductor substrate, manufacture thereof and semiconductor light emitting element |
JP2001160656A (en) * | 1999-12-01 | 2001-06-12 | Sharp Corp | Nitride compound semiconductor device |
JP3946427B2 (en) | 2000-03-29 | 2007-07-18 | 株式会社東芝 | Epitaxial growth substrate manufacturing method and semiconductor device manufacturing method using this epitaxial growth substrate |
JP2002076023A (en) * | 2000-09-01 | 2002-03-15 | Nec Corp | Semiconductor device |
US7501023B2 (en) * | 2001-07-06 | 2009-03-10 | Technologies And Devices, International, Inc. | Method and apparatus for fabricating crack-free Group III nitride semiconductor materials |
US7105865B2 (en) * | 2001-09-19 | 2006-09-12 | Sumitomo Electric Industries, Ltd. | AlxInyGa1−x−yN mixture crystal substrate |
JP4201541B2 (en) | 2002-07-19 | 2008-12-24 | 豊田合成株式会社 | Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device manufacturing method |
US7427555B2 (en) * | 2002-12-16 | 2008-09-23 | The Regents Of The University Of California | Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy |
US7186302B2 (en) * | 2002-12-16 | 2007-03-06 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
US7432142B2 (en) * | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
TWI377602B (en) * | 2005-05-31 | 2012-11-21 | Japan Science & Tech Agency | Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd) |
TW200703463A (en) * | 2005-05-31 | 2007-01-16 | Univ California | Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO) |
-
2006
- 2006-05-30 TW TW095119277A patent/TWI377602B/en active
- 2006-05-31 KR KR1020077030279A patent/KR20080014077A/en not_active Abandoned
- 2006-05-31 JP JP2008514783A patent/JP2008543087A/en active Pending
- 2006-05-31 WO PCT/US2006/020995 patent/WO2006130622A2/en active Application Filing
- 2006-05-31 KR KR1020127010536A patent/KR101499203B1/en active Active
- 2006-05-31 US US11/444,083 patent/US7338828B2/en active Active
- 2006-05-31 EP EP06760566A patent/EP1897120A4/en not_active Withdrawn
-
2007
- 2007-10-10 US US11/870,115 patent/US8097481B2/en active Active
-
2011
- 2011-12-07 US US13/313,335 patent/US8795440B2/en active Active
-
2013
- 2013-11-29 JP JP2013246875A patent/JP2014099616A/en active Pending
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6156581A (en) * | 1994-01-27 | 2000-12-05 | Advanced Technology Materials, Inc. | GaN-based devices using (Ga, AL, In)N base layers |
US6440823B1 (en) * | 1994-01-27 | 2002-08-27 | Advanced Technology Materials, Inc. | Low defect density (Ga, Al, In)N and HVPE process for making same |
US6072197A (en) * | 1996-02-23 | 2000-06-06 | Fujitsu Limited | Semiconductor light emitting device with an active layer made of semiconductor having uniaxial anisotropy |
US5923950A (en) * | 1996-06-14 | 1999-07-13 | Matsushita Electric Industrial Co., Inc. | Method of manufacturing a semiconductor light-emitting device |
US20040094773A1 (en) * | 1997-04-11 | 2004-05-20 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate and nitride semiconductor device |
US6069021A (en) * | 1997-05-14 | 2000-05-30 | Showa Denko K.K. | Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer |
US6045626A (en) * | 1997-07-11 | 2000-04-04 | Tdk Corporation | Substrate structures for electronic devices |
US20020084467A1 (en) * | 1997-09-30 | 2002-07-04 | Krames Michael R. | Nitride semiconductor device with reduced polarization fields |
US6201262B1 (en) * | 1997-10-07 | 2001-03-13 | Cree, Inc. | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
US6064078A (en) * | 1998-05-22 | 2000-05-16 | Xerox Corporation | Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities |
US6468882B2 (en) * | 2000-07-10 | 2002-10-22 | Sumitomo Electric Industries, Ltd. | Method of producing a single crystal gallium nitride substrate and single crystal gallium nitride substrate |
US20020187356A1 (en) * | 2000-12-14 | 2002-12-12 | Weeks T. Warren | Gallium nitride materials and methods |
US20020074552A1 (en) * | 2000-12-14 | 2002-06-20 | Weeks T. Warren | Gallium nitride materials and methods |
US20040251471A1 (en) * | 2001-10-26 | 2004-12-16 | Robert Dwilinski | Light emitting element structure using nitride bulk single crystal layer |
US20040261692A1 (en) * | 2001-10-26 | 2004-12-30 | Robert Dwilinski | Substrate for epitaxy |
US20030198837A1 (en) * | 2002-04-15 | 2003-10-23 | Craven Michael D. | Non-polar a-plane gallium nitride thin films grown by metalorganic chemical vapor deposition |
US20050245095A1 (en) * | 2002-04-15 | 2005-11-03 | The Regents Of The University Of California | Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy |
US7091514B2 (en) * | 2002-04-15 | 2006-08-15 | The Regents Of The University Of California | Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices |
US20060138431A1 (en) * | 2002-05-17 | 2006-06-29 | Robert Dwilinski | Light emitting device structure having nitride bulk single crystal layer |
US20050205884A1 (en) * | 2004-03-19 | 2005-09-22 | Lumileds Lighting U.S., Llc | Semiconductor light emitting devices including in-plane light emitting layers |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090243043A1 (en) * | 2006-03-23 | 2009-10-01 | Wang Nang Wang | Growth method using nanostructure compliant layers and hvpe for producing high quality compound semiconductor materials |
US20070234946A1 (en) * | 2006-04-07 | 2007-10-11 | Tadao Hashimoto | Method for growing large surface area gallium nitride crystals in supercritical ammonia and lagre surface area gallium nitride crystals |
US20110037052A1 (en) * | 2006-12-11 | 2011-02-17 | The Regents Of The University Of California | Metalorganic chemical vapor deposition (mocvd) growth of high performance non-polar iii-nitride optical devices |
US20080164489A1 (en) * | 2006-12-11 | 2008-07-10 | The Regents Of The University Of California | Metalorganic chemical vapor deposittion (MOCVD) growth of high performance non-polar III-nitride optical devices |
US20120199809A1 (en) * | 2006-12-11 | 2012-08-09 | Japan Science And Technology Agency | Metalorganic chemical vapor deposition (mocvd) growth of high performance non-polar iii-nitride optical devices |
US8178373B2 (en) * | 2006-12-11 | 2012-05-15 | The Regents Of The University Of California | Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices |
US8956896B2 (en) * | 2006-12-11 | 2015-02-17 | The Regents Of The University Of California | Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices |
US7842527B2 (en) * | 2006-12-11 | 2010-11-30 | The Regents Of The University Of California | Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices |
US8828849B2 (en) | 2007-01-19 | 2014-09-09 | Nanogan Limited | Production of single-crystal semiconductor material using a nanostructure template |
US20090174038A1 (en) * | 2007-01-19 | 2009-07-09 | Wang Nang Wang | Production of single-crystal semiconductor material using a nanostructure template |
US7598108B2 (en) * | 2007-07-06 | 2009-10-06 | Sharp Laboratories Of America, Inc. | Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers |
US20090008647A1 (en) * | 2007-07-06 | 2009-01-08 | Sharp Laboratories Of America Inc. | Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers |
US20090079034A1 (en) * | 2007-09-26 | 2009-03-26 | Wang Nang Wang | Non-polar iii-v nitride semiconductor and growth method |
US8652947B2 (en) * | 2007-09-26 | 2014-02-18 | Wang Nang Wang | Non-polar III-V nitride semiconductor and growth method |
US20100244087A1 (en) * | 2007-11-21 | 2010-09-30 | Mitsubishi Chemical Corporation | Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element |
US8652948B2 (en) * | 2007-11-21 | 2014-02-18 | Mitsubishi Chemical Corporation | Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element |
US20100012948A1 (en) * | 2008-07-16 | 2010-01-21 | Ostendo Technologies, Inc. | Growth of Planar Non-Polar M-Plane and Semi-Polar Gallium Nitride with Hydride Vapor Phase Epitaxy (HVPE) |
US8673074B2 (en) | 2008-07-16 | 2014-03-18 | Ostendo Technologies, Inc. | Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE) |
US20110203514A1 (en) * | 2008-11-07 | 2011-08-25 | The Regents Of The University Of California | Novel vessel designs and relative placements of the source material and seed crystals with respect to the vessel for the ammonothermal growth of group-iii nitride crystals |
US20110179993A1 (en) * | 2009-03-06 | 2011-07-28 | Akira Inoue | Crystal growth process for nitride semiconductor, and method for manufacturing semiconductor device |
US20110108954A1 (en) * | 2009-11-06 | 2011-05-12 | Ostendo Technologies, Inc. | Growth of Planar Non-Polar M-Plane Gallium Nitride With Hydride Vapor Phase Epitaxy (HVPE) |
US8629065B2 (en) | 2009-11-06 | 2014-01-14 | Ostendo Technologies, Inc. | Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE) |
CN102597340A (en) * | 2009-11-10 | 2012-07-18 | 株式会社德山 | Manufacturing method of laminated body |
CN102412123A (en) * | 2011-11-07 | 2012-04-11 | 中山市格兰特实业有限公司火炬分公司 | Preparation method of aluminum nitride |
US20130337619A1 (en) * | 2012-06-18 | 2013-12-19 | Fujitsu Limited | Compound semiconductor device and method for manufacturing the same |
US9595594B2 (en) * | 2012-06-18 | 2017-03-14 | Fujitsu Limited | Compound semiconductor device and method for manufacturing the same |
CN103151247A (en) * | 2013-03-10 | 2013-06-12 | 北京工业大学 | Method for preparing non-polar GaN film on r-face sapphire substrate |
US20150053916A1 (en) * | 2013-08-22 | 2015-02-26 | Nanoco Technologies Ltd. | Gas Phase Enhancement of Emission Color Quality in Solid State LEDs |
US9574135B2 (en) * | 2013-08-22 | 2017-02-21 | Nanoco Technologies Ltd. | Gas phase enhancement of emission color quality in solid state LEDs |
CN106268521A (en) * | 2016-08-29 | 2017-01-04 | 河南飞孟金刚石工业有限公司 | A kind of synthesis technique that can improve polycrystalline diamond yield |
CN106981415A (en) * | 2017-04-19 | 2017-07-25 | 华南理工大学 | The gallium nitride film and its nanometer epitaxial lateral overgrowth method of GaN HEMTs |
CN112981368A (en) * | 2021-02-03 | 2021-06-18 | 北航(四川)西部国际创新港科技有限公司 | Improved CVD equipment and preparation method for realizing co-infiltration deposition of aluminum-silicon coating by using improved CVD equipment |
Also Published As
Publication number | Publication date |
---|---|
KR20080014077A (en) | 2008-02-13 |
US7338828B2 (en) | 2008-03-04 |
US20120074429A1 (en) | 2012-03-29 |
TW200703470A (en) | 2007-01-16 |
WO2006130622A3 (en) | 2007-08-02 |
EP1897120A2 (en) | 2008-03-12 |
US8795440B2 (en) | 2014-08-05 |
TWI377602B (en) | 2012-11-21 |
US20080026502A1 (en) | 2008-01-31 |
KR20120064713A (en) | 2012-06-19 |
KR101499203B1 (en) | 2015-03-18 |
JP2008543087A (en) | 2008-11-27 |
US8097481B2 (en) | 2012-01-17 |
EP1897120A4 (en) | 2011-08-31 |
WO2006130622A2 (en) | 2006-12-07 |
JP2014099616A (en) | 2014-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7338828B2 (en) | Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD) | |
US8673074B2 (en) | Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE) | |
JP5838523B2 (en) | Semipolar (Al, In, Ga, B) N or Group III nitride crystals | |
US7220324B2 (en) | Technique for the growth of planar semi-polar gallium nitride | |
US8405128B2 (en) | Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition | |
US8629065B2 (en) | Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE) | |
US7575947B2 (en) | Method for enhancing growth of semi-polar (Al,In,Ga,B)N via metalorganic chemical vapor deposition | |
US20120161287A1 (en) | METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION | |
US20140183579A1 (en) | Miscut semipolar optoelectronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IMER, BILGE M.;SPECK, JAMES S.;DENBAARS, STEVEN P.;REEL/FRAME:017965/0613;SIGNING DATES FROM 20060519 TO 20060524 |
|
AS | Assignment |
Owner name: JAPAN SCIENCE AND TECHNOLOGY AGENCY, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE REGENTS OF THE UNIVERSITY OF CALIFORNIA;REEL/FRAME:019563/0345 Effective date: 20070627 |
|
AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAMURA, SHUJI;REEL/FRAME:019922/0414 Effective date: 20071001 |
|
AS | Assignment |
Owner name: JAPAN SCIENCE AND TECHNOLOGY AGENCY, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE REGENTS OF THE UNIVERSITY OF CALIFORNIA;REEL/FRAME:019957/0328 Effective date: 20071012 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1556); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |