US20060236535A1 - Method of forming a gasket assembly for a PEM fuel cell assembly - Google Patents
Method of forming a gasket assembly for a PEM fuel cell assembly Download PDFInfo
- Publication number
- US20060236535A1 US20060236535A1 US11/471,347 US47134706A US2006236535A1 US 20060236535 A1 US20060236535 A1 US 20060236535A1 US 47134706 A US47134706 A US 47134706A US 2006236535 A1 US2006236535 A1 US 2006236535A1
- Authority
- US
- United States
- Prior art keywords
- gasket
- sheet
- assembly
- carrier
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 11
- 239000012528 membrane Substances 0.000 claims abstract description 14
- 238000013023 gasketing Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 2
- 239000007788 liquid Substances 0.000 abstract description 4
- 229920001169 thermoplastic Polymers 0.000 abstract description 2
- 239000004416 thermosoftening plastic Substances 0.000 abstract description 2
- 239000011347 resin Substances 0.000 abstract 1
- 229920005989 resin Polymers 0.000 abstract 1
- 239000002826 coolant Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- -1 hydrogen cations Chemical class 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002991 molded plastic Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49297—Seal or packing making
Definitions
- the present invention relates to proton-exchange membrane (PEM) fuel cells; more particularly, to gasketing for a PEM fuel cell; and most particularly, to an improved process for forming and using an elastomeric gasket to seal the edges of bipolar plates in a PEM fuel cell assembly.
- PEM proton-exchange membrane
- Proton-exchange membrane fuel cells are well known.
- hydrogen atoms are ionized in an anode, migrate through a specialized membrane as hydrogen cations (protons), and combine with oxygen anions at a cathode to form water.
- Electrons from the hydrogen flow from the anode through an external circuit to the cathode, performing work in between.
- the membrane typically with a catalyst coating sandwiched between layers of gas diffusion media (GDL), is know in the art as a membrane electrode assembly (MEA).
- MEA membrane electrode assembly
- a bipolar plate assembly is constructed by joining an individual anode and cathode plate.
- Fuel cell assemblies comprise a plurality of individual bipolar plate assemblies stacked together and connected in electrical series. When the MEA is captured between the anode and cathode they form an individual cell whereby the electrochemical reaction can take place.
- Such bipolar plates when stacked together with the MEAs in between, form a fuel cell assembly. Openings through the bipolar plates near the edges form headers for inlet and exhaust of fuel and combustion gases as well as coolant. Other openings may be provided for alignment during assembly or for other specialized purposes.
- Bipolar plates typically are formed of a metals (such as titanium or stainless steel) or composites (such as a thermoset graphite-loaded vinyl ester polymer) and are easily damaged by twisting or other application of uneven stresses.
- the plates require a non-conductive seal or gasket along all outer edges and around all openings to prevent leaking of reactant gases and coolant and to electrically insulate the bipolar plates from each other. It is known to use separate die-cut or molded elastomeric gaskets, installed between the plates during assembly of a fuel cell stack.
- thermoplastic carrier sheet is die-cut to have a size and shape matching that of a bipolar plate, including various cutouts known in the art for passage of reactant gases, spent gases, coolant, and placement of a membrane electrode assembly.
- a plurality of holes are also punched in the carrier sheet in the pattern of gasket beading to be formed subsequently.
- liquid gasket material fills the mold on both sides of the carrier sheet to form gasket elements on both sides, flowing through the holes in the sheet and thereby causing the gasket elements to become mechanically attached to the sheet and to each other.
- Different liquid gasket materials can be used to suit the performance demands of the local environment.
- a pre-molded plastic carrier element having a flange portion substantially identical with the outer profile of the bipolar plate is then overmolded onto the sheet.
- locator features are provided in the outer regions of the sheet to aid in accurately locating the gasket elements.
- the plastic carrier element fits over a bipolar plate, automatically positioning the gasket correctly on the plate.
- the carrier sheet prevents the gasket from twisting or shifting.
- a membrane electrode assembly is attached as by ultrasonic welding within an appropriate opening in the carrier sheet.
- FIG. 1 is a top view of a bipolar plate having a loose or applied perimeter gasket in accordance with the prior art
- FIG. 2 is a detailed cross-sectional view of a region of a PEM fuel cell stack, including the prior art gasket shown in FIG. 1 ;
- FIG. 3 is a detailed cross-sectional view of a region of a PEM fuel cell stack, including a gasket in accordance with the present invention.
- FIG. 4 is a section of a region of PEM fuel cell stack, similar to that shown in FIG. 3 , showing locator features.
- a typical bipolar plate 10 for use in a PEM fuel cell is generally rectangular, having a central region 12 for receiving fuel cell electrodes and membrane (not shown) and first and second manifold regions 14 , 16 for providing fuel, air and coolant to the central region in known fashion.
- Plate 10 is provided with a prior art resilient gasket 18 (shown as a hatched section in FIG. 1 ) which surrounds central region 12 and one or more of the apertures 20 in manifold regions 14 and 16 .
- Gasket 18 typically is formed either as an independent, flexible element or as a cast laminate on the surface of plate 10 .
- an edge portion 24 of a membrane electrode assembly 26 extends between the cathode side 28 of a first bipolar plate 30 a and the anode side 32 of a typically identical second bipolar plate 30 b.
- An elastomeric gasket 34 is disposed on anode side 32 , typically in a shallow channel 36 , to seal against MEA 26 to prevent leakage of gas from first flow chamber 38 to the exterior 40 of the fuel cell.
- MEA 26 itself forms an integral seal against surface 42 of cathode side 28 , which seal is known to permit leakage 44 of gas from second flow chamber 46 under some circumstances, especially at first usage of the fuel cell before the membrane becomes hydrated by exhaust water.
- an improved PEM fuel cell 22 ′ includes an improved gasket assembly 48 in accordance with the invention.
- Plastic carrier sheet 50 is formed, preferably by die-cutting, in the general shape of bipolar plate 10 shown in FIG. 1 , corresponding to plates 30 a, 30 b in FIGS. 2 and 3 .
- a plurality of holes 52 are punched along the line of the intended gasket 34 ′.
- Gasket 34 ′ includes first and second gasket elements 54 a , 54 b on opposite sides of sheet 50 and connected through holes 52 .
- sheet 50 extends 57 beyond the edges 56 a , 56 b of bipolar plates 30 a , 30 b to be joined with a pre-molded plastic carrier element 58 having a flange portion 60 having a profile substantially coincident with edges 56 a , 56 b.
- sheet 50 is cut out in the reactive area 62 of the fuel cell assembly and along its inner edge 64 is supportive of a membrane electrode assembly 26 .
- a carrier sheet 50 is formed, preferably by die-cutting, from plastic film stock, for example, polyethylene terephthalate (PET), such as Mylar® preferably between between 3 and 14 mils thick.
- PET polyethylene terephthalate
- Carrier sheet 50 may have inner edges 64 , edge extension 57 and a plurality of holes 52 as described above.
- Carrier sheet 50 is inserted (insertion molding) into an appropriate liquid injection female mold formed in the shape of the desired gasket elements 54 a , 54 b.
- An elastomer compound preferably a liquid silicone rubber such as (LSR), is injected into the mold to form the gasket elements and to connect them through holes 52 .
- LSR liquid silicone rubber
- the positions of the gasket elements are firmly fixed with respect to each other and to the carrier sheet 50 .
- different elastomer compounds can be selectively used to form various parts of the gasket elements, as best suited for the local environment.
- a compound can be used in forming the gasket element around a coolant manifold region because of its compatibility with the coolant.
- carrier element 58 is formed as by injection molding of a durable polymer such as nylon and is attached to edge extension 57 of sheet 50 to form a gasket assembly which is readily mounted onto bipolar plate 30 b, which readily and accurately positions plate 30 a with respect to plate 30 b, and which readily and accurately positions gasket 34 ′ in gasket channel 36 .
- carrier element 58 includes a spacer portion 59 extending inwards along said carrier sheet. Portion 59 is formed having a predetermined thickness for limiting the compression distance 61 of gasket element 54 a during assembly of fuel cell 22 ′.
- MEA 26 is joined as by ultrasonic or laser welding to sheet 50 inboard of inner edge 64 , thus simplifying the installation of the MEA in the fuel cell assembly.
- edge extension 57 ′ of sheet 50 includes one or more locator features 66 , extending from top surface 68 of sheet 50 to bottom surface 70 of sheet 50 .
- Features 66 can take the form of, for example, a notch or orifice.
- gasket elements 54 a , 54 b can be precisely positioned (dimension A) relative to locator features 66 when molded to carrier sheet 50 .
- locator features 66 as an index relative to end surfaces 72 of plates 30 a, 30 b
- gasket 34 can be accurately positioned (dimension B) in gasket channel 36 during assembly.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
A thermoplastic carrier sheet is die-cut to have a size and shape matching that of a PEM bipolar plate. A plurality of holes are punched in the carrier sheet in the pattern of gasket beading to be formed subsequently. In a mold, liquid gasket resin fills the mold on both sides of the carrier sheet to form the gasket, flowing through the holes in the sheet and thereby causing the gasket to become mechanically attached to the sheet. A carrier element having a flange portion substantially identical with the outer profile of the bipolar plates is laminated to the sheet edge. During assembly of a fuel cell, the carrier element automatically positions the gasket correctly on the plate and prevents the gasket from twisting or shifting. In a currently preferred embodiment, a membrane electrode assembly is attached within an appropriate opening in the carrier sheet.
Description
- The present invention relates to proton-exchange membrane (PEM) fuel cells; more particularly, to gasketing for a PEM fuel cell; and most particularly, to an improved process for forming and using an elastomeric gasket to seal the edges of bipolar plates in a PEM fuel cell assembly.
- Proton-exchange membrane fuel cells are well known. In a PEM fuel cell, hydrogen atoms are ionized in an anode, migrate through a specialized membrane as hydrogen cations (protons), and combine with oxygen anions at a cathode to form water. Electrons from the hydrogen flow from the anode through an external circuit to the cathode, performing work in between. The membrane, typically with a catalyst coating sandwiched between layers of gas diffusion media (GDL), is know in the art as a membrane electrode assembly (MEA). A bipolar plate assembly is constructed by joining an individual anode and cathode plate.
- Fuel cell assemblies comprise a plurality of individual bipolar plate assemblies stacked together and connected in electrical series. When the MEA is captured between the anode and cathode they form an individual cell whereby the electrochemical reaction can take place. Such bipolar plates, when stacked together with the MEAs in between, form a fuel cell assembly. Openings through the bipolar plates near the edges form headers for inlet and exhaust of fuel and combustion gases as well as coolant. Other openings may be provided for alignment during assembly or for other specialized purposes.
- Bipolar plates typically are formed of a metals (such as titanium or stainless steel) or composites (such as a thermoset graphite-loaded vinyl ester polymer) and are easily damaged by twisting or other application of uneven stresses. The plates require a non-conductive seal or gasket along all outer edges and around all openings to prevent leaking of reactant gases and coolant and to electrically insulate the bipolar plates from each other. It is known to use separate die-cut or molded elastomeric gaskets, installed between the plates during assembly of a fuel cell stack.
- A problem exists in locating the gaskets properly with respect to the openings to be sealed. Further, individual gaskets are thin, very pliable, and thus are easily twisted and deformed. A misaligned or twisted gasket can cause leaks, broken bipolar plates, and stack failure.
- What is needed is a reliable method of forming and installing resilient gaskets in assembly of a fuel cell stack.
- It is a principal object of the present invention to improve the reliability of assembly of a fuel cell stack.
- It is a further object of the invention to reduce waste and cost in fuel cell manufacture.
- It is a still further object of the invention to improve ease of assembly of a fuel cell stack.
- Briefly described, in a method of forming a gasket assembly for a fuel cell assembly, a thermoplastic carrier sheet is die-cut to have a size and shape matching that of a bipolar plate, including various cutouts known in the art for passage of reactant gases, spent gases, coolant, and placement of a membrane electrode assembly. A plurality of holes are also punched in the carrier sheet in the pattern of gasket beading to be formed subsequently. In a gasket mold, liquid gasket material fills the mold on both sides of the carrier sheet to form gasket elements on both sides, flowing through the holes in the sheet and thereby causing the gasket elements to become mechanically attached to the sheet and to each other. Different liquid gasket materials can be used to suit the performance demands of the local environment. Preferably, a pre-molded plastic carrier element having a flange portion substantially identical with the outer profile of the bipolar plate is then overmolded onto the sheet. Alternately, locator features are provided in the outer regions of the sheet to aid in accurately locating the gasket elements.
- During assembly of a fuel cell assembly, the plastic carrier element fits over a bipolar plate, automatically positioning the gasket correctly on the plate. The carrier sheet prevents the gasket from twisting or shifting. In a currently preferred embodiment, a membrane electrode assembly is attached as by ultrasonic welding within an appropriate opening in the carrier sheet.
- A gasket assembly in accordance with the invention provides the following benefits over prior art gasketing schemes:
- Eliminates need for bonding a gasket to a bipolar plate.
- Prevents twisting, stretching, and rolling of a gasket.
- Aligns the gasket to a bipolar plate so that the gasket is placed correctly in a gasket groove therein.
- Aligns adjacent bipolar plates, greatly simplifying stack assembly.
- Provides a positive stop, limiting compression of the gasket during assembly.
- Provides electrical isolation of the bipolar plates.
- Simplifies installation of membrane electrode assemblies during stack assembly.
- The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
-
FIG. 1 is a top view of a bipolar plate having a loose or applied perimeter gasket in accordance with the prior art; -
FIG. 2 is a detailed cross-sectional view of a region of a PEM fuel cell stack, including the prior art gasket shown inFIG. 1 ; -
FIG. 3 is a detailed cross-sectional view of a region of a PEM fuel cell stack, including a gasket in accordance with the present invention; and -
FIG. 4 is a section of a region of PEM fuel cell stack, similar to that shown inFIG. 3 , showing locator features. - Referring to
FIG. 1 , a typicalbipolar plate 10 for use in a PEM fuel cell is generally rectangular, having acentral region 12 for receiving fuel cell electrodes and membrane (not shown) and first andsecond manifold regions 14,16 for providing fuel, air and coolant to the central region in known fashion.Plate 10 is provided with a prior art resilient gasket 18 (shown as a hatched section inFIG. 1 ) which surroundscentral region 12 and one or more of theapertures 20 inmanifold regions 14 and 16.Gasket 18 typically is formed either as an independent, flexible element or as a cast laminate on the surface ofplate 10. - Referring to
FIG. 2 , in a typical prior art PEM fuel cell 22, anedge portion 24 of amembrane electrode assembly 26 extends between thecathode side 28 of a firstbipolar plate 30 a and theanode side 32 of a typically identical second bipolar plate 30 b. Anelastomeric gasket 34 is disposed onanode side 32, typically in ashallow channel 36, to seal against MEA 26 to prevent leakage of gas fromfirst flow chamber 38 to theexterior 40 of the fuel cell. MEA 26 itself forms an integral seal againstsurface 42 ofcathode side 28, which seal is known to permitleakage 44 of gas fromsecond flow chamber 46 under some circumstances, especially at first usage of the fuel cell before the membrane becomes hydrated by exhaust water. - Referring to
FIG. 3 , an improved PEM fuel cell 22′ includes an improvedgasket assembly 48 in accordance with the invention.Plastic carrier sheet 50 is formed, preferably by die-cutting, in the general shape ofbipolar plate 10 shown inFIG. 1 , corresponding toplates 30 a, 30 b inFIGS. 2 and 3 . In areas ofsheet 50 intended for gasket support, a plurality ofholes 52 are punched along the line of the intendedgasket 34′.Gasket 34′ includes first andsecond gasket elements 54 a,54 b on opposite sides ofsheet 50 and connected throughholes 52. Preferably,sheet 50 extends 57 beyond theedges 56 a,56 b ofbipolar plates 30 a,30 b to be joined with a pre-moldedplastic carrier element 58 having aflange portion 60 having a profile substantially coincident withedges 56 a,56 b. Preferably,sheet 50 is cut out in thereactive area 62 of the fuel cell assembly and along itsinner edge 64 is supportive of amembrane electrode assembly 26. - In a method for forming improved
gasket assembly 48, acarrier sheet 50 is formed, preferably by die-cutting, from plastic film stock, for example, polyethylene terephthalate (PET), such as Mylar® preferably between between 3 and 14 mils thick.Carrier sheet 50 may haveinner edges 64,edge extension 57 and a plurality ofholes 52 as described above.Carrier sheet 50 is inserted (insertion molding) into an appropriate liquid injection female mold formed in the shape of the desiredgasket elements 54 a,54 b. An elastomer compound, preferably a liquid silicone rubber such as (LSR), is injected into the mold to form the gasket elements and to connect them throughholes 52. Thus the positions of the gasket elements are firmly fixed with respect to each other and to thecarrier sheet 50. In an alternate embodiment, different elastomer compounds can be selectively used to form various parts of the gasket elements, as best suited for the local environment. For example, a compound can be used in forming the gasket element around a coolant manifold region because of its compatibility with the coolant. - In an additional step,
carrier element 58 is formed as by injection molding of a durable polymer such as nylon and is attached to edgeextension 57 ofsheet 50 to form a gasket assembly which is readily mounted onto bipolar plate 30 b, which readily and accurately positionsplate 30 a with respect to plate 30 b, and which readily and accurately positionsgasket 34′ ingasket channel 36. Preferably,carrier element 58 includes aspacer portion 59 extending inwards along said carrier sheet.Portion 59 is formed having a predetermined thickness for limiting the compression distance 61 ofgasket element 54 a during assembly of fuel cell 22′. - In a currently-preferred additional step,
MEA 26 is joined as by ultrasonic or laser welding tosheet 50 inboard ofinner edge 64, thus simplifying the installation of the MEA in the fuel cell assembly. - In yet another embodiment,
edge extension 57′ of sheet 50 (FIG. 4 ) includes one or more locator features 66, extending from top surface 68 ofsheet 50 to bottom surface 70 ofsheet 50. Features 66 can take the form of, for example, a notch or orifice. Using locator features 66 as an index,gasket elements 54 a,54 b can be precisely positioned (dimension A) relative to locator features 66 when molded tocarrier sheet 50. Then, using locator features 66 as an index relative to end surfaces 72 ofplates 30 a, 30 b,gasket 34 can be accurately positioned (dimension B) ingasket channel 36 during assembly. - While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.
Claims (8)
1. A method for forming a gasket assembly for use in sealing bipolar plates in a proton exchange fuel cell assembly, comprising the steps of:
a) forming a carrier sheet in a general shape of a bipolar plate;
b) forming a plurality of holes in said carrier sheet in one or more regions of said sheet for receiving gasketing material;
c) inserting said carrier sheet into a mold; and
d) entering said gasketing material into said mold to form one or more gasket elements extending away from at least one surface of said carrier sheet and extending into at least one of said holes in said sheet.
2. A method in accordance with claim 1 wherein first and second gasket elements are formed on opposite sides of said carrier sheets and are joined through said holes.
3. A method in accordance with claim 1 comprising the further steps of:
a) forming a carrier element for said carrier sheet and gasket elements, and
b) attaching said carrier element to said carrier sheet.
4. A method in accordance with claim 3 wherein said carrier element has a flange portion substantially identical with an edge profile of said bipolar plates.
5. A method in accordance with claim 3 wherein said carrier element further comprises a spacer portion extendable between said bipolar plates for limiting the compression of said one or more gasket elements.
6. A method in accordance with claim 1 further comprising the step of attaching a membrane electrode assembly to said carrier sheet.
7. A gasket assembly for sealing bipolar plates in a proton exchange fuel cell assembly, said gasket assembly being formed in accordance with claim 1 .
8-11. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/471,347 US20060236535A1 (en) | 2003-02-18 | 2006-06-20 | Method of forming a gasket assembly for a PEM fuel cell assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/369,290 US7104545B2 (en) | 2003-02-18 | 2003-02-18 | Method of forming a gasket assembly for a PEM fuel cell assembly |
US11/471,347 US20060236535A1 (en) | 2003-02-18 | 2006-06-20 | Method of forming a gasket assembly for a PEM fuel cell assembly |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/369,290 Division US7104545B2 (en) | 2003-02-18 | 2003-02-18 | Method of forming a gasket assembly for a PEM fuel cell assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060236535A1 true US20060236535A1 (en) | 2006-10-26 |
Family
ID=32736423
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/369,290 Expired - Fee Related US7104545B2 (en) | 2003-02-18 | 2003-02-18 | Method of forming a gasket assembly for a PEM fuel cell assembly |
US11/471,347 Abandoned US20060236535A1 (en) | 2003-02-18 | 2006-06-20 | Method of forming a gasket assembly for a PEM fuel cell assembly |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/369,290 Expired - Fee Related US7104545B2 (en) | 2003-02-18 | 2003-02-18 | Method of forming a gasket assembly for a PEM fuel cell assembly |
Country Status (2)
Country | Link |
---|---|
US (2) | US7104545B2 (en) |
EP (1) | EP1450427A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013022765A1 (en) * | 2011-08-05 | 2013-02-14 | Enerfuel, Inc. | Bipolar plate assembly having an insert member |
KR101299833B1 (en) * | 2011-04-20 | 2013-08-23 | 주식회사 포스코 | Sealing-gasket for preventing magnesium oxidization, continuous casting system using the same and method for preparing thereof |
US9441574B2 (en) | 2013-03-15 | 2016-09-13 | Federal-Mogul Corporation | Engine spacer plate gasket |
EP4550483A1 (en) * | 2023-10-30 | 2025-05-07 | AVL List GmbH | Sealing device comprising at least one limiter |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040074125A1 (en) * | 2002-10-17 | 2004-04-22 | Johnson Patrick G. | Iron-wood golf club head accessory |
DE10306211A1 (en) * | 2003-02-13 | 2004-08-26 | Mann + Hummel Gmbh | Valve cover seal for sealing a connection between a thin-walled molded part and a second molded part has a flexible sealing lip on a seal to fit between both molded parts |
DE102004034236A1 (en) * | 2004-07-15 | 2006-02-16 | Federal-Mogul Sealing Systems Bretten Gmbh | Seal with carrier and its manufacture |
US7771181B2 (en) | 2005-11-14 | 2010-08-10 | 3M Innovative Properties Company | Gasket molding system for membrane electrode assemblies |
DE102006004748A1 (en) * | 2006-02-02 | 2007-08-16 | Umicore Ag & Co. Kg | Membrane electrode unit with multi-component sealing edge |
JP5026708B2 (en) | 2006-02-09 | 2012-09-19 | 東海ゴム工業株式会社 | Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same |
US7838168B2 (en) * | 2006-08-24 | 2010-11-23 | Salter L Carlton | Functionally integrated hydrogen fuel cell |
EP3376576A1 (en) * | 2008-06-23 | 2018-09-19 | Nuvera Fuel Cells, LLC | Fuel cell with reduced mass transfer limitations |
GB2472450A (en) * | 2009-08-07 | 2011-02-09 | Afc Energy Plc | Cell Stack Plates |
US9010718B2 (en) * | 2009-08-10 | 2015-04-21 | Dean Foote | Seal assembly for a pressure plate in a blowout preventer |
GB2478154B (en) * | 2010-02-26 | 2016-02-24 | Intelligent Energy Ltd | Laminated fuel cell assembly |
JP5760411B2 (en) * | 2010-12-08 | 2015-08-12 | Nok株式会社 | gasket |
US9702464B1 (en) * | 2011-10-03 | 2017-07-11 | The Patent Well LLC | Non-planar stick gaskets for receipt between a base and a workpiece |
JP6306928B2 (en) * | 2013-05-07 | 2018-04-04 | Nok株式会社 | Manufacturing method of plate-integrated gasket |
JP6383203B2 (en) * | 2014-07-25 | 2018-08-29 | Nok株式会社 | Manufacturing method of plate-integrated gasket |
CN114864990B (en) * | 2022-05-27 | 2023-11-28 | 上海电气集团股份有限公司 | Method for preparing single cell of fuel cell |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6057054A (en) * | 1997-07-16 | 2000-05-02 | Ballard Power Systems Inc. | Membrane electrode assembly for an electrochemical fuel cell and a method of making an improved membrane electrode assembly |
US6231053B1 (en) * | 1999-06-11 | 2001-05-15 | Nok Corporation | Gasket for fuel cell |
US6338492B1 (en) * | 1999-02-27 | 2002-01-15 | Firma Carl Freudenberg | Sealing system for large-surface thin parts |
US6610435B1 (en) * | 1999-09-30 | 2003-08-26 | Aisin Seiki Kabushiki Kaisha | Fuel cell with reduced gas leakage |
US6649097B2 (en) * | 1998-06-26 | 2003-11-18 | Nok Corporation | Method of making a gasket for layer-built fuel cells |
US6790552B2 (en) * | 2001-10-16 | 2004-09-14 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
US6805986B2 (en) * | 2000-06-27 | 2004-10-19 | Nok Corporation | Gasket for fuel battery |
US6840969B2 (en) * | 2001-01-31 | 2005-01-11 | Matsushita Electric Industrial Co., Ltd. | High polymer electrolyte fuel cell and electrolyte film-gasket assembly for the fuel cell |
US6861171B1 (en) * | 2000-11-27 | 2005-03-01 | Freudenberg-Nok General Partnership | Gasket assembly |
US7005208B2 (en) * | 2000-10-18 | 2006-02-28 | Honda Giken Kogyo Kabushiki Kaisha | Method for mounting seals for fuel cell and fuel cell |
US7014939B2 (en) * | 2001-01-30 | 2006-03-21 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell and fuel cell stack |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US811000A (en) * | 1905-03-29 | 1906-01-30 | Vreeland Tompkins | Gasket. |
GB1130080A (en) * | 1965-12-10 | 1968-10-09 | Comp Generale Electricite | Composite hollow electrode for fuel cells, and cells produced by assembling such electrodes |
US4159367A (en) * | 1978-06-29 | 1979-06-26 | Yardney Electric Corporation | Hydrogen electrochemical cell and rechargeable metal-hydrogen battery |
JP3135991B2 (en) * | 1992-06-18 | 2001-02-19 | 本田技研工業株式会社 | Fuel cell and fuel cell stack tightening method |
DE19846475A1 (en) * | 1998-10-09 | 2000-04-13 | Fischer Georg Rohrleitung | Gasket |
US7063911B1 (en) | 1999-07-13 | 2006-06-20 | Nok Corporation | Gasket for fuel cell and method of forming it |
WO2001017048A1 (en) | 1999-09-01 | 2001-03-08 | Nok Corporation | Fuel cell |
US6485852B1 (en) | 2000-01-07 | 2002-11-26 | Delphi Technologies, Inc. | Integrated fuel reformation and thermal management system for solid oxide fuel cell systems |
US6455185B2 (en) | 2000-04-19 | 2002-09-24 | Delphi Technologies, Inc. | Reformate control valve assembly for a fuel cell |
US6627339B2 (en) | 2000-04-19 | 2003-09-30 | Delphi Technologies, Inc. | Fuel cell stack integrated with a waste energy recovery system |
US6562496B2 (en) | 2000-05-01 | 2003-05-13 | Delphi Technologies, Inc. | Integrated solid oxide fuel cell mechanization and method of using for transportation industry applications |
US6630264B2 (en) | 2000-05-01 | 2003-10-07 | Delphi Technologies, Inc. | Solid oxide fuel cell process gas sampling for analysis |
US6551734B1 (en) | 2000-10-27 | 2003-04-22 | Delphi Technologies, Inc. | Solid oxide fuel cell having a monolithic heat exchanger and method for managing thermal energy flow of the fuel cell |
US6596427B1 (en) * | 2000-11-06 | 2003-07-22 | Ballard Power Systems Inc. | Encapsulating seals for electrochemical cell stacks and methods of sealing electrochemical cell stacks |
US6509113B2 (en) | 2000-12-15 | 2003-01-21 | Delphi Technologies, Inc. | Fluid distribution surface for solid oxide fuel cells |
US6613468B2 (en) | 2000-12-22 | 2003-09-02 | Delphi Technologies, Inc. | Gas diffusion mat for fuel cells |
US6613469B2 (en) | 2000-12-22 | 2003-09-02 | Delphi Technologies, Inc. | Fluid distribution surface for solid oxide fuel cells |
US6321145B1 (en) | 2001-01-29 | 2001-11-20 | Delphi Technologies, Inc. | Method and apparatus for a fuel cell propulsion system |
US6423896B1 (en) | 2001-02-28 | 2002-07-23 | Delphi Technologies, Inc. | Thermophotovoltaic insulation for a solid oxide fuel cell system |
US7226686B2 (en) * | 2001-04-23 | 2007-06-05 | Nok Corporation | Fuel cell and method of manufacturing the fuel cell |
US6599653B1 (en) * | 2001-05-15 | 2003-07-29 | Dana Corporation | Molded fuel cell plates with seals |
CA2401934A1 (en) * | 2001-09-11 | 2003-03-11 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell and conductive separator plate thereof |
US6608463B1 (en) | 2002-06-24 | 2003-08-19 | Delphi Technologies, Inc. | Solid-oxide fuel cell system having an integrated air supply system |
US20040214067A1 (en) * | 2002-12-04 | 2004-10-28 | Chris Boyer | Assembling sub-stacks of electrochemical cells |
-
2003
- 2003-02-18 US US10/369,290 patent/US7104545B2/en not_active Expired - Fee Related
-
2004
- 2004-02-03 EP EP04075351A patent/EP1450427A1/en not_active Withdrawn
-
2006
- 2006-06-20 US US11/471,347 patent/US20060236535A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6057054A (en) * | 1997-07-16 | 2000-05-02 | Ballard Power Systems Inc. | Membrane electrode assembly for an electrochemical fuel cell and a method of making an improved membrane electrode assembly |
US6649097B2 (en) * | 1998-06-26 | 2003-11-18 | Nok Corporation | Method of making a gasket for layer-built fuel cells |
US6338492B1 (en) * | 1999-02-27 | 2002-01-15 | Firma Carl Freudenberg | Sealing system for large-surface thin parts |
US6231053B1 (en) * | 1999-06-11 | 2001-05-15 | Nok Corporation | Gasket for fuel cell |
US6610435B1 (en) * | 1999-09-30 | 2003-08-26 | Aisin Seiki Kabushiki Kaisha | Fuel cell with reduced gas leakage |
US6805986B2 (en) * | 2000-06-27 | 2004-10-19 | Nok Corporation | Gasket for fuel battery |
US7005208B2 (en) * | 2000-10-18 | 2006-02-28 | Honda Giken Kogyo Kabushiki Kaisha | Method for mounting seals for fuel cell and fuel cell |
US6861171B1 (en) * | 2000-11-27 | 2005-03-01 | Freudenberg-Nok General Partnership | Gasket assembly |
US7014939B2 (en) * | 2001-01-30 | 2006-03-21 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell and fuel cell stack |
US6840969B2 (en) * | 2001-01-31 | 2005-01-11 | Matsushita Electric Industrial Co., Ltd. | High polymer electrolyte fuel cell and electrolyte film-gasket assembly for the fuel cell |
US6790552B2 (en) * | 2001-10-16 | 2004-09-14 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101299833B1 (en) * | 2011-04-20 | 2013-08-23 | 주식회사 포스코 | Sealing-gasket for preventing magnesium oxidization, continuous casting system using the same and method for preparing thereof |
WO2013022765A1 (en) * | 2011-08-05 | 2013-02-14 | Enerfuel, Inc. | Bipolar plate assembly having an insert member |
WO2013022773A1 (en) * | 2011-08-05 | 2013-02-14 | Enerfuel, Inc. | Bipolar plate assembly having an encapsulated edge |
US9441574B2 (en) | 2013-03-15 | 2016-09-13 | Federal-Mogul Corporation | Engine spacer plate gasket |
EP4550483A1 (en) * | 2023-10-30 | 2025-05-07 | AVL List GmbH | Sealing device comprising at least one limiter |
Also Published As
Publication number | Publication date |
---|---|
US7104545B2 (en) | 2006-09-12 |
US20040160019A1 (en) | 2004-08-19 |
EP1450427A1 (en) | 2004-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060236535A1 (en) | Method of forming a gasket assembly for a PEM fuel cell assembly | |
EP1341249B1 (en) | Constituent part for fuel cell | |
KR100876262B1 (en) | Solid Polymer Electrolyte Fuel Cell | |
US8304119B2 (en) | Gasket | |
CA2732724C (en) | Electrolyte membrane/electrode structure and fuel cell | |
EP2033250B1 (en) | Fuel cell and method of manufacturing same | |
US6861171B1 (en) | Gasket assembly | |
US8846265B2 (en) | Membrane with optimized dimensions for a fuel cell | |
EP3257097B1 (en) | Seal for solid polymer electrolyte fuel cell | |
US20050181262A1 (en) | Membrane electrode assembly for an electrochemical fuel cell | |
US11171341B2 (en) | Fuel cell and method of manufacturing fuel cell | |
US9196911B2 (en) | Fuel cell gas diffusion layer integrated gasket | |
US10297811B2 (en) | Fuel cell stack | |
US20030124402A1 (en) | Unitized fuel cell electrode gasket assembly | |
KR20190072808A (en) | Membrane-electrode assembly for fuel cell | |
JP4945094B2 (en) | Fuel cell | |
US9496578B2 (en) | Gas diffusion layer with integrated seal for use in a fuel cell | |
US20240421328A1 (en) | Power generation cell and fuel cell stack | |
US20040128825A1 (en) | Laminated membrane electrode seal assembly | |
WO2025020041A1 (en) | Basic frame and electrochemical energy module | |
CN116895780A (en) | Enhanced sealed fuel cell assembly | |
JP2017117722A (en) | Gasket for fuel cell and manufacturing method therefor | |
JP2008218200A (en) | Fuel cell stack and fuel cell stack manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |