US20060216524A1 - Perfluoropolyether urethane additives having (meth)acryl groups and hard coats - Google Patents
Perfluoropolyether urethane additives having (meth)acryl groups and hard coats Download PDFInfo
- Publication number
- US20060216524A1 US20060216524A1 US11/087,413 US8741305A US2006216524A1 US 20060216524 A1 US20060216524 A1 US 20060216524A1 US 8741305 A US8741305 A US 8741305A US 2006216524 A1 US2006216524 A1 US 2006216524A1
- Authority
- US
- United States
- Prior art keywords
- group
- groups
- optionally
- additive
- meth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000654 additive Substances 0.000 title claims abstract description 72
- 239000010702 perfluoropolyether Substances 0.000 title claims description 67
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 title claims description 19
- 230000003287 optical effect Effects 0.000 claims abstract description 48
- 239000002344 surface layer Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims description 68
- 125000005842 heteroatom Chemical group 0.000 claims description 66
- 230000000996 additive effect Effects 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 50
- 229910052757 nitrogen Inorganic materials 0.000 claims description 48
- 229910052760 oxygen Inorganic materials 0.000 claims description 43
- 229910052717 sulfur Inorganic materials 0.000 claims description 43
- 125000000524 functional group Chemical group 0.000 claims description 37
- 125000000217 alkyl group Chemical group 0.000 claims description 34
- 239000007787 solid Substances 0.000 claims description 34
- 125000002947 alkylene group Chemical group 0.000 claims description 33
- 239000010410 layer Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 33
- 125000004432 carbon atom Chemical group C* 0.000 claims description 32
- 239000008199 coating composition Substances 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 26
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 23
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 22
- 125000000732 arylene group Chemical group 0.000 claims description 21
- 239000012948 isocyanate Substances 0.000 claims description 21
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 claims description 20
- 125000003709 fluoroalkyl group Chemical group 0.000 claims description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims description 17
- 229930195733 hydrocarbon Natural products 0.000 claims description 17
- 150000002430 hydrocarbons Chemical class 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 15
- PGFXOWRDDHCDTE-UHFFFAOYSA-N hexafluoropropylene oxide Chemical compound FC(F)(F)C1(F)OC1(F)F PGFXOWRDDHCDTE-UHFFFAOYSA-N 0.000 claims description 15
- 229910016855 F9SO2 Inorganic materials 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 14
- 150000003673 urethanes Chemical class 0.000 claims description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 11
- 239000006224 matting agent Substances 0.000 claims description 11
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 10
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 10
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 10
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 9
- 238000009472 formulation Methods 0.000 claims description 9
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 9
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 claims description 9
- 150000003573 thiols Chemical class 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 125000004055 thiomethyl group Chemical group [H]SC([H])([H])* 0.000 claims description 6
- 239000005056 polyisocyanate Substances 0.000 claims description 5
- 229920001228 polyisocyanate Polymers 0.000 claims description 5
- 230000002940 repellent Effects 0.000 claims description 5
- 239000005871 repellent Substances 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 125000004014 thioethyl group Chemical group [H]SC([H])([H])C([H])([H])* 0.000 claims description 4
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 229920006295 polythiol Chemical class 0.000 claims description 3
- 125000006345 2,2,2-trifluoroethoxymethyl group Chemical group [H]C([H])(*)OC([H])([H])C(F)(F)F 0.000 claims description 2
- 125000000962 organic group Chemical group 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 description 78
- 238000000576 coating method Methods 0.000 description 73
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 66
- 239000011248 coating agent Substances 0.000 description 57
- 239000000243 solution Substances 0.000 description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 30
- 239000000976 ink Substances 0.000 description 24
- -1 oligomers Polymers 0.000 description 23
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 21
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 21
- 239000012975 dibutyltin dilaurate Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 21
- 238000003756 stirring Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 239000003054 catalyst Substances 0.000 description 18
- 239000003921 oil Substances 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 16
- 238000007789 sealing Methods 0.000 description 15
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 11
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 11
- 239000011247 coating layer Substances 0.000 description 11
- 150000002513 isocyanates Chemical class 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 239000004576 sand Substances 0.000 description 9
- 230000003068 static effect Effects 0.000 description 9
- OKIYQFLILPKULA-UHFFFAOYSA-N 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane Chemical compound COC(F)(F)C(F)(F)C(F)(F)C(F)(F)F OKIYQFLILPKULA-UHFFFAOYSA-N 0.000 description 8
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 8
- 229920002313 fluoropolymer Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 230000000007 visual effect Effects 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000001723 curing Methods 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000004811 fluoropolymer Substances 0.000 description 6
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 6
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 241001422033 Thestylus Species 0.000 description 4
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 4
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical compound C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000007607 die coating method Methods 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 235000019439 ethyl acetate Nutrition 0.000 description 4
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 4
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 4
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XYQNMGJZDSSVRP-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,4-nonafluoro-n,n-bis(2-hydroxyethyl)butane-1-sulfonamide Chemical compound OCCN(CCO)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F XYQNMGJZDSSVRP-UHFFFAOYSA-N 0.000 description 3
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 3
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 3
- 239000005058 Isophorone diisocyanate Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 125000004386 diacrylate group Chemical group 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000004508 fractional distillation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- RBQRWNWVPQDTJJ-UHFFFAOYSA-N methacryloyloxyethyl isocyanate Chemical compound CC(=C)C(=O)OCCN=C=O RBQRWNWVPQDTJJ-UHFFFAOYSA-N 0.000 description 3
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 3
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 2
- PCLLJCFJFOBGDE-UHFFFAOYSA-N (5-bromo-2-chlorophenyl)methanamine Chemical compound NCC1=CC(Br)=CC=C1Cl PCLLJCFJFOBGDE-UHFFFAOYSA-N 0.000 description 2
- DSRUAYIFDCHEEV-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,4-nonafluoro-n-(2-hydroxyethyl)-n-methylbutane-1-sulfonamide Chemical compound OCCN(C)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F DSRUAYIFDCHEEV-UHFFFAOYSA-N 0.000 description 2
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229920002633 Kraton (polymer) Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000003670 easy-to-clean Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- RCGIUOVPEJGLGD-UHFFFAOYSA-N imidazolidine-2,4-dione;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.O=C1CNC(=O)N1 RCGIUOVPEJGLGD-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- DZZAHYHMWKNGLC-UHFFFAOYSA-N (1,2,2,3,3,4,4,5,5,6,6-undecafluorocyclohexyl)methyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C1(F)F DZZAHYHMWKNGLC-UHFFFAOYSA-N 0.000 description 1
- UDKYUCSMIYESKQ-UHFFFAOYSA-N (2,2,3,3,4,4,5,5-octafluoro-1-prop-2-enoyloxyhexyl) prop-2-enoate Chemical compound CC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(OC(=O)C=C)OC(=O)C=C UDKYUCSMIYESKQ-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- WISUNKZXQSKYMR-UHFFFAOYSA-N 2,2,3,3,4,4,5,5-octafluoropentyl prop-2-enoate Chemical compound FC(F)C(F)(F)C(F)(F)C(F)(F)COC(=O)C=C WISUNKZXQSKYMR-UHFFFAOYSA-N 0.000 description 1
- VPMMJSPGZSFEAH-UHFFFAOYSA-N 2,4-diaminophenol;hydrochloride Chemical compound [Cl-].NC1=CC=C(O)C([NH3+])=C1 VPMMJSPGZSFEAH-UHFFFAOYSA-N 0.000 description 1
- YIJYFLXQHDOQGW-UHFFFAOYSA-N 2-[2,4,6-trioxo-3,5-bis(2-prop-2-enoyloxyethyl)-1,3,5-triazinan-1-yl]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCN1C(=O)N(CCOC(=O)C=C)C(=O)N(CCOC(=O)C=C)C1=O YIJYFLXQHDOQGW-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- IOAOAKDONABGPZ-UHFFFAOYSA-N 2-amino-2-ethylpropane-1,3-diol Chemical compound CCC(N)(CO)CO IOAOAKDONABGPZ-UHFFFAOYSA-N 0.000 description 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- TYCFGHUTYSLISP-UHFFFAOYSA-N 2-fluoroprop-2-enoic acid Chemical class OC(=O)C(F)=C TYCFGHUTYSLISP-UHFFFAOYSA-N 0.000 description 1
- CKKQLOUBFINSIB-UHFFFAOYSA-N 2-hydroxy-1,2,2-triphenylethanone Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)C(=O)C1=CC=CC=C1 CKKQLOUBFINSIB-UHFFFAOYSA-N 0.000 description 1
- YOJAHTBCSGPSOR-UHFFFAOYSA-N 2-hydroxy-1,2,3-triphenylpropan-1-one Chemical compound C=1C=CC=CC=1C(=O)C(C=1C=CC=CC=1)(O)CC1=CC=CC=C1 YOJAHTBCSGPSOR-UHFFFAOYSA-N 0.000 description 1
- RZCDMINQJLGWEP-UHFFFAOYSA-N 2-hydroxy-1,2-diphenylpent-4-en-1-one Chemical compound C=1C=CC=CC=1C(CC=C)(O)C(=O)C1=CC=CC=C1 RZCDMINQJLGWEP-UHFFFAOYSA-N 0.000 description 1
- DIVXVZXROTWKIH-UHFFFAOYSA-N 2-hydroxy-1,2-diphenylpropan-1-one Chemical compound C=1C=CC=CC=1C(O)(C)C(=O)C1=CC=CC=C1 DIVXVZXROTWKIH-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- ZPQAUEDTKNBRNG-UHFFFAOYSA-N 2-methylprop-2-enoylsilicon Chemical compound CC(=C)C([Si])=O ZPQAUEDTKNBRNG-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- FQMIAEWUVYWVNB-UHFFFAOYSA-N 3-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OC(C)CCOC(=O)C=C FQMIAEWUVYWVNB-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- IMJLWKZFJOIXJL-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCOC(=O)C=C IMJLWKZFJOIXJL-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- ZPERCFMASHPFAH-UHFFFAOYSA-N C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)NCCCCCCN(C(C)=O)C(C)=O Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)NCCCCCCN(C(C)=O)C(C)=O ZPERCFMASHPFAH-UHFFFAOYSA-N 0.000 description 1
- KBFVVVIIUGJGPT-UHFFFAOYSA-N C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)NCCCCCCNC(=O)N(CCCCCCNC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C)C(C)=O Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)NCCCCCCNC(=O)N(CCCCCCNC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C)C(C)=O KBFVVVIIUGJGPT-UHFFFAOYSA-N 0.000 description 1
- DSCKGHOWBSZDLC-UHFFFAOYSA-N CCC(CO)(CO)NC(=O)OP.CCC(N)(CO)COC(=O)OP.F.F Chemical compound CCC(CO)(CO)NC(=O)OP.CCC(N)(CO)COC(=O)OP.F.F DSCKGHOWBSZDLC-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Divinylene sulfide Natural products C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229920000538 Poly[(phenyl isocyanate)-co-formaldehyde] Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 108091092920 SmY RNA Proteins 0.000 description 1
- 241001237710 Smyrna Species 0.000 description 1
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- KNSXNCFKSZZHEA-UHFFFAOYSA-N [3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C KNSXNCFKSZZHEA-UHFFFAOYSA-N 0.000 description 1
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000012949 free radical photoinitiator Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical group O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical class CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229940104873 methyl perfluorobutyl ether Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- QHJABUZHRJTCAR-UHFFFAOYSA-N n'-methylpropane-1,3-diamine Chemical compound CNCCCN QHJABUZHRJTCAR-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000006551 perfluoro alkylene group Chemical group 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- FSDNTQSJGHSJBG-UHFFFAOYSA-N piperidine-4-carbonitrile Chemical compound N#CC1CCNCC1 FSDNTQSJGHSJBG-UHFFFAOYSA-N 0.000 description 1
- 229920002401 polyacrylamide Chemical class 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/067—Polyurethanes; Polyureas
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/04—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C235/08—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/288—Compounds containing at least one heteroatom other than oxygen or nitrogen
- C08G18/2885—Compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/288—Compounds containing at least one heteroatom other than oxygen or nitrogen
- C08G18/289—Compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3802—Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3819—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
- C08G18/3823—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups
- C08G18/3825—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups containing amide groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/671—Unsaturated compounds having only one group containing active hydrogen
- C08G18/672—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/671—Unsaturated compounds having only one group containing active hydrogen
- C08G18/672—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
- C08G18/673—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/7806—Nitrogen containing -N-C=0 groups
- C08G18/7818—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
- C08G18/7831—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/81—Unsaturated isocyanates or isothiocyanates
- C08G18/8141—Unsaturated isocyanates or isothiocyanates masked
- C08G18/815—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
- C08G18/8158—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
- C08G18/8175—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C09D175/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- G02B1/105—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
Definitions
- Optical hard coats are applied to optical display surfaces to protect them from scratching and marking. Desirable product features in optical hard coats include durability to scratches and abrasions, and resistance to inks and stains.
- Fluorinated polymers Materials that have been used to date for surface protection include fluorinated polymers, or fluoropolymers. Fluoropolymers provide advantages over conventional hydrocarbon based materials in terms of high chemical inertness (in terms of solvent, acid, and base resistance), dirt and stain resistance (due to low surface energy), low moisture absorption, and resistance to weather and solar conditions.
- Fluoropolymers have also been investigated that are crosslinked to a hydrocarbon-based hard coating formulation that improves hardness and interfacial adhesion to a substrate.
- a hydrocarbon-based hard coating formulation that improves hardness and interfacial adhesion to a substrate.
- free-radically curable perfluoropolyethers provide good repellency to inks from pens and permanent markers when added to ceramer hard coat compositions, which comprise a plurality of colloidal inorganic oxide particles and a free-radically curable binder precursor, such as described in U.S. Pat. No. 6,238,798 to Kang, and assigned to 3M Innovative Properties Company of St. Paul, Minn.
- the invention relates to fluorocarbon- and urethane-(meth)acryl-containing additives.
- the additive comprises a perfluoropolyether urethane having a monovalent perfluoropolyether moiety and a multi-(meth)acryl terminal group and is described in the detailed description below as formula (1).
- the additive comprises a perfluoropolyether-substituted urethane acrylate having a monovalent perfluoropolyether moiety described in the detailed description below as formula (3A) and more preferably as formula (3B).
- the additive comprises one or more perfluoropolyether urethanes having a monovalent perfluoropolyether moiety and a multi-(meth)acryl group of the formula (4) as described further in the detailed description below.
- the additive comprises one or more perfluoropolyether urethanes having a monovalent perfluoropolyether moiety and a multi-(meth)acryl group of the formula (5) as described below in the detailed description.
- the additive comprises one or more perfluoropolyether urethanes with multi-(meth)acryl groups of the formula (6) as described below in the detailed description.
- the invention realtes to a hardcoat composition
- a hardcoat composition comprising a (e.g. small amount of a) hardcoat-compatible, monovalent perfluoropolyether moiety-containing urethane multi-(meth)acryl additive, a hydrocarbon hardocat composition; and optionally a plurality of surface modified inorganic nanoparticles.
- the hardcoat preferably comprises one or more of the embodied additives just described.
- the hardcoat is preferably provided as a surface layer on an optical substrate.
- the hardcoat may be provided as a single layer disposed on an optical substrate.
- a first (e.g. different composition) hardcoat layer may be disposed on the optical substate with a hardcoat of the invention disposed on the first hardcoat layer.
- a particulate matting agent may be incorporate to impart anti-glare properties to the optical hard coating layer.
- the particulate matting agent can also prevent the reflectance decrease and uneven coloration caused by interference of the hard coat layer with the underlying substrate layer.
- the hardcoats provide any one or combination of enhanced stain and ink repellency properties, adequate smoothness, and improved durability.
- the (e.g. optical) hard coats having these fluorocarbon additives described herein generally do not need compatibilizers to enhance the compatibility between a fluoropolymer additive and the conventional hard coat material.
- free-radically reactive fluoroalkyl or fluoroalkylene group-containing compatibilizers can also be employed such as a perfluorobutyl-substituted acrylate or a fluoroalkyl- or fluoroalkylene-substituted thiol or polythiol.
- FIG. 1 illustrates an article having a hard coated optical display formed in accordance with a preferred embodiment of the present invention.
- (meth)acryl refers to functional groups including acrylates, methacrylates, acrylamides, methacrylamides, alpha-fluoroacrylates, thioacrylates and thio-methacrylates.
- a preferred (meth)acryl group is acrylate.
- perfluoropolyether moiety refers to a perfluoropolyether chain having one end terminated by a perfluoroalkyl group.
- ceramer is a composition having inorganic oxide particles, e.g. silica, of nanometer dimensions dispersed in a binder matrix.
- the phrase “ceramer composition” is meant to indicate a ceramer formulation in accordance with the present invention that has not been at least partially cured with radiation energy, and thus is a flowing, coatable liquid.
- the phrase “ceramer composite” or “coating layer” is meant to indicate a ceramer formulation in accordance with the present invention that has been at least partially cured with radiation energy, so that it is a substantially non-flowing solid.
- free-radically polymerizable refers to the ability of monomers, oligomers, polymers or the like to participate in crosslinking reactions upon exposure to a suitable source of curing energy.
- polymer will be understood to include polymers, copolymers (e.g. polymers using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend.
- HFPO— refers to the end group F(CF(CF 3 )CF 2 O) a CF(CF 3 )— of the methyl ester F(CF(CF 3 )CF 2 O) a CF(CF 3 )C(O)OCH 3 , wherein “a” averages about 6.2, and the methyl ester has an average molecular weight of 1,211 g/mol, and which can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), the disclosure of which is incorporated herein by reference, with purification by fractional distillation.
- optical display can refer to any conventional optical displays, including but not limited to multi-character multi-line displays such as liquid crystal displays (“LCDs”), plasma displays, front and rear projection displays, cathode ray tubes (“CRTs”), and signage, as well as single-character or binary displays such as light emitting diodes (“LEDs”), signal lamps and switches.
- LCDs liquid crystal displays
- CRTs cathode ray tubes
- LEDs light emitting diodes
- the exposed surface of such display panels may be referred to as a “lens.”
- the invention is particularly useful for displays having a viewing surface that is susceptible to being touched or contacted by ink pens, markers and other marking devices, wiping cloths, paper items and the like.
- the protective coatings of the invention can be employed in a variety of portable and non-portable information display articles. These articles include PDAs, cell phones (including combination PDA/cell phones), LCD televisions (direct lit and edge lit), touch sensitive screens, wrist watches, car navigation systems, global positioning systems, depth finders, calculators, electronic books, CD and DVD players, projection television screens, computer monitors, notebook computer displays, instrument gauges, instrument panel covers, signage such as graphic displays and the like.
- the viewing surfaces can have any conventional size and shape and can be planar or non-planar, although flat panel displays are preferred.
- a combination of low surface energy (e.g. anti-soiling, stain resistant, oil and/or water repellency) and durability (e.g. abrasion resistance) is desired for the coating layer for these displays while maintaining optical clarity.
- the hard coating layer functions to decrease glare loss while improving durability and optical clarity.
- the surface energy can be characterized by various methods such as contact angle and ink repellency, as determined by the test methods described in the Examples.
- stain repellent refers to a surface treatment exhibiting a static contact angle with water of at least 70 degrees. More preferably, the contact angle is at least 80 degrees and most preferably at least 90 degrees. Alternatively, or in addition thereto, the advancing contact angle with hexadecane is at least 50 degrees and more preferably at least 60 degrees. Low surface energy results in anti-soiling and stain repellent properties as well as rendering the exposed surface easy to clean.
- Another indicator of low surface energy relates to the extent to which ink from a pen or marker beads up when applied to the exposed surface.
- the surface layer and articles exhibit “ink repellency” when ink from pens and markers can be easily removed by wiping the exposed surface with tissues or paper towels, such as tissues available from the Kimberly Clark Corporation, Roswell, Ga. under the trade designation “SURPASS FACIAL TISSUE.”
- Durability can be defined in terms of results from a modified oscillating sand test (Method ASTM F 735-94) carried out at 300 rpm for 15 minutes as described in Experiment 1 of this application.
- a durable coating exhibits an ink repellency value of 65 mm or less, more preferably 40 mm or less, most preferably 0 mm in this test.
- Coatings appropriate for use as optical hard coatings must be substantially free of visual defects.
- Visual defects that may be observed include but are not limited to pock marks, fish eyes, mottle, lumps or substantial waviness, or other visual indicators known to one of ordinary skill in the art in the optics and coating fields.
- a “rough” surface as described in the Experimental has one or more of these characteristics, and may be indicative of a coating material in which one or more components of the composition are incompatible with each other.
- a substantially smooth coating characterized below as “smooth” for the purpose of the present invention, presumes to have a coating composition in which the various components, in the reacted final state, form a coating in which the components are compatible or have been modified to be compatible with one another and further has little, if any, of the characteristics of a “rough” surface.
- the surface layer preferably exhibits an initial haze of less than 2% and/or an initial transmission of at least 90%.
- FIG. 1 a perspective view of an article (here a computer monitor 10 ) is illustrated as having an optical display 12 coupled within a housing 14 .
- the optical display 12 is a substantially transparent material having optically enhancing properties through which a user can view text, graphics or other displayed information.
- the optical display 12 includes hard coating layer 18 applied to an optical substrate 16 .
- the thickness of the hardcoat layer is typically at least 0.5 microns, preferably at least 1 micron, and more preferably at least 2 microns.
- the thickness of the hardcoat layer is generally no greater than 25 microns. Preferably the thickness ranges from 3 microns to 5 microns.
- the hardcoat layer described herein i.e. comprising at least one fluorocarbon- and urethane-(meth)acryl-containing additive and at least one non-fluorinated crosslinking agent
- the surface layer preferably preferably has a thickness ranging from about 10 to 200 nanometers.
- Suitable adhesive compositions include (e.g. hydrogenated) block copolymers such as those commercially available from Kraton Polymers of Westhollow, Tex. under the trade designation “Kraton G-1657”, as well as other (e.g. similar) thermoplastic rubbers.
- Other exemplary adhesives include acrylic-based, urethane-based, silicone-based and epoxy-based adhesives.
- Preferred adhesives are of sufficient optical quality and light stability such that the adhesive does not yellow with time or upon weather exposure so as to degrade the viewing quality of the optical display.
- the adhesive can be applied using a variety of known coating techniques such as transfer coating, knife coating, spin coating, die coating and the like. Exemplary adhesives are described in U.S. Patent Application Publication No. 2003/0012936. Several of such adhesives are commercially available from 3M Company, St. Paul, Minn. under the trade designations 8141, 8142, and 8161.
- the substrate layer 16 may consist of any of a wide variety of non-polymeric materials, such as glass, or polymeric materials, such as polyethylene terephthalate (PET), bisphenol A polycarbonate, cellulose triacetate, poly(methyl methacrylate), and biaxially oriented polypropylene which are commonly used in various optical devices.
- PET polyethylene terephthalate
- bisphenol A polycarbonate bisphenol A polycarbonate
- cellulose triacetate cellulose triacetate
- poly(methyl methacrylate) poly(methyl methacrylate)
- biaxially oriented polypropylene which are commonly used in various optical devices.
- the composition of the hard coating layer 18 prior to application and curing to the optical substrate 16 , is formed from a mixture of a conventional hydrocarbon-based, and more preferably acrylate-based, hard coat composition and a fluorocarbon- and urethane-acrylate-containing additive described in formulas (1), (3A), (4), (5) and (6) below. Methods for forming the hard coating compositions for each of the preferred embodiments are described below in the experimental section.
- the fluorocarbon- and urethane-acrylate-containing additive is a perfluoropolyether urethane having a monovalent perfluoropolyether moiety and a multi-acrylate terminal group combined with a conventional hydrocarbon-based (more preferably acrylate-based) hard coat material.
- the perfluoropolyether urethane having a monovalent perfluoropolyether moiety and a multi-acrylate terminal group is added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition.
- the additive is ofthe formula (1): R i —(NHC(O)XQR f ) m , —(NHC(O)OQ(A) p ) n (1) wherein R i is the residue of a multi-isocyanate; X is O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms; R f is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(R fc O) x C d F 2d —, wherein each R fc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched
- the mole fraction of isocyanate groups is arbitrarily given a value of 1.0, then the total mole fraction of m and n units used in making materials of formula (1) is 1.0 or greater.
- the mole fractions of m:n ranges from 0.95:0.05 to 0.05:0.95.
- the mole fractions of m:n are from 0.50:0.50 to 0.05:0.95. More preferably, the mole fractions of m:n are from 0.25:0.75 to 0.05:0.95 and most preferably, the mole fractions of m:n are from 0.25:0.75 to 0.10:0.95.
- the mole fractions of m:n total more than one, such as 0.15:0.90, the m unit is reacted onto the isocyanate first, and a slight excess (0.05 mole fraction) of the n units are used.
- diisocyanates di-functional isocyanates
- modified diisocyanate materials and higher functional isocyanates
- R i residue of multi-isocyanate and still fall within the spirit of the present invention.
- multifunctional materials based on hexamethylene diisocyanate (“HDI”) are utilized.
- HDI hexamethylene diisocyanate
- DesmodurTM N100 available from Bayer Polymers LLC of Pittsburgh, Pa.
- R i may also be utilized as R i in the present invention.
- diisocyanates such as toluene diisocyanate (“TDI”) or isophorone diisocyanate (“IPDI”) may also be utilized as R i in the present invention.
- TDI toluene diisocyanate
- IPDI isophorone diisocyanate
- Non-limiting examples of aliphatic and aromatic isocyanate materials, for example, that may be used include DesmodurTM 3300, DesmodurTM TPLS2294, and DesmodurTM N 3600, all obtained from Bayer Polymers LLC of Pittsburgh, Pa.
- HOQ(A) p Materials used to make the additive of formula (1) may be described by the formula: HOQ(A) p , which are exemplified by, for instance, 1,3-glycerol dimethacrylate, available from Echo Resins Inc. of York, Mo.; and pentaerythritol triacrylate, available as SR444C from Sartomer of Exton, Pa.
- the monovalent perfluoropolyether moiety R f is a hexafluoropropylene oxide (“HFPO”) moiety of the formula: F(CF(CF 3 )CF 2 O) a CF(CF 3 )—, wherein a is between about 3 and 10.
- HFPO hexafluoropropylene oxide
- Such species generally exist as a distribution or mixture of oligomers with a range of values for a, so that the average value of a may be non-integer.
- the additives of this preferred embodiment are made by first reacting the polyisocyanate with the perfluoropolyether-containing alcohol, thiol, or amine, followed by reaction with the hydroxyl functional multiacrylate, usually in a non-hydroxylic solvent and in the presence of a catalyst such as an organotin compound.
- the additives of this preferred embodiment are made by reacting the polyisocyanate with the hydroxyl functional multiacrylate, followed by reaction with the perfluoropolyether-containing alcohol, thiol, or amine, usually in a non-hydroxylic solvent and in the presence of a catalyst such as an organotin compound.
- the additives could be made by reacting all three components simultaneously, usually in a non-hydroxylic solvent and in the presence of a catalyst such as an organotin compound.
- a hard coating composition may be formed by the addition of a perfluoropolyether urethane with a mono-acrylate terminal group according to the formula R i —(NHC(O)XQR f ) m , —(NHC(O)OQA) n to a hydrocarbon-based hard coating formulation.
- the fluorocarbon- and urethane-acrylate-containing additive comprises a perfluoropolyether-substituted urethane acrylate having a monovalent perfluoropolyether moiety added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition.
- the additive is of the formula (3A): R f -Q-(XC(O)NHQOC(O)C(R) ⁇ CH 2 ) f (3A) where R f is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(R fc O) x C d F 2d —, wherein each R fc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6; a is 2-15; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl
- HFPO-Q-(XC(O)NHQOC(O)C(R) ⁇ CH 2 ) f 3B) where HFPO is F(CF(CF 3 )CF 2 O) a CF(CF 3 )—; a is 2-15; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; X is independently O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms and f is 1-5.
- Two preferred HFPO-substituted urethane acrylates that can be utilized include: HFPO—C(O)NHC 2 H 4 OC(O)NHC 2 H 4 OC(O)C(CH 3 ) ⁇ CH 2 and HFPO—C(O)NHC(C 2 H 5 )(CH 2 OC(O)NHC 2 H 4 OC(O)C(CH 3 ) ⁇ CH 2 ) 2 .
- the fluorocarbon- and urethane-acrylate-containing additive is formed from one or more perfluoropolyether urethanes having a monovalent perfluoropolyether moiety and multi-meth(acryl) groups added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition.
- the additive is of the formula (4): R i —(NHC(O)XQR f ) m , —(NHC(O)OQ(A) p ) n , —(NHC(O)XQG) o ,—(NCO) q (4) wherein R i is the residue of a multi-isocyanate; X is independently O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms; R f is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(R fc O) x C d F 2d —, wherein each R fc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an al
- the monoalcohol, monothiol or monoamine HXQG used in making materials of formula (4) may include materials such as C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 OH, H 2 NCH 2 CH 2 CH 2 (SiOCH 3 ) 3 , HSCH 2 CH 2 CH 2 Si(OCH 3 ) 3 , and HEA (“hydroxyethylacrylate”).
- the fluorocarbon- and urethane-acrylate-containing additive is formed from one or more perfluoropolyether urethanes having a monovalent perfluoropolyether moiety and multi-meth(acryl) groups added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition.
- the additive is of the formula (5): (R i ) c —(NHC(O)XQR f ) m , —(NHC(O)OQ(A) p ) n , —(NHC(O)XQG) o , (R f (Q)(XC(O)NH) y ) z —, —NHC(O)XQD(QXC(O)NH) u ) s —, D 1 (QXC(O)NH) y ) zz —NHC(O)OQ(A) t Q 1 Q(A) t OC(O)NH)) v —, —(NCO) w (5) wherein R i is the residue of a multi-isocyanate; c is 1 to 50; X is independently O, S or NR, where R is H or lower alkyl; R f is a monovalent perfluoropolyether moiety composed of groups compris
- the materials used to make the additive of formula (5) include those of the formula: R f (Q)(XH) y , which is exemplified by HFPO—C(O)NHCH 2 CH 2 CH 2 N(CH 2 CH 2 OH) 2 .
- the materials used to make the additive of formula (5) include those of the formula: HXQDQXH, which is exemplified by hydrocarbon polyols such as HO(CH 2 ) 10 OH and fluorochemical diols such as HOCH 2 (CF 2 ) 4 CH 2 OH.
- the materials used to make the additive of formula (5) may include those of the formula: D(QXH) y ) zz , which is exemplified by fluorochemical diols C 4 F 9 SO 2 N(CH 2 CH 2 OH) 2 .
- the materials used to make the additive of formula (5) may also include those of the formula: HOQ(A) t Q 1 Q(A) t OH, which is exemplified by Hydantoin hexaacrylate (HHA), prepared as described in Example 1 of U.S. patent application No. 4,262,072 to Wendling et al, and CH 2 ⁇ C(CH 3 )C(O)OCH 2 CH(OH)CH 2 O(CH 2 ) 4 OCH 2 CH(OH)CH 2 OC(O)C(CH 3 ) ⁇ CH 2 .
- HHA Hydantoin hexaacrylate
- the fluorocarbon- and urethane-acrylate-containing additive is formed from one or more perfluoropolyether urethanes with multi-meth(acryl) groups added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition.
- the additive is of the formula (6): (R i ) c —(NHC(O)XQR f ) m , —(NHC(O)OQ(A) p ) n , —(NHC(O)XQG), —(NHC(O)XQR f2 (QXC(O)NH) u ) r —, —NHC(O)XQD(QXC(O)NH) u ) s —, D 1 (QXC(O)NH) y ) zz —NHC(O)OQ(A) t Q 1 Q(A) t OC(O)NH)) v —, —(NCO) w (6) wherein R i is the residue of a multi-isocyanate; c is 1 to 50; X is independently O, S or NR, where R is H or lower alkyl; R f is a monovalent perfluoropolyether moiety
- the materials used to make the additive of formula (9) may also include those of the formula: HXQR f2 QXH, which is exemplified by (H(OCH 2 C(CH 3 )(CH 2 OCH 2 CF 3 )CH 2 ) aa OH) (Fox-Diol, having a MW about 1342 and available from Omnova Solutions Inc. of Akron, Ohio).
- the fluorocarbon- and urethane-(meth)acryl additive(s) described herein are employed as the sole perfluoropolyether containing additive in a hardcoat composition.
- the additive(s) described herein may be employed in combination with various other perfluoropolyether fluorocarbon(meth)acryl materials such as HFPO—C(O)NHCH 2 CH 2 OC(O)CH ⁇ CH 2 and various (per)fluoropolyether acryl compounds such as described in U.S. application Ser. No. 10/841159, filed May 7, 2004; (Docket No. 59727US002) and U.S. Provisional Application Ser. No. 60/569351, filed May 7, 2004 (Docket No.
- Exemplary materials include compound of the structures: HFPO—C(O)N(H)C(CH 2 OC(O)CH ⁇ CH 2 ) 2 CH 2 CH 3 , and HFPO—C(O)N(H)C(CH 2 OC(O)CH ⁇ CH 2 ) 2 H.
- the hardcoat may be provided as a single layer disposed on an optical substrate.
- the total of all (per)fluoropolyether acryl compounds, i.e. the fluorocarbon- and urethane-(meth)acryl additive(s) of the invention and other perfluoropolyether fluorocarbon(meth)acryl materials
- a first e.g.
- the fluorocarbon- and urethane-(meth)acryl-containing additives described herein may be present in the surface coating at amounts ranging from 0.01 to 50 wt-% solids, and more preferably from 1 to 25 wt-% solids; whereas the various other (per)fluoropolyether acryl compounds may be present at weight percents from 1 to 20%, and preferably from 1 to 10%.
- the ratio of fluorocarbon- and urethane-(meth)acry-containing additive to other (per)fluoropolyether acryl compounds is at least 1 to 1 and more preferably is about 3 to 1.
- the fluorocarbon- and urethane(meth)acryl additives e.g. those of formulas (1), (3A), (4), (5) or (6)
- various other (per)fluoropolyether(meth)acryl compounds may be combined with one or more compatibilizers.
- Typical Q 3 groups include: —SO 2 N(R)CH 2 CH 2 —; —SO 2 N(CH 2 CH 2 ) 2 —; —(CH 2 ) m —; —CH 2 O(CH 2 ) 3 —; and —C(O)NRCH 2 CH 2 —, where R is H or lower alkyl of 1 to 4 carbon atoms and m is 1 to 6.
- R is H or lower alkyl of 1 to 4 carbon atoms and m is 1 to 6.
- the fluoroalkyl or fluoroalkylene group is a perfluoroalkyl or perfluoroalkylene group.
- fluoroalkyl- or alkylene-substituted compatibilizers meeting these criteria for use in the composition of the hard coat layer 18 is the perfluorobutyl-substituted acrylate compatibilizers.
- Exemplary, non-limiting perfluorobutyl-substituted acrylate compatibilizers meeting these criteria and useful in the present invention include one or more of C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 OC(O)CH ⁇ CH 2 , C 4 F 9 SO 2 N(CH 2 CH 2 OC(O)CH ⁇ CH 2 ) 2 , or C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 OC(O)C(CH 3 ) ⁇ CH 2 .
- the free-radically reactive fluoroalkyl or fluoroalkylene group-containing compatibilizers described above are preferably added at between about 0.5% and 20%, and more preferably between about 1% and 10%, of the total solids of the hard coat composition.
- a preferred fluoroalkyl-substituted compatibilizer that may be utilized in the composition of the hard coat layer 18 is: (1H,1H,2H,2H)-perfluorodecyl acrylate, available from Lancaster Synthesis of Windham, N.H. Numerous other (meth)acryl compounds with perfluoroalkyl moieties that may also be utilized in the composition of the hard coat layer are mentioned in U.S. Pat. No. 4,968,116, to Hulme-Lowe et al., and in U.S. Pat. No.
- fluorochemical (meth)acrylates that meet these criteria and may be utilized include, for example, 2,2,3,3,4,4,5,5-octafluorohexanediol diacrylate and ⁇ -hydro 2,2,3,3,4,4,5,5-octafluoropentyl acrylate (H—C 4 F 8 —CH 2 O—C(O)—CH ⁇ CH 2 ).
- fluorochemical (meth)acrylates that may be used alone, or as mixtures, are described in U.S. Pat. No. 6,238,798, to Kang et al., and assigned to Minnesota Mining and Manufacturing Company of St. Paul, Minn., and herein incorporated by reference.
- compatibilizer that may be used is a fluoroalkyl- or fluoroalkylene-substituted thiol or polythiol to a ceramer hard coating composition.
- this type of compatibilizer includes one or more of the following: C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 OC(O)CH 2 SH, C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 OC(O)CH 2 CH 2 SH, C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 SH, and C 4 F 9 SO 2 N(CH 3 )CH(OC(O)CH 2 SH)CH 2 OC(O)CH 2 SH.
- the conventional hard coat material used as a portion of layer 18 in any of the preferred embodiments described above is a hydrocarbon-based material well known to those of ordinary skill in the optical arts. Most preferably, the hydrocarbon-based material is an acrylate-based hard coat material.
- One preferable hard coat material for use in the present invention is based on PETA (pentaerythritol tri/tetra acrylate).
- PETA pentaerythritol tri/tetra acrylate
- PET3A pentaerythritol triacrylate
- PET4C pentaerythritol triacrylate
- PET4A pentaerythritol tetraacrylate
- crosslinking agents include, for example, poly(meth)acryl monomers selected from the group consisting of (a) di(meth)acryl containing compounds such as 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol monoacrylate monomethacrylate, ethylene glycol diacrylate, alkoxylated aliphatic diacrylate, alkoxylated cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated neopentyl glycol diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, cyclohexanedimethanol diacrylate, diethylene
- Such compounds are widely available from vendors such as, for example, Sartomer Company of Exton, Pa.; UCB Chemicals Corporation of Smyrna, Ga.; and Aldrich Chemical Company of Milwaukee, Wis.
- Additional useful (meth)acrylate materials include hydantoin moiety-containing poly(meth)acrylates, for example, as described in U.S. Pat. No. 4,262,072 (Wendling et al.).
- polymerizable compositions according to the present invention may further comprise at least one free-radical thermal initiator and/or photoinitiator.
- an initiator and/or photoinitiator Typically, if such an initiator and/or photoinitiator are present, it comprises less than about 10 percent by weight, more typically less than about 5 percent of the polymerizable composition, based on the total weight of the polymerizable composition.
- Free-radical curing techniques are well known in the art and include, for example, thermal curing methods as well as radiation curing methods such as electron beam or ultraviolet radiation. Further details concerning free radical thermal and photopolymerization techniques may be found in, for example, U.S. Pat. No. 4,654,233 (Grant et al.); U.S. Pat. No. 4,855,184 (Klun et al.); and U.S. Pat. No. 6,224,949 (Wright et al.).
- Useful free-radical thermal initiators include, for example, azo, peroxide, persulfate, and redox initiators, and combinations thereof.
- Useful free-radical photoinitiators include, for example, those known as useful in the UV cure of acrylate polymers.
- Such initiators include benzophenone and its derivatives; benzoin, alpha-methylbenzoin, alpha-phenylbenzoin, alpha-allylbenzoin, alpha-benzylbenzoin; benzoin ethers such as benzil dimethyl ketal (commercially available under the trade designation “IRGACURE 651 ” from Ciba Specialty Chemicals Corporation of Tarrytown, N.Y.), benzoin methyl ether, benzoin ethyl ether, benzoin n-butyl ether; acetophenone and its derivatives such as 2-hydroxy-2-methyl-1-phenyl-1-propanone (commercially available under the trade designation “DAROCUR 1173” from Ciba Specialty Chemicals Corporation) and 1-hydroxycyclohexyl phenyl ketone (commercially available under the trade designation “IRGACURE 184
- sensitizers such as 2-isopropyl thioxanthone, commercially available from First Chemical Corporation, Pascagoula, Miss., may be used in conjunction with photoinitiator(s) such as “IRGACURE 369”.
- composition of any of these preferred embodiments is applied to an optical substrate layer 16 of an optical display 12 and photocured to form the easy to clean, stain and ink repellent optical hard coating layer 18 .
- the presence of the urethane functionality, in addition to the fluorocarbon component, in the additive eliminates the need for comonomers introduced to the composition to compatibilize the fluorochemical component with the hydrocarbon-based crosslinker.
- the hard coat material forming layer 18 of any of the above-preferred embodiments further contains surface modified inorganic particles that add mechanical strength to the resultant coating.
- surface modified inorganic particles that add mechanical strength to the resultant coating.
- colloidal silica reacted with a methacryl silane coupling agent such as A-174 (available from Natrochem, Inc.), other dispersant aids such as N,N dimethylacrylamide and various other additives (stabilizers, initiators, etc.).
- a particulate matting agent is incorporated into the composition of the layer 18 in order to impart anti-glare properties to the layer 18 .
- the particulate matting agent also prevents the reflectance decrease and uneven coloration caused by interference with an associated hard coat layer.
- the particulate matting agent should preferably be transparent, exhibiting transmission values of greater than about 90%.
- the haze value is preferably less than about 5%, and more preferably less than about 2%, and most preferably less than about 1%.
- Exemplary systems incorporating matting agents into a hard coating layer, but having a different hard coating composition, are described, for example, in U.S. Pat. No. 6,693,746, and herein incorporated by reference.
- exemplary matte films are commercially available from U.S.A. Kimoto Tech of Cedartown, Ga., under the trade designation “N4D2A.”
- the amount of particulate matting agent added is between about 0.5 and 10% of the total solids of the composition, depending upon the thickness of the layer 18, with a preferred amount around 2%.
- the anti-glare layer 18 preferably has a thickness of 0.5 to 10 microns, more preferably 0.8 to 7 microns, which is generally in the same thickness range of gloss hard coatings.
- the average particle diameter of the particulate matting agent has a predefined minimum and maximum that is partially dependent upon the thickness of the layer. However, generally speaking, average particle diameters below 1.0 microns do not provide the degree of anti-glare sufficient to warrant inclusion, while average particle diameters exceeding 10.0 microns deteriorate the sharpness of the transmission image.
- the average particle size is thus preferably between about 1.0 and 10.0 microns, and more preferably between 1.7 and 3.5 microns, in terms of the number-averaged value measured by the Coulter method.
- inorganic particles or resin particles are used including, for example, amorphous silica particles, TiO 2 particles, Al 2 O 3 particles, cross-linked acrylic polymer particles such as those made of cross-linked poly(methyl methacrylate), cross-linked polystyrene particles, melamine resin particles, benzoguanamine resin particles, and cross-linked polysiloxane particles.
- resin particles are more preferred, and in particular cross-linked polystyrene particles are preferably used since resin particles have a high affinity for the binder material and a small specific gravity.
- spherical and amorphous particles can be used as for the shape of the particulate matting agent. However, to obtain a consistent anti-glare property, spherical particles are desirable. Two or more kinds of particulate materials may also be used in combination.
- Thin coating layers 18 of any of the preferred embodiments can be applied to the optical substrate 16 using a variety of techniques, including dip coating, forward and reverse roll coating, wire wound rod coating, and die coating.
- Die coaters include knife coaters, slot coaters, slide coaters, fluid bearing coaters, slide curtain coaters, drop die curtain coaters, and extrusion coaters among others. Many types of die coaters are described in the literature such as by Edward Cohen and Edgar Gutoff, Modem Coating and Drying Technology, VCH Publishers, NY 1992, ISBN 3-527-28246-7 and Gutoff and Cohen, Coating and Drying Defects: Troubleshooting Operating Problems, Wiley Interscience, NY ISBN 0-471-59810-0.
- a die coater generally refers to an apparatus that utilizes a first die block and a second die block to form a manifold cavity and a die slot.
- the coating fluid under pressure, flows through the manifold cavity and out the coating slot to form a ribbon of coating material.
- Coatings can be applied as a single layer or as two or more superimposed layers. Although it is usually convenient for the substrate to be in the form of a continuous web, the substrate may also be a succession of discrete sheets.
- sample hard coats having the given compositions were formulated and applied to PET substrates and compared to hard coat formulations having less than all the desired components.
- the coatings were visually inspected and tested for ink repellency, durability and surface roughness. The experimental procedures and tabulated results are described below:
- HFPO— refers to the end group F(CF(CF 3 )CF 2 O) a CF(CF 3 )— wherein a averages about 6.22, with an average molecular weight of 1,211 g/mol, can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), the disclosure of which is incorporated herein by reference, with purification by fractional distillation.
- DesmodurTM (Des) N100, DesmodurTM 3300, DesmodurTM TPLS2294, DesmodurTM N 3600, and Isophorone diisocyanate (IPDI) were obtained from Bayer Polymers LLC, of Pittsburgh, Pa.
- PAPI Poly[(phenyl isocyanate)-co-formaldehyde]
- MEHQ 4-methoxy phenol
- HO(CH 2 ) 10 OH is available from Sigma Aldrich of Milwaukee, Wis.
- FOX-diol H(OCH 2 CCH 3 (CH 2 OCH 2 CF 3 )CH 2 ) x OH) (MW about 1342), is available from Omnova Solutions Inc. of Akron, Ohio.
- Pentaerythritol tetracrylate (“PET4A”), under the trade designation “SR295”, was obtained from Sartomer Company of Exton, Pa.
- Pentaerythritol triacrylate (“PET3A”), under the trade designation “SR444C”, was obtained from Sartomer Company of Exton, Pa.
- TMPTA Trimethylolpropane triacrylate
- Hydantoin hexaacrylate was prepared as described in Example 1 of U.S. Pat. No. 4,262,072.
- FBSEE C 4 F 9 SO 2 N(C 2 H 4 OH) 2
- a fluorochemical diol can be prepared as described in column 5, line 31 and in FIG. 9 of U.S. Pat. No. 3,734,962 (1973).
- MeFBSE C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 OH
- MeFBSE C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 OH
- FBSEA C 4 F 9 SO 2 N(CH 3 )CH 2 CH 2 OC(O)CH ⁇ CH 2
- HFPO AEA HFPO—C(O)NHCH 2 CH 2 OC(O)CH ⁇ CH 2
- FC-1 Monofunctional Perfluoropolyether Acrylate
- Fomblin Zdol (HOCH 2 CF 2 (OCF 2 CF 2 ) n (OCF 2 ) m CH 2 OH ) is available from Solvay Solexis, Inc. of Italy.
- HSA Hydroxyethyl acrylate
- H 2 NCH 2 CH 2 CH 2 Si(OCH 3 ) 3 is available from Sigma Aldrich of Milwaukee, Wis.
- HSCH 2 CH 2 CH 2 Si(OCH 3 ) 3 is available from Sigma Aldrich of Milwaukee, Wis.
- IEM 2-isocyanato-ethyl-methacrylate
- the amines, 2-amino-2-ethyl-1,3-propane diol, and 1,1-bis-(hydroxyethyl)-1,3 aminopropane were obtained from Sigma-Aldrich of Milwaukee, Wis.
- UV photoinitiator 1-hydroxycyclohexyl phenyl ketone used was obtained from Ciba Specialty Products, Tarrytown, N.Y. and sold under the trade designation “Irgacure 184.”
- the photoinitiator 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one used was obtained from Ciba Specialty Products, Tarrytown, N.Y. and sold under the trade designation “Irgacure 907.”
- Methyl perfluorobutyl ether (HFE 7100) was obtained from 3M Company, St. Paul, Minn.
- DBTDL Dibutyltin dilaurate
- MW refers to molecular weight and “EW” refers to equivalent weight.
- ° C.” may be used interchangeably with “degrees Celsius” and “mol” refers to moles of a particular material and “eq” refers to equivalents of a particular material.
- Me constitutes a methyl group and may be used interchangeably with
- HFPO— refers to the end group F(CF(CF 3 )CF 2 O) a CF(CF 3 )— wherein a has average values of about 4.41, 6.2, 6.85, and 8.07.
- the material F(CF(CF 3 )CF 2 O) a CF(CF 3 )COOCH 3 (HFPO—C(O)OCH 3 ) can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), the disclosure of which is incorporated herein by reference, with purification by fractional distillation.
- a 500 ml roundbottom flask equipped with magnetic stir bar was charged with 25.0 g (0.131 eq, 191 EW) Des N100, 43.13 g (0.087 eq, 494.3 EW) of Sartomer SR444C, 25.3 mg of MEHQ, and 126.77 g methyl ethyl ketone (MEK).
- the reaction was swirled to dissolve all the reactants, the flask was placed in a oil bath at 60 degrees Celsius, and fitted with a condenser under dry air. Two drops of dibutyltin dilaurate was added to the reaction.
- a 500 ml roundbottom 2-necked flask equipped with magnetic stir bar was charged with 25.00 g (0.131 eq, 191 EW) Des N100, 26.39 g (0.0196 eq, 1344 EW) F(CF(CF 3 )CF 2 O) 6.85 CF(CF 3 )C(O)NHCH 2 CH 2 OH, and 109.62 g MEK, and was swirled to produce a homogeneous solution.
- the flask was placed in an 80 degrees Celsius bath, charged with 2 drops of dibutyltin dilaurate catalyst, and fitted with a condenser. The reaction was cloudy at first, but cleared within two minutes.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- a 240 ml bottle was charged with 5.79 g Des N3300 (EW about 193, about 30 milliequivalents NCO), 6.71 g HFPODO (MW about 1341, 10 milliequivalents OH), 9.89 g PET3A (EW about 494.3, about 20 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 52 g MEK (about 30% solid) under nitrogen.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. There was a small amount of precipitate formed upon standing at room temperature. FTIR analysis showed no unreacted —NCO signal.
- a 240 ml bottle was charged with 5.79 g Des N3300 (EW about 193, about 30 milliequivalents NCO), 6.71 g HFPODO (MW about 1341, 10 milliequivalents OH), 6.72 g HFPO—C(O)NHCH 2 CH 2 OH (MW about 1344, 5 milliequivalents OH), 7.42 g PET3A (EW about 494.3, about 15 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst, 27 g MEK and 10 g C 4 F 9 OCH 3 (about 20% solid) under nitrogen.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. Separation into two liquid phases occurred upon standing at room temperature. Addition of more C 4 F 9 OCH 3 produced a clear homogeneous solution at about 17% solids. FTIR analysis showed no unreacted —NCO signal.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. A clear solution was obtained at 70 degrees Celsius after reaction, but there was a small amount of precipitate formed upon standing at room temperature.
- FTIR analysis showed no unreacted —NCO signal.
- a 240 ml bottle was charged with 5.79 g Des N3300 (EW about 191, about 30 milliequivalents NCO), 6.71 g Fox-Diol (MW about 1341, 10 milliequivalents OH), 6.72 g HFPO—C(O)NHCH 2 CH 2 OH (MW about 1344, 5 milliequivalents OH), 7.40 g PET3A (EW about 494.3, about 15 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst, 56 g MEK and 50 g C 4 F 9 OCH 3 (about 19% solid) under nitrogen.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. A clear solution was obtained after reaction. FTIR analysis showed no unreacted —NCO signal.
- a 240 ml bottle was charged with 5.79 g Des N3300 (EW about 191, about 30 milliequivalents NCO), 10.0 g Fomblin Zdol (MW about 2000, 10 milliequivalents OH), 9.89 g PET3A (EW about 494.3, about 20 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst, 63 g MEK and 40 g C 4 F 9 OCH 3 (about 18% solid) under nitrogen.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. A clear solution was obtained after reaction. FTIR analysis showed no unreacted —NCO signal.
- a 240 ml bottle was charged with 5.79 g Des N3300 (EW about 191, about 30 milliequivalents NCO), 6.14 g HHA (MW about 1228, 10 milliequivalents OH), 12.29 g HFPO—C(O)NHCH 2 CH 2 OH (MW about 1229, 10 milliequivalents OH), 4.93 g PET3A (EW about 494.3, about 10 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst, 85 g MEK and 25 g C 4 F 9 OCH 3 (about 20% solid) under nitrogen.
- the solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. A clear solution was obtained after reaction. FTIR analysis showed no unreacted —NCO signal.
- a 120 ml bottle was charged with 3.75 g PAPI (EW about 134, about 28 milliequivalents NCO), 10.75 g HFPO—C(O)NHCH 2 CH 2 OH (MW about 1344, 8 milliequivalents OH), 9.88 g PET3A (EW about 494.3, about 20 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 37 g MEK (about 40% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 5 hours after sealing the bottle. A clear solution was obtained after reaction. FTIR analysis showed no unreacted —NCO.
- a 500 ml roundbottom flask equipped with stir bar was charged with 25.00 g (0.1309 eq) Des N100, 103.43 g MEK, 2 drops of DBTDL, 26.39 g (0.0196 eq) HFPO—C(O)NHCH 2 CH 2 OH, 1344 equivalent weight, and 0.05 g BHT, and placed in a 60 degrees Celsius oil bath.
- 3.52 g (0.0196 eq) H 2 N(CH 2 ) 3 Si(OCH 3 ) 3 was added to the reaction, followed in 10 minutes by the addition of 48.52 g (0.0982 eq, 494.3 equivalent weight) SR444C.
- the reaction showed no residual isocyanate by FTIR after a total reaction time of 5.75 hours.
- PET3A EW about 494.3, about 20 milliequivalents OH
- a 1-liter round-bottom flask was charged with 291.24 g (0.2405 mol) of HFPO—C(O)OCH 3 and 21.2 g (0.2405 mol) N-methyl-1,3-propanediamine, both at room temperature, resulting in a cloudy solution.
- the flask was swirled and the temperature of the mixture rose to 45 degrees Celsius, and to give a water-white liquid, which was heated overnight at 55 degrees Celsius.
- the product was then placed on a rotary evaporator at 75 degrees Celsius and 28 inches of Hg vacuum to remove methanol, yielding 301.88 g of a viscous slightly yellow liquid, nominal molecular weight is equal to 1267.15 g/mol.
- the solution was heated in a oil bath at 70 degrees Celsius for 6 hours with a magnetic stirring after sealing the bottle.
- Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated no remaining isocyanate.
- FTIR Fourier Transform Infrared Spectroscopy
- the abrasion resistance of the cured films was tested cross-web to the coating direction by use of a mechanical device capable of oscillating cheesecloth or steel wool fastened to a stylus (by means of a rubber gasket) across the film's surface.
- the stylus oscillated over a 10 cm wide sweep width at a rate of 3.5 wipes/second wherein a “wipe” is defined as a single travel of 10 cm.
- the stylus had a flat, cylindrical geometry with a diameter of 1.25 inch (3.2 cm).
- the device was equipped with a platform on which weights were placed to increase the force exerted by the stylus normal to the film's surface.
- the cheesecloth was obtained from Summers Optical, EMS Packaging, a subdivision of EMS Acquisition Corp., Hatsfield, Pa. under the trade designation “Mil Spec CCC-c-440 Product #S12905”. The cheesecloth was folded into 12 layers. The steel wool was obtained from Rhodes-American, a division of Homax Products, Bellingham, Wash. under the trade designation “#0000-Super-Fine” and was used as received. A single sample was tested for each example, with the weight in grams applied to the stylus and the number of wipes employed during testing reported.
- Taber Testing The Taber test was run according to ASTM D1044-99 using CS-10 wheels.
- a smooth film for the purposes of the present invention, is deemed to be a surface layer that is substantially continuous and free of visible defects in reflected light as observed by visual observation of the coating surface at a wide variety of possible angles. Typically, visual observation is accomplished by looking at the reflection of a light source from the coating surface at an angle of about 60 degrees from perpendicular. Visual defects that may be observed include but are not limited to pock marks, fish eyes, mottle, lumps or substantial waviness, or other visual indicators known to one of ordinary skill in the art in the optics and coating fields.
- a “rough” surface as described below has one or more of these characteristics, and may be indicative of a coating material in which one or more components of the composition are incompatible with each other.
- a substantially smooth coating characterized below as “smooth” for the purpose of the present invention, presumes to have a coating composition in which the various components, in the reacted final state, form a coating in which the components are compatible or have been modified to be compatible with one another and further has little, if any, of the characteristics of a “rough” surface.
- the surfaces may also be classified for dewetting as “good,” “very slight” (v.sl), “slight” (sl), “fair,” or “poor.”
- a “good” surface meaning a substantially smooth surface having little dewetting.
- a “very slight,” slight”, or “fair” categorization means that the surface has an increasing portion of defects but is still substantially acceptable for smoothness.
- a “poor” surface has a substantial amount of defects, indicating a rough surface that has a substantial amount of dewetting.
- ceramer hardcoat (“HC-1”) used in the examples was made as described in column 10, line 25-39 and Example 1 of U.S. Pat. No. 5,677,050 to Bilkadi, et al.
- Durability was assessed using a modified Oscillating Sand Method (ASTM F 735-94).
- An orbital shaker was used (VWR DS-500E, from VWR Bristol, Conn.).
- a disk of diameter 85 mm was cut from the sample, placed in a 16 ounce jar lid (jar W216922 from Wheaton, Millville, N.J.), and covered with 50 grams of 20-30 mesh Ottawa sand (VWR, Bristol, Conn.).
- the jar was capped and placed in the shaker set at 300 rpm for 15 minutes.
- a Sharpie permanent marker was used to draw a line across the diameter of the disk surface. The portion of the ink line that did not bead up was measured.
- Table 6 shows the results of another set of examples that was run at two levels of additives in an HC-1 hardcoat in which the sand test was run for 25 minutes at 300 rpm. The examples were run according to the same procedure as examples in Table 1 described above.
- TABLE 6 Percentage Percentage HC-1 in Preparation Preparation Ink coating number in coating Smoothness Repellency 99.8 9 0.2 sl 20 99.0 9 1.0 sl 10 99.8 8 0.2 good 29 99.0 8 1.0 poor 25 99.8 10 0.2 good 38 99.0 10 1.0 good 30 99.8 11 0.2 good 40 99.0 11 1.0 fair 20 99.8 12 0.2 good 36 99.0 12 1.0 poor 22 99.8 19 0.2 good 20 99.0 19 1.0 sl 49 99.8 5.2 0.2 good 5
- Table 7 shows the results of another set of examples that was run at two levels of additives in an HC-1 hardcoat in which the sand test was run for 25 minutes at 300 rpm and in a separate set for 35 minutes at 300 rpm.
- the examples were run according to the same procedure as examples in Table 1 described above.
- HC-1 was applied to the 5-mil Melinex 618 film with a metered, precision die coating process.
- the hardcoat formulation with HC-1 and Des N100/0.85 PET3A/0.15 HFPO (Preparation 5.2) was diluted to 30 wt-% solids in isopropanol and coated onto the 5-mil PET backing to achieve a dry thickness of 5 microns.
- a flow meter was used to monitor and set the flow rate of the material from a pressurized container. The flow rate was adjusted by changing the air pressure inside the sealed container which forces liquid out through a tube, through a filter, the flow meter and then through the die. The dried and cured film was wound on a take up roll.
- the coatings were dried in a 10-foot oven at 100 degrees Celsius, and cured with a 300-watt Fusion Systems H bulb at 100, 75, 50, and 25% power.
- the coating shown in Table 12 below was evaluated in a series of tests. The sand test was run for 15 minutes at 300 rpm. The Steel Wool Test was run checking for damage to the coating at 100, 250, 500, 750, and 1000 cycles. The results are summarized in Table 12. Contact angles were also run on selected samples before and after testing and these results are shown in Table 13. TABLE 12 (Preparation Steel Wool Taber testing Wt.
- UV Chips Taber testing Change in haze from HC-1 in Weight % dose % Ink without % haze after initial value in % coating in coating power repellency scratches
- 500 cycles after 500 cycles 99.27 0.73 100 0 1000 10.83 10.51 99.27 0.73 75 0 1000 8.38 8.04 99.27 0.73 50 0 1000 11.05 10.62 99.27 0.73 25 0 1000 8.35 8.04
- the present invention provides fluorocarbon- and urethane-acrylate-containing additives that can be used in coating compositions to provide coating layers having high surface energies and smoothness.
- fluorocarbon- and urethane-acrylate-containing additives are preferably introduced to conventional hard coating materials and cured to form optical hard coating layers having enhanced stain and ink repellency properties, adequate smoothness, and improved durability. Further, optical hard coatings having these additives do not need compatibilizers designed to enhance the compatibility between a fluoropolymer additive and the conventional hard coat material.
- a transparent polyethylene terephthalate (PET) film obtained from e.i. duPont de Nemours and Company, Wilmington, Del. under the trade designation “Melinex 618” having a thickness of 5.0 mils and a primed surface.
- a hardcoat composition substantially the same as Example 3 of U.S. Pat. No. 6,299,799 (S-1) was coated onto the primed surface with a metered, precision die coating process. The hardcoat was diluted in IPA to 30 wt-% solids and coated onto the 5-mil PET backing to achieve a dry thickness of 5 microns.
- a flow meter was used to monitor and set the flow rate of the material from a pressurized container. The flow rate was adjusted by changing the air pressure inside the sealed container which forces liquid out through a tube, through a filter, the flow meter and then through the die. The dried and cured film was wound on a take up roll and used as the input backing for the coating solutions described below.
- the hardcoat coating and drying parameters were as follows: Coating width: 6′′ (15 cm) Web Speed: 30 feet (9.1 m) per minute Solution % Solids: 30.2% Filter: 2.5 micron absolute Pressure Pot: 1.5 gallon capacity (5.7 l) Flow rate: 35 g/min Wet Coating Thickness: 24.9 microns Dry Coating Thickness: 4.9 microns Conventional Oven Temps: Zone 1 - 140° F. (60° C.) Zone 2 - 160° F. (53° C.) Zone 3 - 180° F. (82° C.) Each zone was 10 ft (3 m) in length.
- the coating compositions of the surface layer were coated onto the hardcoat layer of either the first or the second substrate using a precision, metered die coater.
- a syringe pump was used to meter the solution into the die.
- the solutions were diluted with MEK to a concentration of 1% and coated onto the hardcoat layer to achieve a dry thickness of 60 nm.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Paints Or Removers (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Laminated Bodies (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Fluorocarbon- and urethane-(meth)acryl-containing additives and hardcoats. The hardcoats are particularly useful as a surface layer on an optical device.
Description
- Optical hard coats are applied to optical display surfaces to protect them from scratching and marking. Desirable product features in optical hard coats include durability to scratches and abrasions, and resistance to inks and stains.
- Materials that have been used to date for surface protection include fluorinated polymers, or fluoropolymers. Fluoropolymers provide advantages over conventional hydrocarbon based materials in terms of high chemical inertness (in terms of solvent, acid, and base resistance), dirt and stain resistance (due to low surface energy), low moisture absorption, and resistance to weather and solar conditions.
- Fluoropolymers have also been investigated that are crosslinked to a hydrocarbon-based hard coating formulation that improves hardness and interfacial adhesion to a substrate. For example, it is known that free-radically curable perfluoropolyethers provide good repellency to inks from pens and permanent markers when added to ceramer hard coat compositions, which comprise a plurality of colloidal inorganic oxide particles and a free-radically curable binder precursor, such as described in U.S. Pat. No. 6,238,798 to Kang, and assigned to 3M Innovative Properties Company of St. Paul, Minn.
- Industry would find advantage in other fluoropolymer-based hard coatings, particularly those having improved properties.
- In one aspect, the invention relates to fluorocarbon- and urethane-(meth)acryl-containing additives.
- In one embodiment, the additive comprises a perfluoropolyether urethane having a monovalent perfluoropolyether moiety and a multi-(meth)acryl terminal group and is described in the detailed description below as formula (1).
- In another embodiment, the additive comprises a perfluoropolyether-substituted urethane acrylate having a monovalent perfluoropolyether moiety described in the detailed description below as formula (3A) and more preferably as formula (3B).
- In a third embodiment, the additive comprises one or more perfluoropolyether urethanes having a monovalent perfluoropolyether moiety and a multi-(meth)acryl group of the formula (4) as described further in the detailed description below.
- In a fourth embodiment, the additive comprises one or more perfluoropolyether urethanes having a monovalent perfluoropolyether moiety and a multi-(meth)acryl group of the formula (5) as described below in the detailed description.
- In a fifth embodiment, the additive comprises one or more perfluoropolyether urethanes with multi-(meth)acryl groups of the formula (6) as described below in the detailed description.
- In another aspect, the invention realtes to a hardcoat composition comprising a (e.g. small amount of a) hardcoat-compatible, monovalent perfluoropolyether moiety-containing urethane multi-(meth)acryl additive, a hydrocarbon hardocat composition; and optionally a plurality of surface modified inorganic nanoparticles. The hardcoat preferably comprises one or more of the embodied additives just described. The hardcoat is preferably provided as a surface layer on an optical substrate. The hardcoat may be provided as a single layer disposed on an optical substrate. Alternatively, a first (e.g. different composition) hardcoat layer may be disposed on the optical substate with a hardcoat of the invention disposed on the first hardcoat layer. Further, a particulate matting agent may be incorporate to impart anti-glare properties to the optical hard coating layer. The particulate matting agent can also prevent the reflectance decrease and uneven coloration caused by interference of the hard coat layer with the underlying substrate layer. In preferred embodiments, the hardcoats provide any one or combination of enhanced stain and ink repellency properties, adequate smoothness, and improved durability.
- The (e.g. optical) hard coats having these fluorocarbon additives described herein generally do not need compatibilizers to enhance the compatibility between a fluoropolymer additive and the conventional hard coat material. Alternatively, however, free-radically reactive fluoroalkyl or fluoroalkylene group-containing compatibilizers can also be employed such as a perfluorobutyl-substituted acrylate or a fluoroalkyl- or fluoroalkylene-substituted thiol or polythiol.
- Other objects and advantages of the present invention will become apparent upon considering the following detailed description and appended claims, and upon reference to the accompanying drawings.
-
FIG. 1 illustrates an article having a hard coated optical display formed in accordance with a preferred embodiment of the present invention. - For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in the specification.
- The term “(meth)acryl” refers to functional groups including acrylates, methacrylates, acrylamides, methacrylamides, alpha-fluoroacrylates, thioacrylates and thio-methacrylates. A preferred (meth)acryl group is acrylate.
- The term “monovalent perfluoropolyether moiety”, refers to a perfluoropolyether chain having one end terminated by a perfluoroalkyl group.
- The term “ceramer” is a composition having inorganic oxide particles, e.g. silica, of nanometer dimensions dispersed in a binder matrix. The phrase “ceramer composition” is meant to indicate a ceramer formulation in accordance with the present invention that has not been at least partially cured with radiation energy, and thus is a flowing, coatable liquid. The phrase “ceramer composite” or “coating layer” is meant to indicate a ceramer formulation in accordance with the present invention that has been at least partially cured with radiation energy, so that it is a substantially non-flowing solid. Additionally, the phrase “free-radically polymerizable” refers to the ability of monomers, oligomers, polymers or the like to participate in crosslinking reactions upon exposure to a suitable source of curing energy.
- The term “polymer” will be understood to include polymers, copolymers (e.g. polymers using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend.
- Unless otherwise noted, “HFPO—” refers to the end group F(CF(CF3)CF2O)aCF(CF3)— of the methyl ester F(CF(CF3)CF2O)aCF(CF3)C(O)OCH3, wherein “a” averages about 6.2, and the methyl ester has an average molecular weight of 1,211 g/mol, and which can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), the disclosure of which is incorporated herein by reference, with purification by fractional distillation.
- The recitation of numerical ranges by endpoints includes all numbers subsumed within the range (e.g. the range 1 to 10 includes 1, 1.5, 3.33, and 10).
- As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to a composition containing “a compound” includes a mixture of two or more compounds. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
- Unless otherwise indicated, all numbers expressing quantities of ingredients, measurements of properties such as contact angle, and so like as used in the specification and claims are to be understood to be modified in all instances by the term “about.”Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings of the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters set forth in the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as accurately as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviations found in their respective testing measurements.
- The term “optical display”, or “display panel”, can refer to any conventional optical displays, including but not limited to multi-character multi-line displays such as liquid crystal displays (“LCDs”), plasma displays, front and rear projection displays, cathode ray tubes (“CRTs”), and signage, as well as single-character or binary displays such as light emitting diodes (“LEDs”), signal lamps and switches. The exposed surface of such display panels may be referred to as a “lens.” The invention is particularly useful for displays having a viewing surface that is susceptible to being touched or contacted by ink pens, markers and other marking devices, wiping cloths, paper items and the like.
- The protective coatings of the invention can be employed in a variety of portable and non-portable information display articles. These articles include PDAs, cell phones (including combination PDA/cell phones), LCD televisions (direct lit and edge lit), touch sensitive screens, wrist watches, car navigation systems, global positioning systems, depth finders, calculators, electronic books, CD and DVD players, projection television screens, computer monitors, notebook computer displays, instrument gauges, instrument panel covers, signage such as graphic displays and the like. The viewing surfaces can have any conventional size and shape and can be planar or non-planar, although flat panel displays are preferred.
- A combination of low surface energy (e.g. anti-soiling, stain resistant, oil and/or water repellency) and durability (e.g. abrasion resistance) is desired for the coating layer for these displays while maintaining optical clarity. The hard coating layer functions to decrease glare loss while improving durability and optical clarity.
- The surface energy can be characterized by various methods such as contact angle and ink repellency, as determined by the test methods described in the Examples. In this application, “stain repellent” refers to a surface treatment exhibiting a static contact angle with water of at least 70 degrees. More preferably, the contact angle is at least 80 degrees and most preferably at least 90 degrees. Alternatively, or in addition thereto, the advancing contact angle with hexadecane is at least 50 degrees and more preferably at least 60 degrees. Low surface energy results in anti-soiling and stain repellent properties as well as rendering the exposed surface easy to clean.
- Another indicator of low surface energy relates to the extent to which ink from a pen or marker beads up when applied to the exposed surface. The surface layer and articles exhibit “ink repellency” when ink from pens and markers can be easily removed by wiping the exposed surface with tissues or paper towels, such as tissues available from the Kimberly Clark Corporation, Roswell, Ga. under the trade designation “SURPASS FACIAL TISSUE.” Durability can be defined in terms of results from a modified oscillating sand test (Method ASTM F 735-94) carried out at 300 rpm for 15 minutes as described in Experiment 1 of this application. Preferably, a durable coating exhibits an ink repellency value of 65 mm or less, more preferably 40 mm or less, most preferably 0 mm in this test.
- Coatings appropriate for use as optical hard coatings must be substantially free of visual defects. Visual defects that may be observed include but are not limited to pock marks, fish eyes, mottle, lumps or substantial waviness, or other visual indicators known to one of ordinary skill in the art in the optics and coating fields. Thus, a “rough” surface as described in the Experimental has one or more of these characteristics, and may be indicative of a coating material in which one or more components of the composition are incompatible with each other. Conversely, a substantially smooth coating, characterized below as “smooth” for the purpose of the present invention, presumes to have a coating composition in which the various components, in the reacted final state, form a coating in which the components are compatible or have been modified to be compatible with one another and further has little, if any, of the characteristics of a “rough” surface.
- Additionally, the surface layer preferably exhibits an initial haze of less than 2% and/or an initial transmission of at least 90%.
- Referring now to
FIG. 1 , a perspective view of an article (here a computer monitor 10) is illustrated as having anoptical display 12 coupled within ahousing 14. Theoptical display 12 is a substantially transparent material having optically enhancing properties through which a user can view text, graphics or other displayed information. Theoptical display 12 includeshard coating layer 18 applied to anoptical substrate 16. The thickness of the hardcoat layer is typically at least 0.5 microns, preferably at least 1 micron, and more preferably at least 2 microns. The thickness of the hardcoat layer is generally no greater than 25 microns. Preferably the thickness ranges from 3 microns to 5 microns. - In another embodiment (not shown), the hardcoat layer described herein (i.e. comprising at least one fluorocarbon- and urethane-(meth)acryl-containing additive and at least one non-fluorinated crosslinking agent) may be provided as a surface layer having an additional hard coat layer underlying the hardcoat surface layer. In this embodiment, the surface layer preferably preferably has a thickness ranging from about 10 to 200 nanometers.
- Various permanent and removable grade adhesive compositions may be coated on the opposite side of the substrate 16 (i.e. to that of the hardcoat 16) so the article can be easily mounted to a display surface. Suitable adhesive compositions include (e.g. hydrogenated) block copolymers such as those commercially available from Kraton Polymers of Westhollow, Tex. under the trade designation “Kraton G-1657”, as well as other (e.g. similar) thermoplastic rubbers. Other exemplary adhesives include acrylic-based, urethane-based, silicone-based and epoxy-based adhesives. Preferred adhesives are of sufficient optical quality and light stability such that the adhesive does not yellow with time or upon weather exposure so as to degrade the viewing quality of the optical display. The adhesive can be applied using a variety of known coating techniques such as transfer coating, knife coating, spin coating, die coating and the like. Exemplary adhesives are described in U.S. Patent Application Publication No. 2003/0012936. Several of such adhesives are commercially available from 3M Company, St. Paul, Minn. under the trade designations 8141, 8142, and 8161.
- The
substrate layer 16 may consist of any of a wide variety of non-polymeric materials, such as glass, or polymeric materials, such as polyethylene terephthalate (PET), bisphenol A polycarbonate, cellulose triacetate, poly(methyl methacrylate), and biaxially oriented polypropylene which are commonly used in various optical devices. - The composition of the
hard coating layer 18, prior to application and curing to theoptical substrate 16, is formed from a mixture of a conventional hydrocarbon-based, and more preferably acrylate-based, hard coat composition and a fluorocarbon- and urethane-acrylate-containing additive described in formulas (1), (3A), (4), (5) and (6) below. Methods for forming the hard coating compositions for each of the preferred embodiments are described below in the experimental section. - In one preferred embodiment of the present invention, the fluorocarbon- and urethane-acrylate-containing additive is a perfluoropolyether urethane having a monovalent perfluoropolyether moiety and a multi-acrylate terminal group combined with a conventional hydrocarbon-based (more preferably acrylate-based) hard coat material. The perfluoropolyether urethane having a monovalent perfluoropolyether moiety and a multi-acrylate terminal group is added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition. The additive is ofthe formula (1):
Ri—(NHC(O)XQRf)m, —(NHC(O)OQ(A)p)n (1)
wherein Ri is the residue of a multi-isocyanate; X is O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms; Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; A is a (meth)acryl functional group —XC(O)C(R2)═CH2, where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F; m is at least 1;n is at least 1; p is 2 to 6, m+n is 2 to 10, and in which each unit referred to by the subscripts m and n is attached to an Ri unit. - By their method of synthesis, these materials are necessarily mixtures. If the mole fraction of isocyanate groups is arbitrarily given a value of 1.0, then the total mole fraction of m and n units used in making materials of formula (1) is 1.0 or greater. The mole fractions of m:n ranges from 0.95:0.05 to 0.05:0.95. Preferably, the mole fractions of m:n are from 0.50:0.50 to 0.05:0.95. More preferably, the mole fractions of m:n are from 0.25:0.75 to 0.05:0.95 and most preferably, the mole fractions of m:n are from 0.25:0.75 to 0.10:0.95. In the instances the mole fractions of m:n total more than one, such as 0.15:0.90, the m unit is reacted onto the isocyanate first, and a slight excess (0.05 mole fraction) of the n units are used.
- In a formulation, for instance, in which 0.15 mole fractions of m and 0.85 mole fraction of n units are introduced, a distribution of products is formed in which some fraction of products formed contain no m units. There will, however, be present in this product distribution, materials of formula (1).
- Numerous diisocyanates (di-functional isocyanates), modified diisocyanate materials, and higher functional isocyanates may be used as Ri in the present invention as the residue of multi-isocyanate and still fall within the spirit of the present invention. Most preferably, multifunctional materials based on hexamethylene diisocyanate (“HDI”) are utilized. One commercially available derivative of HDI is Desmodur™ N100, available from Bayer Polymers LLC of Pittsburgh, Pa.
- Further, other diisocyanates such as toluene diisocyanate (“TDI”) or isophorone diisocyanate (“IPDI”) may also be utilized as Ri in the present invention. Non-limiting examples of aliphatic and aromatic isocyanate materials, for example, that may be used include Desmodur™ 3300, Desmodur™ TPLS2294, and Desmodur™ N 3600, all obtained from Bayer Polymers LLC of Pittsburgh, Pa.
- Materials used to make the additive of formula (1) may be described by the formula: HOQ(A)p, which are exemplified by, for instance, 1,3-glycerol dimethacrylate, available from Echo Resins Inc. of Versailles, Mo.; and pentaerythritol triacrylate, available as SR444C from Sartomer of Exton, Pa.
- Preferably, the monovalent perfluoropolyether moiety Rf is a hexafluoropropylene oxide (“HFPO”) moiety of the formula: F(CF(CF3)CF2O)aCF(CF3)—, wherein a is between about 3 and 10. Such species generally exist as a distribution or mixture of oligomers with a range of values for a, so that the average value of a may be non-integer.
- Typically, the additives of this preferred embodiment are made by first reacting the polyisocyanate with the perfluoropolyether-containing alcohol, thiol, or amine, followed by reaction with the hydroxyl functional multiacrylate, usually in a non-hydroxylic solvent and in the presence of a catalyst such as an organotin compound. Alternately, the additives of this preferred embodiment are made by reacting the polyisocyanate with the hydroxyl functional multiacrylate, followed by reaction with the perfluoropolyether-containing alcohol, thiol, or amine, usually in a non-hydroxylic solvent and in the presence of a catalyst such as an organotin compound. In addition, the additives could be made by reacting all three components simultaneously, usually in a non-hydroxylic solvent and in the presence of a catalyst such as an organotin compound.
- One representative structure (2) of perfluoropolyether urethanes with multi-acrylates terminal groups of formula (1) is shown below as:
which is the reaction product of the biuret of HDI with one equivalent of HFPO oligomer amidol (F(CF(CF3)CF2O)6.5CF(CF3)C(O)NHCH2CH2OH), and further with two equivalents of pentaerythritol triacrylate. - In a slight alternative preferred variation of formula (1), a hard coating composition may be formed by the addition of a perfluoropolyether urethane with a mono-acrylate terminal group according to the formula Ri—(NHC(O)XQRf)m, —(NHC(O)OQA)n to a hydrocarbon-based hard coating formulation.
- In another preferred embodiment of the present invention, the fluorocarbon- and urethane-acrylate-containing additive comprises a perfluoropolyether-substituted urethane acrylate having a monovalent perfluoropolyether moiety added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition. The additive is of the formula (3A):
Rf-Q-(XC(O)NHQOC(O)C(R)═CH2)f (3A)
where Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6; a is 2-15; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; X is independently O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms and f is 1-5. - One preferred perfluoropolyether-substituted urethane(meth)acrylate that meets the description of formula (3A) is described more specifically in formula (3B):
HFPO-Q-(XC(O)NHQOC(O)C(R)═CH2)f (3B)
where HFPO is F(CF(CF3)CF2O)aCF(CF3)—; a is 2-15; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; X is independently O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms and f is 1-5. Two preferred HFPO-substituted urethane acrylates that can be utilized include: HFPO—C(O)NHC2H4OC(O)NHC2H4OC(O)C(CH3)═CH2 and HFPO—C(O)NHC(C2H5)(CH2OC(O)NHC2H4OC(O)C(CH3)═CH2)2. - In another preferred embodiment of the present invention, the fluorocarbon- and urethane-acrylate-containing additive is formed from one or more perfluoropolyether urethanes having a monovalent perfluoropolyether moiety and multi-meth(acryl) groups added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition. The additive is of the formula (4):
Ri—(NHC(O)XQRf)m, —(NHC(O)OQ(A)p)n, —(NHC(O)XQG)o,—(NCO)q (4)
wherein Ri is the residue of a multi-isocyanate; X is independently O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms; Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; A is a (meth)acryl functional group —XC(O)C(R2)═CH2, where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F; G is selected from the group consisting of an alkyl, an aryl, an alkaryl and an aralkyl, wherein G optionally contains heteroatoms such as O, N, and S and optionally has heteroatom-containing functional groups such as carbonyl and sulfonyl and combinations of heteroatoms and heteroatom-containing functional groups; and G optionally contains pendant or terminal reactive groups selected from the group consisting of (meth)acryl groups, vinyl groups, allyl groups and —Si(OR3)3 groups, where R3 is a lower alkyl of 1 to 4 carbon atoms; wherein G also optionally has fluoroalkyl or perfluoroalkyl groups; m is at least 1; n is at least 1; o is 0 or greater; p is 2 to 6; q is 0 or greater; (m+n+o+q)=NNCO, where NNCO is the number of isocyanate groups originally appended to Ri; and the quantity (m+n+o)/NNCO is greater than or equal to 0.67, and in which each unit referred to by the subscripts m, n, o, and q is attached to an Ri unit. Preferably Rfc is —CF(CF3)CF2—. - The monoalcohol, monothiol or monoamine HXQG used in making materials of formula (4) may include materials such as C4F9SO2N(CH3)CH2CH2OH, H2NCH2CH2CH2(SiOCH3)3, HSCH2CH2CH2Si(OCH3)3, and HEA (“hydroxyethylacrylate”).
- In still another preferred embodiment of the present invention, the fluorocarbon- and urethane-acrylate-containing additive is formed from one or more perfluoropolyether urethanes having a monovalent perfluoropolyether moiety and multi-meth(acryl) groups added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition. The additive is of the formula (5):
(Ri)c—(NHC(O)XQRf)m, —(NHC(O)OQ(A)p)n, —(NHC(O)XQG)o, (Rf(Q)(XC(O)NH)y)z—, —NHC(O)XQD(QXC(O)NH)u)s—, D1(QXC(O)NH)y)zz—NHC(O)OQ(A)tQ1Q(A)tOC(O)NH))v—, —(NCO)w (5)
wherein Ri is the residue of a multi-isocyanate; c is 1 to 50; X is independently O, S or NR, where R is H or lower alkyl; Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms and each x independently represents an integer greater than or equal to 2 and wherein d is an integer from 1 to 6; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; A is a (meth)acryl functional group having the chemical formula: (—XC(O)C(R2)═CH2), where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F; G is selected from the group consisting of an alkyl, an aryl, an alkaryl and an aralkyl, wherein G optionally contains heteroatoms such as O, N, and S and optionally has heteroatom-containing functional groups such as carbonyl and sulfonyl and combinations of heteroatoms and heteroatom-containing functional groups; and wherein G optionally contains pendant or terminal reactive groups selected from the group consisting of (meth)acryl groups, vinyl groups, allyl groups and —Si(OR3)3 groups, where R3 is a lower alkyl of 1 to 4 carbon atoms; wherein G also optionally has fluoroalkyl or perfluoroalkyl groups; D is selected from the group consisting of an alkylene, an arylene, an alkarylene, a fluoroalkylene, a perfluoroalkylene and an aralkylene and optionally contains heteroatoms such as O, N, and S; D1 is selected from the group consisting of an alkyl, an aryl, an alkaryl, a fluoroalkyl, a perfluoroalkyl and an aralkyl group and optionally contains heteroatoms such as O, N, and S; Q1 is a connecting group defined in the same way as Q; m or z is at least 1; n or v is at least 1; y is independently 2 or greater; o, s, v, w, z and zz are 0 or greater; (m+n+o+[(u+1)s]+2v+w+yz+y(zz))=cNNCO, where NNCO is the number of isocyanate groups originally appended to Ri; the quantity (m+n+o+([(u+1)s]+2v+yz+y(zz))/(cNNCO) is greater than or equal to least 0.75; p is 2 to 6; t is 1 to 6; and u is independently 1 to 3; in which each unit referred to by the subscripts m, n, o, s, v, w, z and zz is attached to an Ri unit; and preferably Rfc is —CF(CF3)CF2—. - In this embodiment, when added to the conventional hydrocarbon-based hard coating material, care must be taken in choosing the ratios and amounts of reactive components to avoid highly crosslinked urethane polymer gels. For instance, if a trifunctional isocyanate is to be used with a multifunctional alcohol, the amount of multifunctional alcohol should be limited to avoid forming a crosslinked network. For higher numbers of c for (Ri)c groups, it is preferred that diols and diisocyanates be primarily used.
- The materials used to make the additive of formula (5) include those of the formula: Rf(Q)(XH)y, which is exemplified by HFPO—C(O)NHCH2CH2CH2N(CH2CH2OH)2.
- The materials used to make the additive of formula (5) include those of the formula: HXQDQXH, which is exemplified by hydrocarbon polyols such as HO(CH2)10OH and fluorochemical diols such as HOCH2(CF2)4CH2OH.
- The materials used to make the additive of formula (5) may include those of the formula: D(QXH)y)zz, which is exemplified by fluorochemical diols C4F9SO2N(CH2CH2OH)2.
- The materials used to make the additive of formula (5) may also include those of the formula: HOQ(A)tQ1Q(A)tOH, which is exemplified by Hydantoin hexaacrylate (HHA), prepared as described in Example 1 of U.S. patent application No. 4,262,072 to Wendling et al, and CH2═C(CH3)C(O)OCH2CH(OH)CH2O(CH2)4OCH2CH(OH)CH2OC(O)C(CH3)═CH2.
- In still another preferred embodiment of the present invention, the fluorocarbon- and urethane-acrylate-containing additive is formed from one or more perfluoropolyether urethanes with multi-meth(acryl) groups added at between about 0.01% and 10%, and more preferably between about 0.1% and 1%, of the total solids of the hard coat composition. The additive is of the formula (6):
(Ri)c—(NHC(O)XQRf)m, —(NHC(O)OQ(A)p)n, —(NHC(O)XQG), —(NHC(O)XQRf2(QXC(O)NH)u)r—, —NHC(O)XQD(QXC(O)NH)u)s—, D1(QXC(O)NH)y)zz—NHC(O)OQ(A)tQ1Q(A)tOC(O)NH))v—, —(NCO)w (6)
wherein Ri is the residue of a multi-isocyanate; c is 1 to 50; X is independently O, S or NR, where R is H or lower alkyl; Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms and each x independently represents an integer greater than or equal to 2 and wherein d is an integer from 1 to 6; Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; A is a (meth)acryl functional group having the chemical formula: (—XC(O)C(R2)═CH2), where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F; G is selected from the group consisting of an alkyl, an aryl, an alkaryl and an aralkyl, wherein G optionally contains heteroatoms such as O, N, and S and optionally has heteroatom-containing functional groups such as carbonyl and sulfonyl and combinations of heteroatoms and heteroatom-containing functional groups; and wherein G optionally contains pendant or terminal reactive groups selected from the group consisting of (meth)acryl groups, vinyl groups, allyl groups and —Si(OR3)3 groups, where R3 is a lower alkyl of 1 to 4 carbon atoms; G also optionally has fluoroalkyl or perfluoroalkyl groups; Rf2 is a multi-valent fluoropolyether moiety, Rf2 is composed of groups comprising the formula: Y((Rfc1O)xCd1F2d1)b, wherein each Rfc1 independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms: each x independently represents an integer greater than or equal to 2, and d1 is an integer from 0 to 6; Y represents a polyvalent organic group or covalent bond having a valence of b, and b represents an integer greater than or equal to 2; D is selected from the group consisting of an alkylene, an arylene, an alkarylene, a fluoroalkylene, a perfluoroalkylene and an aralkylene group and optionally contains heteroatoms such as O, N, and S; D1 is selected from the group consisting of an alkyl, an aryl, an alkaryl, a fluoroalkyl, a perfluoroalkyl and an aralkyl group and optionally contains heteroatoms such as O, N, and S; Q1 is a connecting group defined in the same way as Q; r is at least 1; n or v is at least 1; y is independently 2 or greater; m, o, s, v, w and zz are 0 or greater; (m+n+o+[(u+1)r]+[(u+1)s]+2v+w+y(zz))=cNNCO, where NNCO is the number of isocyanate groups originally appended to Ri; the quantity (m+n+o+[(u+1)r]+[(u+1)s]+2v+y(zz))/(cNNCO) is greater than or equal to least 0.75; p is 2 to 6; t is 1 to 6; u is independently 1 to 3; in which each unit referred to by the subscripts m, n, o, r, s, v, w, and zz is attached to an Ri unit; and Rfc1 is preferably independently selected from: —CF(CF3)CF2—, —CF2CF2CF2—, and (—CH2C(R)(CH2OCH2CdF2d+1)CH2—)aa where aa is 2 or greater and d and R are defined above. - The materials used to make the additive of formula (9) may also include those of the formula: HXQRf2QXH, which is exemplified by (H(OCH2C(CH3)(CH2OCH2CF3)CH2)aaOH) (Fox-Diol, having a MW about 1342 and available from Omnova Solutions Inc. of Akron, Ohio).
- In preferred embodiments the fluorocarbon- and urethane-(meth)acryl additive(s) described herein are employed as the sole perfluoropolyether containing additive in a hardcoat composition. Alternatively, however, the additive(s) described herein may be employed in combination with various other perfluoropolyether fluorocarbon(meth)acryl materials such as HFPO—C(O)NHCH2CH2OC(O)CH═CH2 and various (per)fluoropolyether acryl compounds such as described in U.S. application Ser. No. 10/841159, filed May 7, 2004; (Docket No. 59727US002) and U.S. Provisional Application Ser. No. 60/569351, filed May 7, 2004 (Docket No. 59795US002); incorporated by reference. Exemplary materials include compound of the structures: HFPO—C(O)N(H)C(CH2OC(O)CH═CH2)2CH2CH3, and HFPO—C(O)N(H)C(CH2OC(O)CH═CH2)2H.
- The hardcoat may be provided as a single layer disposed on an optical substrate. In this construction, the total of all (per)fluoropolyether acryl compounds, (i.e. the fluorocarbon- and urethane-(meth)acryl additive(s) of the invention and other perfluoropolyether fluorocarbon(meth)acryl materials) ranges from 0.01% to 10%, and more preferably from 0.1% to 1%, of the total solids of the hard coat composition. For embodiments wherein a first (e.g. different composition) hardcoat layer is disposed on the optical substate with a hardcoat of the invention disposed on the first hardcoat layer the fluorocarbon- and urethane-(meth)acryl-containing additives described herein may be present in the surface coating at amounts ranging from 0.01 to 50 wt-% solids, and more preferably from 1 to 25 wt-% solids; whereas the various other (per)fluoropolyether acryl compounds may be present at weight percents from 1 to 20%, and preferably from 1 to 10%. Preferably, the ratio of fluorocarbon- and urethane-(meth)acry-containing additive to other (per)fluoropolyether acryl compounds is at least 1 to 1 and more preferably is about 3 to 1.
- The fluorocarbon- and urethane(meth)acryl additives (e.g. those of formulas (1), (3A), (4), (5) or (6)) optionally in combination with various other (per)fluoropolyether(meth)acryl compounds may be combined with one or more compatibilizers.
- A class of free-radically reactive fluoroalkyl or fluoroalkylene group-containing compatibilizers of the respective chemical formulas: RffQ3(X1)n1 and (X1)n1Q3Rff2Q3(X1)n1), where Rff is a fluoroalkyl, Rff2 is a fluoroalkylene, Q3 is a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene group, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; X1 is a free-radically reactive group selected from (meth)acryl, —SH, allyl, or vinyl groups and n1 is independently 1 to 3. Typical Q3 groups include: —SO2N(R)CH2CH2—; —SO2N(CH2CH2)2—; —(CH2)m—; —CH2O(CH2)3—; and —C(O)NRCH2CH2—, where R is H or lower alkyl of 1 to 4 carbon atoms and m is 1 to 6. Preferably the fluoroalkyl or fluoroalkylene group is a perfluoroalkyl or perfluoroalkylene group. One preferred class of fluoroalkyl- or alkylene-substituted compatibilizers meeting these criteria for use in the composition of the
hard coat layer 18 is the perfluorobutyl-substituted acrylate compatibilizers. Exemplary, non-limiting perfluorobutyl-substituted acrylate compatibilizers meeting these criteria and useful in the present invention include one or more of C4F9SO2N(CH3)CH2CH2OC(O)CH═CH2, C4F9SO2N(CH2CH2OC(O)CH═CH2)2, or C4F9SO2N(CH3)CH2CH2OC(O)C(CH3)═CH2. The free-radically reactive fluoroalkyl or fluoroalkylene group-containing compatibilizers described above are preferably added at between about 0.5% and 20%, and more preferably between about 1% and 10%, of the total solids of the hard coat composition. - One non-limiting example of a preferred fluoroalkyl-substituted compatibilizer that may be utilized in the composition of the
hard coat layer 18 is: (1H,1H,2H,2H)-perfluorodecyl acrylate, available from Lancaster Synthesis of Windham, N.H. Numerous other (meth)acryl compounds with perfluoroalkyl moieties that may also be utilized in the composition of the hard coat layer are mentioned in U.S. Pat. No. 4,968,116, to Hulme-Lowe et al., and in U.S. Pat. No. 5,239,026 (including perfluorocyclohexylmethyl methacrylate), to Babirad et al., which are assigned to Minnesota Mining and Manufacturing Company of St. Paul, Minn. and are herein incorporated by reference. Other fluorochemical (meth)acrylates that meet these criteria and may be utilized include, for example, 2,2,3,3,4,4,5,5-octafluorohexanediol diacrylate and ω-hydro 2,2,3,3,4,4,5,5-octafluoropentyl acrylate (H—C4F8—CH2O—C(O)—CH═CH2). Other fluorochemical (meth)acrylates that may be used alone, or as mixtures, are described in U.S. Pat. No. 6,238,798, to Kang et al., and assigned to Minnesota Mining and Manufacturing Company of St. Paul, Minn., and herein incorporated by reference. - Another compatibilizer that may be used is a fluoroalkyl- or fluoroalkylene-substituted thiol or polythiol to a ceramer hard coating composition. Non-limiting examples of this type of compatibilizer includes one or more of the following: C4F9SO2N(CH3)CH2CH2OC(O)CH2SH, C4F9SO2N(CH3)CH2CH2OC(O)CH2CH2SH, C4F9SO2N(CH3)CH2CH2SH, and C4F9SO2N(CH3)CH(OC(O)CH2SH)CH2OC(O)CH2SH.
- The conventional hard coat material used as a portion of
layer 18 in any of the preferred embodiments described above is a hydrocarbon-based material well known to those of ordinary skill in the optical arts. Most preferably, the hydrocarbon-based material is an acrylate-based hard coat material. One preferable hard coat material for use in the present invention is based on PETA (pentaerythritol tri/tetra acrylate). One commercially available form of pentaerythritol triacrylate (“PET3A”) is SR444C and one commercially available form of pentaerythritol tetraacrylate (“PET4A”) is SR295, each available from Sartomer Company of Exton, Pa. - However, other crosslinking agents may be used in the present invention. Useful crosslinking agents include, for example, poly(meth)acryl monomers selected from the group consisting of (a) di(meth)acryl containing compounds such as 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol monoacrylate monomethacrylate, ethylene glycol diacrylate, alkoxylated aliphatic diacrylate, alkoxylated cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated neopentyl glycol diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, cyclohexanedimethanol diacrylate, diethylene glycol diacrylate, dipropylene glycol diacrylate, ethoxylated (10) bisphenol A diacrylate, ethoxylated (3) bisphenol A diacrylate, ethoxylated (30) bisphenol A diacrylate, ethoxylated (4) bisphenol A diacrylate, hydroxypivalaldehyde modified trimethylolpropane diacrylate, neopentyl glycol diacrylate, polyethylene glycol (200) diacrylate, polyethylene glycol (400) diacrylate, polyethylene glycol (600) diacrylate, propoxylated neopentyl glycol diacrylate, tetraethylene glycol diacrylate, tricyclodecanedimethanol diacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate; (b) tri(meth)acryl containing compounds such as glycerol triacrylate, trimethylolpropane triacrylate, ethoxylated triacrylates (e.g., ethoxylated (3) trimethylolpropane triacrylate, ethoxylated (6) trimethylolpropane triacrylate, ethoxylated (9) trimethylolpropane triacrylate, ethoxylated (20) trimethylolpropane triacrylate), propoxylated triacrylates (e.g., propoxylated (3) glyceryl triacrylate, propoxylated (5.5) glyceryl triacrylate, propoxylated (3) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate), trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate; (c) higher functionality (meth)acryl containing compounds such as ditrimethylolpropane tetraacrylate, dipentaerythritol pentaacrylate, ethoxylated (4) pentaerythritol tetraacrylate, caprolactone modified dipentaerythritol hexaacrylate; (d) oligomeric (meth)acryl compounds such as, for example, urethane acrylates, polyester acrylates, epoxy acrylates; polyacrylamide analogues of the foregoing; and combinations thereof. Such compounds are widely available from vendors such as, for example, Sartomer Company of Exton, Pa.; UCB Chemicals Corporation of Smyrna, Ga.; and Aldrich Chemical Company of Milwaukee, Wis. Additional useful (meth)acrylate materials include hydantoin moiety-containing poly(meth)acrylates, for example, as described in U.S. Pat. No. 4,262,072 (Wendling et al.).
- To facilitate curing, polymerizable compositions according to the present invention may further comprise at least one free-radical thermal initiator and/or photoinitiator. Typically, if such an initiator and/or photoinitiator are present, it comprises less than about 10 percent by weight, more typically less than about 5 percent of the polymerizable composition, based on the total weight of the polymerizable composition. Free-radical curing techniques are well known in the art and include, for example, thermal curing methods as well as radiation curing methods such as electron beam or ultraviolet radiation. Further details concerning free radical thermal and photopolymerization techniques may be found in, for example, U.S. Pat. No. 4,654,233 (Grant et al.); U.S. Pat. No. 4,855,184 (Klun et al.); and U.S. Pat. No. 6,224,949 (Wright et al.).
- Useful free-radical thermal initiators include, for example, azo, peroxide, persulfate, and redox initiators, and combinations thereof.
- Useful free-radical photoinitiators include, for example, those known as useful in the UV cure of acrylate polymers. Such initiators include benzophenone and its derivatives; benzoin, alpha-methylbenzoin, alpha-phenylbenzoin, alpha-allylbenzoin, alpha-benzylbenzoin; benzoin ethers such as benzil dimethyl ketal (commercially available under the trade designation “IRGACURE 651 ” from Ciba Specialty Chemicals Corporation of Tarrytown, N.Y.), benzoin methyl ether, benzoin ethyl ether, benzoin n-butyl ether; acetophenone and its derivatives such as 2-hydroxy-2-methyl-1-phenyl-1-propanone (commercially available under the trade designation “DAROCUR 1173” from Ciba Specialty Chemicals Corporation) and 1-hydroxycyclohexyl phenyl ketone (commercially available under the trade designation “IRGACURE 184”, also from Ciba Specialty Chemicals Corporation); 2-methyl-1-[4-(methylthio)phenyl]-2-(4-morpholinyl)-1-propanone commercially available under the trade designation “IRGACURE 907”, also from Ciba Specialty Chemicals Corporation); 2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone commercially available under the trade designation “IRGACURE 369” from Ciba Specialty Chemicals Corporation); aromatic ketones such as benzophenone and its derivatives and anthraquinone and its derivatives; onium salts such as diazonium salts, iodonium salts, sulfonium salts; titanium complexes such as, for example, that which is commercially available under the trade designation “CGI 784 DC”, also from Ciba Specialty Chemicals Corporation); halomethylnitrobenzenes; and mono- and bis-acylphosphines such as those available from Ciba Specialty Chemicals Corporation under the trade designations “IRGACURE 1700”, “IRGACURE 1800”, “IRGACURE 1850”, “IRGACURE 819” “IRGACURE 2005”, “IRGACURE 2010”, “IRGACURE 2020” and “DAROCUR 4265“. Combinations of two or more photoinitiators may be used. Further, sensitizers such as 2-isopropyl thioxanthone, commercially available from First Chemical Corporation, Pascagoula, Miss., may be used in conjunction with photoinitiator(s) such as “IRGACURE 369”.
- The composition of any of these preferred embodiments is applied to an
optical substrate layer 16 of anoptical display 12 and photocured to form the easy to clean, stain and ink repellent opticalhard coating layer 18. The presence of the urethane functionality, in addition to the fluorocarbon component, in the additive eliminates the need for comonomers introduced to the composition to compatibilize the fluorochemical component with the hydrocarbon-based crosslinker. - In still another preferred embodiment, the hard coat
material forming layer 18 of any of the above-preferred embodiments further contains surface modified inorganic particles that add mechanical strength to the resultant coating. One example of such particles is colloidal silica reacted with a methacryl silane coupling agent such as A-174 (available from Natrochem, Inc.), other dispersant aids such as N,N dimethylacrylamide and various other additives (stabilizers, initiators, etc.). - In still another preferred embodiment of any of the above preferred embodiments described above, a particulate matting agent is incorporated into the composition of the
layer 18 in order to impart anti-glare properties to thelayer 18. The particulate matting agent also prevents the reflectance decrease and uneven coloration caused by interference with an associated hard coat layer. The particulate matting agent should preferably be transparent, exhibiting transmission values of greater than about 90%. Alternatively, or in addition thereto, the haze value is preferably less than about 5%, and more preferably less than about 2%, and most preferably less than about 1%. - Exemplary systems incorporating matting agents into a hard coating layer, but having a different hard coating composition, are described, for example, in U.S. Pat. No. 6,693,746, and herein incorporated by reference. Further, exemplary matte films are commercially available from U.S.A. Kimoto Tech of Cedartown, Ga., under the trade designation “N4D2A.”
- The amount of particulate matting agent added is between about 0.5 and 10% of the total solids of the composition, depending upon the thickness of the
layer 18, with a preferred amount around 2%. Theanti-glare layer 18 preferably has a thickness of 0.5 to 10 microns, more preferably 0.8 to 7 microns, which is generally in the same thickness range of gloss hard coatings. - The average particle diameter of the particulate matting agent has a predefined minimum and maximum that is partially dependent upon the thickness of the layer. However, generally speaking, average particle diameters below 1.0 microns do not provide the degree of anti-glare sufficient to warrant inclusion, while average particle diameters exceeding 10.0 microns deteriorate the sharpness of the transmission image. The average particle size is thus preferably between about 1.0 and 10.0 microns, and more preferably between 1.7 and 3.5 microns, in terms of the number-averaged value measured by the Coulter method.
- As the particulate matting agent, inorganic particles or resin particles are used including, for example, amorphous silica particles, TiO2 particles, Al2O3 particles, cross-linked acrylic polymer particles such as those made of cross-linked poly(methyl methacrylate), cross-linked polystyrene particles, melamine resin particles, benzoguanamine resin particles, and cross-linked polysiloxane particles. By taking into account the dispersion stability and sedimentation stability of the particles in the coating mixture for the anti-glare layer and/or the hard coat layer during the manufacturing process, resin particles are more preferred, and in particular cross-linked polystyrene particles are preferably used since resin particles have a high affinity for the binder material and a small specific gravity.
- As for the shape of the particulate matting agent, spherical and amorphous particles can be used. However, to obtain a consistent anti-glare property, spherical particles are desirable. Two or more kinds of particulate materials may also be used in combination.
- Thin coating layers 18 of any of the preferred embodiments can be applied to the
optical substrate 16 using a variety of techniques, including dip coating, forward and reverse roll coating, wire wound rod coating, and die coating. Die coaters include knife coaters, slot coaters, slide coaters, fluid bearing coaters, slide curtain coaters, drop die curtain coaters, and extrusion coaters among others. Many types of die coaters are described in the literature such as by Edward Cohen and Edgar Gutoff, Modem Coating and Drying Technology, VCH Publishers, NY 1992, ISBN 3-527-28246-7 and Gutoff and Cohen, Coating and Drying Defects: Troubleshooting Operating Problems, Wiley Interscience, NY ISBN 0-471-59810-0. - A die coater generally refers to an apparatus that utilizes a first die block and a second die block to form a manifold cavity and a die slot. The coating fluid, under pressure, flows through the manifold cavity and out the coating slot to form a ribbon of coating material. Coatings can be applied as a single layer or as two or more superimposed layers. Although it is usually convenient for the substrate to be in the form of a continuous web, the substrate may also be a succession of discrete sheets.
- To prove the effectiveness of the hard coat formulations according to each preferred embodiment of the present invention described above, sample hard coats having the given compositions were formulated and applied to PET substrates and compared to hard coat formulations having less than all the desired components. The coatings were visually inspected and tested for ink repellency, durability and surface roughness. The experimental procedures and tabulated results are described below:
- Unless otherwise noted, as used in the examples, “HFPO—” refers to the end group F(CF(CF3)CF2O)aCF(CF3)— wherein a averages about 6.22, with an average molecular weight of 1,211 g/mol, can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), the disclosure of which is incorporated herein by reference, with purification by fractional distillation.
- Polyisocyanates Desmodur™ (Des) N100, Desmodur™ 3300, Desmodur™ TPLS2294, Desmodur™ N 3600, and Isophorone diisocyanate (IPDI) were obtained from Bayer Polymers LLC, of Pittsburgh, Pa.
- PAPI (Poly[(phenyl isocyanate)-co-formaldehyde]) (MW about 375), is available from Sigma Aldrich of Milwaukee, Wis.
- C6F13C2H4OH is available from Sigma Aldrich of Milwaukee, Wis.
- 4-methoxy phenol (MEHQ) is available from Sigma Aldrich of Milwaukee, Wis.
- HO(CH2)10OH is available from Sigma Aldrich of Milwaukee, Wis.
- FOX-diol (H(OCH2CCH3(CH2OCH2CF3)CH2)xOH) (MW about 1342), is available from Omnova Solutions Inc. of Akron, Ohio.
- Pentaerythritol tetracrylate (“PET4A”), under the trade designation “SR295”, was obtained from Sartomer Company of Exton, Pa.
- Pentaerythritol triacrylate (“PET3A”), under the trade designation “SR444C”, was obtained from Sartomer Company of Exton, Pa.
- Trimethylolpropane triacrylate (“TMPTA”), under the trade designation “SR351”, was obtained from Sartomer Company of Exton, Pa.
- Hydantoin hexaacrylate (HHA) was prepared as described in Example 1 of U.S. Pat. No. 4,262,072.
- FBSEE (C4F9SO2N(C2H4OH)2), a fluorochemical diol, can be prepared as described in column 5, line 31 and in FIG. 9 of U.S. Pat. No. 3,734,962 (1973).
- MeFBSE (C4F9SO2N(CH3)CH2CH2OH) was prepared by essentially following the procedure described in U.S. Pat. No. 6,664,354 (Savu et al.), Example 2, Part A.
- FBSEA (C4F9SO2N(CH3)CH2CH2OC(O)CH═CH2) is made by the procedure of Examples 2A and 2B of WO 01/30873 to Savu et al.
- HFPO AEA (HFPO—C(O)NHCH2CH2OC(O)CH═CH2) was prepared as described in File number U.S. application Ser. No. 10/841159, filed May 7, 2004 (Docket No. 57927US002); under Preparation of Monofunctional Perfluoropolyether Acrylate (FC-1).
- Fomblin Zdol (HOCH2CF2(OCF2CF2)n(OCF2)mCH2OH ) is available from Solvay Solexis, Inc. of Italy.
- Hydroxyethyl acrylate (HEA) is available from Sigma Aldrich of Milwaukee, Wis.
- H2NCH2CH2CH2Si(OCH3)3 is available from Sigma Aldrich of Milwaukee, Wis.
- HSCH2CH2CH2Si(OCH3)3 is available from Sigma Aldrich of Milwaukee, Wis.
- 2-isocyanato-ethyl-methacrylate (“IEM”) (CH2═C(CH3)CO2CH2CH2NCO), is available from Sigma Aldrich of Milwaukee, Wis.
- The amines, 2-amino-2-ethyl-1,3-propane diol, and 1,1-bis-(hydroxyethyl)-1,3 aminopropane were obtained from Sigma-Aldrich of Milwaukee, Wis.
- Acryloyl chloride was obtained from Sigma-Aldrich of Milwaukee Wis.
- The UV photoinitiator, 1-hydroxycyclohexyl phenyl ketone used was obtained from Ciba Specialty Products, Tarrytown, N.Y. and sold under the trade designation “Irgacure 184.”
- The photoinitiator 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one used was obtained from Ciba Specialty Products, Tarrytown, N.Y. and sold under the trade designation “Irgacure 907.”
- Methyl perfluorobutyl ether (HFE 7100) was obtained from 3M Company, St. Paul, Minn.
- Dibutyltin dilaurate (DBTDL) was obtained from Sigma Aldrich of Milwaukee, Wis.
- Unless otherwise noted, “MW” refers to molecular weight and “EW” refers to equivalent weight. Further, “° C.” may be used interchangeably with “degrees Celsius” and “mol” refers to moles of a particular material and “eq” refers to equivalents of a particular material. Further, “Me” constitutes a methyl group and may be used interchangeably with
- Preparation No. 1. Preparation of HFPO—C(O)CH3
- As used in the examples, “HFPO—” refers to the end group F(CF(CF3)CF2O)aCF(CF3)— wherein a has average values of about 4.41, 6.2, 6.85, and 8.07. The material F(CF(CF3)CF2O)aCF(CF3)COOCH3(HFPO—C(O)OCH3) can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.), the disclosure of which is incorporated herein by reference, with purification by fractional distillation.
- Preparation No. 2. Preparation of HFPO diol HFPO—C(O)NHCH2CH2CH2N(CH2CH2OH)2(HFPODO, MW about 1341)
- To a 500 ml 3-necked flask equipped with a stir bar and reflux condenser was charged 100 g (MW about 1210.6, 0.0826 mol) HFPO—C(O)OCH3, and 13.40 g (MW=162.2, 0.0826 mol) H2NCH2CH2CH2N(CH2CH2OH)2. The mixture was reacted neat at 130 degrees Celsius for 6 hours. From Fourier Transform Infrared Spectroscopy (FTIR) analysis, the amide —C(O)NH— was formed as the ester signal (—CO2—) disappeared. The desired product, HFPO—C(O)NHCH2CH2CH2N(CH2CH2OH)2 was obtained as a viscous yellow liquid after concentration at 55 degrees Celsius under aspirator vacuum.
- Preparation No. 3. Preparation of HFPO—C(O)N(H)C(CH2OH)2CH2CH3 Starting Material
- To a 500 ml 3-necked flask equipped with a stir bar and reflux condenser was charged 11.91 g (0.1 mol) H2NC(CH2OH)2CH2CH3 and 60 g tetrahydrofuran (“THF”). Next via dropping funnel was added 121.1 g (0.1 mol) HFPO—C(O)OCH3 over about 80 minutes at a bath temperature of about 85 degrees Celsius. The reaction was cloudy at first, but became clear about 1 hour into the reaction. After addition was complete, the heating bath was shut off and the reaction was allowed to cool for three days. The material was concentrated at 55 degrees Celsius under aspirator vacuum to yield 130.03 g of a light colored syrup. NMR analysis showed the product to be an 87:13 mixture of the structures I and II as follows:
Preparation No. 4. Preparation of HFPO—C(O)NHCH2CH2OH of Different Molecular Weights - HFPO—C(O)N(H)CH2CH2OH of different molecular weights (938.5, 1344, and 1547.2) were made by a procedure similar to that described in U.S. Publication No. 2004-0077775 (Docket Number 57823), entitled “Fluorochemical Composition Comprising a Fluorinated Polymer and Treatment of a Fibrous Substrate Therewith,” filed on May 24, 2002, for Synthesis of HFPO-oligomer alcohols, substituting F(CF(CF3)CF2O)aCF(CF3)C(O)OCH3 with a=4.41, 6.85, and 8.07 respectively, for F(CF(CF3)CF2O)aCF(CF3)C(O)CH3 with a=6.2.
- Preparation No. 5. Preparation of Des N100/0.66 PET3A/0.33 HFPO
- A 500 ml roundbottom flask equipped with magnetic stir bar was charged with 25.0 g (0.131 eq, 191 EW) Des N100, 43.13 g (0.087 eq, 494.3 EW) of Sartomer SR444C, 25.3 mg of MEHQ, and 126.77 g methyl ethyl ketone (MEK). The reaction was swirled to dissolve all the reactants, the flask was placed in a oil bath at 60 degrees Celsius, and fitted with a condenser under dry air. Two drops of dibutyltin dilaurate was added to the reaction. After 1 hour, 58.64 g (0.0436 eq, 1344 EW) F(CF(CF3)CF2O)6.85CF(CF3)C(O)NHCH2CH2OH was added to the reaction via addition funnel over about 75 minutes. The reaction was monitored by FTIR and showed a small isocyanate absorption at 2273 cm−1 after about 5 hours of reaction, but no isocyanate absorption at 7.5 hours of reaction. The material was used as a 50% solids solution in MEK. The HFPO multiacrylate urethanes preparations shown in Table 1 below, listed as Preparation Nos. 5.1 through 5.19 respectively, were all made according to this general procedure, using the appropriate mole fractions of materials noted in the table. These preparations were then used to verify the inventive formulations of the present invention as used in
hardcoat 18.TABLE 1 Perfluoropolyether Urethane Multiacrylates Isocyanate used (set Mole Preparation at 100 Mole percent percent Number NCO in all cases PET3A Mole percent HFPO—C(O)NHCH2CH2OH (MW 1344) 5.1 Des N100 95 5 5.2 Des N100 85 15 5.3 Des N100 75 25 5.4 Des N100 66.6 33.3 5.5 Des N100 50 50 5.6 Des N100 33.3 66.6 5.7 Des N100 5 95 5.8 Des N3300 85 15 5.9 Des N3300 75 25 5.10 Des N3300 66.6 33.3 5.11 Des N3300 50 50 5.12 IPDI 75 25 5.13 Des TPLS2294 85 15 5.14 Des N3600 85 15 Mole percent HFPO—C(O)NH(CH2)3NHCH3 (See Preparation number 22) 5.15 Des N100 85 15 Mole percent HFPO—C(O)NHCH2CH2OH (MW 938.5) 5.16 Des N100 85 15 5.17 Des N100 75 25 Mole percent HFPO—C(O)NHCH2CH2OH (MW 1547.2) 5.18 Des N100 85 15 5.19 Des N100 75 25
Preparation No. 6. Preparation of Des N100/0.90 PET3A/0.15 HFPO - A 500 ml roundbottom 2-necked flask equipped with magnetic stir bar was charged with 25.00 g (0.131 eq, 191 EW) Des N100, 26.39 g (0.0196 eq, 1344 EW) F(CF(CF3)CF2O)6.85 CF(CF3)C(O)NHCH2CH2OH, and 109.62 g MEK, and was swirled to produce a homogeneous solution. The flask was placed in an 80 degrees Celsius bath, charged with 2 drops of dibutyltin dilaurate catalyst, and fitted with a condenser. The reaction was cloudy at first, but cleared within two minutes. At about 1.75 hours, the flask was removed from the bath and 2.42 g of MEK was added to compensate for lost solvent. A 2.0 g sample was removed from the flask, leaving (1-(2.0/161.01) or 0.9876 weight fraction, of the reaction, and 57.51 g (98.76% of 58.23 g) (0.116 mol, 494.3 equivalent weight) PET3A was added to the reaction, which was placed in a 63 degrees Celsius bath. At about 5.25 hours FTIR showed no isocyanate absorption at 2273 cm−1, and 0.56 g MEK was added to compensate for solvent lost to bring the material to 50% solids.
- Preparation No.7. Preparation of Des N100/0.90 HEA/0.10 HFPO
- By a procedure similar to that for Preparation 5.1 shown in Table 1 above, 28.34 g (0.1484 eq) Des N100, 19.94 g (0.148 eq) F(CF(CF3) CF2O)6.85 CF(CF3)C(O)NHCH2CH2OH, in 63.8 g MEK, with 2 drops of DBTDL, 0.03 g BHT were reacted for 1 hour, followed by addition of 15.51 g (0.1336 eq) HEA to provide, after reaction overnight, the desired material.
- Preparation No. 8. Preparation of Des N100/HFPO—C(O)NHCH2CH2OH/MeFBSE/PET3A (in 30/10/10/10 Ratio):
- A 120 ml bottle was charged with 5.73 g Des N100 (EW about 191, about 30 milliequivalents NCO), 3.57 g MeFBSE (MW=357, 10 milliequivalents OH), 13.44 g HFPO—C(O)NHCH2CH2OH (MW about 1344, 10 milliequivalents OH), 4.94 g PET3A (EW about 494.3, about 10 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 42 g MEK (about 40% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- Preparation No. 9. Preparation of Des N100/HFPO—C(O)NHCH2CH2OH/MeFBSE/PET3A (in 40/10/10/20 Ratio):
- A 120 ml bottle was charged with 7.64 g Des N100 (EW about 191, about 40 milliequivalents NCO), 3.57 g MeFBSE (MW=357, 10 milliequivalents OH), 13.44 g HFPO—C(O)NHCH2CH2OH (MW about 1344, 10 milliequivalents OH), 9.89 g PET3A (EW about 494.3, about 20 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 52 g MEK (about 40% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- Preparation No. 10. Preparation of Des 100/C6F13C2H4OH/PET3A (in 20/10/10 Ratio)
- A 120 ml bottle was charged with 3.82 g Des N100 (EW about 191, about 20 milliequivalents NCO), 3.64 g C6F13C2H4OH (MW=363, 10 milliequivalents OH), 4.94 g PET3A (EW about 494.3, about 10 milliequivalents OH), 3 drops of dibutyltin dilaurate catalyst and 19 g MEK (about 40% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- Preparation No. 11. Preparation of Des 100/HO(CH2)10OH/HFPO—C(O)NHCH2CH2OH/PET3A (in 60/20/15/25 Ratio)
- A 120 ml bottle was charged with 11.46 g Des N100 (EW about 191, about 60 milliequivalents NCO), 1.74 g HO(CH2)10OH (MW=174, 20 milliequivalents OH), 20.16 g HFPO—C(O)NHCH2CH2OH (MW about 1344, 15 milliequivalents OH), 12.36 g PET3A (EW about 494.3, about 25 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 106 g MEK (about 30% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- Preparation No. 12. Preparation of Des N100/FBSEE/HFPO—C(O)NHCH2CH2OH/PET3A (in 30/10/7.5/12.5 Ratio)
- A 120 ml bottle was charged with 5.73 g Des N100 (EW about 191, about 30 milliequivalents NCO), 1.94 g FBSEE (MW=387, 10 milliequivalents OH), 10.08 g HFPO—C(O)NHCH2CH2OH (MW about 1344, 7.5 milliequivalents OH), 6.18 g PET3A (EW about 494.3, about 12.5 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 56 g MEK (about 30% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 20 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- Preparation No. 13. Preparation of Des N3300/HFPODO/PET3A (in 30/10/20 Ratio)
- A 240 ml bottle was charged with 5.79 g Des N3300 (EW about 193, about 30 milliequivalents NCO), 6.71 g HFPODO (MW about 1341, 10 milliequivalents OH), 9.89 g PET3A (EW about 494.3, about 20 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 52 g MEK (about 30% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. There was a small amount of precipitate formed upon standing at room temperature. FTIR analysis showed no unreacted —NCO signal.
- Preparation No. 14. Preparation of Des N3300/HFPODO/HFPO—C(O)NHCH2CH2OH/PET3A (in 30/10/5/15 Ratio)
- A 240 ml bottle was charged with 5.79 g Des N3300 (EW about 193, about 30 milliequivalents NCO), 6.71 g HFPODO (MW about 1341, 10 milliequivalents OH), 6.72 g HFPO—C(O)NHCH2CH2OH (MW about 1344, 5 milliequivalents OH), 7.42 g PET3A (EW about 494.3, about 15 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst, 27 g MEK and 10 g C4F9OCH3 (about 20% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. Separation into two liquid phases occurred upon standing at room temperature. Addition of more C4F9OCH3 produced a clear homogeneous solution at about 17% solids. FTIR analysis showed no unreacted —NCO signal.
- Preparation No. 15. Preparation of Des N3300/HFPODO/MeFBSE/PET3A (in 30/10/5/15 Ratio)
- A 120 ml bottle was charged with 5.79 g Des N3300 (EW about 191, about 30 milliequivalents NCO), 6.71 g HFPODO (MW about 1341, 10 milliequivalents OH), 1.79 g MeFBSE (MW=357, 5 milliequivalents OH), 7.42 g PET3A (EW about 494.3, about 15 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 51 g MEK (about 30% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. A clear solution was obtained at 70 degrees Celsius after reaction, but there was a small amount of precipitate formed upon standing at room temperature. FTIR analysis showed no unreacted —NCO signal.
- Preparation No. 16. Preparation of Des N3300/Fox-Diol/HFPO—C(O)NHCH2CH2OH/PET3A (in 30/10/5/15 Ratio)
- A 240 ml bottle was charged with 5.79 g Des N3300 (EW about 191, about 30 milliequivalents NCO), 6.71 g Fox-Diol (MW about 1341, 10 milliequivalents OH), 6.72 g HFPO—C(O)NHCH2CH2OH (MW about 1344, 5 milliequivalents OH), 7.40 g PET3A (EW about 494.3, about 15 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst, 56 g MEK and 50 g C4F9OCH3 (about 19% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. A clear solution was obtained after reaction. FTIR analysis showed no unreacted —NCO signal.
- Preparation No. 17. Preparation of Des N3300/Fomblin Zdol/PET3A (in 30/10/20 Ratio)
- A 240 ml bottle was charged with 5.79 g Des N3300 (EW about 191, about 30 milliequivalents NCO), 10.0 g Fomblin Zdol (MW about 2000, 10 milliequivalents OH), 9.89 g PET3A (EW about 494.3, about 20 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst, 63 g MEK and 40 g C4F9OCH3 (about 18% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. A clear solution was obtained after reaction. FTIR analysis showed no unreacted —NCO signal.
- Preparation No. 18. Preparation of Des N3300/HHA/HFPO—C(O)NHCH2CH2OH/PET3A (in 30/10/10/10 Ratio)
- A 240 ml bottle was charged with 5.79 g Des N3300 (EW about 191, about 30 milliequivalents NCO), 6.14 g HHA (MW about 1228, 10 milliequivalents OH), 12.29 g HFPO—C(O)NHCH2CH2OH (MW about 1229, 10 milliequivalents OH), 4.93 g PET3A (EW about 494.3, about 10 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst, 85 g MEK and 25 g C4F9OCH3 (about 20% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 10 hours after sealing the bottle. A clear solution was obtained after reaction. FTIR analysis showed no unreacted —NCO signal.
- Preparation No. 19. Preparation of PAPI/HFPO—C(O)NHCH2CH2OH/PET3A (in 28/8/20 Ratio)
- A 120 ml bottle was charged with 3.75 g PAPI (EW about 134, about 28 milliequivalents NCO), 10.75 g HFPO—C(O)NHCH2CH2OH (MW about 1344, 8 milliequivalents OH), 9.88 g PET3A (EW about 494.3, about 20 milliequivalents OH), 5 drops of dibutyltin dilaurate catalyst and 37 g MEK (about 40% solid) under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 5 hours after sealing the bottle. A clear solution was obtained after reaction. FTIR analysis showed no unreacted —NCO.
- Preparation No. 20. Preparation of Des N100/0.75 PET3A/0.15 HFPO/0.15 H2N(CH2)3Si(OCH3)3
- A 500 ml roundbottom flask equipped with stir bar was charged with 25.00 g (0.1309 eq) Des N100, 103.43 g MEK, 2 drops of DBTDL, 26.39 g (0.0196 eq) HFPO—C(O)NHCH2CH2OH, 1344 equivalent weight, and 0.05 g BHT, and placed in a 60 degrees Celsius oil bath. After 1 hour, 3.52 g (0.0196 eq) H2N(CH2)3Si(OCH3)3 was added to the reaction, followed in 10 minutes by the addition of 48.52 g (0.0982 eq, 494.3 equivalent weight) SR444C. The reaction showed no residual isocyanate by FTIR after a total reaction time of 5.75 hours.
- The preparation of other perfluoropolyether urethane multiacrylates containing trialkoxysilane functionality was done by a similar procedure, substituting the appropriate amounts of materials, and are summarized in Table 2 as Preparation Nos. 20.1 through 20.4:
TABLE 2 Isocyanate used (set Mole Mole percent Preparation at 100 Mole percent percent Mole percent H2N(CH2)3- Number NCO in all cases) PET3A HFPO—C(O)NHCH2CH2OH Si(OCH3)3 20.1 Des N100 75 15 15 20.2 Des N100 60 15 30 20.3 Des N100 45 15 45 20.4 Des N100 30 15 60
Preparation No. 21. Preparation of Des N3300HFPO—C(O)NHCH2CH2OH/HSC3H6Si(OCH3)3/PET3A (in 30/8/2/20 Ratio) - A 240 ml bottle was charged with 5.79 g Des N3300 (EW about 193, about 30 milliequivalents NCO), 9.83 g HFPO—C(O)NHCH2CH2OH (MW about 1229, 8 milliequivalents OH), 0.39 g HSC3H6Si(OMe)3 (MW=196, 2 milliequivalents SH), 5 drops of dibutyltin dilaurate catalyst, 40 g MEK and 20 g C4F9OCH3 under nitrogen. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 2 hours after sealing the bottle. Then, 4.46 g PET3A (EW about 494.3, about 20 milliequivalents OH) was added at room temperature under nitrogen. The solution was allowed to react for another 6 hours at 70 degrees Celsius. A clear solution was obtained after reaction, which showed no unreacted —NCO signal in FTIR analysis.
- Preparation No. 22. Preparation of HFPO—C(O)NHCH2CH2CH2NHCH3 Starting material
- A 1-liter round-bottom flask was charged with 291.24 g (0.2405 mol) of HFPO—C(O)OCH3 and 21.2 g (0.2405 mol) N-methyl-1,3-propanediamine, both at room temperature, resulting in a cloudy solution. The flask was swirled and the temperature of the mixture rose to 45 degrees Celsius, and to give a water-white liquid, which was heated overnight at 55 degrees Celsius. The product was then placed on a rotary evaporator at 75 degrees Celsius and 28 inches of Hg vacuum to remove methanol, yielding 301.88 g of a viscous slightly yellow liquid, nominal molecular weight is equal to 1267.15 g/mol.
- Preparation No. 23. Preparation of HFPO—C(O)NHC(CH2CH3)(CH2OC(═O)NHC2H4OC(O)C(CH3)═CH2)2
- A 240 ml bottle was charged with 6.49 g HFPO—C(O)NHC(CH2CH3)(CH2OH)2 (1298.5 MW, 5 mmol) (“Preparation No. 3”), 1.55 g IEM (OCNC2H4OC(O)C(CH3)═CH2, MW=155, 10 mmol), 3 drops of dibutyltin dilaurate catalyst, 50 mg BHT, 32 g ethyl acetate and 10 g C4F9OCH3. The solution was reacted at 70 degrees Celsius in an oil bath with a magnetic stir bar for 8 hours after sealing the bottle. A clear solution was obtained after reaction, which showed no unreacted —NCO by in FTIR analysis, providing a solution of the product HFPO—C(O)NHC(CH2CH3)(CH2OC(═O)NHC2H4OC(O)C(CH3)═CH2)2.
- Preparation No. 24. Preparation of HFPO—C(O)NHCH2CH2OC(═O)NHC2H4OC(O)C(CH3)═CH2) (HFPO—IEM)
- A 120 ml bottle was charged with 71.20 g (MW 1229, 57.9 mmol) HFPO—C(O)NHC2H4OH, 9.0 g of CH2═C(CH3)CO2C2H4NCO (MW=155, 58 mmol), 52 g EtOAc, 3 drops of DBTDL and 1.5 mg of phenothiazine under nitrogen. The solution was heated in a oil bath at 70 degrees Celsius for 6 hours with a magnetic stirring after sealing the bottle. Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated no remaining isocyanate.
- Steel Wool Testing: The abrasion resistance of the cured films was tested cross-web to the coating direction by use of a mechanical device capable of oscillating cheesecloth or steel wool fastened to a stylus (by means of a rubber gasket) across the film's surface. The stylus oscillated over a 10 cm wide sweep width at a rate of 3.5 wipes/second wherein a “wipe” is defined as a single travel of 10 cm. The stylus had a flat, cylindrical geometry with a diameter of 1.25 inch (3.2 cm). The device was equipped with a platform on which weights were placed to increase the force exerted by the stylus normal to the film's surface. The cheesecloth was obtained from Summers Optical, EMS Packaging, a subdivision of EMS Acquisition Corp., Hatsfield, Pa. under the trade designation “Mil Spec CCC-c-440 Product #S12905”. The cheesecloth was folded into 12 layers. The steel wool was obtained from Rhodes-American, a division of Homax Products, Bellingham, Wash. under the trade designation “#0000-Super-Fine” and was used as received. A single sample was tested for each example, with the weight in grams applied to the stylus and the number of wipes employed during testing reported.
- Taber Testing: The Taber test was run according to ASTM D1044-99 using CS-10 wheels.
- Contact Angle: The coatings were rinsed for 1 minute by hand agitation in IPA before being subjected to measurement of water and hexadecane contact angles. Measurements were made using as-received reagent-grade hexadecane (Aldrich) and deionized water filtered through a filtration system obtained from Millipore Corporation (Billerica, Mass.), on a video contact angle analyzer available as product number VCA-2500XE from AST Products (Billerica, Mass.). Reported values are the averages of measurements on at least three drops measured on the right and the left sides of the drops. Drop volumes were 5 μL for static measurements and 1-3 μL for advancing and receding. For hexadecane, only advancing and receding contact angles are reported because static and advancing values were found to be nearly equal.
- Surface Smoothness (Dewetting): For some of the tables below, a visual inspection was made regarding the smoothness of the applied dry film. While the measurement of smoothness by visual inspection is a subjective determination, a smooth film, for the purposes of the present invention, is deemed to be a surface layer that is substantially continuous and free of visible defects in reflected light as observed by visual observation of the coating surface at a wide variety of possible angles. Typically, visual observation is accomplished by looking at the reflection of a light source from the coating surface at an angle of about 60 degrees from perpendicular. Visual defects that may be observed include but are not limited to pock marks, fish eyes, mottle, lumps or substantial waviness, or other visual indicators known to one of ordinary skill in the art in the optics and coating fields. Thus, a “rough” surface as described below has one or more of these characteristics, and may be indicative of a coating material in which one or more components of the composition are incompatible with each other. Conversely, a substantially smooth coating, characterized below as “smooth” for the purpose of the present invention, presumes to have a coating composition in which the various components, in the reacted final state, form a coating in which the components are compatible or have been modified to be compatible with one another and further has little, if any, of the characteristics of a “rough” surface.
- The surfaces may also be classified for dewetting as “good,” “very slight” (v.sl), “slight” (sl), “fair,” or “poor.” A “good” surface meaning a substantially smooth surface having little dewetting. A “very slight,” slight”, or “fair” categorization means that the surface has an increasing portion of defects but is still substantially acceptable for smoothness. A “poor” surface has a substantial amount of defects, indicating a rough surface that has a substantial amount of dewetting.
- The ceramer hardcoat (“HC-1”) used in the examples was made as described in
column 10, line 25-39 and Example 1 of U.S. Pat. No. 5,677,050 to Bilkadi, et al. - Experiment 1
- Solutions as generally described in Tables 3-5 below were prepared at 30% solids in a solvent blend of 1:1 isopropanol:ethyl acetate and coated at a dry thickness of about 4 microns using a number 9 wire wound rod onto 5-mil Melinex 618 film. The coatings were dried in an 80 degree Celsius oven for 1 minute and then placed on a conveyer belt coupled to a ultraviolet (“UV”) light curing device and UV cured under nitrogen using a Fusion 500 watt H bulb at 20 ft/min. The values reported in the Tables refer to the percent solids of each component of the dried coating. The coatings were then visually inspected for surface smoothness (dewetting). The coatings were also tested for durability of ink repellency. Durability was assessed using a modified Oscillating Sand Method (ASTM F 735-94). An orbital shaker was used (VWR DS-500E, from VWR Bristol, Conn.). A disk of diameter 85 mm was cut from the sample, placed in a 16 ounce jar lid (jar W216922 from Wheaton, Millville, N.J.), and covered with 50 grams of 20-30 mesh Ottawa sand (VWR, Bristol, Conn.). The jar was capped and placed in the shaker set at 300 rpm for 15 minutes. After shaking, a Sharpie permanent marker was used to draw a line across the diameter of the disk surface. The portion of the ink line that did not bead up was measured. A measure of 85 mm would be no repellency; a measure of 0 mm would be perfect durability. Results are shown in Tables 3 and 4.
TABLE 3 Percentage Percentage HC-1 Preparation Preparation Ink in coating number in coating Dewet Repel. 99.9 5.5 0.1 good 65 99.8 5.5 0.2 v. sl 53 99.7 5.5 0.3 fair 49 99.86 5.4 0.14 sl 51 99.72 5.4 0.28 sl 44 99.58 5.4 0.42 sl 40 99.7 5.3 0.3 good 35 99.4 5.3 0.6 v. sl 34 99.1 5.3 0.9 sl 31 99.9 5.11 0.1 good 65 99.8 5.11 0.2 v. sl 49 99.7 5.11 0.3 sl 50 99.86 5.10 0.14 good 60 99.72 5.10 0.28 good 37 99.58 5.10 0.42 v. sl 38 99.7 5.9 0.3 good 42 99.4 5.9 0.6 good 43 99.1 5.9 0.9 v. sl 47 - Selected coatings, before sand testing, from another coating run were analyzed for contact angles and the results are shown in Table 4.
TABLE 4 Water Hexadecane Preparation Wt % static/Adv/Rec Adv/Rec number in HC-1 CA (deg) CA (deg) 5.3 0.3 108/119/91 71/65 5.3 0.6 109/120/90 72/67 5.5 1.2 108/120/90 73/67 5.9 1.2 109/121/89 74/67 4.11 1.2 108/118/85 74/64 - Another set of examples was run according to the same procedure as examples in Table 1. The results are shown in Table 5.
TABLE 5 Percentage Percentage HC-1 in Preparation Preparation Ink coating number in coating Smoothness Repellency 99.8 5.3 0.2 good 32 99.7 5.3 0.3 good 22 99.6 5.3 0.4 v. sl 23 99.76 5.2 0.24 good 46 99.52 5.2 0.48 good 26 99.33 5.2 0.67 good 42 99.8 5.10 0.2 good 25 99.7 5.10 0.3 good 42 99.6 5.10 0.4 v. sl 42 99.64 5.9 0.36 good 26 99.43 5.9 0.57 good 12 99.22 5.9 0.78 good 33 99.76 5.8 0.24 good 47 99.52 5.8 0.48 good 18 99.33 5.8 0.67 v. sl 33 - Table 6 shows the results of another set of examples that was run at two levels of additives in an HC-1 hardcoat in which the sand test was run for 25 minutes at 300 rpm. The examples were run according to the same procedure as examples in Table 1 described above.
TABLE 6 Percentage Percentage HC-1 in Preparation Preparation Ink coating number in coating Smoothness Repellency 99.8 9 0.2 sl 20 99.0 9 1.0 sl 10 99.8 8 0.2 good 29 99.0 8 1.0 poor 25 99.8 10 0.2 good 38 99.0 10 1.0 good 30 99.8 11 0.2 good 40 99.0 11 1.0 fair 20 99.8 12 0.2 good 36 99.0 12 1.0 poor 22 99.8 19 0.2 good 20 99.0 19 1.0 sl 49 99.8 5.2 0.2 good 5 - Table 7 shows the results of another set of examples that was run at two levels of additives in an HC-1 hardcoat in which the sand test was run for 25 minutes at 300 rpm and in a separate set for 35 minutes at 300 rpm. The examples were run according to the same procedure as examples in Table 1 described above.
TABLE 7 % Prepar- Percentage Repellency Repellency HC-1 in ation Preparation Smooth- 25 min at 35 min at coating number in coating ness 300 rpm 300 rpm 99.5 5.2 0.5 good 0 99.5 5.2 0.5 good 10 99.8 5.1 0.2 good 35 99.0 5.1 1.0 good 0 99.0 5.1 1.0 good 36 99.8 5.6 0.2 sl 0 99.0 5.6 1.0 poor 0 99.8 5.7 0.2 poor 62 99.0 5.7 1.0 poor 26 99.8 5.12 0.2 good 0 99.0 5.12 1.0 fair 0 99.8 5.12 0.2 good 54 99.8 5.13 0.2 good 0 99.0 5.13 1.0 good 0 99.0 5.13 1.0 good 38 99.8 5.14 0.2 good 0 99.0 5.14 1.0 good 0 99.0 5.14 1.0 good 35 99.8 5.15 0.2 good 5 99.0 5.15 1.0 good 0 99.0 5.15 1.0 slight 11 99.8 5.3 0.2 good 0 99.2 5.3 1.0 sl 0 99.5 5.3 0.5 good 25 99.8 5.16 0.2 good 10 99.0 5.16 1.0 good 0 99.0 5.16 1.0 good 38 99.8 5.17 0.2 good 0 99.0 5.17 1.0 v. sl 0 99.5 5.17 0.5 good 25 99.8 5.18 0.2 good 0 99.0 5.18 1.0 sl 0 99.8 5.18 0.2 good 47 99.8 5.19 0.2 good 0 99.0 5.19 1.0 sl 0 99.8 5.19 0.2 sl 36 99.8 8 0.2 good 27 98.5 10 1.5 good 30 - An example set illustrating the use of perfluoropolyether diols in the invention was run according to the same procedure as examples in Table 1. These results are shown in Table 8.
TABLE 8 Ink Ink % Prepar- Percentage repellency repellency HC-1 in ation Preparation Smooth- 35 min at 55 min at coating Number in coating ness 300 rpm 300 rpm 98.8 13 0.2 good 37 99.0 13 1.0 v. sl 27 99.5 14 0.5 v. sl 0 26 99.8 15 0.2 good 34 99.0 15 1.0 v. sl 31 99.8 16 0.2 good 0 28 99.0 16 1.0 good 0 26 99.8 17 0.2 good 26 99.0 17 1.0 v. sl 34 - Another set illustrating the use of a multi acrylate diol in the invention, and a thiol functional trialkoxysilane was run according to the same procedure as examples in Table 1. These results are shown in Table 9.
TABLE 9 Percentage Percentage Ink repellency HC-1 in Preparation Preparation 40 min at coating number in coating Smoothness 300 rpm 99.3 18 0.7 good 32 99.3 21 0.7 good 40 99.3 4.2 0.7 good 0 - An example set illustrating the trialkoxysilane functional perfluoropolyether urethane multiacrylates, a perfluoropolyether urethane acrylate made using hydroxyethyl acrylate, and a perfluoropolyether diol functionalized with isocyanatoethyl methacrylate was run according to the same procedure as examples in Table 1. These results are shown in Table 10.
TABLE 10 Percentage Percentage Repellency HC-1 in Preparation Preparation 20 min at coating Number in coating Smoothness 300 rpm 99.6 20.1 0.4 good 0 99.6 20.2 0.4 good 0 99.6 20.3 0.4 good 0 99.6 20.4 0.4 good 0 99.6 7 0.4 good 0 99.6 23 0.4 good 0 - A 30% solids (in a solvent blend of 1:1 isopropanol:ethyl acetate) sample of 99.4% PET4A/0.6% Des N100/0.85 PET3A/0.15 HFPO (Preparation 5.2) with 2% added Irgacure 907 was prepared. The solution was coated and cured by the same procedure as above. The smooth coating gave an ink repellency of 0 after a 20 minute sand test at 300 rpm.
- Another set of examples using a perfluoropolyether alcohol functionalized with isocyanatoethyl methacrylate in combination with a compatibilizer was run according to the same procedure as examples in Table 1. The results are shown in Table 11.
TABLE 11 Percentage Prepar- Percentage Percentage Repellency HC-1 in ation Preparation FBSEA in Smooth- 15 min. at coating Number in coating coating ness 300 rpm 99.7 24 0.03 0 Dewet/ not run rough 97.67 24 0.03 2.3 good 25 94.97 24 0.03 5 good 0 90.97 24 0.03 9 good 33 85.97 24 0.03 14 good 33 - Another experiment was run in which HC-1 was applied to the 5-mil Melinex 618 film with a metered, precision die coating process. The hardcoat formulation with HC-1 and Des N100/0.85 PET3A/0.15 HFPO (Preparation 5.2) was diluted to 30 wt-% solids in isopropanol and coated onto the 5-mil PET backing to achieve a dry thickness of 5 microns. A flow meter was used to monitor and set the flow rate of the material from a pressurized container. The flow rate was adjusted by changing the air pressure inside the sealed container which forces liquid out through a tube, through a filter, the flow meter and then through the die. The dried and cured film was wound on a take up roll.
- The coatings were dried in a 10-foot oven at 100 degrees Celsius, and cured with a 300-watt Fusion Systems H bulb at 100, 75, 50, and 25% power. The coating shown in Table 12 below was evaluated in a series of tests. The sand test was run for 15 minutes at 300 rpm. The Steel Wool Test was run checking for damage to the coating at 100, 250, 500, 750, and 1000 cycles. The results are summarized in Table 12. Contact angles were also run on selected samples before and after testing and these results are shown in Table 13.
TABLE 12 (Preparation Steel Wool Taber testing Wt. % Number 5.2) UV (Cycles Taber testing Change in haze from HC-1 in Weight % dose % Ink without % haze after initial value in % coating in coating power repellency scratches) 500 cycles after 500 cycles 99.27 0.73 100 0 1000 10.83 10.51 99.27 0.73 75 0 1000 8.38 8.04 99.27 0.73 50 0 1000 11.05 10.62 99.27 0.73 25 0 1000 8.35 8.04 - Selected coatings from Table 12 were tested for contact angles with water and hexadecane, and are identified by the UV dose % power used in curing the coatings. The results are summarized in Table 13:
TABLE 13 After 1000 After Sand Steel Wool Initial Testing Samples Liquid Advancing/ Advancing/ Advancing/ used to Static/ Static/ Static/ test Receding Receding Receding UV dose contact Contact Contact Contact % power angle angles angles angles 100 Water 110/123/98 94/111/68 107/119/89 100 Hexadecane —/72/64 —/61/49 —/69/62 25 Water 107/120/84 91/105/53 103/118/72 25 Hexadecane —/71/62 —/56/40 —/63/55 - The present invention provides fluorocarbon- and urethane-acrylate-containing additives that can be used in coating compositions to provide coating layers having high surface energies and smoothness.
- These fluorocarbon- and urethane-acrylate-containing additives are preferably introduced to conventional hard coating materials and cured to form optical hard coating layers having enhanced stain and ink repellency properties, adequate smoothness, and improved durability. Further, optical hard coatings having these additives do not need compatibilizers designed to enhance the compatibility between a fluoropolymer additive and the conventional hard coat material.
- A transparent polyethylene terephthalate (PET) film obtained from e.i. duPont de Nemours and Company, Wilmington, Del. under the trade designation “Melinex 618” having a thickness of 5.0 mils and a primed surface. A hardcoat composition substantially the same as Example 3 of U.S. Pat. No. 6,299,799 (S-1) was coated onto the primed surface with a metered, precision die coating process. The hardcoat was diluted in IPA to 30 wt-% solids and coated onto the 5-mil PET backing to achieve a dry thickness of 5 microns.
- A flow meter was used to monitor and set the flow rate of the material from a pressurized container. The flow rate was adjusted by changing the air pressure inside the sealed container which forces liquid out through a tube, through a filter, the flow meter and then through the die. The dried and cured film was wound on a take up roll and used as the input backing for the coating solutions described below.
- The hardcoat coating and drying parameters were as follows:
Coating width: 6″ (15 cm) Web Speed: 30 feet (9.1 m) per minute Solution % Solids: 30.2% Filter: 2.5 micron absolute Pressure Pot: 1.5 gallon capacity (5.7 l) Flow rate: 35 g/min Wet Coating Thickness: 24.9 microns Dry Coating Thickness: 4.9 microns Conventional Oven Temps: Zone 1 - 140° F. (60° C.) Zone 2 - 160° F. (53° C.) Zone 3 - 180° F. (82° C.) Each zone was 10 ft (3 m) in length. - The coating compositions of the surface layer were coated onto the hardcoat layer of either the first or the second substrate using a precision, metered die coater. For this step, a syringe pump was used to meter the solution into the die. The solutions were diluted with MEK to a concentration of 1% and coated onto the hardcoat layer to achieve a dry thickness of 60 nm. The material was dried in a conventional air flotation oven and then cured a 600 watt Fusion Systems bulb under nitrogen using the conditions show below:
Coating width: 4″ (10 cm) Web Speed: 20 feet per minute Solution % Solids: 1.0% Pump: 60 cc Syringe Pump Flow rate: 1.2 cc/min Wet Coating Thickness: 4.1 microns Dry Coating Thickness: 60 nm Conventional Oven Temps: Zone 1 - 65° C. Zone 2 - 65° C. Both zones at 10 ft (3 m) in length. - The following surface layer coatings were made and tested for ink repellency after a sand test at 300 rpm for 15 min and for initial water static contact angle.
TABLE 14 Prepar- Static water ation % Ink Contact angle TMPTA number HFPO Darocure Repellency (range in (%) 6 (%) AEA 1173 loss degrees) 95 3.75 1.25 4 0 100-101 90 7.5 2.5 4 0 85 11.25 3.75 4 0 110-111 80 15 5 4 0 90 10 4 0 93-94 80 20 4 0 103-104 - While the invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.
Claims (26)
1. A fluorocarbon- and urethane-(meth)acryl-containing additive comprising a perfluoropolyether urethane having a perfluoropolyether moiety and a multi-(meth)acry terminal group and having the formula: Ri—(NHC(O)XQRf)m, —(NHC(O)OQ(A)p)n;
wherein Ri is the residue of a multi-isocyanate;
wherein X is O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms;
wherein Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6;
wherein Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof; and
wherein A is a (meth)acryl functional group —XC(O)C(R2)═CH2, where R2 is a lower alkyl of 1to 4 carbon atoms or H or F; m is at least 1; n is at least 1; p is 2 to 6; m+n is 2 to 10;
and in which each unit referred to by the subscripts m and n is attached to an Ri unit.
3. A fluorocarbon- and urethane-acrylate-containing additive comprising a perfluoropolyether-substituted urethane (meth)acryl having the chemical formula: Rf-Q-(XC(O)NHQOC(O)C(R)═CH2)f:
wherein Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6;
wherein a is 2-15;
wherein Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
wherein X is O or S; and
wherein f is 1-5.
4. The additive of claim 3 , wherein Rf is HFPO.
5. The additive of claim 3 , wherein said fluorocarbon- and urethane-acrylate-containing additive comprises: HFPO—C(O)NHC(C2H5)(CH2OC(O)NHC2H4OC(O)C(CH3)═CH2)2, where HFPO is F(CF(CF3)CF2O)aCF(CF3)—.
6. The additive of claim 3 , wherein f is 2-5.
7. A fluorocarbon- and urethane-acrylate-containing additive comprising one or more perfluoropolyether urethanes with multi-(meth)acryl groups of the formula: Ri—(NHC(O)XQRf)m, —(NHC(O)OQ(A)p)n, —(NHC(O)XQG)o, —(NCO)q;
wherein Ri is the residue of a multi-isocyanate;
where X is O, S or NR, where R is H or lower alkyl of 1 to 4 carbon atoms;
where Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6;
where Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
where G is selected from the group consisting of an alkyl, an aryl, an alkaryl and an aralkyl, wherein G optionally contains heteroatoms such as O, N, and S and optionally has heteroatom-containing functional groups such as carbonyl and sulfonyl and combinations of heteroatoms and heteroatom-containing functional groups; and G optionally contains pendant or terminal reactive groups selected from the group consisting of (meth)acryl groups, vinyl groups, allyl groups and —Si(OR3)3 groups, where R3 is a lower alkyl of 1 to 4 carbon atoms, wherein G also optionally has fluoroalkyl or perfluoroalkyl groups;
where m is at least 1;
where n is at least 1;
where o is 0 or greater;
where p is 2 to 6;
where q is 0 or greater;
wherein (m+n+o+q)=NNCO, where NNCO is the number of isocyanate groups originally appended to Ri; and
wherein the quantity (m+n+o)/NNCO is greater than or equal to 0.67, and in which each unit referred to by the subscripts m, n, o, and q is attached to an Ri unit.
8. A fluorocarbon- and urethane-acrylate-containing additive comprising one or more perfluoropolyether urethanes with multi-meth(acryl) groups having the chemical formula: (Ri)c—(NHC(O)XQRf)m, —(NHC(O)OQ(A)p)n, —(NHC(O)XQG)oRf(Q)(XC(O)NH)y)z—, —NHC(O)XQD(QXC(O)NH)u)s—, -D1(QXC(O)NH)y)zz—NHC(O)OQ(A)tQ1Q(A)tOC(O)NH))v—, —(NCO)w;
wherein Ri is the residue of a multi-isocyanate;
where c is 1 to 50;
where X is O, S or NR, where R is H or lower alkyl;
where Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms and each x independently represents an integer greater than or equal to 2 and wherein d is an integer from 1 to 6;
where Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
wherein A is a (meth)acryl functional group having the chemical formula: (—XC(O)C(R2)═CH2), where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F;
where G is selected from the group consisting of an alkyl, an aryl, an alkaryl and an aralkyl, wherein G optionally contains heteroatoms such as O, N, and S and optionally has heteroatom-containing functional groups such as carbonyl and sulfonyl and combinations of heteroatoms and heteroatom-containing functional groups; and G optionally contains pendant or terminal reactive groups selected from the group consisting of (meth)acryl groups, vinyl groups, allyl groups and —Si(OR3)3 groups, where R3 is a lower alkyl of 1 to 4 carbon atoms; wherein G also optionally has fluoroalkyl or perfluoroalkyl groups;
wherein D is selected from the group consisting of an alkylene, an arylene, an alkarylene, a fluoroalkylene, a perfluoroalkylene and an aralkylene and optionally contains heteroatoms such as O, N, and S;
wherein D1 is selected from the group consisting of an alkyl, an aryl, an alkaryl, a fluoroalkyl, a perfluoroalkyl and an aralkyl group and optionally contains heteroatoms such as O, N, and S;
where Q1 is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
where m or z is at least 1;
where n or v is at least 1;
where o, s, v, and w are 0 or greater;
where (m+n+o+[(u+1)s]+2v+w)=cNNCO, where NNCO is the number of isocyanate groups originally appended to Ri; the quantity (m+n+o+[(u+1)s]+2v)/(cNNCO) is greater than or equal to least 0.75, p is 2 to 6, t is 1 to 6, and u is independently 1 to 3, and in which each unit referred to by the subscripts m, n, o, s, v and w is attached to an Ri unit.
9. A hardcoat composition comprising:
a hardcoat-compatible, monovalent perfluoropolyether moiety-containing urethane multi-(meth)acryl additive;
a hydrocarbon hardcoat composition; and
optionally a plurality of surface modified inorganic nanoparticles.
10. The hardcoat composition of claim 9 comprising the additive of claim 1 .
11. The hardcoat composition of claim 9 comprising the additive of claim 3 .
12. The hardcoat composition of claim 9 comprising the additive of claim 7 .
13. The hardcoat composition of claim 9 comprising the additive of claim 8 .
14. The hard coating composition of claim 9 , wherein said plurality of surface modified inorganic nanoparticles comprises a plurality of modified silica particles.
15. The hard coating composition of claim 9 , wherein said hydrocarbon-based hard coat formulation comprises an acrylate-based hard coating formulation.
16. The hard coating composition of claim 9 further comprising a particulate matting agent.
17. The hard coating composition of claim 9 , wherein said additive comprises between about 0.01% and 10% of the total solids of said hard coating composition.
18. The hard coating composition of claim 9 further comprising a compatabilizer selected from
a) a free radically reactive fluoroalkyl group-containing material having the chemical formula: RffQ3(X1)n1;
where Rff is a fluoroalkyl;
where Q3 is a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene group, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
where X1 is a free-radically reactive group selected from (meth)acryl, —SH, allyl, or vinyl groups; and
where n1 is independently 1 to 3;
b) a free radically reactive fluoroalkylene group having the chemical formula: (X1)n1Q3Rff2Q3(X1)n1);
where Rff2 is a fluoroalkylene;
where Q3 is a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene group, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
where X1 is a free-radically reactive group selected from (meth)acryl, —SH, allyl, or vinyl groups; and
where n1 is independently 1 to 3;
c) a fluoroalkyl- or fluoroalkylene-substituted thiol or polythiol selected from the group consisting of C4F9SO2N(CH3)CH2CH2OC(O)CH2SH, C4F9SO2N(CH3)CH2CH2OC(O)CH2CH2SH, C4F9SO2N(CH3)CH2CH2SH, and C4F9SO2N(CH3)CH(OC(O)CH2SH)CH2OC(O)CH2SH;
and combinations of a), b) or c).
19. An optical display comprising:
an optical substrate; and a cured hardcoat composition disposed on the substrate wherein the hardcoat comprising the composition of claim 9 .
20. An optical display comprising:
an optical substrate;
a first hardcoat layer disposed on the substrate; and
a second hardcoat surface layer disposed on the first hardcoat layer wherein the second hardcoat surface layer comprises the composition of claim 9 .
21. A fluorocarbon- and urethane-acrylate-containing additive comprising one or more perfluoropolyether urethanes with multi-meth(acryl) groups having the chemical formula: (Ri)c—(NHC(O)XQRf)m, —(NHC(O)OQ(A)p)n, —(NHC(O)XQG)o, —(NHC(O)XQ-Rf2(QXC(O)NH)u)r—, —NHC(O)XQ-D(QXC(O)NH)u)s—, -D1(QXC(O)NH)y)zz, —NHC(O)OQ(A)tQ1Q(A)tOC(O)NH))v—, —(NCO)w;
wherein Ri is the residue of a multi-isocyanate;
where c is 1 to 50;
where X is O, S or NR, where R is H or lower alkyl;
where Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms and each x independently represents an integer greater than or equal to 2 and wherein d is an integer from 1 to 6;
where Q is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
wherein A is a (meth)acryl functional group having the chemical formula: (—XC(O)C(R2)═CH2), where R2 is a lower alkyl of 1 to 4 carbon atoms or H or F;
where G is selected from the group consisting of an alkyl, an aryl, an alkaryl and an aralkyl, wherein G optionally contains heteroatoms such as O, N, and S and optionally has heteroatom-containing functional groups such as carbonyl and sulfonyl and combinations of heteroatoms and heteroatom-containing functional groups; and G optionally contains pendant or terminal reactive groups selected from the group consisting of (meth)acryl groups, vinyl groups, allyl groups and —Si(OR3)3 groups, where R3 is a lower alkyl of 1 to 4 carbon atoms; wherein G also optionally has fluoroalkyl or perfluoroalkyl groups;
where Rf2 is a multi-valent perfluoropolyether moiety, Rf2 is composed of groups comprising the formula: Y((Rfc1O)xCd1F2d1)b, wherein each Rfc1 is independently selected from: —CF(CF3)CF2—, —CF2CF2CF2—, and (CH2C(CH3)(CH2OCH2CF3)CH2—)aa where aa is 2 or greater; each x independently represents an integer greater than or equal to 2, and d1 is an integer from 0 to 6; Y represents a polyvalent organic group or covalent bond having a valence of b, and b represents an integer greater than or equal to 2;
wherein D is selected from the group consisting of an alkylene, an arylene, an alkarylene, a fluoroalkylene, a perfluoroalkylene and an aralkylene group and optionally contains heteroatoms such as O, N, and S;
wherein D1 is selected from the group consisting of an alkyl, an aryl, an alkaryl, a fluoroalkyl, a perfluoroalkyl and an aralkyl group and optionally contains heteroatoms such as O, N, and S;
where Q1 is independently a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
where r is at least 1;
where n or v is at least 1;
where m, o, s, v, and w are 0 or greater;
where (m+n+o+[(u+1)r]+[(u+1)s]+2v+w)=cNNCO, where NNCO is the number of isocyanate groups originally appended to Ri; the quantity (m+n+o+[(u+1)r]+[(u+1)s]+2v)/(cNNCO) is greater than or equal to least 0.75, p is 2 to 6, t is 1 to 6, and u is independently 1 to 3, and in which each unit referred to by the subscripts m, n, o, r, s, v and w is attached to an Ri unit.
22. A hard coating composition having the fluorocarbon- and urethane-acrylate-containing additive of claim 21 and further comprising a hydrocarbon-based hard coat formulation.
23. An optical display comprising:
an optical substrate;
a first hardcoat layer disposed on the substrate; and
a second hardcoat surface layer disposed on the first hardcoat layer wherein the second hardcoat surface layer comprises the composition of claim 22 .
24. A method for forming an optical display comprising:
(a) forming an additive comprising a perfluoropolyether urethane having a monovalent perfluoropolyether moiety and a multi-(meth)acryl terminal group by first reacting a polyisocyanate with a hydroxyl functional acrylate and further reacting the resultant compound with a perfluoropolyether-containing alcohol or thiol having a monovalent perfluoropolyether moiety, said additive having no free isocyanate groups;
(b) mixing said additive with a hydrocarbon-based hardcoat composition to form a hard coating composition;
(c) applying said hard coating composition to an optical substrate; and
(d) curing said hard coating composition to form a stain repellent optical hard coat on said optical substrate.
25. A method for forming an optical display comprising:
(a) forming an additive comprising a perfluoropolyether urethane having a monovalent perfluoropolyether moiety and a multi-(meth)acryl terminal group by first reacting a polyisocyanate with a perfluoropolyether-containing alcohol, thiol or amine having a monovalent perfluoropolyether moiety and further reacting the resultant compound with hydroxyl functional multiacrylate, said additive having no free isocyanate groups;
(b) mixing said additive with a hydrocarbon-based hardcoat composition to form a hard coating composition;
(c) applying said hard coating composition to an optical substrate; and
(d) curing said hard coating composition to form a stain repellent optical hard coat on said optical substrate.
26. A hard coating composition for optical displays comprising:
a hydrocarbon-based hard coating composition;
a compatibilizer selected from the group consisting of a free radically reactive fluoroalkyl group-containing compatibilizer, a free radically reactive fluoroalkylene group-containing compatibilizer, and a perfluoroalkyl substituted urethane mono or multi (meth)acrylate compatibilizer; and
a perfluoropolyether-substituted urethane acrylate having the chemical formula: Rf-Q-(XC(O)NHQOC(O)C(R)═CH2)f:
wherein Rf is a monovalent perfluoropolyether moiety composed of groups comprising the formula: F(RfcO)xCdF2d—, wherein each Rfc independently represents a fluorinated alkylene group having from 1 to 6 carbon atoms, each x independently represents an integer greater than or equal to 2, and wherein d is an integer from 1 to 6;
wherein a is 2-15;
wherein Q is a connecting group of valency at least 2 and is selected from the group consisting of a covalent bond, an alkylene, an arylene, an aralkylene, an alkarylene group, a straight or branched chain or cycle-containing connecting group optionally containing heteroatoms such as O, N, and S and optionally a heteroatom-containing functional group such as carbonyl or sulfonyl, and combinations thereof;
wherein X is O or S; and
wherein f is 1-5.
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/087,413 US20060216524A1 (en) | 2005-03-23 | 2005-03-23 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
JP2008503117A JP5118017B2 (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additive having (meth) acrylic group and hard coat |
TW95109966A TWI412779B (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additives having (meth)acryl groups and hardcoats |
CN2006800092064A CN101146840B (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additives having (meth)acryl groups and hardcoats |
KR1020137013814A KR101397831B1 (en) | 2005-03-23 | 2006-03-22 | (Meth) acryl group-containing perfluoropolyether urethane additive and hard coat |
KR1020077021774A KR20070114190A (en) | 2005-03-23 | 2006-03-22 | (Meth) acrylic group-containing perfluoropolyether urethane additives and hard coats |
US11/277,162 US7718264B2 (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
PCT/US2006/010344 WO2006102383A1 (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additives having (meth)acryl groups and hardcoats |
EP06739223.3A EP1866355B1 (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additives having (meth)acryl groups and hardcoats |
US12/718,481 US8147966B2 (en) | 2005-03-23 | 2010-03-05 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US13/396,669 US8476398B2 (en) | 2005-03-23 | 2012-02-15 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US13/908,102 US8729211B2 (en) | 2005-03-23 | 2013-06-03 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US14/247,379 US8981151B2 (en) | 2005-03-23 | 2014-04-08 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/087,413 US20060216524A1 (en) | 2005-03-23 | 2005-03-23 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/277,162 Continuation-In-Part US7718264B2 (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060216524A1 true US20060216524A1 (en) | 2006-09-28 |
Family
ID=36645694
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/087,413 Abandoned US20060216524A1 (en) | 2005-03-23 | 2005-03-23 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US11/277,162 Active 2028-03-19 US7718264B2 (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US12/718,481 Active 2025-04-10 US8147966B2 (en) | 2005-03-23 | 2010-03-05 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US13/396,669 Expired - Lifetime US8476398B2 (en) | 2005-03-23 | 2012-02-15 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US13/908,102 Expired - Fee Related US8729211B2 (en) | 2005-03-23 | 2013-06-03 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US14/247,379 Expired - Lifetime US8981151B2 (en) | 2005-03-23 | 2014-04-08 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/277,162 Active 2028-03-19 US7718264B2 (en) | 2005-03-23 | 2006-03-22 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US12/718,481 Active 2025-04-10 US8147966B2 (en) | 2005-03-23 | 2010-03-05 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US13/396,669 Expired - Lifetime US8476398B2 (en) | 2005-03-23 | 2012-02-15 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US13/908,102 Expired - Fee Related US8729211B2 (en) | 2005-03-23 | 2013-06-03 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US14/247,379 Expired - Lifetime US8981151B2 (en) | 2005-03-23 | 2014-04-08 | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
Country Status (7)
Country | Link |
---|---|
US (6) | US20060216524A1 (en) |
EP (1) | EP1866355B1 (en) |
JP (1) | JP5118017B2 (en) |
KR (2) | KR101397831B1 (en) |
CN (1) | CN101146840B (en) |
TW (1) | TWI412779B (en) |
WO (1) | WO2006102383A1 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050123769A1 (en) * | 2003-12-06 | 2005-06-09 | Cpfilms Inc. | Fire retardant shades |
US20070254168A1 (en) * | 2006-04-14 | 2007-11-01 | 3M Innovative Properties Company | Curable composition containing fluoroalkyl hydrosilicone |
US20070254167A1 (en) * | 2006-04-14 | 2007-11-01 | 3M Innovative Properties Company | Composition containing fluoroalkyl silicone and hydrosilicone |
US20070254166A1 (en) * | 2006-04-14 | 2007-11-01 | 3M Innovative Properties Company | Curable fluoroalkyl silicone composition |
US20070285778A1 (en) * | 2006-06-13 | 2007-12-13 | Walker Christopher B | Optical films comprising high refractive index and antireflective coatings |
US20070285779A1 (en) * | 2006-06-13 | 2007-12-13 | Walker Christopher B | Optical films comprising high refractive index and antireflective coatings |
US20070291367A1 (en) * | 2006-06-15 | 2007-12-20 | Nitto Denko Corporation | Hard-coated antiglare film, and polarizing plate and image display including the same |
US20070292679A1 (en) * | 2006-06-14 | 2007-12-20 | 3M Innovative Properties Company | Optical article having an antistatic fluorochemical surface layer |
US20080075951A1 (en) * | 2006-09-27 | 2008-03-27 | 3M Innovative Properties Company | Fluoroacrylates and hardcoat compositions including the same |
US20080075947A1 (en) * | 2006-09-27 | 2008-03-27 | Raghunath Padiyath | Solar control multilayer film |
US20080274352A1 (en) * | 2007-05-04 | 2008-11-06 | 3M Innovative Properties Company | Optical film comprising antistatic primer and antistatic compositions |
US20090148654A1 (en) * | 2007-12-06 | 2009-06-11 | E. I. Du Pont De Nemours And Company | Fluoropolymer compositions and treated substrates |
US20090149096A1 (en) * | 2007-12-07 | 2009-06-11 | E.I. Du Pont De Nemours And Company | Fluoropolymer emulsions |
WO2010110528A1 (en) * | 2009-03-24 | 2010-09-30 | 제일모직 주식회사 | Hard coating composition, multi-layered sheet using the same, and preparation method thereof |
US20110008733A1 (en) * | 2008-03-11 | 2011-01-13 | 3M Innovative Properties Company | Phototools having a protective layer |
US20110027553A1 (en) * | 2008-01-11 | 2011-02-03 | Cpfilms Inc. | Exterior Window Film |
US20110074062A1 (en) * | 2009-09-25 | 2011-03-31 | Hitachi Global Storage Technologies Netherlands B.V. | System, method and apparatus for manufacturing magnetic recording media |
US20110102891A1 (en) * | 2008-03-31 | 2011-05-05 | Derks Kristopher J | Low layer count reflective polarizer with optimized gain |
US20110103036A1 (en) * | 2008-03-31 | 2011-05-05 | Boesl Ellen R | Optical film |
US20110112233A1 (en) * | 2009-11-09 | 2011-05-12 | E. I. Du Pont De Nemours And Company | Fluoropolymer emulsions |
US20110111659A1 (en) * | 2009-11-09 | 2011-05-12 | E. I. Du Pont De Nemours And Company | Method using fluoropolymer emulsions |
US20110122494A1 (en) * | 2008-07-10 | 2011-05-26 | Sherman Audrey A | Retroreflective articles and devices having viscoelastic lightguide |
WO2011088216A2 (en) | 2010-01-13 | 2011-07-21 | 3M Innovative Properties Company | Illumination device having viscoelastic lightguide |
WO2011100277A1 (en) | 2010-02-10 | 2011-08-18 | 3M Innovative Properties Company | Illumination device having viscoelastic layer |
WO2012050663A1 (en) | 2010-10-11 | 2012-04-19 | 3M Innovative Properties Company | Illumination device having viscoelastic lightguide |
US20120142856A1 (en) * | 2006-11-29 | 2012-06-07 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
WO2012121858A1 (en) | 2011-03-09 | 2012-09-13 | 3M Innovative Properties Company | Antireflective film comprising large particle size fumed silica |
US8420281B2 (en) | 2009-09-16 | 2013-04-16 | 3M Innovative Properties Company | Epoxy-functionalized perfluoropolyether polyurethanes |
US8651720B2 (en) | 2008-07-10 | 2014-02-18 | 3M Innovative Properties Company | Retroreflective articles and devices having viscoelastic lightguide |
US8748060B2 (en) | 2009-09-16 | 2014-06-10 | 3M Innovative Properties Company | Fluorinated coating and phototools made therewith |
US8758237B2 (en) | 2009-08-21 | 2014-06-24 | 3M Innovative Properties Company | Methods and products for illuminating tissue |
US8999509B2 (en) | 2011-04-27 | 2015-04-07 | Cpfilms Inc. | Weather resistant exterior film composite |
EP2444430A4 (en) * | 2009-06-16 | 2015-06-03 | Mitsubishi Rayon Co | Anti-soiling composition, anti-soiling film, anti-soiling laminated film, transfer film, and resin laminate, and method for manufacturing resin laminate |
US9051423B2 (en) | 2009-09-16 | 2015-06-09 | 3M Innovative Properties Company | Fluorinated coating and phototools made therewith |
US9062150B2 (en) | 2009-10-30 | 2015-06-23 | 3M Innovative Properties Company | Soil and stain resistant coating composition for finished leather substrates |
US9096712B2 (en) | 2009-07-21 | 2015-08-04 | 3M Innovative Properties Company | Curable compositions, method of coating a phototool, and coated phototool |
US9217920B2 (en) | 2012-08-09 | 2015-12-22 | 3M Innovative Properties Company | Photocurable compositions |
US9285531B2 (en) | 2008-08-08 | 2016-03-15 | 3M Innovative Properties Company | Lightguide having a viscoelastic layer for managing light |
US20170113443A1 (en) * | 2015-10-27 | 2017-04-27 | Samsung Electronics Co., Ltd. | Conductive films and electronic devices including the same |
US9804305B2 (en) | 2012-01-31 | 2017-10-31 | 3M Innovative Properties Company | Methods for sealing the edges of multi-layer articles |
US9904001B2 (en) | 2014-03-18 | 2018-02-27 | 3M Innovative Properties Company | Marketing strip with viscoelastic lightguide |
US10080555B2 (en) | 2009-08-21 | 2018-09-25 | 3M Innovative Properties Company | Methods and products for reducing tissue trauma using water-absorbing stress-distributing materials |
US10092366B2 (en) | 2009-08-21 | 2018-10-09 | 3M Innovative Properties Company | Products for reducing tissue trauma using water-resistant stress-distributing materials |
US10228507B2 (en) | 2008-07-10 | 2019-03-12 | 3M Innovative Properties Company | Light source and optical article including viscoelastic lightguide disposed on a substrate |
US10723918B2 (en) | 2012-02-03 | 2020-07-28 | 3M Innovative Properties Company | Primer compositions for optical films |
US20220033259A1 (en) * | 2018-11-28 | 2022-02-03 | Hysilabs, Sas | Catalysed process of production of hydrogen from silylated derivatives as hydrogen carrier compounds |
Families Citing this family (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060216524A1 (en) * | 2005-03-23 | 2006-09-28 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US7759447B2 (en) * | 2005-11-17 | 2010-07-20 | Bayer Materialscience Llc | Low surface energy, ethylenically unsaturated polyisocyanate addition compounds and their use in coating compositions |
DE112007000148T5 (en) | 2006-01-12 | 2008-11-20 | 3M Innovative Properties Co., St. Paul | Light collimating film |
US7575847B2 (en) * | 2006-06-13 | 2009-08-18 | 3M Innovative Properties Company | Low refractive index composition comprising fluoropolyether urethane compound |
US7537828B2 (en) * | 2006-06-13 | 2009-05-26 | 3M Innovative Properties Company | Low refractive index composition comprising fluoropolyether urethane compound |
CN101541816B (en) * | 2006-12-15 | 2014-03-12 | 3M创新有限公司 | Fluorochemical urethane compounds having pendent silyl groups used for surface treatment |
WO2008076639A1 (en) * | 2006-12-20 | 2008-06-26 | 3M Innovative Properties Company | Fluorochemical urethane compounds having pendent silyl groups |
US7745653B2 (en) * | 2007-03-08 | 2010-06-29 | 3M Innovative Properties Company | Fluorochemical compounds having pendent silyl groups |
US8206827B2 (en) * | 2007-03-15 | 2012-06-26 | Nanovere Technologies, Llc | Dendritic polyurethane coating |
US8568888B2 (en) | 2007-03-15 | 2013-10-29 | Nanovere Technologies, Inc. | Dendritic polyurethane coating |
US7335786B1 (en) | 2007-03-29 | 2008-02-26 | 3M Innovative Properties Company | Michael-adduct fluorochemical silanes |
US7652116B2 (en) | 2007-06-20 | 2010-01-26 | 3M Innovative Properties Company | Fluorochemical urethane-silane compounds and aqueous compositions thereof |
US7652117B2 (en) * | 2007-06-20 | 2010-01-26 | 3M Innovative Properties Company | Fluorochemical urethane compounds and aqueous compositions thereof |
US7897678B2 (en) | 2007-07-26 | 2011-03-01 | 3M Innovative Properties Company | Fluorochemical urethane compounds having pendent silyl groups |
US8015970B2 (en) | 2007-07-26 | 2011-09-13 | 3M Innovative Properties Company | Respirator, welding helmet, or face shield that has low surface energy hard-coat lens |
US8728623B2 (en) | 2007-08-31 | 2014-05-20 | 3M Innovative Properties Company | Hardcoats having low surface energy and low lint attraction |
EP2222752B1 (en) * | 2007-12-12 | 2017-08-02 | 3M Innovative Properties Company | Hardcoats comprising perfluoropolyether polymers with poly(alkylene oxide) repeat units |
US9893337B2 (en) | 2008-02-13 | 2018-02-13 | Seeo, Inc. | Multi-phase electrolyte lithium batteries |
JP5475761B2 (en) | 2008-06-20 | 2014-04-16 | スリーエム イノベイティブ プロパティズ カンパニー | Polymer mold |
US9292259B2 (en) | 2008-08-06 | 2016-03-22 | Cassy Holdings Llc | Uncertainty random value generator |
US8858813B2 (en) | 2008-12-11 | 2014-10-14 | 3M Innovative Properties Company | Patterning process |
JP5972576B2 (en) * | 2009-02-27 | 2016-08-17 | エルジー・ケム・リミテッド | Coating composition and coating film excellent in wear resistance and stain resistance |
JP4807604B2 (en) * | 2009-03-23 | 2011-11-02 | Dic株式会社 | Protective adhesive film, screen panel, and portable electronic terminal |
JP5656431B2 (en) * | 2009-03-31 | 2015-01-21 | 富士フイルム株式会社 | Antireflection film, polarizing plate, image display device, and coating composition for forming low refractive index layer |
US20100252376A1 (en) * | 2009-04-02 | 2010-10-07 | Ford Global Technologies Llc | Vehicle Braking Assembly |
CN102804061A (en) * | 2009-05-08 | 2012-11-28 | 惠普开发有限公司 | Functionalized perfluoropolyether material as a hydrophobic coating |
US9207911B2 (en) | 2009-07-31 | 2015-12-08 | Cassy Holdings Llc | Modular uncertainty random value generator and method |
US8564310B2 (en) | 2009-08-18 | 2013-10-22 | 3M Innovative Properties Company | Capacitive oil quality monitoring sensor with fluorinated barrier coating |
JP5800812B2 (en) | 2009-08-28 | 2015-10-28 | スリーエム イノベイティブ プロパティズ カンパニー | Compositions and articles comprising a polymerizable ionic liquid mixture and curing method |
WO2011025963A1 (en) | 2009-08-28 | 2011-03-03 | 3M Innovative Properties Company | Optical device with antistatic coating |
JP5781075B2 (en) | 2009-08-28 | 2015-09-16 | スリーエム イノベイティブ プロパティズ カンパニー | Polymerizable ionic liquids and antistatic coatings containing polyfunctional cations |
US8263677B2 (en) * | 2009-09-08 | 2012-09-11 | Creative Nail Design, Inc. | Removable color gel basecoat for artificial nail coatings and methods therefore |
US8492454B2 (en) | 2009-10-05 | 2013-07-23 | Creative Nail Design, Inc. | Removable color layer for artificial nail coatings and methods therefore |
US8541482B2 (en) | 2009-10-05 | 2013-09-24 | Creative Nail Design, Inc. | Removable multilayer nail coating system and methods therefore |
RU2012131166A (en) | 2009-12-22 | 2014-01-27 | 3М Инновейтив Пропертиз Компани | CURABLE DENTAL COMPOSITIONS AND ARTICLES CONTAINING POLYMERIZABLE IONIC LIQUIDS |
CN102844392B (en) * | 2010-03-31 | 2014-04-23 | 东丽薄膜先端加工股份有限公司 | surface protection film |
JP5625836B2 (en) * | 2010-12-03 | 2014-11-19 | 横浜ゴム株式会社 | Curable resin composition |
US20120148848A1 (en) * | 2010-12-10 | 2012-06-14 | Martin David C | Polymeric substrates having a thin metal film and fingerprint resistant clear coating deposited thereon and related methods |
US20120148846A1 (en) * | 2010-12-10 | 2012-06-14 | Ppg Industries Ohio, Inc. | Color plus clear coating systems exhibiting desirable appearance and fingerprint resistance properties and related methods |
US8742022B2 (en) | 2010-12-20 | 2014-06-03 | 3M Innovative Properties Company | Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility |
US9296904B2 (en) | 2010-12-20 | 2016-03-29 | 3M Innovative Properties Company | Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility |
WO2012106507A1 (en) | 2011-02-03 | 2012-08-09 | 3M Innovative Properties Company | Hardcoat |
KR20140016315A (en) | 2011-03-07 | 2014-02-07 | 크리에이티브 네일 디자인 인코포레이티드 | Compositions and methods for uv-curable cosmetic nail coatings |
EP2710519B1 (en) | 2011-05-20 | 2019-07-17 | Gemalto SA | Laser-personalized security articles |
US9289962B2 (en) | 2011-05-20 | 2016-03-22 | 3M Innovative Properties Company | Laser-personalizable security articles |
US9778912B2 (en) | 2011-05-27 | 2017-10-03 | Cassy Holdings Llc | Stochastic processing of an information stream by a processing architecture generated by operation of non-deterministic data used to select data processing modules |
JP2013076029A (en) * | 2011-09-30 | 2013-04-25 | Tdk Corp | Hard coat agent composition and hard coat film using the same |
US8715904B2 (en) * | 2012-04-27 | 2014-05-06 | 3M Innovative Properties Company | Photocurable composition |
US9701850B2 (en) | 2012-06-19 | 2017-07-11 | 3M Innovative Properties Company | Coating compositions comprising polymerizable non-ionic surfactant exhibiting reduced fingerprint visibility |
WO2013191861A1 (en) | 2012-06-19 | 2013-12-27 | 3M Innovative Properties Company | Additive comprising low surface energy group and hydroxyl groups and coating compositions |
CN104781343A (en) | 2012-06-29 | 2015-07-15 | 3M创新有限公司 | Silsesquioxane-like particles |
WO2014011731A1 (en) | 2012-07-13 | 2014-01-16 | 3M Innovative Properties Company | Hardcoats comprising alkoxylated multi (meth)acrylate monomers |
JP6062680B2 (en) | 2012-08-01 | 2017-01-18 | スリーエム イノベイティブ プロパティズ カンパニー | Antifouling hard coat and antifouling hard coat precursor |
JP6371032B2 (en) * | 2012-08-01 | 2018-08-08 | スリーエム イノベイティブ プロパティズ カンパニー | Anti-reflective hard coat and anti-reflective article |
US8883402B2 (en) | 2012-08-09 | 2014-11-11 | 3M Innovative Properties Company | Photocurable compositions |
GB2514139A (en) | 2013-05-14 | 2014-11-19 | Aghababaie Lin & Co Ltd | Apparatus for fabrication of three dimensional objects |
CN103342793B (en) * | 2013-05-31 | 2015-08-05 | 成都彭州立源高分子材料有限公司 | A kind of Organic fluorine silicon hybrid photosensitive resin and synthetic method thereof |
KR102263937B1 (en) | 2013-06-26 | 2021-06-11 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Stain resistant microsphere articles |
US10185058B2 (en) | 2013-07-01 | 2019-01-22 | 3M Innovative Properties Company | Protection film suitable for illuminated display devices |
CN105899623B (en) | 2014-01-15 | 2018-08-10 | 3M创新有限公司 | Include the hard coat film of alkoxylated more (methyl) acrylate monomers and surface treated nano-particle |
CN106029736A (en) * | 2014-02-19 | 2016-10-12 | 3M创新有限公司 | Hybrid fluoroelastomer composition, curable composition, and methods of making and using the same |
WO2015157329A1 (en) * | 2014-04-07 | 2015-10-15 | The Board Of Regents Of The University Of Texas System | Restorative resin compositions and methods of use |
US10166725B2 (en) | 2014-09-08 | 2019-01-01 | Holo, Inc. | Three dimensional printing adhesion reduction using photoinhibition |
AU2015339342B2 (en) | 2014-10-28 | 2018-11-15 | 3M Innovative Properties Company | Spray application system components comprising a repellent surface and methods |
US20170283316A1 (en) | 2014-10-28 | 2017-10-05 | 3M Innovative Properties Company | Repellent coatings comprising sintered particles and lubricant, articles & method |
CA2970120C (en) * | 2014-12-08 | 2019-10-15 | Basf Coatings Gmbh | Coating material compositions and coatings produced therefrom and also use thereof |
KR20170093891A (en) | 2014-12-08 | 2017-08-16 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Acrylic polyvinyl acetal films, composition, and heat bondable articles |
RU2670274C1 (en) * | 2014-12-08 | 2018-10-22 | БАСФ Коатингс ГмбХ | Non-aqueous coating compositions, coatings obtained from them and with improved adhesion and scrub resistance, and also their application |
AT516558B1 (en) * | 2014-12-10 | 2018-02-15 | Joanneum Res Forschungsgmbh | Embossing lacquer, embossing method and substrate surface coated with the embossing lacquer |
WO2016105993A1 (en) | 2014-12-22 | 2016-06-30 | 3M Innovative Properties Company | Sterically hindered alkyl and oxyalkyl amine light stabilizers |
CN107108667A (en) | 2014-12-22 | 2017-08-29 | 3M创新有限公司 | Stereo hindered amine and oxyalkyl amine light stabilizer |
EP3237426A1 (en) | 2014-12-22 | 2017-11-01 | 3M Innovative Properties Company | Sterically hindered amine and oxyalkyl amine light stabilizers |
KR101989916B1 (en) * | 2015-03-05 | 2019-06-18 | 주식회사 엘지화학 | An index matching film |
US11433651B2 (en) | 2015-03-18 | 2022-09-06 | Riken Technos Corporation | Hard coat laminated film |
KR102748410B1 (en) | 2015-03-18 | 2024-12-31 | 리껭테크노스 가부시키가이샤 | Adhesive film |
EP3666522B1 (en) | 2015-03-18 | 2022-07-06 | Riken Technos Corporation | Anti-glare hard coat laminated film |
EP3272513B1 (en) | 2015-03-18 | 2022-06-01 | Riken Technos Corporation | Molded body |
US11352473B2 (en) | 2015-03-18 | 2022-06-07 | Riken Technos Corporation | Hard coat laminated film and method for producing same |
WO2016147776A1 (en) | 2015-03-18 | 2016-09-22 | リケンテクノス株式会社 | Hard coat laminated film |
EP3272528B1 (en) | 2015-03-18 | 2021-04-14 | Riken Technos Corporation | Multilayer hard coating film |
US9923245B2 (en) | 2015-04-03 | 2018-03-20 | Seeo, Inc. | Fluorinated alkali ion electrolytes with urethane groups |
WO2016161465A1 (en) * | 2015-04-03 | 2016-10-06 | Seeo, Inc. | Fluorinated alkali ion electrolytes with urethane groups |
WO2016164505A1 (en) | 2015-04-07 | 2016-10-13 | Seeo, Inc. | Fluorinated alkali ion electrolytes with cyclic carbonate groups |
JP6547384B2 (en) * | 2015-04-17 | 2019-07-24 | ダイキン工業株式会社 | Surface treatment composition |
WO2016172015A1 (en) * | 2015-04-20 | 2016-10-27 | 3M Innovative Properties Company | Durable low emissivity window film constructions |
JP6784257B2 (en) * | 2015-04-30 | 2020-11-11 | Agc株式会社 | Fluorine-containing compounds, photocurable compositions, coating liquids, hard coat layer forming compositions and articles |
CN107534158B (en) | 2015-05-12 | 2020-08-18 | 西奥公司 | Copolymers of PEO and fluorinated polymers as electrolytes for lithium batteries |
WO2016200559A1 (en) | 2015-06-09 | 2016-12-15 | Seeo, Inc. | Peo-based graft copolymers with pendant fluorinated groups for use as electrolytes |
CA3003259A1 (en) | 2015-10-28 | 2017-05-04 | 3M Innovative Properties Company | Spray application system components comprising a repellent surface & methods |
WO2017074708A1 (en) | 2015-10-28 | 2017-05-04 | 3M Innovative Properties Company | Articles subject to ice formation comprising a repellent surface |
US11774166B2 (en) | 2015-11-25 | 2023-10-03 | Riken Technos Corporation | Door body |
TWI745316B (en) | 2015-11-25 | 2021-11-11 | 日商理研科技股份有限公司 | Door |
JP6644534B2 (en) | 2015-12-08 | 2020-02-12 | リケンテクノス株式会社 | Hard coat laminated film |
US11141919B2 (en) | 2015-12-09 | 2021-10-12 | Holo, Inc. | Multi-material stereolithographic three dimensional printing |
EP3393795A2 (en) | 2015-12-22 | 2018-10-31 | 3M Innovative Properties Company | Acrylic films comprising a structured layer |
AU2016378200B2 (en) | 2015-12-22 | 2019-08-15 | 3M Innovative Properties Company | Acrylic polyvinyl acetal graphic films |
EP3393799A2 (en) | 2015-12-22 | 2018-10-31 | 3M Innovative Properties Company | Acrylic polyvinyl acetal films comprising a second layer |
WO2017112537A1 (en) | 2015-12-22 | 2017-06-29 | 3M Innovative Properties Company | Acrylic polyvinyl acetal films comprising an adhesive layer |
WO2017108510A1 (en) * | 2015-12-23 | 2017-06-29 | Solvay Specialty Polymers Italy S.P.A. | Method for coating printed circuit boards |
CN105440170B (en) * | 2016-01-29 | 2018-07-20 | 中远关西涂料(上海)有限公司 | A kind of fluorocarbon modified resin and isocyanate-free fluorocarbon resin prepared therefrom |
US10907070B2 (en) | 2016-04-26 | 2021-02-02 | 3M Innovative Properties Company | Articles subject to ice formation comprising a repellent surface comprising a siloxane material |
CN109196689B (en) | 2016-05-10 | 2020-09-01 | 西奥公司 | Fluorinated electrolytes having nitrile groups |
US10962688B2 (en) | 2016-07-01 | 2021-03-30 | 3M Innovative Properties Company | Low Tg polyurethane protective display film |
EP3808800B1 (en) | 2016-09-14 | 2022-01-05 | Riken Technos Corporation | Hard coat laminated film |
JP7088599B2 (en) | 2016-11-21 | 2022-06-21 | スリーエム イノベイティブ プロパティズ カンパニー | Flexible hard coat containing urethane oligomer hydrogen bonded to acrylic polymer |
JP7064313B2 (en) | 2016-11-25 | 2022-05-10 | リケンテクノス株式会社 | Hardcourt laminated film |
KR102503640B1 (en) | 2016-12-01 | 2023-02-23 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Dual Curing Protective Display Film |
TW201830102A (en) | 2016-12-14 | 2018-08-16 | 美商3M新設資產公司 | Segmented protective display film |
EP3554832B1 (en) | 2016-12-16 | 2021-06-16 | 3M Innovative Properties Company | Infrared-reflecting optically transparent assembly and method of making the same |
US10935891B2 (en) | 2017-03-13 | 2021-03-02 | Holo, Inc. | Multi wavelength stereolithography hardware configurations |
GB2564956B (en) | 2017-05-15 | 2020-04-29 | Holo Inc | Viscous film three-dimensional printing systems and methods |
CN107286836A (en) * | 2017-06-02 | 2017-10-24 | 广东北玻电子玻璃有限公司 | A kind of anti-glare coating liquid and preparation method thereof |
US10245785B2 (en) | 2017-06-16 | 2019-04-02 | Holo, Inc. | Methods for stereolithography three-dimensional printing |
WO2019111207A1 (en) | 2017-12-08 | 2019-06-13 | 3M Innovative Properties Company | Flexible hardcoat |
US11447657B2 (en) | 2017-12-12 | 2022-09-20 | 3M Innovative Properties Company | Compositions including alpha-alumina particles and methods of their use |
EP3724719A4 (en) | 2017-12-13 | 2021-08-25 | 3M Innovative Properties Company | High transmission light control film |
US11947135B2 (en) | 2017-12-13 | 2024-04-02 | 3M Innovative Properties Company | High transmission light control film |
US20200347236A1 (en) | 2018-01-24 | 2020-11-05 | 3M Innovative Properties Company | Flexible hardcoat comprising urethane oligomer hydrogen bonded to an acrylic polymer suitable for stretchable films |
JP2021514422A (en) * | 2018-02-16 | 2021-06-10 | クラウン エレクトロキネティクス コーポレイション | Refractive index harmonized resin for electrophoresis displays and other applications |
CN108559087B (en) * | 2018-04-26 | 2021-05-25 | 太仓中化环保化工有限公司 | Preparation method of antifouling and doodling-preventing auxiliary agent with UV (ultraviolet) photocuring activity |
US12053945B2 (en) | 2018-06-04 | 2024-08-06 | 3M Innovative Properties Company | Thermoformed abrasion-resistant multilayer optical film and method of making the same |
US12018144B2 (en) | 2018-06-12 | 2024-06-25 | 3M Innovative Properties Company | Fluoropolymer coating compositions comprising amine curing agents, coated substrates and related methods |
EP3807369B1 (en) | 2018-06-12 | 2024-07-24 | 3M Innovative Properties Company | Fluoropolymer compositions comprising fluorinated additives, coated substrates and methods |
CN112424647A (en) | 2018-07-18 | 2021-02-26 | 3M创新有限公司 | Vehicle sensor including repellent surface, protective film, repellent coating composition, and method |
CN108912874B (en) * | 2018-07-27 | 2020-12-29 | 江苏坦能纳米材料科技有限公司 | High-definition projection paint and preparation method and application thereof |
CN112513686B (en) | 2018-08-01 | 2023-09-01 | 3M创新有限公司 | High transmittance light control film |
KR20210042118A (en) | 2018-08-08 | 2021-04-16 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | Hard coat composition, laminate film, and cured film |
EP3894911A4 (en) | 2018-12-11 | 2022-08-24 | 3M Innovative Properties Company | LIGHT CONTROL FILM |
CN117067579A (en) | 2018-12-26 | 2023-11-17 | 霍洛公司 | Sensor for three-dimensional printing system and method |
CN113966357B (en) | 2019-05-08 | 2023-12-22 | 3M创新有限公司 | Nanostructured articles |
US11827810B2 (en) | 2019-05-09 | 2023-11-28 | 3M Innovative Properties Company | Flexible hardcoat |
US11827811B2 (en) | 2019-05-09 | 2023-11-28 | 3M Innovative Properties Company | Flexible hardcoat |
WO2020225704A1 (en) | 2019-05-09 | 2020-11-12 | 3M Innovative Properties Company | Flexible hardcoat |
EP3983834A1 (en) | 2019-06-12 | 2022-04-20 | 3M Innovative Properties Company | Coated substrate comprising electrically conductive particles and dried aqueous dispersion of organic polymer |
EP3983836A4 (en) | 2019-06-12 | 2023-06-28 | 3M Innovative Properties Company | High transmission light control films with asymmetric light output |
WO2021088198A1 (en) | 2019-11-04 | 2021-05-14 | 3M Innovative Properties Company | Electronic telecommunications articles comprising crosslinked fluoropolymers and methods |
EP4070135A4 (en) | 2019-12-02 | 2024-01-03 | 3M Innovative Properties Company | Optical metasurface films |
US20230028958A1 (en) | 2019-12-23 | 2023-01-26 | 3M Innovative Properties Company | High transmission light control film |
CN115485263A (en) | 2020-05-14 | 2022-12-16 | 3M创新有限公司 | Compounds containing perfluorinated groups, photoinitiator groups and amide linking groups |
EP4149752A4 (en) * | 2020-05-15 | 2024-05-29 | 3M Innovative Properties Company | Multilayer optical films comprising at least one fluorinated (co)polymer layer made using a fluorinated coupling agent, and methods of making and using the same |
TW202210544A (en) | 2020-06-11 | 2022-03-16 | 美商3M新設資產公司 | Urethane compounds comprising perfluorinated group, hydrolysable silane group, and (meth)acryl group |
JP7486886B2 (en) * | 2021-07-15 | 2024-05-20 | エルジー エナジー ソリューション リミテッド | Electrolyte composition, gel polymer electrolyte, and lithium secondary battery including the same |
WO2023047204A1 (en) | 2021-09-24 | 2023-03-30 | 3M Innovative Properties Company | Coated microstructured films, methods of making same, and methods of making light control films |
JP7368774B2 (en) * | 2021-10-28 | 2023-10-25 | ダイキン工業株式会社 | surface treatment agent |
EP4445188A1 (en) | 2021-12-09 | 2024-10-16 | 3M Innovative Properties Company | Coated microstructured films and methods of making same |
EP4502064A1 (en) * | 2022-03-31 | 2025-02-05 | Daikin Industries, Ltd. | Curable composition |
JP2023152920A (en) * | 2022-03-31 | 2023-10-17 | ダイキン工業株式会社 | curable composition |
JP2023152921A (en) * | 2022-03-31 | 2023-10-17 | ダイキン工業株式会社 | curable composition |
WO2023190725A1 (en) * | 2022-03-31 | 2023-10-05 | ダイキン工業株式会社 | Curable composition |
CN117467337B (en) * | 2023-12-25 | 2024-03-12 | 成都虹润制漆有限公司 | Heavy anti-corrosion coating matching system for steel structure and preparation method thereof |
Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3250808A (en) * | 1963-10-31 | 1966-05-10 | Du Pont | Fluorocarbon ethers derived from hexafluoropropylene epoxide |
US3734962A (en) * | 1970-05-22 | 1973-05-22 | Bayer Ag | Process for the preparation of hydroxy-alkyl-perfluoroalkane sulfonamides |
US4085137A (en) * | 1969-03-10 | 1978-04-18 | Minnesota Mining And Manufacturing Company | Poly(perfluoroalkylene oxide) derivatives |
US4262072A (en) * | 1979-06-25 | 1981-04-14 | Minnesota Mining And Manufacturing Company | Poly(ethylenically unsaturated alkoxy) heterocyclic protective coatings |
US4321404A (en) * | 1980-05-20 | 1982-03-23 | Minnesota Mining And Manufacturing Company | Compositions for providing abherent coatings |
US4472480A (en) * | 1982-07-02 | 1984-09-18 | Minnesota Mining And Manufacturing Company | Low surface energy liner of perfluoropolyether |
US4614667A (en) * | 1984-05-21 | 1986-09-30 | Minnesota Mining And Manufacturing Company | Composite low surface energy liner of perfluoropolyether |
US4654233A (en) * | 1984-11-21 | 1987-03-31 | Minnesota Mining And Manufacturing Company | Radiation-curable thermoplastic coating |
US4855184A (en) * | 1988-02-02 | 1989-08-08 | Minnesota Mining And Manufacturing Company | Radiation-curable protective coating composition |
US4968116A (en) * | 1988-03-15 | 1990-11-06 | Minnesota Mining And Manufacturing Company | Polymer claddings for optical fibre waveguides |
US5002978A (en) * | 1989-01-11 | 1991-03-26 | Ciba-Geigy Corporation | Crosslinked copolymers and ophthalmic devices amde from vinylic macromers containing perfluoropolyalkylether and polyalkylether segments and minor amounts of vinylic comonomers |
US5148511A (en) * | 1991-11-04 | 1992-09-15 | Minnesota Mining And Manufacturing Company | Low refractive index plastics for optical fiber cladding |
US5239026A (en) * | 1991-08-26 | 1993-08-24 | Minnesota Mining And Manufacturing Company | Low loss high numerical aperture cladded optical fibers |
US5609990A (en) * | 1995-02-08 | 1997-03-11 | Imation Corp. | Optical recording disk having a sealcoat layer |
US5677050A (en) * | 1995-05-19 | 1997-10-14 | Minnesota Mining And Manufacturing Company | Retroreflective sheeting having an abrasion resistant ceramer coating |
US5846650A (en) * | 1996-05-10 | 1998-12-08 | Minnesota Mining And Manufacturing Company | Anti-reflective, abrasion resistant, anti-fogging coated articles and methods |
US5948478A (en) * | 1995-04-28 | 1999-09-07 | Ausimont S.P.A. | Process for the protection of stony or coating surfaces |
US5962611A (en) * | 1995-04-04 | 1999-10-05 | Novartis Ag | Perfluoroalkylether macromer having two polymerizable groups |
US6127498A (en) * | 1997-04-08 | 2000-10-03 | Ausimont S.P.A. | Modified hydrogenated polymers |
US6224949B1 (en) * | 1998-06-11 | 2001-05-01 | 3M Innovative Properties Company | Free radical polymerization method |
US6238798B1 (en) * | 1999-02-22 | 2001-05-29 | 3M Innovative Properties Company | Ceramer composition and composite comprising free radically curable fluorochemical component |
US20020085284A1 (en) * | 2000-10-31 | 2002-07-04 | Kazuhiro Nakamura | Anti-glare, anti-reflection film, polarizing plate and liquid crystal display device |
US20020111518A1 (en) * | 2001-02-09 | 2002-08-15 | Fang Wang | Fluorinated crosslinker and composition |
US20020115820A1 (en) * | 2001-01-25 | 2002-08-22 | Fang Wang | Hyperbranched fluorinated multifunctional alcohols and derivatives |
US20030012936A1 (en) * | 1998-02-19 | 2003-01-16 | Draheim Erica J. | Removable antireflection film |
US6596363B2 (en) * | 2000-04-10 | 2003-07-22 | Tdk Corporation | Optical information medium |
US6660338B1 (en) * | 2001-03-08 | 2003-12-09 | Agilent Technologies, Inc. | Functionalization of substrate surfaces with silane mixtures |
US20040077775A1 (en) * | 2002-05-24 | 2004-04-22 | Audenaert Frans A. | Fluorochemical composition comprising a fluorinated polymer and treatment of a fibrous substrate therewith |
US6846650B2 (en) * | 2000-10-25 | 2005-01-25 | Diadexus, Inc. | Compositions and methods relating to lung specific genes and proteins |
US20050072336A1 (en) * | 2003-10-03 | 2005-04-07 | Tdk Corporation | Hard coat agent composition and optical information medium using the same |
US20050106404A1 (en) * | 2001-12-26 | 2005-05-19 | Tdk Corporation | Article having composite hard coat layer and method for forming composite hard coat layer |
US20050112319A1 (en) * | 2003-10-31 | 2005-05-26 | Tdk Corporation | Optical information medium |
US20050123741A1 (en) * | 2002-06-27 | 2005-06-09 | Tdk Corporation | Object with composite hard coating layer and method of forming composite hard coating layer |
US6906115B2 (en) * | 2001-06-27 | 2005-06-14 | Daikin Industries, Ltd. | Surface treatment composition and preparation thereof |
US20050136252A1 (en) * | 2003-12-23 | 2005-06-23 | Chisholm Bret J. | UV curable coating compositions and uses thereof |
US20050158504A1 (en) * | 2003-12-24 | 2005-07-21 | Tdk Corporation | Hard coat agent composition and optical information medium using the same |
US20050158558A1 (en) * | 2002-06-04 | 2005-07-21 | Naoki Hayashida | Method of obtaining 3-d coordinates |
US20050288385A1 (en) * | 2002-11-13 | 2005-12-29 | Asahi Glass Company Limited | Active energy ray curable coating composition and molded product having coating film made of cured product of said composition |
US20060084756A1 (en) * | 2004-04-22 | 2006-04-20 | Dsm Ip Assets B.V. | Low refractive index coating composition |
US20060216500A1 (en) * | 2005-03-23 | 2006-09-28 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US20070286992A1 (en) * | 2006-06-13 | 2007-12-13 | Coggio William D | Low refractive index composition comprising fluoropolyether urethane compound |
US20070287093A1 (en) * | 2006-06-13 | 2007-12-13 | 3M Innovative Properties Company | Low refractive index composition comprising fluoropolyether urethane compound |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4818801A (en) | 1982-01-18 | 1989-04-04 | Minnesota Mining And Manufacturing Company | Ophthalmic device comprising a polymer of a telechelic perfluoropolyether |
FR2590895B1 (en) * | 1985-12-03 | 1988-01-15 | Atochem | FLUORINATED ACRYLIC MONOMERS, DERIVATIVE POLYMERS AND THEIR APPLICATION AS HYDROPHOBIC AND OLEOPHOBIC AGENTS |
US4825249A (en) | 1987-03-14 | 1989-04-25 | Ntn-Rulon Industries Co., Ltd. | Cleaning blade for use with photoelectronic copying machine |
US4873140A (en) | 1988-04-27 | 1989-10-10 | Minnesota Mining And Manufacturing Company | Articles having low adhesion articles having coatings thereon |
EP0379462B1 (en) | 1989-01-11 | 1995-02-22 | Ciba-Geigy Ag | Vinylic macromers containing perfluoropolyalkylether and polyalkylether segments, polymers, copolymers and ophthalmic devices made therefrom |
AU632869B2 (en) | 1989-12-14 | 1993-01-14 | Minnesota Mining And Manufacturing Company | Fluorocarbon-based coating compositions and articles derived therefrom |
IT1253002B (en) | 1990-10-05 | 1995-07-10 | Minnesota Mining & Mfg | PHOTOGRAPHIC ELEMENT WITH SILVER HALIDES AND PROCEDURE TO PREPARE A DISPERSION IN WATER COMPOSITIONS OF DISCRETE PARTICLES OF A WATER-INSOLUBLE POLYMER AGENT |
WO1992018560A1 (en) | 1991-04-22 | 1992-10-29 | Takata Corporation | Surface-coated member |
DE4143390A1 (en) * | 1991-04-26 | 1993-04-01 | Fluorine contg. (co)polymers, useful for water- and oil repellent treatment of substrates | |
JP3161552B2 (en) | 1992-01-31 | 2001-04-25 | 大日本インキ化学工業株式会社 | Curable composition and insulated wire |
WO1995018194A1 (en) | 1993-12-29 | 1995-07-06 | Daikin Industries, Ltd. | Fluorinated oil/water emulsion and surface treatment composition |
WO1996023828A1 (en) | 1995-01-30 | 1996-08-08 | Dsm N.V. | Radiation curable composition comprising fluorinated urethane oligomer |
JPH10110118A (en) | 1996-08-13 | 1998-04-28 | Toray Ind Inc | Antifouling hard coat agent and optical recording media |
US5822489A (en) * | 1996-12-31 | 1998-10-13 | Lucent Technologies, Inc. | Low refractive index photo-curable composition for waveguide applications |
US6210858B1 (en) | 1997-04-04 | 2001-04-03 | Fuji Photo Film Co., Ltd. | Anti-reflection film and display device using the same |
JP4267088B2 (en) | 1997-09-05 | 2009-05-27 | パナソニック株式会社 | Anti-reflection coating material and low-reflection material using the anti-reflection coating material |
JPH11213444A (en) | 1998-01-30 | 1999-08-06 | Sony Corp | Optical recording medium |
US6800378B2 (en) | 1998-02-19 | 2004-10-05 | 3M Innovative Properties Company | Antireflection films for use with displays |
JPH11293159A (en) | 1998-04-09 | 1999-10-26 | Toray Ind Inc | Hard coating agent for optical recording medium and optical recording medium |
US6299799B1 (en) | 1999-05-27 | 2001-10-09 | 3M Innovative Properties Company | Ceramer compositions and antistatic abrasion resistant ceramers made therefrom |
IT1312344B1 (en) | 1999-06-03 | 2002-04-15 | Ausimont Spa | COMPOSITIONS FOR LOW REFRACTION INDEX FILM. |
US6673889B1 (en) | 1999-06-28 | 2004-01-06 | Omnova Solutions Inc. | Radiation curable coating containing polyfuorooxetane |
JP4855616B2 (en) | 1999-10-27 | 2012-01-18 | スリーエム イノベイティブ プロパティズ カンパニー | Fluorochemical sulfonamide surfactant |
JP5004065B2 (en) | 2000-05-19 | 2012-08-22 | 東レフィルム加工株式会社 | Laminated film and method for producing the same |
JP2002003595A (en) | 2000-06-22 | 2002-01-09 | Shin Etsu Chem Co Ltd | Cured material containing fluorine |
JP4782934B2 (en) | 2000-09-27 | 2011-09-28 | 日本化薬株式会社 | Low refractive index resin composition and cured product thereof |
US6632508B1 (en) * | 2000-10-27 | 2003-10-14 | 3M Innovative Properties Company | Optical elements comprising a polyfluoropolyether surface treatment |
US7351471B2 (en) | 2000-12-06 | 2008-04-01 | 3M Innovative Properties Company | Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films |
JP3923340B2 (en) | 2001-03-05 | 2007-05-30 | 共栄社化学株式会社 | Perfluoroalkyl group-containing prepolymer and polymerized cured product thereof |
US6676572B2 (en) * | 2001-04-06 | 2004-01-13 | Leao Wang | Folding mechanism of an exercise treadmill |
WO2003009904A1 (en) | 2001-07-24 | 2003-02-06 | Zenjiro Shiotsu | Ball manufacturing method |
TWI229115B (en) | 2002-02-11 | 2005-03-11 | Sipix Imaging Inc | Core-shell particles for electrophoretic display |
US6582759B1 (en) | 2002-02-15 | 2003-06-24 | 3M Innovative Properties Company | Optical elements comprising a fluorinated surface treatment comprising urethane, ester or phosphate linkages |
KR100487025B1 (en) | 2002-02-28 | 2005-05-11 | 주식회사 루밴틱스 | Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom |
JP3732840B2 (en) | 2002-06-27 | 2006-01-11 | Tdk株式会社 | Object with composite hard coat layer and method for forming composite hard coat layer |
JP2004043671A (en) | 2002-07-12 | 2004-02-12 | Nippon Kayaku Co Ltd | Low refractive index resin composition and its cured product |
US7371439B2 (en) | 2002-08-15 | 2008-05-13 | Fujifilm Corporation | Antireflection film, polarizing plate and image display device |
JP4886152B2 (en) | 2002-12-26 | 2012-02-29 | 日本合成化学工業株式会社 | Urethane (meth) acrylate-based compound and active energy ray-curable resin composition using the same |
CN100378470C (en) * | 2003-03-31 | 2008-04-02 | 琳得科株式会社 | Optical film |
JP4126545B2 (en) | 2003-04-18 | 2008-07-30 | 信越化学工業株式会社 | Coated article and multilayer laminate |
JP4248347B2 (en) | 2003-09-03 | 2009-04-02 | 富士フイルム株式会社 | Film-forming composition, antireflection film, polarizing plate, image display device, antifouling coating composition and antifouling article |
JP4779293B2 (en) | 2003-10-21 | 2011-09-28 | Tdk株式会社 | Hard coating agent composition and optical information medium using the same |
TWI388876B (en) | 2003-12-26 | 2013-03-11 | Fujifilm Corp | Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device |
US20050228152A1 (en) | 2004-04-08 | 2005-10-13 | Starry Adam B | Anti-reflective coating |
WO2005111157A1 (en) | 2004-05-07 | 2005-11-24 | 3M Innovative Properties Company | Stain repellent optical hard coating |
US20050249940A1 (en) | 2004-05-07 | 2005-11-10 | 3M Innovative Properties Company | Fluoropolyether poly(meth)acryl compounds |
US20050249956A1 (en) * | 2004-05-07 | 2005-11-10 | Naiyong Jing | Stain repellent optical hard coating |
US20070183997A9 (en) * | 2004-06-08 | 2007-08-09 | Lebre Caroline | Composition comprising particles of at least one polymer dispersed in at least one fatty phase and at least one apolar oil |
JP2006037024A (en) | 2004-07-29 | 2006-02-09 | Daikin Ind Ltd | Anti-reflection film forming composition |
US20060105155A1 (en) | 2004-11-16 | 2006-05-18 | Fuji Photo Film Co., Ltd. | Optical film, polarizing plate and method for forming optical film |
US20060148996A1 (en) * | 2004-12-30 | 2006-07-06 | Coggio William D | Low refractive index fluoropolymer compositions having improved coating and durability properties |
US7615283B2 (en) | 2006-06-13 | 2009-11-10 | 3M Innovative Properties Company | Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film |
US20070292679A1 (en) * | 2006-06-14 | 2007-12-20 | 3M Innovative Properties Company | Optical article having an antistatic fluorochemical surface layer |
US8530054B2 (en) * | 2006-09-27 | 2013-09-10 | 3M Innovative Properties Company | Solar control multilayer film |
US20080124555A1 (en) * | 2006-11-29 | 2008-05-29 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units |
US8015970B2 (en) * | 2007-07-26 | 2011-09-13 | 3M Innovative Properties Company | Respirator, welding helmet, or face shield that has low surface energy hard-coat lens |
US8728623B2 (en) * | 2007-08-31 | 2014-05-20 | 3M Innovative Properties Company | Hardcoats having low surface energy and low lint attraction |
JP5209030B2 (en) | 2010-11-11 | 2013-06-12 | ▲がい▼笛森光電股▲ふん▼有限公司 | Tilt detector having different light emitting elements and method of operating the same |
US8742022B2 (en) * | 2010-12-20 | 2014-06-03 | 3M Innovative Properties Company | Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility |
US8715904B2 (en) * | 2012-04-27 | 2014-05-06 | 3M Innovative Properties Company | Photocurable composition |
-
2005
- 2005-03-23 US US11/087,413 patent/US20060216524A1/en not_active Abandoned
-
2006
- 2006-03-22 US US11/277,162 patent/US7718264B2/en active Active
- 2006-03-22 CN CN2006800092064A patent/CN101146840B/en not_active Expired - Fee Related
- 2006-03-22 JP JP2008503117A patent/JP5118017B2/en not_active Expired - Fee Related
- 2006-03-22 KR KR1020137013814A patent/KR101397831B1/en not_active Expired - Fee Related
- 2006-03-22 WO PCT/US2006/010344 patent/WO2006102383A1/en active Application Filing
- 2006-03-22 EP EP06739223.3A patent/EP1866355B1/en not_active Not-in-force
- 2006-03-22 KR KR1020077021774A patent/KR20070114190A/en not_active Application Discontinuation
- 2006-03-22 TW TW95109966A patent/TWI412779B/en not_active IP Right Cessation
-
2010
- 2010-03-05 US US12/718,481 patent/US8147966B2/en active Active
-
2012
- 2012-02-15 US US13/396,669 patent/US8476398B2/en not_active Expired - Lifetime
-
2013
- 2013-06-03 US US13/908,102 patent/US8729211B2/en not_active Expired - Fee Related
-
2014
- 2014-04-08 US US14/247,379 patent/US8981151B2/en not_active Expired - Lifetime
Patent Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3250808A (en) * | 1963-10-31 | 1966-05-10 | Du Pont | Fluorocarbon ethers derived from hexafluoropropylene epoxide |
US4085137A (en) * | 1969-03-10 | 1978-04-18 | Minnesota Mining And Manufacturing Company | Poly(perfluoroalkylene oxide) derivatives |
US3734962A (en) * | 1970-05-22 | 1973-05-22 | Bayer Ag | Process for the preparation of hydroxy-alkyl-perfluoroalkane sulfonamides |
US4262072A (en) * | 1979-06-25 | 1981-04-14 | Minnesota Mining And Manufacturing Company | Poly(ethylenically unsaturated alkoxy) heterocyclic protective coatings |
US4321404A (en) * | 1980-05-20 | 1982-03-23 | Minnesota Mining And Manufacturing Company | Compositions for providing abherent coatings |
US4472480A (en) * | 1982-07-02 | 1984-09-18 | Minnesota Mining And Manufacturing Company | Low surface energy liner of perfluoropolyether |
US4614667A (en) * | 1984-05-21 | 1986-09-30 | Minnesota Mining And Manufacturing Company | Composite low surface energy liner of perfluoropolyether |
US4654233A (en) * | 1984-11-21 | 1987-03-31 | Minnesota Mining And Manufacturing Company | Radiation-curable thermoplastic coating |
US4855184A (en) * | 1988-02-02 | 1989-08-08 | Minnesota Mining And Manufacturing Company | Radiation-curable protective coating composition |
US4968116A (en) * | 1988-03-15 | 1990-11-06 | Minnesota Mining And Manufacturing Company | Polymer claddings for optical fibre waveguides |
US5002978A (en) * | 1989-01-11 | 1991-03-26 | Ciba-Geigy Corporation | Crosslinked copolymers and ophthalmic devices amde from vinylic macromers containing perfluoropolyalkylether and polyalkylether segments and minor amounts of vinylic comonomers |
US5239026A (en) * | 1991-08-26 | 1993-08-24 | Minnesota Mining And Manufacturing Company | Low loss high numerical aperture cladded optical fibers |
US5148511A (en) * | 1991-11-04 | 1992-09-15 | Minnesota Mining And Manufacturing Company | Low refractive index plastics for optical fiber cladding |
US5609990A (en) * | 1995-02-08 | 1997-03-11 | Imation Corp. | Optical recording disk having a sealcoat layer |
US5962611A (en) * | 1995-04-04 | 1999-10-05 | Novartis Ag | Perfluoroalkylether macromer having two polymerizable groups |
US5948478A (en) * | 1995-04-28 | 1999-09-07 | Ausimont S.P.A. | Process for the protection of stony or coating surfaces |
US5677050A (en) * | 1995-05-19 | 1997-10-14 | Minnesota Mining And Manufacturing Company | Retroreflective sheeting having an abrasion resistant ceramer coating |
US5846650A (en) * | 1996-05-10 | 1998-12-08 | Minnesota Mining And Manufacturing Company | Anti-reflective, abrasion resistant, anti-fogging coated articles and methods |
US6127498A (en) * | 1997-04-08 | 2000-10-03 | Ausimont S.P.A. | Modified hydrogenated polymers |
US20030012936A1 (en) * | 1998-02-19 | 2003-01-16 | Draheim Erica J. | Removable antireflection film |
US6224949B1 (en) * | 1998-06-11 | 2001-05-01 | 3M Innovative Properties Company | Free radical polymerization method |
US6238798B1 (en) * | 1999-02-22 | 2001-05-29 | 3M Innovative Properties Company | Ceramer composition and composite comprising free radically curable fluorochemical component |
US20020001710A1 (en) * | 1999-02-22 | 2002-01-03 | Soonkun Kang | Ceramer composition and composite comprising free radically curable fluorochemical component |
US6596363B2 (en) * | 2000-04-10 | 2003-07-22 | Tdk Corporation | Optical information medium |
US6846650B2 (en) * | 2000-10-25 | 2005-01-25 | Diadexus, Inc. | Compositions and methods relating to lung specific genes and proteins |
US20020085284A1 (en) * | 2000-10-31 | 2002-07-04 | Kazuhiro Nakamura | Anti-glare, anti-reflection film, polarizing plate and liquid crystal display device |
US20020115820A1 (en) * | 2001-01-25 | 2002-08-22 | Fang Wang | Hyperbranched fluorinated multifunctional alcohols and derivatives |
US20020111518A1 (en) * | 2001-02-09 | 2002-08-15 | Fang Wang | Fluorinated crosslinker and composition |
US6660338B1 (en) * | 2001-03-08 | 2003-12-09 | Agilent Technologies, Inc. | Functionalization of substrate surfaces with silane mixtures |
US6906115B2 (en) * | 2001-06-27 | 2005-06-14 | Daikin Industries, Ltd. | Surface treatment composition and preparation thereof |
US20050106404A1 (en) * | 2001-12-26 | 2005-05-19 | Tdk Corporation | Article having composite hard coat layer and method for forming composite hard coat layer |
US20040077775A1 (en) * | 2002-05-24 | 2004-04-22 | Audenaert Frans A. | Fluorochemical composition comprising a fluorinated polymer and treatment of a fibrous substrate therewith |
US20050158558A1 (en) * | 2002-06-04 | 2005-07-21 | Naoki Hayashida | Method of obtaining 3-d coordinates |
US20050123741A1 (en) * | 2002-06-27 | 2005-06-09 | Tdk Corporation | Object with composite hard coating layer and method of forming composite hard coating layer |
US20050288385A1 (en) * | 2002-11-13 | 2005-12-29 | Asahi Glass Company Limited | Active energy ray curable coating composition and molded product having coating film made of cured product of said composition |
US20050072336A1 (en) * | 2003-10-03 | 2005-04-07 | Tdk Corporation | Hard coat agent composition and optical information medium using the same |
US20050112319A1 (en) * | 2003-10-31 | 2005-05-26 | Tdk Corporation | Optical information medium |
US20050136252A1 (en) * | 2003-12-23 | 2005-06-23 | Chisholm Bret J. | UV curable coating compositions and uses thereof |
US20050158504A1 (en) * | 2003-12-24 | 2005-07-21 | Tdk Corporation | Hard coat agent composition and optical information medium using the same |
US20060084756A1 (en) * | 2004-04-22 | 2006-04-20 | Dsm Ip Assets B.V. | Low refractive index coating composition |
US20060216500A1 (en) * | 2005-03-23 | 2006-09-28 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats |
US20070286992A1 (en) * | 2006-06-13 | 2007-12-13 | Coggio William D | Low refractive index composition comprising fluoropolyether urethane compound |
US20070287093A1 (en) * | 2006-06-13 | 2007-12-13 | 3M Innovative Properties Company | Low refractive index composition comprising fluoropolyether urethane compound |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050123769A1 (en) * | 2003-12-06 | 2005-06-09 | Cpfilms Inc. | Fire retardant shades |
US8617715B2 (en) | 2003-12-06 | 2013-12-31 | Cpfilms Inc. | Fire retardant shades |
US7410704B2 (en) | 2006-04-14 | 2008-08-12 | 3M Innovative Properties Company | Composition containing fluoroalkyl hydrosilicone |
US20070254168A1 (en) * | 2006-04-14 | 2007-11-01 | 3M Innovative Properties Company | Curable composition containing fluoroalkyl hydrosilicone |
US20070254167A1 (en) * | 2006-04-14 | 2007-11-01 | 3M Innovative Properties Company | Composition containing fluoroalkyl silicone and hydrosilicone |
US20070254166A1 (en) * | 2006-04-14 | 2007-11-01 | 3M Innovative Properties Company | Curable fluoroalkyl silicone composition |
US7413807B2 (en) | 2006-04-14 | 2008-08-19 | 3M Innovative Properties Company | Fluoroalkyl silicone composition |
US7407710B2 (en) | 2006-04-14 | 2008-08-05 | 3M Innovative Properties Company | Composition containing fluoroalkyl silicone and hydrosilicone |
US20070285778A1 (en) * | 2006-06-13 | 2007-12-13 | Walker Christopher B | Optical films comprising high refractive index and antireflective coatings |
US20070285779A1 (en) * | 2006-06-13 | 2007-12-13 | Walker Christopher B | Optical films comprising high refractive index and antireflective coatings |
US20070292679A1 (en) * | 2006-06-14 | 2007-12-20 | 3M Innovative Properties Company | Optical article having an antistatic fluorochemical surface layer |
US20070291367A1 (en) * | 2006-06-15 | 2007-12-20 | Nitto Denko Corporation | Hard-coated antiglare film, and polarizing plate and image display including the same |
US20080075947A1 (en) * | 2006-09-27 | 2008-03-27 | Raghunath Padiyath | Solar control multilayer film |
US20080075951A1 (en) * | 2006-09-27 | 2008-03-27 | 3M Innovative Properties Company | Fluoroacrylates and hardcoat compositions including the same |
US8530054B2 (en) | 2006-09-27 | 2013-09-10 | 3M Innovative Properties Company | Solar control multilayer film |
US8415014B2 (en) | 2006-11-29 | 2013-04-09 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US20120142856A1 (en) * | 2006-11-29 | 2012-06-07 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US8383694B2 (en) * | 2006-11-29 | 2013-02-26 | 3M Innovative Properties Company | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment |
US20080274352A1 (en) * | 2007-05-04 | 2008-11-06 | 3M Innovative Properties Company | Optical film comprising antistatic primer and antistatic compositions |
US20090148654A1 (en) * | 2007-12-06 | 2009-06-11 | E. I. Du Pont De Nemours And Company | Fluoropolymer compositions and treated substrates |
US20090149096A1 (en) * | 2007-12-07 | 2009-06-11 | E.I. Du Pont De Nemours And Company | Fluoropolymer emulsions |
US8314037B2 (en) | 2007-12-07 | 2012-11-20 | E. I. Du Pont De Nemours And Company | Fluoropolymer emulsions |
US20110027553A1 (en) * | 2008-01-11 | 2011-02-03 | Cpfilms Inc. | Exterior Window Film |
US9303132B2 (en) * | 2008-01-11 | 2016-04-05 | Cpfilms Inc. | Exterior window film |
US20110008733A1 (en) * | 2008-03-11 | 2011-01-13 | 3M Innovative Properties Company | Phototools having a protective layer |
US20110027702A1 (en) * | 2008-03-11 | 2011-02-03 | 3M Innovative Properties Company | Hardcoat composition |
US8663874B2 (en) | 2008-03-11 | 2014-03-04 | 3M Innovative Properties Company | Hardcoat composition |
US8563221B2 (en) | 2008-03-11 | 2013-10-22 | 3M Innovative Properties Company | Phototools having a protective layer |
US9513420B2 (en) | 2008-03-31 | 2016-12-06 | 3M Innovative Properties Company | Low layer count reflective polarizer with optimized gain |
US20110103036A1 (en) * | 2008-03-31 | 2011-05-05 | Boesl Ellen R | Optical film |
US9110245B2 (en) | 2008-03-31 | 2015-08-18 | 3M Innovative Properties Company | Low layer count reflective polarizer with optimized gain |
US9664834B2 (en) | 2008-03-31 | 2017-05-30 | 3M Innovative Properties Company | Optical film |
US20110102891A1 (en) * | 2008-03-31 | 2011-05-05 | Derks Kristopher J | Low layer count reflective polarizer with optimized gain |
US9551475B2 (en) | 2008-07-10 | 2017-01-24 | 3M Innovative Properties Company | Retroreflective articles and devices having viscoelastic lightguide |
US10228507B2 (en) | 2008-07-10 | 2019-03-12 | 3M Innovative Properties Company | Light source and optical article including viscoelastic lightguide disposed on a substrate |
US8651720B2 (en) | 2008-07-10 | 2014-02-18 | 3M Innovative Properties Company | Retroreflective articles and devices having viscoelastic lightguide |
US9851482B2 (en) | 2008-07-10 | 2017-12-26 | 3M Innovative Properties Company | Retroreflective articles and devices having viscoelastic lightguide |
US9086535B2 (en) | 2008-07-10 | 2015-07-21 | 3M Innovative Properties Company | Retroreflective articles and devices having viscoelastic lightguide |
US20110122494A1 (en) * | 2008-07-10 | 2011-05-26 | Sherman Audrey A | Retroreflective articles and devices having viscoelastic lightguide |
US9285531B2 (en) | 2008-08-08 | 2016-03-15 | 3M Innovative Properties Company | Lightguide having a viscoelastic layer for managing light |
EP3026471A1 (en) | 2008-08-08 | 2016-06-01 | 3M Innovative Properties Company | Lightguide having a viscoelastic layer for managing light |
WO2010110528A1 (en) * | 2009-03-24 | 2010-09-30 | 제일모직 주식회사 | Hard coating composition, multi-layered sheet using the same, and preparation method thereof |
CN102365179A (en) * | 2009-03-24 | 2012-02-29 | 第一毛织株式会社 | Hard coating composition, multi-layered sheet using the same, and preparation method thereof |
KR101103409B1 (en) | 2009-03-24 | 2012-01-05 | 제일모직주식회사 | High gloss curved decorative panel and manufacturing method |
EP2444430A4 (en) * | 2009-06-16 | 2015-06-03 | Mitsubishi Rayon Co | Anti-soiling composition, anti-soiling film, anti-soiling laminated film, transfer film, and resin laminate, and method for manufacturing resin laminate |
US9096712B2 (en) | 2009-07-21 | 2015-08-04 | 3M Innovative Properties Company | Curable compositions, method of coating a phototool, and coated phototool |
US10092366B2 (en) | 2009-08-21 | 2018-10-09 | 3M Innovative Properties Company | Products for reducing tissue trauma using water-resistant stress-distributing materials |
US10080555B2 (en) | 2009-08-21 | 2018-09-25 | 3M Innovative Properties Company | Methods and products for reducing tissue trauma using water-absorbing stress-distributing materials |
US8758237B2 (en) | 2009-08-21 | 2014-06-24 | 3M Innovative Properties Company | Methods and products for illuminating tissue |
US8420281B2 (en) | 2009-09-16 | 2013-04-16 | 3M Innovative Properties Company | Epoxy-functionalized perfluoropolyether polyurethanes |
US9051423B2 (en) | 2009-09-16 | 2015-06-09 | 3M Innovative Properties Company | Fluorinated coating and phototools made therewith |
US8748060B2 (en) | 2009-09-16 | 2014-06-10 | 3M Innovative Properties Company | Fluorinated coating and phototools made therewith |
US9266258B2 (en) | 2009-09-25 | 2016-02-23 | HGST Netherlands B.V. | System, method and apparatus for manufacturing magnetic recording media |
US20110074062A1 (en) * | 2009-09-25 | 2011-03-31 | Hitachi Global Storage Technologies Netherlands B.V. | System, method and apparatus for manufacturing magnetic recording media |
US8899957B2 (en) | 2009-09-25 | 2014-12-02 | HGST Netherlands B.V. | System, method and apparatus for manufacturing magnetic recording media |
US9062150B2 (en) | 2009-10-30 | 2015-06-23 | 3M Innovative Properties Company | Soil and stain resistant coating composition for finished leather substrates |
US20110111659A1 (en) * | 2009-11-09 | 2011-05-12 | E. I. Du Pont De Nemours And Company | Method using fluoropolymer emulsions |
US20110112233A1 (en) * | 2009-11-09 | 2011-05-12 | E. I. Du Pont De Nemours And Company | Fluoropolymer emulsions |
US8329822B2 (en) | 2009-11-09 | 2012-12-11 | E.I. Du Pont De Nemours And Company | Fluoropolymer emulsions |
US8507601B2 (en) | 2009-11-09 | 2013-08-13 | E. I. Du Pont De Nemours And Company | Method using fluoropolymer emulsions |
US9146342B2 (en) | 2010-01-13 | 2015-09-29 | 3M Innovative Properties Company | Illumination device having viscoelastic lightguide |
WO2011088216A2 (en) | 2010-01-13 | 2011-07-21 | 3M Innovative Properties Company | Illumination device having viscoelastic lightguide |
US9304243B2 (en) | 2010-01-13 | 2016-04-05 | 3M Innovative Properties Company | Illumination device having viscoelastic lightguide |
WO2011100277A1 (en) | 2010-02-10 | 2011-08-18 | 3M Innovative Properties Company | Illumination device having viscoelastic layer |
US9239417B2 (en) | 2010-02-10 | 2016-01-19 | 3M Innovative Properties Company | Illumination device having viscoelastic layer |
US9684120B2 (en) | 2010-02-10 | 2017-06-20 | 3M Innovative Properties Company | Optical article having viscoelastic layer |
WO2012050663A1 (en) | 2010-10-11 | 2012-04-19 | 3M Innovative Properties Company | Illumination device having viscoelastic lightguide |
WO2012121858A1 (en) | 2011-03-09 | 2012-09-13 | 3M Innovative Properties Company | Antireflective film comprising large particle size fumed silica |
US9310527B2 (en) | 2011-03-09 | 2016-04-12 | 3M Innovative Properties Company | Antireflective film comprising large particle size fumed silica |
US8999509B2 (en) | 2011-04-27 | 2015-04-07 | Cpfilms Inc. | Weather resistant exterior film composite |
US9804305B2 (en) | 2012-01-31 | 2017-10-31 | 3M Innovative Properties Company | Methods for sealing the edges of multi-layer articles |
US10723918B2 (en) | 2012-02-03 | 2020-07-28 | 3M Innovative Properties Company | Primer compositions for optical films |
US9217920B2 (en) | 2012-08-09 | 2015-12-22 | 3M Innovative Properties Company | Photocurable compositions |
US9904001B2 (en) | 2014-03-18 | 2018-02-27 | 3M Innovative Properties Company | Marketing strip with viscoelastic lightguide |
US20170113443A1 (en) * | 2015-10-27 | 2017-04-27 | Samsung Electronics Co., Ltd. | Conductive films and electronic devices including the same |
US10668702B2 (en) * | 2015-10-27 | 2020-06-02 | Samsung Electronics Co., Ltd. | Conductive films and electronic devices including the same |
US20220033259A1 (en) * | 2018-11-28 | 2022-02-03 | Hysilabs, Sas | Catalysed process of production of hydrogen from silylated derivatives as hydrogen carrier compounds |
US12209019B2 (en) * | 2018-11-28 | 2025-01-28 | Hysilabs, Sas | Catalysed process of production of hydrogen from silylated derivatives as hydrogen carrier compounds |
Also Published As
Publication number | Publication date |
---|---|
US8147966B2 (en) | 2012-04-03 |
WO2006102383A1 (en) | 2006-09-28 |
KR20070114190A (en) | 2007-11-29 |
US8981151B2 (en) | 2015-03-17 |
US20130261280A1 (en) | 2013-10-03 |
JP5118017B2 (en) | 2013-01-16 |
US7718264B2 (en) | 2010-05-18 |
US20100160595A1 (en) | 2010-06-24 |
KR20130063551A (en) | 2013-06-14 |
JP2008538195A (en) | 2008-10-16 |
KR101397831B1 (en) | 2014-05-20 |
CN101146840B (en) | 2011-06-15 |
US20140221689A1 (en) | 2014-08-07 |
US8729211B2 (en) | 2014-05-20 |
TW200639422A (en) | 2006-11-16 |
EP1866355B1 (en) | 2017-08-23 |
US20120142883A1 (en) | 2012-06-07 |
US20060216500A1 (en) | 2006-09-28 |
EP1866355A1 (en) | 2007-12-19 |
US8476398B2 (en) | 2013-07-02 |
TWI412779B (en) | 2013-10-21 |
CN101146840A (en) | 2008-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060216524A1 (en) | Perfluoropolyether urethane additives having (meth)acryl groups and hard coats | |
KR101455421B1 (en) | Polymerizable composition comprising perfluoropolyether material having ethylene oxide repeat unit segment | |
US8628855B2 (en) | Hardcoats comprising perfluoropolyether polymers with poly(alkylene oxide) repeat units | |
US8728623B2 (en) | Hardcoats having low surface energy and low lint attraction | |
US7407710B2 (en) | Composition containing fluoroalkyl silicone and hydrosilicone | |
US7413807B2 (en) | Fluoroalkyl silicone composition | |
US20070292679A1 (en) | Optical article having an antistatic fluorochemical surface layer | |
US20050249956A1 (en) | Stain repellent optical hard coating | |
US20080075951A1 (en) | Fluoroacrylates and hardcoat compositions including the same | |
US20070292089A1 (en) | Optical article having antistatic hardcoat layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLUN, THOMAS P.;JING, NAIYONG;POKORNY, RICHARD J.;AND OTHERS;REEL/FRAME:016412/0240 Effective date: 20050323 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |