US20060205866A1 - Screen printable hydrogel for medical applications - Google Patents
Screen printable hydrogel for medical applications Download PDFInfo
- Publication number
- US20060205866A1 US20060205866A1 US11/435,062 US43506206A US2006205866A1 US 20060205866 A1 US20060205866 A1 US 20060205866A1 US 43506206 A US43506206 A US 43506206A US 2006205866 A1 US2006205866 A1 US 2006205866A1
- Authority
- US
- United States
- Prior art keywords
- composition
- polymer
- comonomer
- functional unit
- carboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 91
- 239000000203 mixture Substances 0.000 claims abstract description 142
- 229920000642 polymer Polymers 0.000 claims abstract description 59
- 239000002904 solvent Substances 0.000 claims abstract description 26
- 229920001577 copolymer Polymers 0.000 claims abstract description 24
- 229910001868 water Inorganic materials 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000002562 thickening agent Substances 0.000 claims abstract description 20
- 230000000977 initiatory effect Effects 0.000 claims abstract description 14
- -1 C1-10 alkyl methacrylate Chemical compound 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 27
- 239000000178 monomer Substances 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 22
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 21
- 230000002378 acidificating effect Effects 0.000 claims description 19
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 19
- 238000007650 screen-printing Methods 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 16
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 11
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 10
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- 239000004094 surface-active agent Substances 0.000 claims description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 8
- 239000003906 humectant Substances 0.000 claims description 8
- 150000003440 styrenes Chemical class 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Polymers C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 claims description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 5
- 239000003139 biocide Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Polymers OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 claims description 3
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical class C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 claims description 3
- 239000003755 preservative agent Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- INXWLSDYDXPENO-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CO)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C INXWLSDYDXPENO-UHFFFAOYSA-N 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 claims description 2
- 229910021485 fumed silica Inorganic materials 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims 1
- 150000002118 epoxides Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 description 32
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 239000000499 gel Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 238000007792 addition Methods 0.000 description 9
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- 229920005596 polymer binder Polymers 0.000 description 8
- 239000002491 polymer binding agent Substances 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 235000019645 odor Nutrition 0.000 description 6
- 229920002070 Pluronic® P 84 Polymers 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229940106691 bisphenol a Drugs 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- UDJZTGMLYITLIQ-UHFFFAOYSA-N 1-ethenylpyrrolidine Chemical compound C=CN1CCCC1 UDJZTGMLYITLIQ-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 3
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 238000000518 rheometry Methods 0.000 description 3
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- NJWGQARXZDRHCD-UHFFFAOYSA-N 2-methylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3C(=O)C2=C1 NJWGQARXZDRHCD-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical class C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- MJVAVZPDRWSRRC-UHFFFAOYSA-N Menadione Chemical compound C1=CC=C2C(=O)C(C)=CC(=O)C2=C1 MJVAVZPDRWSRRC-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 2
- 239000002318 adhesion promoter Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 239000000852 hydrogen donor Substances 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ZCZARILEUZFHJD-UHFFFAOYSA-N (2,2,4-trimethyl-3-prop-2-enoyloxypentyl) prop-2-enoate Chemical compound C=CC(=O)OC(C(C)C)C(C)(C)COC(=O)C=C ZCZARILEUZFHJD-UHFFFAOYSA-N 0.000 description 1
- LGPAKRMZNPYPMG-UHFFFAOYSA-N (3-hydroxy-2-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OC(CO)COC(=O)C=C LGPAKRMZNPYPMG-UHFFFAOYSA-N 0.000 description 1
- OAKFFVBGTSPYEG-UHFFFAOYSA-N (4-prop-2-enoyloxycyclohexyl) prop-2-enoate Chemical compound C=CC(=O)OC1CCC(OC(=O)C=C)CC1 OAKFFVBGTSPYEG-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- RUJPNZNXGCHGID-UHFFFAOYSA-N (Z)-beta-Terpineol Natural products CC(=C)C1CCC(C)(O)CC1 RUJPNZNXGCHGID-UHFFFAOYSA-N 0.000 description 1
- NNNLYDWXTKOQQX-UHFFFAOYSA-N 1,1-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OC(CC)(OC(=O)C=C)OC(=O)C=C NNNLYDWXTKOQQX-UHFFFAOYSA-N 0.000 description 1
- XHXSXTIIDBZEKB-UHFFFAOYSA-N 1,2,3,4,5,6,7,8-octamethylanthracene-9,10-dione Chemical compound CC1=C(C)C(C)=C2C(=O)C3=C(C)C(C)=C(C)C(C)=C3C(=O)C2=C1C XHXSXTIIDBZEKB-UHFFFAOYSA-N 0.000 description 1
- AZESNEXPGASJRZ-UHFFFAOYSA-N 1,2,3,4-tetrahydrobenzo[a]anthracene-7,12-dione Chemical compound C1CCCC2=CC=C3C(=O)C4=CC=CC=C4C(=O)C3=C21 AZESNEXPGASJRZ-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- CWABICBDFJMISP-UHFFFAOYSA-N 1,3,5-tris(prop-1-en-2-yl)benzene Chemical compound CC(=C)C1=CC(C(C)=C)=CC(C(C)=C)=C1 CWABICBDFJMISP-UHFFFAOYSA-N 0.000 description 1
- ZENYUPUKNXGVDY-UHFFFAOYSA-N 1,4-bis(prop-1-en-2-yl)benzene Chemical compound CC(=C)C1=CC=C(C(C)=C)C=C1 ZENYUPUKNXGVDY-UHFFFAOYSA-N 0.000 description 1
- DVFAVJDEPNXAME-UHFFFAOYSA-N 1,4-dimethylanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(C)=CC=C2C DVFAVJDEPNXAME-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- KFQPRNVTVMCYEH-UHFFFAOYSA-N 1-amino-3-(4-methoxyphenoxy)propan-2-ol Chemical compound COC1=CC=C(OCC(O)CN)C=C1 KFQPRNVTVMCYEH-UHFFFAOYSA-N 0.000 description 1
- WVOVXOXRXQFTAS-UHFFFAOYSA-N 1-methyl-7-propan-2-ylphenanthrene-9,10-dione Chemical compound C1=CC=C2C3=CC=C(C(C)C)C=C3C(=O)C(=O)C2=C1C WVOVXOXRXQFTAS-UHFFFAOYSA-N 0.000 description 1
- RHNJVKIVSXGYBD-UHFFFAOYSA-N 10-prop-2-enoyloxydecyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCCCCCOC(=O)C=C RHNJVKIVSXGYBD-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- MIGVPIXONIAZHK-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OCC(C)(C)CO MIGVPIXONIAZHK-UHFFFAOYSA-N 0.000 description 1
- NEBBLNDVSSWJLL-UHFFFAOYSA-N 2,3-bis(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(OC(=O)C(C)=C)COC(=O)C(C)=C NEBBLNDVSSWJLL-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- KIJPZYXCIHZVGP-UHFFFAOYSA-N 2,3-dimethylanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=C(C)C(C)=C2 KIJPZYXCIHZVGP-UHFFFAOYSA-N 0.000 description 1
- LZWVPGJPVCYAOC-UHFFFAOYSA-N 2,3-diphenylanthracene-9,10-dione Chemical compound C=1C=CC=CC=1C=1C=C2C(=O)C3=CC=CC=C3C(=O)C2=CC=1C1=CC=CC=C1 LZWVPGJPVCYAOC-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- DAVVKEZTUOGEAK-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethyl 2-methylprop-2-enoate Chemical compound COCCOCCOC(=O)C(C)=C DAVVKEZTUOGEAK-UHFFFAOYSA-N 0.000 description 1
- DLYUIZKESZKRBB-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxymethyl)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CC)COC(=O)C(C)=C DLYUIZKESZKRBB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- OWDBMKZHFCSOOL-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)propoxy]propoxy]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)COC(C)COC(C)COC(=O)C(C)=C OWDBMKZHFCSOOL-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- FJZNROVGLPJDEE-UHFFFAOYSA-N 2-ethenylbutanedioic acid Chemical compound OC(=O)CC(C=C)C(O)=O FJZNROVGLPJDEE-UHFFFAOYSA-N 0.000 description 1
- SJEBAWHUJDUKQK-UHFFFAOYSA-N 2-ethylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC=C3C(=O)C2=C1 SJEBAWHUJDUKQK-UHFFFAOYSA-N 0.000 description 1
- CKKQLOUBFINSIB-UHFFFAOYSA-N 2-hydroxy-1,2,2-triphenylethanone Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)C(=O)C1=CC=CC=C1 CKKQLOUBFINSIB-UHFFFAOYSA-N 0.000 description 1
- RZCDMINQJLGWEP-UHFFFAOYSA-N 2-hydroxy-1,2-diphenylpent-4-en-1-one Chemical compound C=1C=CC=CC=1C(CC=C)(O)C(=O)C1=CC=CC=C1 RZCDMINQJLGWEP-UHFFFAOYSA-N 0.000 description 1
- DIVXVZXROTWKIH-UHFFFAOYSA-N 2-hydroxy-1,2-diphenylpropan-1-one Chemical compound C=1C=CC=CC=1C(O)(C)C(=O)C1=CC=CC=C1 DIVXVZXROTWKIH-UHFFFAOYSA-N 0.000 description 1
- IXPWKHNDQICVPZ-UHFFFAOYSA-N 2-methylhex-1-en-3-yne Chemical compound CCC#CC(C)=C IXPWKHNDQICVPZ-UHFFFAOYSA-N 0.000 description 1
- NTZCFGZBDDCNHI-UHFFFAOYSA-N 2-phenylanthracene-9,10-dione Chemical compound C=1C=C2C(=O)C3=CC=CC=C3C(=O)C2=CC=1C1=CC=CC=C1 NTZCFGZBDDCNHI-UHFFFAOYSA-N 0.000 description 1
- YTPSFXZMJKMUJE-UHFFFAOYSA-N 2-tert-butylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(C(C)(C)C)=CC=C3C(=O)C2=C1 YTPSFXZMJKMUJE-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- DFOKCFWGAKFYBQ-UHFFFAOYSA-N 3,4-di(prop-2-enoyloxy)butyl prop-2-enoate Chemical compound C=CC(=O)OCCC(OC(=O)C=C)COC(=O)C=C DFOKCFWGAKFYBQ-UHFFFAOYSA-N 0.000 description 1
- HTWRFCRQSLVESJ-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCOC(=O)C(C)=C HTWRFCRQSLVESJ-UHFFFAOYSA-N 0.000 description 1
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 description 1
- QUTBKTUHIQFLPI-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CC(=C)C(O)=O.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 QUTBKTUHIQFLPI-UHFFFAOYSA-N 0.000 description 1
- IKZMAWGJPJMWJG-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IKZMAWGJPJMWJG-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- YMRDPCUYKKPMFC-UHFFFAOYSA-N 4-hydroxy-2,2,5,5-tetramethylhexan-3-one Chemical compound CC(C)(C)C(O)C(=O)C(C)(C)C YMRDPCUYKKPMFC-UHFFFAOYSA-N 0.000 description 1
- WQBCQEDMLHHOMQ-UHFFFAOYSA-N 4-methoxycyclohexa-1,5-diene-1,4-diol Chemical compound COC1(O)CC=C(O)C=C1 WQBCQEDMLHHOMQ-UHFFFAOYSA-N 0.000 description 1
- XAMCLRBWHRRBCN-UHFFFAOYSA-N 5-prop-2-enoyloxypentyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCOC(=O)C=C XAMCLRBWHRRBCN-UHFFFAOYSA-N 0.000 description 1
- SAPGBCWOQLHKKZ-UHFFFAOYSA-N 6-(2-methylprop-2-enoyloxy)hexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCOC(=O)C(C)=C SAPGBCWOQLHKKZ-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 229940076442 9,10-anthraquinone Drugs 0.000 description 1
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- DFEZPOZGFSHDNT-UHFFFAOYSA-N C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C=C(C)C(=O)OC.C=C(C)C(=O)OCC1CO1.C=C(C)C(=O)OCCOCCOC.[H]OC(=O)C(=C)C.[H]OC(=O)C(C)(CCC(C)(C)C(=O)OCCOCCOC)CCC(C)(CC)C(=O)OC.[H]OC(=O)C(C)(CCC(C)(CC)C(=O)OC)CCC(C)(CCC(C)(C)C(=O)OCCOCCOC)C(=O)OCC(O)COC(=O)C(=C)C Chemical compound C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C=C(C)C(=O)OC.C=C(C)C(=O)OCC1CO1.C=C(C)C(=O)OCCOCCOC.[H]OC(=O)C(=C)C.[H]OC(=O)C(C)(CCC(C)(C)C(=O)OCCOCCOC)CCC(C)(CC)C(=O)OC.[H]OC(=O)C(C)(CCC(C)(CC)C(=O)OC)CCC(C)(CCC(C)(C)C(=O)OCCOCCOC)C(=O)OCC(O)COC(=O)C(=C)C DFEZPOZGFSHDNT-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 229920002598 Polyclar® V Polymers 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920003082 Povidone K 90 Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- JUDXBRVLWDGRBC-UHFFFAOYSA-N [2-(hydroxymethyl)-3-(2-methylprop-2-enoyloxy)-2-(2-methylprop-2-enoyloxymethyl)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CO)(COC(=O)C(C)=C)COC(=O)C(C)=C JUDXBRVLWDGRBC-UHFFFAOYSA-N 0.000 description 1
- UOGPKCHLHAWNIY-UHFFFAOYSA-N [2-hydroxy-3-(2-hydroxy-3-prop-2-enoyloxypropoxy)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(O)COCC(O)COC(=O)C=C UOGPKCHLHAWNIY-UHFFFAOYSA-N 0.000 description 1
- OPLZHVSHWLZOCP-UHFFFAOYSA-N [2-hydroxy-3-[2-hydroxy-3-(2-methylprop-2-enoyloxy)propoxy]propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)COCC(O)COC(=O)C(C)=C OPLZHVSHWLZOCP-UHFFFAOYSA-N 0.000 description 1
- UKMBKKFLJMFCSA-UHFFFAOYSA-N [3-hydroxy-2-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CO)OC(=O)C(C)=C UKMBKKFLJMFCSA-UHFFFAOYSA-N 0.000 description 1
- MDMKOESKPAVFJF-UHFFFAOYSA-N [4-(2-methylprop-2-enoyloxy)phenyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=C(OC(=O)C(C)=C)C=C1 MDMKOESKPAVFJF-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- LHMRXAIRPKSGDE-UHFFFAOYSA-N benzo[a]anthracene-7,12-dione Chemical compound C1=CC2=CC=CC=C2C2=C1C(=O)C1=CC=CC=C1C2=O LHMRXAIRPKSGDE-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical class C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940057950 sodium laureth sulfate Drugs 0.000 description 1
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical class [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- QJVXKWHHAMZTBY-GCPOEHJPSA-N syringin Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 QJVXKWHHAMZTBY-GCPOEHJPSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S524/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S524/916—Hydrogel compositions
Definitions
- This invention relates to a hydrogel composition, its associated screen-printable application process, and the use of the hydrogel composition in the formation of medical electrodes.
- Hydrogel films (which usually contain greater than 50% water) are useful in many medical applications due to their hydrophilic, or water loving nature, and their ability to act as a conductive member interfacing with the skin of a patient (electrode applications).
- Typical medical applications involving the use of hydrogels include contact lenses, wound dressings, transcutaneous electrical nerve stimulator (TENS) units, electro-surgical units (ESU's), EKG/EEG applications, iontophoresis, and artificial muscles, artificial organs, and prosthetics.
- TENS transcutaneous electrical nerve stimulator
- ESU's electro-surgical units
- EKG/EEG applications iontophoresis
- the most widely used polymer in hydrogel formation, especially in medical applications such as implants, blood bags, and syringes is poly(hydroxyethyl methacrylate).
- compositions consist predominantly of a monomer and water solution. Associated with these unpolymerized monomers are strong odors which may be reduced after polymerization. However, because the monomers are not 100% converted, generally about 50% conversion takes place, some odors may remain. Also, these unpolymerized monomers may migrate to the surface of the hydrogel film and may be toxic.
- Prior art hydrogel compositions in current production are cast and sold as films with release liners and are not suitable for screen printing.
- Typical hydrogel compositions disclosed in the prior art are applied in a sheet via a non-screen printing technology.
- the ability to screen print hydrogel compositions requires particular viscosity and shear thinning attributes. These attributes, which are required for screen printability, allow the ability to form a desired pattern and placement of desired dimensions of hydrogel composition in a precise manner.
- Prior art compositions are limited in ease of hydrogel film formation and processed hydrogel film thickness due to the rheology, shear thinning, and viscosity characteristics of the hydrogel composition. The rheology, shear thinning, and viscosity characteristics of the prior art compositions may lead to slower process times, extensive yield loss, and minimal control over ultimate hydrogel film thickness.
- U.S. Pat. No. 5,540,033 to Fox et al. teaches a method for producing a sterile packaged adhesive hydrogel product by preparing an aqueous mixture of water, a polymer which can be cross-linked by radiation (electron beam not UV light) to form a hydrogel, and a cross-linking inhibitor in an amount sufficient to retard the cross-linking of the polymer when the mixture is exposed to radiation; providing the mixture in a predetermined shape or configuration representative of a hydrogel product; enclosing the shaped mixture in a sealed package; and subjecting the package to a dose of radiation sufficient to simultaneously cross-link and sterilize the mixture to provide a sterile packaged adhesive hydrogel product.
- radiation electron beam not UV light
- Fox et al. teaches a providing step which comprises casting the mixture onto a substrate in the desired shape and at a thickness of between about 20 and 100 mils.
- a scrim is typically applied to the cast mixture when the thickness of the cast mixture is greater than about 25-30 mils.
- U.S. Pat. No. 5,868,136 to Fox et al. discloses an electrode providing electrical contact with a patient's skin comprising; a conductive member including means for connection to an external electrical apparatus; and means for electrically interfacing to said patient's skin being electrically and mechanically connected to said conductive member, said interfacing means being a non-liquid film and which comprises an electrically conductive organic polymer plasticized with a polyhydric alcohol with said organic polymer being derived from a monomeric mixture comprising from about 15 to 30 pph acrylic acid, 0.5 to 30 pph N-vinylpyrrolidone and 0.01 to 2 pph of a crosslinking agent and from about 0.5 to 8 pph of a thickening agent comprising a N-vinylpyrrolidone/acrylic acid copolymer.
- Fox et al. disclose an interfacing film thickness in a range 20 and 100 mils.
- U.S. Pat. No. 5,622,168 to Keusch et al. teaches a highly conductive hydrophilic gel comprising a uniform aqueous solution of a crosslinked water-soluble polymer, an amount of a water-soluble electrolyte effective to reduce the transverse electrical resistance of said aqueous mixture to an impedance at 60 Hz less than about 1,000 ohm, which hydrophilic gel also contains a humectant in an amount effective to retard the drying of the conductive hydrophilic gel when it is exposed to the atmosphere while being used.
- a physiological electrode adapted for providing electrical contact with a surface of a sentient creature and comprising a sheet of the conductive viscoelastic hydrophilic gel.
- Keusch et al. teaches the use of the hydrophilic gel in an electrode by the following process: 1) casting the aqueous mixture to form a sheet-like configuration (liquid film thickness of 0.1 to 2 mm before crosslinking); 2) subjecting the liquid film to a dose of high energy radiation sufficient to convert said film into a solid gel; 3) optionally cutting the hydrogel sheet to the desired size and shape for use as a conductive element; and 4) placing the solid gel onto the electrode.
- WO 97/02811 to Abraham et al. discloses a hydrogel patch, comprising: (a) a hydrophilic compound which forms a gel in the presence of water, which compound is present in an amount of about 4% or more by weight based on the weight of the hydrogel; (b) water in an amount of about 95% or less based on the weight of the hydrogel; (c) and enzyme capable of catalyzing a reaction; and (d) electrolyte.
- Abraham et al. teaches the casting of the hydrogel composition via a Gardner knife.
- WO 00/45698 to Heard et al. discloses an electrode providing electrical contact with a patient's skin which includes a conductive member adapted for connection to an external electrical apparatus, a non-liquid film for electrically interfacing to the patient's skin, the non-liquid film being electrically, and mechanically connected to the conductive member.
- the non-liquid film includes an electrically conductive organic polymer plasticized with a polyhydric alcohol with said organic polymer being derived from a monomeric mixture comprising from about 15 pph to 30 pph acrylic acid, 0.5 pph to 30 pph N-vinyl pyrrolidine and 0.01 pph to 2 pph of a crosslinking agent.
- the monomeric mixture may further comprise from about 0.5 pph to 8 pph of a thickening agent selected from the group consisting of N-vinyl pyrrolidine/acrylic acid copolymers and N-vinyl pyrrolidine/vinyl acetate.
- a thickening agent selected from the group consisting of N-vinyl pyrrolidine/acrylic acid copolymers and N-vinyl pyrrolidine/vinyl acetate.
- an objective of this invention is to provide a screen-printable hydrogel composition and process which allows for the ability to form a desired pattern and for placement of desired dimensions of the gel directly onto a substrate with little to no yield loss and control over the ultimate thickness.
- a further object of the invention is to provide a hydrogel composition which does not have a strong odor prior to processing.
- the present invention provides a screen printable hydrogel composition
- a screen printable hydrogel composition comprising: (a) a soluble or partially soluble polymer wherein said polymer is a copolymer, interpolymer or mixture thereof; (b) initiation system; (c) thickener; (d) water; and (e) solvent; with the proviso that the composition has a viscosity of greater than about 10 Pa ⁇ s.
- the present invention further provides a method of producing a processed hydrogel film comprising the steps of: (a) providing a screen printable hydrogel composition; (b) providing a substrate; (c) depositing the composition in (a) onto said substrate via screen printing techniques; and (d) processing said composition on said substrate to form a hydrogel film. Furthermore, the present invention provides a hydrogel film formed by the method above.
- the present invention also provides an electrode utilizing the disclosed hydrogel composition and an electrode utilizing the hydrogel film formed by the method above.
- novel hydrogel composition of the present invention simultaneously overcomes numerous disadvantages prominent in the prior art, including (1) strong monomer odor, (2) processing method of hydrogel film and electrode formation, and (3) poor adhesion characteristics.
- the solution to the problem of strong odors asssociated with unpolymerized monomers of the prior art is overcome by replacing predominantly monomer solutions with a solution of predominantly functional polymer and water.
- Small amounts of monomer may be utilized in the present invention to enhance crosslinking, but the monomer is not required in the present invention.
- the level of monomer that may be utilized in the composition of the present invention results in minimal monomer odor during processing of the composition.
- the hydrogel composition of the present invention may be screen-printed and processed using screen-printing techniques, which allow for the formation of a hydrogel film reflecting the pattern of the screen design.
- screen print the composition certain viscosity and sheer thinning charateristics are required.
- the composition of the present invention achieves a viscosity of above about 10 Pa ⁇ s and shear thinning characteristics suitable to screen-printing (which are detailed below). This allows placement of desired dimensions of the gel directly onto a substrate, for example and electrode, with little to no yield loss and precise control over the ultimate thickness.
- the present composition yields a hydrogel with a thickness from about 1-25 mils.
- the method of the present invention allows manufacturers of electrodes to easily apply hydrogel compositions in the same manner onto these electrodes in desired dimensions. Also, the composition of the present invention allows for a system that may be cured using standard UV industry technology. This allows for quicker, cheaper processing by reducing yield loss during manufacturing and eliminating separate off-line formation of the hydrogel film.
- the hydrogel of the present invention does not require the use of additional gels or pastes to produce a sufficiently tacky product which adheres to skin and ensures good electrical contact between the measuring electrode and the skin. This decreases electrode cost and production time.
- hydrogel composition The main components of the hydrogel composition will be discussed herein below.
- the polymer binder is important to the compositions of this invention.
- the polymer component of the present invention allows the hydrogel to conform to uneven surfaces and helps to provide tackiness.
- the polymer of the present invention may be a viscoelastic polymer.
- the polymers are soluble or partially soluble in water. They become a hydrogel film after an initiation system is introduced to the total composition.
- the preferred polymers of the present invention are photocrosslinkable polymer binders.
- the preferred polymers are described in detail below. They are made of copolymer, interpolymer or mixtures thereof, wherein each copolymer or interpolymer comprises (1) a nonacidic comonomer comprising a C 1-10 alkyl acrylate, C 1-10 alkyl methacrylate, styrenes, substituted styrenes or combinations thereof and (2) an acidic comonomer comprising ethylenically unsaturated carboxylic acid containing moiety, wherein 2-25% of the carboxylic acid containing moiety is reacted with a reactive molecule having a first and second functional unit, wherein the first functional unit is a vinyl group and the second functional unit is capable of forming a chemical bond by reaction with the carboxylic acid moiety.
- Examples of the vinyl group include, but are not limited to methacrylate and acrylate groups.
- Examples of the second functional unit include, but are not limited to epoxides, alcohols and amines.
- the reacted portion of acidic comonomers became the third comonomer units (3) in the polymer.
- the fourth comonomer (4) is a nonacidic comonomer comprising C 1-10 alkyl or alkoxy methacrylate or acrylate.
- the resultant copolymer, interpolymer or mixture thereof has an acid content of at least 10 wt.
- the resultant copolymer, interpolymer or mixture can further react with bases, such Na2CO3 or K2CO3 to convert its methacrylic or acrylic acid units into its salt form. This resulting salt has the capability to absorb more water.
- acidic comonomer components in the composition is important in this technique.
- the acidic functional group provides the ability to be partially water soluble, to be able to become salt and be completely soluble. Furthermore, these acid units provide reactive sites for the introduction of UV-crosslinkable units.
- Appropriate acidic comonomers include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, or crotonic acid and ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, citraconic acid, vinyl succinic acid, and maleic acid, as well as their hemiesters, and in some cases their anhydrides and their mixtures.
- nonacidic comonomers (1) and (4) are alkyl acrylates or alkyl methacrylates as mentioned above, it is preferable that these nonacidic comonomers constitute at least 50 wt. %, preferably 70-75 wt. %, of the polymer binder.
- these nonacidic comonomers are not acrylates, it is preferable that these nonacidic comonomers constitute 50 wt. % of the polymer binder and that the other 50 wt. % is an acid anhydride such as the hemiester of maleic anhydride.
- the nonacidic portion of the polymer binder needs to contain at least 10 wt. % of nonacidic comonomer that are long chain (C5 and above) alkyl acrylate, alkyl methacrylate, or alkoxyl acylate or alkoxyl methacrylate to achieve good adhesion to skin after UV-crosslinking.
- These comonomer units help to lower the T g of the polymer and are hydrophilic.
- the use of single copolymers or combinations of copolymers as binders are recognized as long as each of these satisfies the various standards above. In addition to the above copolymers, adding small amounts of other polymer binders is possible.
- polyolefins such as polyethylene, polypropylene, polybutylene, polyisobutylene, and ethylene-propylene copolymers
- polyvinyl alcohol polymers PVA
- polyvinyl pyrrolidone polymers PVP
- vinyl alcohol and vinyl pyrrolidone copolymers as well as polyethers that are low alkylene oxide polymers such as polyethylene oxide can be cited.
- the acidic comonomer also provides the polymer with a reactive site to introduce a reactive molecule such as photocrosslinkable functional units. This is accomplished by utilizing 2-25% of the carboxylic acid containing moiety reacting with the reactive molecule that contains a vinyl unit, as shown in the schematic below.
- the final polymer has repeating units, as shown.
- R 1 , R 2 and R 4 are methyl group or hydrogen or a mixture thereof;
- R 3 is a straight, branched or ring alkyl group which may contain aromatic groups or other atoms, for example, oxygen;
- R 5 is an alkyl (C 1 -C 10 ).
- R6 is an alkoxyl (C1-C10).
- the polymers described herein can be produced by those skilled in the art of acrylate polymerization by commonly used solution polymerization techniques.
- acidic acrylate polymers are produced by mixing alpha- or beta-ethylenically unsaturated acids (acidic comonomers) with one or more copolymerizable vinyl monomer (nonacidic comonomers) in a relatively low-boiling-point (75-150° C.) organic solvent to obtain a 10-60% monomer mixture solution, then polymerizing the monomers by adding a polymerization catalyst and heating the mixture under normal pressure to the reflux temperature of the solvent. After the polymerization reaction is essentially complete, the acidic polymer solution produced is cooled to room temperature.
- a reactive molecule, a free radical polymerization inhibitor and a catalyst are added to the cooled polymer solution described above.
- the solution is stirred until the reaction is complete.
- the solution may be heated to speed up the reaction.
- the polymer solution is cooled to room temperature, samples are collected, and the polymer viscosity, molecular weight, and acid equivalents are measured.
- the weight average molecular weight of the polymer binder is in the range of 2,000-250,000 and any ranges contained therein.
- the molecular weight of the polymer binder will depend on the application. Weights less than 10,000 are generally useful in paste compositions and above 10,000 are generally useful in tapes or sheets. Polymers with molecular weight less than 10,000, generally have lower film forming ability. They may be used in tape formulations but generally require mixing with other compatible high molecular weight polymers to form a film or tape.
- UV-curable methacrylate monomers may be used in the invention. Depending on the application, it is not always necessary to include a monomer in the composition of the invention. Monomer components are present in amounts of 0-20 wt. %, based on the total weight of the dry photopolymerizable layer.
- Such preferred monomers include t-butyl acrylate and methacrylate, 1,5-pentanediol diacrylate and dimethacrylate, N,N-diethylaminoethyl acrylate and methacrylate, ethylene glycol diacrylate and dimethacrylate, 1,4-butanediol diacrylate and dimethacrylate, diethylene glycol diacrylate and dimethacrylate, hexamethylene glycol diacrylate and dimethacrylate, 1,3-propanediol diacrylate and dimethacrylate, decamethylene glycol diacrylate and dimethyacrylate, 1,4-cyclohexanediol diacrylate and dimethacrylate, 2,2-dimethylolpropane diacrylate and dimethacrylate, glycerol diacrylate and dimethacrylate, tripropylene glycol diacrylate and dimethacrylate, glycerol triacrylate and trimethacrylate, tri
- ethylenically unsaturated compounds having a weight average molecular weight of at least 300, e.g., alkylene or a polyalkylene glycol diacrylate prepared from an alkylene glycol of 2 to 15 carbons or a polyalkylene ether glycol of 1 to 10 ether linkages, and those disclosed in U.S. Pat. No. 2,927,022, e.g., those having a plurality of free radical polymerizable ethylenic linkages particularly when present as terminal linkages.
- the monomers which are used are polyoxyethylated trimethylolpropane triacrylate, ethylated pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate and 1,10-decanediol dimethlacrylate.
- the total wt % of polymer, monomer and mixtures thereof in the composition is in the range of about 5-35 wt. % based on total composition and any ranges contained therein.
- the monomer in the composition is present in an amounts of less than about 5 wt. %, based on total composition.
- Initiation systems which are suitable to the present invention include thermal initiation, redox initiation, photoinitiation, initiation by ionizing radiation, electroinitiation, and plasma initiation.
- the preferred initiation system is photoinitiation.
- Suitable photoinitiation systems are those, which generate free radicals upon exposure to actinic light at ambient temperature.
- These include the substituted or unsubstituted polynuclear quinones which are compounds having two intracyclic carbon atoms in a conjugated carbocyclic ring system, e.g., 2-benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-1-butanone, 2,2-dimethoxy-2-phenylacetophenone, 9,10-anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertbutylanthraquinone, octamethylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthrenequinone, benz (a) anthracene-7,12-dione, 2,3-naphthacene-5,12-dione, 2-methyl-1,4-nap
- photoinitiators which are also useful, even though some may be thermally active at temperatures as low as 85° C., are described in U.S. Pat. No. 2,760,863 and include vicinal ketaldonyl alcohols such as benzoin, pivaloin, acyloin ethers, e.g., benzoin methyl and ethyl ethers; alpha-hydrocarbon-substituted aromatic acyloins, including alpha-methylbenzoin, alpha-allylbenzoin and alphaphenylbenzoin, thioxanthone and/or thioxanthone derivatives and the appropriate hydrogen donors.
- Thickening agent refers to any substance that increases the viscosity and/or thixotropy of fluid dispersions or solutions.
- the thickening agent may also be a water-swellable component that may also act as a strengthening agent and/or conductive filler.
- Thickening agents suitable to the present invention include, but are not limited to: Polyvinyl pyrrolidone (PVP K90, ISP Technologies, Inc.); Fumed Silica (Cab-o-sil®, Cabot Corporation); Polyclar® V, ISP Technologies, Inc.; Aculyn®, ISP Technologies, Inc.; Polyethylene oxide (PEO 5MM, Polysciences, Inc.); Carboyximethyl cellulose (Aldrich); Polyvinyl pyrrolidone/vinyl acetate copolymer (PVPNA, S-630, ISP Technologies, Inc.); Kelgin® (ISP Technologies, Inc.); talc; and glass beads.
- PVP K90 Polyvinyl pyrrolidone
- Fumed Silica Cab-o-sil®, Cabot Corporation
- Polyclar® V ISP Technologies, Inc.
- Aculyn® ISP Technologies, Inc.
- Polyethylene oxide PEO 5MM, Polysciences, Inc.
- Carboyximethyl cellulose
- the solvent component of the organic medium which may be a mixture of solvents, is chosen so as to obtain complete solution therein of the polymer and other organic components.
- the solvent of the present invention is required in an amount necessary to obtain complete solution of the polymer and other organic components.
- the solvent should be inert (non-reactive) towards the other constituents of the composition.
- Such solvents include aliphatic alcohols, esters of such alcohols, for example, acetates and propionates; terpenes such as pine oil and alpha- or beta-terpineol, or mixtures thereof; ethylene glycol and esters thereof, such as ethylene glycol monobutyl ether and butyl cellosolve acetate; carbitol esters, such as butyl carbitol, butyl carbitol acetate and carbitol acetate and other appropriate solvents such as Texanol® (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate).
- suitable solvent(s) have lower boiling points, such solvents include ethylacetate, methanol, isoproanol, acetone, xylene, ethanol, methylethyl ketone and toluene.
- additives such as, ionic components, biocides, preservatives, humectants, surfactants, and adhesion promoters, can be included in the hydrogel composition to achieve desired properties.
- ionic components such as, ionic components, biocides, preservatives, humectants, surfactants, and adhesion promoters.
- Ionic component refers to an atom, radical, or molecule that is capable of being electrically charged, either negatively (anionic) or positively (cationic) or both (amphoteric), or to a material whose atoms already exist in a charged state.
- the ionic components of the present invention are added to reduce the transverse electrical resistance.
- the ionic components of the present invention may include salts (anionic, cationic, or anions of organic acids), buffers, and/or ionic polymers or polyelectrolytes.
- Biocide refers to an agent, incorporated or applied, that may destroy or deter biological material, including but not limited to bacteria, fungi, mold, and marine organisms. Biocides may be used in the present invention to destroy or deter biological material growth which may be promoted due to the aqueous environment. For example, biocides including, but not limited to high-energy radiation, Germ-all® (ISP Technologies, Inc.), and Irgasan® (Ciba Specialty Chemicals), may be used in the present invention.
- Preservative refers to a chemical, incorporated or applied, to prevent deterioration by means including, but not limited to living organisms, heat, oxidation, and weather.
- “Humectant” as used herein, is any substance that promotes retention of moisture.
- sorbitol, propylene glycol, glycerol, polyethylene glycol, poly(propylene oxide), or combinations thereof may be used in the present invention, among other humectants known to those skilled in the art.
- the humectant used in the present invention is biocompatible.
- “Surfactant” as used herein, is any substance that modifies the surface tension.
- the following surfactants, as well as others known to those skilled in the art, may be used in the present invention: Pluronic® P85 (BASF), Pluronic® P84 (BASF), Tween® 80 (Aldrich), Sodium Dodecyl Sulfate (Aldrich), Amphosol® CG, Amphosol® HCG, Ninol® LL (Stepan Corporation), Glycerol (Aldrich), sodium laureth sulfate, and poly ethylene glycol esters.
- Adhesion promoter is a material that may be added to the hydrogel composition to improve adhesion of the processed hydrogel film to the desired substrate.
- hydrogel compositions as described herein may be utilized to create a processed hydrogel film.
- the hydrogel composition is prepared to form a composition having suitable consistency and rheology for screen printing, the composition is then printed on a substrate in the conventional manner as known to those in the art of screen printing techniques.
- the composition may be screen printed to a desired pattern reflecting the pattern of the screen design.
- the viscosity of the hydrogel composition is typically within the following ranges when measured on a Brookfield 1/2RVT viscometer at low, moderate and high shear rates: Shear Rate (sec ⁇ 1 ) Viscosity (Pa *s) 0.2 30-1250 30-500 Preferred 30-100 Most Preferred 4 8-62 10-40 Preferred 15-30 Most Preferred 20 2-31 3-20 Preferred 5-10 Most Preferred
- the hydrogel film of the present invention may be formed by the method comprising the steps of: (1) providing the hydrogel composition as described herein above; (2) providing a substrate; (3) depositing the composition in (1) onto the substrate via screen printing techniques; and (4) processing said composition on said substrate to form a hydrogel film.
- the substrate of the hydrogel film forming method described above may be an electrode.
- the hydrogel film is formed directly onto the electrode in the precise location and dimensions desirable. This electrode may then be used in medical applications wherein the hydrogel film is sufficiently tacky to adhere to a patient's skin.
- hydrogel film of the present invention will eventually lose solvent under ambient conditions, they are preferably stored in a water and gas impermeable container. If the hydrogel is printed and formed to the desired shape and stored separately from the electrode with which it is to be used, both surfaces are preferably covered with a peelable release layer. If the hydrogel is to be stored as printed and mounted directly to the electrode with which it is to be used, its exposed surface, or the surface to be applied to the skin, is preferably covered with a peelable release layer.
- the release layer utilized may be any known to those skilled in the art, for example, but not limited to, a polyethylene or polyester layer may be utilized.
- Hydrogel Composition #1 Thickening Agent (Polyethylene oxide) 2.3% (PEO) (MW 2 MM) 2. H 2 O 57.7% 3. Surfactant (Pluronic ® P84) 2.6% 4. Ionic Component (NaCl) 0.6% 5. Polymer (Methyl methacrylate-co-methacyrlic 16.0% acid-co-UV-polymerizable group) 6. Solvent (Carbitol Acetate) 19.1% 7. Photoinitiator (Irgacure 369) 0.3% 8. Difunctional Monomer (Polyethylene glycol 1.4% dimethacrylate (PEGDMA))
- Hydrogel composition #1 resulted in a composition suitable for screen printing.
- the resulting composition was screen printed, exposed to UV-radiation using a Hg-vapor lamp until sufficiently cured. This processing resulted in a tacky hydrogel film.
- PEO Polyethylene oxide (MW 2MM), Polysciences, Inc.
- PEGDMA Polyethylene glycol dimethacrylate
- Hydrogel Composition #2 1. H 2 O 60.6% 2. Thickening Agent (PEO) (5 MM) 1.9% 3. Polymer (Methyl methacrylate-co-methacyrlic 16.9% acid-co-UV-polymerizable group) 4. Solvent (Carbitol acetate) 14.8% 5. Photoinitiator (Irgacure 369) 0.2% 6. Ionic Component (NaCl) 0.5% 7. Difunctional Monomer (PEGDMA, Aldrich) 1.5% 8. Trifunctional Monomer ((Trimehtylolpropane 1.0% triacrylate (TMPTA), UCB Chemical Corp) 9. Surfactant (Pluronic ® P84, BASF) 2.6%
- 0.6 g of thickening agent [polyethylene oxide (MW 5MM)] was combined with 20.6 g of water for 2 minutes then rolled overnight to produce a dissolved solution.
- 0.8 g of the surfactant (Pluronic® P84, BASF) was added and stirred by hand until dissolved, about 5 minutes.
- 0.2 g of ionic component (Sodium Chloride, JT Baker) was added and mixed by hand for about 2 minutes until dissolved.
- Hydrogel Composition #3 1. Thickener (Polyvinylpyrrolidone (K-90), ISP 6.5% Technologies) 2. H 2 0 49.4% 3. Polymer (Methyl methacrylate-co-methacyrlic 21.4% acid-co-UV-polymerizable group) 4. Photoinitiation System (Irgacure 369) 0.3% 5. Solvent (Carbitol Acetate) 18.8% 6. Ionic Component (NaCl) 0.6% 7. Humectant (Glycerol (Aldrich)) 3.0%
- Hydrogel composition #3 resulted in a composition suitable for screen printing.
- the resulting composition was screen printed, exposed to UV-radiation using a Hg-vapor lamp until sufficiently cured. This processing resulted in a tacky hydrogel film.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The present invention provides a screen printable hydrogel composition comprising: (a) soluble or partially soluble polymer wherein said polymer is a copolymer, interpolymer or mixture thereof; (b) initiation system; (c) thickener; (d) water; and (e) solvent; with the proviso that the composition has a viscosity of greater than about 10 Pa·s.
Description
- This invention relates to a hydrogel composition, its associated screen-printable application process, and the use of the hydrogel composition in the formation of medical electrodes.
- Hydrogel films (which usually contain greater than 50% water) are useful in many medical applications due to their hydrophilic, or water loving nature, and their ability to act as a conductive member interfacing with the skin of a patient (electrode applications). Typical medical applications involving the use of hydrogels include contact lenses, wound dressings, transcutaneous electrical nerve stimulator (TENS) units, electro-surgical units (ESU's), EKG/EEG applications, iontophoresis, and artificial muscles, artificial organs, and prosthetics. The most widely used polymer in hydrogel formation, especially in medical applications such as implants, blood bags, and syringes, is poly(hydroxyethyl methacrylate).
- While there are a variety of hydrogel compositions taught in the prior art which are utilized in medical applications, many of these compositions result in hydrogel films with significant disadvantages. Among the more significant disadvantages are issues associated with monomer-based hydrogel solutions and current hydrogel film production methods.
- For example, many of the prior art compositions consist predominantly of a monomer and water solution. Associated with these unpolymerized monomers are strong odors which may be reduced after polymerization. However, because the monomers are not 100% converted, generally about 50% conversion takes place, some odors may remain. Also, these unpolymerized monomers may migrate to the surface of the hydrogel film and may be toxic.
- Many prior art hydrogel compositions in current production are are cast and sold as films with release liners and are not suitable for screen printing. Typical hydrogel compositions disclosed in the prior art are applied in a sheet via a non-screen printing technology. The ability to screen print hydrogel compositions requires particular viscosity and shear thinning attributes. These attributes, which are required for screen printability, allow the ability to form a desired pattern and placement of desired dimensions of hydrogel composition in a precise manner. Prior art compositions are limited in ease of hydrogel film formation and processed hydrogel film thickness due to the rheology, shear thinning, and viscosity characteristics of the hydrogel composition. The rheology, shear thinning, and viscosity characteristics of the prior art compositions may lead to slower process times, extensive yield loss, and minimal control over ultimate hydrogel film thickness.
- As discussed above, numerous prior art patents exist Which disclose hydrogel compositions and medical electrodes utilizing the hydrogel films formed from those compositions. The following illustrate the state of the prior art.
- U.S. Pat. No. 5,540,033 to Fox et al., teaches a method for producing a sterile packaged adhesive hydrogel product by preparing an aqueous mixture of water, a polymer which can be cross-linked by radiation (electron beam not UV light) to form a hydrogel, and a cross-linking inhibitor in an amount sufficient to retard the cross-linking of the polymer when the mixture is exposed to radiation; providing the mixture in a predetermined shape or configuration representative of a hydrogel product; enclosing the shaped mixture in a sealed package; and subjecting the package to a dose of radiation sufficient to simultaneously cross-link and sterilize the mixture to provide a sterile packaged adhesive hydrogel product. Fox et al., teaches a providing step which comprises casting the mixture onto a substrate in the desired shape and at a thickness of between about 20 and 100 mils. A scrim is typically applied to the cast mixture when the thickness of the cast mixture is greater than about 25-30 mils.
- U.S. Pat. No. 5,868,136 to Fox et al., discloses an electrode providing electrical contact with a patient's skin comprising; a conductive member including means for connection to an external electrical apparatus; and means for electrically interfacing to said patient's skin being electrically and mechanically connected to said conductive member, said interfacing means being a non-liquid film and which comprises an electrically conductive organic polymer plasticized with a polyhydric alcohol with said organic polymer being derived from a monomeric mixture comprising from about 15 to 30 pph acrylic acid, 0.5 to 30 pph N-vinylpyrrolidone and 0.01 to 2 pph of a crosslinking agent and from about 0.5 to 8 pph of a thickening agent comprising a N-vinylpyrrolidone/acrylic acid copolymer. Fox et al., disclose an interfacing film thickness in a range 20 and 100 mils.
- U.S. Pat. No. 5,622,168 to Keusch et al., teaches a highly conductive hydrophilic gel comprising a uniform aqueous solution of a crosslinked water-soluble polymer, an amount of a water-soluble electrolyte effective to reduce the transverse electrical resistance of said aqueous mixture to an impedance at 60 Hz less than about 1,000 ohm, which hydrophilic gel also contains a humectant in an amount effective to retard the drying of the conductive hydrophilic gel when it is exposed to the atmosphere while being used. A physiological electrode adapted for providing electrical contact with a surface of a sentient creature and comprising a sheet of the conductive viscoelastic hydrophilic gel. Keusch et al., teaches the use of the hydrophilic gel in an electrode by the following process: 1) casting the aqueous mixture to form a sheet-like configuration (liquid film thickness of 0.1 to 2 mm before crosslinking); 2) subjecting the liquid film to a dose of high energy radiation sufficient to convert said film into a solid gel; 3) optionally cutting the hydrogel sheet to the desired size and shape for use as a conductive element; and 4) placing the solid gel onto the electrode.
- WO 97/02811 to Abraham et al., discloses a hydrogel patch, comprising: (a) a hydrophilic compound which forms a gel in the presence of water, which compound is present in an amount of about 4% or more by weight based on the weight of the hydrogel; (b) water in an amount of about 95% or less based on the weight of the hydrogel; (c) and enzyme capable of catalyzing a reaction; and (d) electrolyte. Abraham et al., teaches the casting of the hydrogel composition via a Gardner knife.
- WO 00/45698 to Heard et al., discloses an electrode providing electrical contact with a patient's skin which includes a conductive member adapted for connection to an external electrical apparatus, a non-liquid film for electrically interfacing to the patient's skin, the non-liquid film being electrically, and mechanically connected to the conductive member. The non-liquid film includes an electrically conductive organic polymer plasticized with a polyhydric alcohol with said organic polymer being derived from a monomeric mixture comprising from about 15 pph to 30 pph acrylic acid, 0.5 pph to 30 pph N-vinyl pyrrolidine and 0.01 pph to 2 pph of a crosslinking agent. The monomeric mixture may further comprise from about 0.5 pph to 8 pph of a thickening agent selected from the group consisting of N-vinyl pyrrolidine/acrylic acid copolymers and N-vinyl pyrrolidine/vinyl acetate.
- Considering the disadvantages of the prior art detailed above, a need therefore exists for a novel hydrogel composition and process which overcomes these disadvantages. Therefore, an objective of this invention is to provide a screen-printable hydrogel composition and process which allows for the ability to form a desired pattern and for placement of desired dimensions of the gel directly onto a substrate with little to no yield loss and control over the ultimate thickness. A further object of the invention is to provide a hydrogel composition which does not have a strong odor prior to processing.
- The present invention provides a screen printable hydrogel composition comprising: (a) a soluble or partially soluble polymer wherein said polymer is a copolymer, interpolymer or mixture thereof; (b) initiation system; (c) thickener; (d) water; and (e) solvent; with the proviso that the composition has a viscosity of greater than about 10 Pa·s.
- The present invention further provides a method of producing a processed hydrogel film comprising the steps of: (a) providing a screen printable hydrogel composition; (b) providing a substrate; (c) depositing the composition in (a) onto said substrate via screen printing techniques; and (d) processing said composition on said substrate to form a hydrogel film. Furthermore, the present invention provides a hydrogel film formed by the method above.
- The present invention also provides an electrode utilizing the disclosed hydrogel composition and an electrode utilizing the hydrogel film formed by the method above.
- Unless otherwise indicted, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and SO forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
- The novel hydrogel composition of the present invention simultaneously overcomes numerous disadvantages prominent in the prior art, including (1) strong monomer odor, (2) processing method of hydrogel film and electrode formation, and (3) poor adhesion characteristics.
- The solution to the problem of strong odors asssociated with unpolymerized monomers of the prior art is overcome by replacing predominantly monomer solutions with a solution of predominantly functional polymer and water. Small amounts of monomer may be utilized in the present invention to enhance crosslinking, but the monomer is not required in the present invention. The level of monomer that may be utilized in the composition of the present invention results in minimal monomer odor during processing of the composition.
- Furthermore, the hydrogel composition of the present invention may be screen-printed and processed using screen-printing techniques, which allow for the formation of a hydrogel film reflecting the pattern of the screen design. In order to screen print the composition, certain viscosity and sheer thinning charateristics are required. The composition of the present invention achieves a viscosity of above about 10 Pa·s and shear thinning characteristics suitable to screen-printing (which are detailed below). This allows placement of desired dimensions of the gel directly onto a substrate, for example and electrode, with little to no yield loss and precise control over the ultimate thickness. The present composition yields a hydrogel with a thickness from about 1-25 mils.
- As many other types of compositions used in the formation of an electrode are already screen printed, the method of the present invention allows manufacturers of electrodes to easily apply hydrogel compositions in the same manner onto these electrodes in desired dimensions. Also, the composition of the present invention allows for a system that may be cured using standard UV industry technology. This allows for quicker, cheaper processing by reducing yield loss during manufacturing and eliminating separate off-line formation of the hydrogel film.
- Additionally, the hydrogel of the present invention does not require the use of additional gels or pastes to produce a sufficiently tacky product which adheres to skin and ensures good electrical contact between the measuring electrode and the skin. This decreases electrode cost and production time.
- The main components of the hydrogel composition will be discussed herein below.
- I. Organic Viscoelastic Polymer
- The polymer binder is important to the compositions of this invention. The polymer component of the present invention allows the hydrogel to conform to uneven surfaces and helps to provide tackiness. For example, the polymer of the present invention may be a viscoelastic polymer. Additionally, the polymers are soluble or partially soluble in water. They become a hydrogel film after an initiation system is introduced to the total composition.
- The preferred polymers of the present invention are photocrosslinkable polymer binders. The preferred polymers are described in detail below. They are made of copolymer, interpolymer or mixtures thereof, wherein each copolymer or interpolymer comprises (1) a nonacidic comonomer comprising a C1-10 alkyl acrylate, C1-10 alkyl methacrylate, styrenes, substituted styrenes or combinations thereof and (2) an acidic comonomer comprising ethylenically unsaturated carboxylic acid containing moiety, wherein 2-25% of the carboxylic acid containing moiety is reacted with a reactive molecule having a first and second functional unit, wherein the first functional unit is a vinyl group and the second functional unit is capable of forming a chemical bond by reaction with the carboxylic acid moiety. Examples of the vinyl group include, but are not limited to methacrylate and acrylate groups. Examples of the second functional unit include, but are not limited to epoxides, alcohols and amines. The reacted portion of acidic comonomers became the third comonomer units (3) in the polymer. The fourth comonomer (4) is a nonacidic comonomer comprising C1-10 alkyl or alkoxy methacrylate or acrylate. The resultant copolymer, interpolymer or mixture thereof has an acid content of at least 10 wt. % of the total polymer weight; a glass transition temperature of 5-80° C., preferably 5-40° C., and an weight average molecular weight in the range of 2,000-250,000 and all ranges contained within. The resultant copolymer, interpolymer or mixture can further react with bases, such Na2CO3 or K2CO3 to convert its methacrylic or acrylic acid units into its salt form. This resulting salt has the capability to absorb more water.
- The presence of acidic comonomer components in the composition is important in this technique. The acidic functional group provides the ability to be partially water soluble, to be able to become salt and be completely soluble. Furthermore, these acid units provide reactive sites for the introduction of UV-crosslinkable units. Appropriate acidic comonomers include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, or crotonic acid and ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, citraconic acid, vinyl succinic acid, and maleic acid, as well as their hemiesters, and in some cases their anhydrides and their mixtures.
- When the nonacidic comonomers (1) and (4) are alkyl acrylates or alkyl methacrylates as mentioned above, it is preferable that these nonacidic comonomers constitute at least 50 wt. %, preferably 70-75 wt. %, of the polymer binder. When the nonacidic comonomers are not acrylates, it is preferable that these nonacidic comonomers constitute 50 wt. % of the polymer binder and that the other 50 wt. % is an acid anhydride such as the hemiester of maleic anhydride.
- The nonacidic portion of the polymer binder needs to contain at least 10 wt. % of nonacidic comonomer that are long chain (C5 and above) alkyl acrylate, alkyl methacrylate, or alkoxyl acylate or alkoxyl methacrylate to achieve good adhesion to skin after UV-crosslinking. These comonomer units help to lower the Tg of the polymer and are hydrophilic. The use of single copolymers or combinations of copolymers as binders are recognized as long as each of these satisfies the various standards above. In addition to the above copolymers, adding small amounts of other polymer binders is possible. For examples of these, polyolefins such as polyethylene, polypropylene, polybutylene, polyisobutylene, and ethylene-propylene copolymers, polyvinyl alcohol polymers (PVA), polyvinyl pyrrolidone polymers (PVP), vinyl alcohol and vinyl pyrrolidone copolymers, as well as polyethers that are low alkylene oxide polymers such as polyethylene oxide can be cited.
- The acidic comonomer also provides the polymer with a reactive site to introduce a reactive molecule such as photocrosslinkable functional units. This is accomplished by utilizing 2-25% of the carboxylic acid containing moiety reacting with the reactive molecule that contains a vinyl unit, as shown in the schematic below. The final polymer has repeating units, as shown. These polymers are well known to those skilled in the art.
Where: - R1, R2 and R4 are methyl group or hydrogen or a mixture thereof;
- R3 is a straight, branched or ring alkyl group which may contain aromatic groups or other atoms, for example, oxygen; and
- R5 is an alkyl (C1-C10).
- R6 is an alkoxyl (C1-C10).
- The polymers described herein can be produced by those skilled in the art of acrylate polymerization by commonly used solution polymerization techniques. Typically, such acidic acrylate polymers are produced by mixing alpha- or beta-ethylenically unsaturated acids (acidic comonomers) with one or more copolymerizable vinyl monomer (nonacidic comonomers) in a relatively low-boiling-point (75-150° C.) organic solvent to obtain a 10-60% monomer mixture solution, then polymerizing the monomers by adding a polymerization catalyst and heating the mixture under normal pressure to the reflux temperature of the solvent. After the polymerization reaction is essentially complete, the acidic polymer solution produced is cooled to room temperature.
- A reactive molecule, a free radical polymerization inhibitor and a catalyst are added to the cooled polymer solution described above. The solution is stirred until the reaction is complete. Optionally, the solution may be heated to speed up the reaction. After the reaction is complete and the reactive molecules are chemically attached to the polymer backbone, the polymer solution is cooled to room temperature, samples are collected, and the polymer viscosity, molecular weight, and acid equivalents are measured.
- Furthermore, the weight average molecular weight of the polymer binder is in the range of 2,000-250,000 and any ranges contained therein. The molecular weight of the polymer binder will depend on the application. Weights less than 10,000 are generally useful in paste compositions and above 10,000 are generally useful in tapes or sheets. Polymers with molecular weight less than 10,000, generally have lower film forming ability. They may be used in tape formulations but generally require mixing with other compatible high molecular weight polymers to form a film or tape.
- Conventional UV-curable methacrylate monomers may be used in the invention. Depending on the application, it is not always necessary to include a monomer in the composition of the invention. Monomer components are present in amounts of 0-20 wt. %, based on the total weight of the dry photopolymerizable layer. Such preferred monomers include t-butyl acrylate and methacrylate, 1,5-pentanediol diacrylate and dimethacrylate, N,N-diethylaminoethyl acrylate and methacrylate, ethylene glycol diacrylate and dimethacrylate, 1,4-butanediol diacrylate and dimethacrylate, diethylene glycol diacrylate and dimethacrylate, hexamethylene glycol diacrylate and dimethacrylate, 1,3-propanediol diacrylate and dimethacrylate, decamethylene glycol diacrylate and dimethyacrylate, 1,4-cyclohexanediol diacrylate and dimethacrylate, 2,2-dimethylolpropane diacrylate and dimethacrylate, glycerol diacrylate and dimethacrylate, tripropylene glycol diacrylate and dimethacrylate, glycerol triacrylate and trimethacrylate, trimethylolpropane triacrylate and trimethacrylate, pentaerythritol triacrylate and trimethacrylate, polyoxyethylated trimethylolpropane triacrylate and trimethacrylate and similar compounds as disclosed in U.S. Pat. No. 3,380,831, 2,2-di(p-hydroxy-phenyl)-propane diacrylate, pentaerythritol tetraacrylate and tetramethacrylate, 2,2-di-(p-hydroxyphenyl)-propane dimethacrylate, triethylene glycol diacrylate, polyoxyethyl-2,2-d i-(p-hydroxyphenyl)propane dimethacrylate, di-(3-methacryloxy-2-hydroxypropyl)ether of bisphenol-A, di-(2-methacryloxyethyl) ether of bisphenol-A, di-(3-acryloxy-2-hydroxypropyl)ether of bisphenol-A, di-(2-acryloxyethyl)ether of bisphenol-A, di-(3-methacrloxy-2-hydroxypropyl)ether of 1,4-butanediol, triethylene glycol dimethacrylate, polyoxypropyltrimethylol propane triacrylate, butylene glycol diacrylate and dimethacrylate, 1,2,4-butanetriol triacrylate and trimethacrylate, 2,2,4-trimethyl-1,3-pentanediol diacrylate and dimethacrylate, 1-phenyl ethylene-1,2-dimethacrylate, diallyl fumarate, styrene, 1,4-benzenediol dimethacrylate, 1,4-diisopropenyl benzene, and 1,3,5-triisopropenyl benzene. Also useful are ethylenically unsaturated compounds having a weight average molecular weight of at least 300, e.g., alkylene or a polyalkylene glycol diacrylate prepared from an alkylene glycol of 2 to 15 carbons or a polyalkylene ether glycol of 1 to 10 ether linkages, and those disclosed in U.S. Pat. No. 2,927,022, e.g., those having a plurality of free radical polymerizable ethylenic linkages particularly when present as terminal linkages. In several embodiments, the monomers which are used are polyoxyethylated trimethylolpropane triacrylate, ethylated pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate and 1,10-decanediol dimethlacrylate.
- The total wt % of polymer, monomer and mixtures thereof in the composition is in the range of about 5-35 wt. % based on total composition and any ranges contained therein. The monomer in the composition is present in an amounts of less than about 5 wt. %, based on total composition.
- II. Initiation System
- Initiation systems which are suitable to the present invention include thermal initiation, redox initiation, photoinitiation, initiation by ionizing radiation, electroinitiation, and plasma initiation. The preferred initiation system is photoinitiation.
- Suitable photoinitiation systems are those, which generate free radicals upon exposure to actinic light at ambient temperature. These include the substituted or unsubstituted polynuclear quinones which are compounds having two intracyclic carbon atoms in a conjugated carbocyclic ring system, e.g., 2-benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-1-butanone, 2,2-dimethoxy-2-phenylacetophenone, 9,10-anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertbutylanthraquinone, octamethylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthrenequinone, benz (a) anthracene-7,12-dione, 2,3-naphthacene-5,12-dione, 2-methyl-1,4-naphthoquinone, 1,4-dimethylanthraquinone, 2,3-dimethylanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, retenequinone, 7,8,9,10-tetrahydronaphthracene-5,12-dione, and 1,2,3,4-tetrahydrobenz(a)anthracene-7,12-dione. Other photoinitiators which are also useful, even though some may be thermally active at temperatures as low as 85° C., are described in U.S. Pat. No. 2,760,863 and include vicinal ketaldonyl alcohols such as benzoin, pivaloin, acyloin ethers, e.g., benzoin methyl and ethyl ethers; alpha-hydrocarbon-substituted aromatic acyloins, including alpha-methylbenzoin, alpha-allylbenzoin and alphaphenylbenzoin, thioxanthone and/or thioxanthone derivatives and the appropriate hydrogen donors. Photoreducible dyes and reducing agents disclosed in U.S. Pat. Nos. 2,850,445, 2,875,047, 3,097,096, 3,074,974, 3,097,097, and 3,145,104, as well as dyes of the phenazine, oxazine, and quinone classes, Michler's ketone, benzophenone, 2,4,5-triphenylimidazolyl dimers with hydrogen donors including leuco dyes and mixtures thereof as described in U.S. Pat. Nos. 3,427,161, 3,479,185, and 3,549,367 can be used as initiators. Also useful with photoinitiators and photoinhibitors are sensitizers disclosed in U.S. Pat. No. 4,162,162. The photoinitiator or photoinitiator system is present in 0.05 to 10% by weight based on the total weight of a dry photopolymerizable layer.
- III. Thickening Agent
- “Thickening agent” as used herein, refers to any substance that increases the viscosity and/or thixotropy of fluid dispersions or solutions. The thickening agent may also be a water-swellable component that may also act as a strengthening agent and/or conductive filler. Thickening agents suitable to the present invention include, but are not limited to: Polyvinyl pyrrolidone (PVP K90, ISP Technologies, Inc.); Fumed Silica (Cab-o-sil®, Cabot Corporation); Polyclar® V, ISP Technologies, Inc.; Aculyn®, ISP Technologies, Inc.; Polyethylene oxide (PEO 5MM, Polysciences, Inc.); Carboyximethyl cellulose (Aldrich); Polyvinyl pyrrolidone/vinyl acetate copolymer (PVPNA, S-630, ISP Technologies, Inc.); Kelgin® (ISP Technologies, Inc.); talc; and glass beads.
- IV. Solvent
- The solvent component of the organic medium, which may be a mixture of solvents, is chosen so as to obtain complete solution therein of the polymer and other organic components. The solvent of the present invention is required in an amount necessary to obtain complete solution of the polymer and other organic components. The solvent should be inert (non-reactive) towards the other constituents of the composition. Such solvents include aliphatic alcohols, esters of such alcohols, for example, acetates and propionates; terpenes such as pine oil and alpha- or beta-terpineol, or mixtures thereof; ethylene glycol and esters thereof, such as ethylene glycol monobutyl ether and butyl cellosolve acetate; carbitol esters, such as butyl carbitol, butyl carbitol acetate and carbitol acetate and other appropriate solvents such as Texanol® (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate). Other suitable solvent(s) have lower boiling points, such solvents include ethylacetate, methanol, isoproanol, acetone, xylene, ethanol, methylethyl ketone and toluene.
- V. Optional Additional Additives of Hydrogel Composition
- Additional additives such as, ionic components, biocides, preservatives, humectants, surfactants, and adhesion promoters, can be included in the hydrogel composition to achieve desired properties. A brief description of some possible additives is provided below.
- “Ionic component”, as used herein, refers to an atom, radical, or molecule that is capable of being electrically charged, either negatively (anionic) or positively (cationic) or both (amphoteric), or to a material whose atoms already exist in a charged state. The ionic components of the present invention are added to reduce the transverse electrical resistance. For example, the ionic components of the present invention may include salts (anionic, cationic, or anions of organic acids), buffers, and/or ionic polymers or polyelectrolytes.
- “Biocide” as used herein, refers to an agent, incorporated or applied, that may destroy or deter biological material, including but not limited to bacteria, fungi, mold, and marine organisms. Biocides may be used in the present invention to destroy or deter biological material growth which may be promoted due to the aqueous environment. For example, biocides including, but not limited to high-energy radiation, Germ-all® (ISP Technologies, Inc.), and Irgasan® (Ciba Specialty Chemicals), may be used in the present invention.
- “Preservative” as used herein, refers to a chemical, incorporated or applied, to prevent deterioration by means including, but not limited to living organisms, heat, oxidation, and weather.
- “Humectant” as used herein, is any substance that promotes retention of moisture. For example, sorbitol, propylene glycol, glycerol, polyethylene glycol, poly(propylene oxide), or combinations thereof may be used in the present invention, among other humectants known to those skilled in the art. Preferably, the humectant used in the present invention is biocompatible.
- “Surfactant” as used herein, is any substance that modifies the surface tension. For example, the following surfactants, as well as others known to those skilled in the art, may be used in the present invention: Pluronic® P85 (BASF), Pluronic® P84 (BASF), Tween® 80 (Aldrich), Sodium Dodecyl Sulfate (Aldrich), Amphosol® CG, Amphosol® HCG, Ninol® LL (Stepan Corporation), Glycerol (Aldrich), sodium laureth sulfate, and poly ethylene glycol esters.
- “Adhesion promoter” as used herein, is a material that may be added to the hydrogel composition to improve adhesion of the processed hydrogel film to the desired substrate.
- VI. Production of Processed Hydrogel Film and Electrode
- The hydrogel compositions as described herein may be utilized to create a processed hydrogel film. Once the hydrogel composition is prepared to form a composition having suitable consistency and rheology for screen printing, the composition is then printed on a substrate in the conventional manner as known to those in the art of screen printing techniques. The composition may be screen printed to a desired pattern reflecting the pattern of the screen design.
- The viscosity of the hydrogel composition is typically within the following ranges when measured on a Brookfield 1/2RVT viscometer at low, moderate and high shear rates:
Shear Rate (sec−1) Viscosity (Pa *s) 0.2 30-1250 30-500 Preferred 30-100 Most Preferred 4 8-62 10-40 Preferred 15-30 Most Preferred 20 2-31 3-20 Preferred 5-10 Most Preferred - The hydrogel film of the present invention may be formed by the method comprising the steps of: (1) providing the hydrogel composition as described herein above; (2) providing a substrate; (3) depositing the composition in (1) onto the substrate via screen printing techniques; and (4) processing said composition on said substrate to form a hydrogel film.
- Furthermore, the substrate of the hydrogel film forming method described above may be an electrode. Thus, the hydrogel film is formed directly onto the electrode in the precise location and dimensions desirable. This electrode may then be used in medical applications wherein the hydrogel film is sufficiently tacky to adhere to a patient's skin.
- Because the hydrogel film of the present invention will eventually lose solvent under ambient conditions, they are preferably stored in a water and gas impermeable container. If the hydrogel is printed and formed to the desired shape and stored separately from the electrode with which it is to be used, both surfaces are preferably covered with a peelable release layer. If the hydrogel is to be stored as printed and mounted directly to the electrode with which it is to be used, its exposed surface, or the surface to be applied to the skin, is preferably covered with a peelable release layer. The release layer utilized may be any known to those skilled in the art, for example, but not limited to, a polyethylene or polyester layer may be utilized.
- The invention will now be described in further detail by reference to the following, non-limiting examples.
-
- 1) Into a 1 L flask equipped with a nitrogen gas inlet and mechanical stirrer, 200 grams of methylethylketone (MEK) was added and heated under nitrogen gas to reflux;
- 2) A mixture of 35 grams di(ethylene glycol) methyl ether methacrylate, 40 grams of methyl methacrylate, 25 grams of methacrylic acid and 150 grams MEK was continuously added into the above 1 L flask at a constant speed over a period of 120 minutes, using pump#1;
- 3) A mixture of 6 grams VAZO52 and 26 grams MEK was continuously added into the above 1 L flask over a period of 140 minutes, using pump#2. The two pumps started at the same time. During the addition, the reaction mixture was stirred at reflux temperature under nitrogen gas.
- 4) Continue to stir at reflux temperature for 120 minutes after the addition;
- 5) Cool the above reaction mixture to 60 C, 200 grams MEK was added. The temperature was kept at 55 C, and 1 gram 4-methoxyhydroquinone (MEHQ) was added;
- 6) Then, 1 gram tetraethylammonium bromide was added, followed by addition of 13.75 grams glycidyl methacrylate;
- 7) The mixture was stirred at 58 C for 24 hours. Then solvent was removed by evaporation and the mixture was dried at 50 C under vacuum for 12 hours;
- 8) All materials were used as received from Aldrich except VAZO52 from DuPont.
-
Hydrogel Composition #1 1. Thickening Agent (Polyethylene oxide) 2.3% (PEO) (MW 2 MM) 2. H2O 57.7% 3. Surfactant (Pluronic ® P84) 2.6% 4. Ionic Component (NaCl) 0.6% 5. Polymer (Methyl methacrylate-co-methacyrlic 16.0% acid-co-UV-polymerizable group) 6. Solvent (Carbitol Acetate) 19.1% 7. Photoinitiator (Irgacure 369) 0.3% 8. Difunctional Monomer (Polyethylene glycol 1.4% dimethacrylate (PEGDMA)) - In a 100 ml jar, 1.6 g of thickening agent [polyethylene oxide (MW 2MM)] was combined with 40.4 g of water for 2 minutes then rolled overnight to produce a dissolved solution. To the dissolved solution, 1.8 g of the surfactant (Pluronic® P84, BASF) was added and stirred by hand until dissolved, about 5 minutes. To that solution, 0.4 g of ionic component (Sodium Chloride, JT Baker) was added and mixed by hand for about 2 minutes until dissolved. Separately, in a 100 ml beaker, 11.2 g of the polymer (Methyl methacrylate-co-methacyrlic acid-co-UV-polymerizable group), produced according to the methodology above, was added in 20% increments with 1 hour of mixing after each addition at 50° C. in 13.4 g of solvent (Carbitol Acetate, Eastman Chemical). After all additions, the final solution was stirred overnight at 50° C. 0.2 g of photoinitiator (Irgacure 369, Ciba) was added to the polymer solution and mixed by hand until dissolved, about 2 minutes. Lastly, the two solutions were combined, and 1.0 g of PEGDMA was added. The resulting solution was stirred vigorously for 5 minutes.
- Hydrogel composition #1 resulted in a composition suitable for screen printing. The resulting composition was screen printed, exposed to UV-radiation using a Hg-vapor lamp until sufficiently cured. This processing resulted in a tacky hydrogel film.
- Key:
- 1. PEO=Polyethylene oxide (MW 2MM), Polysciences, Inc.
- 3. Surfactant, to make a homogeneous mixture, BASF
- 4. Ionic component—Sodium Chloride, JT Baker
- 5. Polymer=Methyl methacrylate-co-methacyrlic acid-co-UV-polymerizable group
- 6. Carbitol Acetate, Eastman Chemical
- 7. Irgacure 369, Ciba
- 8. PEGDMA=Polyethylene glycol dimethacrylate, Aldrich
-
Hydrogel Composition #2 1. H2O 60.6% 2. Thickening Agent (PEO) (5 MM) 1.9% 3. Polymer (Methyl methacrylate-co-methacyrlic 16.9% acid-co-UV-polymerizable group) 4. Solvent (Carbitol acetate) 14.8% 5. Photoinitiator (Irgacure 369) 0.2% 6. Ionic Component (NaCl) 0.5% 7. Difunctional Monomer (PEGDMA, Aldrich) 1.5% 8. Trifunctional Monomer ((Trimehtylolpropane 1.0% triacrylate (TMPTA), UCB Chemical Corp) 9. Surfactant (Pluronic ® P84, BASF) 2.6% - In a 100 ml jar, 0.6 g of thickening agent [polyethylene oxide (MW 5MM)] was combined with 20.6 g of water for 2 minutes then rolled overnight to produce a dissolved solution. To the dissolved solution, 0.8 g of the surfactant (Pluronic® P84, BASF) was added and stirred by hand until dissolved, about 5 minutes. Next, 0.2 g of ionic component (Sodium Chloride, JT Baker) was added and mixed by hand for about 2 minutes until dissolved. Separately, in a 100 ml beaker, 5.7 g of the polymer (Methyl methacrylate-co-methacyrlic acid-co-UV-polymerizable group), produced according to the methodology above, was added in 20% increments with 1 hour of mixing after each addition at 50° C. in 5.0 g of solvent (Carbitol Acetate, Eastman Chemical). After all additions, the final solution was stirred overnight at 50° C. 0.07 g of photoinitiator (Irgacure 369, Ciba) was added to the polymer solution and mixed by hand until dissolved, about 2 minutes. Lastly, the two solutions were combined, and 0.5 g of PEGDMA and 0.3 g. of TMPTA were added. The resulting solution was stirred vigorously for 5 minutes.
-
Hydrogel Composition #3 1. Thickener (Polyvinylpyrrolidone (K-90), ISP 6.5% Technologies) 2. H20 49.4% 3. Polymer (Methyl methacrylate-co-methacyrlic 21.4% acid-co-UV-polymerizable group) 4. Photoinitiation System (Irgacure 369) 0.3% 5. Solvent (Carbitol Acetate) 18.8% 6. Ionic Component (NaCl) 0.6% 7. Humectant (Glycerol (Aldrich)) 3.0% - In a 100 ml jar, 0.7 g of thickener (Polyvinylpyrrolidone (K-90), ISP Technologies) was combined with 0.5 g of water for 2 minutes then rolled overnight to produce a dissolved solution. Next, 0.07 g of ionic component (Sodium Chloride, JT Baker) was added and mixed by hand for about 2 minutes until dissolved. Separately, in a 50 ml beaker, 2.4 g of the polymer was added in 20% increments with 1 hour of mixing after each addition at 50° C. in 2.2 g of solvent (Carbitol Acetate, Eastman Chemical). After all additions, the final solution was stirred overnight at 50° C., 0.03 g of photoinitiator (Irgacure 369, Ciba) was added to the polymer solution and mixed by hand until dissolved, about 2 minutes. Lastly, the two solutions were combined, and 0.3 g of humectant (Glycerol (Aldrich)) was added. The resulting solution was stirred vigorously for 5 minutes.
- Hydrogel composition #3 resulted in a composition suitable for screen printing. The resulting composition was screen printed, exposed to UV-radiation using a Hg-vapor lamp until sufficiently cured. This processing resulted in a tacky hydrogel film.
Claims (17)
1. A screen printable hydrogel composition comprising:
(b) A soluble or partially soluble polymer wherein said polymer is a copolymer, interpolymer or mixture thereof;
(c) initiation system;
(d) thickener;
(e) water; and
(f) solvent;
with the proviso that the composition has a viscosity of greater than about 10 Pa·s.
2. The composition of claim 1 wherein said polymer is a photocrosslinkable polymer which is a copolymer, interpolymer or mixture thereof, wherein each copolymer or interpolymer comprises (1) a nonacidic comonomer comprising a C1-10 alkyl acrylate, C1-10 alkyl methacrylate, styrenes, substituted styrenes or combinations thereof; (2) an acidic comonomer and its salts comprising ethylenically unsaturated carboxylic acid containing moiety, wherein 2-25% of the carboxylic acid containing moiety is reacted with a reactive molecule having a first and second functional unit, wherein the first functional unit is a vinyl group and the second functional unit is capable of forming a chemical bond by reaction with the carboxylic acid moiety; (3) third comonomer units formed from the reacted portion of acidic comonomers; and (4) a nonacidic comonomer comprising C1-10 alkyl or alkoxy methacrylate or acrylate.
3. The composition of claim 2 wherein the vinyl group is selected from a methacrylate, acrylate group or mixtures thereof.
4. The composition of claim 2 wherein the second functional unit is selected from an epoxide, alcohol, amine or mixtures thereof.
5. The composition of any one of claims 1-4 further comprising a monomer.
6. The composition of claim 5 wherein said monomer is selected from the group comprising polyoxyethylated trimethylolpropane triacrylate, ethylated pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, 1,10-decanediol dimethlacrylate and mixtures thereof.
7. The composition of any one of claims 1-6 in which the solvent is selected from the group comprising carbitol acetate, ethanol, methyl ethyl ketone, acetone, and mixtures thereof.
8. The composition of any of claims 1-7 wherein the thickener is selected from the group comprising polyvinyl pyrrolidone, fumed silica, polyethylene oxide, carboyximethyl cellulose, polyvinyl pyrrolidone/vinyl acetate copolymer, and mixtures thereof.
9. The composition of any one of claims 1-8 further comprising an additive selected from the group comprising humectants, surfactants, biocides, preservatives and combinations thereof.
10. The composition of any one of claims 1-9 further comprising an ionic component.
11. The composition of any of claims 1-10 which is in the form of a paste suitable for screen printing.
12. A method of producing a processed hydrogel film comprising:
(a) providing a screen printable hydrogel composition;
(b) providing a substrate;
(c) depositing the composition in (a) onto said substrate via screen printing techniques; and
(d) processing said composition on said substrate to form a hydrogel film.
13. A method of producing a processed screen printable hydrogel film:
comprising
(a) A soluble or partially soluble polymer wherein said polymer is a photocrosslinkable polymer which is a copolymer, interpolymer or mixture thereof, wherein each copolymer or interpolymer comprises
(1) a nonacidic comonomer comprising a C1-10 alkyl acrylate, C1-10 alkyl methacrylate, styrenes or combinations thereof;
(2) an acidic comonomer and its salts comprising ethylenically unsaturated carboxylic acid containing moiety, wherein 2-25% of the carboxylic acid containing moiety is reacted with a reactive molecule having a first and second functional unit, wherein the first functional unit is a vinyl group and the second functional unit is capable of forming a chemical bond by reaction with the carboxylic acid moiety;
(3) third comonomer units formed from the reacted portion of acidic comonomers; and
(4) a nonacidic comonomer comprising C1-10 alkyl or alkoxy methacrylate or acrylate, along with
initiation system;
thickener;
water; and
solvent
with the proviso that the composition has a viscosity of greater than about 10 Pa·s and wherein said composition is a screen printable hydrogel composition, in the form of a paste suitable for screen printing onto a substrate comprising:
(a′) providing a substrate;
(b′) depositing the composition in (a) onto said substrate via screen printing techniques; and
(c′) processing said composition on said substrate to form a hydrogel film.
14. A hydrogel film formed by the method of claim 13 .
15. An electrode utilizing (a) A soluble or partially soluble polymer wherein said polymer is a photocrosslinkable polymer which is a copolymer, interpolymer or mixture thereof, wherein each copolymer or interpolymer comprises (1) a nonacidic comonomer comprising a C1-10 alkyl acrylate, C1-10 alkyl methacrylate, styrenes or combinations thereof; (2) an acidic comonomer and its salts comprising ethylenically unsaturated carboxylic acid containing moiety, wherein 2-25% of the carboxylic acid containing moiety is reacted with a reactive molecule having a first and second functional unit, wherein the first functional unit is a vinyl group and the second functional unit is capable of forming a chemical bond by reaction with the carboxylic acid moiety; (3) third comonomer units formed from the reacted portion of acidic comonomers; and (4) a nonacidic comonomer comprising C1-10 alkyl or alkoxy methacrylate or acrylate;
(g) initiation system;
(h) thickener;
(i) water; and
(j) solvent;
with the proviso that the composition has a viscosity of greater than about 10 Pa·s and wherein said composition is a screen printable hydrogel composition, in the form of a paste suitable for screen printing.
16. An electrode utilizing a hydrogel film produced by the following steps:
providing; (a) A soluble or partially soluble polymer wherein said polymer is a photocrosslinkable polymer which is a copolymer, interpolymer or mixture thereof, wherein each copolymer or interpolymer comprises (1) a nonacidic comonomer comprising a C1-10 alkyl acrylate, C1-10 alkyl methacrylate, styrenes or combinations thereof; (2) an acidic comonomer and its salts comprising ethylenically unsaturated carboxylic acid containing moiety, wherein 2-25% of the carboxylic acid containing moiety is reacted with a reactive molecule having a first and second functional unit, wherein the first functional unit is a vinyl group and the second functional unit is capable of forming a chemical bond by reaction with the carboxylic acid moiety; (3) third comonomer units formed from the reacted portion of acidic comonomers; and (4) a nonacidic comonomer comprising C1-10 alkyl or alkoxy methacrylate or acreylate;
initiation system;
thickener;
water; and
solvent
with the proviso that the composition has a viscosity of greater than about 10 Pa·s and wherein said composition is a screen printable hydrogel composition, in the form of a paste suitable for screen printing.
providing a suitable substrate;
depositing the composition in (a) onto said substrate via screen printing techniques; and processing said composition on said substrate to form a hydrogel film.
17. An electrode utilizing A screen printable hydrogel composition comprising:
(a) A soluble or partially soluble polymer wherein said polymer is a photocrosslinkable polymer which is a copolymer, interpolymer or mixture thereof, wherein each copolymer or interpolymer comprises (1) a nonacidic comonomer comprising a C1-10 alkyl acrylate, C1-10 alkyl methacrylate, styrenes or combinations thereof; (2) an acidic comonomer and its salts comprising ethylenically unsaturated carboxylic acid containing moiety, wherein 2-25% of the carboxylic acid containing moiety is reacted with a reactive molecule having a first and second functional unit, wherein the first functional unit is a vinyl group and the second functional unit is capable of forming a chemical bond by reaction with the carboxylic acid moiety; (3) third comonomer units formed from the reacted portion of acidic comonomers; and (4) a nonacidic comonomer comprising C1-10 alkyl or alkoxy methacrylate or acrylate;
(k) initiation system;
(l) thickener;
(m) water; and
(n) solvent;
with the proviso that the composition has a viscosity of greater than about 10 Pa·s and wherein said composition is a screen printable hydrogel composition, in the form of a paste suitable for screen printing.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/435,062 US20060205866A1 (en) | 2003-10-10 | 2006-05-16 | Screen printable hydrogel for medical applications |
US12/326,344 US20090111907A1 (en) | 2003-10-10 | 2008-12-02 | Screen printable hydrogel for medical applications |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/683,530 US7105588B2 (en) | 2003-10-10 | 2003-10-10 | Screen printable hydrogel for medical applications |
US11/435,062 US20060205866A1 (en) | 2003-10-10 | 2006-05-16 | Screen printable hydrogel for medical applications |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/683,530 Division US7105588B2 (en) | 2003-10-10 | 2003-10-10 | Screen printable hydrogel for medical applications |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/326,344 Continuation US20090111907A1 (en) | 2003-10-10 | 2008-12-02 | Screen printable hydrogel for medical applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060205866A1 true US20060205866A1 (en) | 2006-09-14 |
Family
ID=34394509
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/683,530 Expired - Fee Related US7105588B2 (en) | 2003-10-10 | 2003-10-10 | Screen printable hydrogel for medical applications |
US11/435,062 Abandoned US20060205866A1 (en) | 2003-10-10 | 2006-05-16 | Screen printable hydrogel for medical applications |
US12/326,344 Abandoned US20090111907A1 (en) | 2003-10-10 | 2008-12-02 | Screen printable hydrogel for medical applications |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/683,530 Expired - Fee Related US7105588B2 (en) | 2003-10-10 | 2003-10-10 | Screen printable hydrogel for medical applications |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/326,344 Abandoned US20090111907A1 (en) | 2003-10-10 | 2008-12-02 | Screen printable hydrogel for medical applications |
Country Status (6)
Country | Link |
---|---|
US (3) | US7105588B2 (en) |
EP (1) | EP1526144B1 (en) |
JP (1) | JP2005113137A (en) |
KR (1) | KR100632340B1 (en) |
DE (1) | DE602004009734T2 (en) |
TW (1) | TW200524964A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7105588B2 (en) * | 2003-10-10 | 2006-09-12 | E. I. Du Pont De Nemours And Company | Screen printable hydrogel for medical applications |
DE102005035879A1 (en) * | 2005-07-30 | 2007-02-01 | Paul Hartmann Ag | Hydrogel useful as a wound filler or dressing comprises a gel-forming polysaccharide, an acrylic acid derivative and an electrolyte mixture |
US20070059459A1 (en) | 2005-09-12 | 2007-03-15 | Haixin Yang | Ink jet printable hydrogel for sensor electrode applications |
US7645564B2 (en) * | 2006-03-03 | 2010-01-12 | Haixin Yang | Polymer solutions, aqueous developable thick film compositions, processes of making and electrodes formed thereof |
WO2007109745A2 (en) * | 2006-03-22 | 2007-09-27 | Emotiv Systems, Pty Ltd. | Electrode and electrode headset |
WO2008109694A1 (en) * | 2007-03-06 | 2008-09-12 | Emotiv Systems Pty Ltd | Electrode and electrode headset |
JP5425776B2 (en) | 2007-08-03 | 2014-02-26 | サイオン・ニューロスティム,リミテッド・ライアビリティ・カンパニー | Vestibular stimulator and associated method of use |
WO2010071956A1 (en) * | 2008-12-22 | 2010-07-01 | Canadian Bank Note Company, Limited | Improved printing of tactile marks for the visually impaired |
TWI502031B (en) * | 2012-03-01 | 2015-10-01 | Eternal Materials Co Ltd | Anti-etching composition and its application |
TWI458470B (en) * | 2012-06-18 | 2014-11-01 | Shen Cherng | Method for preparing artificial skin dressing with antibacterial and hemostatic functions |
CN115386259B (en) * | 2022-09-28 | 2023-11-14 | 中国科学院兰州化学物理研究所 | An anti-drying and anti-freezing photosensitive hydrogel ink and its preparation method and high-precision light-curing hydrogel and its application |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2760863A (en) * | 1951-08-20 | 1956-08-28 | Du Pont | Photographic preparation of relief images |
US2850445A (en) * | 1955-01-19 | 1958-09-02 | Oster Gerald | Photopolymerization |
US2927022A (en) * | 1956-07-09 | 1960-03-01 | Du Pont | Photopolymerizable compositions and elements and processes of using same |
US3074974A (en) * | 1957-12-06 | 1963-01-22 | Monsanto Chemicals | Method for the preparation of diglycidyl ether of tetrachlorobisphenol-a |
US3097096A (en) * | 1955-01-19 | 1963-07-09 | Oster Gerald | Photopolymerization with the formation of relief images |
US3097097A (en) * | 1959-02-12 | 1963-07-09 | Gisela K Oster | Photo degrading of gel systems and photographic production of reliefs therewith |
US3145104A (en) * | 1959-08-07 | 1964-08-18 | Gisela K Oster | Photographic processes comprising cross-linking of thiol polymers |
US3380831A (en) * | 1964-05-26 | 1968-04-30 | Du Pont | Photopolymerizable compositions and elements |
US3427161A (en) * | 1965-02-26 | 1969-02-11 | Agfa Gevaert Nv | Photochemical insolubilisation of polymers |
US3479185A (en) * | 1965-06-03 | 1969-11-18 | Du Pont | Photopolymerizable compositions and layers containing 2,4,5-triphenylimidazoyl dimers |
US3549367A (en) * | 1968-05-24 | 1970-12-22 | Du Pont | Photopolymerizable compositions containing triarylimidazolyl dimers and p-aminophenyl ketones |
US4162162A (en) * | 1978-05-08 | 1979-07-24 | E. I. Du Pont De Nemours And Company | Derivatives of aryl ketones and p-dialkyl-aminoarylaldehydes as visible sensitizers of photopolymerizable compositions |
US5540033A (en) * | 1994-01-10 | 1996-07-30 | Cambrex Hydrogels | Integrated Manufacturing process for hydrogels |
US5622168A (en) * | 1992-11-18 | 1997-04-22 | John L. Essmyer | Conductive hydrogels and physiological electrodes and electrode assemblies therefrom |
US5868136A (en) * | 1996-02-20 | 1999-02-09 | Axelgaard Manufacturing Co. Ltd. | Medical electrode |
US6777165B2 (en) * | 1998-08-29 | 2004-08-17 | Lg Electronics Inc. | Photopolymerization type photosensitive phosphor paste composition and method for forming fluorescent film in PDP by using the same |
US7105588B2 (en) * | 2003-10-10 | 2006-09-12 | E. I. Du Pont De Nemours And Company | Screen printable hydrogel for medical applications |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3914261A (en) * | 1972-07-18 | 1975-10-21 | Western Litho Plate & Supply | Azido photopolymers |
JPH0677509B2 (en) * | 1989-05-26 | 1994-10-05 | 花王株式会社 | Method for producing modified phospholipid |
WO1997003143A1 (en) * | 1995-07-10 | 1997-01-30 | Minnesota Mining And Manufacturing Company | Screen printable adhesive compositions |
PT840597E (en) | 1995-07-12 | 2004-02-27 | Cygnus Therapeutic Systems | HYDROGEL PENSION |
US6313119B1 (en) * | 1998-01-23 | 2001-11-06 | Adventis Pharma Deutschland Gmbh | Sulfonamide derivatives as inhibitors of bone resorption and as inhibitors of cell adhesion |
WO1999042533A1 (en) | 1998-02-18 | 1999-08-26 | Ppg Industries Ohio, Inc. | Low temperature cure waterborne coating compositions having improved appearance and humidity resistance and methods for coating substrates |
DE69939438D1 (en) | 1999-02-08 | 2008-10-09 | Axelgaard Mfg Co Ltd | MEDICAL ELECTRODE |
FR2792932B1 (en) * | 1999-04-30 | 2001-07-06 | Coatex Sa | NOVEL ACETHOLIC ACRYLIC AGENTS OF THE URETHANE BASE FOR IMPROVING THE HANDLING OF HYDRAULIC BINDERS, THEIR PREPARATION METHOD, THE BINDERS CONTAINING THEM AND THEIR APPLICATIONS |
US6784248B2 (en) | 2002-02-15 | 2004-08-31 | Ppg Industries Ohio, Inc. | Thermosetting compositions containing alternating copolymers of isobutylene type monomers |
-
2003
- 2003-10-10 US US10/683,530 patent/US7105588B2/en not_active Expired - Fee Related
-
2004
- 2004-08-20 TW TW093125268A patent/TW200524964A/en unknown
- 2004-09-15 DE DE602004009734T patent/DE602004009734T2/en not_active Expired - Lifetime
- 2004-09-15 EP EP04021893A patent/EP1526144B1/en not_active Expired - Lifetime
- 2004-09-29 JP JP2004285255A patent/JP2005113137A/en not_active Withdrawn
- 2004-10-08 KR KR1020040080309A patent/KR100632340B1/en not_active Expired - Fee Related
-
2006
- 2006-05-16 US US11/435,062 patent/US20060205866A1/en not_active Abandoned
-
2008
- 2008-12-02 US US12/326,344 patent/US20090111907A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2760863A (en) * | 1951-08-20 | 1956-08-28 | Du Pont | Photographic preparation of relief images |
US2850445A (en) * | 1955-01-19 | 1958-09-02 | Oster Gerald | Photopolymerization |
US3097096A (en) * | 1955-01-19 | 1963-07-09 | Oster Gerald | Photopolymerization with the formation of relief images |
US2927022A (en) * | 1956-07-09 | 1960-03-01 | Du Pont | Photopolymerizable compositions and elements and processes of using same |
US3074974A (en) * | 1957-12-06 | 1963-01-22 | Monsanto Chemicals | Method for the preparation of diglycidyl ether of tetrachlorobisphenol-a |
US3097097A (en) * | 1959-02-12 | 1963-07-09 | Gisela K Oster | Photo degrading of gel systems and photographic production of reliefs therewith |
US3145104A (en) * | 1959-08-07 | 1964-08-18 | Gisela K Oster | Photographic processes comprising cross-linking of thiol polymers |
US3380831A (en) * | 1964-05-26 | 1968-04-30 | Du Pont | Photopolymerizable compositions and elements |
US3427161A (en) * | 1965-02-26 | 1969-02-11 | Agfa Gevaert Nv | Photochemical insolubilisation of polymers |
US3479185A (en) * | 1965-06-03 | 1969-11-18 | Du Pont | Photopolymerizable compositions and layers containing 2,4,5-triphenylimidazoyl dimers |
US3549367A (en) * | 1968-05-24 | 1970-12-22 | Du Pont | Photopolymerizable compositions containing triarylimidazolyl dimers and p-aminophenyl ketones |
US4162162A (en) * | 1978-05-08 | 1979-07-24 | E. I. Du Pont De Nemours And Company | Derivatives of aryl ketones and p-dialkyl-aminoarylaldehydes as visible sensitizers of photopolymerizable compositions |
US5622168A (en) * | 1992-11-18 | 1997-04-22 | John L. Essmyer | Conductive hydrogels and physiological electrodes and electrode assemblies therefrom |
US5540033A (en) * | 1994-01-10 | 1996-07-30 | Cambrex Hydrogels | Integrated Manufacturing process for hydrogels |
US5868136A (en) * | 1996-02-20 | 1999-02-09 | Axelgaard Manufacturing Co. Ltd. | Medical electrode |
US6777165B2 (en) * | 1998-08-29 | 2004-08-17 | Lg Electronics Inc. | Photopolymerization type photosensitive phosphor paste composition and method for forming fluorescent film in PDP by using the same |
US7105588B2 (en) * | 2003-10-10 | 2006-09-12 | E. I. Du Pont De Nemours And Company | Screen printable hydrogel for medical applications |
Also Published As
Publication number | Publication date |
---|---|
JP2005113137A (en) | 2005-04-28 |
DE602004009734T2 (en) | 2008-08-28 |
KR20050035095A (en) | 2005-04-15 |
US20050080186A1 (en) | 2005-04-14 |
KR100632340B1 (en) | 2006-10-11 |
EP1526144A1 (en) | 2005-04-27 |
EP1526144B1 (en) | 2007-10-31 |
US20090111907A1 (en) | 2009-04-30 |
TW200524964A (en) | 2005-08-01 |
US7105588B2 (en) | 2006-09-12 |
DE602004009734D1 (en) | 2007-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090111907A1 (en) | Screen printable hydrogel for medical applications | |
EP1777272A1 (en) | Ink jet printable hydrogel for sensor electrode applications | |
KR101134219B1 (en) | Process for making pressure sensitive adhesive hydrogels | |
JP5827584B2 (en) | Adhesive hydrogel and its use | |
US5124076A (en) | Rapid, curing, electrically conductive adhesive | |
US10703844B2 (en) | Curable composition | |
JPH10116516A (en) | Polymer solid electrolyte and lithium secondary battery employing the same | |
US20200401042A1 (en) | Directly photo-patternable, stretchable, electrically conductive polymer | |
JP2625179B2 (en) | Hydrophilic pressure-sensitive adhesive composition and biomedical electrode composed of the composition | |
DE2449172C3 (en) | Presensitized planographic printing plate | |
JP2001028276A (en) | Manufacture of polyelectrolyte and photoelectric transducer | |
US5183599A (en) | Rapid curing, electrically conductive adhesive | |
JPS6051833A (en) | Photosensitive resin composition | |
EP0709738A1 (en) | Photosensitive resin composition for form plates and printing block material of photosensitive resin | |
JPH06200224A (en) | Highly adhesive hydrogel composition | |
CN111007698B (en) | Bio-based water-soluble negative ultraviolet photoresist composition, photoresist and preparation method thereof | |
JPH089644B2 (en) | Photopolymerizable composition | |
DE69707037T2 (en) | Photosensitive resin compositions and printing plate materials | |
WO2020095539A1 (en) | Medical device and method for manufacturing same | |
DE69517811T2 (en) | PHOTO SENSITIVE RESIN COMPOSITION | |
JPH0377226B2 (en) | ||
KR950012545B1 (en) | Photosensitive resin composition | |
CN118406263A (en) | Wear-resistant anti-fog film with space interpenetrating network structure, preparation and application | |
JPS63142006A (en) | Photocurable resin composition | |
JPH04266742A (en) | Medical conducting adhesive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANG, HAIXIN;RUNGE, LISA MARIE;REEL/FRAME:018189/0444;SIGNING DATES FROM 20060619 TO 20060623 |
|
AS | Assignment |
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANG, HAIXIN;RUNGE, LISA MARIE;REEL/FRAME:018647/0695;SIGNING DATES FROM 20060619 TO 20060912 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |