US20060196185A1 - Method of generating power from naturally occurring heat without fuels and motors using the same - Google Patents
Method of generating power from naturally occurring heat without fuels and motors using the same Download PDFInfo
- Publication number
- US20060196185A1 US20060196185A1 US11/163,569 US16356905A US2006196185A1 US 20060196185 A1 US20060196185 A1 US 20060196185A1 US 16356905 A US16356905 A US 16356905A US 2006196185 A1 US2006196185 A1 US 2006196185A1
- Authority
- US
- United States
- Prior art keywords
- liquid
- vapor
- heat energy
- pressure
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000446 fuel Substances 0.000 title claims abstract description 6
- 239000007788 liquid Substances 0.000 claims abstract description 42
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 12
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000009835 boiling Methods 0.000 claims abstract description 12
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 6
- 239000001294 propane Substances 0.000 claims abstract description 6
- 239000001282 iso-butane Substances 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- -1 Freons Chemical compound 0.000 description 1
- 238000010795 Steam Flooding Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- This invention relates to a method of generating power from naturally occurring heat energy without consuming fuels, and to the motors using the method. More particularly, this invention relates to a method of generating power by vaporizing a liquid in a pressure vessel using solar energy, geothermal energy or other types of naturally occurring heat energy, wherein the boiling point of the liquid is near the ambient temperature.
- the invention essentially comprises gathering heat energy from naturally occurring heat sources (such as solar energy, geothermal energy, hot springs, or other natural heat-producing sources), quickly transmitting the heat energy through conduction heat pipes to a liquid-vapor two-phase system contained in a pressure vessel, heating the liquid-vapor system to its boiling point to vaporize the liquid and generate a high pressure from volumetric expansion when the liquid is converted to vapor, and applying the high pressure to drive motors.
- naturally occurring heat sources such as solar energy, geothermal energy, hot springs, or other natural heat-producing sources
- conduction heat pipes to a liquid-vapor two-phase system contained in a pressure vessel
- the boiling point of the liquid inside the pressure vessel should be near the ambient temperature when it is under atmospheric or moderately higher pressures.
- the liquid is preferably propane, isobutane, Freons, or
- FIG. 1 shows the first embodiment of the present invention, wherein the high-pressure vapor passes through a jet nozzle to drive turbine vanes.
- FIG. 2 shows the second embodiment of the present invention, wherein the high-pressure vapor drives a piston connected to a motor.
- FIG. 3 shows a variant of the first embodiment of the present invention, wherein a pump is used to circulate a heating medium through the solar collectors.
- FIG. 4 shows a variant of the second embodiment of the present invention, wherein a pump is used to circulate a heating medium through the solar collectors.
- this invention uses solar collectors 1 to gather solar heat energy, which is transmitted through conduction heat pipes 2 to a liquid-vapor two-phase system contained in a pressure vessel 3 .
- the pressure vessel 3 is equipped with a safety valve 4 and a pressure gauge 5 for protection from excessive pressure.
- the heat transmitted from the solar collectors heats the liquid inside the pressure vessel 3 to its boiling point, the liquid is converted to vapor, expanding the volume by several hundred times and generating a pressure of several hundred atmospheres. Such high pressure is sufficient to drive a motor 6 .
- the vapor at reduced pressure passes through a first check valve 14 and enters a cooler 15 ; optionally, a fan (not shown) can be installed to enhance the cooling efficiency of the cooler 15 ; after exiting the cooler 15 , the vapor cools down below the boiling point and condenses into liquid, which then enters a reservoir 13 to be pumped by a pump 12 through a second check valve 16 back to the pressure vessel 3 , thus completing the cycle.
- the pump 12 is connected to a liquid level controller 11 for the reservoir 13
- the liquid level controller 11 is connected to a control box 10 , which controls the operation of both the pump 12 and the liquid level controller 11 .
- the above-mentioned motor 6 also drives a generator 8 .
- the generator 8 is connected through wires 18 to a battery 9 and the control box 10 .
- the generator 8 and the battery 9 provide electricity for operating the pump 12 and the control box 10 .
- the motor 6 can be powered by allowing the high-pressure vapor passing through a jet nozzle 17 to drive a series of turbine vanes.
- FIG. 2 illustrates a second embodiment of the present invention. This embodiment is identical to the first embodiment shown in FIG. 1 , except that the high-pressure vapor drives a piston 19 to power the motor 6 .
- the high-pressure vapor drives a piston 19 to power the motor 6 .
- other types of driving mechanisms can be used instead.
- FIG. 3 illustrates a third embodiment of the present invention.
- This embodiment is identical to the first embodiment shown in FIG. 1 , except that the conduction heat pipes are replaced with a pump circulating a heating medium through the solar collectors 1 , wherein the heating medium is heated, and through the pressure vessel 3 , wherein the heating medium releases its heat to the liquid in the pressure vessel 3 through a coil. Water is used as the heating medium in this embodiment.
- FIG. 4 illustrates a fourth embodiment of the present invention.
- This embodiment is identical to the second embodiment shown in FIG. 2 , except that the conduction heat pipes are replaced with a pump circulating a heating medium through the solar collectors 1 , wherein the heating medium is heated, and through the pressure vessel 3 , wherein the heating medium releases its heat to the liquid in the pressure vessel 3 through a coil. Water is used as the heating medium in this embodiment.
- the above-mentioned generator 8 can also be used for electrolysis of water to produce hydrogen for various applications.
- ammonia The operating conditions when propane and ammonia, respectively, is used as the working liquid in the pressure vessel 3 are described in the following examples:
- the temperature and pressure within the pressure vessel 3 are maintained at 45.6° C. and 18.7 kg/cm 2 , respectively; the pressure of the vapor exiting the first check valve 14 is about 15.5 kg/cm 2 ; and the vapor cools to about 30° C. after the cooler 15 .
- the temperature and pressure within the pressure vessel 3 are 28.2° C. and 9.67 kg/cm 2 , respectively; the pressure of the vapor exiting the first check valve 14 is about 6.95 kg/cm 2 ; and the vapor cools to about 7.8° C. after the cooler 15 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
A method of generating power is disclosed wherein a liquid having a boiling point near the ambient temperature when it is under atmospheric or moderately higher pressures, preferably propane, isobutane, Freons or ammonia, is placed in a pressure vessel, heat energy is gathered from a naturally occurring heat sources, such as by solar collectors or from hot springs, geothermal or other heat sources, and transmitted through conduction heat pipes to the liquid in the pressure vessel, and the liquid is thereby heated to the boiling point and vaporized. When a liquid is vaporized, its volume expands by several hundred times, creating a pressure sufficient for driving motors. This invention can be used in automobiles, motorcycles, generators, ships, homes, factories, and other suitable places to drive motors, thus reducing the use of petrochemical fuels.
Description
- This application is a continuation-in-part application of prior U.S. application Ser. No. 11/062,397, filed Feb. 22, 2005, which is pending.
- 1. Field of the Invention
- This invention relates to a method of generating power from naturally occurring heat energy without consuming fuels, and to the motors using the method. More particularly, this invention relates to a method of generating power by vaporizing a liquid in a pressure vessel using solar energy, geothermal energy or other types of naturally occurring heat energy, wherein the boiling point of the liquid is near the ambient temperature.
- 2. Description of the Related Art
- Power used by humans is mostly derived from combustion of fuels, which exacerbates the greenhouse effect and El Ni{tilde under (n)}o, threatening the existence of humans. Therefore, effective utilization of clean energy, such as solar energy, geothermal energy, or energy derived from hot springs or any other suitable heat sources, has been a long-standing goal pursued by many researchers. This invention has arisen from pursuing this goal.
- The invention essentially comprises gathering heat energy from naturally occurring heat sources (such as solar energy, geothermal energy, hot springs, or other natural heat-producing sources), quickly transmitting the heat energy through conduction heat pipes to a liquid-vapor two-phase system contained in a pressure vessel, heating the liquid-vapor system to its boiling point to vaporize the liquid and generate a high pressure from volumetric expansion when the liquid is converted to vapor, and applying the high pressure to drive motors. In principle, it works in the same way as steam drives a steam engine. For the present invention to work effectively, the boiling point of the liquid inside the pressure vessel should be near the ambient temperature when it is under atmospheric or moderately higher pressures. The liquid is preferably propane, isobutane, Freons, or ammonia. This invention can be applied in automobiles, motorcycles, generators, ships, homes, factories and other suitable places to drive motors. Thus, the invention can help reduce the consumption of fossil fuels and petrochemicals.
-
FIG. 1 shows the first embodiment of the present invention, wherein the high-pressure vapor passes through a jet nozzle to drive turbine vanes. -
FIG. 2 shows the second embodiment of the present invention, wherein the high-pressure vapor drives a piston connected to a motor. -
FIG. 3 shows a variant of the first embodiment of the present invention, wherein a pump is used to circulate a heating medium through the solar collectors. -
FIG. 4 shows a variant of the second embodiment of the present invention, wherein a pump is used to circulate a heating medium through the solar collectors. - The present invention is described in detail below through two embodiments along with the accompanying drawings.
- Referring to
FIG. 1 , this invention usessolar collectors 1 to gather solar heat energy, which is transmitted throughconduction heat pipes 2 to a liquid-vapor two-phase system contained in apressure vessel 3. Thepressure vessel 3 is equipped with asafety valve 4 and apressure gauge 5 for protection from excessive pressure. When the heat transmitted from the solar collectors heats the liquid inside thepressure vessel 3 to its boiling point, the liquid is converted to vapor, expanding the volume by several hundred times and generating a pressure of several hundred atmospheres. Such high pressure is sufficient to drive amotor 6. After driving themotor 6, the vapor at reduced pressure passes through afirst check valve 14 and enters acooler 15; optionally, a fan (not shown) can be installed to enhance the cooling efficiency of thecooler 15; after exiting thecooler 15, the vapor cools down below the boiling point and condenses into liquid, which then enters areservoir 13 to be pumped by apump 12 through asecond check valve 16 back to thepressure vessel 3, thus completing the cycle. Thepump 12 is connected to aliquid level controller 11 for thereservoir 13, and theliquid level controller 11 is connected to acontrol box 10, which controls the operation of both thepump 12 and theliquid level controller 11. - Besides carrying a load 7, the above-mentioned
motor 6 also drives agenerator 8. In turn, thegenerator 8 is connected throughwires 18 to abattery 9 and thecontrol box 10. Thegenerator 8 and thebattery 9 provide electricity for operating thepump 12 and thecontrol box 10. As shown inFIG. 1 , themotor 6 can be powered by allowing the high-pressure vapor passing through ajet nozzle 17 to drive a series of turbine vanes. -
FIG. 2 illustrates a second embodiment of the present invention. This embodiment is identical to the first embodiment shown inFIG. 1 , except that the high-pressure vapor drives apiston 19 to power themotor 6. One should note that other types of driving mechanisms can be used instead. -
FIG. 3 illustrates a third embodiment of the present invention. This embodiment is identical to the first embodiment shown inFIG. 1 , except that the conduction heat pipes are replaced with a pump circulating a heating medium through thesolar collectors 1, wherein the heating medium is heated, and through thepressure vessel 3, wherein the heating medium releases its heat to the liquid in thepressure vessel 3 through a coil. Water is used as the heating medium in this embodiment. -
FIG. 4 illustrates a fourth embodiment of the present invention. This embodiment is identical to the second embodiment shown inFIG. 2 , except that the conduction heat pipes are replaced with a pump circulating a heating medium through thesolar collectors 1, wherein the heating medium is heated, and through thepressure vessel 3, wherein the heating medium releases its heat to the liquid in thepressure vessel 3 through a coil. Water is used as the heating medium in this embodiment. - The above-mentioned
generator 8 can also be used for electrolysis of water to produce hydrogen for various applications. - The liquid in the
pressure vessel 3 for the present invention is preferably propane, isobutane, Freons (i.e. chlorofluorocarbons with the formula of CClnF4-n, n=1˜3), or ammonia. The operating conditions when propane and ammonia, respectively, is used as the working liquid in thepressure vessel 3 are described in the following examples: - When propane is used as the working liquid, the temperature and pressure within the
pressure vessel 3 are maintained at 45.6° C. and 18.7 kg/cm2, respectively; the pressure of the vapor exiting thefirst check valve 14 is about 15.5 kg/cm2; and the vapor cools to about 30° C. after thecooler 15. - When ammonia is used as the working liquid, the temperature and pressure within the
pressure vessel 3 are 28.2° C. and 9.67 kg/cm2, respectively; the pressure of the vapor exiting thefirst check valve 14 is about 6.95 kg/cm2; and the vapor cools to about 7.8° C. after thecooler 15. - While the invention has been described by way of examples and in terms of preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications.
Claims (19)
1. A method of generating power from naturally occurring heat sources without fuels, comprising the steps of:
(a) placing a liquid in a pressure vessel to form a liquid-vapor two-phase system, wherein the boiling point of the liquid is substantially near ambient temperature;
(b) gathering heat energy from a naturally occurring heat source;
(c) transmitting the heat energy gathered in step (b) to the liquid-vapor two-phase system to heat it to the boiling point of the liquid to vaporize the liquid and generate a high-pressure vapor;
(d) using the high-pressure vapor generated in step (c) to drive a motor;
(e) passing the vapor after driving the motor through a pipe to a cooler;
(f) cooling the vapor entering the cooler to below the boiling point of the liquid and converting it to liquid;
(g) passing the liquid from step (f) to a reservoir; and
(h) returning the liquid from the reservoir through a check valve to the pressure vessel to form a complete cycle using a pump connected to a liquid level controller for the reservoir.
2. (canceled)
3. The method as claimed in claim 1 , wherein
conduction heat pipes are used in step (c) to transmit the heat energy gathered in step (b) to the liquid-vapor two-phase system; and
the pressure vessel is equipped with a safety valve and a pressure gauge.
4. The method as claimed in claim 1 , wherein the motor is of a piston type or a turbine type.
5. The method as claimed in claim 1 , wherein the high-pressure vapor flows through a jet nozzle to drive the motor in step (d).
6. The method as claimed in claim 1 , wherein
the motor drives a generator in addition to a load; and
the generator is wired to a battery and a control box of the pump for the purpose of controlling the operation of the liquid level controller and the pump.
7. The method as claimed in claim 6 , wherein the generator is further used for electrolysis of water to produce hydrogen.
8. The method as claimed in claim 1 , wherein solar collectors are used to gather heat energy in step (b).
9. The method as claimed in claim 1 , wherein heat energy is gathered from a geothermal energy source in step (b).
10. The method as claimed in claim 1 , wherein heat energy is gathered from a hot spring in step (b).
11. (canceled)
12. A method of generating power from naturally occurring heat sources without fuels, comprising the steps of:
(a) placing a liquid in a pressure vessel to form a liquid-vapor two-phase system, wherein the liquid is selected from the group consisting of propane, isobutane, Freons and ammonia;
(b) gathering heat energy from a naturally occurring heat source;
(c) transmitting the heat energy gathered in stop (b) to the liquid-vapor two-phase system to heat it to the boiling point of the liquid to vaporize the liquid and generate a high-pressure vapor;
(d) using the high-pressure vapor generated in step (c) to drive a motor;
(e) passing the vapor after driving the motor through a pipe to a cooler;
(f) cooling the vapor entering the cooler to below the boiling point of the liquid and converting it to liquid;
(g) passing the liquid from step (f) to a reservoir; and
(h) returning the liquid from the reservoir through a check valve to the pressure vessel to form a complete cycle using a pump connected to a liquid level controller for the reservoir.
13. The method as claimed in claim 12 , wherein
conduction heat pipes are used in step (c) to transmit the heat energy gathered in step (b) to the liquid-vapor two-phase system; and
the pressure vessel is equipped with a safety valve and a pressure gauge.
14. The method as claimed in claim 12 , wherein the motor is of a piston type or a turbine type.
15. The method as claimed in claim 12 , wherein the high-pressure vapor flows through a jet nozzle to drive the motor in step (d).
16. The method as claimed in claim 12 , wherein
the motor drives a generator in addition to a load; and
the generator is wired to a battery and a control box of the pump for the purpose of controlling the operation of the liquid level controller and the pump.
17. The method as claimed in claim 16 , wherein the generator is further used for electrolysis of water to produce hydrogen.
18. The method as claimed in claim 12 , wherein solar collectors are used to gather heat energy in step (b).
19. The method as claimed in claim 18 , wherein a pump is used to circulate a heating medium through the solar collectors to gather heat energy in step (b) and through the pressured vessel to transmit the heat energy so gathered to the liquid-vapor two-phase system in step (c).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/163,569 US7089740B1 (en) | 2005-02-22 | 2005-10-23 | Method of generating power from naturally occurring heat without fuels and motors using the same |
PCT/US2006/013577 WO2007046855A2 (en) | 2005-10-23 | 2006-04-12 | Method of generating power from naturally occurring heat |
AU2007202622A AU2007202622A1 (en) | 2005-10-23 | 2007-06-01 | Method of generating power from naturally occurring heat without fuels and motors using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/062,397 US20060112691A1 (en) | 2004-11-29 | 2005-02-22 | Method of generating power from naturally occurring heat without fuels and motors using the same |
US11/163,569 US7089740B1 (en) | 2005-02-22 | 2005-10-23 | Method of generating power from naturally occurring heat without fuels and motors using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/062,397 Continuation-In-Part US20060112691A1 (en) | 2004-11-29 | 2005-02-22 | Method of generating power from naturally occurring heat without fuels and motors using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US7089740B1 US7089740B1 (en) | 2006-08-15 |
US20060196185A1 true US20060196185A1 (en) | 2006-09-07 |
Family
ID=36781587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/163,569 Expired - Fee Related US7089740B1 (en) | 2005-02-22 | 2005-10-23 | Method of generating power from naturally occurring heat without fuels and motors using the same |
Country Status (1)
Country | Link |
---|---|
US (1) | US7089740B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120151919A1 (en) * | 2010-12-15 | 2012-06-21 | Voith Patent Gmbh | Frost-resistant steam circuit process device and its method of operation |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8820074B2 (en) * | 2006-03-11 | 2014-09-02 | Abhinav Aggarwal | System and method to generate environment-friendly power by tapping solar energy |
DE102006043409A1 (en) * | 2006-09-15 | 2008-04-03 | Matthias Schuhknecht | Electricity generation in the base load range with geothermal energy |
US8341960B2 (en) * | 2008-06-30 | 2013-01-01 | Ormat Technologies, Inc. | Multi-heat source power plant |
US8266908B2 (en) * | 2008-06-30 | 2012-09-18 | Ormat Technologies, Inc. | Multi-heat source power plant |
ES2440391B2 (en) * | 2009-06-29 | 2015-05-11 | Ormat Technologies Inc. | METHOD FOR OPERATING AN ELECTRICAL POWER STATION WITH MULTIPLE THERMAL SOURCES AND EMPLOYEE DEVICE |
TW201425723A (en) * | 2012-12-26 | 2014-07-01 | Wen-Show Ou | Method and device for using atmospheric pressure and vacuum suction to generate energy |
CN110617654B (en) * | 2019-10-17 | 2021-03-30 | 高驰国际设计有限公司 | Buried pipe for soil source heat pump |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3437076A (en) * | 1967-09-21 | 1969-04-08 | Killebrew Eng Corp | Energy conversion apparatus and system |
US3519065A (en) * | 1968-10-04 | 1970-07-07 | Thermo Electron Corp | Gas heating and cooling system |
US4191901A (en) * | 1977-04-27 | 1980-03-04 | Ben-Gurion University Of The Negev | Method and system for converting solar energy into electricity |
US4306414A (en) * | 1977-04-27 | 1981-12-22 | Kuhns John P | Method of performing work |
US4711095A (en) * | 1986-10-06 | 1987-12-08 | Thermo King Corporation | Compartmentalized transport refrigeration system |
US5226477A (en) * | 1990-08-03 | 1993-07-13 | China Petro-Chemical Corporation | System for recovery and utilization of exhaust heat from a reformer |
US5806317A (en) * | 1994-03-17 | 1998-09-15 | Siemens Aktiengesellschaft | Method and device for solar steam generation |
-
2005
- 2005-10-23 US US11/163,569 patent/US7089740B1/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3437076A (en) * | 1967-09-21 | 1969-04-08 | Killebrew Eng Corp | Energy conversion apparatus and system |
US3519065A (en) * | 1968-10-04 | 1970-07-07 | Thermo Electron Corp | Gas heating and cooling system |
US4191901A (en) * | 1977-04-27 | 1980-03-04 | Ben-Gurion University Of The Negev | Method and system for converting solar energy into electricity |
US4306414A (en) * | 1977-04-27 | 1981-12-22 | Kuhns John P | Method of performing work |
US4711095A (en) * | 1986-10-06 | 1987-12-08 | Thermo King Corporation | Compartmentalized transport refrigeration system |
US5226477A (en) * | 1990-08-03 | 1993-07-13 | China Petro-Chemical Corporation | System for recovery and utilization of exhaust heat from a reformer |
US5806317A (en) * | 1994-03-17 | 1998-09-15 | Siemens Aktiengesellschaft | Method and device for solar steam generation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120151919A1 (en) * | 2010-12-15 | 2012-06-21 | Voith Patent Gmbh | Frost-resistant steam circuit process device and its method of operation |
Also Published As
Publication number | Publication date |
---|---|
US7089740B1 (en) | 2006-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100425925C (en) | Electricity generating, air conditioning and heating apparatus utilizing natural medium and solar energy or waste heat | |
KR20090035735A (en) | Method and apparatus for using low temperature heat for electricity generation | |
US20120255309A1 (en) | Utilizing steam and/or hot water generated using solar energy | |
CN101915224A (en) | Tower type solar cycle thermal power generation system | |
JP2018529042A5 (en) | ||
CN102563987A (en) | Vapor-compression refrigerating plant driven by organic Rankine cycle and method | |
US7089740B1 (en) | Method of generating power from naturally occurring heat without fuels and motors using the same | |
JP2014034924A (en) | Exhaust heat recovery device of internal combustion engine and cogeneration system | |
KR101469928B1 (en) | heating and cooling apparatus using the heat pump | |
WO2007046855A2 (en) | Method of generating power from naturally occurring heat | |
KR101247772B1 (en) | generator of ship using the organic rankine cycle | |
US20060112691A1 (en) | Method of generating power from naturally occurring heat without fuels and motors using the same | |
CN101363331A (en) | Method for producing power utilizing natural heat energy and prime move | |
CN105986954A (en) | Power and refrigeration cogeneration system | |
CA2569423A1 (en) | Method of generating power from naturally occurring heat without fuels and motors using the same | |
CN102191958A (en) | Low temperature air power generation device | |
JP2005171861A (en) | Rankine cycle power generation system | |
US9835145B1 (en) | Thermal energy recovery systems | |
JP2011256856A (en) | Method and device for recovering thermal-potential conversion energy in heat engine | |
CN202081927U (en) | Low temperature Rankine double cycle power generation device | |
KR200371801Y1 (en) | Turbine driving device utilizing physical energy when vaporizing liquefied gas by natural heat or waste heat | |
US10794369B1 (en) | Solar powered closed loop system and method for powering a cooling device | |
AU2011101067A4 (en) | A superior plant design that converts geothermal energy to electricity using an absorption chiller | |
CN107044392A (en) | Electricity generation system | |
JP2013194926A (en) | Steam generating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HSU, YI-LUN PHYLLIS, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OU, WEN-SHOW;REEL/FRAME:017138/0567 Effective date: 20060110 |
|
PA | Patent available for licence or sale | ||
PA | Patent available for licence or sale | ||
PA | Patent available for licence or sale | ||
PA | Patent available for licence or sale | ||
PA | Patent available for licence or sale | ||
PA | Patent available for licence or sale | ||
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140815 |