US20060193743A1 - Austenitic stainless steel for hydrogen gas and method for its manufacture - Google Patents
Austenitic stainless steel for hydrogen gas and method for its manufacture Download PDFInfo
- Publication number
- US20060193743A1 US20060193743A1 US11/297,418 US29741805A US2006193743A1 US 20060193743 A1 US20060193743 A1 US 20060193743A1 US 29741805 A US29741805 A US 29741805A US 2006193743 A1 US2006193743 A1 US 2006193743A1
- Authority
- US
- United States
- Prior art keywords
- working
- stainless steel
- austenitic stainless
- set forth
- chemical composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 title description 12
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 43
- 239000010959 steel Substances 0.000 claims abstract description 43
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 14
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 14
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 5
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 5
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 5
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 5
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 24
- 230000007423 decrease Effects 0.000 claims description 11
- 229910001566 austenite Inorganic materials 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 229910052749 magnesium Inorganic materials 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract 2
- 239000001257 hydrogen Substances 0.000 description 45
- 229910052739 hydrogen Inorganic materials 0.000 description 45
- 238000005482 strain hardening Methods 0.000 description 35
- 239000000463 material Substances 0.000 description 16
- 238000005097 cold rolling Methods 0.000 description 13
- 239000000446 fuel Substances 0.000 description 12
- 238000009864 tensile test Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 238000005242 forging Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010622 cold drawing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- This invention relates to a stainless steel for use in a hydrogen gas environment which has excellent mechanical properties (strength and ductility) and corrosion resistance and to a method for its manufacture.
- the present invention relates to equipment used in a hydrogen gas environment such as piping, gas cylinders, and valves for hydrogen gas made from such a stainless steel.
- a stainless steel according to the present invention is particularly suitable as a steel for structural equipment which is exposed to a high pressure hydrogen gas environment in fuel cell automobiles and hydrogen gas stations, and particularly for piping, gas cylinders, and valves.
- fuel cell automobiles obtain electric power using hydrogen and oxygen as fuels. They have attracted attention as the next generation of clean automobiles which do not discharge carbon dioxide (CO 2 ) or harmful substances such as nitrogen oxides (NO x ) or sulfur oxides (SO x ) as do conventional gasoline-powered or diesel-powered automobiles.
- CO 2 carbon dioxide
- NO x nitrogen oxides
- SO x sulfur oxides
- Conventional methods thereof include a method in which a hydrogen gas cylinder is directly mounted on a vehicle, a method in which methanol or gasoline is reformed to obtain hydrogen by a reformer mounted on a vehicle, and a method in which a hydrogen-storing alloy which can absorb hydrogen is mounted on a vehicle.
- FIG. 2 is a graph showing the relationship between the elongation in the direction perpendicular to the direction of working in cold working and the degree of cold working (hereunder referred to as “the percent reduction in cross section”). It can be seen that elongation greatly decreases as the degree of cold working increases. In actual practice, elongation of at least about 30% is desirable, but when the degree of cold working is large, a decrease in elongation becomes a problem.
- the object of the present invention is to provide an austenitic stainless steel which has excellent mechanical properties and corrosion resistance and which can be used in a hydrogen gas environment such as one containing high pressure hydrogen gas at 70 MPa or above and to provide a method for its manufacture.
- the present inventors studied the causes of a degradation in mechanical properties accompanying working of various types of austenitic stainless steels in detail. As a result of detailed study of the effects of the chemical composition and the metallic structure (the microstructure) of a material on a deterioration in mechanical properties, including hydrogen embrittlement in a high pressure hydrogen gas environment such as at least 70 MPa, and on corrosion resistance, they obtained the following new knowledge.
- FIG. 3 is a graph showing the relationship between the degree of cold working and hydrogen embrittlement in the direction of working and the direction perpendicular thereto. The above-described tendency is clear therefrom.
- a texture structure is achieved as the degree of cold working increases.
- a rolled texture structure is formed such that ⁇ 112 ⁇ is parallel to the rolling surface and ⁇ 11 ⁇ overscore (1) ⁇ > is parallel to the direction of working (rolling), or such that ⁇ 110 ⁇ is parallel to the rolling surface and ⁇ 001> is parallel to the direction of working.
- a fiber texture structure is formed in which ⁇ 11 ⁇ overscore (1) ⁇ > or ⁇ 001> is parallel to the direction of working (elongation).
- Formation of such a texture structure can be measured by measurement of the x-ray integrated intensity I(hkl) (h, k, and l are Miller indices) obtained by x-ray diffraction of the rolling surface.
- the degree of formation of the above-described texture structure can be obtained by measurement of the x-ray integrated intensity I(111) or I(002) for a cross section perpendicular to the direction of working.
- the susceptibility to hydrogen embrittlement in the direction of working increases as the degree of formation of the x-ray integrated intensity I(111) of a cross section perpendicular to the direction of working increases.
- the degree of the formation thereof exceeds 5
- the susceptibility to hydrogen embrittlement indicated by elongation (hydrogen)/elongation (air) becomes ⁇ 0.75.
- susceptibility to hydrogen embrittlement in the direction of working can be decreased.
- elongation (hydrogen) means the elongation in a tensile test in a hydrogen gas environment
- elongation (air) means the elongation in a tensile test in air.
- FIG. 4 is a graph showing the relationship between the x-ray integrated intensity I(111) of a cross section perpendicular to the direction of working and resistance to hydrogen embrittlement for the direction of working and the direction perpendicular thereto. From FIG. 4 , it can be seen that the resistance to hydrogen embrittlement in the direction of working has a strong correlation to the x-ray integrated intensity I(111).
- susceptibility to hydrogen embrittlement in the direction perpendicular to the direction of working has a correlation to the x-ray integrated intensity I(111) of a cross section perpendicular to the direction of working, it has an extremely strong correlation to the x-ray integrated intensity I(220) and the x-ray integrated intensity I(111) of a cross section in the direction of working.
- the ratio I(220)/I(111) exceeds 10
- susceptibility to hydrogen embrittlement enormously increases (susceptibility to hydrogen embrittlement as expressed by elongation (hydrogen)/elongation (air) ⁇ 0.75).
- the x-ray integrated intensity ratio I(220)/I(111) of a plane in the direction of working is made 10 or less, susceptibility to hydrogen embrittlement perpendicular to the direction of working can be decreased.
- FIG. 5 is a graph showing the relationship between the x-ray integrated intensity ratio I(220)/I(111) of a cross section in the direction of working and resistance to hydrogen embrittlement for the direction of working and the direction perpendicular thereto. From FIG. 5 , it can be seen that hydrogen embrittlement in the direction perpendicular to the direction of working has a strong correlation to the x-ray integrated intensity ratio I(220)/I(111).
- the x-ray integrated intensity I(111) of a cross section perpendicular to the direction of working can be suppressed to at most 5 times that of a random direction, and the x-ray integrated intensity ratio I(220)/I(111) of a cross section in the direction of working can be suppressed to at most 10.
- the x-ray integrated intensity ratio I(220)/I(111) of a cross section in the direction of working can be suppressed to at most 10.
- the direction of working does not mean “the direction of plastic working itself” but means “the direction of plastic deformation of the material being worked”.
- the present invention is an austenitic stainless steel for hydrogen gas having a chemical composition comprising, in mass percent, C: at most 0.10%, Si: at most 1.0%, Mn: 0.01-30%, P: at most 0.040%, S: at most 0.01%, Cr: 15-30%, Ni: 5.0-30%, Al: at most 0.10%, N: 0.001-0.30%, and a remainder of Fe and impurities and having a structure such that the x-ray integrated intensity I(111) of a cross section perpendicular to the direction of working is at most 5 times that of a random direction and such that the x-ray integrated intensity ratio I(220)/I(111) of a cross section in the direction of working is at most 10.
- the direction of working herein means the direction of plastic deformation of the material being worked.
- composition according to the present invention may further include at least one element selected from the following groups.
- an austenitic stainless steel having the above-described chemical composition is subjected to plastic working with a reduction in cross section of 10-50% in a temperature range from room temperature to 200° C., and then plastic working of at least 5% is carried out in a direction different from the direction of working of the above-described plastic working.
- FIG. 1 is a view showing the relationship between the degree of cold working and the tensile strength of a conventional steel.
- FIG. 3 is a view showing that the resistance to hydrogen embrittlement in the direction of working greatly differs from that in the direction perpendicular to the direction of working.
- FIG. 4 is a view showing that the resistance to hydrogen embrittlement in the direction of working has a strong correlation to the x-ray integrated intensity I(111) of a cross section in a direction perpendicular to the direction of working.
- FIG. 5 is a view showing that the resistance to hydrogen embrittlement in the direction perpendicular to the direction of working has a strong correlation to the x-ray integrated intensity I(220)/I(111) of a cross section in the direction of working.
- FIG. 6 is a view showing the relationship between grain diameter and resistance to hydrogen embrittlement in examples.
- the content of C is made at most 0.10%.
- M is Cr, Mo, Fe, or the like
- MC-type carbides M is Ti, Nb, Ta, or the like
- C is limited to at most 0.10%.
- Nb greater than 0.20% and at most 1.0%
- Ta greater than 0.40% and at most 1.0%
- Ti greater than 0.10% and at most 1.0% in order to obtain a higher strength
- C+N is limited to at most 0.05%.
- Si is known as an element which is effective for improving corrosion resistance in various environments, but if a large amount thereof is added, it forms intermetallic compounds with Ni, Cr, and the like, it promotes the formation of sigma phase and other intermetallic compounds, and there are cases in which it markedly lowers hot workability. Therefore, the content of Si is made at most 1.0% and preferably at most 0.5%. In the same manner as for C, taking into consideration the refining costs of Si, it is not necessary to make the content of Si zero, and preferably it is at least 0.001%.
- Mn is not only effective in minute amounts as a deoxidation and desulfurization agent, but in addition, there are cases in which it is added in large amounts as an inexpensive austenite stabilizing element.
- Mn is added in an amount of at least 0.01%. However, if it exceeds 30%, there are cases in which hot workability and weathering resistance decrease, so it is made 0.01-30%. Preferably it is 0.1-20%.
- Cr is essential as an element for improving corrosion resistance in the above-described environment of use, so it is included in an amount of at least 15%. However, if a large amount is added, a large amount of nitrides such as CrN and Cr 2 N or M 23 C 6 -type carbides are formed, so the content of Cr is made 15-30%. Preferably it is 15-27%.
- Al is an important element as a deoxidizing agent. However, if a large amount remains in excess of 0.10%, it promotes the formation of sigma phase and other intermetallic compounds, which is undesirable from the standpoint of achieving the strength and toughness which are the objects of the present invention.
- N is an important solid solution strengthening element. When it is included in a suitable range in conjunction with Mn, Cr, Ni, C, and the like, it suppresses the formation of sigma phase and other intermetallic compounds, and it contributes to an increase in toughness, particularly in the direction perpendicular to the direction of working. For this purpose at least 0.001% is added. However, if it is added in excess of 0.30%, cold workability decreases, so it is made 0.001-0.30%.
- Nb greater than 0.20% and at most 1.0%
- Ta greater than 0.40% and at most 1.0%
- Ti greater than 0.10% and at most 1.0% with the object of obtaining a higher strength
- C+N is restricted to a range of at most 0.05%.
- V, Nb, Ta, Ti, Zr, and Hf form cubic carbonitrides and contribute to an increase in strength, and if necessary at least one of these may be added. However, if a large amount of carbonitrides thereof precipitate, ductility and toughness in the direction perpendicular to the direction of working decrease, and the contents thereof in the steel according to the present invention are each made 0.001-1.0%.
- At least one of Nb, Ta, and Ti is contained in the ranges of Nb: greater than 0.20% and at most 1.0%, Ta: greater than 0.40% and at most 1.0%, and Ti: greater than 0.10% and at most 1.0%, and C+N is preferably restricted to the range of at most 0.05%.
- B contributes to refinement of precipitates and refinement of austenite crystal grain, and if necessary at least 0.0001% of B may be added. However, if a large amount of B is added, it forms low melting point compounds, and there are cases in which it decreases hot workability. Thus, its upper limit is made 0.020%.
- Cu and Co are austenite stabilizing elements.
- they when they are suitably combined with Mn, Ni, C, or Cr, they contribute to an increase in strength, and optionally, at least one thereof may be added in an amount of at least 0.3%.
- the content thereof is defined as Cu: 0.3-2.0% and Co: 0.3-5.0%.
- Mg, Ca, and, of the transition elements, La, Ce, Y, Sm, Pr, and Nd act to prevent occurrence of cracks during solidification at the time of casting when present in the ranges set forth for the steel of the present invention, and they have the effect of reducing a decrease in ductility resulting from hydrogen embrittlement after long periods of use. If necessary, therefore, at least one of any of Mg: 0.0001-0.0050%, Ca: 0.0001-0.0050%, La: 0.0001-0.20%, Ce: 0.0001-0.20%, Y: 0.0001-0.40%, Sm: 0.0001-0.40%, Pr: 0.0001-0.40%, and Nd: 0.0001-0.50% may be added.
- An austenitic stainless steel according to the present invention has a tensile strength on the level of at least 800 MPa and preferably at least 900 MPa, and it has an elongation of at least 30%.
- the steel can be used in the form of plates, pipes, rods, shaped members, and wire, for example. If necessary, it can further undergo surface treatment such as plating.
- the directions of working are preferably perpendicular to each other.
- the direction of working refers to the direction of plastic deformation of the material being worked.
- the direction of working is the lengthwise direction of the steel pipe, and when carrying out swaging to compress a steel pipe, it is the radial direction of the steel pipe.
- the order in which the first and second cold working are performed is usually such that the working with the larger degree of working is carried out first and then the working with the smaller degree of working is carried out.
- such a texture structure is obtained in order to improve resistance to hydrogen embrittlement, and it is sufficient to form such a texture structure at least in a surface layer portion where contact with a hydrogen gas atmosphere takes place. Accordingly, after pipe forming, it is permissible to eliminate anisotropy of the texture structure only in the surface layer portion (the inner surface or the outer surface of the pipe) by shot peening.
- Table 1 shows examples of the chemical composition (mass percent) of an austenitic stainless steel according to the present invention and of a comparative steel.
- Manufacturing Steel C Si Mn P S Cr Ni sol-Al N Mo W others process Present invention 1 0.005 0.39 1.78 0.018 0.0007 18.2 9.5 0.009 0.045 A 2 0.016 0.36 1.03 0.001 0.0008 25.6 20.7 0.011 0.089 B 3 0.018 0.40 2.36 0.027 0.0007 27.8 28.7 0.007 0.152 A 4 0.014 0.43 10.51 0.010 0.0008 18.9 10.3 0.006 0.281 A 5 0.015 0.47 15.23 0.019 0.0007 24.1 21.1 0.010 0.279 A 6 0.020 0.38 1.78 0.029 0.0008 16.4 12.7 0.009 0.090 2.14 B 7 0.046 0.46 9.12 0.004 0.0010 16.8 13.0 0.006 0.275 2.46 A 8 0.004 0.39 1.73 0.025 0.0008 16.5 12.2
- the water-cooled plates were subjected to cold rolling of 30%, after which cold rolling of 10% was carried out in the direction perpendicular to the previous direction of working (manufacturing method A), or the water-cooled plates were subjected to cold rolling of 40% and then to cold rolling of 10% in the direction perpendicular to the previous direction of working (manufacturing method B) to obtain test materials.
- test materials For comparative steels B-G, after the above-described hot forging and solid solution treatment, cold rolling of 10-65% in a single direction was carried out to obtain test materials.
- test materials were obtained by the above-described manufacturing method B.
- test materials For comparative steels N and O, after hot forging and solid solution treatment, cold rolling of 50% was carried out in a single direction to obtain test materials.
- steels of the present invention of Nos. 1-32 of Table 2 each had an x-ray integrated intensity I(111) of a cross section in the direction perpendicular to the direction of working (a cross section perpendicular to the direction of working) of at most 5 times that in a random direction, and the x-ray integrated intensity ratio I(220)/I(111) of a cross section in the direction of working (a working direction cross section) of at most 10.
- the strength TS at room temperature was at least 800 MPa
- YS was at least 400 MPa
- elongation was at least 30%.
- susceptibility to hydrogen embrittlement which was evaluated by the ratio of the ductility in a tensile test in a hydrogen gas environment to that in a tensile test in air was extremely low.
- cold rolling was carried out twice on a plate in different directions of working, but the same effects as in this example can be obtained when carrying out cold rolling two times in different directions of working on a steel pipe (such as pipe forming by cold drawing and pipe expansion with a plug).
- an austenitic stainless steel which has excellent mechanical properties (strength and ductility) and corrosion resistance for use as a component of structural equipment which is exposed to high pressure hydrogen gas, specifically which is used in a hydrogen environment such as in a fuel cell automobile or a hydrogen gas station.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/953,576 US8696835B2 (en) | 2003-06-10 | 2010-11-24 | Austenitic stainless steel for hydrogen gas and a method for its manufacture |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-165670 | 2003-06-10 | ||
JP2003165670 | 2003-06-10 | ||
PCT/JP2004/008380 WO2004111285A1 (fr) | 2003-06-10 | 2004-06-09 | Acier inoxydable austénitique destiné à être utilisé en présence d'hydrogène et procédé de production dudit acier |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/008380 Continuation WO2004111285A1 (fr) | 2003-06-10 | 2004-06-09 | Acier inoxydable austénitique destiné à être utilisé en présence d'hydrogène et procédé de production dudit acier |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/953,576 Continuation US8696835B2 (en) | 2003-06-10 | 2010-11-24 | Austenitic stainless steel for hydrogen gas and a method for its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060193743A1 true US20060193743A1 (en) | 2006-08-31 |
Family
ID=33549224
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/297,418 Abandoned US20060193743A1 (en) | 2003-06-10 | 2005-12-09 | Austenitic stainless steel for hydrogen gas and method for its manufacture |
US12/953,576 Expired - Fee Related US8696835B2 (en) | 2003-06-10 | 2010-11-24 | Austenitic stainless steel for hydrogen gas and a method for its manufacture |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/953,576 Expired - Fee Related US8696835B2 (en) | 2003-06-10 | 2010-11-24 | Austenitic stainless steel for hydrogen gas and a method for its manufacture |
Country Status (7)
Country | Link |
---|---|
US (2) | US20060193743A1 (fr) |
EP (1) | EP1645649B1 (fr) |
JP (1) | JP4539559B2 (fr) |
KR (1) | KR100689783B1 (fr) |
CN (1) | CN1833043B (fr) |
CA (1) | CA2528743C (fr) |
WO (1) | WO2004111285A1 (fr) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090032246A1 (en) * | 2007-03-26 | 2009-02-05 | Hideki Takabe | Oil country tubular good for expansion in well and duplex stainless steel used for oil country tubular good for expansion |
US20090159602A1 (en) * | 2005-11-01 | 2009-06-25 | Masaharu Hatano | Austenitic High Mn Stainless Steel for High Pressure Hydrogen Gas |
US20100034689A1 (en) * | 2007-10-03 | 2010-02-11 | Hiroyuki Hirata | Austenitic stainless steel |
US20100054983A1 (en) * | 2007-10-04 | 2010-03-04 | Takahiro Osuki | Austenitic stainless steel |
US20110024005A1 (en) * | 2007-07-20 | 2011-02-03 | Sumitomo Metal Industries, Ltd. | Method for Producing Two-Phase Stainless Steel Pipe |
US20120003116A1 (en) * | 2009-03-27 | 2012-01-05 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
US20130174949A1 (en) * | 2010-09-29 | 2013-07-11 | Nippon Steel & Sumikin Stainless Steel Corporation | Austenitic high mn stainless steel and method production of same and member using that steel |
US20140056751A1 (en) * | 2011-03-31 | 2014-02-27 | Kubota Corporation | Cast austenitic stainless steel |
US8865060B2 (en) | 2007-10-04 | 2014-10-21 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel |
US20150206745A1 (en) * | 2009-09-14 | 2015-07-23 | Shin-Etsu Chemical Co., Ltd. | System for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, and process for producing polycrystalline silicon |
US9714459B2 (en) | 2012-03-30 | 2017-07-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Heat-resistant austenitic stainless steel sheet |
US10316383B2 (en) * | 2014-04-17 | 2019-06-11 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel and method for producing the same |
US10501831B2 (en) * | 2014-10-08 | 2019-12-10 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for producing an alloy for a reforming tube |
US10501819B2 (en) | 2015-03-06 | 2019-12-10 | Nippon Steel & Sumikin Stainless Steel Corporation | High-strength austenitic stainless steel having excellent hydrogen embrittlement resistance characteristics and method for producing same |
US11149324B2 (en) | 2015-03-26 | 2021-10-19 | Nippon Steel Stainless Steel Corporation | High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment |
US20220213571A1 (en) * | 2019-05-31 | 2022-07-07 | Nippon Steel Corporation | Austenitic stainless steel material |
US11866814B2 (en) | 2007-10-04 | 2024-01-09 | Nippon Steel Corporation | Austenitic stainless steel |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4274176B2 (ja) | 2003-03-20 | 2009-06-03 | 住友金属工業株式会社 | 高圧水素ガス用ステンレス鋼、その鋼からなる容器および機器 |
KR100666727B1 (ko) * | 2005-04-19 | 2007-01-09 | 포스코신기술연구조합 | 스프링용 304h 오스테나이트계 스테인레스강 |
US20060275168A1 (en) * | 2005-06-03 | 2006-12-07 | Ati Properties, Inc. | Austenitic stainless steel |
RU2321672C1 (ru) * | 2006-05-31 | 2008-04-10 | Юлия Алексеевна Щепочкина | Сталь |
NO332412B1 (no) * | 2006-06-28 | 2012-09-17 | Hydrogen Technologies As | Anvendelse av austenittisk rustfritt stal som konstruksjonsmateriale i en innretning eller konstruksjonsdeler som er utsatt for et miljo som omfatter flussyre og oksygen og/eller hydrogen |
CN101135028B (zh) * | 2006-08-30 | 2010-08-11 | 宝山钢铁股份有限公司 | 一种高强度不锈钢及其热处理方法 |
RU2346074C2 (ru) * | 2006-09-04 | 2009-02-10 | Общество с ограниченной ответственностью "Каури" | Нержавеющая высокопрочная сталь |
EA200800023A1 (ru) * | 2006-10-02 | 2008-06-30 | Дмитрий Владимирович Савкин | Жаропрочная коррозионно-стойкая сталь |
KR100832487B1 (ko) * | 2006-12-22 | 2008-05-26 | 한국항공우주연구원 | 초저온에서 높은 항복강도 및 우수한 연신율을 갖는 고강도스테인리스 스틸 |
EP2119802B1 (fr) | 2007-01-15 | 2019-03-20 | Nippon Steel & Sumitomo Metal Corporation | Joint soudé d'acier inoxydable austénitique et matériau de soudage d'acier inoxydable austénitique |
DE102007029400B4 (de) * | 2007-06-26 | 2014-05-15 | Outokumpu Vdm Gmbh | Eisen-Nickel-Chrom-Silizium-Legierung |
US20090129967A1 (en) * | 2007-11-09 | 2009-05-21 | General Electric Company | Forged austenitic stainless steel alloy components and method therefor |
ES2713899T3 (es) | 2007-11-29 | 2019-05-24 | Ati Properties Llc | Acero inoxidable austenítico pobre |
KR20090066000A (ko) * | 2007-12-18 | 2009-06-23 | 주식회사 포스코 | 고진공, 고순도 가스 배관용 오스테나이트계 스테인리스강 |
CN101903549B (zh) | 2007-12-20 | 2013-05-08 | Ati资产公司 | 耐腐蚀的低组分奥氏体不锈钢 |
US8337749B2 (en) | 2007-12-20 | 2012-12-25 | Ati Properties, Inc. | Lean austenitic stainless steel |
ATE522635T1 (de) | 2007-12-20 | 2011-09-15 | Ati Properties Inc | Nickelarmer austenitischer nichtrostender stahl mit stabilisierenden elementen |
CN101724789B (zh) * | 2008-10-23 | 2011-07-20 | 宝山钢铁股份有限公司 | 奥氏体不锈钢中厚板及其制造方法 |
CN101724792B (zh) * | 2008-10-27 | 2012-12-05 | 朱卫 | 一种奥氏体不锈钢及其钢丝制造方法 |
JP2010121190A (ja) * | 2008-11-21 | 2010-06-03 | Nisshin Steel Co Ltd | 高圧水素輸送用オーステナイト系ステンレス鋼溶接管およびその製造方法 |
US8430075B2 (en) * | 2008-12-16 | 2013-04-30 | L.E. Jones Company | Superaustenitic stainless steel and method of making and use thereof |
KR101091863B1 (ko) * | 2009-03-06 | 2011-12-12 | 포스코특수강 주식회사 | 고온강도가 우수한 스테인레스 강재 및 그 제조방법 |
CN101845605B (zh) * | 2009-03-24 | 2013-01-02 | 宝山钢铁股份有限公司 | 一种中低温强度优异的奥氏体不锈钢板及其制造方法 |
EP2287351A1 (fr) * | 2009-07-22 | 2011-02-23 | Arcelormittal Investigación y Desarrollo SL | Acier austénitique résistant à la chaleur doté d'une grande résistance aux craquelures de relaxation des contraintes |
RU2409697C1 (ru) * | 2009-08-05 | 2011-01-20 | Общество с ограниченной ответственностью "Газпром добыча Астрахань" (ООО "Газпром добыча Астрахань") Открытого Акционерного Общества "Газпром" (ОАО "Газпром") | Коррозионно-стойкая сталь |
CN101994068B (zh) * | 2009-08-25 | 2012-12-26 | 宝山钢铁股份有限公司 | 奥氏体不锈钢钢板 |
RU2413031C1 (ru) * | 2009-10-13 | 2011-02-27 | Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") | Аустенитная коррозионно-стойкая сталь для хлоридсодержащих сред и изделие, выполненное из нее |
RU2415197C1 (ru) * | 2009-10-20 | 2011-03-27 | Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН (ИМЕТ РАН) | Жаропрочная высокопластичная аустенитная сталь |
JP5346894B2 (ja) * | 2010-08-27 | 2013-11-20 | 株式会社日本製鋼所 | 高強度低合金鋼の高圧水素環境脆化感受性の評価方法 |
JP5500038B2 (ja) * | 2010-10-13 | 2014-05-21 | 新日鐵住金株式会社 | 皮膜に対する密着性に優れたオーステナイト系ステンレス鋼 |
CN101967611B (zh) * | 2010-11-05 | 2012-07-25 | 钢铁研究总院 | 一种高韧性奥氏体锅炉钢 |
DE102010053385A1 (de) * | 2010-12-03 | 2012-06-21 | Bayerische Motoren Werke Aktiengesellschaft | Austenitischer Stahl für die Wasserstofftechnik |
DE102011010316B4 (de) | 2011-02-03 | 2013-03-21 | Bayerische Motoren Werke Aktiengesellschaft | Austenitischer Stahl mit hoher Beständigkeit gegenüber wasserstoffinduzierter Versprödung |
CA2824463C (fr) * | 2011-03-28 | 2016-12-13 | Nippon Steel & Sumitomo Metal Corporation | Acier inoxydable austenitique a haute resistance pour hydrogene gazeux a haute pression |
DE102012104254A1 (de) * | 2011-11-02 | 2013-05-02 | Bayerische Motoren Werke Aktiengesellschaft | Kostenreduzierter Stahl für die Wasserstofftechnik mit hoher Beständigkeit gegen wasserstoffinduzierte Versprödung |
US9347121B2 (en) * | 2011-12-20 | 2016-05-24 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
DE102012104260A1 (de) * | 2012-05-16 | 2013-11-21 | Bayerische Motoren Werke Aktiengesellschaft | Kostenreduzierter Stahl für die Wasserstofftechnik mit hoher Beständigkeit gegen wasserstoffinduzierte Versprödung |
JP5888737B2 (ja) * | 2012-05-21 | 2016-03-22 | 日本冶金工業株式会社 | オーステナイト系Fe−Ni−Cr合金 |
JP5786830B2 (ja) * | 2012-09-03 | 2015-09-30 | 新日鐵住金株式会社 | 高圧水素ガス用高強度オーステナイトステンレス鋼 |
JP5547825B1 (ja) * | 2013-01-23 | 2014-07-16 | 株式会社神戸製鋼所 | オーステナイト系ステンレス鋼 |
CN109321822A (zh) * | 2012-10-30 | 2019-02-12 | 株式会社神户制钢所 | 奥氏体系不锈钢 |
JP5547789B2 (ja) * | 2012-10-30 | 2014-07-16 | 株式会社神戸製鋼所 | オーステナイト系ステンレス鋼 |
RU2551340C2 (ru) * | 2012-12-04 | 2015-05-20 | Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") | Аустенитная коррозионно-стойкая сталь |
JP6089657B2 (ja) * | 2012-12-07 | 2017-03-08 | 愛知製鋼株式会社 | 低温での水素脆化感受性に優れた高圧水素用オーステナイト系ステンレス鋼及びその製造方法 |
RU2545856C2 (ru) * | 2013-08-02 | 2015-04-10 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения |
JP5579316B1 (ja) * | 2013-09-30 | 2014-08-27 | 大陽日酸株式会社 | 溶接施工方法及び溶接構造物 |
CN103498112B (zh) * | 2013-10-14 | 2015-08-26 | 无锡通用钢绳有限公司 | 不锈钢丝绳的生产工艺 |
CN103722772B (zh) * | 2013-10-31 | 2015-08-19 | 东莞市维美电器有限公司 | 一种家用榨油机的碎渣装置及其制备材料 |
CN103695792B (zh) * | 2013-11-14 | 2016-01-13 | 安徽荣达阀门有限公司 | 一种高碳合金钢耐磨阀门材料及其制备方法 |
CN103643171B (zh) * | 2013-12-24 | 2016-01-06 | 北京科技大学 | 一种复合强化22/15铬镍型高强抗蚀奥氏体耐热钢 |
JP6322454B2 (ja) * | 2014-03-27 | 2018-05-09 | 日新製鋼株式会社 | 耐食性に優れた、特に鋭敏化特性が改善された排ガス流路部材用オーステナイト系ステンレス鋼材 |
CN104152814A (zh) * | 2014-05-28 | 2014-11-19 | 无锡兴澄华新钢材有限公司 | 奥化体不锈钢防爆网 |
CN103993238B (zh) * | 2014-06-13 | 2016-06-08 | 四川法拉特不锈钢铸造有限公司 | 一种低镍奥氏体不锈钢 |
JP2016029213A (ja) * | 2014-07-22 | 2016-03-03 | 神鋼特殊鋼管株式会社 | ステンレス鋼およびステンレス鋼管 |
AU2015338140B2 (en) * | 2014-10-29 | 2018-05-24 | Nippon Steel Corporation | Austenitic stainless steel and manufacturing method therefor |
RU2585899C1 (ru) * | 2015-02-02 | 2016-06-10 | Григорьянц Александр Григорьевич | Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения |
JP6519009B2 (ja) * | 2015-04-08 | 2019-05-29 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼 |
RU2584315C1 (ru) * | 2015-06-04 | 2016-05-20 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки |
JP6112270B1 (ja) * | 2015-06-05 | 2017-04-12 | 新日鐵住金株式会社 | オーステナイトステンレス鋼 |
CN106319379A (zh) * | 2015-07-01 | 2017-01-11 | 上海添御石油设备科技有限公司 | 一种石油压裂车的压力泵阀箱用不锈钢材料 |
JP6137434B1 (ja) * | 2015-09-30 | 2017-05-31 | 新日鐵住金株式会社 | オーステナイト系ステンレス鋼 |
WO2017175739A1 (fr) | 2016-04-07 | 2017-10-12 | 新日鐵住金株式会社 | Matériau d'acier inoxydable à base d'austénite |
JP6904359B2 (ja) * | 2016-08-30 | 2021-07-14 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼 |
KR20180054031A (ko) * | 2016-11-14 | 2018-05-24 | 주식회사 포스코 | 내수소취성이 개선된 오스테나이트계 스테인리스강 및 이를 포함하는 고압 수소 가스용 용기 |
CN106555126B (zh) * | 2016-11-22 | 2018-05-15 | 国营芜湖机械厂 | 1Cr15Ni4Mo3N钢用激光熔覆粉末及制备方法 |
CN106702251A (zh) * | 2016-11-24 | 2017-05-24 | 安徽瑞研新材料技术研究院有限公司 | 一种快开式可控温的高压氢气环境的材料及其制备方法 |
KR102030162B1 (ko) * | 2016-12-23 | 2019-11-08 | 주식회사 포스코 | 가공성 및 표면특성이 우수한 오스테나이트계 스테인리스강 및 이의 제조방법 |
CN107747068B (zh) * | 2017-10-20 | 2018-10-19 | 山西太钢不锈钢股份有限公司 | 一种耐热不锈钢无缝管及其制备方法 |
RU2660451C1 (ru) * | 2017-12-19 | 2018-07-06 | Юлия Алексеевна Щепочкина | Сплав на основе железа |
CN108220823B (zh) * | 2018-02-23 | 2020-04-14 | 温州市赢创新材料技术有限公司 | 耐高温不锈钢 |
CN108411208A (zh) * | 2018-04-11 | 2018-08-17 | 石英楠 | 一种电厂发电机组用奥氏体耐热不锈钢的制备方法 |
JP7319525B2 (ja) * | 2018-04-26 | 2023-08-02 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
CN108950404B (zh) * | 2018-08-13 | 2020-07-07 | 广东省材料与加工研究所 | 一种含锆的奥氏体耐热钢及其制备方法 |
KR102202390B1 (ko) * | 2018-12-13 | 2021-01-13 | 한국표준과학연구원 | 가스 처리로부터 개질된 내수소취화 스테인레스 분말결합체 및 이를 위한 스테인레스 분말 |
CN110129658B (zh) * | 2019-05-27 | 2020-07-10 | 北京科技大学 | 一种高锰无氮型高强高韧抗氢脆奥氏体不锈钢及制备方法 |
CN110331340A (zh) * | 2019-07-30 | 2019-10-15 | 深圳市裕丰隆金属材料有限公司 | 一种304亚稳态奥氏体不锈钢及其制备工艺 |
RU2716922C1 (ru) * | 2019-08-14 | 2020-03-17 | Общество с ограниченной отвественностью "Лаборатория специальной металлургии" (ООО "Ласмет") | Аустенитная коррозионно-стойкая сталь с азотом |
DE102019213026A1 (de) * | 2019-08-29 | 2021-03-04 | Robert Bosch Gmbh | Bauteil zum Führen und/oder Speichern von zumindest einem Fluid und Verfahren zu dessen Herstellung |
CN110484836B (zh) * | 2019-09-24 | 2021-01-05 | 南京佑天金属科技有限公司 | 一种铪锆钛钼增强奥氏体不锈钢及其制备方法 |
JP7339526B2 (ja) * | 2019-10-24 | 2023-09-06 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
CN111607691B (zh) * | 2020-05-26 | 2022-02-11 | 东南大学 | 一种具有梯度组织的321奥氏体不锈钢管及制备方法 |
KR102448744B1 (ko) | 2020-07-17 | 2022-09-30 | 주식회사 포스코 | 내수소취성이 개선된 고질소 오스테나이트계 스테인리스강 |
CN112575261B (zh) * | 2020-12-09 | 2022-02-01 | 广东省科学院新材料研究所 | 一种复合变质马氏体合金铸钢 |
CN113493881A (zh) * | 2021-06-24 | 2021-10-12 | 江苏良工精密合金钢有限公司 | 超纯净耐热不锈圆钢及制造工艺 |
WO2023013353A1 (fr) * | 2021-08-02 | 2023-02-09 | 日鉄ステンレス株式会社 | Matériau d'acier inoxydable à base d'austénite, son procédé de fabrication, et article décoratif |
CN114737117A (zh) * | 2022-03-31 | 2022-07-12 | 广东潮艺金属实业有限公司 | 高硬度和高防锈的不锈钢316l及其烧结工艺 |
DE102023001726A1 (de) | 2022-09-29 | 2024-04-04 | Christian Martin Erdmann | Produkt zum Speichern und/oder Bereitstellen und/oder Transportieren und/oder Führen von Wasserstoff enthaltendem Fluid und/oder Kontinuum |
US20240247331A1 (en) | 2023-01-20 | 2024-07-25 | Daido Steel Co., Ltd. | Austenitic stainless steel for high-pressure hydrogen gas or liquid hydrogen, and manufacturing method therefor |
CN116200668B (zh) * | 2023-04-17 | 2023-11-14 | 宁波晴力紧固件有限公司 | 一种耐热高强度紧固件材料及其制备方法 |
CN117987749A (zh) * | 2024-04-03 | 2024-05-07 | 清华大学 | 超高强度抗氢脆奥氏体不锈钢及其制备方法 |
CN118028701B (zh) * | 2024-04-11 | 2024-06-11 | 江西理工大学 | 抗氢脆奥氏体不锈钢及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4421572A (en) * | 1982-03-18 | 1983-12-20 | The United States Of America As Represented By The United States Department Of Energy | Thermomechanical treatment of alloys |
US4576641A (en) * | 1982-09-02 | 1986-03-18 | The United States Of America As Represented By The United States Department Of Energy | Austenitic alloy and reactor components made thereof |
US5634365A (en) * | 1993-08-02 | 1997-06-03 | Valinox Nucleaire | Process allowing background noise to be reduced during eddy-current testing of metal tubes, and tubes produced using this process |
US5636544A (en) * | 1992-06-04 | 1997-06-10 | Sumitomo Metal Industries, Ltd. | Cold rolling method for a metal strip and a mill array |
US6485679B1 (en) * | 1999-02-16 | 2002-11-26 | Sandvik Ab | Heat resistant austenitic stainless steel |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE506886C2 (sv) | 1990-02-26 | 1998-02-23 | Sandvik Ab | Vanadinlegerat utskiljningshärdbart omagnetiskt austenitiskt stål |
JPH0565601A (ja) | 1991-09-03 | 1993-03-19 | Hitachi Metals Ltd | 高強度、高疲労強度オーステナイト系ステンレス鋼およびその製造方法 |
JP3304001B2 (ja) | 1993-07-09 | 2002-07-22 | 日立金属株式会社 | 耐孔食性の優れたオーステナイト系ステンレス鋼およびその製造方法 |
JPH07216453A (ja) | 1994-02-04 | 1995-08-15 | Sumitomo Metal Ind Ltd | 非磁性プレストレスコンクリート用鋼材の製造方法 |
JP3463617B2 (ja) * | 1999-08-06 | 2003-11-05 | 住友金属工業株式会社 | 熱間加工性に優れる継目無鋼管用オーステナイト系耐熱鋼 |
-
2004
- 2004-06-09 EP EP04745932.6A patent/EP1645649B1/fr not_active Expired - Lifetime
- 2004-06-09 KR KR1020057023575A patent/KR100689783B1/ko not_active Expired - Fee Related
- 2004-06-09 CA CA2528743A patent/CA2528743C/fr not_active Expired - Fee Related
- 2004-06-09 CN CN200480022838.5A patent/CN1833043B/zh not_active Expired - Fee Related
- 2004-06-09 WO PCT/JP2004/008380 patent/WO2004111285A1/fr active Application Filing
- 2004-06-09 JP JP2005506967A patent/JP4539559B2/ja not_active Expired - Fee Related
-
2005
- 2005-12-09 US US11/297,418 patent/US20060193743A1/en not_active Abandoned
-
2010
- 2010-11-24 US US12/953,576 patent/US8696835B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4421572A (en) * | 1982-03-18 | 1983-12-20 | The United States Of America As Represented By The United States Department Of Energy | Thermomechanical treatment of alloys |
US4576641A (en) * | 1982-09-02 | 1986-03-18 | The United States Of America As Represented By The United States Department Of Energy | Austenitic alloy and reactor components made thereof |
US5636544A (en) * | 1992-06-04 | 1997-06-10 | Sumitomo Metal Industries, Ltd. | Cold rolling method for a metal strip and a mill array |
US5634365A (en) * | 1993-08-02 | 1997-06-03 | Valinox Nucleaire | Process allowing background noise to be reduced during eddy-current testing of metal tubes, and tubes produced using this process |
US6485679B1 (en) * | 1999-02-16 | 2002-11-26 | Sandvik Ab | Heat resistant austenitic stainless steel |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090159602A1 (en) * | 2005-11-01 | 2009-06-25 | Masaharu Hatano | Austenitic High Mn Stainless Steel for High Pressure Hydrogen Gas |
US20090032246A1 (en) * | 2007-03-26 | 2009-02-05 | Hideki Takabe | Oil country tubular good for expansion in well and duplex stainless steel used for oil country tubular good for expansion |
US20110024005A1 (en) * | 2007-07-20 | 2011-02-03 | Sumitomo Metal Industries, Ltd. | Method for Producing Two-Phase Stainless Steel Pipe |
US8333851B2 (en) * | 2007-07-20 | 2012-12-18 | Sumitomo Metal Industries, Ltd. | Method for producing two-phase stainless steel pipe |
US20100034689A1 (en) * | 2007-10-03 | 2010-02-11 | Hiroyuki Hirata | Austenitic stainless steel |
US8865060B2 (en) | 2007-10-04 | 2014-10-21 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel |
US20100054983A1 (en) * | 2007-10-04 | 2010-03-04 | Takahiro Osuki | Austenitic stainless steel |
US8133431B2 (en) * | 2007-10-04 | 2012-03-13 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
US11866814B2 (en) | 2007-10-04 | 2024-01-09 | Nippon Steel Corporation | Austenitic stainless steel |
US20120003116A1 (en) * | 2009-03-27 | 2012-01-05 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
US20150206745A1 (en) * | 2009-09-14 | 2015-07-23 | Shin-Etsu Chemical Co., Ltd. | System for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, and process for producing polycrystalline silicon |
US10366882B2 (en) * | 2009-09-14 | 2019-07-30 | Shin-Etsu Chemical Co., Ltd. | System for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, and process for producing polycrystalline silicon |
US20130174949A1 (en) * | 2010-09-29 | 2013-07-11 | Nippon Steel & Sumikin Stainless Steel Corporation | Austenitic high mn stainless steel and method production of same and member using that steel |
US9175361B2 (en) * | 2010-09-29 | 2015-11-03 | Nippon Steel & Sumikin Stainless Steel Corporation | Austenitic high Mn stainless steel and method production of same and member using that steel |
US20140056751A1 (en) * | 2011-03-31 | 2014-02-27 | Kubota Corporation | Cast austenitic stainless steel |
US9714459B2 (en) | 2012-03-30 | 2017-07-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Heat-resistant austenitic stainless steel sheet |
US10316383B2 (en) * | 2014-04-17 | 2019-06-11 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel and method for producing the same |
US10501831B2 (en) * | 2014-10-08 | 2019-12-10 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for producing an alloy for a reforming tube |
US10501819B2 (en) | 2015-03-06 | 2019-12-10 | Nippon Steel & Sumikin Stainless Steel Corporation | High-strength austenitic stainless steel having excellent hydrogen embrittlement resistance characteristics and method for producing same |
US11149324B2 (en) | 2015-03-26 | 2021-10-19 | Nippon Steel Stainless Steel Corporation | High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment |
US11603573B2 (en) | 2015-03-26 | 2023-03-14 | Nippon Steel Stainless Steel Corporation | High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment |
US20220213571A1 (en) * | 2019-05-31 | 2022-07-07 | Nippon Steel Corporation | Austenitic stainless steel material |
US12221665B2 (en) * | 2019-05-31 | 2025-02-11 | Nippon Steel Corporation | Austenitic stainless steel material |
Also Published As
Publication number | Publication date |
---|---|
US8696835B2 (en) | 2014-04-15 |
JPWO2004111285A1 (ja) | 2006-07-20 |
EP1645649A1 (fr) | 2006-04-12 |
US20110064649A1 (en) | 2011-03-17 |
WO2004111285A1 (fr) | 2004-12-23 |
EP1645649B1 (fr) | 2014-07-30 |
KR20060018250A (ko) | 2006-02-28 |
JP4539559B2 (ja) | 2010-09-08 |
CN1833043B (zh) | 2010-09-22 |
CA2528743C (fr) | 2010-11-23 |
KR100689783B1 (ko) | 2007-03-08 |
EP1645649A4 (fr) | 2006-12-13 |
CA2528743A1 (fr) | 2004-12-23 |
CN1833043A (zh) | 2006-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8696835B2 (en) | Austenitic stainless steel for hydrogen gas and a method for its manufacture | |
US7749431B2 (en) | Stainless steel for high-pressure hydrogen gas | |
EP1605072B1 (fr) | Acier inoxydable destine a venir en contact avec du gaz hydrogene haute pression, cuve et equipement contenant ledit acier | |
US20040238079A1 (en) | Stainless-steel pipe for oil well and process for producing the same | |
JP4007241B2 (ja) | 高温強度と耐食性に優れたオーステナイト系ステンレス鋼ならびにこの鋼からなる耐熱耐圧部材とその製造方法 | |
WO2006003953A1 (fr) | TUYAU BRUT EN ALLIAGE DE Fe-Ni ET SA MÉTHODE DE PRODUCTION | |
JP7329984B2 (ja) | ステンレス鋼 | |
EP1408132B1 (fr) | Acier ferritique inoxydable pour systèmes d'échappement ayant une bonne aptitude de formage, une haute résistance mécanique, une haute tenacité à basse température et une excellent résistance à l'oxydation à haute température | |
JP2002212634A (ja) | クリープ破断強度に優れたオーステナイト系耐熱鋼管の製造方法 | |
JP2005187857A (ja) | ハイドロフォーム加工後の耐割れ性に優れるCr含有フェライト系鋼板 | |
JP7278079B2 (ja) | ステンレス冷延鋼板、ステンレス熱延鋼板及びステンレス熱延鋼板の製造方法 | |
JP2024138419A (ja) | 冷間鍛造性及び、耐水素脆化特性に優れるステンレス鋼 | |
JP2019143227A (ja) | 高Mnオーステナイト系ステンレス鋼 | |
JP6455342B2 (ja) | 高圧水素ガス用高Mn鋼鋼材ならびにその鋼材からなる、配管、容器、バルブおよび継手 | |
CN1926257A (zh) | 钢 | |
JP7513867B2 (ja) | オーステナイト系ステンレス鋼及びオーステナイト系ステンレス鋼の製造方法 | |
JP5239642B2 (ja) | 熱疲労特性、高温疲労特性および耐酸化性に優れるフェライト系ステンレス鋼 | |
JP2002206140A (ja) | 鋼管及びその製造方法 | |
RU2458175C1 (ru) | Ферритная нержавеющая сталь, характеризующаяся высокой жаростойкостью | |
JPH0148345B2 (fr) | ||
JP3177555B2 (ja) | 耐食性、延靭性に優れた高Si含有ステンレス継目無鋼管の製造方法 | |
JP2020050936A (ja) | ステンレス鋼 | |
JP2006104498A (ja) | 加工性および低温靭性に優れた高純度フェライト系鋼板 | |
WO2023162817A1 (fr) | Matériau en acier inoxydable duplex | |
JPS63157838A (ja) | 耐隙間腐食性に優れる2相ステンレス鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUMITOMO METAL INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEMBA, HIROYUKI;IGARASHI, MASAAKI;OMURA, TOMOHIKO;AND OTHERS;REEL/FRAME:017655/0560;SIGNING DATES FROM 20060308 TO 20060417 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |