US20060188472A1 - HAS-active ingredient conjugates - Google Patents
HAS-active ingredient conjugates Download PDFInfo
- Publication number
- US20060188472A1 US20060188472A1 US11/351,714 US35171406A US2006188472A1 US 20060188472 A1 US20060188472 A1 US 20060188472A1 US 35171406 A US35171406 A US 35171406A US 2006188472 A1 US2006188472 A1 US 2006188472A1
- Authority
- US
- United States
- Prior art keywords
- hes
- mol
- coupling
- active ingredient
- conjugate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004480 active ingredient Substances 0.000 title description 145
- 238000000034 method Methods 0.000 claims abstract description 96
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 239000003960 organic solvent Substances 0.000 claims abstract description 15
- 239000012429 reaction media Substances 0.000 claims abstract description 15
- 238000005859 coupling reaction Methods 0.000 claims description 113
- 229920001612 Hydroxyethyl starch Polymers 0.000 claims description 106
- 229940050526 hydroxyethylstarch Drugs 0.000 claims description 106
- 238000010168 coupling process Methods 0.000 claims description 94
- 230000008878 coupling Effects 0.000 claims description 92
- 230000008569 process Effects 0.000 claims description 87
- 238000002360 preparation method Methods 0.000 claims description 33
- -1 hydroxyethyl groups Chemical group 0.000 claims description 21
- 238000006467 substitution reaction Methods 0.000 claims description 16
- 102000039446 nucleic acids Human genes 0.000 claims description 15
- 108020004707 nucleic acids Proteins 0.000 claims description 15
- 150000007523 nucleic acids Chemical class 0.000 claims description 15
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical group CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 claims description 12
- 125000003277 amino group Chemical group 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 239000012190 activator Substances 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 42
- 125000002768 hydroxyalkyl group Chemical group 0.000 abstract description 13
- 229920002472 Starch Polymers 0.000 abstract description 11
- 239000008107 starch Substances 0.000 abstract description 11
- 235000019698 starch Nutrition 0.000 abstract description 11
- 239000013543 active substance Substances 0.000 abstract description 6
- 239000000047 product Substances 0.000 description 44
- 230000000694 effects Effects 0.000 description 37
- 235000018102 proteins Nutrition 0.000 description 29
- 102000004169 proteins and genes Human genes 0.000 description 29
- 108090000623 proteins and genes Proteins 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 28
- 239000000243 solution Substances 0.000 description 28
- 238000007254 oxidation reaction Methods 0.000 description 27
- 230000003647 oxidation Effects 0.000 description 26
- 238000011282 treatment Methods 0.000 description 24
- 239000003814 drug Substances 0.000 description 23
- 230000000118 anti-neoplastic effect Effects 0.000 description 21
- 229920001223 polyethylene glycol Polymers 0.000 description 21
- 239000002202 Polyethylene glycol Substances 0.000 description 20
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 14
- 206010028980 Neoplasm Diseases 0.000 description 14
- 230000027455 binding Effects 0.000 description 14
- 239000003242 anti bacterial agent Substances 0.000 description 13
- 238000005227 gel permeation chromatography Methods 0.000 description 13
- 108090000765 processed proteins & peptides Proteins 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 12
- 239000003416 antiarrhythmic agent Substances 0.000 description 12
- 229940088710 antibiotic agent Drugs 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 229930182555 Penicillin Natural products 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 230000003288 anthiarrhythmic effect Effects 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 11
- 238000000502 dialysis Methods 0.000 description 11
- 208000006265 Renal cell carcinoma Diseases 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 230000035484 reaction time Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 229940049954 penicillin Drugs 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 230000002924 anti-infective effect Effects 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 230000003834 intracellular effect Effects 0.000 description 8
- 229960004857 mitomycin Drugs 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical compound C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 description 8
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 7
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 7
- 102000004127 Cytokines Human genes 0.000 description 7
- 108090000695 Cytokines Proteins 0.000 description 7
- 101000945318 Homo sapiens Calponin-1 Proteins 0.000 description 7
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 7
- 102100031013 Transgelin Human genes 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 229910052740 iodine Inorganic materials 0.000 description 7
- 239000011630 iodine Substances 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 239000012279 sodium borohydride Substances 0.000 description 7
- 229910000033 sodium borohydride Inorganic materials 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 6
- 208000035473 Communicable disease Diseases 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 206010027476 Metastases Diseases 0.000 description 6
- 229960005305 adenosine Drugs 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 230000002588 toxic effect Effects 0.000 description 6
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 206010003119 arrhythmia Diseases 0.000 description 5
- 230000006793 arrhythmia Effects 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 229940088597 hormone Drugs 0.000 description 5
- 239000005556 hormone Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 238000010517 secondary reaction Methods 0.000 description 5
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 238000002648 combination therapy Methods 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 150000004676 glycans Polymers 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000013067 intermediate product Substances 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 108700012359 toxins Proteins 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- 229920000945 Amylopectin Polymers 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- 108010038807 Oligopeptides Proteins 0.000 description 3
- 102000015636 Oligopeptides Human genes 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000002168 alkylating agent Substances 0.000 description 3
- 229940100198 alkylating agent Drugs 0.000 description 3
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 3
- 229960003022 amoxicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- 230000000340 anti-metabolite Effects 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 239000002256 antimetabolite Substances 0.000 description 3
- 229940100197 antimetabolite Drugs 0.000 description 3
- 229940034982 antineoplastic agent Drugs 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 239000012431 aqueous reaction media Substances 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 150000001720 carbohydrates Chemical group 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 239000007819 coupling partner Substances 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 3
- 229910000397 disodium phosphate Inorganic materials 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 230000029142 excretion Effects 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 210000004324 lymphatic system Anatomy 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 2
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 2
- ITPDYQOUSLNIHG-UHFFFAOYSA-N Amiodarone hydrochloride Chemical compound [Cl-].CCCCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(I)=C(OCC[NH+](CC)CC)C(I)=C1 ITPDYQOUSLNIHG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 229940127291 Calcium channel antagonist Drugs 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- XQLWNAFCTODIRK-UHFFFAOYSA-N Gallopamil Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC(OC)=C(OC)C(OC)=C1 XQLWNAFCTODIRK-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 241000228150 Penicillium chrysogenum Species 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000005700 Putrescine Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 206010047281 Ventricular arrhythmia Diseases 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- 102000004139 alpha-Amylases Human genes 0.000 description 2
- 229940024171 alpha-amylase Drugs 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 229960005260 amiodarone Drugs 0.000 description 2
- 229960005475 antiinfective agent Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229960002274 atenolol Drugs 0.000 description 2
- 239000002876 beta blocker Substances 0.000 description 2
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- GHWVXCQZPNWFRO-UHFFFAOYSA-N butane-2,3-diamine Chemical compound CC(N)C(C)N GHWVXCQZPNWFRO-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 2
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 239000000824 cytostatic agent Substances 0.000 description 2
- 230000001085 cytostatic effect Effects 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 2
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 2
- 229960001066 disopyramide Drugs 0.000 description 2
- UVTNFZQICZKOEM-UHFFFAOYSA-N disopyramide Chemical compound C=1C=CC=NC=1C(C(N)=O)(CCN(C(C)C)C(C)C)C1=CC=CC=C1 UVTNFZQICZKOEM-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229960000457 gallopamil Drugs 0.000 description 2
- 229940044627 gamma-interferon Drugs 0.000 description 2
- 150000002303 glucose derivatives Chemical class 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006882 induction of apoptosis Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 239000003589 local anesthetic agent Substances 0.000 description 2
- 229960005015 local anesthetics Drugs 0.000 description 2
- 239000003120 macrolide antibiotic agent Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- WDWDWGRYHDPSDS-UHFFFAOYSA-N methanimine Chemical group N=C WDWDWGRYHDPSDS-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 108010001564 pegaspargase Proteins 0.000 description 2
- 108700001787 polyethylene glycol-modified interleukin-2 Proteins 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 2
- 229960000244 procainamide Drugs 0.000 description 2
- REQCZEXYDRLIBE-UHFFFAOYSA-N procainamide Chemical compound CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 REQCZEXYDRLIBE-UHFFFAOYSA-N 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 229960001404 quinidine Drugs 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000003195 sodium channel blocking agent Substances 0.000 description 2
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- ZBMZVLHSJCTVON-UHFFFAOYSA-N sotalol Chemical compound CC(C)NCC(O)C1=CC=C(NS(C)(=O)=O)C=C1 ZBMZVLHSJCTVON-UHFFFAOYSA-N 0.000 description 2
- 229960002370 sotalol Drugs 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000003270 steroid hormone Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 229960001722 verapamil Drugs 0.000 description 2
- 229960004355 vindesine Drugs 0.000 description 2
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 2
- 239000002132 β-lactam antibiotic Substances 0.000 description 2
- 229940124586 β-lactam antibiotics Drugs 0.000 description 2
- VLPIATFUUWWMKC-SNVBAGLBSA-N (2r)-1-(2,6-dimethylphenoxy)propan-2-amine Chemical compound C[C@@H](N)COC1=C(C)C=CC=C1C VLPIATFUUWWMKC-SNVBAGLBSA-N 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-L (5-bromo-4-chloro-1h-indol-3-yl) phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP([O-])(=O)[O-])=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-L 0.000 description 1
- PJUPKRYGDFTMTM-UHFFFAOYSA-N 1-hydroxybenzotriazole;hydrate Chemical compound O.C1=CC=C2N(O)N=NC2=C1 PJUPKRYGDFTMTM-UHFFFAOYSA-N 0.000 description 1
- YHVQIDWAIRCSOQ-UHFFFAOYSA-N 1-nitrotetrazol-2-ium chloride Chemical compound [Cl-].[O-][N+](=O)N1C=[NH+]N=N1 YHVQIDWAIRCSOQ-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical class O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- DZNNFZGDBUXWMV-ZUWDIFAMSA-N 581079-18-7 Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(OC(=O)[C@H](C)NC(=O)COCCOCC(=O)N[C@@H](C)C(=O)O[C@@]3(CC)C5=C(C(N6CC7=CC8=CC=CC=C8N=C7C6=C5)=O)COC3=O)CC)C4=NC2=C1 DZNNFZGDBUXWMV-ZUWDIFAMSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 201000005670 Anovulation Diseases 0.000 description 1
- 206010002659 Anovulatory cycle Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 208000007190 Chlamydia Infections Diseases 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 208000014526 Conduction disease Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 108010077078 Creatinase Proteins 0.000 description 1
- 102100021906 Cyclin-O Human genes 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 108010076282 Factor IX Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 206010059484 Haemodilution Diseases 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 101000897441 Homo sapiens Cyclin-O Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical group ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 108090000279 Peptidyltransferases Proteins 0.000 description 1
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- VRDIULHPQTYCLN-UHFFFAOYSA-N Prothionamide Chemical compound CCCC1=CC(C(N)=S)=CC=N1 VRDIULHPQTYCLN-UHFFFAOYSA-N 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 108010034396 Streptogramins Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 101710183280 Topoisomerase Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000012931 Urologic disease Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- ZWBTYMGEBZUQTK-PVLSIAFMSA-N [(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,32-tetrahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1'-(2-methylpropyl)-6,23-dioxospiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(32),2,4,9,19,21,24,26,30-nonaene-28,4'-piperidine]-13-yl] acetate Chemical compound CO[C@H]1\C=C\O[C@@]2(C)Oc3c(C2=O)c2c4NC5(CCN(CC(C)C)CC5)N=c4c(=NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C)c(O)c2c(O)c3C ZWBTYMGEBZUQTK-PVLSIAFMSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical class N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001299 aldehydes Chemical group 0.000 description 1
- PYMYPHUHKUWMLA-MROZADKFSA-N aldehydo-L-ribose Chemical compound OC[C@H](O)[C@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-MROZADKFSA-N 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 231100000552 anovulation Toxicity 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000003266 anti-allergic effect Effects 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003178 anti-diabetic effect Effects 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 230000001857 anti-mycotic effect Effects 0.000 description 1
- 230000003356 anti-rheumatic effect Effects 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000002543 antimycotic Substances 0.000 description 1
- 239000003435 antirheumatic agent Substances 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 239000002830 appetite depressant Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- WHRVRSCEWKLAHX-LQDWTQKMSA-N benzylpenicillin procaine Chemical class [H+].CCN(CC)CCOC(=O)C1=CC=C(N)C=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)CC1=CC=CC=C1 WHRVRSCEWKLAHX-LQDWTQKMSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229940041011 carbapenems Drugs 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- GPRBEKHLDVQUJE-VINNURBNSA-N cefotaxime Chemical compound N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C(O)=O)=O)C(=O)/C(=N/OC)C1=CSC(N)=N1 GPRBEKHLDVQUJE-VINNURBNSA-N 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 125000001271 cephalosporin group Chemical group 0.000 description 1
- 229960003115 certolizumab pegol Drugs 0.000 description 1
- JQXXHWHPUNPDRT-YOPQJBRCSA-N chembl1332716 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CCN(C)CC1 JQXXHWHPUNPDRT-YOPQJBRCSA-N 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 208000007276 esophageal squamous cell carcinoma Diseases 0.000 description 1
- 201000006608 esophagus squamous cell carcinoma Diseases 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229960004222 factor ix Drugs 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000024924 glomerular filtration Effects 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000002271 gyrase inhibitor Substances 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 210000005096 hematological system Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000001341 hydroxy propyl starch Substances 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960003404 mexiletine Drugs 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 230000003589 nefrotoxic effect Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 231100000381 nephrotoxic Toxicity 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000004957 nitroimidazoles Chemical class 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 229940099216 oncaspar Drugs 0.000 description 1
- 230000000771 oncological effect Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000008816 organ damage Effects 0.000 description 1
- 239000012430 organic reaction media Substances 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960002036 phenytoin Drugs 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 108700002854 polyethylene glycol(B1)- insulin Proteins 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001536 pro-arrhythmogenic effect Effects 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- JWHAUXFOSRPERK-UHFFFAOYSA-N propafenone Chemical compound CCCNCC(O)COC1=CC=CC=C1C(=O)CCC1=CC=CC=C1 JWHAUXFOSRPERK-UHFFFAOYSA-N 0.000 description 1
- 229960000203 propafenone Drugs 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 229960000918 protionamide Drugs 0.000 description 1
- 210000000512 proximal kidney tubule Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 125000004151 quinonyl group Chemical group 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 201000010174 renal carcinoma Diseases 0.000 description 1
- 230000008263 repair mechanism Effects 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960000885 rifabutin Drugs 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- WDZCUPBHRAEYDL-GZAUEHORSA-N rifapentine Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N(CC1)CCN1C1CCCC1 WDZCUPBHRAEYDL-GZAUEHORSA-N 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000021595 spermatogenesis Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229940041030 streptogramins Drugs 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical class C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000001549 tubercolostatic effect Effects 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 208000014001 urinary system disease Diseases 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000002544 virustatic Substances 0.000 description 1
- 230000001790 virustatic effect Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/643—Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/61—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P23/00—Anaesthetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P23/00—Anaesthetics
- A61P23/02—Local anaesthetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/38—Drugs for disorders of the endocrine system of the suprarenal hormones
- A61P5/44—Glucocorticosteroids; Drugs increasing or potentiating the activity of glucocorticosteroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/06—Antiarrhythmics
Definitions
- the present invention relates to compounds comprising a conjugate of hydroxyalkyl starch (HAS) and an active ingredient, wherein the hydroxyalkyl starch is coupled to the active ingredient either directly or via a linker.
- HAS hydroxyalkyl starch
- the invention further relates to processes for the preparation of a covalent HAS-active ingredient conjugate in which HAS and an active ingredient are reacted with each other in a reaction medium, wherein the reaction medium is water or a mixture of water with an organic solvent, having at least 10 weight-% water.
- the invention further relates to the medical use of the conjugates.
- Proteins expressed by bacteria as well as other recombinant proteins can have an increased immunogenicity and provoke life-threatening hypersensitivity reactions. Corresponding reactions naturally prevent the medical use of these products.
- the loss of activity of the coupling partner is also described in WO 95/13090.
- it is suggested to activate PEG with a reactive group and to bind PEG to ⁇ -interferon in the presence of a surfactant via this reactive group.
- Cited as preferred reactive group is N-succinimide carbonate, which is said to form a urethane bond with the ⁇ -amino group of lysine under the conditions named.
- WO 96/41813 also discloses processes for the preparation of a polymer-polypeptide conjugate in which the polymer (in particular PEG) is derivatised at a specific region and then bound to a polypeptide.
- An amino-oxi-acetyl group is preferably introduced into PEG and this compound is then bound to a polypeptide, in particular to IL-8, hG-CSF and IL-1.
- conjugates are now in clinical application.
- the properties of the enzyme asparaginase were improved by conjugate formation with PEG, and a PEG-asparaginase conjugate is commercially available under the trademark Oncaspar® for cancer therapy.
- PEG-coupled G-CSF was approved by the US Food and Drug Administration (Pegfilgastim).
- PEG-CDP870, PEG-Dronabinol, etc. e.g. PEG-pipeline at www.enzon.com or www.inhale.com).
- WO 97/33552 and WO 97/38727 disclose for example the coupling of paclitaxel to PEG and the use of the conjugate for the treatment of tumors.
- the use of a PEG-camptothecin conjugate for the treatment of tumors is being studied by Enzon in phase I clinical trials.
- Antibiotics have also been coupled to PEG. Dowling and Russell, for example, describe the pharmacokinetics of an oxytetracyclin-PEG conjugate (J. Vet. Pharmacol. Ther., vol. 23 (2000), 107-110).
- antibiotics have also been derivatized using other methods in order to obtain new functions.
- a depot penicillin was produced, which is a procain-penicillin derivative, i.e. a salt of the penicillin with the procain base. This derivative has an extended activity and it is used, for example, in the therapy of Syphilis.
- WO 93/23062 discloses the preparation of a coupling product from an antibody directed against a B cell lymphoima, activated PEG and a toxin.
- PEG-active ingredient conjugates however do not have a natural structure for which in vivo decomposition pathways have been described. Amongst others for this reason, in addition to the PEG conjugates, other conjugates and protein polymers have been produced for solving the above-named problems. Thus, there are a number of processes for cross-linking different proteins and binding of proteins to macromolecules (e.g. summary in Wong, S. S., “Chemistry of protein conjugation and cross linking”, CRCS, Inc. (1993)).
- HES Hydroxyethyl starch
- Haemoglobin is a protein which could be of great clinical importance as a blood-replacement and oxygen-carrier agent (so-called Haemoglobin-Based-Oxygen Carrier, HBOC).
- HBOC Haemoglobin-Based-Oxygen Carrier
- the natural haemoglobin consists of two ⁇ and ⁇ peptide chains which each bind a haeme as a prosthetic group. Isolated haemoglobin molecules are however very unstable and rapidly break down into the more stable ⁇ , ⁇ dimers (MW 32 kDa). The biological half-life of isolated haemoglobin in the blood circulation is approx. 1 hour, as the dimers are rapidly eliminated via the kidneys. In this process, the dimers produce nephrotoxic side effects (e.g. Bunn & Jandl, J. Exp. Med. 129, (1967) 925-934). Development work on derivatized haemoglobin molecules was therefore primarily directed towards the intramolecular cross-linking of haemoglobin, the intermolecular cross-linking to form polymeric HBOC forms and/or the coupling to polymers.
- haemoglobin conjugates are described for example in Xue and Wong (Meth. in Enzymol., 231 (1994), pp. 308-322, hereby incorporated by reference) and in DE 26 16 086 and DE 26 46 854, hereby incorporated by reference.
- the latter discloses processes by means of which haemoglobin is bound to HES by firstly reacting HES with sodium periodate. Dialdehydes form, to which haemoglobin is bound.
- DE 26 16 086, hereby incorporated by reference describes the coupling of haemoglobin to HES according to a process in which firstly a cross-linking agent (e.g. Bromcyan) is bound to HES and haemoglobin is then bound to the intermediate product.
- a cross-linking agent e.g. Bromcyan
- HES is a substituted derivative of the carbohydrate polymer amylopectin which occurs in maize starch in a concentration of up to 95%.
- HES has advantageous rheological properties and currently used in the clinic as a volume-replacement agent and for haemodilution therapy (Sommermeyer et al., Whypharmazie, Vol. 8(8), (1987), pp. 271-278; and Weidler et al., Arzneim.-Forschung/Drug Res., 41, (1991) 494-498).
- Amylopectin consists of glucose units, wherein the main chains have ⁇ -1,4-glycosidic bonds, but ⁇ -1,6-glycosidic bonds are present at the branching sites.
- the physical-chemical properties of this molecule are determined essentially by the type of glycosidic bonds. Because of the branched ⁇ -1,4-glycosidic bond, helical structures form with approx. 6 glucose monomers per turn.
- the physico-chemical and the biochemical properties of the polymer can be modified by substitution.
- the introduction of a hydroxyethyl group can be achieved by alkaline hydroxyethylation.
- the different reactivity of the relevant hydroxyl group in the unsubstituted glucose monomer vis-à-vis the hydroxyethylation can be exploited through the reaction conditions, a limited influence on the substitution pattern is thus possible.
- HES is therefore essentially characterized via a molecular weight distribution and a degree of substitution.
- the degree of substitution can be described as DS “degree of substitution” which refers to the proportion of the substituted glucose monomers of all glucose units, or as MS (“molar substitution”), which gives the number of hydroxyethyl groups per glucose unit.
- HES solutions are present as polydisperse compositions in which the individual molecules differ from each other with regard to the degree of polymerization, the number and arrangement of the branching sites, as well as their substitution pattern. HES is thus a mixture of compounds with different molecular weights. Accordingly, a specific HES solution is determined by an average molecular weight using statistical variables. M n is calculated as a simple arithmetic average in relation to the number of molecules (numerical average), whilst M w , the weight average, represents the mass-related measurement variable.
- WO 98/01158 discloses that haemoglobin-hydroxyethyl starch conjugates can be obtained in which haemoglobin and HES are selectively linked to each other via amide bonds between free amino groups of the haemoglobin and the reducing end group of the HES present in oxidized form.
- HES saccharide
- HES protein
- DMSO Dimethyl sulfoxide
- the object of the present invention is thus to provide improved hydroxyalkyl starch-active ingredient conjugates and processes for their preparation which lead to biologically active conjugates which can be used in everyday clinical practice.
- a further object of the present invention is to provide a process for the preparation of hydroxyalkyl starch-active ingredient conjugates wherein by-products are not produced in significant quantities, as these by-products also adversely affect the subsequent purification of the product to a significant extent.
- HAS-active ingredient conjugates are for example obtainable by processes, wherein HAS and an active ingredient are coupled in a reaction medium, wherein the reaction medium is water or a mixture of water with an organic solvent, which comprises at least 10 weight-% water.
- the invention further relates to processes for the preparation of a covalent HAS-active ingredient conjugate, wherein HAS and at least one active ingredient are coupled in an aqueous reaction medium and is characterized in that the reaction medium is water or a mixture of water with an organic solvent, which comprises at least 10 weight-% water.
- HAS is preferably oxidized before binding to the active ingredient, a specific oxidation of the reducing end groups being particularly preferred.
- the coupling can take place via the formation of a Schiff's base between HAS and an amine group-carrying active ingredient as intermediate product. This intermediate product is then reduced, resulting in the formation of a methylene amine group.
- FIG. 1 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process A.III;
- FIG. 2 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process A.IV;
- FIG. 3 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process A.V. and with a reaction time of 2 hours;
- FIG. 4 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA, process A.V., reaction time overnight;
- FIG. 5 GPC chromatogram of the coupling reaction between ox-HES 10 kD and HSA according to process A.V, after 2 hours ( FIG. 5 a ) and overnight ( FIG. 5 b );
- FIG. 6 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process A.VII, after 24 hours reaction time;
- FIG. 7 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process B.V;
- FIG. 8 SDS-PAGE and Western Blot of different coupling reactions between HES and HSA
- FIG. 9 SDS-PAGE and Western Blot of different coupling reactions between HES and HSA
- FIG. 10 reaction scheme for the preparation of a HES-DNA conjugate
- FIG. 11 image of a gel showing the HES-DNA conjugate prior to and after digestion with a restriction enzyme.
- the present invention provides for the first time compounds comprising a conjugate of hydroxyalkyl starch and an active ingredient, wherein the hydroxyalkyl starch is covalently bound to the active ingredient either directly or via a linker.
- the present invention further provides HAS-active ingredient conjugates which can be prepared by processes, wherein HAS and at least one active ingredient are reacted with each other in an aqueous reaction medium.
- the processes are further characterized in that the reaction medium is water or a mixture of water with an organic solvent, which comprises at least 10 weight-% water.
- a chemical compound is referred to as an active ingredient if the compound is suitable to be an active component of any composition for therapeutic or diagnostic purposes.
- the active ingredient is an active component of a drug, i.e. the compound in a drug formulation which achieves a physiological effect after administration to a subject.
- active ingredient also comprises all compounds which, although known to be suitable for diagnostic or therapeutic use, were however not able to be used up to now for this purpose, because of the problems described above.
- the active ingredient is preferably a vitamin, vaccine, toxin, antibiotic (or antiinfective), antiarrhythmic, appetite suppressant, anesthetic, analgesic, antirheumatic, antiallergic, antiasthmatic, antidepressant, antidiabetic, antihistamine, antihypertonic or an antineoplastic agent.
- it can be for example a hormone, steroid, lipid, protein, oligo- or polypeptide, a nucleic acid, in particular a D- or L-nucleic acid, such as a D-DNA, L-DNA, D-RNA or L-RNA.
- the use of proteins, peptides, D- or L-nucleic acids as HAS coupling partners is particularly preferred.
- the compounds prepared according to the present invention retain the activity of the active ingredient and the advantageous properties of the HAS.
- the conjugates prepared according to the process according to the invention have an improved in vivo half-life of the active ingredients, reduced toxicity, improved stability and/or improved solubility of the active ingredients.
- the HAS chain is shortened by the ⁇ -amylase in the plasma.
- the activity of the coupling product can be determined as activity of the native coupling product, i.e. directly after the coupling, or as activity of the metabolized coupling product, i.e. after in vivo metabolizing of the coupling product. In vivo metabolizing can be simulated by an in vitro degradation.
- the activity of the active ingredient may be determined by methods which are known for this compound in the state of the art.
- the activity of an antineoplastic agent is determined as inhibitory concentration (IC)
- the activity of an antiinfective agent is determined as minimal inhibitory concentration (MIC).
- the determination is performed in vitro with appropriate target cells (e.g. Chow et al., Haematologica, Volume 86 (2001), pages 485-493, herein incorporated by reference).
- target cells e.g. Chow et al., Haematologica, Volume 86 (2001), pages 485-493, herein incorporated by reference.
- the in vitro effects can further be confirmed by a relevant animal model (e.g. for example the mouse model of the renal cell carcinoma described in Changnon et al., e.g. BJU Int., Volume 88 (2001), page 418-424, herein incorporated by reference).
- the native coupling product can have an increased or reduced activity.
- the activity is not reduced more than 5-fold, more preferably not more than 3- or 2-fold.
- the metabolized product preferably has an activity comparable to that of the non-coupled substance, i.e. prior to the coupling, the metabolized conjugate has at least 50%, preferably at least 75% of the activity of the active ingredient, wherein a retention of at least 95% of the activity is particularly preferred.
- hydroxyalkyl starch is used to refer to starch derivatives which are substituted with a hydroxyalkyl group having 1 to 3 carbon atoms.
- group designated as “hydroxyalkyl starch” comprises hydroxymethyl starch, hydroxyethyl starch and hydroxypropyl starch.
- HES hydroxyethyl starch
- the hydroxyethyl starch has an average molecular weight (weight average) of 1-300 kDa, wherein an average molecular weight of 5 to 200 kDa is particularly preferred.
- hydroxyethyl starch may have a molar degree of substitution of 0.1 to 0.8 and a ratio of C 2 :C 6 -substitution in the range of 2-20, in each case relative to the hydroxyethyl groups.
- an active group For coupling the active ingredient to the HAS, it may be necessary in a first step to introduce an active group into the active ingredient and/or the HAS.
- Corresponding active groups can for example be thiol groups or amino groups (e.g. Examples).
- the active ingredient and the HAS can be coupled to each other by use of a linker.
- Any crosslinking agent can be used as a linker.
- Numerous crosslinking agents such as SMCC (succinimidyl-4-(N-maleimido-methyl)cyclohexane-1-carboxylate; e.g. Example 7) are commercially available and well-known to the person skilled in the art (e.g. alphabetic list of the “cross-linking reagents” in the product catalogue of the company Perbio and www.piercenet.com).
- water-soluble antibiotic derivatives which contain an amino sugar, in particular HAS-daunorubicin and HAS-doxorubicin conjugates, and processes for their preparation, as far as they are disclosed in DE 101 29 369, herein incorporated by reference, are not within the scope of the present invention, e.g. DE 101 29 369 is disclosed with the proviso that said disclosure is not within the scope of the present invention.
- the present invention relates to compounds comprising a conjugate of HAS and an antineoplastic active ingredient and their use for the treatment of tumors.
- tumor cells differ from normal somatic cells in that tumor cells are no longer subject to a physiological growth control and therefore have an increased rate of cell division.
- the therapeutic use of antineoplastic active ingredients in tumor therapy is based on this difference, since the toxic activity of the antineoplastic active ingredients is primarily directed against proliferating cells.
- compounds are designated as antineoplastic active ingredients or cytostatics if they exhibit a toxic activity against proliferating cells (basics of oncology and current therapeutic approaches are for example summarized in: Internistic Oncology, Schmoll et al. (eds.), Springer, 1996).
- antineoplastic active ingredients represent a very heterogeneous group.
- a classification of the antineoplastic active ingredients can for example be performed based on the relevant target molecules (Schmoll et al., see above):
- conjugates which contain an antineoplastic agent were therefore focused on the improvement of the tolerance of the active ingredient.
- antineoplastic active ingredients have been coupled to macromolecules such as dextran (e.g. Kojima et al., J. Pharm. Pharmakol., Vol. 32 (1980), p. 30-34; Nakane et al., J. Pharm. Pharmakol., vol. 40 (1988), p. 1-6, Nomura et al., J. Controlled Release, Vol. 52 (1998), p. 239-252; Sato et al., J. Pharm. Sci., Vol. 78 (1989), p. 11-16, the disclosures of which are hereby incorporated by reference).
- dextran e.g. Kojima et al., J. Pharm. Pharmakol., Vol. 32 (1980), p. 30-34; Nakane et al., J. Pharm. Pharmakol., vol. 40 (1988), p. 1-6, Nomur
- active ingredients such as mitomycin C were also coupled to N-succinylchitosan (Song et al., J. Controlled Release, Vol. 42 (1996), p. 93-100; hereby incorporated by reference), carboxymethylchitin (Song et al., Arch. Pract. Pharm. Vol. 53 (1993), p. 141-147; hereby incorporated by reference) and oligopeptides (S hinder et al., J. Controlled Release, Vol. 47 (1997), p. 71-80; hereby incorporated by reference).
- an improved anti-tumor activity of the conjugates was observed in the majority of analyses.
- HAS-active ingredient conjugates which comprise an antineoplastic active ingredient have an improved toxic effect against tumor cells and/or a reduced toxicity for other cells. Therefore, the conjugates allow for a broader therapeutic range.
- the plasma half-life of the conjugates is significantly increased. This allow overcomes the repair mechanisms in tumor cells by longer exposition. Simultaneously, the present invention enables slower flooding, in particular in healthy tissue, whereby a reduced peak concentration and an improved tolerance for the patient is achieved.
- any antineoplastic active ingredient can be used.
- the antineoplastic active ingredient can, for example, be selected from the group consisting of alkylating agents, antimetabolites, antibiotics or natural substances.
- the antineoplastic active ingredient is mitomycin C, cyclophosphamid, bleocin, chlorambucil, cisplatin, Ara-C, fludarabine, doxorubicin, etoposide, 5-FU, MTX, vinblastine, vincristine, vindesine, hydroxy urea, 6-MP or CCNU.
- Mitomycin C belongs to the group of antibiotics and contains an aziridine group and a quinone group and a mitosane ring.
- the active ingredient is used for the treatment of renal cell carcinoma and bladder tumors as well as other urologic diseases.
- the compound gains its activity only upon metabolization in hypoxyic cells (this means preferably in tumor cells) by intracellular enzymatic or spontaneous chemical reduction of the quinone and loss of the methoxy group.
- HAS can be coupled to this methoxy group via a linker. After intracellularly cleaving off the substituent, the same active ingredient is present inside the the cell which causes an alkylating cross-linking of the DNA thereby exhibiting its toxic effect.
- HAS may also be coupled to one of the two NH 2 -groups.
- Mitomycin C shows a typical tissue specificity. According to the invention, it is preferred that this specificity—in particular for excretory organs—is increased by HAS-coupling.
- the antineoplastic active ingredient can be coupled to HAS by use of any method.
- a specific coupling to the reducing end groups of HAS is preferred, since this procedure generates a defined conjugate.
- hydroxyethyl starch may be coupled to the methoxy group of mitomycin C. Coupling to the methoxy group of mitomycin C can take place via a linker.
- the present invention relates to processes for the preparation of a compound comprising a conjugate of HAS and an antineoplastic active ingredient.
- the process comprises steps, in which HAS is covalently coupled to an antineoplastic active ingredient, either directly or via a linker, and the conjugate is isolated.
- the invention relates to pharmaceutical compositions which comprise a compound comprising a conjugate of HAS and an antineoplastic active ingredient.
- the pharmaceutical composition can furthermore comprise a pharmaceutically compatible carrier and/or a cytokine.
- the cytokine is IL-2, ⁇ -interferon, ⁇ -interferon.
- the pharmaceutical composition can be in any application form that is known in the state of the art.
- the composition can be formulated for oral or parenteral administration.
- the formulation of the composition is performed according to processes known in the state of the art.
- the composition generally comprises a pharmaceutically compatible carrier and one or more auxiliaries and optionally preservatives, solubility promoters, etc.
- the present invention relates to the use of a compound comprising a conjugate of HAS and an antineoplastic active ingredient for the preparation of a medicament for the treatment of tumors and/or their metastases, in particular for the treatment of urologic tumors and/or metastases of urologic tumors, for the treatment of metastases of the renal cell carcinoma, or for the treatment of diseases of the lymphatic system, such as CLL, Hodgkin-lymphoma, NHL, multiple myeloma, Waldenström's syndrome.
- the medicament can further comprise a cytokine, such as IL-2, ⁇ -interferon, ⁇ -interferon.
- the use of the compounds according to the invention for the preparation of a medicament for the treatment of urologic tumors and/or metastases of urologic tumors, such as for the treatment of metastases of the renal cell carcinoma is particularly preferred.
- a curative therapy of the renal cell carcinoma can neither be achieved with a combination chemotherapy nor with mitomycin C alone. This might be due to the unfavourable pharmacokinetics of the compound, since the portion of renal elimination only amounts to approximately 18%. Since HAS is almost completely eliminated via the kidney, the conjugate exhibits a higher percentage of renal elimination compared to the non-conjugated substance.
- This embodiment of the present invention utilizes the intracellular intermediate storage of HAS.
- HAS 200/0.62 highly substituted HAS species show an increased intracellular storage, in the extreme case even an overload. This phenomenon has also been observed in the area of the proximal tubule (Peron et al., Clinical Nephrology, Vol. 55 (2001), p. 408-411, hereby incorporated by reference).
- the present invention provides an accumulation of an antineoplastic active ingredient in certain target cells or tissues. Therefore, the improved pharmacokinetics of the conjugates make it possible to achieve a considerablely higher concentration in the cells of the target organ while using low systemic concentrations.
- This medical use is preferably employed on the hypernephroid carcinoma and the chromophylic renal carcinoma which constitute approximately 90% of all histological types.
- the invention relates to the use of the compounds according to the invention for the preparation of a medicament for the treatment of diseases of the lymphatic system, such as CLL, Hodgkin lymphoma, NHL, multiple myeloma, Waldenström's syndrome.
- diseases of the lymphatic system such as CLL, Hodgkin lymphoma, NHL, multiple myeloma, Waldenström's syndrome.
- an antineoplastic active ingredient according to the invention the intracellular uptake of the active ingredients is decelerated dependent on the chain length and the degree of substitution.
- radioactive kinetic studies have shown that HAS is stored in certain organs, among others in lymphatic organs, for a longer time than in the whole body (e.g. Bepperling et. al., Crit. Care, Vol. 3, Suppl. 1 (1999), p. 153, hereby incorporated by reference).
- accumulation of the conjugate in the target cells occurs which results in improved pharmcokinetics with a lower systemic toxicity.
- Fludarabin is a halogenated adenine analogue which is resistant to deamination.
- the invention further relates to the use of the compounds according to the invention for the preparation of a medicament for the treatment of cutaneous/local primary malignant neoplasms or their metastases.
- two effects can be utilized, the directed increased uptake by the recited tissues and the decelerated transport of the HAS conjugates out of the tissue. Both effects lead to an accumulation of the conjugate in the target cells.
- the invention further relates to the use of the compounds according to the invention for the preparation of a medicament for the treatment of diseases of the hematologic system or oncologic diseases, such as non-small cell lung cancer and small cell lung cancer, breast cancer, esophagus squamous cell carcinoma, renal cell carcinoma, testicular carcinoma, malignant melanoma, ALL or CML.
- diseases of the hematologic system or oncologic diseases such as non-small cell lung cancer and small cell lung cancer, breast cancer, esophagus squamous cell carcinoma, renal cell carcinoma, testicular carcinoma, malignant melanoma, ALL or CML.
- diseases of the hematologic system or oncologic diseases such as non-small cell lung cancer and small cell lung cancer, breast cancer, esophagus squamous cell carcinoma, renal cell carcinoma, testicular carcinoma, malignant melanoma, ALL or CML.
- advantages arise due to the strong accumulation of the compound in the affected tissue by the increased hydrophilicity of the
- the invention further relates to the use of the compound according to the invention for the preparation of a medicament, wherein the compound is used as a combination therapy with one or more further antineoplastic active ingredients or cytokines.
- the combination therapy can be performed by administration of an agent containing all active ingredients, or by administration of two or more different compositions, each of which containing one active ingredient.
- the present invention further provides processes for the preparation of a medicament comprising a cytokine and a compound according to the invention which is suitable for new combination therapies.
- Corresponding agents are in particular suitable for the treatment of the advanced renal cell carcinoma.
- conjugates of HAS and an antiarrhythmic active ingredient as well as their use for the treatment of arrhythmia are provided.
- arrhythmia Deviations from the temporary sequence and regularity of the heartbeat (arrhythmia) from the normal heart rate are referred to as arrhythmia. In the majority of cases, these deviations are caused by cardiac excitation or conduction disorders. Substances which are suitable for the treatment of arrhythmia, in particular ventricular arrhythmia, are referred to as antiarrhythmic active ingredients or antiarrhythmics.
- sodium channel blockers quinidine, procainamide, disopyramide, etc.
- beta-receptor blockers atenolol, propanolol, etc.
- selective repolarisation prolonging active ingredients aminoodarone, sotalol, etc.
- calcium antagonists verapamil, gallopamil, etc.
- local anesthetics sodium channel blockers (quinidine, procainamide, disopyramide, etc.) beta-receptor blockers (atenolol, propanolol, etc.), selective repolarisation prolonging active ingredients (amiodarone, sotalol, etc.), calcium antagonists (verapamil, gallopamil, etc.) and local anesthetics.
- the antiarrhythmic active ingredients customary in the state of the art partially exhibit a short duration of action.
- adenosine is an antiarrhythmic active ingredient with a very short half-life.
- the duration of action of this substance is only several minutes. In many cases, prolongation of half-life and duration of action is necessary.
- antiarrhythmic active ingredients have pro-arrhythmogenic side effects and partially even an increase in mortality.
- the present invention provides, among others, improved antiarrhythmic active ingredients which, for example, have a prolonged duration of action. According to the invention, it was surprisingly found that the HAS-antiarrhythmic conjugates have a significantly longer in vivo plasma half-life and that the activity of the active ingredients is not adversely affected to a significant extent by coupling to HAS.
- any antiarrhythmic active ingredient can be used for the preparation of the conjugates.
- the active ingredient can be selected from the group consisting of sodium channel blockers, beta-receptor blockers, selective repolarization prolonging active ingredients, calcium antagonists and local anesthetics.
- the active ingredient is adenosine, quinidine, procainamide, disopyramide, lidocaine, phenytoin, mexiletine, ajamaline, Paijmalium, propafenone, atenolol, propanolol, amiodarone, sotalol, verapamil, gallopamil or diltiazem, wherein the use of adenosine is particularly preferred.
- coupling between the antiarrhythmic active ingredient and the HAS takes place via the reducing end groups of the HAS.
- this active ingredient can for example be bound to the HAS via the amino group, wherein a coupling between the amino group of the adenosine and the reducing end group of the HAS is particularly preferred.
- the active ingredient can be coupled to the HAS via a so-called linker.
- the present invention further relates to pharmaceutical compositions comprising one of the compounds according to the invention.
- the pharmaceutical composition further comprises a pharmaceutically compatible carrier, and it can be formulated, for example, for intravenous application.
- the invention relates to the use of the compounds according to the invention for the preparation of a medicament for the treatment of arrhythmia, in particular for the treatment of ventricular arrhythmia.
- the invention relates to the use of a compound according to the invention for the preparation of a medicament for the induction of apoptosis, for example in tumor tissues or in inflammatory tissues.
- the present invention relates to compounds comprising a conjugate of HAS and an antiinfective active ingredient or an antibiotic, respectively, as well as their use for the treatment of infectious diseases.
- microorganisms viruses, bacteria, fungi, protozoa
- macroorganism plant, animal, human
- formation and course of an infectious disease substantially depend on pathogenicity of the microorganism and immunity of the macroorganism.
- antiinfective active ingredients have been used as chemotherapeutics in order to fight infectious diseases.
- Penicillium for example, P. chrysogenum and P. notatum
- penicillins active ingredients from a group of ⁇ -lactam antibiotics which are produced from a fungus of the species Penicillium (for example, P. chrysogenum and P. notatum ) are designated as penicillins.
- the bacteriocidal effect is based on blocking the synthesis of the bacterial cell wall.
- the penicillin inactivates the bacterial enzyme transpeptidase, thereby preventing cross-linking of the polysaccharide chains of the cell wall murein.
- the number of isolated antibiotics is estimated to be approximately 8000, approximately 100 thereof can be used in the field of medicine.
- a classification of the active ingredients into different substance classes was performed according to different aspects, for example chemical structure or mode of action.
- antibiotics are approved not only for fighting infectious diseases, but also as immuno depressants, cytostatics in anti-tumor therapy, plant protectives, for the preservation of foods, as fattening auxiliary agent in the feeding of animals, etc.
- an antiinfective ingredient or antibiotic can be used.
- an active ingredient is selected from the group consisting of amino penicillins, cephalosporines, amino cephalosporines, beta-lactam-antibiotics, carbapenems, amino glycosides, tetracyclines, macrolide antibiotics, gyrase inhibitors, glycopeptide antibiotics, lincomycins, streptogramins, eveminomicins, oxazolidinones, nitroimidazoles, sulfonamides, co-trimoxazol, local antibiotics, virustatics, antimycotics, tuberculostatics.
- It may for example be ampicillin, amoxicillin, cefotaxim, ceftazidim, vancomycin, clindamycin, metronlidazol, isoniazid, rifampicin, rifabutin, rifapentin, ethambutol, pyracinamide, streptomycin, prothionamide, or dapsone, wherein the use of an amino penicillin, such as ampicillin, amoxycillin, macrolide or of streptomycin is particularly preferred.
- an amino penicillin is used as an active ingredient which is directly and covalently coupled to the hydroxyethyl starch via the amino group of the amino penicillin.
- an amino cephalosporin is used instead of the amino penicillin, thereby achieving a reduced allergenicity.
- macrolide-HAS couplings may be used, wherein erythromycin or a derivative thereof is used, in particular erythromycylamin.
- streptomycin can be used as active ingredient.
- the coupling between the antiinfective active agent and the hydroxyethyl starch may take place via the reducing end groups of the hydroxyethyl starch.
- the antiinfective active agent is coupled to the hydroxyethyl starch via a linker.
- the present invention further comprises pharmaceutical compositions, which comprise a compound according to the invention.
- the pharmaceutical compositions further comprise a pharmaceutically compatible carrier.
- the present invention relates to the use of one of the compounds according to the invention for the preparation of a medicament for the treatment of an infectious disease.
- the pharmaceutical composition may in particular be suitable for the treatment of infectious diseases which, amongst others, are caused by intracellular pathogens. These may originate from the complete spectrum of pathogenics and facultative pathogenics, for example bacterial, viral or parasitic pathogens, mycoplasms, mycobacteria, chlamydia, rickettsia, etc.
- HAS-nucleic acid conjugates are provided.
- nucleic acid libraries are screened in large scale for nucleic acids which have a desired activity.
- a respective activity can be the ability of a nucleic acid to bind to certain other nucleic acids, receptors or viral proteins. This binding may be stimulated or inhibited by a biological signal.
- L-DNA and L-RNA molecules are used which differ from the naturally occurring molecules in that they contain L-ribose or L-deoxyribose instead of the corresponding D-forms as components-of the nucleic acid (e.g. WO 98/08856, hereby incorporated by reference).
- HAS-nucleic acid conjugates can be prepared which may retain their natural function (e.g. Example 7).
- the present invention further provides processes for the preparation of covalent HAS-active ingredient conjugates.
- the processes can be performed in an aqueous or organic reaction medium, wherein carrying out the coupling in an aqueous medium is preferred.
- reaction medium is characterized in that it is water or a mixture of water with an organic solvent, which comprises at least 10 weight-% water.
- the reaction medium of the process according to the invention comprises at least 10 wt.-%, preferably at least 50 wt.-%, in particular at least 80 wt.-%, such as for example 90 wt.-%, or even up to 100 wt.-%, water, and accordingly up to 90 wt.-%, preferably up to 50 wt.-%, in particular up to 20 wt.-%, for example 10 wt.-%, or even up to 0 wt.-%, organic solvent.
- the reaction takes place in an aqueous phase.
- the preferred reaction medium is water.
- the process according to the invention is already advantageous because toxicologically unacceptable solvents need not necessarily be used, and thus, with the product prepared according to the invention, the removal of even small residues of toxicologically unacceptable solvents which is always necessary according to the known process in order to avoid the undesired contamination with solvent is dispensed with. Furthermore, the additional quality control necessary according to the process known in the art for residues of toxicologically harmful solvents can be omitted because the process according to the invention favors the use of toxicologically acceptable solvents.
- Solvents preferred according to the invention are for example toxicologically harmless protic solvents such as ethanol or propylene glycol.
- HAS binds directly to a ⁇ -NH 2 -group, ⁇ -NH 2 -group, SH-group, COOH group or —C(NH 2 ) 2 -group of the active ingredient.
- a further reactive group can be introduced into HAS or the bond between HAS and the active ingredient can take place via a linker.
- the use of the corresponding linkers for the binding of active ingredients to PEG is known in the state of the art.
- amino acids in particular glycine, alanine, leucine, isoleucine, and phenylalanine, as well as hydrazine and oxylamrine derivatives as linkers, as disclosed in WO 97/38727 and EP 605 963, the disclosures which are hereby incorporated by reference, is preferred.
- HAS is oxidized before binding to the active ingredient.
- the oxidation can take place according to one of the processes known in the state of the art, a selective oxidation of the reducing end groups of HAS being preferred.
- This facilitates processes in which the oxidized reducing end group of the HAS reacts with an amino group of the active ingredient resulting in the formation of an amide.
- This embodiment has the particular advantage that a specific bond between HAS and the active ingredients, and thus a particularly homogeneous product, is achieved.
- HAS can be reacted with oxidized reducing end groups and the active ingredient preferably for at least 12, most preferably at least 24 hours. Furthermore, it can be desirable to add any activator, for example ethyldimethyl-aminopropyl-carbodiimide (EDC).
- EDC ethyldimethyl-aminopropyl-carbodiimide
- the molar ratio between HAS and the active ingredient during the reaction can be randomly selected, but is normally in the range of HAS:active ingredient of 20:1 to 1:20, a ratio of 6:1 to 1:6 being particularly preferred. The best results were achieved with a molar ratio of HAS:active ingredient of approx. 2:1.
- the HAS can be coupled with any group of the active ingredient.
- the coupling is preferably carried out such that the conjugate displays at least 50%, preferably at least 75% of the activity of the active ingredient before coupling, a retention of at least 95% of the activity being particularly preferred.
- the coupling reaction can naturally also be controlled such that the HAS is bound exclusively to one or more specific groups of the active ingredient, for example to lysine or cysteine residues of a peptide. Particular advantages result if HAS is bound to one or more specific groups of active ingredient via the oxidized reducing end groups, as homogenous HAS-active ingredient conjugates are obtained with a corresponding process.
- HAS and a protein or a peptide are used as starting substances for the reaction. Any therapeutic or diagnostic proteins of natural or recombinant origin can be used.
- a list of the active ingredients of recombinant preparation currently on the market is to be found in Pharma Business, July/August 2000, pages 45 to 60.
- the present invention comprises the preparation of HAS-active ingredient conjugates which comprise any one of the active ingredients named in this publication.
- cytokines for example interferons, interleukins, growth factors, enzymes, enzyme inhibitors, receptors, receptor fragments, insulin, factor VIII, factor IX, antibiotics (or antiinfectives), peptide antibiotics, viral coat proteins, haemoglobins, erythropoietin, albumins, hTPA, antibodies, antibody fragments, single-chain antibodies, DNA, RNA or a derivative thereof is particularly preferred.
- cytokines for example interferons, interleukins, growth factors, enzymes, enzyme inhibitors, receptors, receptor fragments, insulin, factor VIII, factor IX, antibiotics (or antiinfectives), peptide antibiotics, viral coat proteins, haemoglobins, erythropoietin, albumins, hTPA, antibodies, antibody fragments, single-chain antibodies, DNA, RNA or a derivative thereof is particularly preferred.
- recombinant proteins or peptides in the process according to the invention.
- corresponding proteins can often
- a hormone, a steroid hormone, a hormone derived from amino acids or a hormone derived from fatty acids can be used as active ingredient.
- any physiologically compatible HES can be used as starting material.
- HES with an average molecular weight (weight average) of 1 to 300 kDA, in particular of 1 to 150 kDa is preferred.
- HES with an average molecular weight of 2 to 40 kD is particular preferred.
- HES preferably has a molar degree of substitution of 0.1 to 0.8 and a ratio of C 2 :C 6 substitution in the range of 2 to 20, in each case relative to the hydroxyethyl groups.
- the invention furthermore relates to the HAS-active ingredient conjugates obtainable according to the above processes.
- These conjugates have advantageous properties, namely high activity of the active ingredient, low immunogenicity, long residence time in the body and excellent rheological properties, which increase the medicinal benefit of the conjugates.
- the present invention likewise comprises processes for preparing a medicament or diagnostic in which a HAS-active ingredient conjugate is prepared according to one of the above processes and mixed with a pharmaceutically compatible carrier, adjuvant or auxiliary known in the state of the art, as well as medicaments or diagnostics obtainable according to this process.
- the medicinal use of the corresponding medicament depends on the type of active ingredient used. If, for example, haemoglobin is used as active ingredient, the conjugate can be used as an oxygen transport agent. If on the other hand, a cytokine is used as active ingredient for the preparation, the conjugate can for example be used in tumor therapy.
- concentration of the conjugate to be used in each case in the medicament can be ascertained immediately in dose-effect tests by any average person skilled in the art.
- the diagnostics can be used in vivo or in vitro to diagnose illnesses or disorders. If an antibody or antibody fragment is used as active ingredient, the conjugate is suitable, for example, for carrying out the ELISA detection processes customary in the state of the art.
- Example 1 to 6 describe the coupling of HSA and diaminobutane to HES with oxidized reducing end groups or the direct coupling of HSA to HES.
- HSA and diaminobutane are simply examples of the active ingredients defined above.
- Example 7 describes the coupling of oligonucleotides to HES.
- the mixture was stirred until the colour indicating I 2 disappeared. This procedure was repeated several times in order to achieve the addition of a larger quantity of the iodine solution and KOH solution.
- the solution was subsequently purified using an Amberlite IR 120 Na+ cation-exchanger resin, dialysed for 20 hours against distilled water (dialysis tube with an exclusion limit of 4-6 kD) and lyopholized.
- OXIDATION (3) 5 g 1.2 ml 1.5 ml Water overnight 24.3% HES 130 1.2 ⁇ 10 ⁇ 4 mol 1.2 ⁇ 10 ⁇ 4 mol 1.5 ⁇ 10 ⁇ 4 mol 7.5 ml 25° C.
- OXIDATION (4) 5 g 3.0 ml 4.5 ml Water overnight 60.8% HES 130 1.2 ⁇ 10 ⁇ 4 mol 3.0 ⁇ 10 ⁇ 4 mol 4.5 ⁇ 10 ⁇ 4 mol 7.5 ml 25° C.
- OXIDATION (5) 5 g 4.0 ml 5 ml Water overnight 80.0% HES 130 1.2 ⁇ 10 ⁇ 4 mol 4.0 ⁇ 10 ⁇ 4 mol 5.0 ⁇ 10 ⁇ 4 mol 7.5 ml 25° C.
- OXIDATION (6) 8 g 7.0 ml 11.5 ml Water overnight 88.4% HES 130 1.9 ⁇ 10 ⁇ 4 mol 7.0 ⁇ 10 ⁇ 4 mol 1.2 ⁇ 10 ⁇ 3 mol 7.5 ml 25° C.
- OXIDATION (7) 10 g 10 ml 20 ml Water overnight 100% HES 130 2.4 ⁇ 10 ⁇ 4 mol 1.0 ⁇ 10 ⁇ 3 mol 2.0 ⁇ 10 ⁇ 3 mol 7.5 ml 25° C.
- OXIDATION (1) 5 g 2.0 ml 2.0 ml Water 20 hours 3.0%
- OXIDATION (2) 5 g 3.5 ml 4.5 ml Water overnight 5.3% HES 10 1.4 ⁇ 10 ⁇ 3 mol 3.5 ⁇ 10 ⁇ 4 mol 4.5 ⁇ 10 ⁇ 4 mol 10.0 ml 25° C.
- OXIDATION (3) 15 g 21.0 ml 31.0 ml Water overnight 10.5% HES 10 4.1 ⁇ 10 ⁇ 3 mol 2.1 ⁇ 10 ⁇ 3 mol 3.1 ⁇ 10 ⁇ 3 mol 25° C.
- OXIDATION (4) 8 g 83.0 ml 180.0 ml Water overnight 80.0% HES 10 2.2 ⁇ 10 ⁇ 3 mol 8.3 ⁇ 10 ⁇ 3 mol 1.8 ⁇ 10 ⁇ 2 mol 25° C.
- OXIDATION (5) 7 g 95.0 ml 210.0 ml Water overnight 100.0% HES 10 1.9 ⁇ 10 ⁇ 3 mol 9.5 ⁇ 10 ⁇ 3 mol 2.1 ⁇ 10 ⁇ 2 mol 25° C.
- OXIDATION (6) 6.4 g 50 ml 150 ml Water overnight 100.0% HES 10 1.7 ⁇ 10 ⁇ 3 mol 5.0 ⁇ 10 ⁇ 3 1.5 ⁇ 10 ⁇ 2 mol 25° C.
- HES 10 kD 6.4 g HES 10 kD (1.7 mmol) were dissolved in a reaction vessel accompanied by continuous stirring in a few ml water. 50 ml of a 0.1 N iodine solution (5.0 mmol) and 150 ml of a 0.1 N KOH solution (15 mmol) were added. This mixture was left to stand overnight at 25° C. The mix was purified with Amberlite IR 120 (Na+ form) and dialysed against water (cellulose acetate dialysis tube; Cut-off 4 to 6 kD). The dialysed product was lyophilized (Heraeus-Christ Alpha, flask-drying overnight).
- Coupling II 100 mg 300 mg (2) 15 mg 100 mg H 2 O/dioxane 1.5 hours overnight ox-HES 130 1.5 ⁇ 10 ⁇ 6 mol 7.0 ⁇ 10 ⁇ 6 mol 9.7 ⁇ 10 ⁇ 5 mol 7.7 ⁇ 10 ⁇ 4 mol 10 ml/3 ml 3-4° C. 25° C.
- Coupling III 200 mg 3.8 g (5) 46.5 mg 20 mg H 2 O/dioxane 0 hours 24 hours ox-HES 130 3.0 ⁇ 10 ⁇ 6 mol 8.9 ⁇ 10 ⁇ 5 mol 3.0 ⁇ 10 ⁇ 4 mol 1.5 ⁇ 10 ⁇ 4 mol 10 ml/3 ml 25° C.
- Coupling IV 100 mg 1.9 g (5) 25 mg 20 mg Water 1.5 hours overnight ox-HES 130 1.5 ⁇ 10 ⁇ 6 mol 4.5 ⁇ 10 ⁇ 5 mol 1.6 ⁇ 10 ⁇ 4 mol 1.5 ⁇ 10 ⁇ 4 mol 3-4° C. 25° C.
- Coupling V 200 mg 4.3 g (5) 100 mg 0 mg Water 0 hours overnight ox-HES 130 3.0 ⁇ 10 ⁇ 6 mol 1.0 ⁇ 10 ⁇ 4 mol 6.0 ⁇ 10 ⁇ 4 mol 25° C.
- Coupling VI 100 mg 130 mg (7) 50 mg 0 mg Water* 0 hours 5 hours ox-HES 130 1.5 ⁇ 10 ⁇ 6 3.0 ⁇ 10 ⁇ 6 mol 3.0 ⁇ 10 ⁇ 4 mol 5 ml + 10 ml 25° C.
- Coupling VII 100 mg 130 mg (7) 200 mg 0 mg Water* 0 hours 24 hours ox-HES 10 1.5 ⁇ 10 ⁇ 6 3.0 ⁇ 10 ⁇ 6 mol 3.0 ⁇ 10 ⁇ 4 mol 5 ml + 2 ⁇ 10 ml 25° C.
- Coupling I 100 mg 300 mg (1) 5 mg 100 mg H 2 O/dioxane 1.5 hours overnight ox-HES 10 1.5 ⁇ 10 ⁇ 6 mol 8.1 ⁇ 10 ⁇ 5 mol 3.0 ⁇ 10 ⁇ 5 mol 7.7 ⁇ 10 ⁇ 4 mol 13 ml/2 ml 3-4° C. 25° C.
- Coupling II 70 mg 1.0 g (2) 15.5 mg 0 mg Water 10 ml overnight ox-HES 10 1.0 ⁇ 10 ⁇ 6 mol 2.7 ⁇ 10 ⁇ 4 mol 1.0 ⁇ 10 ⁇ 4 mol 0 hours 25° C.
- Coupling III 200 mg 2.0 g (3) 77.5 mg 20 mg Water 0 hours 6 hours ox-HES 10 3.0 ⁇ 10 ⁇ 6 mol 8.1 ⁇ 10 ⁇ 4 mol 5.0 ⁇ 10 ⁇ 4 mol 1.5 ⁇ 10 ⁇ 4 mol 25° C.
- Coupling IV 50 mg 7.4 g (4) 282 mg 0 mg Water 0 hours overnight ox-HES 10 7.4 ⁇ 10 ⁇ 7 mol 2.0 ⁇ 10 ⁇ 3 mol 1.5 ⁇ 10 ⁇ 3 mol 25° C.
- the coupling reaction VII between ox-HES 130 kD and HSA is explained in detail in the following: In a round-bottomed flask, 130 mg ox-HES 130 kD (degree of oxidation approx. 100%) and 100 mg HSA were dissolved accompanied by stirring in approx. 5 ml water at room temperature. As soon as the solution was clear, 200 mg EDC in 3 portions, each dissolved in 5-10 ml water, were added over a period of one hour. Between each addition, the reaction mixture was stirred at room temperature for about 4 hours. After 24 hours reaction time, the mixture was dialysed against water (cellulose acetate dialysis tube; Cut-off 4 to 6 kD). The product was then lyophilized.
- HES was dissolved completely in a small amount of water.
- HSA dissolved in borate buffer, pH 9.0, was added.
- NaBH 4 was added to this solution and the whole left at room temperature accompanied by stirring.
- a further aliquot of HES 130 kD, followed by further NaBH 4 was added. After the reaction was finished, dialysis and freeze-drying was carried out as described.
- COUPLING III 50 mg 9.8 g 285 mg Na 2 HPO 4 , 1 ml 36 hours HES 130 7.5 ⁇ 10 ⁇ 7 mol 2.3 ⁇ 10 ⁇ 4 mol 7.5 ⁇ 10 ⁇ 3 mol 7.4 25° C.
- COUPLING IV 50 mg 2.0 g 180 mg Borate 0.1 M 30 hours HES 130 7.5 ⁇ 10 ⁇ 7 mol 4.7 ⁇ 10 ⁇ 5 mol 4.7 ⁇ 10 ⁇ 3 mol 7.4 25° C.
- COUPLING V 50 mg 4.0 g 60 mg Borate 0.1 M 100 hours HES 130 7.5 ⁇ 10 ⁇ 7 mol 9.4 ⁇ 10 ⁇ 5 mol 1.6 ⁇ 10 ⁇ 3 mol 7.4 25° C.
- HES 130 kD For the coupling of the HES 130 kD, 2.0 g of this compound were completely dissolved in water (approx. 5 ml). 50 mg of HSA dissolved in 1 ml 0.1 M borate buffer, pH 9.0 were added. 30 mg NaBH 4 were added to this solution and the whole left at room temperature accompanied by stirring. After 18 h, a further aliquot of 2.0 g HES 130 kD, followed by a further 30 mg NABH 4 , were added. After 100 h reaction time in total, dialysis and freeze-drying were carried out (coupling V, HES 130 kD).
- HES 10 kD For the coupling of the HES 10 kD, 1.4 g of this compound were completely dissolved in water (approx. 5 ml). 50 mg of HSA dissolved in 1 ml 0.1 M borate buffer, pH 9.0, were added. 14 mg NaBH 4 were added to this solution and the whole left at room temperature accompanied by stirring. After 18 hours a further aliquot of 1.4 g HES 10 kd, followed by a further 14 mg NaBH 4 , was added. After a total of 80 hours reaction time, dialysis and freeze-drying were carried out (coupling I, HES 10 kD).
- reaction products were first analyzed using gel-permeation chromatography (GPC).
- the HSA peak is normally found after 63 minutes, a small peak, which is caused by HSA dimers, also being able to be measured at approx. 57 minutes.
- the chromatograms obtained by means of GPC can be analyzed as follows:
- FIG. 1 is a chromatogram which shows the size distribution of the products after coupling of ox-HES 130 kD to HSA (coupling III). With this coupling process, very good results were achieved without HOBt activation. A clear, single broad peak was measured at 37 minutes and a further, smaller band at 45 minutes, which indicates a coupling product with higher molecular weight than HSA. At the same time, traces of non-modified HSA were found.
- FIG. 2 shows the size distribution of the products after coupling of ox-HES 130 kD to HSA (coupling IV). The reaction was activated with HOBt. It is shown that this activation reduces the yield, possibly by encouraging secondary reactions.
- FIGS. 3 and 4 show the size distribution of the reaction products during and after the coupling reaction of ox-HES 130 kD to HSA (coupling V).
- non-modified HSA was found as the product with the highest concentration, but in addition the first coupling products with a-higher molecular weight were found.
- a homogeneous coupling product with a retention time of approx. 35 minutes was found in high concentration.
- Non-modified HSA and other coupling products were present in relatively low concentration.
- FIG. 5 shows the corresponding size distribution of the reaction products during and after the coupling reaction of ox-HES 10 kD to HSA (coupling V).
- concentration of the coupling products with a molecular weight which lies above the weight-of HSA increases in the course of the reaction.
- FIG. 7 An example of the chromatograms which were obtained upon analysis of the direct coupling of HES to HSA is shown in FIG. 7 (Process B, HES 130 kD, coupling V). A significant peak was identified at approx. 65 minutes (HSA). In addition, however, a coupling product was also shown (peak at approx. 42 minutes).
- glycans in the coupling products was detected by means of Western-Blot and Glycan-Detections-Kit from Roche-Boehringer. After separation of the products by means of SDS-PAGE, these were transferred to a nitrocellulose membrane using the blotting apparatus of the Miniprotean II electrophoresis unit. The membrane was then oxidized using periodate under conditions in which only the vicinal OH groups are oxidized. These were then reacted with an amino-functionalized digoxigenin. Bound digoxigenin was detected by means of specific monoclonal antibodies which were bound to an alkaline phosphatase.
- FIGS. 8 and 9 each show a picture of the silver-stained SDS-PAGE gel (top) and the picture of the corresponding products after transfer onto a membrane and glycan detection (bottom).
- a relatively homogeneous glycan forms as a reaction product during the coupling reaction, whilst at the same time the concentration of non-modified HSA decreases.
- reaction mixtures for the analysis of secondary reactions ox-HES EDC HOBt Water Reaction time HES 130 kD 500 mg 15 mg — 5.0 ml 30 hours 1.2 ⁇ 10 ⁇ 5 mol 7.8 ⁇ 10 ⁇ 5 mol 25° C. HES 130 kD 500 mg 15 mg Saturated 5.0 ml 30 hours 1.2 ⁇ 10 ⁇ 5 mol 7.8 ⁇ 10 ⁇ 5 mol solution 25° C.
- HES 10 kD 100 mg 3.4 mg — 5.0 ml 30 hours 2.7 ⁇ 10 ⁇ 5 mol 1.8 ⁇ 10 ⁇ 5 mol 25° C.
- HES 10 kD 100 mg 3.4 mg saturated 5.0 ml 30 hours 2.7 ⁇ 10 ⁇ 5 mol 1.8 ⁇ 10 ⁇ 5 mol solution 25° C.
- the aim of the experiments was to demonstrate the extent to which a potential self-condensation of HES takes place in the presence or absence of HOBt.
- the samples were lyophilized and forwarded to Fresenius-Kabi for the carrying out of the analysis.
- a schematic representation of the reaction can be found in FIG. 10 .
- the amino group of the amine-HES 12KD 3 reacts with the N-hydroxysuccinimid group of SMCC 4 to form conjugate 5.
- SMCC 4 which has not reacted is separated by centrifugation using a centrifugation/dialysis unit.
- the maleimid-group of conjugate 5 subsequently reacts with the thiol group of the thio-DNA 1 to the desired product 6.
- the region in 6, which is marked in bold mererly represents a spacer and can have any form.
- the sequences of the single strands are: SEQ ID NO. 1: 5′-GTAGAGACAGGAGGCAGCAGTTGAATTCGCAGGGTGAGTAGCAGTAG AGC-3′; SEQ ID NO: 2: 5′-GCTCTACTGCTACTCACCCTGCGAATTCAACTGCTGCCTCCTGTCTC TAC-3′ modified with 5′thiol C6 S-S by MWG (e.g. FIG. 10 ).
- Both DNA single strands were dissolved in bidest. Water in a concentration of 2 ⁇ g/ ⁇ l, and were hybridized in a ratio of 1:1 at 96° C. to a double-stranded thio-DNA 1 with a concentration of 2 ⁇ g/ ⁇ l.
- 1 ⁇ l (1 ⁇ g DNA) of the reaction mix were taken and cleaved with 1 ⁇ l (20 U) EcoR1 restriction enzyme (New England Biolabs, Schwalmbach/Taunus, Germany), 1 ⁇ l reaction buffer (50 mM sodium chloride, 100 mM Tris HCl, 10 mM magnesium chloride, 0.025% Triton X-100, pH 7.5 from New England Biolabs) and 7 ⁇ l bidest. water at 37° C. for 3 hours.
- Oxidation of HES 12 KD (Fresenius, Lot 2540SR2.5P) with an average molecular weight of 12.000 g/mol with iodine solution to oxo-HES 12 KD 2 was performed according to the process disclosed in DE 196 28 705, hereby incorporated by reference.
- FIG. 11 shows the results in lanes 2 and 3.
- lanes 2-18 represent the results of the 8 coupling experiments of amino-HES12 KD 3 to thio-DNA 1 using SMCC. The results directly from the reaction or after the reaction and subsequent digestion of the DNA, respectively, are depicted next to each other.
- lane 1 a mixture of different reference DNAs is loaded as length marker.
- Lanes 18 and 19 show thio-DNA 1 or digested thio-DNA 1, respectively.
- all experiments show coupling products at higher masses (lanes 2, 4, 6, 8, 10, 12, 14, 16). Since HES 12 KD is a mixture of molecules of different size, the coupling products also show a molecular weight distribution.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Diabetes (AREA)
- Oncology (AREA)
- Hematology (AREA)
- Communicable Diseases (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Endocrinology (AREA)
- Pulmonology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Anesthesiology (AREA)
- Obesity (AREA)
- Molecular Biology (AREA)
- Pain & Pain Management (AREA)
- Urology & Nephrology (AREA)
- Virology (AREA)
- Emergency Medicine (AREA)
- Neurosurgery (AREA)
- Cardiology (AREA)
- Nutrition Science (AREA)
- Rheumatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Psychiatry (AREA)
- Neurology (AREA)
- Child & Adolescent Psychology (AREA)
Abstract
The invention relates to compounds comprising a conjugate of hydroxyalkyl starch (HAS) and an active agent, whereby the hydroxyalkyl starch is either directly covalently bonded to the active agent, or by means of a linker. The invention further relates to methods for the production of a covalent HAS-active agent conjugate, whereby HAS and an active agent are reacted in a reaction medium, characterised in that the reaction medium is water or a mixture of water and an organic solvent, comprising at least 10 wt. % water.
Description
- The present invention relates to compounds comprising a conjugate of hydroxyalkyl starch (HAS) and an active ingredient, wherein the hydroxyalkyl starch is coupled to the active ingredient either directly or via a linker. The invention further relates to processes for the preparation of a covalent HAS-active ingredient conjugate in which HAS and an active ingredient are reacted with each other in a reaction medium, wherein the reaction medium is water or a mixture of water with an organic solvent, having at least 10 weight-% water. The invention further relates to the medical use of the conjugates.
- The clinical use of many active ingredients of pharmaceuticals is adversely affected by a number of problems (e.g. Delgado et al., Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 9 (3, 4), (1992) pp. 249-304). Parenterally administered native proteins are subject for example to excretion by the reticuloendothelial system, the liver, the kidney and the spleen. Excretion depends on the charge of carbohydrate chains, the presence of cellular receptors for the protein and molecule shape and size. The excretion limit of the glomerular filtration of the kidney is for example approx. 67 kD.
- As a result of proteolytic degradation, a rapid loss of biological activity can also be observed.
- Proteins expressed by bacteria as well as other recombinant proteins can have an increased immunogenicity and provoke life-threatening hypersensitivity reactions. Corresponding reactions naturally prevent the medical use of these products.
- For this reason, research has been carried out systematically in the state of the art already since the end of the 70s on the improvement of the properties of exogenic proteins by chemical modification, in particular polymerization or coupling to macromolecular polymers. Many projects concentrated on the preparation of conjugates from proteins or other active ingredients on the one hand and polyethylene glycol (PEG) on the other (e.g. U.S. Pat. No. 4,179,337). The advantages expected from respective coupling reactions comprise improved in vivo half-life of the proteins, reduced toxicity, improved stability and improved solubility of the active ingredients (Abuchowski and Davis, Enzymes as drugs, Holcenberg and Rubberts, Publisher, pp. 367-383, John Wiley & Sons N.Y. (1981)).
- The process of coupling the active ingredients proved to be problematic however, as the active group of the protein was inactivated by coupling to PEG or the reactions did not provide the reaction product in a suitable yield. To achieve a specific coupling which does not adversely affect the activity of the active ingredient, active groups were introduced into PEG or the active ingredient or the compounds were coupled with a linker. For this purpose, PEG is normally provided with an active group which is subsequently covalently bound to a group of a protein capable of being coupled.
- Thus for example, the loss of the binding activity of antibodies and their fragments after their coupling to PEG was described (Kitamura et al., Cancer Res., Vol. 51 (1991), pp. 4310-4315; and Pedley, et al., Br. J. Cancer, Vol. 79 (1994), pp. 1126-1130). To solve this problem, Chapman et al. (Nature Biotech., Vol. 17 (1999), pp. 780-783) suggest binding PEG to certain binding regions of the antibody.
- The loss of activity of the coupling partner is also described in WO 95/13090. As a solution, it is suggested to activate PEG with a reactive group and to bind PEG to α-interferon in the presence of a surfactant via this reactive group. Cited as preferred reactive group is N-succinimide carbonate, which is said to form a urethane bond with the ε-amino group of lysine under the conditions named.
- WO 96/41813 also discloses processes for the preparation of a polymer-polypeptide conjugate in which the polymer (in particular PEG) is derivatised at a specific region and then bound to a polypeptide. An amino-oxi-acetyl group is preferably introduced into PEG and this compound is then bound to a polypeptide, in particular to IL-8, hG-CSF and IL-1.
- In the literature, there are thus numerous examples of corresponding conjugates; e.g. PEG-insulin conjugates in U.S. Pat. No. 4,179,337, PEG-bovine-haemoglobin conjugates in U.S. Pat. No. 4,412,989, PEG-ribonuclease conjugates and PEG superoxide dismutase conjugates in Veronese et al. Applied Biochem. Biotech., Vol. 11, 141-152 (1995), PEG-IL-2 conjugates or PEG-IFN-β conjugates in U.S. Pat. No. 4,766,106, PEG-polymyxin conjugates in
WO 90/15628 and PEG-IL-2 conjugates inWO 90/07939. Some conjugates are now in clinical application. For example, the properties of the enzyme asparaginase were improved by conjugate formation with PEG, and a PEG-asparaginase conjugate is commercially available under the trademark Oncaspar® for cancer therapy. Recently, a PEG-coupled G-CSF was approved by the US Food and Drug Administration (Pegfilgastim). A large number of further pegylated products are in different phases of clinical development, for example PEG-CDP870, PEG-Dronabinol, etc. (e.g. PEG-pipeline at www.enzon.com or www.inhale.com). - Not only proteins, but other compounds were also coupled to PEG and other polymers according to this scheme. WO 97/33552 and WO 97/38727 disclose for example the coupling of paclitaxel to PEG and the use of the conjugate for the treatment of tumors. The use of a PEG-camptothecin conjugate for the treatment of tumors is being studied by Enzon in phase I clinical trials.
- Antibiotics have also been coupled to PEG. Dowling and Russell, for example, describe the pharmacokinetics of an oxytetracyclin-PEG conjugate (J. Vet. Pharmacol. Ther., vol. 23 (2000), 107-110). In the state of the art, antibiotics have also been derivatized using other methods in order to obtain new functions. For example, a depot penicillin was produced, which is a procain-penicillin derivative, i.e. a salt of the penicillin with the procain base. This derivative has an extended activity and it is used, for example, in the therapy of Syphilis.
- Coupling reactions with more than two compounds have also been demonstrated. For example, WO 93/23062 discloses the preparation of a coupling product from an antibody directed against a B cell lymphoima, activated PEG and a toxin.
- PEG-active ingredient conjugates however do not have a natural structure for which in vivo decomposition pathways have been described. Amongst others for this reason, in addition to the PEG conjugates, other conjugates and protein polymers have been produced for solving the above-named problems. Thus, there are a number of processes for cross-linking different proteins and binding of proteins to macromolecules (e.g. summary in Wong, S. S., “Chemistry of protein conjugation and cross linking”, CRCS, Inc. (1993)).
- Hydroxyethyl starch (HES) is a derivative of a naturally occurring amylopectin and is broken down in the body by α-amylase. The preparation of HES-protein conjugates has already been described in the state of the art (e.g. HES-haemoglobin conjugates in DE 26 16 086, hereby incorporated by reference, or DE 26 46 854, hereby incorporated by reference).
- Haemoglobin is a protein which could be of great clinical importance as a blood-replacement and oxygen-carrier agent (so-called Haemoglobin-Based-Oxygen Carrier, HBOC). However, although the demand for such a product was recognized early on (e.g. Rabiner, J. Exp. Med. 126, (1967) 1127), none of the known HBOC products has as yet achieved the status of an approved drug.
- The natural haemoglobin consists of two α and β peptide chains which each bind a haeme as a prosthetic group. Isolated haemoglobin molecules are however very unstable and rapidly break down into the more stable α,β dimers (MW 32 kDa). The biological half-life of isolated haemoglobin in the blood circulation is approx. 1 hour, as the dimers are rapidly eliminated via the kidneys. In this process, the dimers produce nephrotoxic side effects (e.g. Bunn & Jandl, J. Exp. Med. 129, (1967) 925-934). Development work on derivatized haemoglobin molecules was therefore primarily directed towards the intramolecular cross-linking of haemoglobin, the intermolecular cross-linking to form polymeric HBOC forms and/or the coupling to polymers.
- The known haemoglobin conjugates are described for example in Xue and Wong (Meth. in Enzymol., 231 (1994), pp. 308-322, hereby incorporated by reference) and in DE 26 16 086 and DE 26 46 854, hereby incorporated by reference. The latter discloses processes by means of which haemoglobin is bound to HES by firstly reacting HES with sodium periodate. Dialdehydes form, to which haemoglobin is bound. On the other hand, DE 26 16 086, hereby incorporated by reference, describes the coupling of haemoglobin to HES according to a process in which firstly a cross-linking agent (e.g. Bromcyan) is bound to HES and haemoglobin is then bound to the intermediate product.
- HES is a substituted derivative of the carbohydrate polymer amylopectin which occurs in maize starch in a concentration of up to 95%. HES has advantageous rheological properties and currently used in the clinic as a volume-replacement agent and for haemodilution therapy (Sommermeyer et al., Krankenhauspharmazie, Vol. 8(8), (1987), pp. 271-278; and Weidler et al., Arzneim.-Forschung/Drug Res., 41, (1991) 494-498).
- Amylopectin consists of glucose units, wherein the main chains have α-1,4-glycosidic bonds, but α-1,6-glycosidic bonds are present at the branching sites. The physical-chemical properties of this molecule are determined essentially by the type of glycosidic bonds. Because of the branched α-1,4-glycosidic bond, helical structures form with approx. 6 glucose monomers per turn.
- The physico-chemical and the biochemical properties of the polymer can be modified by substitution. The introduction of a hydroxyethyl group can be achieved by alkaline hydroxyethylation. The different reactivity of the relevant hydroxyl group in the unsubstituted glucose monomer vis-à-vis the hydroxyethylation can be exploited through the reaction conditions, a limited influence on the substitution pattern is thus possible.
- HES is therefore essentially characterized via a molecular weight distribution and a degree of substitution. The degree of substitution can be described as DS “degree of substitution” which refers to the proportion of the substituted glucose monomers of all glucose units, or as MS (“molar substitution”), which gives the number of hydroxyethyl groups per glucose unit.
- HES solutions are present as polydisperse compositions in which the individual molecules differ from each other with regard to the degree of polymerization, the number and arrangement of the branching sites, as well as their substitution pattern. HES is thus a mixture of compounds with different molecular weights. Accordingly, a specific HES solution is determined by an average molecular weight using statistical variables. Mn is calculated as a simple arithmetic average in relation to the number of molecules (numerical average), whilst Mw, the weight average, represents the mass-related measurement variable.
- A selective chemical binding of proteins to HES was however hitherto prevented by the fact that the HES is not activated selectively. Thus, the protein-HES conjugates known in the state of the art result from a non-selective coupling of Bromcyan-activated HES to haemoglobin (e.g. DE 26 16 086, hereby incorporated by reference) Corresponding processes can lead to polydisperse products with non-uniform properties and potentially toxic side effects.
- A process was first disclosed by Hashimoto (Hashimoto et al., Kunststoffe, Kautschuk, Fasern, Vol. 9, (1992) pp. 1271-1279, hereby incorporated by reference) wherein the reducing aldehyde end group of a saccharide is selectively oxidized and a reactive ester (lactone) is obtained.
- On the basis of this process, WO 98/01158 discloses that haemoglobin-hydroxyethyl starch conjugates can be obtained in which haemoglobin and HES are selectively linked to each other via amide bonds between free amino groups of the haemoglobin and the reducing end group of the HES present in oxidized form. Both the processes described in Hashimoto et al. and the processes according to WO 98/01158, hereby incorporated by reference, are however based on a reaction between saccharide (HES) and protein (haemoglobin) in organic solvent. Dimethyl sulfoxide (DMSO) was in fact used in the publication.
- One of ordinary skill in the art is aware of the fact that many proteins are subject of a change in structure in organic solvents which is not reversed in aqueous solution. Regularly, a loss of activity occurs with the change in structure. In every case, a costly removal of the organic solvent is necessary, as even residual proportions of organic solvents may not be acceptable for the intended medical use. Even the potential danger of impurities and changes in structure of the proteins is to be excluded with regard to the intended use.
- The object of the present invention is thus to provide improved hydroxyalkyl starch-active ingredient conjugates and processes for their preparation which lead to biologically active conjugates which can be used in everyday clinical practice. A further object of the present invention is to provide a process for the preparation of hydroxyalkyl starch-active ingredient conjugates wherein by-products are not produced in significant quantities, as these by-products also adversely affect the subsequent purification of the product to a significant extent.
- This object was now surprisingly solved by compounds comprising a conjugate of hydroxyalkyl starch and an active ingredient, wherein the hydroxyalkyl starch is covalently bound to the active ingredient either directly or via a linker. Corresponding HAS-active ingredient conjugates are for example obtainable by processes, wherein HAS and an active ingredient are coupled in a reaction medium, wherein the reaction medium is water or a mixture of water with an organic solvent, which comprises at least 10 weight-% water.
- The invention further relates to processes for the preparation of a covalent HAS-active ingredient conjugate, wherein HAS and at least one active ingredient are coupled in an aqueous reaction medium and is characterized in that the reaction medium is water or a mixture of water with an organic solvent, which comprises at least 10 weight-% water.
- HAS is preferably oxidized before binding to the active ingredient, a specific oxidation of the reducing end groups being particularly preferred. Alternatively, the coupling can take place via the formation of a Schiff's base between HAS and an amine group-carrying active ingredient as intermediate product. This intermediate product is then reduced, resulting in the formation of a methylene amine group.
-
FIG. 1 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process A.III; -
FIG. 2 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process A.IV; -
FIG. 3 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process A.V. and with a reaction time of 2 hours; -
FIG. 4 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA, process A.V., reaction time overnight; -
FIG. 5 GPC chromatogram of the coupling reaction between ox-HES 10 kD and HSA according to process A.V, after 2 hours (FIG. 5 a) and overnight (FIG. 5 b); -
FIG. 6 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process A.VII, after 24 hours reaction time; -
FIG. 7 GPC chromatogram of the coupling reaction between ox-HES 130 kD and HSA according to process B.V; -
FIG. 8 SDS-PAGE and Western Blot of different coupling reactions between HES and HSA; -
FIG. 9 SDS-PAGE and Western Blot of different coupling reactions between HES and HSA; -
FIG. 10 reaction scheme for the preparation of a HES-DNA conjugate; -
FIG. 11 image of a gel showing the HES-DNA conjugate prior to and after digestion with a restriction enzyme. - The present invention provides for the first time compounds comprising a conjugate of hydroxyalkyl starch and an active ingredient, wherein the hydroxyalkyl starch is covalently bound to the active ingredient either directly or via a linker. The present invention further provides HAS-active ingredient conjugates which can be prepared by processes, wherein HAS and at least one active ingredient are reacted with each other in an aqueous reaction medium. The processes are further characterized in that the reaction medium is water or a mixture of water with an organic solvent, which comprises at least 10 weight-% water.
- Within the context of the present invention, a chemical compound is referred to as an active ingredient if the compound is suitable to be an active component of any composition for therapeutic or diagnostic purposes. Preferably, the active ingredient is an active component of a drug, i.e. the compound in a drug formulation which achieves a physiological effect after administration to a subject.
- An overview of the approved drugs and their active ingredients is given in the pharmacopeia. All the active ingredients named in the pharmacopeia can be used for the preparation of the HAS-active ingredient conjugates by the process according to the invention. However, according to the present invention, the term active ingredient also comprises all compounds which, although known to be suitable for diagnostic or therapeutic use, were however not able to be used up to now for this purpose, because of the problems described above. The active ingredient is preferably a vitamin, vaccine, toxin, antibiotic (or antiinfective), antiarrhythmic, appetite suppressant, anesthetic, analgesic, antirheumatic, antiallergic, antiasthmatic, antidepressant, antidiabetic, antihistamine, antihypertonic or an antineoplastic agent. Structurally, it can be for example a hormone, steroid, lipid, protein, oligo- or polypeptide, a nucleic acid, in particular a D- or L-nucleic acid, such as a D-DNA, L-DNA, D-RNA or L-RNA. The use of proteins, peptides, D- or L-nucleic acids as HAS coupling partners is particularly preferred.
- The compounds prepared according to the present invention retain the activity of the active ingredient and the advantageous properties of the HAS. As further advantages, the conjugates prepared according to the process according to the invention have an improved in vivo half-life of the active ingredients, reduced toxicity, improved stability and/or improved solubility of the active ingredients.
- After administration, the HAS chain is shortened by the α-amylase in the plasma. Thus, the activity of the coupling product can be determined as activity of the native coupling product, i.e. directly after the coupling, or as activity of the metabolized coupling product, i.e. after in vivo metabolizing of the coupling product. In vivo metabolizing can be simulated by an in vitro degradation.
- The activity of the active ingredient may be determined by methods which are known for this compound in the state of the art. For example, the activity of an antineoplastic agent is determined as inhibitory concentration (IC), and the activity of an antiinfective agent is determined as minimal inhibitory concentration (MIC). Preferably, the determination is performed in vitro with appropriate target cells (e.g. Chow et al., Haematologica, Volume 86 (2001), pages 485-493, herein incorporated by reference). The in vitro effects can further be confirmed by a relevant animal model (e.g. for example the mouse model of the renal cell carcinoma described in Changnon et al., e.g. BJU Int., Volume 88 (2001), page 418-424, herein incorporated by reference).
- Compared to the non-coupled substance, the native coupling product can have an increased or reduced activity. Preferably, however, the activity is not reduced more than 5-fold, more preferably not more than 3- or 2-fold. The metabolized product preferably has an activity comparable to that of the non-coupled substance, i.e. prior to the coupling, the metabolized conjugate has at least 50%, preferably at least 75% of the activity of the active ingredient, wherein a retention of at least 95% of the activity is particularly preferred.
- In the context of the present invention, the term “hydroxyalkyl starch” is used to refer to starch derivatives which are substituted with a hydroxyalkyl group having 1 to 3 carbon atoms. Thus, the group designated as “hydroxyalkyl starch” comprises hydroxymethyl starch, hydroxyethyl starch and hydroxypropyl starch. The use of hydroxyethyl starch (HES) as a coupling partner is particularly preferred for all embodiments of the invention.
- According to the invention, it is preferred that the hydroxyethyl starch has an average molecular weight (weight average) of 1-300 kDa, wherein an average molecular weight of 5 to 200 kDa is particularly preferred. Furthermore, hydroxyethyl starch may have a molar degree of substitution of 0.1 to 0.8 and a ratio of C2:C6-substitution in the range of 2-20, in each case relative to the hydroxyethyl groups.
- For coupling the active ingredient to the HAS, it may be necessary in a first step to introduce an active group into the active ingredient and/or the HAS. Corresponding active groups can for example be thiol groups or amino groups (e.g. Examples).
- Further, the active ingredient and the HAS can be coupled to each other by use of a linker. Any crosslinking agent can be used as a linker. Numerous crosslinking agents such as SMCC (succinimidyl-4-(N-maleimido-methyl)cyclohexane-1-carboxylate; e.g. Example 7) are commercially available and well-known to the person skilled in the art (e.g. alphabetic list of the “cross-linking reagents” in the product catalogue of the company Perbio and www.piercenet.com).
- According to a further embodiment of the present invention, water-soluble antibiotic derivatives which contain an amino sugar, in particular HAS-daunorubicin and HAS-doxorubicin conjugates, and processes for their preparation, as far as they are disclosed in
DE 101 29 369, herein incorporated by reference, are not within the scope of the present invention,e.g. DE 101 29 369 is disclosed with the proviso that said disclosure is not within the scope of the present invention. - According to a preferred embodiment, the present invention relates to compounds comprising a conjugate of HAS and an antineoplastic active ingredient and their use for the treatment of tumors.
- Among others, tumor cells differ from normal somatic cells in that tumor cells are no longer subject to a physiological growth control and therefore have an increased rate of cell division. The therapeutic use of antineoplastic active ingredients in tumor therapy is based on this difference, since the toxic activity of the antineoplastic active ingredients is primarily directed against proliferating cells. As a consequence, compounds are designated as antineoplastic active ingredients or cytostatics if they exhibit a toxic activity against proliferating cells (basics of oncology and current therapeutic approaches are for example summarized in: Internistic Oncology, Schmoll et al. (eds.), Springer, 1996).
- With respect to their chemistry, antineoplastic active ingredients represent a very heterogeneous group. In addition to the inhibition of proliferation, the induction of apoptosis, programmed cell death, gains importance in the discussions over the last years. A classification of the antineoplastic active ingredients can for example be performed based on the relevant target molecules (Schmoll et al., see above):
-
- 1. Compounds which inhibit DNA biosynthesis, for example as antimetabolites, such as MTX, 5-FU, Ara-C or hydroxy urea.
- 2. Compounds, which act on the DNA, for example by strand break induction, intercalation, modification of interstrand cross-linking, topoisomerase toxins, such as alkylating agents, platinum complexes, anthracyclins, bleomycin, actinomycin-D or epipodophyllo toxins.
- 3. Compounds which act on the RNA, for example by blocking mRNA-synthesis by intercalation or incorporation into the RNA, including anthracyclins, bleomycin, actinomycin-D or antimetabolites.
- 4. Compounds, which act on proteins, for example on the level of receptor binding (e.g. hormones or antagonists), by inhibition of tubulin polymerization (e.g. by vinca alkaloids), by protein cross-linking (for example by alkylating agents) or phosphorylation (e.g. by inhibitors of protein kinase C).
- Due to the antineoplastic activity, all active ingredients have considerable side effects, which primarily occur as inhibition of fast proliferating tissues. For this reason, in particular erythro-, leuko- and trombopoiesis are inhibited and the growth of mucous membrane epithelia is adversely affected. As a consequence, gastrointestinal disorders or non-reversible impairments of spermatogenesis or anovulation, respectively, can occur. The skin and the skin accessory organs are also usually affected. For example, many patients suffer from a reversible loss of hair.
- In severe cases, the side effects can lead to an acute loss of the kidney function and toxic-related organ damages to heart, lung, liver and nervous system. Finally, as a consequence of the immunosuppressive effect, an increased number of infections have to be expected.
- The preparation and investigation of conjugates which contain an antineoplastic agent were therefore focused on the improvement of the tolerance of the active ingredient. For this purpose, different antineoplastic active ingredients have been coupled to macromolecules such as dextran (e.g. Kojima et al., J. Pharm. Pharmakol., Vol. 32 (1980), p. 30-34; Nakane et al., J. Pharm. Pharmakol., vol. 40 (1988), p. 1-6, Nomura et al., J. Controlled Release, Vol. 52 (1998), p. 239-252; Sato et al., J. Pharm. Sci., Vol. 78 (1989), p. 11-16, the disclosures of which are hereby incorporated by reference). In several cases, an improved anti-tumor effect of the conjugates was demonstrated.
- As an alternative, active ingredients such as mitomycin C were also coupled to N-succinylchitosan (Song et al., J. Controlled Release, Vol. 42 (1996), p. 93-100; hereby incorporated by reference), carboxymethylchitin (Song et al., Arch. Pract. Pharm. Vol. 53 (1993), p. 141-147; hereby incorporated by reference) and oligopeptides (Soyez et al., J. Controlled Release, Vol. 47 (1997), p. 71-80; hereby incorporated by reference). When compared to the individual antineoplastic active ingredient, again, an improved anti-tumor activity of the conjugates was observed in the majority of analyses.
- According to the invention it was now surprisingly found, that HAS-active ingredient conjugates which comprise an antineoplastic active ingredient have an improved toxic effect against tumor cells and/or a reduced toxicity for other cells. Therefore, the conjugates allow for a broader therapeutic range.
- The plasma half-life of the conjugates is significantly increased. This allow overcomes the repair mechanisms in tumor cells by longer exposition. Simultaneously, the present invention enables slower flooding, in particular in healthy tissue, whereby a reduced peak concentration and an improved tolerance for the patient is achieved.
- For the preparation of the conjugates according to the invention, any antineoplastic active ingredient can be used. The antineoplastic active ingredient can, for example, be selected from the group consisting of alkylating agents, antimetabolites, antibiotics or natural substances.
- According to a preferred embodiment, the antineoplastic active ingredient is mitomycin C, cyclophosphamid, bleocin, chlorambucil, cisplatin, Ara-C, fludarabine, doxorubicin, etoposide, 5-FU, MTX, vinblastine, vincristine, vindesine, hydroxy urea, 6-MP or CCNU.
- The use of mitomycin C as active ingredient is particularly preferred. Mitomycin C belongs to the group of antibiotics and contains an aziridine group and a quinone group and a mitosane ring. The active ingredient is used for the treatment of renal cell carcinoma and bladder tumors as well as other urologic diseases. The compound gains its activity only upon metabolization in hypoxyic cells (this means preferably in tumor cells) by intracellular enzymatic or spontaneous chemical reduction of the quinone and loss of the methoxy group. Preferably, HAS can be coupled to this methoxy group via a linker. After intracellularly cleaving off the substituent, the same active ingredient is present inside the the cell which causes an alkylating cross-linking of the DNA thereby exhibiting its toxic effect. As an alternative, HAS may also be coupled to one of the two NH2-groups. Mitomycin C shows a typical tissue specificity. According to the invention, it is preferred that this specificity—in particular for excretory organs—is increased by HAS-coupling.
- According to the invention, the antineoplastic active ingredient can be coupled to HAS by use of any method. However, a specific coupling to the reducing end groups of HAS is preferred, since this procedure generates a defined conjugate.
- According to one embodiment of the invention, hydroxyethyl starch may be coupled to the methoxy group of mitomycin C. Coupling to the methoxy group of mitomycin C can take place via a linker.
- According to a further embodiment, the present invention relates to processes for the preparation of a compound comprising a conjugate of HAS and an antineoplastic active ingredient. The process comprises steps, in which HAS is covalently coupled to an antineoplastic active ingredient, either directly or via a linker, and the conjugate is isolated.
- Further, the invention relates to pharmaceutical compositions which comprise a compound comprising a conjugate of HAS and an antineoplastic active ingredient. The pharmaceutical composition can furthermore comprise a pharmaceutically compatible carrier and/or a cytokine. Preferably, the cytokine is IL-2, α-interferon, γ-interferon.
- The pharmaceutical composition can be in any application form that is known in the state of the art. For example, the composition can be formulated for oral or parenteral administration. The formulation of the composition is performed according to processes known in the state of the art. In addition to the active ingredient, the composition generally comprises a pharmaceutically compatible carrier and one or more auxiliaries and optionally preservatives, solubility promoters, etc.
- Finally, the present invention relates to the use of a compound comprising a conjugate of HAS and an antineoplastic active ingredient for the preparation of a medicament for the treatment of tumors and/or their metastases, in particular for the treatment of urologic tumors and/or metastases of urologic tumors, for the treatment of metastases of the renal cell carcinoma, or for the treatment of diseases of the lymphatic system, such as CLL, Hodgkin-lymphoma, NHL, multiple myeloma, Waldenström's syndrome. According to this embodiment of the invention, the medicament can further comprise a cytokine, such as IL-2, α-interferon, γ-interferon.
- The use of the compounds according to the invention for the preparation of a medicament for the treatment of urologic tumors and/or metastases of urologic tumors, such as for the treatment of metastases of the renal cell carcinoma is particularly preferred. Presently, a curative therapy of the renal cell carcinoma can neither be achieved with a combination chemotherapy nor with mitomycin C alone. This might be due to the unfavourable pharmacokinetics of the compound, since the portion of renal elimination only amounts to approximately 18%. Since HAS is almost completely eliminated via the kidney, the conjugate exhibits a higher percentage of renal elimination compared to the non-conjugated substance. This embodiment of the present invention utilizes the intracellular intermediate storage of HAS. In particular, highly substituted HAS species (HAS 200/0.62) show an increased intracellular storage, in the extreme case even an overload. This phenomenon has also been observed in the area of the proximal tubule (Peron et al., Clinical Nephrology, Vol. 55 (2001), p. 408-411, hereby incorporated by reference).
- According to this embodiment, the present invention provides an accumulation of an antineoplastic active ingredient in certain target cells or tissues. Therefore, the improved pharmacokinetics of the conjugates make it possible to achieve a considerablely higher concentration in the cells of the target organ while using low systemic concentrations. This medical use is preferably employed on the hypernephroid carcinoma and the chromophylic renal carcinoma which constitute approximately 90% of all histological types.
- According to an alternative embodiment, the invention relates to the use of the compounds according to the invention for the preparation of a medicament for the treatment of diseases of the lymphatic system, such as CLL, Hodgkin lymphoma, NHL, multiple myeloma, Waldenström's syndrome. By coupling of HAS to an antineoplastic active ingredient according to the invention, the intracellular uptake of the active ingredients is decelerated dependent on the chain length and the degree of substitution. Furthermore, radioactive kinetic studies have shown that HAS is stored in certain organs, among others in lymphatic organs, for a longer time than in the whole body (e.g. Bepperling et. al., Crit. Care, Vol. 3, Suppl. 1 (1999), p. 153, hereby incorporated by reference). Thus, accumulation of the conjugate in the target cells occurs which results in improved pharmcokinetics with a lower systemic toxicity.
- The treatment of diseases of the lymphatic system using fludarabin as an active ingredient is preferred. Fludarabin is a halogenated adenine analogue which is resistant to deamination.
- The invention further relates to the use of the compounds according to the invention for the preparation of a medicament for the treatment of cutaneous/local primary malignant neoplasms or their metastases. For this, two effects can be utilized, the directed increased uptake by the recited tissues and the decelerated transport of the HAS conjugates out of the tissue. Both effects lead to an accumulation of the conjugate in the target cells.
- The invention further relates to the use of the compounds according to the invention for the preparation of a medicament for the treatment of diseases of the hematologic system or oncologic diseases, such as non-small cell lung cancer and small cell lung cancer, breast cancer, esophagus squamous cell carcinoma, renal cell carcinoma, testicular carcinoma, malignant melanoma, ALL or CML. In particular, when using the conjugates for the treatment of the renal cell carcinoma, advantages arise due to the strong accumulation of the compound in the affected tissue by the increased hydrophilicity of the conjugate and the stronger renal elimination resulting thereof. For this embodiment of the invention, the use of vindesine as active ingredient is particularly preferred.
- The invention further relates to the use of the compound according to the invention for the preparation of a medicament, wherein the compound is used as a combination therapy with one or more further antineoplastic active ingredients or cytokines. The combination therapy can be performed by administration of an agent containing all active ingredients, or by administration of two or more different compositions, each of which containing one active ingredient.
- The present invention further provides processes for the preparation of a medicament comprising a cytokine and a compound according to the invention which is suitable for new combination therapies. Corresponding agents are in particular suitable for the treatment of the advanced renal cell carcinoma.
- According to another particularly preferred embodiment of the invention, conjugates of HAS and an antiarrhythmic active ingredient as well as their use for the treatment of arrhythmia are provided.
- Deviations from the temporary sequence and regularity of the heartbeat (arrhythmia) from the normal heart rate are referred to as arrhythmia. In the majority of cases, these deviations are caused by cardiac excitation or conduction disorders. Substances which are suitable for the treatment of arrhythmia, in particular ventricular arrhythmia, are referred to as antiarrhythmic active ingredients or antiarrhythmics.
- Dependent on the effect of the antiarrhythmic active ingredients it is distinguished between sodium channel blockers (quinidine, procainamide, disopyramide, etc.) beta-receptor blockers (atenolol, propanolol, etc.), selective repolarisation prolonging active ingredients (amiodarone, sotalol, etc.), calcium antagonists (verapamil, gallopamil, etc.) and local anesthetics.
- However, the antiarrhythmic active ingredients customary in the state of the art partially exhibit a short duration of action. For example, adenosine is an antiarrhythmic active ingredient with a very short half-life. The duration of action of this substance is only several minutes. In many cases, prolongation of half-life and duration of action is necessary.
- Additionally, several antiarrhythmic active ingredients have pro-arrhythmogenic side effects and partially even an increase in mortality.
- The present invention provides, among others, improved antiarrhythmic active ingredients which, for example, have a prolonged duration of action. According to the invention, it was surprisingly found that the HAS-antiarrhythmic conjugates have a significantly longer in vivo plasma half-life and that the activity of the active ingredients is not adversely affected to a significant extent by coupling to HAS.
- According to the present invention, any antiarrhythmic active ingredient can be used for the preparation of the conjugates. The active ingredient can be selected from the group consisting of sodium channel blockers, beta-receptor blockers, selective repolarization prolonging active ingredients, calcium antagonists and local anesthetics. Preferably, the active ingredient is adenosine, quinidine, procainamide, disopyramide, lidocaine, phenytoin, mexiletine, ajamaline, Paijmalium, propafenone, atenolol, propanolol, amiodarone, sotalol, verapamil, gallopamil or diltiazem, wherein the use of adenosine is particularly preferred.
- According to an embodiment of the present invention, coupling between the antiarrhythmic active ingredient and the HAS takes place via the reducing end groups of the HAS.
- When adenosine is used, this active ingredient can for example be bound to the HAS via the amino group, wherein a coupling between the amino group of the adenosine and the reducing end group of the HAS is particularly preferred. A coupling variant, wherein native adenosine is present after metabolisation (separating off the HAS) is preferred.
- As an alternative, the active ingredient can be coupled to the HAS via a so-called linker.
- The present invention further relates to pharmaceutical compositions comprising one of the compounds according to the invention. Generally, the pharmaceutical composition further comprises a pharmaceutically compatible carrier, and it can be formulated, for example, for intravenous application.
- Finally the invention relates to the use of the compounds according to the invention for the preparation of a medicament for the treatment of arrhythmia, in particular for the treatment of ventricular arrhythmia.
- According to an alternative embodiment, the invention relates to the use of a compound according to the invention for the preparation of a medicament for the induction of apoptosis, for example in tumor tissues or in inflammatory tissues.
- The present invention relates to compounds comprising a conjugate of HAS and an antiinfective active ingredient or an antibiotic, respectively, as well as their use for the treatment of infectious diseases.
- The penetration of microorganisms (viruses, bacteria, fungi, protozoa) into a macroorganism (plant, animal, human) and the propagation in this macroorganism is called infection. Formation and course of an infectious disease substantially depend on pathogenicity of the microorganism and immunity of the macroorganism.
- For decades, antiinfective active ingredients have been used as chemotherapeutics in order to fight infectious diseases.
- A. Flemings identified Penicillin already in 1928 by the active ingredient's characteristic to form staphylococci-free areas on culture plates. Penicillin was the first antibiotic that was obtained on an industrial scale, and it gained great importance in clinical practice.
- Today, active ingredients from a group of β-lactam antibiotics which are produced from a fungus of the species Penicillium (for example, P. chrysogenum and P. notatum) are designated as penicillins. The bacteriocidal effect is based on blocking the synthesis of the bacterial cell wall. The penicillin inactivates the bacterial enzyme transpeptidase, thereby preventing cross-linking of the polysaccharide chains of the cell wall murein.
- Since the discovery, numerous active ingredients were isolated and synthesized which inhibit the growth of microorganisms or kill microorganisms. Most antibiotics originate from Streptomyces species (approximately 65%) which were isolated from soil. It is assumed that these substances are used by the microorganism to suppress competitors in the soil.
- The number of isolated antibiotics is estimated to be approximately 8000, approximately 100 thereof can be used in the field of medicine. A classification of the active ingredients into different substance classes was performed according to different aspects, for example chemical structure or mode of action.
- Meanwhile, antibiotics are approved not only for fighting infectious diseases, but also as immuno depressants, cytostatics in anti-tumor therapy, plant protectives, for the preservation of foods, as fattening auxiliary agent in the feeding of animals, etc.
- In recent years, numerous strains of microorganisms occurred which are resistant to antibiotics. In addition to single-resistant strains, multi-resistant strains were frequently found which complicates fighting of certain diseases.
- When studying the activity of different antibiotics against certain pathogens, it was found that several of the active ingredients, for example amoxycillin or ampicillin, almost exclusively act extracellularly (Scaglione et al., Chemotherapie, Vol. 39 (1993), 416-423; Balland et al., J. Antimicrob. Chemother. Vol. 37 (1996), 105-115, the disclosures of which are hereby incorporated by reference). Therefore, these active ingredients cannot be used against microorganisms which primarily are present inside the cell. Ampicillin-nanoparticles have been produced in order to improve the intracellular activity (e.g. Balland et. al., see above).
- For infections such as tuberculosis or other infections caused by mycobacteri, broadening of the spectrum of treatment possibilities would be desirable due to the combination therapy which is always required. In view of other intracellular infections such as chlamydia infection, for which the potential importance for the pathogenesis of arteriosclerosis was only recently discovered (Stille und Dittmann, Herz, Vol. 23 (1998), p. 185-192, hereby incorporated by reference), intracellular antibiotics with a depot effect could represent an important progress in therapy and prophylaxis.
- According to the invention, it was now surprisingly found that coupling of antiinfective active ingredients to HAS results in improved pharmacokinetic characteristics of the active ingredients, in particular in a prolonged in vivo half-life, an improved intracellular uptake and/or effect of the active ingredient.
- According to the invention, any antiinfective ingredient or antibiotic, respectively, can be used. Preferably, an active ingredient is selected from the group consisting of amino penicillins, cephalosporines, amino cephalosporines, beta-lactam-antibiotics, carbapenems, amino glycosides, tetracyclines, macrolide antibiotics, gyrase inhibitors, glycopeptide antibiotics, lincomycins, streptogramins, eveminomicins, oxazolidinones, nitroimidazoles, sulfonamides, co-trimoxazol, local antibiotics, virustatics, antimycotics, tuberculostatics.
- It may for example be ampicillin, amoxicillin, cefotaxim, ceftazidim, vancomycin, clindamycin, metronlidazol, isoniazid, rifampicin, rifabutin, rifapentin, ethambutol, pyracinamide, streptomycin, prothionamide, or dapsone, wherein the use of an amino penicillin, such as ampicillin, amoxycillin, macrolide or of streptomycin is particularly preferred.
- According to one embodiment of the present invention, an amino penicillin is used as an active ingredient which is directly and covalently coupled to the hydroxyethyl starch via the amino group of the amino penicillin.
- According to another embodiment, an amino cephalosporin is used instead of the amino penicillin, thereby achieving a reduced allergenicity. As further embodiments, macrolide-HAS couplings may be used, wherein erythromycin or a derivative thereof is used, in particular erythromycylamin. As an alternative, streptomycin can be used as active ingredient.
- According to a particularly preferred embodiment of the present invention, the coupling between the antiinfective active agent and the hydroxyethyl starch may take place via the reducing end groups of the hydroxyethyl starch.
- In accordance with a further embodiment of the present invention, the antiinfective active agent is coupled to the hydroxyethyl starch via a linker.
- The present invention further comprises pharmaceutical compositions, which comprise a compound according to the invention. Usually, the pharmaceutical compositions further comprise a pharmaceutically compatible carrier.
- Finally, the present invention relates to the use of one of the compounds according to the invention for the preparation of a medicament for the treatment of an infectious disease. The pharmaceutical composition may in particular be suitable for the treatment of infectious diseases which, amongst others, are caused by intracellular pathogens. These may originate from the complete spectrum of pathogenics and facultative pathogenics, for example bacterial, viral or parasitic pathogens, mycoplasms, mycobacteria, chlamydia, rickettsia, etc.
- In a further aspect of the present invention, HAS-nucleic acid conjugates are provided. Presently, nucleic acid libraries are screened in large scale for nucleic acids which have a desired activity. For example, a respective activity can be the ability of a nucleic acid to bind to certain other nucleic acids, receptors or viral proteins. This binding may be stimulated or inhibited by a biological signal. For this purpose, in addition to naturally occurring D-DNA and D-RNA molecules, also L-DNA and L-RNA molecules are used which differ from the naturally occurring molecules in that they contain L-ribose or L-deoxyribose instead of the corresponding D-forms as components-of the nucleic acid (e.g. WO 98/08856, hereby incorporated by reference). In the context of the present invention, it was shown that HAS-nucleic acid conjugates can be prepared which may retain their natural function (e.g. Example 7).
- The present invention further provides processes for the preparation of covalent HAS-active ingredient conjugates. The processes can be performed in an aqueous or organic reaction medium, wherein carrying out the coupling in an aqueous medium is preferred.
- Thus, processes for the preparation of a covalent HAS-active ingredient conjugate are provided in which HAS and at least one active ingredient are reacted with each other in a reaction medium. The reaction medium is characterized in that it is water or a mixture of water with an organic solvent, which comprises at least 10 weight-% water.
- The reaction medium of the process according to the invention comprises at least 10 wt.-%, preferably at least 50 wt.-%, in particular at least 80 wt.-%, such as for example 90 wt.-%, or even up to 100 wt.-%, water, and accordingly up to 90 wt.-%, preferably up to 50 wt.-%, in particular up to 20 wt.-%, for example 10 wt.-%, or even up to 0 wt.-%, organic solvent. The reaction takes place in an aqueous phase. The preferred reaction medium is water.
- The process according to the invention is already advantageous because toxicologically unacceptable solvents need not necessarily be used, and thus, with the product prepared according to the invention, the removal of even small residues of toxicologically unacceptable solvents which is always necessary according to the known process in order to avoid the undesired contamination with solvent is dispensed with. Furthermore, the additional quality control necessary according to the process known in the art for residues of toxicologically harmful solvents can be omitted because the process according to the invention favors the use of toxicologically acceptable solvents. Solvents preferred according to the invention are for example toxicologically harmless protic solvents such as ethanol or propylene glycol.
- Furthermore, it is an advantage of the process according to the invention that irreversible or reversible structural changes of proteins or peptides induced by organic solvents, which cannot be systematically excluded in processes in organic solvents, are basically avoided. The product obtained with the process according to the invention is consequently different from that prepared in DMSO.
- According to the invention it was, furthermore, surprisingly found that a coupling of HAS to active ingredients can be carried out in an aqueous solution without secondary reactions being observed to a significant extent. The process according to the invention thus leads directly to improved products of great purity. The process according to the invention thus makes possible for the first time the simple preparation of HAS-active ingredient conjugates in which the active ingredient is present in active form and the advantageous properties of the HAS are retained. No particular processes are necessary to isolate the HAS-active ingredient conjugate from the reaction mixture as the reaction takes place in the aqueous phase, i.e. organic solvents need not necessarily be purified off.
- According to the invention it is preferred that HAS binds directly to a ε-NH2-group, α-NH2-group, SH-group, COOH group or —C(NH2)2-group of the active ingredient. Alternatively, a further reactive group can be introduced into HAS or the bond between HAS and the active ingredient can take place via a linker. The use of the corresponding linkers for the binding of active ingredients to PEG is known in the state of the art. The use of amino acids, in particular glycine, alanine, leucine, isoleucine, and phenylalanine, as well as hydrazine and oxylamrine derivatives as linkers, as disclosed in WO 97/38727 and EP 605 963, the disclosures which are hereby incorporated by reference, is preferred.
- According to one embodiment of the process of the present invention, HAS is oxidized before binding to the active ingredient. The oxidation can take place according to one of the processes known in the state of the art, a selective oxidation of the reducing end groups of HAS being preferred. This facilitates processes in which the oxidized reducing end group of the HAS reacts with an amino group of the active ingredient resulting in the formation of an amide. This embodiment has the particular advantage that a specific bond between HAS and the active ingredients, and thus a particularly homogeneous product, is achieved.
- HAS can be reacted with oxidized reducing end groups and the active ingredient preferably for at least 12, most preferably at least 24 hours. Furthermore, it can be desirable to add any activator, for example ethyldimethyl-aminopropyl-carbodiimide (EDC). The molar ratio between HAS and the active ingredient during the reaction can be randomly selected, but is normally in the range of HAS:active ingredient of 20:1 to 1:20, a ratio of 6:1 to 1:6 being particularly preferred. The best results were achieved with a molar ratio of HAS:active ingredient of approx. 2:1.
- Other coupling reactions between an amino group of the active ingredient and HAS are naturally also comprised in the scope of the invention, for example, processes in which HAS and the active ingredient are reacted directly with each other, a Schiff's base forming between HAS and active ingredient as intermediate product. The azomethin group —CH═N— of the Schiff's base can then be reduced with formal addition of <2H> to a methyleneamine group —CH2—NH—. For this reduction, a person skilled in the art can use a number of reduction agents known in the state of the art, reduction using BH4 is particularly preferred.
- The HAS can be coupled with any group of the active ingredient. The coupling is preferably carried out such that the conjugate displays at least 50%, preferably at least 75% of the activity of the active ingredient before coupling, a retention of at least 95% of the activity being particularly preferred. The coupling reaction can naturally also be controlled such that the HAS is bound exclusively to one or more specific groups of the active ingredient, for example to lysine or cysteine residues of a peptide. Particular advantages result if HAS is bound to one or more specific groups of active ingredient via the oxidized reducing end groups, as homogenous HAS-active ingredient conjugates are obtained with a corresponding process.
- According to a preferred embodiment of the process of the present invention, HAS and a protein or a peptide are used as starting substances for the reaction. Any therapeutic or diagnostic proteins of natural or recombinant origin can be used. A list of the active ingredients of recombinant preparation currently on the market is to be found in Pharma Business, July/August 2000, pages 45 to 60. The present invention comprises the preparation of HAS-active ingredient conjugates which comprise any one of the active ingredients named in this publication.
- The preparation of conjugates using cytokines, for example interferons, interleukins, growth factors, enzymes, enzyme inhibitors, receptors, receptor fragments, insulin, factor VIII, factor IX, antibiotics (or antiinfectives), peptide antibiotics, viral coat proteins, haemoglobins, erythropoietin, albumins, hTPA, antibodies, antibody fragments, single-chain antibodies, DNA, RNA or a derivative thereof is particularly preferred. Particular advantages result when using recombinant proteins or peptides in the process according to the invention. As already stated, corresponding proteins can often not be used as active ingredients due to their properties being antigenic for humans. After coupling to HAS by the processes according to the invention, however, the immunogenicity of the recombinant proteins decreases, which allows the medical use on humans.
- Furthermore, particular advantages result upon coupling of HAS to proteins having a short chain and smaller peptides. Currently, a large number of peptide libraries are being produced, for example, phage display libraries wherein short oligopeptides (for example 3 to 20mers) are expressed on the surface of phages. Furthermore, antibodies from a single polypeptide chain (so-called “single chain antibodies”) are expressed in bacteria or on the surface of phages. These libraries are screened for specific active ingredient or binding activity. Hitherto, the therapeutic and diagnostic use of corresponding peptide active ingredients or antibodies has however failed because these are very quickly excreted from the organism due to their small size (e.g. Chapman et al., 1999, loc. cit.). With the process according to the invention, these peptides can advantageously be coupled to HAS and have an in vivo half-life which allows to use the same as an active ingredient.
- As an alternative to the above embodiment, a hormone, a steroid hormone, a hormone derived from amino acids or a hormone derived from fatty acids can be used as active ingredient. In the specific case, it may be necessary to introduce an active group into the hormone before binding to HAS, for example by using a linker.
- According to the invention, any physiologically compatible HES can be used as starting material. HES with an average molecular weight (weight average) of 1 to 300 kDA, in particular of 1 to 150 kDa is preferred. HES with an average molecular weight of 2 to 40 kD is particular preferred. HES preferably has a molar degree of substitution of 0.1 to 0.8 and a ratio of C2:C6 substitution in the range of 2 to 20, in each case relative to the hydroxyethyl groups.
- The invention furthermore relates to the HAS-active ingredient conjugates obtainable according to the above processes. These conjugates have advantageous properties, namely high activity of the active ingredient, low immunogenicity, long residence time in the body and excellent rheological properties, which increase the medicinal benefit of the conjugates.
- Accordingly, the present invention likewise comprises processes for preparing a medicament or diagnostic in which a HAS-active ingredient conjugate is prepared according to one of the above processes and mixed with a pharmaceutically compatible carrier, adjuvant or auxiliary known in the state of the art, as well as medicaments or diagnostics obtainable according to this process.
- The medicinal use of the corresponding medicament depends on the type of active ingredient used. If, for example, haemoglobin is used as active ingredient, the conjugate can be used as an oxygen transport agent. If on the other hand, a cytokine is used as active ingredient for the preparation, the conjugate can for example be used in tumor therapy. The concentration of the conjugate to be used in each case in the medicament can be ascertained immediately in dose-effect tests by any average person skilled in the art.
- The diagnostics can be used in vivo or in vitro to diagnose illnesses or disorders. If an antibody or antibody fragment is used as active ingredient, the conjugate is suitable, for example, for carrying out the ELISA detection processes customary in the state of the art.
- In the examples, the materials described in the following were used:
Human serum albumin: Sigma- Aldrich A3782 HES 130 kD: Type 130/0.5, prepared from T91SEP(Fresenius Kabi) Data: Mw: 130 000 ± 20 000 D Mn: 42 600 D HES 10 kD: Type HHH 4-2 (Fresenius Kabi) Data: Mw: 9 800 D Mn: 3 695 D EDC: Sigma-Aldrich no. 16.146-2 (ethyldimethyl aminopropyl carbodiimide) HOBt Sigma-Aldrich no. 15.726-0 (1-hydroxy-1H- benzotriazolhydrate) DIG glycan detection kit: Roche-Boehringer no. 1142 372 - The following examples 1 to 6 describe the coupling of HSA and diaminobutane to HES with oxidized reducing end groups or the direct coupling of HSA to HES. HSA and diaminobutane are simply examples of the active ingredients defined above. Example 7 describes the coupling of oligonucleotides to HES.
- For the selective oxidation of the reducing end groups of the hydroxyethyl starch (130 kD and 10 kD), the same were dissolved in a minimal quantity of water and reacted with different quantities of an iodine solution and a KOH solution.
- The mixture was stirred until the colour indicating I2 disappeared. This procedure was repeated several times in order to achieve the addition of a larger quantity of the iodine solution and KOH solution. The solution was subsequently purified using an
Amberlite IR 120 Na+ cation-exchanger resin, dialysed for 20 hours against distilled water (dialysis tube with an exclusion limit of 4-6 kD) and lyopholized. - The degree of oxidation was determined in each case using the process disclosed in Somogyi, N. (Method in Carbohydride Chemistry, Vol. 1, (1962) p. 384-386, hereby incorporated by reference). The protocols of the oxidation reaction are reproduced in Table 1.
TABLE 1 Oxidation of the reducing end groups of the HES (130 kD and 10 kD) under different conditions Error! Bookmark not defined.Error! Bookmark not defined.Process{TC\ Iodine solution KOH solution l 1 “Process”} HES (Mn) 0.1 N 0.1 N Solvent Reaction time Yield OXIDATION (1) 1 g 0.3 ml 0.5 ml Water 4 hours 30.1% HES 130 2.4 × 10−5 mol 3.0 × 10−5 mol 5.0 × 10−5 mol 4.0 ml 25° C. OXIDATION (2) 4 g 1.0 ml 1.5 ml Water overnight 24.8% HES 130 9.4 × 10−5 mol 1.0 × 10−4 mol 1.5 × 10−4 mol 6.0 ml 25° C. OXIDATION (3) 5 g 1.2 ml 1.5 ml Water overnight 24.3% HES 130 1.2 × 10−4 mol 1.2 × 10−4 mol 1.5 × 10−4 mol 7.5 ml 25° C. OXIDATION (4) 5 g 3.0 ml 4.5 ml Water overnight 60.8% HES 130 1.2 × 10−4 mol 3.0 × 10−4 mol 4.5 × 10−4 mol 7.5 ml 25° C. OXIDATION (5) 5 g 4.0 ml 5 ml Water overnight 80.0% HES 130 1.2 × 10−4 mol 4.0 × 10−4 mol 5.0 × 10−4 mol 7.5 ml 25° C. OXIDATION (6) 8 g 7.0 ml 11.5 ml Water overnight 88.4% HES 130 1.9 × 10−4 mol 7.0 × 10−4 mol 1.2 × 10−3 mol 7.5 ml 25° C. OXIDATION (7) 10 g 10 ml 20 ml Water overnight 100% HES 130 2.4 × 10−4 mol 1.0 × 10−3 mol 2.0 × 10−3 mol 7.5 ml 25° C. OXIDATION (1) 5 g 2.0 ml 2.0 ml Water 20 hours 3.0% HES 10 1.4 × 10−3 mol 2.0 × 10−4 mol 2.0 × 10−4 mol 10.0 ml 25° C. OXIDATION (2) 5 g 3.5 ml 4.5 ml Water overnight 5.3% HES 10 1.4 × 10−3 mol 3.5 × 10−4 mol 4.5 × 10−4 mol 10.0 ml 25° C. OXIDATION (3) 15 g 21.0 ml 31.0 ml Water overnight 10.5% HES 10 4.1 × 10−3 mol 2.1 × 10−3 mol 3.1 × 10−3 mol 25° C. OXIDATION (4) 8 g 83.0 ml 180.0 ml Water overnight 80.0% HES 10 2.2 × 10−3 mol 8.3 × 10−3 mol 1.8 × 10−2 mol 25° C. OXIDATION (5) 7 g 95.0 ml 210.0 ml Water overnight 100.0% HES 10 1.9 × 10−3 mol 9.5 × 10−3 mol 2.1 × 10−2 mol 25° C. OXIDATION (6) 6.4 g 50 ml 150 ml Water overnight 100.0% HES 10 1.7 × 10−3 mol 5.0 × 10−3 1.5 × 10−2 mol 25° C. - The protocols summarized in this table are reproduced in detail in the following for the oxidation (6),
HES 10 kD: 6.4g HES 10 kD (1.7 mmol) were dissolved in a reaction vessel accompanied by continuous stirring in a few ml water. 50 ml of a 0.1 N iodine solution (5.0 mmol) and 150 ml of a 0.1 N KOH solution (15 mmol) were added. This mixture was left to stand overnight at 25° C. The mix was purified with Amberlite IR 120 (Na+ form) and dialysed against water (cellulose acetate dialysis tube; Cut-off 4 to 6 kD). The dialysed product was lyophilized (Heraeus-Christ Alpha, flask-drying overnight). - As can be inferred from Table 1, a complete oxidation of the reducing end groups (corresponds to a yield of 100%) of the
HES 130 kD was achieved, after the iodine quantity was increased from 3.0×10−5 mol to 1.0×10−3 ml. - For a complete oxidation of the reducing end groups of the
HES 10 kD, a further increase of the iodine quantity to a concentration of more than 2.1×10−3 was necessary. - For the coupling, hydroxyethyl starch with oxidized reducing end groups (ox-HES) and HSA were completely dissolved in water. When the solution was clear, EDC dissolved in water was added. After activation by EDC accompanied by moderate stirring, further quantities of EDC were added. Where appropriate, the reaction was activated with HOBt and left to stand overnight. The product was purified for 15 hours by dialysis against distilled water and subsequently lyophylized (called Process A in the following).
- The protocols of the coupling reaction are in Table 2.
TABLE 2 Coupling reactions between HES (130 kD and 10 kD) with oxidized reducing end groups and HSA under different conditions (Process A; number in brackets in the HES column reproduces the oxidation process according to Table 1). ox-HES Acti- Process A HSA (Mn) EDC HOBt Solvent vation Reaction Coupling I 300 mg 100 mg (1) 25 mg 100 mg H2O/dioxane 1.5 hours 4 hours ox-HES 130 4.4 × 10−6 mol 2.4 × 10−6 mol 1.6 × 10−4 mol 7.7 × 10−4 mol 13 ml/2 ml 3-4° C. 25° C. Coupling II 100 mg 300 mg (2) 15 mg 100 mg H2O/dioxane 1.5 hours overnight ox-HES 130 1.5 × 10−6 mol 7.0 × 10−6 mol 9.7 × 10−5 mol 7.7 × 10−4 mol 10 ml/3 ml 3-4° C. 25° C. Coupling III 200 mg 3.8 g (5) 46.5 mg 20 mg H2O/dioxane 0 hours 24 hours ox-HES 130 3.0 × 10−6 mol 8.9 × 10−5 mol 3.0 × 10−4 mol 1.5 × 10−4 mol 10 ml/3 ml 25° C. Coupling IV 100 mg 1.9 g (5) 25 mg 20 mg Water 1.5 hours overnight ox-HES 130 1.5 × 10−6 mol 4.5 × 10−5 mol 1.6 × 10−4 mol 1.5 × 10−4 mol 3-4° C. 25° C. Coupling V 200 mg 4.3 g (5) 100 mg 0 mg Water 0 hours overnight ox-HES 130 3.0 × 10−6 mol 1.0 × 10−4 mol 6.0 × 10−4 mol 25° C. Coupling VI 100 mg 130 mg (7) 50 mg 0 mg Water* 0 hours 5 hours ox-HES 130 1.5 × 10−6 3.0 × 10−6 mol 3.0 × 10−4 mol 5 ml + 10 ml 25° C. Coupling VII 100 mg 130 mg (7) 200 mg 0 mg Water* 0 hours 24 hours ox-HES 10 1.5 × 10−6 3.0 × 10−6 mol 3.0 × 10−4 mol 5 ml + 2 × 10 ml 25° C. Coupling I 100 mg 300 mg (1) 5 mg 100 mg H2O/dioxane 1.5 hours overnight ox-HES 10 1.5 × 10−6 mol 8.1 × 10−5 mol 3.0 × 10−5 mol 7.7 × 10−4 mol 13 ml/2 ml 3-4° C. 25° C. Coupling II 70 mg 1.0 g (2) 15.5 mg 0 mg Water 10 ml overnight ox-HES 10 1.0 × 10−6 mol 2.7 × 10−4 mol 1.0 × 10−4 mol 0 hours 25° C. Coupling III 200 mg 2.0 g (3) 77.5 mg 20 mg Water 0 hours 6 hours ox-HES 10 3.0 × 10−6 mol 8.1 × 10−4 mol 5.0 × 10−4 mol 1.5 × 10−4 mol 25° C. Coupling IV 50 mg 7.4 g (4) 282 mg 0 mg Water 0 hours overnight ox-HES 10 7.4 × 10−7 mol 2.0 × 10−3 mol 1.5 × 10−3 mol 25° C. Coupling V ox- 100 mg 103 g (6) 93 mg 0 mg Water* 0 hours 20 hours HES 10 1.5 × 10−6 mol 2.8 × 10−5 mol 5.6 × 10−4 mol 4 ml 25° C. Coupling VI 100 mg 103 g (6) 200 mg 0 mg Water* 0 hours 30 hours ox-HES 10 1.5 × 10−6 mol 2.8 × 10−5 mol 1.2 × 10−3 mol 3 × 5 ml 25° C.
*= Addition of the EDC solution with a dropping funnel within 60 minutes
- The coupling reaction VII between ox-
HES 130 kD and HSA is explained in detail in the following: In a round-bottomed flask, 130 mg ox-HES 130 kD (degree of oxidation approx. 100%) and 100 mg HSA were dissolved accompanied by stirring in approx. 5 ml water at room temperature. As soon as the solution was clear, 200 mg EDC in 3 portions, each dissolved in 5-10 ml water, were added over a period of one hour. Between each addition, the reaction mixture was stirred at room temperature for about 4 hours. After 24 hours reaction time, the mixture was dialysed against water (cellulose acetate dialysis tube; Cut-off 4 to 6 kD). The product was then lyophilized. - The principle of this reaction is based on the formation of Schiff s bases between HES and amino groups of the protein, the reaction being controlled through the reaction of the Schiff s bases to the corresponding amine by NaBH4 (called Process B in the following).
- For this, HES was dissolved completely in a small amount of water. To this end, HSA dissolved in borate buffer, pH 9.0, was added. NaBH4 was added to this solution and the whole left at room temperature accompanied by stirring. A further aliquot of
HES 130 kD, followed by further NaBH4, was added. After the reaction was finished, dialysis and freeze-drying was carried out as described. - The protocols of the individual tests are summarized in Table 3.
TABLE 3 Direct coupling between HES (130 kD and 10 kD) and HSA under different conditions (Process B). Process B HSA HES (Mn) NaBH4 Buffer pH Reaction time COUPLING I 50 mg 500 mg 500 mg Na2HPO4, 0 ml 48 hours HES 130 7.5 × 10−7 mol 1.2 × 10−5 mol 1.3 × 10−2 mol 7.4 25° C. COUPLING II 100 mg 1.0 g 60 mg Na2HPO4, 1 ml 20 hours HES 130 1.5 × 10−6 mol 2.4 × 10−5 mol 1.6 × 10−3 mol 7.4 25° C. COUPLING III 50 mg 9.8 g 285 mg Na2HPO4, 1 ml 36 hours HES 130 7.5 × 10−7 mol 2.3 × 10−4 mol 7.5 × 10−3 mol 7.4 25° C. COUPLING IV 50 mg 2.0 g 180 mg Borate 0.1 M 30 hours HES 130 7.5 × 10−7 mol 4.7 × 10−5 mol 4.7 × 10−3 mol 7.4 25° C. COUPLING V 50 mg 4.0 g 60 mg Borate 0.1 M 100 hours HES 130 7.5 × 10−7 mol 9.4 × 10−5 mol 1.6 × 10−3 mol 7.4 25° C. COUPLING I 50 mg 2.8 g 28 mg Borate 0.1 M 80 hours HES 10 7.5 × 10−7 mol 9.4 × 10−5 mol 1.6 × 10−3 mol 9.0 25° C. - In detail, for the coupling of the
HES 130 kD, 2.0 g of this compound were completely dissolved in water (approx. 5 ml). 50 mg of HSA dissolved in 1 ml 0.1 M borate buffer, pH 9.0 were added. 30 mg NaBH4 were added to this solution and the whole left at room temperature accompanied by stirring. After 18 h, a further aliquot of 2.0g HES 130 kD, followed by a further 30 mg NABH4, were added. After 100 h reaction time in total, dialysis and freeze-drying were carried out (coupling V,HES 130 kD). - For the coupling of the
HES 10 kD, 1.4 g of this compound were completely dissolved in water (approx. 5 ml). 50 mg of HSA dissolved in 1 ml 0.1 M borate buffer, pH 9.0, were added. 14 mg NaBH4 were added to this solution and the whole left at room temperature accompanied by stirring. After 18 hours a further aliquot of 1.4g HES 10 kd, followed by a further 14 mg NaBH4, was added. After a total of 80 hours reaction time, dialysis and freeze-drying were carried out (coupling I,HES 10 kD). - The reaction products were first analyzed using gel-permeation chromatography (GPC).
- 4.1 An FPLC device (Pharmacia) which was connected to a HPLC UV monitor (Hitachi) was used for the GPC. Furthermore, the following conditions were used:
Column: Superose 12 HR 10/30 (1 × 30 cm) (Pharmacia)UV monitor: 280 nm Pump: 0.2 ml/min Buffer: 50 mM phosphate/150 mM NaCl pH 7.2. - Under these conditions, the HSA peak is normally found after 63 minutes, a small peak, which is caused by HSA dimers, also being able to be measured at approx. 57 minutes. The chromatograms obtained by means of GPC can be analyzed as follows:
- 4.2
FIG. 1 is a chromatogram which shows the size distribution of the products after coupling of ox-HES 130 kD to HSA (coupling III). With this coupling process, very good results were achieved without HOBt activation. A clear, single broad peak was measured at 37 minutes and a further, smaller band at 45 minutes, which indicates a coupling product with higher molecular weight than HSA. At the same time, traces of non-modified HSA were found. -
FIG. 2 shows the size distribution of the products after coupling of ox-HES 130 kD to HSA (coupling IV). The reaction was activated with HOBt. It is shown that this activation reduces the yield, possibly by encouraging secondary reactions. -
FIGS. 3 and 4 show the size distribution of the reaction products during and after the coupling reaction of ox-HES 130 kD to HSA (coupling V). After 2 hours reaction time, non-modified HSA was found as the product with the highest concentration, but in addition the first coupling products with a-higher molecular weight were found. After the reaction was finished, a homogeneous coupling product with a retention time of approx. 35 minutes was found in high concentration. Non-modified HSA and other coupling products were present in relatively low concentration. -
FIG. 5 shows the corresponding size distribution of the reaction products during and after the coupling reaction of ox-HES 10 kD to HSA (coupling V). Here too, it is shown that the concentration of the coupling products with a molecular weight which lies above the weight-of HSA increases in the course of the reaction. - Finally, a coupling reaction in which almost all HSA molecules were able to be transferred into a homogenous coupling product is shown in
FIG. 6 (reaction products of coupling VII). - 4.3 An example of the chromatograms which were obtained upon analysis of the direct coupling of HES to HSA is shown in
FIG. 7 (Process B,HES 130 kD, coupling V). A significant peak was identified at approx. 65 minutes (HSA). In addition, however, a coupling product was also shown (peak at approx. 42 minutes). - 5.1 PAGE was carried out in the presence of sodium dodecyl sulfate (SDS) using a Miniprotean II device from Biorad and 7.5% acrylamide gels. Electrophoresis was carried out as per the manufacturers instructions. The gels were stained with silver using the Blum process (Elektrophoresis, Vol. 8, (1997) p. 93-99), to make proteins visible.
- The presence of glycans in the coupling products was detected by means of Western-Blot and Glycan-Detections-Kit from Roche-Boehringer. After separation of the products by means of SDS-PAGE, these were transferred to a nitrocellulose membrane using the blotting apparatus of the Miniprotean II electrophoresis unit. The membrane was then oxidized using periodate under conditions in which only the vicinal OH groups are oxidized. These were then reacted with an amino-functionalized digoxigenin. Bound digoxigenin was detected by means of specific monoclonal antibodies which were bound to an alkaline phosphatase. For this, a substrate of the phosphatase (4-nitro-tetrazolium chloride/5-bromo-4-chloro-3-indolylphosphate) was added, which produces a difficultly soluble blue-violet product. This product precipitates onto the membrane and thus renders the bands visible. Non-modified HSA and creatinase were used as negative controls whilst transferrin served as positive control.
- The exact process steps are described in the instruction leaflet enclosed with this kit (Roche-Boehringer).
- 5.2
FIGS. 8 and 9 each show a picture of the silver-stained SDS-PAGE gel (top) and the picture of the corresponding products after transfer onto a membrane and glycan detection (bottom). As can be inferred from these figures, a relatively homogeneous glycan forms as a reaction product during the coupling reaction, whilst at the same time the concentration of non-modified HSA decreases. - To determine whether secondary reactions in the form of a self-condensation of HES with oxidized reducing end groups occur, the following reaction mixtures were prepared:
TABLE 4 Reaction mixtures for the analysis of secondary reactions ox-HES EDC HOBt Water Reaction time HES 130 kD 500 mg 15 mg — 5.0 ml 30 hours 1.2 × 10−5 mol 7.8 × 10−5 mol 25° C. HES 130 kD 500 mg 15 mg Saturated 5.0 ml 30 hours 1.2 × 10−5 mol 7.8 × 10−5 mol solution 25° C. HES 10 kD 100 mg 3.4 mg — 5.0 ml 30 hours 2.7 × 10−5 mol 1.8 × 10−5 mol 25° C. HES 10 kD 100 mg 3.4 mg saturated 5.0 ml 30 hours 2.7 × 10−5 mol 1.8 × 10−5 mol solution 25° C. HES 130 kD 700 mg 31 mg — 5.0 ml 30 hours 1.6 × 10−5 mol 1.6 × 10−4 mol 25° C. HES 130 kD 700 mg 31 mg Saturated 5.0 ml 30 hours 1.6 × 10−5 mol 1.6 × 10−4 mol solution 25° C. - The aim of the experiments was to demonstrate the extent to which a potential self-condensation of HES takes place in the presence or absence of HOBt. The samples were lyophilized and forwarded to Fresenius-Kabi for the carrying out of the analysis.
- By means of GPC and light-scatter measurements, within the detection limits of a few per cent, no indications of increases in molecular weight were found.
- Reaction Principle:
- A schematic representation of the reaction can be found in
FIG. 10 . In a first step, the amino group of the amine-HES 12KD 3 reacts with the N-hydroxysuccinimid group ofSMCC 4 to formconjugate 5.SMCC 4 which has not reacted is separated by centrifugation using a centrifugation/dialysis unit. The maleimid-group ofconjugate 5 subsequently reacts with the thiol group of the thio-DNA 1 to the desiredproduct 6. The region in 6, which is marked in bold mererly represents a spacer and can have any form. - Evaluation of the biological activity of
conjugate 6 was performed via restriction with the restriction enzyme EcoR1. Restriction enzymes only cleave double-stranded DNA with an intact recognition sequence. - DNA:
- Double-stranded DNA synthesized by MWG Biotech Corporation, Ebersberg, Germany, was used. The sequences of the single strands are:
SEQ ID NO. 1: 5′-GTAGAGACAGGAGGCAGCAGTTGAATTCGCAGGGTGAGTAGCAGTAG AGC-3′; SEQ ID NO: 2: 5′-GCTCTACTGCTACTCACCCTGCGAATTCAACTGCTGCCTCCTGTCTC TAC-3′
modified with 5′thiol C6 S-S by MWG (e.g.FIG. 10 ). - Both DNA single strands were dissolved in bidest. Water in a concentration of 2 μg/μl, and were hybridized in a ratio of 1:1 at 96° C. to a double-stranded thio-
DNA 1 with a concentration of 2 μg/μl. - Analysis of the Products:
- Analysis was performed by a gel electrophoresis on a 4% agarose gel with a TBE running buffer consisting of 45 mM Tris borate, 1 mM EDTA, pH 8.0, using 1 μg DNA in the presence of 50 μg ethidium bromide per 100 ml gel in each case. The images were taken by use of a CCD-system modular (INTAS Imaging Instruments, Göttingen, Germany) and an UV transilluminator UVT-20 S/M/L (Herolab, Wiesloch, Germany) at 312 nm.
- 1 μl (1 μg DNA) of the reaction mix were taken and cleaved with 1 μl (20 U) EcoR1 restriction enzyme (New England Biolabs, Schwalmbach/Taunus, Germany), 1 μl reaction buffer (50 mM sodium chloride, 100 mM Tris HCl, 10 mM magnesium chloride, 0.025% Triton X-100, pH 7.5 from New England Biolabs) and 7 μl bidest. water at 37° C. for 3 hours.
- Modification of HES
- Oxidation of
HES 12 KD (Fresenius, Lot 2540SR2.5P) with an average molecular weight of 12.000 g/mol with iodine solution to oxo-HES 12KD 2 was performed according to the process disclosed in DE 196 28 705, hereby incorporated by reference. - Reaction of 1,4-diaminobutane with oxo-HES12KD 2:
- 1.44 g (0.12 mmol) of oxo-
HES12 KD 2 were dissolved in water-free dimethyl sulfoxide (DMSO), added dropwise to a solution of 1.5 ml (1.50 mmol) −1,4 diaminobutane under nitrogen, and stirred at 40° C. for 19 hours. The reaction mixture was added to a mixture of 80 ml ethanol and 80 ml aceton. The precipitate formed was separated by centrifugation and resuspended in 40 ml water. The solution was dialyzed for 4 days against water (SnakeSkin dialysis tube, 3.5 KD cut off, Perbio Science Deutschland, Bonn, Germany) and subsequently lyophilized. The yield was 80% (1.06 g) amino-HES12 KD 3. - Coupling of Amino-
HES12 KD 3 to thio-DNA 1. - 1
mg SMCC 4 dissolved in 50 μl water-free DMSO were added to 400 μl of a 10 mg/ml-solution of amino-HES12 KD 3 in a buffer of 10 mM sodium phosphate and 150 mM sodium chloride, pH 7.44, and the mixture was incubated 80 min at room temperature and 10 min at 46° C. Subsequently, the mixture was centrifuged, the supernatant was removed from the precipitate, and it was again cetrifuged. 200 μl of the supernatant were taken and centrifuged for 45 minutes at 14000 g with a MICROCON® YM-3 (Amicon, Millipore Co., Eschborn, Germany) centrifugation-dialysis unit. After the addition of 400 μl buffer consisting of 10 mM sodium phosphate and 150 mM sodium chloride, pH 7.44, it was again centrifuged for 45 minutes. Additional 400 μl buffer were added, and it was centrifuged for 60 minutes. The amount of conjugate solution which was left in the dialysis unit was filled up to 50 μl. 10 μl of this solution were added to 10 μl of thio-DNA solution 1 and both were reacted with each other for 14 hours at room temperature. 1 μl was taken for analysis.FIG. 11 shows the results in 2 and 3.lanes - The reaction conditions for the described experiment and for experiments with modified reaction conditions are summarized in Table 1. The results are depicted in
FIG. 11 . - Summary of the Results:
- The following conditions were analyzed:
-
- 1. Amount of SMCC: 1 mg (
2, 6, 10, 14) or 5.6 mg (lanes 4, 8, 12, 16), respectively;lanes - 2. Temperature for the reaction with thio-DNA 1: room temperature (
2, 4, 6, 8) or 37° C. (lanes 10, 12, 14, 16), respectively;lanes - 3. Buffer conditions:
- 10 mM phosphate, 150 mM sodium chloride without EDTA, pH 7.44 (
2, 4, 10, 12) or 100 mM phosphate, 150 mM sodium chloride+50 mM EDTA, ph 7.23 (lanes lanes 6, 8, 14, 16), respectively.
- 10 mM phosphate, 150 mM sodium chloride without EDTA, pH 7.44 (
- 1. Amount of SMCC: 1 mg (
- In
FIG. 11 , lanes 2-18 represent the results of the 8 coupling experiments of amino-HES12 KD 3 to thio-DNA 1 using SMCC. The results directly from the reaction or after the reaction and subsequent digestion of the DNA, respectively, are depicted next to each other. Inlane 1, a mixture of different reference DNAs is loaded as length marker. Lanes 18 and 19 show thio-DNA 1 or digested thio-DNA 1, respectively. In addition to non-reacted thio-DNA 1, all experiments show coupling products at higher masses ( 2, 4, 6, 8, 10, 12, 14, 16). Sincelanes HES 12 KD is a mixture of molecules of different size, the coupling products also show a molecular weight distribution. All coupling products contain intact DNA as they can be completely digested by EcoR1. This is also demonstrated by nearly complete vanishing of corresponding diffuse bands after digestion ( 3, 5, 7, 9, 11, 13, 15, 17).lanes TABLE 1 Reaction conditions of the coupling of amino- HES12KD 3 to thio-DNA 1Temp. SMCC Lane Experiment [° C.] [mg] DNA HES12KD Buffer 1 Marker 2 19A1 RT 1 thio-DNA amino-HES12KD 7.44, 10 mM 3 digested 4 19B1 RT 5.6 thio-DNA amino-HES12KD 7.44, 10 mM 5 digested 6 19C1 RT 1 thio-DNA amino-HES12KD 7.23, 100 mM 7 digested 8 19D1 RT 5.6 thio-DNA amino-HES12KD 7.23, 100 mM 9 digested 10 19A2 37° C. 1 thio-DNA amino-HES12KD 7.44, 10 mM 11 digested 12 19B2 37° C. 5.6 thio-DNA amino-HES12KD 7.44, 10 mM 13 digested 14 19C2 37° C. 1 thio-DNA amino-HES12KD 7.23, 100 mM 15 digested 16 19D2 37° C. 5.6 thio-DNA amino-HES12KD 7.23, 100 mM 17 digested 18 thio-DNA 19 digested -
Claims (23)
1-72. (canceled)
73. A process for the preparation of a nucleic acid conjugate, the method comprising coupling HAS and a nucleic acid in a reaction medium, wherein the reaction medium is (a) water or (b) a mixture of water with an organic solvent, the mixture comprising at least 10 weight-% water.
74. The process according to claim 73 , wherein the HAS is coupled to the nucleic acid either directly or via a linker.
75. The process according to claim 73 , wherein the nucleic acid is a D- or L-nucleic acid.
76. The process according to claim 75 , wherein the amino acid is D-DNA, L-DNA, D-RNA, or L-RNA.
77. The process according to claim 73 , wherein the HAS is hydroxyethyl starch.
78. The process according to claim 73 , wherein the hydroxyethyl starch has an average molecular weight of 1-300 kDa.
79. The process according to claim 78 , wherein the hydroxyethyl starch has an average molecular weight of 5-200 kDa.
80. The process according to claim 78 , wherein the hydroxyethyl starch has a molar degree of substitution of 0.1-0.8 and a relation of C2:C6 substitution in the range of 2-20, each relative to the hydroxyethyl groups.
81. The process according to claim 73 , wherein the HAS is oxidized before coupling to the nucleic acid.
82. The process according to claim 81 , wherein the HAS has an oxidizing end and a reducing end, and wherein the reducing end group is selectively oxidized.
83. The process according to claim 82 , wherein the oxidized reducing end group of the HAS is coupled to an amino group of the nucleic acid, thus producing an amide.
84. The process according to claim 73 , further comprising adding an activator to the reaction medium.
85. The process according to claim 84 , wherein the activator is ethyldimethyl-aminopropyl-carbodiimide.
86. A HAS-nucleic acid conjugate obtained by the process of claim 73 .
87. The conjugate according to claim 86 , wherein the HAS is coupled to the nucleic acid either directly or via a linker.
88. The conjugate according to claim 86 , wherein the nucleic acid is a D- or L-nucleic acid.
89. The conjugate according to claim 88 , wherein the nucleic acid is D-DNA, L-DNA, D-RNA or L-RNA.
90. The conjugate according to claim 86 , wherein the HAS is hydroxyethyl starch.
91. The conjugate according to claim 90 , wherein the hydroxyethyl starch has an average molecular weight of 1-300 kDa.
92. The conjugate according to claim 90 , wherein the hydroxyethyl starch has an average molecular weight of 5-200 kDa.
93. The conjugate according to claim 90 , wherein the hydroxyethyl starch has a molar degree of substitution of 0.1-0.8 and a relation of C2:C6 substitution in the range of 2-20, each relative to the hydroxyethyl groups.
94. A pharmaceutical composition comprising the conjugate according to claim 86.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/351,714 US20060188472A1 (en) | 2001-03-16 | 2006-02-10 | HAS-active ingredient conjugates |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10112825A DE10112825A1 (en) | 2001-03-16 | 2001-03-16 | HESylation of active ingredients in aqueous solution |
| DE10112825.8 | 2001-03-16 | ||
| US10/472,002 US7816516B2 (en) | 2001-03-16 | 2002-03-15 | Conjugates of hydroxyalkyl starch and an active agent |
| PCT/EP2002/002928 WO2002080979A2 (en) | 2001-03-16 | 2002-03-15 | Conjugate of hydroxyalkyl starch and an active agent |
| US11/351,714 US20060188472A1 (en) | 2001-03-16 | 2006-02-10 | HAS-active ingredient conjugates |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/472,002 Continuation US7816516B2 (en) | 2001-03-16 | 2002-03-15 | Conjugates of hydroxyalkyl starch and an active agent |
| PCT/EP2002/002928 Continuation WO2002080979A2 (en) | 2001-03-16 | 2002-03-15 | Conjugate of hydroxyalkyl starch and an active agent |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060188472A1 true US20060188472A1 (en) | 2006-08-24 |
Family
ID=7677789
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/472,002 Expired - Fee Related US7816516B2 (en) | 2001-03-16 | 2002-03-15 | Conjugates of hydroxyalkyl starch and an active agent |
| US11/351,714 Abandoned US20060188472A1 (en) | 2001-03-16 | 2006-02-10 | HAS-active ingredient conjugates |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/472,002 Expired - Fee Related US7816516B2 (en) | 2001-03-16 | 2002-03-15 | Conjugates of hydroxyalkyl starch and an active agent |
Country Status (22)
| Country | Link |
|---|---|
| US (2) | US7816516B2 (en) |
| EP (2) | EP1372735B1 (en) |
| JP (1) | JP2004525170A (en) |
| KR (1) | KR20030084998A (en) |
| CN (2) | CN101597337B (en) |
| AT (1) | ATE529134T1 (en) |
| BG (1) | BG108274A (en) |
| BR (1) | BR0208126A (en) |
| CA (1) | CA2441442A1 (en) |
| CZ (1) | CZ20032430A3 (en) |
| DE (1) | DE10112825A1 (en) |
| ES (1) | ES2371865T3 (en) |
| HU (1) | HUP0303511A2 (en) |
| IS (1) | IS6953A (en) |
| MX (1) | MXPA03008218A (en) |
| NO (1) | NO20034095L (en) |
| NZ (1) | NZ528251A (en) |
| PL (1) | PL366456A1 (en) |
| RU (1) | RU2003130464A (en) |
| WO (1) | WO2002080979A2 (en) |
| YU (1) | YU72203A (en) |
| ZA (1) | ZA200306363B (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060019877A1 (en) * | 2002-09-11 | 2006-01-26 | Conradt Harald S | Hasylated polypeptides |
| US20060217293A1 (en) * | 2002-03-06 | 2006-09-28 | Michele Orlando | Coupling low-molecular substances to a modified polysaccharide |
| US20070134197A1 (en) * | 2004-03-11 | 2007-06-14 | Wolfram Eichner | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
| US20080207562A1 (en) * | 2005-09-12 | 2008-08-28 | Fresenius Kabi Deutschland Gmbh | Conjugates of Hydroxyalkyl Starch and Active Substance, Prepared by Chemical Ligation Via Thiazolidine |
| US20080274948A1 (en) * | 2003-08-08 | 2008-11-06 | Fresenius Kabi Deutschland Gmbh | Conjugates of Hydroxyalkyl Starch and G-Csf |
| US20090233847A1 (en) * | 2002-03-06 | 2009-09-17 | Jurgen Hemberger | Coupling Proteins to a Modified Polysaccharide |
| US20090263371A1 (en) * | 2006-05-31 | 2009-10-22 | Frank Riske | Use Polysaccharides for Promotion of Enzymatic Activity |
| US20100297078A1 (en) * | 2007-12-14 | 2010-11-25 | Fresenius Kabi Deutschland Gmbh | Method for producing a hydroxyalkyl starch derivative with two linkers |
| US20100311670A1 (en) * | 2004-03-11 | 2010-12-09 | Nobert Zander | Conjugates of hydroxyalkyl starch and a protein, prepared by native chemical ligation |
| US20110213013A1 (en) * | 2008-08-19 | 2011-09-01 | Nektar Therapeutics | Complexes of Small-Interfering Nucleic Acids |
| US8840879B2 (en) | 2004-03-11 | 2014-09-23 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein |
Families Citing this family (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7083787B2 (en) * | 2000-11-15 | 2006-08-01 | Globeimmune, Inc. | Yeast-dendritic cell vaccines and uses thereof |
| DE10112825A1 (en) * | 2001-03-16 | 2002-10-02 | Fresenius Kabi De Gmbh | HESylation of active ingredients in aqueous solution |
| DE10129369C1 (en) * | 2001-06-21 | 2003-03-06 | Fresenius Kabi De Gmbh | Water soluble antibiotic in the form of a polysaccharide conjugate containing an aminosugar |
| HUP0401188A3 (en) | 2001-08-22 | 2012-09-28 | Supramol Parenteral Colloids Gmbh | Hyperbranched amylopectin for use in methods for surgical or therapeutic treatment of mammals or in diagnostic methods, especially for use as a plasma volume expander |
| GB0218830D0 (en) * | 2002-08-13 | 2002-09-18 | Syngenix Ltd | Anaesthetic conjugate |
| DE10242076A1 (en) * | 2002-09-11 | 2004-03-25 | Fresenius Kabi Deutschland Gmbh | New covalently bonded conjugates of hydroxyalkyl starch with allergens, useful as modified allergens with depot effect for use in specific immunotherapy for combating allergies, e.g. hay fever |
| ES2214166T1 (en) * | 2002-09-11 | 2004-09-16 | Fresenius Kabi Deutschland Gmbh | HAS-ILLATED POLYPEPTIDES, ESPECIALLY, HAS-ILADA ERIPTROPOYETINA. |
| EP1549350B1 (en) | 2002-10-08 | 2008-09-24 | Fresenius Kabi Deutschland GmbH | Pharmaceutically active oligosaccharide conjugates |
| DE10256558A1 (en) * | 2002-12-04 | 2004-09-16 | Supramol Parenteral Colloids Gmbh | Esters of polysaccharide aldonic acids, process for their preparation and use for coupling to active pharmaceutical ingredients |
| DE10324710A1 (en) | 2003-05-30 | 2004-12-16 | Supramol Parenteral Colloids Gmbh | Starch derivative Complex |
| EP1653991A2 (en) * | 2003-08-08 | 2006-05-10 | Fresenius Kabi Deutschland GmbH | Conjugates of a polymer and a protein linked by an oxime linking group |
| EP1660134B1 (en) * | 2003-08-08 | 2010-12-29 | Fresenius Kabi Deutschland GmbH | Conjugates of hydroxyalkyl starch and g-csf |
| JP2007501870A (en) * | 2003-08-08 | 2007-02-01 | フレゼニウス・カビ・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Complex of hydroxyalkyl starch and G-CSF |
| AU2005205867A1 (en) | 2004-01-21 | 2005-08-04 | Novo Nordisk Health Care Ag | Transglutaminase mediated conjugation of peptides |
| KR101189555B1 (en) | 2004-02-09 | 2012-10-16 | 주프라몰 파렌테랄 콜로이츠 게엠베하 | Process for the production of conjugates from polysaccharides and polynucleotides |
| WO2005092369A2 (en) * | 2004-03-11 | 2005-10-06 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyethyl starch and erythropoietin |
| KR101100059B1 (en) | 2004-06-30 | 2011-12-29 | 넥타르 테라퓨틱스 | Conjugate of Polymer 'Factor I' Part |
| WO2006094810A2 (en) * | 2005-03-11 | 2006-09-14 | Fresenius Kabi Deutschland Gmbh | Production of bioactive glycoproteins from inactive starting material by conjugation with hydroxyalkylstarch |
| US7597924B2 (en) * | 2005-08-18 | 2009-10-06 | Boston Scientific Scimed, Inc. | Surface modification of ePTFE and implants using the same |
| DE102006020035A1 (en) * | 2006-04-26 | 2007-10-31 | B. Braun Melsungen Ag | Preparation and use of poly (hydroxyethyl starch) chitin and poly (carboxymethyl starch) chitin compounds |
| CN101199856B (en) * | 2006-12-15 | 2011-04-20 | 天津协和生物科技发展有限公司 | Oxygen-carrying anti-shock medicament |
| EP2070950A1 (en) | 2007-12-14 | 2009-06-17 | Fresenius Kabi Deutschland GmbH | Hydroxyalkyl starch derivatives and process for their preparation |
| GB0811743D0 (en) * | 2008-06-26 | 2008-07-30 | Hemosol Biopharma Inc | Composition |
| UA103774C2 (en) | 2008-07-23 | 2013-11-25 | Амбркс, Інк. | Modified bovine g-csf polypeptides and their uses |
| ES2575685T3 (en) * | 2008-12-06 | 2016-06-30 | B. Braun Melsungen Ag | Compounds consisting of a glucosaminoglycan and a starch for the transport of covalently bound fluorescent drugs or markers |
| WO2010105357A1 (en) * | 2009-03-20 | 2010-09-23 | Fpinnovations | Cellulose materials with novel properties |
| KR20110137788A (en) * | 2009-03-31 | 2011-12-23 | 베. 브라운 멜중엔 악티엔게젤샤프트 | Binding Product of Aminated Polysaccharide |
| US20120283171A1 (en) | 2009-12-21 | 2012-11-08 | Ambrx, Inc. | Modified bovine somatotropin polypeptides and their uses |
| JP2013515081A (en) | 2009-12-21 | 2013-05-02 | アンブルックス,インコーポレイテッド | Modified porcine somatotropin polypeptides and their use |
| WO2012004008A1 (en) * | 2010-07-09 | 2012-01-12 | Fresenius Kabi Deutschland Gmbh | Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation |
| AU2011276120B2 (en) * | 2010-07-09 | 2013-12-19 | Azim Abul | Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation |
| AR083006A1 (en) | 2010-09-23 | 2013-01-23 | Lilly Co Eli | FORMULATIONS FOR THE STIMULATING FACTOR OF COLONIES OF GRANULOCITS (G-CSF) BOVINE AND VARIANTS OF THE SAME |
| HK1199889A1 (en) | 2011-07-01 | 2015-07-24 | Bayer Intellectual Property Gmbh | Relaxin fusion polypeptides and uses thereof |
| CN102911276A (en) * | 2011-08-03 | 2013-02-06 | 四川科伦药业股份有限公司 | Method for treating endotoxin in hydroxyethyl starch |
| WO2013022328A1 (en) | 2011-08-09 | 2013-02-14 | Uab Profarma | Derivatives of recombinant proteins, homo-multimers of granulocyte colony-stimulating factor and method of preparation thereof |
| EP2741780A1 (en) * | 2011-08-10 | 2014-06-18 | Ludwig-Maximilians-Universität München | Method for the controlled intracellular delivery of nucleic acids |
| WO2013113503A1 (en) | 2012-01-31 | 2013-08-08 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and an oligonucleotide |
| EP2712868A1 (en) | 2012-09-28 | 2014-04-02 | B. Braun Melsungen AG | 5-Fluoruoracil Derivatives |
| EP2712629A1 (en) | 2012-09-28 | 2014-04-02 | B. Braun Melsungen AG | Colloid bonded Medicinal Compounds |
| CN103768081B (en) * | 2014-01-22 | 2016-10-12 | 东北师范大学 | A kind of preparation method of hetastarch-adriamycin bonding medicine |
| EP3114138B1 (en) | 2014-03-05 | 2021-11-17 | Pfizer Inc. | Improved muteins of clotting factor viii |
| EP3197481A1 (en) | 2014-09-26 | 2017-08-02 | Bayer Pharma Aktiengesellschaft | Stabilized adrenomedullin derivatives and use thereof |
| CN108743963B (en) * | 2018-06-14 | 2020-11-03 | 华中科技大学 | Anti-cancer conjugate containing tetravalent platinum and preparation method and application thereof |
| EP3986918A1 (en) | 2019-06-18 | 2022-04-27 | Bayer Aktiengesellschaft | Adrenomedullin-analogues for long-term stabilization and their use |
| CN112891555B (en) * | 2021-01-31 | 2024-04-02 | 华中科技大学 | A conjugate of hydroxyethyl starch grafted with chlorin e6, its preparation and application |
| CN114617957B (en) * | 2022-03-10 | 2024-01-16 | 中国人民解放军军事科学院军事医学研究院 | Hydroxyethyl starch hemoglobin conjugate, and preparation method and application thereof |
| WO2024241086A1 (en) | 2023-05-24 | 2024-11-28 | Ambrx, Inc. | Pegylated bovine interferon lambda and methods of use thereof |
Citations (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3191291A (en) * | 1959-01-21 | 1965-06-29 | Continental Can Co | Art of producing very thin steel and like sheets in wide strips |
| US4001200A (en) * | 1975-02-27 | 1977-01-04 | Alza Corporation | Novel polymerized, cross-linked, stromal-free hemoglobin |
| US4001401A (en) * | 1975-02-02 | 1977-01-04 | Alza Corporation | Blood substitute and blood plasma expander comprising polyhemoglobin |
| US4053590A (en) * | 1975-02-27 | 1977-10-11 | Alza Corporation | Compositions of matter comprising macromolecular hemoglobin |
| US4061736A (en) * | 1975-02-02 | 1977-12-06 | Alza Corporation | Pharmaceutically acceptable intramolecularly cross-linked, stromal-free hemoglobin |
| US4064118A (en) * | 1975-10-22 | 1977-12-20 | Hematech Inc. | Blood substitute based on hemoglobin |
| US4125492A (en) * | 1974-05-31 | 1978-11-14 | Pedro Cuatrecasas | Affinity chromatography of vibrio cholerae enterotoxin-ganglioside polysaccharide and the biological effects of ganglioside-containing soluble polymers |
| US4179337A (en) * | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
| US4261973A (en) * | 1976-08-17 | 1981-04-14 | Pharmacia Ab | Allergen-containing substances |
| US4412989A (en) * | 1981-06-10 | 1983-11-01 | Ajinomoto Company Incorporated | Oxygen carrier |
| US4667016A (en) * | 1985-06-20 | 1987-05-19 | Kirin-Amgen, Inc. | Erythropoietin purification |
| US4703008A (en) * | 1983-12-13 | 1987-10-27 | Kiren-Amgen, Inc. | DNA sequences encoding erythropoietin |
| US4766106A (en) * | 1985-06-26 | 1988-08-23 | Cetus Corporation | Solubilization of proteins for pharmaceutical compositions using polymer conjugation |
| US4847325A (en) * | 1988-01-20 | 1989-07-11 | Cetus Corporation | Conjugation of polymer to colony stimulating factor-1 |
| US4863964A (en) * | 1985-07-02 | 1989-09-05 | Biomedical Frontiers, Inc. | Method for the stabilization of deferoxamine to chelate free ions in physiological fluid |
| US4900780A (en) * | 1988-05-25 | 1990-02-13 | Masonic Medical Research Laboratory | Acellular resuscitative fluid |
| US4904584A (en) * | 1987-12-23 | 1990-02-27 | Genetics Institute, Inc. | Site-specific homogeneous modification of polypeptides |
| US4952496A (en) * | 1984-03-30 | 1990-08-28 | Associated Universities, Inc. | Cloning and expression of the gene for bacteriophage T7 RNA polymerase |
| US5068321A (en) * | 1988-10-27 | 1991-11-26 | Wolff Walsrode Aktiengesellschaft | Carbonic acid esters of polysaccharides and a process for their production |
| US5079337A (en) * | 1986-07-02 | 1992-01-07 | Pasteur Merieux Serums Et Vaccins S.A. | Macromolecular conjugates of hemoglobin, a procedure for their preparation and their uses |
| US5214132A (en) * | 1986-12-23 | 1993-05-25 | Kyowa Hakko Kogyo Co., Ltd. | Polypeptide derivatives of human granulocyte colony stimulating factor |
| US5218092A (en) * | 1988-09-29 | 1993-06-08 | Kyowa Hakko Kogyo Co., Ltd. | Modified granulocyte-colony stimulating factor polypeptide with added carbohydrate chains |
| US5218108A (en) * | 1989-06-16 | 1993-06-08 | Fresenius Ag | Hydroxylethylstarch (hes) as plasma expander and process for preparing hes |
| US5217998A (en) * | 1985-07-02 | 1993-06-08 | Biomedical Frontiers, Inc. | Composition for the stabilization of deferoxamine to chelate free ions in physiological fluid |
| US5281698A (en) * | 1991-07-23 | 1994-01-25 | Cetus Oncology Corporation | Preparation of an activated polymer ester for protein conjugation |
| US5362853A (en) * | 1986-12-23 | 1994-11-08 | Kyowa Hakko Kogyo Co., Ltd. | Polypeptide derivatives of human granulocyte colony stimulating factor |
| US5420105A (en) * | 1988-09-23 | 1995-05-30 | Gustavson; Linda M. | Polymeric carriers for non-covalent drug conjugation |
| US5470843A (en) * | 1992-12-11 | 1995-11-28 | Hoechst Aktiengesellschaft | Carbohydrate-containing polymers, their preparation and use |
| US5484903A (en) * | 1991-09-17 | 1996-01-16 | Wolff Walsrode Aktiengesellschaft | Process for the production of polysaccharide carbonates |
| US5543332A (en) * | 1991-07-04 | 1996-08-06 | Immunodex K/S | Water-soluble, polymer-based reagents and conjugates comprising moieties derived from divinyl sulfone |
| US5581476A (en) * | 1993-01-28 | 1996-12-03 | Amgen Inc. | Computer-based methods and articles of manufacture for preparing G-CSF analogs |
| US5622718A (en) * | 1992-09-25 | 1997-04-22 | Keele University | Alginate-bioactive agent conjugates |
| US5736533A (en) * | 1995-06-07 | 1998-04-07 | Neose Technologies, Inc. | Bacterial inhibition with an oligosaccharide compound |
| US5770645A (en) * | 1996-08-02 | 1998-06-23 | Duke University Medical Center | Polymers for delivering nitric oxide in vivo |
| US5876980A (en) * | 1995-04-11 | 1999-03-02 | Cytel Corporation | Enzymatic synthesis of oligosaccharides |
| US5880270A (en) * | 1995-06-07 | 1999-03-09 | Cellpro, Incorporated | Aminooxy-containing linker compounds for formation of stably-linked conjugates and methods related thereto |
| US5952347A (en) * | 1997-03-13 | 1999-09-14 | Merck & Co., Inc. | Quinoline leukotriene antagonists |
| US5981507A (en) * | 1995-12-14 | 1999-11-09 | Advanced Magnetics, Inc. | Polymeric carriers linked to nucleotide analogues via a phosphoramide bond |
| US6011008A (en) * | 1997-01-08 | 2000-01-04 | Yissum Research Developement Company Of The Hebrew University Of Jerusalem | Conjugates of biologically active substances |
| US6083909A (en) * | 1996-07-08 | 2000-07-04 | Fresenius Ag | Haemoglobin-hydroxyethyl starch conjugates as oxygen carriers |
| US6172208B1 (en) * | 1992-07-06 | 2001-01-09 | Genzyme Corporation | Oligonucleotides modified with conjugate groups |
| US6299881B1 (en) * | 1997-03-24 | 2001-10-09 | Henry M. Jackson Foundation For The Advancement Of Military Medicine | Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts |
| US6340746B1 (en) * | 1997-08-07 | 2002-01-22 | University Of Utah | Prodrugs and conjugates of thiol- and selenol- containing compounds and methods of use thereof |
| US6417347B1 (en) * | 2000-08-24 | 2002-07-09 | Scimed Life Systems, Inc. | High yield S-nitrosylation process |
| US6451337B1 (en) * | 1998-11-25 | 2002-09-17 | The University Of Akron | Chitosan-based nitric oxide donor compositions |
| US6500930B2 (en) * | 1998-03-31 | 2002-12-31 | Hemosol Inc. | Hemoglobin-polysaccharide conjugates |
| US6555660B2 (en) * | 2000-01-10 | 2003-04-29 | Maxygen Holdings Ltd. | G-CSF conjugates |
| US20030087877A1 (en) * | 2000-02-15 | 2003-05-08 | Pericles Calias | Modification of biopolymers for improved drug delivery |
| US6586398B1 (en) * | 2000-04-07 | 2003-07-01 | Amgen, Inc. | Chemically modified novel erythropoietin stimulating protein compositions and methods |
| US6596861B1 (en) * | 1999-03-12 | 2003-07-22 | Aventis Pasteur S.A. | Method for the reductive amination of polysaccharides |
| US20040180858A1 (en) * | 2001-06-21 | 2004-09-16 | Klaus Sommermeyer | Water-soluble antibiotic comprising an amino sugar, in the form of a polysaccharide conjugate |
| US20050063943A1 (en) * | 2001-03-16 | 2005-03-24 | Klaus Sommermeyer | Conjugated of hydroxyalkyl starch and an active agent |
| US6875594B2 (en) * | 1997-11-13 | 2005-04-05 | The Rockefeller University | Methods of ligating expressed proteins |
| US20050181985A1 (en) * | 2002-03-06 | 2005-08-18 | Jurgen Hemberger | Coupling proteins to a modified polysaccharide |
| US20050238723A1 (en) * | 2002-09-11 | 2005-10-27 | Norbert Zander | Method of producing hydroxyalkyl starch derivatives |
| US20060217293A1 (en) * | 2002-03-06 | 2006-09-28 | Michele Orlando | Coupling low-molecular substances to a modified polysaccharide |
| US7285661B2 (en) * | 2002-02-20 | 2007-10-23 | Fresenius Kabi Deutschland Gmbh | Starch derivatives, starch active substance conjugates, method for the production thereof and their use as medicaments |
| US20090091549A1 (en) * | 2007-10-09 | 2009-04-09 | Kenichi Matsumoto | Touch panel and input device using the same |
Family Cites Families (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE279486C (en) | ||||
| GB1385403A (en) | 1971-07-14 | 1975-02-26 | Unilever Ltd | Process for preparing oxidised carbohydrates |
| GB1419080A (en) | 1972-12-29 | 1975-12-24 | Cheminova As | Chemical compounds having juvenile hormone activity |
| DE2616086C2 (en) | 1976-04-13 | 1986-04-03 | Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg | Substance for use in a colloidal blood volume substitute made from hydroxyethyl starch and hemoglobin |
| FR2378094A2 (en) | 1977-01-24 | 1978-08-18 | Inst Nat Sante Rech Med | Biological reagent for diagnosis of specific illnesses - having an oxidised gluco-protein antibody on an insoluble support |
| EP0019403B1 (en) * | 1979-05-10 | 1985-07-31 | American Hospital Supply Corporation | Hydroxyalkyl-starch drug carrier |
| DE3029307A1 (en) * | 1980-08-01 | 1982-03-04 | Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg | Blood substitute with oxygen transport properties - produced by coupling of a polysaccharide e.g. dextran with cell-free haemoglobin |
| FI82266C (en) | 1982-10-19 | 1991-02-11 | Cetus Corp | FOERFARANDE FOER FRAMSTAELLNING AV IL-2 MUTEIN. |
| DE3485810T2 (en) | 1983-05-27 | 1992-12-10 | Texas A & M University Syst | METHOD FOR PRODUCING A RECOMBINANT BACULOVIRUS EXPRESSION VECTOR. |
| IN163192B (en) | 1983-10-11 | 1988-08-20 | Fidia Spa | |
| NZ210501A (en) | 1983-12-13 | 1991-08-27 | Kirin Amgen Inc | Erythropoietin produced by procaryotic or eucaryotic expression of an exogenous dna sequence |
| IL77081A (en) | 1984-12-04 | 1999-10-28 | Genetics Inst | Dna sequence encoding human erythropoietin process for the preparation thereof and a pharmaceutical composition of human erythropoietin |
| GB8610551D0 (en) | 1986-04-30 | 1986-06-04 | Hoffmann La Roche | Polypeptide & protein derivatives |
| IT1203814B (en) | 1986-06-30 | 1989-02-23 | Fidia Farmaceutici | ESTERS OF ALGINIC ACID |
| EP0307827A3 (en) * | 1987-09-15 | 1989-12-27 | Kuraray Co., Ltd. | Novel macromolecular complexes, process for producing same and medicinal use of such complexes |
| IL84252A (en) | 1987-10-23 | 1994-02-27 | Yissum Res Dev Co | Phospholipase inhibiting compositions |
| DK110188D0 (en) | 1988-03-02 | 1988-03-02 | Claus Selch Larsen | HIGH MOLECULAR WEIGHT PRODRUG DERIVATIVES OF ANTI-FLAMMATORY DRUGS |
| JPH01223473A (en) * | 1988-03-02 | 1989-09-06 | Fuji Photo Film Co Ltd | Desensitization processing method for planographic printing plate |
| FR2630329B1 (en) | 1988-04-20 | 1991-07-05 | Merieux Inst | MACROMOLECULAR CONJUGATES OF HEMOGLOBIN, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS |
| IT1219942B (en) | 1988-05-13 | 1990-05-24 | Fidia Farmaceutici | POLYSACCHARIDIC ESTERS |
| US4925677A (en) * | 1988-08-31 | 1990-05-15 | Theratech, Inc. | Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents |
| US5003022A (en) * | 1989-02-10 | 1991-03-26 | Penford Products Company | Starch graft polymers |
| US6261800B1 (en) | 1989-05-05 | 2001-07-17 | Genentech, Inc. | Luteinizing hormone/choriogonadotropin (LH/CG) receptor |
| JP2896580B2 (en) | 1989-08-25 | 1999-05-31 | チッソ株式会社 | Amylose-lysozyme hybrid, activated sugar and its production |
| KR100221066B1 (en) | 1989-10-13 | 1999-10-01 | 스튜어트 엘.왓트 | Erythropoietin analogs and pharmaceutical compositions comprising them |
| US5169784A (en) | 1990-09-17 | 1992-12-08 | The Texas A & M University System | Baculovirus dual promoter expression vector |
| JPH04199065A (en) * | 1990-11-29 | 1992-07-20 | Fuji Photo Film Co Ltd | Planographic printing plate and end-face processing agent for electrophotographic engraving |
| JPH06167837A (en) * | 1992-11-27 | 1994-06-14 | Fuji Photo Film Co Ltd | Production of planographic printing plate |
| EP0672053A1 (en) * | 1992-12-07 | 1995-09-20 | Magainin Pharmaceuticals Inc. | Treatment of septic shock with conjugated biologically active peptides |
| NZ250375A (en) | 1992-12-09 | 1995-07-26 | Ortho Pharma Corp | Peg hydrazone and peg oxime linkage forming reagents and protein derivatives |
| CN1046292C (en) | 1993-03-16 | 1999-11-10 | 赫姆索尔公司 | Method for chemically modifying hemoglobin used as oxygen transporter in blood substitutes |
| ZA946122B (en) | 1993-08-17 | 1995-03-20 | Amgen Inc | Erythropoietin analogs |
| US5723589A (en) | 1995-12-21 | 1998-03-03 | Icn Pharmaceuticals | Carbohydrate conjugated bio-active compounds |
| TW517067B (en) | 1996-05-31 | 2003-01-11 | Hoffmann La Roche | Interferon conjugates |
| AU4876997A (en) * | 1996-11-08 | 1998-06-03 | Biomedical Frontiers, Inc. | Treatment of iron overload disorders |
| JP2002508758A (en) * | 1997-06-12 | 2002-03-19 | エムエル・ラボラトリーズ・パブリック・リミテッド・カンパニー | Biologically active material |
| DE19808079A1 (en) | 1998-02-20 | 1999-08-26 | Schering Ag | New hydroxyethyl starch conjugates useful as X-ray, NMR and blood-pool diagnostic agents, e.g. for diagnosis of tumors, cardiovascular disorders and inflammation |
| US6818630B1 (en) * | 1999-06-18 | 2004-11-16 | Ml Laboratories Plc | Biologically active materials |
| CZ299516B6 (en) | 1999-07-02 | 2008-08-20 | F. Hoffmann-La Roche Ag | Erythropoietin glycoprotein conjugate, process for its preparation and use and pharmaceutical composition containing thereof |
| DE10041541A1 (en) | 2000-08-24 | 2002-03-14 | Michael Duchene | New nucleic acid encoding moth allergens, related polypeptides and antibodies, useful in the diagnosis and treatment of arthropod allergies |
| DE10105921A1 (en) | 2001-02-09 | 2002-08-14 | Braun Melsungen Ag | Active pharmaceutical ingredients bound to colloids |
| DE10126158A1 (en) | 2001-05-30 | 2002-12-12 | Novira Chem Gmbh | Mixtures of alpha-hydroxy-omega-alkoxy- and alpha-omega-dialkoxy-polyoxyalkylene containing little or no dihydroxy-polyoxyalkylene, used for coupling and modification of proteins and other bioactive molecules |
| DE10135694A1 (en) | 2001-07-21 | 2003-02-06 | Supramol Parenteral Colloids | New amphiphilic conjugate of starch or hydroxyethylstarch, useful as drug carrier, contain e.g. fatty acyl residues, are not taken up by the reticuloendothelial system |
| US7125843B2 (en) | 2001-10-19 | 2006-10-24 | Neose Technologies, Inc. | Glycoconjugates including more than one peptide |
| US7179617B2 (en) | 2001-10-10 | 2007-02-20 | Neose Technologies, Inc. | Factor IX: remolding and glycoconjugation of Factor IX |
| US6375846B1 (en) | 2001-11-01 | 2002-04-23 | Harry Wellington Jarrett | Cyanogen bromide-activation of hydroxyls on silica for high pressure affinity chromatography |
| DE10155098A1 (en) | 2001-11-09 | 2003-05-22 | Supramol Parenteral Colloids | Agent for protecting cell and tissue cultures against fungi, comprises water-soluble conjugate of polyene macrolide and polysaccharide |
| DE10217994A1 (en) | 2002-04-23 | 2003-11-06 | Supramol Parenteral Colloids | A coupling product from (sic) chemical compounds of hyperbranched polysaccharide completely catabolized in the body under control of the body enzymes useful for parenteral pharmaceutically active materials |
| US20040101546A1 (en) | 2002-11-26 | 2004-05-27 | Gorman Anne Jessica | Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents |
| ES2214166T1 (en) | 2002-09-11 | 2004-09-16 | Fresenius Kabi Deutschland Gmbh | HAS-ILLATED POLYPEPTIDES, ESPECIALLY, HAS-ILADA ERIPTROPOYETINA. |
| DE10254745A1 (en) | 2002-11-23 | 2004-06-03 | Supramol Parenteral Colloids Gmbh | New aldonic acid imidazolides of starch compounds selectively oxidized at the reducing terminal, useful for coupling with amino functions of pharmaceutically active agents, e.g. proteins |
| DE10256558A1 (en) | 2002-12-04 | 2004-09-16 | Supramol Parenteral Colloids Gmbh | Esters of polysaccharide aldonic acids, process for their preparation and use for coupling to active pharmaceutical ingredients |
-
2001
- 2001-03-16 DE DE10112825A patent/DE10112825A1/en not_active Withdrawn
-
2002
- 2002-03-15 AT AT02742858T patent/ATE529134T1/en active
- 2002-03-15 WO PCT/EP2002/002928 patent/WO2002080979A2/en active IP Right Grant
- 2002-03-15 NZ NZ52825102A patent/NZ528251A/en unknown
- 2002-03-15 BR BR0208126-1A patent/BR0208126A/en not_active IP Right Cessation
- 2002-03-15 PL PL02366456A patent/PL366456A1/en not_active Application Discontinuation
- 2002-03-15 EP EP02742858A patent/EP1372735B1/en not_active Expired - Lifetime
- 2002-03-15 MX MXPA03008218A patent/MXPA03008218A/en unknown
- 2002-03-15 RU RU2003130464/15A patent/RU2003130464A/en not_active Application Discontinuation
- 2002-03-15 CA CA002441442A patent/CA2441442A1/en not_active Abandoned
- 2002-03-15 ES ES02742858T patent/ES2371865T3/en not_active Expired - Lifetime
- 2002-03-15 CZ CZ20032430A patent/CZ20032430A3/en unknown
- 2002-03-15 CN CN2009102035220A patent/CN101597337B/en not_active Expired - Fee Related
- 2002-03-15 EP EP06002435A patent/EP1671654A3/en not_active Withdrawn
- 2002-03-15 JP JP2002579017A patent/JP2004525170A/en active Pending
- 2002-03-15 YU YU72203A patent/YU72203A/en unknown
- 2002-03-15 CN CNA028067223A patent/CN1498115A/en active Pending
- 2002-03-15 KR KR10-2003-7012061A patent/KR20030084998A/en not_active Withdrawn
- 2002-03-15 US US10/472,002 patent/US7816516B2/en not_active Expired - Fee Related
- 2002-03-15 HU HU0303511A patent/HUP0303511A2/en unknown
-
2003
- 2003-08-15 ZA ZA200306363A patent/ZA200306363B/en unknown
- 2003-09-15 NO NO20034095A patent/NO20034095L/en not_active Application Discontinuation
- 2003-09-15 IS IS6953A patent/IS6953A/en unknown
- 2003-10-15 BG BG108274A patent/BG108274A/en unknown
-
2006
- 2006-02-10 US US11/351,714 patent/US20060188472A1/en not_active Abandoned
Patent Citations (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3191291A (en) * | 1959-01-21 | 1965-06-29 | Continental Can Co | Art of producing very thin steel and like sheets in wide strips |
| US4179337A (en) * | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
| US4125492A (en) * | 1974-05-31 | 1978-11-14 | Pedro Cuatrecasas | Affinity chromatography of vibrio cholerae enterotoxin-ganglioside polysaccharide and the biological effects of ganglioside-containing soluble polymers |
| US4001401A (en) * | 1975-02-02 | 1977-01-04 | Alza Corporation | Blood substitute and blood plasma expander comprising polyhemoglobin |
| US4061736A (en) * | 1975-02-02 | 1977-12-06 | Alza Corporation | Pharmaceutically acceptable intramolecularly cross-linked, stromal-free hemoglobin |
| US4053590A (en) * | 1975-02-27 | 1977-10-11 | Alza Corporation | Compositions of matter comprising macromolecular hemoglobin |
| US4001200A (en) * | 1975-02-27 | 1977-01-04 | Alza Corporation | Novel polymerized, cross-linked, stromal-free hemoglobin |
| US4064118A (en) * | 1975-10-22 | 1977-12-20 | Hematech Inc. | Blood substitute based on hemoglobin |
| US4261973A (en) * | 1976-08-17 | 1981-04-14 | Pharmacia Ab | Allergen-containing substances |
| US4412989A (en) * | 1981-06-10 | 1983-11-01 | Ajinomoto Company Incorporated | Oxygen carrier |
| US4703008A (en) * | 1983-12-13 | 1987-10-27 | Kiren-Amgen, Inc. | DNA sequences encoding erythropoietin |
| US4952496A (en) * | 1984-03-30 | 1990-08-28 | Associated Universities, Inc. | Cloning and expression of the gene for bacteriophage T7 RNA polymerase |
| US4667016A (en) * | 1985-06-20 | 1987-05-19 | Kirin-Amgen, Inc. | Erythropoietin purification |
| US4766106A (en) * | 1985-06-26 | 1988-08-23 | Cetus Corporation | Solubilization of proteins for pharmaceutical compositions using polymer conjugation |
| US4863964A (en) * | 1985-07-02 | 1989-09-05 | Biomedical Frontiers, Inc. | Method for the stabilization of deferoxamine to chelate free ions in physiological fluid |
| US5217998A (en) * | 1985-07-02 | 1993-06-08 | Biomedical Frontiers, Inc. | Composition for the stabilization of deferoxamine to chelate free ions in physiological fluid |
| US5079337A (en) * | 1986-07-02 | 1992-01-07 | Pasteur Merieux Serums Et Vaccins S.A. | Macromolecular conjugates of hemoglobin, a procedure for their preparation and their uses |
| US5362853A (en) * | 1986-12-23 | 1994-11-08 | Kyowa Hakko Kogyo Co., Ltd. | Polypeptide derivatives of human granulocyte colony stimulating factor |
| US5214132A (en) * | 1986-12-23 | 1993-05-25 | Kyowa Hakko Kogyo Co., Ltd. | Polypeptide derivatives of human granulocyte colony stimulating factor |
| US4904584A (en) * | 1987-12-23 | 1990-02-27 | Genetics Institute, Inc. | Site-specific homogeneous modification of polypeptides |
| US4847325A (en) * | 1988-01-20 | 1989-07-11 | Cetus Corporation | Conjugation of polymer to colony stimulating factor-1 |
| US4900780A (en) * | 1988-05-25 | 1990-02-13 | Masonic Medical Research Laboratory | Acellular resuscitative fluid |
| US5420105A (en) * | 1988-09-23 | 1995-05-30 | Gustavson; Linda M. | Polymeric carriers for non-covalent drug conjugation |
| US5218092A (en) * | 1988-09-29 | 1993-06-08 | Kyowa Hakko Kogyo Co., Ltd. | Modified granulocyte-colony stimulating factor polypeptide with added carbohydrate chains |
| US5068321A (en) * | 1988-10-27 | 1991-11-26 | Wolff Walsrode Aktiengesellschaft | Carbonic acid esters of polysaccharides and a process for their production |
| US5218108A (en) * | 1989-06-16 | 1993-06-08 | Fresenius Ag | Hydroxylethylstarch (hes) as plasma expander and process for preparing hes |
| US5543332A (en) * | 1991-07-04 | 1996-08-06 | Immunodex K/S | Water-soluble, polymer-based reagents and conjugates comprising moieties derived from divinyl sulfone |
| US5281698A (en) * | 1991-07-23 | 1994-01-25 | Cetus Oncology Corporation | Preparation of an activated polymer ester for protein conjugation |
| US5484903A (en) * | 1991-09-17 | 1996-01-16 | Wolff Walsrode Aktiengesellschaft | Process for the production of polysaccharide carbonates |
| US6172208B1 (en) * | 1992-07-06 | 2001-01-09 | Genzyme Corporation | Oligonucleotides modified with conjugate groups |
| US5622718A (en) * | 1992-09-25 | 1997-04-22 | Keele University | Alginate-bioactive agent conjugates |
| US5470843A (en) * | 1992-12-11 | 1995-11-28 | Hoechst Aktiengesellschaft | Carbohydrate-containing polymers, their preparation and use |
| US5581476A (en) * | 1993-01-28 | 1996-12-03 | Amgen Inc. | Computer-based methods and articles of manufacture for preparing G-CSF analogs |
| US5876980A (en) * | 1995-04-11 | 1999-03-02 | Cytel Corporation | Enzymatic synthesis of oligosaccharides |
| US5736533A (en) * | 1995-06-07 | 1998-04-07 | Neose Technologies, Inc. | Bacterial inhibition with an oligosaccharide compound |
| US5880270A (en) * | 1995-06-07 | 1999-03-09 | Cellpro, Incorporated | Aminooxy-containing linker compounds for formation of stably-linked conjugates and methods related thereto |
| US5981507A (en) * | 1995-12-14 | 1999-11-09 | Advanced Magnetics, Inc. | Polymeric carriers linked to nucleotide analogues via a phosphoramide bond |
| US6083909A (en) * | 1996-07-08 | 2000-07-04 | Fresenius Ag | Haemoglobin-hydroxyethyl starch conjugates as oxygen carriers |
| US5770645A (en) * | 1996-08-02 | 1998-06-23 | Duke University Medical Center | Polymers for delivering nitric oxide in vivo |
| US6011008A (en) * | 1997-01-08 | 2000-01-04 | Yissum Research Developement Company Of The Hebrew University Of Jerusalem | Conjugates of biologically active substances |
| US5952347A (en) * | 1997-03-13 | 1999-09-14 | Merck & Co., Inc. | Quinoline leukotriene antagonists |
| US6299881B1 (en) * | 1997-03-24 | 2001-10-09 | Henry M. Jackson Foundation For The Advancement Of Military Medicine | Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts |
| US6340746B1 (en) * | 1997-08-07 | 2002-01-22 | University Of Utah | Prodrugs and conjugates of thiol- and selenol- containing compounds and methods of use thereof |
| US6875594B2 (en) * | 1997-11-13 | 2005-04-05 | The Rockefeller University | Methods of ligating expressed proteins |
| US6500930B2 (en) * | 1998-03-31 | 2002-12-31 | Hemosol Inc. | Hemoglobin-polysaccharide conjugates |
| US6451337B1 (en) * | 1998-11-25 | 2002-09-17 | The University Of Akron | Chitosan-based nitric oxide donor compositions |
| US6596861B1 (en) * | 1999-03-12 | 2003-07-22 | Aventis Pasteur S.A. | Method for the reductive amination of polysaccharides |
| US6555660B2 (en) * | 2000-01-10 | 2003-04-29 | Maxygen Holdings Ltd. | G-CSF conjugates |
| US20030087877A1 (en) * | 2000-02-15 | 2003-05-08 | Pericles Calias | Modification of biopolymers for improved drug delivery |
| US6586398B1 (en) * | 2000-04-07 | 2003-07-01 | Amgen, Inc. | Chemically modified novel erythropoietin stimulating protein compositions and methods |
| US6417347B1 (en) * | 2000-08-24 | 2002-07-09 | Scimed Life Systems, Inc. | High yield S-nitrosylation process |
| US20050063943A1 (en) * | 2001-03-16 | 2005-03-24 | Klaus Sommermeyer | Conjugated of hydroxyalkyl starch and an active agent |
| US20040180858A1 (en) * | 2001-06-21 | 2004-09-16 | Klaus Sommermeyer | Water-soluble antibiotic comprising an amino sugar, in the form of a polysaccharide conjugate |
| US7115576B2 (en) * | 2001-06-21 | 2006-10-03 | Fresenius Kabi Deutschland Gmbh | Water-soluble antibiotic comprising an amino sugar, in the form of a polysaccharide conjugate |
| US7285661B2 (en) * | 2002-02-20 | 2007-10-23 | Fresenius Kabi Deutschland Gmbh | Starch derivatives, starch active substance conjugates, method for the production thereof and their use as medicaments |
| US20050181985A1 (en) * | 2002-03-06 | 2005-08-18 | Jurgen Hemberger | Coupling proteins to a modified polysaccharide |
| US20060217293A1 (en) * | 2002-03-06 | 2006-09-28 | Michele Orlando | Coupling low-molecular substances to a modified polysaccharide |
| US20050238723A1 (en) * | 2002-09-11 | 2005-10-27 | Norbert Zander | Method of producing hydroxyalkyl starch derivatives |
| US20060019877A1 (en) * | 2002-09-11 | 2006-01-26 | Conradt Harald S | Hasylated polypeptides |
| US20090091549A1 (en) * | 2007-10-09 | 2009-04-09 | Kenichi Matsumoto | Touch panel and input device using the same |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060217293A1 (en) * | 2002-03-06 | 2006-09-28 | Michele Orlando | Coupling low-molecular substances to a modified polysaccharide |
| US8916518B2 (en) | 2002-03-06 | 2014-12-23 | Fresenius Kabi Deutschland Gmbh | Coupling proteins to a modified polysaccharide |
| US20090233847A1 (en) * | 2002-03-06 | 2009-09-17 | Jurgen Hemberger | Coupling Proteins to a Modified Polysaccharide |
| US8466277B2 (en) | 2002-03-06 | 2013-06-18 | Fresenius Kabi Deutschland Gmbh | Coupling low-molecular substances to a modified polysaccharide |
| US20110054152A1 (en) * | 2002-09-11 | 2011-03-03 | Fresenius Kabi Deutschland Gmbh | Hydroxyalkyl Starch Derivatives |
| US20060019877A1 (en) * | 2002-09-11 | 2006-01-26 | Conradt Harald S | Hasylated polypeptides |
| US8618266B2 (en) | 2002-09-11 | 2013-12-31 | Fresenius Kabi Deutschland Gmbh | Hasylated polypeptides |
| US8475765B2 (en) | 2002-09-11 | 2013-07-02 | Fresenius Kabi Deutschland Gmbh | Hydroxyalkyl starch derivatives |
| US20080274948A1 (en) * | 2003-08-08 | 2008-11-06 | Fresenius Kabi Deutschland Gmbh | Conjugates of Hydroxyalkyl Starch and G-Csf |
| US8840879B2 (en) | 2004-03-11 | 2014-09-23 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein |
| US8287850B2 (en) | 2004-03-11 | 2012-10-16 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
| US20100311670A1 (en) * | 2004-03-11 | 2010-12-09 | Nobert Zander | Conjugates of hydroxyalkyl starch and a protein, prepared by native chemical ligation |
| US20070134197A1 (en) * | 2004-03-11 | 2007-06-14 | Wolfram Eichner | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
| US20080207562A1 (en) * | 2005-09-12 | 2008-08-28 | Fresenius Kabi Deutschland Gmbh | Conjugates of Hydroxyalkyl Starch and Active Substance, Prepared by Chemical Ligation Via Thiazolidine |
| US20090263371A1 (en) * | 2006-05-31 | 2009-10-22 | Frank Riske | Use Polysaccharides for Promotion of Enzymatic Activity |
| US9175283B2 (en) | 2006-05-31 | 2015-11-03 | Genzyme Corporation | Use polysaccharides for promotion of enzymatic activity |
| US20100297078A1 (en) * | 2007-12-14 | 2010-11-25 | Fresenius Kabi Deutschland Gmbh | Method for producing a hydroxyalkyl starch derivative with two linkers |
| US20110213013A1 (en) * | 2008-08-19 | 2011-09-01 | Nektar Therapeutics | Complexes of Small-Interfering Nucleic Acids |
| US9089610B2 (en) | 2008-08-19 | 2015-07-28 | Nektar Therapeutics | Complexes of small-interfering nucleic acids |
| US9433684B2 (en) | 2008-08-19 | 2016-09-06 | Nektar Therapeutics | Conjugates of small-interfering nucleic acids |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1372735A2 (en) | 2004-01-02 |
| US20050063943A1 (en) | 2005-03-24 |
| DE10112825A1 (en) | 2002-10-02 |
| CN1498115A (en) | 2004-05-19 |
| JP2004525170A (en) | 2004-08-19 |
| EP1671654A2 (en) | 2006-06-21 |
| KR20030084998A (en) | 2003-11-01 |
| CN101597337A (en) | 2009-12-09 |
| RU2003130464A (en) | 2005-04-10 |
| NZ528251A (en) | 2004-12-24 |
| NO20034095D0 (en) | 2003-09-15 |
| NO20034095L (en) | 2003-11-04 |
| WO2002080979A2 (en) | 2002-10-17 |
| IS6953A (en) | 2003-09-15 |
| ES2371865T3 (en) | 2012-01-10 |
| BG108274A (en) | 2004-08-31 |
| US7816516B2 (en) | 2010-10-19 |
| YU72203A (en) | 2006-05-25 |
| CA2441442A1 (en) | 2002-10-17 |
| EP1372735B1 (en) | 2011-10-19 |
| EP1671654A3 (en) | 2008-03-26 |
| ATE529134T1 (en) | 2011-11-15 |
| PL366456A1 (en) | 2005-02-07 |
| WO2002080979A3 (en) | 2003-09-12 |
| ZA200306363B (en) | 2004-07-13 |
| BR0208126A (en) | 2004-03-02 |
| CN101597337B (en) | 2011-09-07 |
| CZ20032430A3 (en) | 2003-11-12 |
| MXPA03008218A (en) | 2004-03-10 |
| HUP0303511A2 (en) | 2004-01-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7816516B2 (en) | Conjugates of hydroxyalkyl starch and an active agent | |
| US5574018A (en) | Conjugates of vitamin B12 and proteins | |
| JP4560210B2 (en) | Drug complex | |
| EP0955064B1 (en) | Process for producing drug complexes | |
| US6436912B1 (en) | Drug complexes | |
| CA2616957C (en) | Antitumoral bioconjugates of hyaluronic acid or its derivatives obtained by indirect chemical conjugation | |
| CA2473068C (en) | Starch derivatives, starch active-substance conjugates, method for their preparation and their use as drugs | |
| CN109152846B (en) | Conjugates and conjugation reagents | |
| Yang et al. | Convergent synthesis of hydrophilic monomethyl dolastatin 10 based drug linkers for antibody–drug conjugation | |
| JPH1192405A (en) | Medicinal complex | |
| US20030103934A1 (en) | Drugs having long-term retention in target tissue | |
| CN101405301A (en) | Conjugates comprising pharmacologically active compounds covalently linked to mucoadhesive polymers and methods of transmucosal administration of pharmacologically active compounds using the same | |
| RU2164149C2 (en) | Polymixin conjugates | |
| AU683581C (en) | Conjugates of vitamin B12 and proteins | |
| KR20030062467A (en) | Bridged co-polymer derivatives and interferon complexes | |
| HK1065960A (en) | Conjugate of hydroxyalkyl starch and an active agent | |
| KR20000016371A (en) | Process for producing drug complexes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |