US20060185181A1 - Structure mountable assembly - Google Patents
Structure mountable assembly Download PDFInfo
- Publication number
- US20060185181A1 US20060185181A1 US11/349,038 US34903806A US2006185181A1 US 20060185181 A1 US20060185181 A1 US 20060185181A1 US 34903806 A US34903806 A US 34903806A US 2006185181 A1 US2006185181 A1 US 2006185181A1
- Authority
- US
- United States
- Prior art keywords
- housing
- modular tool
- laser
- vacuum
- tool assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
- G01C15/004—Reference lines, planes or sectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S33/00—Geometrical instruments
- Y10S33/21—Geometrical instruments with laser
Definitions
- This invention relates to a modular assembly having a base incorporating a mounting arrangement for securing a modular tool assembly to a mounting surface.
- Suction mounting devices are frequently coupled to tools utilized for transporting materials between locations or attaching devices to surfaces.
- Battery powered suction devices are typically used in the construction and assembly industries. For example, auto workers frequently use hand held suction devices to manipulate panes of automotive glass between assembly locations.
- a modular assembly having a base incorporating a vacuum mounting arrangement that is configurable to support a tool assembly including a variety of tools, such as hooks, clamps, light sources, battery powered tools, laser leveling devices and similar devices. It is also desirable to provide a modular assembly having a vacuum mounting arrangement that can be easily mounted to a mounting surface without damaging the finish of the surface. It is further desirable to provide a monitor to monitor the vacuum seal to ensure proper securement of the assembly to the mounting surface.
- kits may include tools such as drills, saws, and flashlights.
- Manufacturers are interested in adding laser alignment products, such as laser levels to these kits.
- Laser levels have replaced chalk lines and torpedo levels as the preferred tool for creating and displaying a level line on a surface.
- These tools are commonly used for interior decorating projects, such as hanging pictures and installing cabinetry, and exterior projects, such as brick laying and deck assembly.
- Laser levels are easy to set up and generate an alignment beam which does not mark up the mounting surface.
- Current laser level products are either mounted to an adjustable frame or are secured to a mounting surface with a fastener.
- Laser levels typically include a laser light source mounted within a housing.
- One limitation of current laser alignment devices is that the laser level cannot be easily repositioned on surfaces once mounted.
- Many laser level devices either incorporate a pin or a fastener to mount the level on a vertical surface to generate the alignment line. If the laser level is not properly aligned on the wall, a user will have to remove the device and remount in the proper position, placing additional marks and holes on the surface which must be patched.
- the present invention provides a modular tool assembly having a vacuum mounting arrangement for securing the assembly to a mounting surface.
- the modular tool assembly includes a base having upper and lower housing portions. A mounting seal extending from a lower portion of the housing cooperates with the mounting surface to define a suction mounting area therebetween.
- An upper housing portion may include a guide member having one or more receiving portions formed therein. Alternatively, the housing portion may be provided with a mounting element to mate with a complementary mounting element of a modular tool attachment.
- a vacuum generating mechanism is disposed within the assembly, for example in the upper housing portion (although it could be provided in the lower housing portion).
- the vacuum generating mechanism is electrically connected to a power source (which may include a rechargeable power source).
- the vacuum generating mechanism includes a motor and a pump operatively driven by the motor and configured to remove air from the suction mounting area.
- the air may be removed through an aperture in the lower portion of the tool base to secure the housing to the mounting surface.
- a sensor may be mounted proximate an aperture in the lower housing portion of the tool base. The sensor monitors the suction mounting area and activates the pump if the sensor detects a loss of pressure in the suction mounting area.
- At least one electrical connector may be provided in, for example, a top surface of the upper portion of the tool base housing to electrically connect the power source to a modular tool attachment.
- a modular tool is releasably secured to a portion of the housing of the tool base.
- the modular tool may include a modular tool attachment that can be mounted on the base in a fixed relationship relative to the mounting surface.
- the modular tool attachment may include one or more projections extending from a tool attachment housing that releasably engages one or more receiving portions in a portion of the tool base.
- the tool attachment housing may have a complementary mounting element that cooperates with a mounting element provided on the housing to releasably secure the tool attachment housing to the base.
- the vacuum generating mechanism includes a manually operable pump cooperating with the suction mounting area to remove air from the suction mounting area.
- the air may be removed through an aperture in the housing to secure the base to the mounting surface.
- the vacuum generating mechanism includes a lever to actuate a vacuum pad and create an air pocket or suction between the device and the surface on which the device is mounted.
- the modular tool comprises a laser leveling device having a housing, a laser light source disposed within the housing operatively connected to a power source, the laser light source including at least one diode projecting an alignment beam through an aperture in the housing to denote a reference plane along the mounting surface.
- One or more bubble levels or other devices for indicating level may be provided on the laser level housing.
- the modular tool may also comprise a flashlight, a clamp, a tape measure or other measuring device, a tool holder (such as a driver bit holder), an alignment device, a hook, powered (including battery powered) and non-powered tools.
- the assembly can be in the form of a laser leveling device having a suction mounting arrangement that comprises a housing and a mounting seal extending from the lower portion of the housing.
- the mounting seal extends around a cavity in the lower portion of the housing and cooperates with an attachment surface to define a suction mounting area therebetween.
- a power source is provided within the housing.
- the power source comprises a removably mounted battery or power cell.
- the power source is a rechargeable power cell securely mounted within the housing.
- the laser leveling device includes a suction mounting arrangement configured to secure the laser leveling device to an attachment surface.
- a first aspect of the suction mounting arrangement includes a vacuum generating mechanism disposed within the laser level housing which evacuates air from the suction mounting area.
- the vacuum generating mechanism includes a motor connected to the power source and a pump operatively driven by the motor.
- a sensor disposed proximate the cavity monitors the vacuum seal in the suction mounting area and activates the pump if the sensor detects a loss of pressure.
- the pump is configured to remove air from the suction mounting area through an aperture in the cavity to ensure the laser level housing is secured to the attachment surface.
- a second aspect of the suction mounting arrangement for the laser leveling device includes a manually operable pump cooperating with the suction mounting arrangement to secure the laser level to an attachment surface.
- the suction mounting arrangement comprises a manually operable pump cooperating with the mounting seal and configured to remove air from the suction mounting area through an aperture in the housing to secure the housing to the attachment surface.
- a third aspect of the suction mounting arrangement includes a lever to actuate a vacuum pad and create an air pocket or suction between the device and the surface on which the device is mounted.
- a laser light source is mounted within the housing in a fixed relationship relative to the attachment surface and is operatively connected to the power source.
- the laser light source includes at least one diode projecting an alignment beam through an opening in the housing to denote a reference plane along the attachment surface.
- a lens is mounted in an end wall of the housing and cooperates with the at least one diode to project an alignment beam along the attachment surface.
- the laser light source includes a pair of opposing diodes positioned in a coplanar relationship which project alignment beams through opposing end walls of the laser level housing.
- the laser light source comprises a first diode projecting a first alignment beam through an opening in the end wall of the housing and a second diode projecting a second alignment beam generally perpendicular to the first alignment beam through an opening in a side wall of the housing.
- the laser level housing includes a handle formed in a top portion of the housing.
- a pump actuation switch is provided on a side wall of the housing adjacent the handle. The pump actuation switch cooperates with the vacuum generating mechanism or manual pump when the laser level is positioned on the attachment surface to evacuate air from the suction mounting area.
- a switch extends through the housing allowing a user to activate the laser light source when the laser level is mounted to the attachment surface.
- FIG. 1 is an exploded perspective view of the modular tool assembly having a modular tool attachment releasably secured to a tool base in accordance with the present invention
- FIG. 2 is a perspective view of the tool base of the modular tool assembly in accordance with the present invention.
- FIG. 3 is a cross-sectional view of the tool base along line 3 - 3 of FIG. 2 ;
- FIG. 4 a is a perspective view of the laser leveling modular tool attachment configured for coupling to the modular tool assembly;
- FIG. 4 b is a perspective view of a flashlight modular tool attachment configured for coupling to the modular tool assembly
- FIG. 4 c is a perspective view of a clamp modular tool attachment configured for coupling to the modular tool assembly.
- FIG. 5 is a perspective view of one embodiment of the modular tool assembly having a modular tool attachment wherein the modular tool assembly has a manually operable vacuum attachment.
- FIG. 6 is a perspective view of an embodiment similar to that shown in FIG. 5 except that the manual pump is shown in a different location.
- FIG. 7 is a perspective view of one embodiment of a modular tool assembly having a manually operable vacuum attachment.
- FIG. 8 is a perspective view of the manually operable vacuum attachment for use with the assembly of FIG. 7 and with the modular tool assembly and the base removed.
- FIG. 9 is a side perspective view of the manually operable vacuum attachment for use with the assembly of FIG. 7 , with the modular tool assembly removed, and schematically showing operation of the lever and the vacuum pad.
- FIG. 10 illustrates a laser leveling device incorporating a vacuum mounting arrangement in accordance with the present invention
- FIG. 11 is a bottom perspective view of the laser level of the present invention.
- FIG. 12 is a side elevation cross-sectional view of the laser leveling device incorporating one aspect of a suction mounting arrangement along line 12 - 12 of FIG. 10 ;
- FIG. 13 is a fragmentary perspective illustrating a second aspect of the suction mounting arrangement of the laser leveling device of the present invention.
- FIG. 14 is a perspective view of the second aspect of the suction mounting arrangement of the laser leveling device of the present invention.
- FIG. 15 is a cross-sectional view illustrating another aspect of the laser level generator of the laser leveling device of the present invention.
- FIG. 16 is a side plan view illustrating a second embodiment of the laser leveling device of the present invention.
- FIG. 17 is a perspective view of another embodiment of modular tool assembly of the present invention having a laser generator housing.
- FIG. 18 is a front view of the tool assembly of FIG. 17 with the laser generator housing pivoted in a forward position and with internal details of the base being visible.
- FIG. 19 is a rear view of the tool assembly of FIG. 17 .
- FIG. 20 is a side view of the tool assembly of FIG. 18 with internal details being visible.
- FIG. 21 is a perspective view of the tool assembly of FIG. 17 in one position and with internal details being visible.
- FIG. 22 is a cut-away portion of the laser generator housing of FIG. 17 to show details of the self-leveling mechanism according to one embodiment of the present invention.
- FIG. 23 shows several parts of the self-leveling mechanism of FIG. 22 .
- FIG. 24 shows the self-leveling mechanism of FIG. 22 .
- FIG. 25 shows another embodiment of a self-leveling mechanism that can be used in the laser generator housing.
- FIG. 26 shows the self-leveling mechanism of FIG. 25 with certain features shown in exploded view.
- FIG. 27 is another embodiment of a self-leveling mechanism.
- Modular tool assembly 10 configurable to releasably secure a variety of portable tools, including powered and non-powered tools, is disclosed.
- Modular tool assembly 10 includes a tool base 12 incorporating a vacuum mounting arrangement for securing the tool base 12 and a removably mounted modular tool attachment 14 to a mounting surface 16 .
- Tool base 12 includes a housing 18 having a lower portion 20 and an upper portion 22 .
- a suction cup or mounting seal 24 extends from the lower housing portion 20 .
- a guide member 26 extends generally vertically from the lower housing portion 20 to provide an outer mounting guide for modular tool attachment 14 .
- One or more receiving portions 28 are formed in the guide member 26 to receive and secure one or more connecting arms or projections 30 extending from the modular tool attachment 14 .
- the guide member 26 cooperates with the tool housing 32 of the modular tool attachment 14 to position and secure the tool attachment 14 on the tool base 12 .
- the modular tool attachment is a laser leveling device 34 adapted for attachment to the modular tool base 12 .
- a laser light source (not shown) is mounted with the housing 32 .
- the laser light source includes at least one diode (not shown) which projects one or more alignment beams 36 through an opening 38 in an end wall 40 of the housing 32 .
- a lens 42 is provided in the opening 38 to cooperate with at least one diode to focus the alignment beam 36 .
- the alignment beam 36 may project through a standard opening in the housing 32 to denote a reference plane along the mounting surface 16 .
- the laser light source is rotatably mounted within the housing 32 to allow a user to adjust the position of the laser light source once the laser level attachment 34 is placed in a fixed relationship to the mounting surface 16 when mounted on the tool base 12 . It is understood, however, that the laser light source may be fixedly mounted to a portion of the housing. It is also contemplated that the attachment 34 be mounted to the modular tool base 12 in a manner that allows the attachment 34 to be selectively pivoted with respect to the tool base. Desirably, the attachment 34 can be selectively pivoted in a manner such that the projected beam can be at a selected angle from the vertical or horizontal.
- laser level attachment may include a laser light source having a pair of diodes in a coplanar relationship which project alignment beams through openings in opposing end walls of the laser level housing.
- the laser light source may include a first diode which projects a first alignment beam through a first opening in the end or side wall of the housing and a second diode projecting a second alignment beam generally perpendicular to the first alignment beam through a second opening in an end or side wall of the housing.
- One or more bubble levels 44 can be provided such as along the top portion 46 of the laser leveling device housing 32 .
- the bubble levels 44 , 48 assist the operator in positioning the laser level attachment 34 mounted on the tool base 12 to the mounting surface 16 to ensure that the alignment beam 36 projects across the surface 16 at the desired angle.
- a pair of bubble levels 44 , 48 are provided on the top portion 46 of the laser level housing 32 to provide both horizontal and vertical alignment information to the operator prior to securement of tool assembly 10 to mounting surface 16 . It is understood that a single bubble level disposed on the laser level housing may also be used to display the alignment position of the modular tool assembly.
- a vacuum generating mechanism 50 is disposed within the tool base 12 to create a suction effect to secure the tool base 12 to the mounting surface 16 .
- the vacuum generating mechanism 50 includes a motor 52 and a vacuum pump 54 operatively connected to the motor 52 disposed within the upper housing portion 22 . It is understood that the motor 52 and the pump 54 may be formed as a single unit.
- a hose 56 connects an inlet 58 on the pump 54 to an aperture 60 in the bottom surface 62 of the lower housing portion 20 . Air is drawn through the aperture 60 by the pump 54 .
- a power source 64 disposed within the upper housing portion 22 is electrically connected to the motor 52 .
- the power source 64 may include a rechargeable battery pack, such as a lithium ion or nickel cadmium battery, or removable rechargeable or alkaline battery.
- one or more electrical contacts 66 in electrical communication with the power source 64 extend through a top surface 68 of the upper housing portion 22 to supply power to the modular tool attachment 14 . It is also contemplated that the modular tool attachment 14 may include an independent power source.
- the motor 52 and the pump 54 of the vacuum generating mechanism 50 cooperate with the mounting seal 24 to create a vacuum pocket or suction mounting area 70 between the mounting surface 16 , the mounting seal 24 , and the bottom surface 62 of the lower housing portion 20 of the tool base 12 .
- the mounting seal 24 is preferably a rubber suction cup that cooperates with the mounting surface 16 to define a vacuum pocket 70 therebetween.
- the bottom surface 62 of the lower housing portion 20 is arcuately shaped to form a cavity cooperating with the mounting seal 24 and the mounting surface 16 to enhance the suction effect created in the vacuum pocket 70 .
- the modular tool attachment 14 and, in particular, the mounting seal 24 is placed into contact with a mounting surface 16 and pressed against the mounting surface to evaluate air from the vacuum pocket 70 .
- air is removed from the vacuum pocket 70 by a pump.
- a switch 72 disposed on the upper housing portion 22 is operatively connected to the pump 54 to allow a user to activate the pump 54 to remove air from the vacuum pocket 70 .
- the switch 72 may also control electrical contacts 66 supplying power to a device in the modular tool attachment 14 , thereby controlling the activation of both the pump 54 of the vacuum generating mechanism 50 and the modular tool attachment 14 .
- the modular tool attachment 14 may incorporate a switch that will independently operate the modular tool attachment.
- the user actuates the switch 72 , which activates the pump 54 .
- the pump 54 evacuates air from the vacuum pocket 70 through the inlet 60 .
- a sensor 74 disposed in the bottom surface 62 of the lower housing portion 20 monitors the vacuum pocket 70 .
- the sensor 74 activates the pump 54 to remove air from the vacuum pocket 70 if the sensor detects a loss of pressure in the vacuum pocket 70 . Loss of vacuum pressure may be caused by imperfections in the mounting surface 16 or the seal 24 such as gaps or cracks that limit the effectiveness of the mounting seal 24 .
- the sensor 74 allows the pump 54 to compensate for the surface flaws to ensure a proper seal between the tool base 12 and the mounting surface 16 .
- a third aspect of the vacuum generating mechanism includes a manually operable pump cooperating with the mounting seal 24 to remove air from the vacuum pocket 70 .
- a switch 72 a may be placed on either the lower portion 20 or the upper portion 22 of the tool base as shown in FIGS. 5 and 6 .
- the switch 72 a may simply function to evacuate air from the vacuum pocket 70 when activated, such as by depressing the switch.
- the switch 72 a may operate the pump such that when the switch 72 a is depressed, air is evacuated from the vacuum pocket.
- the modular tool attachment comprises a flashlight 76 having a flashlight head 78 and a flashlight body 80 configured for securement to the tool base 12 .
- the flashlight body 80 includes a handle 82 formed in a top surface 84 of the body 80 .
- One or more connecting arms 86 extend from the flashlight body 80 to releasably engage one or more receiving portions 28 in the guide member 26 of the tool base 12 .
- the upper portion 22 such as the top surface 60 or elsewhere may be provided with a mounting element to engage a complementary mounting element on the flashlight body 80 .
- the mounting element may include a magnetic surface, a hook, or a complementary portion of a hook-and-loop type fastener, mating ribs, and other mounting elements well known in the art.
- the flashlight head 78 includes a shroud 88 , a reflector 90 and a lens 92 mounted adjacent a bulb (not shown).
- the vacuum generating mechanism incorporated in the tool base 12 allows hands-free use of the flashlight 76 when mounted on a mounting surface 16 .
- the third modular tool attachment comprises a clamp 94 having a handle 96 pivotally attached to a clamp housing 98 .
- the handle 96 includes a distal end forming a handle portion 100 to be grasped by a user and an opposed gripping portion 102 including an elongate jaw 104 provided thereon.
- the handle 96 pivots about a spring biased mount 106 disposed in the clamp housing 98 .
- the clamp housing 98 includes a generally horizontal jaw 108 cooperating with a jaw 104 on the handle 96 to secure a workpiece therebetween.
- the clamp housing 98 includes one or more projections 110 that releasably engage one or more receiving portions in guide member 26 of tool base 12 . As with the flashlight 76 , the clamp housing 98 may be mounted to the upper portion 22 by engagement with a mounting element provided on the upper portion 22 .
- a switch 112 provided in a wall of 114 of the respective modular tool attachment embodiments may cooperate with a switch 72 on the modular tool base 12 to activate the pump 54 of vacuum generating mechanism 50 to mount the modular tool base 10 to the mounting surface 16 .
- the switch 72 may activate the laser light source of laser leveling device 34 , the bulb of flashlight head 78 of flashlight 76 , or to activate another modular tool attachment.
- the switch 112 may only activate the vacuum generating mechanism 50 while an independent switch operates the features of the modular tool attachments.
- FIGS. 7-9 another embodiment of the device of the present invention having a manual suction mounting arrangement is shown.
- the base 12 having a mounting seal 16 is as described above with other alternative embodiments.
- the mounting seal 16 is provided with a top surface 200 , a bottom surface 202 and a wall 204 extending from the top surface 200 to contact the attachment surface 16 and form a seal, as will be described below.
- a lifting mechanism 210 provided on the top surface 200 of the mounting seal cooperates with the bottom surface 202 such that actuation of the lifting mechanism 210 lifts the bottom surface 202 to create a cavity 70 .
- the lifting mechanism 210 can be provided with a lever 212 that extends from a portion of the tool base 12 such that movement of the lever 212 actuates the lifting mechanism 210 . As shown in FIGS. 7-9 , the lever 212 is rotated from a first position to a second position (counter clockwise direction) such that in the first position, there is no suction and in the second position there is a suction or vacuum when the cavity 70 is created.
- the lever 212 is fixed in either the first or the second position until manually moved to the other position.
- the lifting mechanism 210 may include a cam 220 operatively connected to the bottom surface 202 such that rotation of the lever 212 causes the cam 220 and thus the bottom surface 202 to move toward the top surface 200 and thereby create a cavity 70 .
- the tool assembly of the present invention provides a laser leveling device 310 having a suction mounting arrangement for securing the device 310 to an attachment surface 312 .
- the laser level 310 includes a housing 314 having a suction cup or mounting seal 316 provided on a lower portion 318 of the housing 314 .
- FIGS. 10-12 illustrate a single piece housing 314 . It is understood that a two-piece housing as illustrated in FIG. 16 may also be used to accomplish the same objective.
- a cavity 320 is formed in the lower portion 318 of housing 314 .
- the suction cup or mounting seal 316 is preferably a rubber seal that extends from a lower portion of the housing 314 about the cavity 320 . Other elastomeric materials may be used to accomplish the objective of being deformable to provide a seal.
- the suction cup 316 cooperates with the attachment surface 312 and the cavity 320 in the housing 314 to define a suction mounting area 322 therebetween.
- the laser level 310 includes a vacuum generating mechanism 324 that cooperates with a mounting seal 316 to create a vacuum in the suction mounting area 322 .
- the vacuum generating mechanism includes a motor 325 disposed within the laser level housing 314 .
- a vacuum pump 326 operatively connected to the motor 325 is mounted adjacent the motor 325 in the housing 314 . It is also understood that the motor 325 and the pump 326 may be assembled as a single unit.
- a hose 328 connects an inlet 330 on the pump 326 to an aperture 332 of the cavity 320 .
- the pump 326 cooperates with the mounting seal 316 to create a vacuum between attachment surface 312 and cavity 320 to mount the laser level 310 in a fixed relationship relative to attachment surface 312 .
- a laser light source 334 for generating an alignment beam 336 is mounted within housing.
- the laser light source 334 is rotatably mounted to either an inner wall of the housing or a pivot 331 mounted on the vacuum generating mechanism 324 to allow a user to adjust the position of the laser light source 334 once laser level housing 314 is secured to the attachment surface 312 .
- the laser light source 334 may also be mounted to an inner wall of the laser level housing or fixedly mounted to a portion of vacuum generating mechanism.
- the laser light source 334 includes at least one diode 333 that projects an alignment beam 336 through an opening 338 in an end wall 340 of the laser level housing 314 .
- a lens 342 is provided in the opening 338 that cooperates with at least one diode 333 to focus an alignment beam 336 .
- the alignment beam 336 may project through a standard opening in the housing 314 to denote a reference plane along the attachment surface 312 .
- a laser light source activation switch 344 extends through an elongate channel 346 of the housing 314 .
- a power source 348 disposed in laser level housing 314 powers both the motor 325 and the laser light source 334 .
- the power source 348 is a rechargeable battery pack, such as a lithium ion or nickel cadmium power cell securely mounted within housing 314 .
- the power source 348 is a removable alkaline battery.
- the laser level 310 includes a handle portion 350 formed into a top surface 352 of the housing 314 .
- One or more bubble levels 354 extend along the top portion 352 of the laser level housing 314 . Bubble levels 354 assist the operator in positioning the laser level 310 on the attachment surface 312 to ensure that alignment beam 336 projects across surface 312 at the desired angle.
- a single bubble level 354 displays the alignment position of the level 310 of surface 312 .
- a pair of bubble levels 358 , 360 are provided on the top portion 362 of laser level housing 364 to provide both horizontal and vertical alignment information to the operator prior to securement of the laser level 356 to surface 312 .
- One aspect of the suction mounting arrangement of laser leveling device includes a pump actuation switch 366 that may be provided adjacent handle 350 and is operatively connected to the pump 326 .
- the user actuates switch 366 when the mounting seal 316 is placed in contact with attachment surface 312 , allowing the pump 326 to evacuate air from the suction mounting area 322 created between the attachment surface 312 , the seal 316 and the cavity 320 through the aperture 332 .
- a sensor 368 provided proximate the cavity 320 monitors the pressure in the suction mounting area 322 .
- the sensor 368 activates the pump 326 to remove air from the suction mounting area 322 when the sensor detects a loss of vacuum pressure in the area 322 between the mounting seal 316 and the attachment surface 312 .
- Loss of vacuum pressure in the suction mounting area 322 may be caused by imperfections in the attachment surface 312 , such as gaps or cracks that limit the effectiveness of mounting seal 316 .
- the sensor 368 allows the pump 326 to compensate for the surface flaws to ensure a proper seal between the laser level 310 and the attachment surface 312 .
- the laser light source 334 is rotatably mounted to an inner wall of the laser level housing 314 to allow a user to adjust the position of the laser light source 334 once the laser level housing 314 is secured to an attachment surface 312 and to project an alignment beam through the lens 342 onto a surface.
- a laser light source activation switch 370 extends through an elongate channel 372 of the housing 314 .
- a power source 348 disposed in the laser level housing 314 powers laser light source 334 .
- a suction cup or mounting seal 374 extends from a lower portion 376 of laser level housing 314 . It is understood that the suction cup 374 can be formed in a variety of geometries to accommodate various housing shapes.
- the mounting seal 374 cooperates with the attachment surface 312 to define a suction mounting area 322 therebetween.
- a pump 378 is operatively connected to an aperture (not shown) in the lower portion 376 of housing 314 .
- the pump 378 cooperates with the mounting seal 374 to create a vacuum between the attachment surface 312 and the lower portion 376 of laser level housing 314 to create a suction mounting area 322 .
- a pump actuation switch 380 is operatively connected to the pump 378 adjacent the lower portion 376 of the housing 314 and the mounting seal 374 .
- a user actuates the switch 380 after the mounting seal 374 is placed in contact with the attachment surface 312 , allowing the pump 378 to evacuate air from the suction mounting area 322 if the user detects a loss of vacuum pressure in the area 322 .
- the switch 380 may be provided in either a vertical or horizontal orientation on the laser level housing 314 .
- FIG. 15 illustrates another type of laser light source incorporated in the laser leveling device 310 of the present invention.
- the laser level 310 includes a laser light source 382 having a pair of diodes 384 in a coplanar relationship that project alignment beams 386 through openings 338 in the end walls 340 of the laser level housing 314 .
- laser light source may include a first diode which projects a first alignment beam through a first opening in the end or side wall of the housing and a second diode projecting a second alignment beam generally perpendicular to the first alignment beam through a second opening in an end or side wall of the housing.
- the laser level 356 comprises a lower housing 363 having a rubber mounting seal 388 extending from a lower portion of housing 363 and a pivotally mounted upper housing 364 enclosing a laser light source generating an alignment beam 390 .
- the upper housing 364 pivots relative to the lower housing 363 about a mount 392 .
- the mount 392 includes detents (not shown) that allow a user to position the upper housing 364 at discrete angular increments, for example, 15° angle increments, relative to the lower housing 363 , thereby allowing a user to rapidly reposition the laser light source in the upper housing 364 when the laser level 356 is secured to the attachment surface 394 .
- any of the assemblies shown in FIGS. 10-16 and described above can be provided with a manual suction mounting arrangement as shown in FIGS. 7-9 and described above.
- the housing 14 , 314 can be provided with a mounting seal 16 as described above with other alternative embodiments.
- the mounting seal 16 is provided with a top surface 200 , a bottom surface 202 and a wall 204 extending from the top surface 200 to contact the attachment surface 12 and form a seal, as will be described below.
- a lifting mechanism 210 provided on the top surface 200 of the mounting seal cooperates with the bottom surface 202 such that actuation of the lifting mechanism 210 lifts the bottom surface 202 to create a cavity 20 .
- the lifting mechanism 210 can be provided with a lever 212 that extends from a portion of the housing 14 such that movement of the lever 212 actuates the lifting mechanism 210 . As shown in FIGS. 8-10 , the lever 212 is rotated from a first position to a second position (counter clockwise direction) such that in the first position, there is no suction and in the second position there is a suction or vacuum when the cavity 20 is created.
- the lever 212 is fixed in either the first or the second position until manually moved to the other position.
- the lifting mechanism 210 may include a cam 220 operatively connected to the bottom surface 202 such that rotation of the lever 212 causes the cam 220 and thus the bottom surface 202 to move toward the top surface 200 and thereby create a cavity 20 .
- the tool attachment is a laser light generator that is self-leveling to provide a desired horizontal or vertical line.
- FIGS. 17-21 has a base 12 upon which a self-leveling laser generator housing 1030 is mounted.
- the base 12 includes a vacuum generating mechanism for securing the base 12 as described above.
- the base may be formed from three sections: a top 1002 , a bottom 1004 , and a rear 1006 .
- a longitudinal axis 1008 of the base extends through the top 1002 to the bottom 1004 .
- the top of the base 1002 may be slidably moveable with respect to the bottom 1004 to adjust the height of the generator housing 1030 with respect to the bottom 1004 .
- a rotating member 1010 is provided in the bottom 1004 accessible to the user to allow the user to move the rotating member 1010 to cause the top 1002 to move up or down with respect to the bottom 1004 .
- the rotating member 1010 is connected to a screw 1012 upon which the top of the housing 1004 is mounted such that rotation of the rotating member 1010 causes the top 1004 to move up or down depending on the direction that the rotating member 1010 is rotated.
- FIG. 17 shows the generator housing 1030 in an upright position.
- the longitudinal axis 1032 of the generator housing 1030 is parallel to the plane of the wall (perpendicular to the longitudinal axis 1008 of the base).
- the generator housing 1030 can be rotated relative to the base 12 such that the generator housing longitudinal axis 1032 will be perpendicular to the surface upon which the base 12 is mounted with the vacuum generating mechanism 50 (as well as being perpendicular to the longitudinal axis of the base).
- the generator housing 1030 can also be pivoted forwardly with respect to the base 12 so that the generator housing 1030 has a position as shown in FIG. 18 . While in this position, the generator housing 1030 can be rotated such that the longitudinal axis 1032 of the generator housing is parallel to the longtidunal axis 1008 of the base 12 .
- the laser generator housing 1030 has a top 1034 , front 1036 , rear 1038 , two side ends 1040 , 1042 , and bottom 1044 that is rotatably connected to a pivoting member 1046 having a sphere-like structure with its sides and top truncated to fit the base 12 and generator housing 1030 respectively.
- the pivoting member 1046 is movably secured to the top of the base 1002 to permit the laser generator housing 1030 to pivot with respect to the base 12 as described above.
- the generator housing 1030 is selectively pivotable with respect to the base 12 to many different positions due to the frictional fit between the laser generator housing 1030 and the base 12 .
- the pivoting member 46 or a portion of the top 1034 of the base may be provided with a detent arrangement 1048 at selected positions to provide a plurality of positive stops when the laser generator housing 1030 is pivoted to a selected location.
- the self-leveling feature of this embodiment is effective when the laser generator housing 1030 is in an upright position, as shown in FIG. 17 .
- one embodiment of the self-leveling aspect is shown in FIGS. 22-24 .
- FIG. 22 shows a cut-away portion of the laser generator housing 1030 from which it can be seen that the self-leveling mechanism 1100 includes a frame 1102 , a rocking block seat 1140 , a bearing rocking block 1150 , and bearing straps 1170 .
- the frame 1108 is in the shape of a T, where the vertical portion or shaft 1104 acts as the arm of a pendulum. To provide quicker self-leveling, the distal end of the vertical portion 1104 of the frame may act as a counterweight 1106 or may be provided with a counterweight (not shown).
- the horizontal portion 1120 of the frame 1102 defines arms 1122 that are configured to hold a laser diode 1130 such that the light projected from each extends in a direction opposite from the other.
- the distal ends of the arms 1124 , 1126 may also support a lens holder 1132 that supports a lens 1134 through which the laser light emitted from the diode 1130 passes.
- each lens 1134 is rotatable with respect to the diode 1130 so that the emitted beam can be adjusted to a variety of different directions such as horizontal, vertical, or positions between horizontal and vertical.
- the lens holder 1132 may be provided with indications so that the movement in a particular direction can be indicated. For example, the indications may provide an indication of angular movement in degrees such as 5 degrees, etc.
- each arm 1122 may support a laser diode 1130
- the projected beam may differ from one end to the other.
- the projected beam may be horizontal at one end and vertical at the other end.
- both may be horizontal or vertical.
- each arm 1122 can support two laser diodes so that a plurality of patterns can be generated on the surface upon which the laser light contacts.
- the laser diodes 1130 are powered from an electrical source that may be the same as or different from the power source used for the vacuum generating mechanism 50 .
- the laser diodes 1130 are powered from a source that can be actuated at the same time the motor for the vacuum generating mechanism 50 is actuated.
- a separate switch 1050 is provided so that the laser diodes 1130 can be powered while the vacuum generating mechanism 50 is not operating.
- a switch 1050 may be provided on the top of the laser generator housing 1034 , as shown in FIG. 18 .
- the switch 1050 may have more than one position.
- the switch 1050 may have an off position 1052 , where no power is provided to the laser diodes 1130 . In this position, it is desirable to lock-out the self-leveling mechanism 1100 to protect the self-leveling mechanism 1100 .
- the switch 1050 may have a self-leveling position 1054 , where the self-leveling mechanism 1100 is activated and the laser diodes 1130 are powered.
- the switch 1050 may also have an angle finder position 1056 , in which it is contemplated that, after the laser diodes 1130 have been self-leveled, the switch can be moved to an angle finder position 1056 after which the laser generator housing 1030 may be pivoted or rotated relative to the base 12 to a selected angle that is indicated on a compass indicator 1058 provided on the face of the switch 1050 .
- the base 12 may be releasably mounted to a substantially vertical surface such as a wall and held in place by the vacuum generating mechanism 50 ; then the switch 1050 may be positioned to the self-leveling position 1054 so that the projected beam projects a line or other pattern at the “true” horizontal.
- the switch 1050 can then be moved to the angle finder position 1056 , in which the self-leveling mechanism 1100 is locked and the angle finder feature sets the reference angle to 0°.
- the laser generator housing 1030 can then be pivoted or rotated with respect to the base 12 until the compass indicator 1058 indicates the desired angular location, e.g., 30°.
- the self-leveling mechanism 1100 includes a rocking block seat 1140 that is connected to the laser generator housing 1030 so that the rocking block seat 1140 is fixed with respect to the laser generator housing 1030 .
- the rocking block seat 1140 is shown as a plate like structure, with ends 1142 that contact the laser generator housing 1030 to ensure that the rocking block seat 1140 will remain stationary with respect to the laser generator housing 1030 .
- the ends 1142 of the rocking block seat 1140 may be provided with pliable or elastic material to ensure a tight fit with the housing 1130 and at the same time provide cushioning.
- any suitable shape may be used so that the rocking block seat 1140 will provide a stationary structure to provide bearing faces 1144 , as described below.
- the rocking block seat 1140 has a pair of bearing faces 1144 to receive bearings 1152 formed on the ends of a bearing rocking block 1150 .
- the bearing rocking block 1150 is rotatably secured to the rocking block seat 1140 by a pair of bearing straps 1170 that form a bearing face for the bearings 1152 on the ends of the bearing rocking block 1150 .
- the bearing rocking block 1150 has a shaft aperture 1154 to receive one end of a shaft 1160 in a non-rotatable manner. The other end of the shaft carries a bearing 1162 that is rotatably received in a shaft hole 1110 provided on the frame 1102 .
- the laser diodes 1130 will be self-leveling in two directions.
- the first direction allows the arms 1122 of the frame 1102 to assume a horizontal position so that a horizontal beam can be projected.
- the distal ends 1124 , 1126 of the arms 1122 can move vertically (up and down, i.e., toggle) to assume a horizontal position.
- the second direction allows the arms 1122 to rotate about a pivot from the front 1036 of the laser generator housing to the rear 1038 of the laser generator housing.
- the second direction is perpendicular to the first direction.
- one of the directions of self-leveling can be omitted to provide a simpler mechanism.
- a damping mechanism 1180 is provided at the top of the frame 1102 to assist the self-leveling mechanism 1100 .
- non-ferrous material 1182 is provided on a top portion of the frame 1102 opposite a magnet 1184 so that the non-ferrous portion 1182 is maintained at a certain distance from the magnet 1184 .
- FIGS. 25-27 Another embodiment of the self-leveling mechanism 1100 is illustrated in FIGS. 25-27 .
- a frame 1102 is provided with a damping dome 1182 , a counterweight 1106 , and two arms 1122 extending outward from the frame.
- the distal ends 1124 , 1126 of the arms define a housing to carry a laser diode 1130 .
- the frame may be a single piece or, as shown in FIG. 27 made from several pieces.
- the horizontal portion 1120 of the frame 1102 includes the distal ends 1124 connected to proximal ends 1125 by a pin 1123 .
- the proximal ends 1125 of the arms have an aperture 1127 to receive a bearing pin 1129 , on which a rocking bearing 1153 is rotatably mounted.
- the rocking bearing 1153 a is mounted within a rocking bearing block 1150 a in the form of a truncated cylinder, which in turn is mounted within a rocking block seat 1140 a , which is in the form of a cylindrical bearing.
- the rocking bearing block 1150 a is mounted in the inner annulus 1141 of the rocking block seat 1140 a and may be secured by a plate 1151 .
- the rocking block seat 1140 a is positioned such that the frame 1102 is capable of rotating with respect to the rocking block seat 1140 a .
- the rocking block seat 1140 a may be held in a fixed position by or within the laser generator housing 1030 . Because the bearing pin 1129 is connected to the frame 1102 through the aperture 1127 at the proximal ends of the arms 1122 , the frame 1102 is able to pivot in a first direction. At the same time, because the rocking bearing 1153 a is able to move within the rocking bearing block 1150 a , the frame 1102 is able to pivot in a second direction perpendicular to the first direction.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Laser Beam Processing (AREA)
- Optical Couplings Of Light Guides (AREA)
- Lasers (AREA)
- Hooks, Suction Cups, And Attachment By Adhesive Means (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
- This application is a continuation of U.S. Ser. No. 10/919,708 filed Aug. 17, 2004 and a continuation of U.S. Ser. No. 10/977,503 filed Oct. 29, 2004, which is a continuation-in-part of U.S. Ser. No. 10/919,569 filed Aug. 17, 2004, the entire contents of each are incorporated herein by reference.
- This invention relates to a modular assembly having a base incorporating a mounting arrangement for securing a modular tool assembly to a mounting surface.
- Suction mounting devices are frequently coupled to tools utilized for transporting materials between locations or attaching devices to surfaces. Battery powered suction devices are typically used in the construction and assembly industries. For example, auto workers frequently use hand held suction devices to manipulate panes of automotive glass between assembly locations.
- Therefore, it is desirable to provide a modular assembly having a base incorporating a vacuum mounting arrangement that is configurable to support a tool assembly including a variety of tools, such as hooks, clamps, light sources, battery powered tools, laser leveling devices and similar devices. It is also desirable to provide a modular assembly having a vacuum mounting arrangement that can be easily mounted to a mounting surface without damaging the finish of the surface. It is further desirable to provide a monitor to monitor the vacuum seal to ensure proper securement of the assembly to the mounting surface.
- Recently, power tool manufacturers have developed common battery arrangements that support a variety of power tools sold in a combination package. Such kits may include tools such as drills, saws, and flashlights. Manufacturers are interested in adding laser alignment products, such as laser levels to these kits. Laser levels have replaced chalk lines and torpedo levels as the preferred tool for creating and displaying a level line on a surface. These tools are commonly used for interior decorating projects, such as hanging pictures and installing cabinetry, and exterior projects, such as brick laying and deck assembly.
- Laser levels are easy to set up and generate an alignment beam which does not mark up the mounting surface. Current laser level products are either mounted to an adjustable frame or are secured to a mounting surface with a fastener. Laser levels typically include a laser light source mounted within a housing. One limitation of current laser alignment devices is that the laser level cannot be easily repositioned on surfaces once mounted. Many laser level devices either incorporate a pin or a fastener to mount the level on a vertical surface to generate the alignment line. If the laser level is not properly aligned on the wall, a user will have to remove the device and remount in the proper position, placing additional marks and holes on the surface which must be patched.
- Accordingly, the present invention provides a modular tool assembly having a vacuum mounting arrangement for securing the assembly to a mounting surface. The modular tool assembly includes a base having upper and lower housing portions. A mounting seal extending from a lower portion of the housing cooperates with the mounting surface to define a suction mounting area therebetween. An upper housing portion may include a guide member having one or more receiving portions formed therein. Alternatively, the housing portion may be provided with a mounting element to mate with a complementary mounting element of a modular tool attachment.
- A vacuum generating mechanism is disposed within the assembly, for example in the upper housing portion (although it could be provided in the lower housing portion). In one embodiment, the vacuum generating mechanism is electrically connected to a power source (which may include a rechargeable power source). In this embodiment, the vacuum generating mechanism includes a motor and a pump operatively driven by the motor and configured to remove air from the suction mounting area. In one aspect, the air may be removed through an aperture in the lower portion of the tool base to secure the housing to the mounting surface. A sensor may be mounted proximate an aperture in the lower housing portion of the tool base. The sensor monitors the suction mounting area and activates the pump if the sensor detects a loss of pressure in the suction mounting area.
- A switch that may be disposed on the upper portion of the tool base housing or elsewhere is operatively connected to the vacuum generating mechanism allows a user to activate the vacuum generating mechanism. At least one electrical connector may be provided in, for example, a top surface of the upper portion of the tool base housing to electrically connect the power source to a modular tool attachment.
- A modular tool is releasably secured to a portion of the housing of the tool base. The modular tool may include a modular tool attachment that can be mounted on the base in a fixed relationship relative to the mounting surface. The modular tool attachment may include one or more projections extending from a tool attachment housing that releasably engages one or more receiving portions in a portion of the tool base. Alternatively, the tool attachment housing may have a complementary mounting element that cooperates with a mounting element provided on the housing to releasably secure the tool attachment housing to the base.
- In one aspect of the present invention, the vacuum generating mechanism includes a manually operable pump cooperating with the suction mounting area to remove air from the suction mounting area. In one aspect, the air may be removed through an aperture in the housing to secure the base to the mounting surface. In an alternative embodiment the vacuum generating mechanism includes a lever to actuate a vacuum pad and create an air pocket or suction between the device and the surface on which the device is mounted.
- In another aspect of the invention, the modular tool comprises a laser leveling device having a housing, a laser light source disposed within the housing operatively connected to a power source, the laser light source including at least one diode projecting an alignment beam through an aperture in the housing to denote a reference plane along the mounting surface. One or more bubble levels or other devices for indicating level may be provided on the laser level housing. The modular tool may also comprise a flashlight, a clamp, a tape measure or other measuring device, a tool holder (such as a driver bit holder), an alignment device, a hook, powered (including battery powered) and non-powered tools.
- Alternatively, the assembly can be in the form of a laser leveling device having a suction mounting arrangement that comprises a housing and a mounting seal extending from the lower portion of the housing. The mounting seal extends around a cavity in the lower portion of the housing and cooperates with an attachment surface to define a suction mounting area therebetween. A power source is provided within the housing. In one aspect of the present invention, the power source comprises a removably mounted battery or power cell. In another aspect of the invention, the power source is a rechargeable power cell securely mounted within the housing.
- The laser leveling device includes a suction mounting arrangement configured to secure the laser leveling device to an attachment surface. A first aspect of the suction mounting arrangement includes a vacuum generating mechanism disposed within the laser level housing which evacuates air from the suction mounting area. The vacuum generating mechanism includes a motor connected to the power source and a pump operatively driven by the motor. A sensor disposed proximate the cavity monitors the vacuum seal in the suction mounting area and activates the pump if the sensor detects a loss of pressure. The pump is configured to remove air from the suction mounting area through an aperture in the cavity to ensure the laser level housing is secured to the attachment surface.
- A second aspect of the suction mounting arrangement for the laser leveling device includes a manually operable pump cooperating with the suction mounting arrangement to secure the laser level to an attachment surface. The suction mounting arrangement comprises a manually operable pump cooperating with the mounting seal and configured to remove air from the suction mounting area through an aperture in the housing to secure the housing to the attachment surface.
- A third aspect of the suction mounting arrangement includes a lever to actuate a vacuum pad and create an air pocket or suction between the device and the surface on which the device is mounted.
- A laser light source is mounted within the housing in a fixed relationship relative to the attachment surface and is operatively connected to the power source. The laser light source includes at least one diode projecting an alignment beam through an opening in the housing to denote a reference plane along the attachment surface. A lens is mounted in an end wall of the housing and cooperates with the at least one diode to project an alignment beam along the attachment surface.
- In one aspect of the invention, the laser light source includes a pair of opposing diodes positioned in a coplanar relationship which project alignment beams through opposing end walls of the laser level housing. In another aspect of the invention, the laser light source comprises a first diode projecting a first alignment beam through an opening in the end wall of the housing and a second diode projecting a second alignment beam generally perpendicular to the first alignment beam through an opening in a side wall of the housing.
- The laser level housing includes a handle formed in a top portion of the housing. A pump actuation switch is provided on a side wall of the housing adjacent the handle. The pump actuation switch cooperates with the vacuum generating mechanism or manual pump when the laser level is positioned on the attachment surface to evacuate air from the suction mounting area. A switch extends through the housing allowing a user to activate the laser light source when the laser level is mounted to the attachment surface.
-
FIG. 1 is an exploded perspective view of the modular tool assembly having a modular tool attachment releasably secured to a tool base in accordance with the present invention; -
FIG. 2 is a perspective view of the tool base of the modular tool assembly in accordance with the present invention; -
FIG. 3 is a cross-sectional view of the tool base along line 3-3 ofFIG. 2 ; -
FIG. 4 a is a perspective view of the laser leveling modular tool attachment configured for coupling to the modular tool assembly; -
FIG. 4 b is a perspective view of a flashlight modular tool attachment configured for coupling to the modular tool assembly; and -
FIG. 4 c is a perspective view of a clamp modular tool attachment configured for coupling to the modular tool assembly. -
FIG. 5 is a perspective view of one embodiment of the modular tool assembly having a modular tool attachment wherein the modular tool assembly has a manually operable vacuum attachment. -
FIG. 6 is a perspective view of an embodiment similar to that shown inFIG. 5 except that the manual pump is shown in a different location. -
FIG. 7 is a perspective view of one embodiment of a modular tool assembly having a manually operable vacuum attachment. -
FIG. 8 is a perspective view of the manually operable vacuum attachment for use with the assembly ofFIG. 7 and with the modular tool assembly and the base removed. -
FIG. 9 is a side perspective view of the manually operable vacuum attachment for use with the assembly ofFIG. 7 , with the modular tool assembly removed, and schematically showing operation of the lever and the vacuum pad. -
FIG. 10 illustrates a laser leveling device incorporating a vacuum mounting arrangement in accordance with the present invention; -
FIG. 11 is a bottom perspective view of the laser level of the present invention; -
FIG. 12 is a side elevation cross-sectional view of the laser leveling device incorporating one aspect of a suction mounting arrangement along line 12-12 ofFIG. 10 ; -
FIG. 13 is a fragmentary perspective illustrating a second aspect of the suction mounting arrangement of the laser leveling device of the present invention; -
FIG. 14 is a perspective view of the second aspect of the suction mounting arrangement of the laser leveling device of the present invention; -
FIG. 15 is a cross-sectional view illustrating another aspect of the laser level generator of the laser leveling device of the present invention; and -
FIG. 16 is a side plan view illustrating a second embodiment of the laser leveling device of the present invention. -
FIG. 17 is a perspective view of another embodiment of modular tool assembly of the present invention having a laser generator housing. -
FIG. 18 is a front view of the tool assembly ofFIG. 17 with the laser generator housing pivoted in a forward position and with internal details of the base being visible. -
FIG. 19 is a rear view of the tool assembly ofFIG. 17 . -
FIG. 20 is a side view of the tool assembly ofFIG. 18 with internal details being visible. -
FIG. 21 is a perspective view of the tool assembly ofFIG. 17 in one position and with internal details being visible. -
FIG. 22 is a cut-away portion of the laser generator housing ofFIG. 17 to show details of the self-leveling mechanism according to one embodiment of the present invention. -
FIG. 23 shows several parts of the self-leveling mechanism ofFIG. 22 . -
FIG. 24 shows the self-leveling mechanism ofFIG. 22 . -
FIG. 25 shows another embodiment of a self-leveling mechanism that can be used in the laser generator housing. -
FIG. 26 shows the self-leveling mechanism ofFIG. 25 with certain features shown in exploded view. -
FIG. 27 is another embodiment of a self-leveling mechanism. - Referring now to
FIGS. 1 and 2 , amodular tool assembly 10 configurable to releasably secure a variety of portable tools, including powered and non-powered tools, is disclosed.Modular tool assembly 10 includes atool base 12 incorporating a vacuum mounting arrangement for securing thetool base 12 and a removably mountedmodular tool attachment 14 to a mountingsurface 16.Tool base 12 includes ahousing 18 having alower portion 20 and anupper portion 22. A suction cup or mountingseal 24 extends from thelower housing portion 20. - A
guide member 26 extends generally vertically from thelower housing portion 20 to provide an outer mounting guide formodular tool attachment 14. One ormore receiving portions 28 are formed in theguide member 26 to receive and secure one or more connecting arms orprojections 30 extending from themodular tool attachment 14. Theguide member 26 cooperates with thetool housing 32 of themodular tool attachment 14 to position and secure thetool attachment 14 on thetool base 12. - Referring now to
FIGS. 1 and 4 a, the modular tool attachment is alaser leveling device 34 adapted for attachment to themodular tool base 12. A laser light source (not shown) is mounted with thehousing 32. The laser light source includes at least one diode (not shown) which projects one or more alignment beams 36 through anopening 38 in anend wall 40 of thehousing 32. In one aspect of the present invention, alens 42 is provided in theopening 38 to cooperate with at least one diode to focus thealignment beam 36. However, it is understood that thealignment beam 36 may project through a standard opening in thehousing 32 to denote a reference plane along the mountingsurface 16. - In one aspect of the present invention, the laser light source is rotatably mounted within the
housing 32 to allow a user to adjust the position of the laser light source once thelaser level attachment 34 is placed in a fixed relationship to the mountingsurface 16 when mounted on thetool base 12. It is understood, however, that the laser light source may be fixedly mounted to a portion of the housing. It is also contemplated that theattachment 34 be mounted to themodular tool base 12 in a manner that allows theattachment 34 to be selectively pivoted with respect to the tool base. Desirably, theattachment 34 can be selectively pivoted in a manner such that the projected beam can be at a selected angle from the vertical or horizontal. - It is also contemplated that laser level attachment may include a laser light source having a pair of diodes in a coplanar relationship which project alignment beams through openings in opposing end walls of the laser level housing. Further, the laser light source may include a first diode which projects a first alignment beam through a first opening in the end or side wall of the housing and a second diode projecting a second alignment beam generally perpendicular to the first alignment beam through a second opening in an end or side wall of the housing.
- One or more bubble levels 44 can be provided such as along the top portion 46 of the laser
leveling device housing 32. Thebubble levels 44, 48 assist the operator in positioning thelaser level attachment 34 mounted on thetool base 12 to the mountingsurface 16 to ensure that thealignment beam 36 projects across thesurface 16 at the desired angle. In one aspect of the invention shown inFIG. 4 a, a pair ofbubble levels 44, 48 are provided on the top portion 46 of thelaser level housing 32 to provide both horizontal and vertical alignment information to the operator prior to securement oftool assembly 10 to mountingsurface 16. It is understood that a single bubble level disposed on the laser level housing may also be used to display the alignment position of the modular tool assembly. - Referring now to
FIGS. 2 and 3 , avacuum generating mechanism 50 is disposed within thetool base 12 to create a suction effect to secure thetool base 12 to the mountingsurface 16. In one embodiment, thevacuum generating mechanism 50 includes amotor 52 and avacuum pump 54 operatively connected to themotor 52 disposed within theupper housing portion 22. It is understood that themotor 52 and thepump 54 may be formed as a single unit. Ahose 56 connects aninlet 58 on thepump 54 to anaperture 60 in thebottom surface 62 of thelower housing portion 20. Air is drawn through theaperture 60 by thepump 54. - A
power source 64 disposed within theupper housing portion 22 is electrically connected to themotor 52. Thepower source 64 may include a rechargeable battery pack, such as a lithium ion or nickel cadmium battery, or removable rechargeable or alkaline battery. In one aspect of the present invention, one or moreelectrical contacts 66 in electrical communication with thepower source 64 extend through atop surface 68 of theupper housing portion 22 to supply power to themodular tool attachment 14. It is also contemplated that themodular tool attachment 14 may include an independent power source. - The
motor 52 and thepump 54 of thevacuum generating mechanism 50 cooperate with the mountingseal 24 to create a vacuum pocket orsuction mounting area 70 between the mountingsurface 16, the mountingseal 24, and thebottom surface 62 of thelower housing portion 20 of thetool base 12. - The mounting
seal 24 is preferably a rubber suction cup that cooperates with the mountingsurface 16 to define avacuum pocket 70 therebetween. In one aspect of the present invention, thebottom surface 62 of thelower housing portion 20 is arcuately shaped to form a cavity cooperating with the mountingseal 24 and the mountingsurface 16 to enhance the suction effect created in thevacuum pocket 70. In this aspect, themodular tool attachment 14 and, in particular, the mountingseal 24, is placed into contact with a mountingsurface 16 and pressed against the mounting surface to evaluate air from thevacuum pocket 70. - In another aspect of the present invention, air is removed from the
vacuum pocket 70 by a pump. In one alternative, aswitch 72 disposed on theupper housing portion 22 is operatively connected to thepump 54 to allow a user to activate thepump 54 to remove air from thevacuum pocket 70. Theswitch 72 may also controlelectrical contacts 66 supplying power to a device in themodular tool attachment 14, thereby controlling the activation of both thepump 54 of thevacuum generating mechanism 50 and themodular tool attachment 14. Alternatively, themodular tool attachment 14 may incorporate a switch that will independently operate the modular tool attachment. - Once the user places the mounting
seal 24 of thetool base 12 in contact with a mountingsurface 16, the user actuates theswitch 72, which activates thepump 54. Thepump 54 evacuates air from thevacuum pocket 70 through theinlet 60. Asensor 74 disposed in thebottom surface 62 of thelower housing portion 20 monitors thevacuum pocket 70. Thesensor 74 activates thepump 54 to remove air from thevacuum pocket 70 if the sensor detects a loss of pressure in thevacuum pocket 70. Loss of vacuum pressure may be caused by imperfections in the mountingsurface 16 or theseal 24 such as gaps or cracks that limit the effectiveness of the mountingseal 24. Thesensor 74 allows thepump 54 to compensate for the surface flaws to ensure a proper seal between thetool base 12 and the mountingsurface 16. - A third aspect of the vacuum generating mechanism includes a manually operable pump cooperating with the mounting
seal 24 to remove air from thevacuum pocket 70. A switch 72 a may be placed on either thelower portion 20 or theupper portion 22 of the tool base as shown inFIGS. 5 and 6 . The switch 72 a may simply function to evacuate air from thevacuum pocket 70 when activated, such as by depressing the switch. Alternatively, the switch 72 a may operate the pump such that when the switch 72 a is depressed, air is evacuated from the vacuum pocket. - Referring now to
FIG. 4 b, a second modular tool attachment is disclosed. In this instance, the modular tool attachment comprises aflashlight 76 having aflashlight head 78 and aflashlight body 80 configured for securement to thetool base 12. Theflashlight body 80 includes ahandle 82 formed in atop surface 84 of thebody 80. One or moreconnecting arms 86 extend from theflashlight body 80 to releasably engage one ormore receiving portions 28 in theguide member 26 of thetool base 12. Alternatively, theupper portion 22 such as thetop surface 60 or elsewhere may be provided with a mounting element to engage a complementary mounting element on theflashlight body 80. For example, the mounting element may include a magnetic surface, a hook, or a complementary portion of a hook-and-loop type fastener, mating ribs, and other mounting elements well known in the art. Theflashlight head 78 includes ashroud 88, areflector 90 and alens 92 mounted adjacent a bulb (not shown). The vacuum generating mechanism incorporated in thetool base 12 allows hands-free use of theflashlight 76 when mounted on a mountingsurface 16. - Referring now to
FIG. 4 c, a third modular tool attachment for the modular tool assembly of the present invention is disclosed. The third modular tool attachment comprises aclamp 94 having ahandle 96 pivotally attached to aclamp housing 98. Thehandle 96 includes a distal end forming ahandle portion 100 to be grasped by a user and an opposed grippingportion 102 including anelongate jaw 104 provided thereon. Thehandle 96 pivots about a springbiased mount 106 disposed in theclamp housing 98. Theclamp housing 98 includes a generallyhorizontal jaw 108 cooperating with ajaw 104 on thehandle 96 to secure a workpiece therebetween. Theclamp housing 98 includes one ormore projections 110 that releasably engage one or more receiving portions inguide member 26 oftool base 12. As with theflashlight 76, theclamp housing 98 may be mounted to theupper portion 22 by engagement with a mounting element provided on theupper portion 22. - Referring now to
FIGS. 1 and 4 a-4 c, aswitch 112 provided in a wall of 114 of the respective modular tool attachment embodiments may cooperate with aswitch 72 on themodular tool base 12 to activate thepump 54 ofvacuum generating mechanism 50 to mount themodular tool base 10 to the mountingsurface 16. As described above, it is understood that theswitch 72 may activate the laser light source oflaser leveling device 34, the bulb offlashlight head 78 offlashlight 76, or to activate another modular tool attachment. Alternatively, theswitch 112 may only activate thevacuum generating mechanism 50 while an independent switch operates the features of the modular tool attachments. - Referring now to
FIGS. 7-9 , another embodiment of the device of the present invention having a manual suction mounting arrangement is shown. In this embodiment, thebase 12 having a mountingseal 16 is as described above with other alternative embodiments. The mountingseal 16 is provided with atop surface 200, abottom surface 202 and awall 204 extending from thetop surface 200 to contact theattachment surface 16 and form a seal, as will be described below. - A
lifting mechanism 210 provided on thetop surface 200 of the mounting seal cooperates with thebottom surface 202 such that actuation of thelifting mechanism 210 lifts thebottom surface 202 to create acavity 70. Thelifting mechanism 210 can be provided with alever 212 that extends from a portion of thetool base 12 such that movement of thelever 212 actuates thelifting mechanism 210. As shown inFIGS. 7-9 , thelever 212 is rotated from a first position to a second position (counter clockwise direction) such that in the first position, there is no suction and in the second position there is a suction or vacuum when thecavity 70 is created. - Desirably, the
lever 212 is fixed in either the first or the second position until manually moved to the other position. As shown inFIG. 8 , thelifting mechanism 210 may include acam 220 operatively connected to thebottom surface 202 such that rotation of thelever 212 causes thecam 220 and thus thebottom surface 202 to move toward thetop surface 200 and thereby create acavity 70. - Turning now to
FIGS. 10-16 , the tool assembly of the present invention provides alaser leveling device 310 having a suction mounting arrangement for securing thedevice 310 to anattachment surface 312. Thelaser level 310 includes ahousing 314 having a suction cup or mountingseal 316 provided on alower portion 318 of thehousing 314.FIGS. 10-12 illustrate asingle piece housing 314. It is understood that a two-piece housing as illustrated inFIG. 16 may also be used to accomplish the same objective. Acavity 320 is formed in thelower portion 318 ofhousing 314. The suction cup or mountingseal 316 is preferably a rubber seal that extends from a lower portion of thehousing 314 about thecavity 320. Other elastomeric materials may be used to accomplish the objective of being deformable to provide a seal. Thesuction cup 316 cooperates with theattachment surface 312 and thecavity 320 in thehousing 314 to define asuction mounting area 322 therebetween. - Referring now to
FIG. 12 , a first aspect of a suction mounting arrangement cooperating with thelaser leveling device 310 in accordance with the present invention is disclosed. Thelaser level 310 includes avacuum generating mechanism 324 that cooperates with a mountingseal 316 to create a vacuum in thesuction mounting area 322. The vacuum generating mechanism includes amotor 325 disposed within thelaser level housing 314. Avacuum pump 326 operatively connected to themotor 325 is mounted adjacent themotor 325 in thehousing 314. It is also understood that themotor 325 and thepump 326 may be assembled as a single unit. Ahose 328 connects aninlet 330 on thepump 326 to anaperture 332 of thecavity 320. Thepump 326 cooperates with the mountingseal 316 to create a vacuum betweenattachment surface 312 andcavity 320 to mount thelaser level 310 in a fixed relationship relative toattachment surface 312. - A
laser light source 334 for generating an alignment beam 336 is mounted within housing. Thelaser light source 334 is rotatably mounted to either an inner wall of the housing or apivot 331 mounted on thevacuum generating mechanism 324 to allow a user to adjust the position of thelaser light source 334 oncelaser level housing 314 is secured to theattachment surface 312. Thelaser light source 334 may also be mounted to an inner wall of the laser level housing or fixedly mounted to a portion of vacuum generating mechanism. - The
laser light source 334 includes at least onediode 333 that projects an alignment beam 336 through anopening 338 in anend wall 340 of thelaser level housing 314. In one aspect of the present invention, alens 342 is provided in theopening 338 that cooperates with at least onediode 333 to focus an alignment beam 336. It is understood that the alignment beam 336 may project through a standard opening in thehousing 314 to denote a reference plane along theattachment surface 312. - A laser light
source activation switch 344 extends through anelongate channel 346 of thehousing 314. Apower source 348 disposed inlaser level housing 314 powers both themotor 325 and thelaser light source 334. In one aspect of the present invention, thepower source 348 is a rechargeable battery pack, such as a lithium ion or nickel cadmium power cell securely mounted withinhousing 314. Alternatively, thepower source 348 is a removable alkaline battery. - Referring now to
FIGS. 10 and 12 , thelaser level 310 includes ahandle portion 350 formed into atop surface 352 of thehousing 314. One or more bubble levels 354 extend along thetop portion 352 of thelaser level housing 314. Bubble levels 354 assist the operator in positioning thelaser level 310 on theattachment surface 312 to ensure that alignment beam 336 projects acrosssurface 312 at the desired angle. In one aspect of the invention shown inFIG. 12 , a single bubble level 354 displays the alignment position of thelevel 310 ofsurface 312. In another aspect of thelaser leveling device 356 shown inFIG. 16 , a pair ofbubble levels top portion 362 oflaser level housing 364 to provide both horizontal and vertical alignment information to the operator prior to securement of thelaser level 356 tosurface 312. - One aspect of the suction mounting arrangement of laser leveling device includes a pump actuation switch 366 that may be provided
adjacent handle 350 and is operatively connected to thepump 326. The user actuates switch 366 when the mountingseal 316 is placed in contact withattachment surface 312, allowing thepump 326 to evacuate air from thesuction mounting area 322 created between theattachment surface 312, theseal 316 and thecavity 320 through theaperture 332. - A sensor 368 provided proximate the
cavity 320 monitors the pressure in thesuction mounting area 322. The sensor 368 activates thepump 326 to remove air from thesuction mounting area 322 when the sensor detects a loss of vacuum pressure in thearea 322 between the mountingseal 316 and theattachment surface 312. Loss of vacuum pressure in thesuction mounting area 322 may be caused by imperfections in theattachment surface 312, such as gaps or cracks that limit the effectiveness of mountingseal 316. The sensor 368 allows thepump 326 to compensate for the surface flaws to ensure a proper seal between thelaser level 310 and theattachment surface 312. - Referring now to
FIGS. 13 and 14 , a second aspect of the suction mounting arrangement cooperating with thelaser leveling device 310 of the present invention. Thelaser light source 334 is rotatably mounted to an inner wall of thelaser level housing 314 to allow a user to adjust the position of thelaser light source 334 once thelaser level housing 314 is secured to anattachment surface 312 and to project an alignment beam through thelens 342 onto a surface. - A laser light source activation switch 370 extends through an
elongate channel 372 of thehousing 314. Apower source 348 disposed in thelaser level housing 314 powerslaser light source 334. A suction cup or mountingseal 374 extends from alower portion 376 oflaser level housing 314. It is understood that thesuction cup 374 can be formed in a variety of geometries to accommodate various housing shapes. The mountingseal 374 cooperates with theattachment surface 312 to define asuction mounting area 322 therebetween. - A
pump 378 is operatively connected to an aperture (not shown) in thelower portion 376 ofhousing 314. Thepump 378 cooperates with the mountingseal 374 to create a vacuum between theattachment surface 312 and thelower portion 376 oflaser level housing 314 to create asuction mounting area 322. Apump actuation switch 380 is operatively connected to thepump 378 adjacent thelower portion 376 of thehousing 314 and the mountingseal 374. A user actuates theswitch 380 after the mountingseal 374 is placed in contact with theattachment surface 312, allowing thepump 378 to evacuate air from thesuction mounting area 322 if the user detects a loss of vacuum pressure in thearea 322. It is understood that theswitch 380 may be provided in either a vertical or horizontal orientation on thelaser level housing 314. -
FIG. 15 illustrates another type of laser light source incorporated in thelaser leveling device 310 of the present invention. Thelaser level 310 includes alaser light source 382 having a pair ofdiodes 384 in a coplanar relationship that project alignment beams 386 throughopenings 338 in theend walls 340 of thelaser level housing 314. It is also contemplated that laser light source may include a first diode which projects a first alignment beam through a first opening in the end or side wall of the housing and a second diode projecting a second alignment beam generally perpendicular to the first alignment beam through a second opening in an end or side wall of the housing. - Referring now to
FIG. 16 , a second embodiment of a laser leveling device having a vacuum mounting arrangement of the present invention is disclosed. Thelaser level 356 comprises alower housing 363 having arubber mounting seal 388 extending from a lower portion ofhousing 363 and a pivotally mountedupper housing 364 enclosing a laser light source generating analignment beam 390. Theupper housing 364 pivots relative to thelower housing 363 about amount 392. Themount 392 includes detents (not shown) that allow a user to position theupper housing 364 at discrete angular increments, for example, 15° angle increments, relative to thelower housing 363, thereby allowing a user to rapidly reposition the laser light source in theupper housing 364 when thelaser level 356 is secured to theattachment surface 394. - It is to be understood that any of the assemblies shown in
FIGS. 10-16 and described above can be provided with a manual suction mounting arrangement as shown inFIGS. 7-9 and described above. For example, thehousing seal 16 as described above with other alternative embodiments. The mountingseal 16 is provided with atop surface 200, abottom surface 202 and awall 204 extending from thetop surface 200 to contact theattachment surface 12 and form a seal, as will be described below. - A
lifting mechanism 210 provided on thetop surface 200 of the mounting seal cooperates with thebottom surface 202 such that actuation of thelifting mechanism 210 lifts thebottom surface 202 to create acavity 20. Thelifting mechanism 210 can be provided with alever 212 that extends from a portion of thehousing 14 such that movement of thelever 212 actuates thelifting mechanism 210. As shown inFIGS. 8-10 , thelever 212 is rotated from a first position to a second position (counter clockwise direction) such that in the first position, there is no suction and in the second position there is a suction or vacuum when thecavity 20 is created. - Desirably, the
lever 212 is fixed in either the first or the second position until manually moved to the other position. As shown inFIG. 9 , thelifting mechanism 210 may include acam 220 operatively connected to thebottom surface 202 such that rotation of thelever 212 causes thecam 220 and thus thebottom surface 202 to move toward thetop surface 200 and thereby create acavity 20. - Turning now to
FIGS. 17-21 , another embodiment of the inventive modular assembly described above. In this embodiment, the tool attachment is a laser light generator that is self-leveling to provide a desired horizontal or vertical line. Other advantages and features will become apparent from the following description. - The embodiment shown in
FIGS. 17-21 has a base 12 upon which a self-levelinglaser generator housing 1030 is mounted. Thebase 12 includes a vacuum generating mechanism for securing the base 12 as described above. The base may be formed from three sections: a top 1002, a bottom 1004, and a rear 1006. Alongitudinal axis 1008 of the base extends through the top 1002 to thebottom 1004. - The top of the
base 1002 may be slidably moveable with respect to the bottom 1004 to adjust the height of thegenerator housing 1030 with respect to thebottom 1004. A rotatingmember 1010 is provided in the bottom 1004 accessible to the user to allow the user to move the rotatingmember 1010 to cause the top 1002 to move up or down with respect to thebottom 1004. As seen inFIG. 18 , the rotatingmember 1010 is connected to ascrew 1012 upon which the top of thehousing 1004 is mounted such that rotation of the rotatingmember 1010 causes the top 1004 to move up or down depending on the direction that the rotatingmember 1010 is rotated. - As noted above the self leveling
laser generator housing 1030 is mounted to the top 1002 of the base.FIG. 17 shows thegenerator housing 1030 in an upright position. In this position, when thebase 12 is mounted to a surface such as a wall, thelongitudinal axis 1032 of thegenerator housing 1030 is parallel to the plane of the wall (perpendicular to thelongitudinal axis 1008 of the base). When thegenerator housing 1030 is in this position, it can be rotated relative to the base 12 such that the generator housinglongitudinal axis 1032 will be perpendicular to the surface upon which thebase 12 is mounted with the vacuum generating mechanism 50 (as well as being perpendicular to the longitudinal axis of the base). Thegenerator housing 1030 can also be pivoted forwardly with respect to the base 12 so that thegenerator housing 1030 has a position as shown inFIG. 18 . While in this position, thegenerator housing 1030 can be rotated such that thelongitudinal axis 1032 of the generator housing is parallel to thelongtidunal axis 1008 of thebase 12. - The
laser generator housing 1030 has a top 1034,front 1036, rear 1038, two side ends 1040, 1042, and bottom 1044 that is rotatably connected to a pivotingmember 1046 having a sphere-like structure with its sides and top truncated to fit thebase 12 andgenerator housing 1030 respectively. The pivotingmember 1046 is movably secured to the top of the base 1002 to permit thelaser generator housing 1030 to pivot with respect to the base 12 as described above. Thegenerator housing 1030 is selectively pivotable with respect to the base 12 to many different positions due to the frictional fit between thelaser generator housing 1030 and thebase 12. Alternatively or in conjunction with the frictional fit, the pivoting member 46 or a portion of the top 1034 of the base may be provided with adetent arrangement 1048 at selected positions to provide a plurality of positive stops when thelaser generator housing 1030 is pivoted to a selected location. - As will be appreciated from the description below, the self-leveling feature of this embodiment is effective when the
laser generator housing 1030 is in an upright position, as shown inFIG. 17 . In that regard, one embodiment of the self-leveling aspect is shown inFIGS. 22-24 . -
FIG. 22 shows a cut-away portion of thelaser generator housing 1030 from which it can be seen that the self-levelingmechanism 1100 includes a frame 1102, a rockingblock seat 1140, abearing rocking block 1150, and bearing straps 1170. The frame 1108 is in the shape of a T, where the vertical portion orshaft 1104 acts as the arm of a pendulum. To provide quicker self-leveling, the distal end of thevertical portion 1104 of the frame may act as acounterweight 1106 or may be provided with a counterweight (not shown). - The
horizontal portion 1120 of the frame 1102 definesarms 1122 that are configured to hold alaser diode 1130 such that the light projected from each extends in a direction opposite from the other. The distal ends of thearms lens holder 1132 that supports alens 1134 through which the laser light emitted from thediode 1130 passes. Desirably, eachlens 1134 is rotatable with respect to thediode 1130 so that the emitted beam can be adjusted to a variety of different directions such as horizontal, vertical, or positions between horizontal and vertical. Thelens holder 1132 may be provided with indications so that the movement in a particular direction can be indicated. For example, the indications may provide an indication of angular movement in degrees such as 5 degrees, etc. - Because each
arm 1122 may support alaser diode 1130, the projected beam may differ from one end to the other. For example, the projected beam may be horizontal at one end and vertical at the other end. Alternatively, both may be horizontal or vertical. - It is contemplated that each
arm 1122 can support two laser diodes so that a plurality of patterns can be generated on the surface upon which the laser light contacts. When two laser diodes are supported on each arm, it is desirable to provide a lens through which the light emitted from each diode passes. The lens may alter the beam emitted from the laser diode so that the light projected from the housing can be in the form of + or other pattern. - The
laser diodes 1130 are powered from an electrical source that may be the same as or different from the power source used for thevacuum generating mechanism 50. In one embodiment, thelaser diodes 1130 are powered from a source that can be actuated at the same time the motor for thevacuum generating mechanism 50 is actuated. In another embodiment, aseparate switch 1050 is provided so that thelaser diodes 1130 can be powered while thevacuum generating mechanism 50 is not operating. In this instance, aswitch 1050 may be provided on the top of thelaser generator housing 1034, as shown inFIG. 18 . Theswitch 1050 may have more than one position. For example, theswitch 1050 may have anoff position 1052, where no power is provided to thelaser diodes 1130. In this position, it is desirable to lock-out the self-levelingmechanism 1100 to protect the self-levelingmechanism 1100. - The
switch 1050 may have a self-levelingposition 1054, where the self-levelingmechanism 1100 is activated and thelaser diodes 1130 are powered. Theswitch 1050 may also have anangle finder position 1056, in which it is contemplated that, after thelaser diodes 1130 have been self-leveled, the switch can be moved to anangle finder position 1056 after which thelaser generator housing 1030 may be pivoted or rotated relative to the base 12 to a selected angle that is indicated on acompass indicator 1058 provided on the face of theswitch 1050. For example, if the user wishes to project aline 30° from the horizontal, thebase 12 may be releasably mounted to a substantially vertical surface such as a wall and held in place by thevacuum generating mechanism 50; then theswitch 1050 may be positioned to the self-levelingposition 1054 so that the projected beam projects a line or other pattern at the “true” horizontal. Theswitch 1050 can then be moved to theangle finder position 1056, in which the self-levelingmechanism 1100 is locked and the angle finder feature sets the reference angle to 0°. Thelaser generator housing 1030 can then be pivoted or rotated with respect to the base 12 until thecompass indicator 1058 indicates the desired angular location, e.g., 30°. - Referring back to
FIGS. 22-24 , the self-levelingmechanism 1100 includes a rockingblock seat 1140 that is connected to thelaser generator housing 1030 so that the rockingblock seat 1140 is fixed with respect to thelaser generator housing 1030. The rockingblock seat 1140 is shown as a plate like structure, withends 1142 that contact thelaser generator housing 1030 to ensure that the rockingblock seat 1140 will remain stationary with respect to thelaser generator housing 1030. The ends 1142 of the rockingblock seat 1140 may be provided with pliable or elastic material to ensure a tight fit with thehousing 1130 and at the same time provide cushioning. Of course, any suitable shape may be used so that the rockingblock seat 1140 will provide a stationary structure to provide bearing faces 1144, as described below. - The rocking
block seat 1140 has a pair of bearing faces 1144 to receivebearings 1152 formed on the ends of abearing rocking block 1150. Thebearing rocking block 1150 is rotatably secured to the rockingblock seat 1140 by a pair of bearingstraps 1170 that form a bearing face for thebearings 1152 on the ends of thebearing rocking block 1150. Thebearing rocking block 1150 has ashaft aperture 1154 to receive one end of ashaft 1160 in a non-rotatable manner. The other end of the shaft carries abearing 1162 that is rotatably received in ashaft hole 1110 provided on the frame 1102. - One skilled in the art will appreciate that by providing rotatable bearings that are perpendicular to each other the
arms 1122 of laser generator, and thus, thelaser diodes 1130 will be self-leveling in two directions. The first direction allows thearms 1122 of the frame 1102 to assume a horizontal position so that a horizontal beam can be projected. In other words, the distal ends 1124, 1126 of thearms 1122 can move vertically (up and down, i.e., toggle) to assume a horizontal position. The second direction allows thearms 1122 to rotate about a pivot from thefront 1036 of the laser generator housing to the rear 1038 of the laser generator housing. In other words, the second direction is perpendicular to the first direction. Of course, it is understood that one of the directions of self-leveling can be omitted to provide a simpler mechanism. - Desirably, a damping mechanism 1180 is provided at the top of the frame 1102 to assist the self-leveling
mechanism 1100. In this regard,non-ferrous material 1182 is provided on a top portion of the frame 1102 opposite amagnet 1184 so that thenon-ferrous portion 1182 is maintained at a certain distance from themagnet 1184. - Another embodiment of the self-leveling
mechanism 1100 is illustrated inFIGS. 25-27 . In this embodiment, a frame 1102 is provided with a dampingdome 1182, acounterweight 1106, and twoarms 1122 extending outward from the frame. The distal ends 1124, 1126 of the arms define a housing to carry alaser diode 1130. The frame may be a single piece or, as shown inFIG. 27 made from several pieces. In the embodiment shown inFIG. 27 , thehorizontal portion 1120 of the frame 1102 includes the distal ends 1124 connected toproximal ends 1125 by apin 1123. - The proximal ends 1125 of the arms have an
aperture 1127 to receive abearing pin 1129, on which arocking bearing 1153 is rotatably mounted. The rocking bearing 1153 a is mounted within a rockingbearing block 1150 a in the form of a truncated cylinder, which in turn is mounted within a rockingblock seat 1140 a, which is in the form of a cylindrical bearing. In particular, the rockingbearing block 1150 a is mounted in the inner annulus 1141 of the rockingblock seat 1140 a and may be secured by aplate 1151. The rockingblock seat 1140 a is positioned such that the frame 1102 is capable of rotating with respect to the rockingblock seat 1140 a. For instance, the rockingblock seat 1140 a may be held in a fixed position by or within thelaser generator housing 1030. Because thebearing pin 1129 is connected to the frame 1102 through theaperture 1127 at the proximal ends of thearms 1122, the frame 1102 is able to pivot in a first direction. At the same time, because the rocking bearing 1153 a is able to move within the rockingbearing block 1150 a, the frame 1102 is able to pivot in a second direction perpendicular to the first direction. - While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/349,038 US7174648B2 (en) | 2004-08-17 | 2006-02-07 | Structure mountable assembly |
US11/643,363 US7260895B2 (en) | 2004-08-17 | 2006-12-21 | Structure mountable assembly |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91956904A | 2004-08-17 | 2004-08-17 | |
US10/919,708 US7181854B2 (en) | 2004-08-17 | 2004-08-17 | Laser leveling device having a suction mounting arrangement |
US10/977,503 US7191532B2 (en) | 2004-08-17 | 2004-10-29 | Modular tool assembly having a vacuum mounting arrangement |
US11/349,038 US7174648B2 (en) | 2004-08-17 | 2006-02-07 | Structure mountable assembly |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/919,708 Continuation US7181854B2 (en) | 2004-08-17 | 2004-08-17 | Laser leveling device having a suction mounting arrangement |
US10/977,503 Continuation US7191532B2 (en) | 2004-08-17 | 2004-10-29 | Modular tool assembly having a vacuum mounting arrangement |
US10/977,503 Continuation-In-Part US7191532B2 (en) | 2004-08-17 | 2004-10-29 | Modular tool assembly having a vacuum mounting arrangement |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/643,363 Continuation US7260895B2 (en) | 2004-08-17 | 2006-12-21 | Structure mountable assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060185181A1 true US20060185181A1 (en) | 2006-08-24 |
US7174648B2 US7174648B2 (en) | 2007-02-13 |
Family
ID=35852073
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/919,708 Expired - Lifetime US7181854B2 (en) | 2004-08-17 | 2004-08-17 | Laser leveling device having a suction mounting arrangement |
US11/349,038 Expired - Fee Related US7174648B2 (en) | 2004-08-17 | 2006-02-07 | Structure mountable assembly |
US11/643,363 Expired - Fee Related US7260895B2 (en) | 2004-08-17 | 2006-12-21 | Structure mountable assembly |
US11/657,795 Expired - Fee Related US7322116B2 (en) | 2004-08-17 | 2007-01-25 | Laser leveling device having a suction mounting arrangement |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/919,708 Expired - Lifetime US7181854B2 (en) | 2004-08-17 | 2004-08-17 | Laser leveling device having a suction mounting arrangement |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/643,363 Expired - Fee Related US7260895B2 (en) | 2004-08-17 | 2006-12-21 | Structure mountable assembly |
US11/657,795 Expired - Fee Related US7322116B2 (en) | 2004-08-17 | 2007-01-25 | Laser leveling device having a suction mounting arrangement |
Country Status (3)
Country | Link |
---|---|
US (4) | US7181854B2 (en) |
CA (1) | CA2512789A1 (en) |
MX (1) | MXPA05008686A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7181854B2 (en) * | 2004-08-17 | 2007-02-27 | Eastway Fair Company Limited | Laser leveling device having a suction mounting arrangement |
US20080052927A1 (en) * | 2006-09-05 | 2008-03-06 | Eastway Fair Company Limited | Self-leveling line generator |
US20080137339A1 (en) * | 2006-12-06 | 2008-06-12 | Nash Derek J | Laser guide |
US20080244918A1 (en) * | 2007-04-04 | 2008-10-09 | Hung-Chi Hsu | Handsaw having alignment and calibration functions |
US20120068852A1 (en) * | 2010-09-20 | 2012-03-22 | Oleksiy Sergyeyenko | Tool system with mount configured to be removably coupled to a surface |
WO2012109593A1 (en) * | 2011-02-11 | 2012-08-16 | OPS Solutions, LLC | Light guided assembly system and method |
WO2015112692A1 (en) * | 2014-01-23 | 2015-07-30 | Hill Jayson | Adjustable laser leveling device and method |
US9846034B2 (en) | 2014-01-23 | 2017-12-19 | Sure Hang, Llc | Adjustable laser leveling device with distance measuring lasers and self-leveling lasers and related method |
WO2018009239A1 (en) * | 2016-07-07 | 2018-01-11 | Hill Jayson | A method and device for project layout using level laser lines projected onto work surface |
US9965897B2 (en) | 2013-07-08 | 2018-05-08 | OPS Solutions, LLC | Eyewear operational guide system and method |
US10676211B2 (en) * | 2017-01-16 | 2020-06-09 | The Boeing Company | Remote optical control surface indication system |
EP3842741A1 (en) * | 2019-12-24 | 2021-06-30 | Stanley Black & Decker, Inc. | Laser level system |
US11107236B2 (en) | 2019-04-22 | 2021-08-31 | Dag Michael Peter Hansson | Projected augmented reality interface with pose tracking for directing manual processes |
US11175136B2 (en) * | 2018-03-09 | 2021-11-16 | Stanley Balck & Decker Inc. | Laser level |
US11287258B2 (en) * | 2019-01-16 | 2022-03-29 | Milwaukee Electric Tool Corporation | Laser projection tools and mounting accessories |
US20220290981A1 (en) * | 2021-03-10 | 2022-09-15 | Takisha Schulterbrandt | Apparatus and Method for Positioning a Cooking Instrument |
DE102023100317A1 (en) | 2022-01-08 | 2023-07-13 | Bülent Özcinar | Use of a laser mount to hold a laser indoors in buildings |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7523558B2 (en) * | 2002-10-22 | 2009-04-28 | Black And Decker | Tool incorporating a light line generating device |
US7134211B2 (en) * | 2004-03-18 | 2006-11-14 | Black & Decker Inc. | Laser level |
CN2779138Y (en) * | 2005-02-04 | 2006-05-10 | 南京德朔实业有限公司 | Fixing device with a suction cup |
DE102005009315A1 (en) * | 2005-02-18 | 2006-08-24 | Alfred Kärcher Gmbh & Co. Kg | fastening device |
CN2804800Y (en) * | 2005-07-18 | 2006-08-09 | 南京德朔实业有限公司 | Laser striping device |
USD538683S1 (en) * | 2005-11-07 | 2007-03-20 | Kabushiki Kaisha Topcon | Laser receiver for surveying |
US7797844B2 (en) * | 2005-11-15 | 2010-09-21 | Black & Decker | Light line generating assembly |
DE102006013970B4 (en) * | 2006-03-15 | 2008-08-14 | J. Schmalz Gmbh | Vacuum area gripping device |
USD569914S1 (en) * | 2006-04-27 | 2008-05-27 | Matsushita Electric Industrial Co., Ltd. | Pencil sharpener |
US7594336B2 (en) * | 2006-06-22 | 2009-09-29 | The Stanley Works | Line anchor |
US20080052928A1 (en) * | 2006-09-05 | 2008-03-06 | Parel Thomas M | Self-leveling line generator |
US20080052926A1 (en) * | 2006-09-05 | 2008-03-06 | Eastway Fair Company Limited | Gravity dial level indicator for line generator |
USD567685S1 (en) * | 2006-09-29 | 2008-04-29 | Leica Geosystems, Ag | Line laser device |
DE102006061727A1 (en) * | 2006-12-28 | 2008-07-03 | Robert Bosch Gmbh | Measuring device fastening unit, has spring elastic contact surfaces for contacting at surface, which includes curvature opposite to contact plane in unloaded condition, where plane is defined by plane contact surface of fastening unit |
US7886450B1 (en) | 2009-01-04 | 2011-02-15 | Joseph Fiano | Elevated laser beam positioning device |
CA2704459C (en) * | 2009-05-14 | 2015-05-26 | Timothy D.F. Ford | Illuminating device with adhesive shroud |
US9267778B2 (en) * | 2012-01-19 | 2016-02-23 | Milwaukee Electric Tool Corporation | Tape measure |
US10234589B2 (en) * | 2013-01-02 | 2019-03-19 | Zircon Corporation | Surface marking tool |
US9441967B2 (en) | 2013-05-31 | 2016-09-13 | Stanley Black & Decker Inc. | Laser level system |
KR102339836B1 (en) * | 2013-08-02 | 2021-12-15 | 에코쌍스 | Non-invasive system for calculating a human or animal, reliable, standardized and complete score |
EP2840355A1 (en) * | 2013-08-21 | 2015-02-25 | HILTI Aktiengesellschaft | Laser device and fixing device for mounting a laser device on a retaining element |
KR102180465B1 (en) * | 2013-11-06 | 2020-11-18 | 삼성메디슨 주식회사 | Supporting device of ultrasound probe, Handfree ultrasound probe comprising the same and Method of operating Handfree ultrasound probe |
USD766757S1 (en) * | 2015-03-19 | 2016-09-20 | Black & Decker Inc. | Laser tool |
USD767419S1 (en) * | 2015-03-19 | 2016-09-27 | Black & Decker Inc. | Laser tool |
US9709397B2 (en) * | 2015-09-18 | 2017-07-18 | Francis McNamee | Laser level track attachment device |
US11385055B2 (en) * | 2019-07-23 | 2022-07-12 | Milwaukee Electric Tool Corporation | Laser emitter with a modular storage unit |
CN210268646U (en) * | 2019-08-02 | 2020-04-07 | 创科(澳门离岸商业服务)有限公司 | Laser level meter |
EP4163591A4 (en) * | 2020-06-04 | 2024-07-10 | Changzhou Huada Kejie Opto-Electro Instrument Co., Ltd. | LASER MARKING TOOL |
CN116209876A (en) | 2020-11-02 | 2023-06-02 | 米沃奇电动工具公司 | Alignment tool for laser level |
ES1261804Y (en) * | 2020-11-26 | 2021-05-28 | Pierre Nothman | Active suction cup |
Citations (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2600857A (en) * | 1949-12-02 | 1952-06-17 | Mater Gayle E De La | Drill hole locating apparatus |
US2711030A (en) * | 1954-04-19 | 1955-06-21 | John F Drew | Measuring tape construction |
US2992487A (en) * | 1957-08-16 | 1961-07-18 | Owen A Miller | Measuring rule |
US3489324A (en) * | 1968-02-08 | 1970-01-13 | Borden Inc | Business office accessory |
US3675886A (en) * | 1970-11-05 | 1972-07-11 | Berol Corp | Manually releasable vacuum holding base construction |
US3724953A (en) * | 1972-02-07 | 1973-04-03 | Lansing Research Corp | Optical alignment device providing a virtual pivoting laser beam |
US3897637A (en) * | 1974-03-18 | 1975-08-05 | Robert Genho | Laser level and square |
US4907769A (en) * | 1988-11-04 | 1990-03-13 | Dreedco, Inc. | Flashlight holder |
US4912851A (en) * | 1988-04-08 | 1990-04-03 | Spectra-Physics, Inc. | Level/plumb indicator with tilt compensation |
US4924597A (en) * | 1989-09-26 | 1990-05-15 | Angelo Tursi | Tape measure device |
US4992741A (en) * | 1986-03-27 | 1991-02-12 | The Stanley Works | Capacitive sensor and metal detector with a display for quantitatively displaying signals resulting from concealed objects |
US5182863A (en) * | 1990-10-22 | 1993-02-02 | Spectra-Physics Laserplane, Inc. | Automatic plumb and level tool with acoustic measuring capability |
US5218770A (en) * | 1990-11-27 | 1993-06-15 | Asahi Seimitsu Kabushiki Kaisha | Surveying machine for construction work |
US5394616A (en) * | 1993-03-05 | 1995-03-07 | Claxton; Douglas | Laser positioning device |
US5400514A (en) * | 1994-02-22 | 1995-03-28 | Economy Laser, Inc. | Laser instrument for tracing reference lines and other geometric figures |
US5519942A (en) * | 1995-03-02 | 1996-05-28 | Webb; James | Levelling and transit system |
US5524352A (en) * | 1993-08-27 | 1996-06-11 | Levelite Technology, Inc. | Automatic level and plumb tool |
US5531031A (en) * | 1995-01-20 | 1996-07-02 | Green; Kevin D. | Laser level and square |
US5594993A (en) * | 1995-06-22 | 1997-01-21 | Builders Tools, Inc. | Hand-held builder's square and string line device incorporating a laser |
US5610711A (en) * | 1995-12-22 | 1997-03-11 | Levelite Technology Inc. | Remote pointing system for a self-leveling laser instrument |
US5617202A (en) * | 1994-05-24 | 1997-04-01 | Levelite Technology, Inc. | Diode laser co-linear and intersecting light beam generator |
US5617645A (en) * | 1995-05-02 | 1997-04-08 | William R. W. Wick | Non-contact precision measurement system |
US5619128A (en) * | 1992-08-14 | 1997-04-08 | Zircon Corporation | Stud sensor with over-stud miscalibration via circuit which stores an initial calibration density, compares that to a current test density and outputs result via indicator |
US5619802A (en) * | 1993-08-27 | 1997-04-15 | Levelite Technology, Inc. | Automatic level and plumb tool |
US5621975A (en) * | 1995-08-22 | 1997-04-22 | Levelite Technology | Remotely controlled self-leveling laser instrument with modular capability |
US5630517A (en) * | 1995-07-11 | 1997-05-20 | Maznik; Gary | Holder for hair styling tools and appliances |
US5713135A (en) * | 1995-10-31 | 1998-02-03 | Acopulos; Brad M. | Multi-purpose carpentry measuring device |
US5748306A (en) * | 1997-02-12 | 1998-05-05 | Louis; Daniel P. | Visual alignment instrument |
US5773721A (en) * | 1996-07-31 | 1998-06-30 | General Electric Company | Laser beam aiming apparatus for ultrasonic inspection |
US5859693A (en) * | 1997-08-26 | 1999-01-12 | Laser Technology, Inc. | Modularized laser-based survey system |
US5864956A (en) * | 1996-11-22 | 1999-02-02 | Dong; Dawei | Level line and limb line combination |
US5872657A (en) * | 1996-05-31 | 1999-02-16 | Levelite Technology, Inc. | Construction laser accessory for generating aligned spots |
US5894675A (en) * | 1997-02-14 | 1999-04-20 | Cericola; Joseph | Combination tool |
US5900931A (en) * | 1998-06-15 | 1999-05-04 | Levelite Technology, Inc. | Self-leveling system for optical distance measuring instruments |
US5905455A (en) * | 1995-08-11 | 1999-05-18 | Zircon Corporation | Dual transmitter visual display system |
US5917587A (en) * | 1998-06-23 | 1999-06-29 | Levelite Technology, Inc. | Automatic plumb laser beam generator |
US5917314A (en) * | 1996-08-08 | 1999-06-29 | Zircon Corporation | Electronic wall-stud sensor with three capacitive elements |
US6012229A (en) * | 1998-03-26 | 2000-01-11 | Shiao; Hsuan-Sen | Combined leveling device and laser pointer |
USD418763S (en) * | 1998-08-13 | 2000-01-11 | Zircon Corporation | Laser alignment tool |
USD419149S (en) * | 1998-08-13 | 2000-01-18 | Zircon Corporation | Front casing portion of hand held scanning tool |
USD419544S (en) * | 1998-08-13 | 2000-01-25 | Zircon Corporation | Display portion of a hand held scanning tool |
USD419545S (en) * | 1998-08-13 | 2000-01-25 | Zircon Corporation | Hand held scanning tool casing |
USD419546S (en) * | 1998-08-13 | 2000-01-25 | Zircon Corporation | Hand held scanning tool |
USD420972S (en) * | 1998-08-14 | 2000-02-22 | The Stanley Works | Rotating laser |
US6030091A (en) * | 1999-03-16 | 2000-02-29 | Li; Chih Lin | Tape rule with lighting device |
US6037874A (en) * | 1998-06-30 | 2000-03-14 | Zircon Corporation | Electronic level with laser inclination indicator |
US6035540A (en) * | 1997-07-10 | 2000-03-14 | Wu; Chyi-Yiing | Automatic optical levelling, plumbing, and verticality-determining apparatus |
US6067152A (en) * | 1998-06-08 | 2000-05-23 | Levelite Technology, Inc. | Alignment range for multidirectional construction laser |
US6065217A (en) * | 1997-12-12 | 2000-05-23 | Dong; Dawei | Laser rotary double crossliner |
US6073353A (en) * | 1995-01-11 | 2000-06-13 | Kabushiki Kaisha Topcon | Laser leveling device |
USD427166S (en) * | 1998-08-13 | 2000-06-27 | Zircon Corporation | Grip portion of hand held scanning tool |
US6178655B1 (en) * | 1995-10-16 | 2001-01-30 | Michael D. Potter | Marking attachment for measuring system |
US6202312B1 (en) * | 1999-03-08 | 2001-03-20 | Levelite Technology, Inc. | Laser tool for generating perpendicular lines of light on floor |
US6211662B1 (en) * | 1998-08-07 | 2001-04-03 | The Stanley Works | Hand-held hidden object sensor for sensing a location of objects hidden behind a surface of an architectural structure |
US6209219B1 (en) * | 1998-07-30 | 2001-04-03 | The Stanley Works | Measuring device with housing orientation indicator and position transferring focused light-beam source |
US6215293B1 (en) * | 1998-08-12 | 2001-04-10 | Solar Wide Industrial Limited | Portable stud detector for detecting wood, metal, and live wires |
US6219931B1 (en) * | 1998-03-10 | 2001-04-24 | Northrop Grumman Corporation | Target base for a measuring system |
US6223446B1 (en) * | 1999-05-05 | 2001-05-01 | Mark A. Potter | Grade/level measuring device |
US6249113B1 (en) * | 1998-08-14 | 2001-06-19 | Zircon Corporation | Hand held sensor and display |
US6259241B1 (en) * | 1999-06-22 | 2001-07-10 | Zircon Corporation | Projected display for portable sensor indicating the location of a detected hidden object behind a surface |
US6262801B1 (en) * | 1995-05-25 | 2001-07-17 | Kabushiki Kaisha Topcon | Laser reference level setting device |
US20020017028A1 (en) * | 1999-12-16 | 2002-02-14 | Wishart James Scott | Apparatus for and a method of providing a reference point or line |
US6351890B1 (en) * | 1996-09-10 | 2002-03-05 | Nigel Emlyn Williams | Laser light referencing tool |
US6360446B1 (en) * | 1998-08-14 | 2002-03-26 | The Stanley Works | Level having a laser beam source |
USD455750S1 (en) * | 2000-08-10 | 2002-04-16 | Zircon Corporation | Hand-held scanning tool |
US6382574B1 (en) * | 1999-04-28 | 2002-05-07 | Richard Pando | Self-mounting device to support articles |
US20020059735A1 (en) * | 2000-10-19 | 2002-05-23 | Ponce Felix C. | Tape measure with laser beam |
US20020069543A1 (en) * | 2000-12-04 | 2002-06-13 | Greg Owoc | Level with attachments |
US20020073561A1 (en) * | 2000-12-15 | 2002-06-20 | Ying Chou Liao | Laser level |
US6502319B1 (en) * | 2000-10-04 | 2003-01-07 | Levelite Technology, Inc. | Apparatus for producing a visible line of light on a surface |
USD469556S1 (en) * | 2001-08-08 | 2003-01-28 | American Tool Companies, Inc. | Laser projection tool |
USD470423S1 (en) * | 2002-03-01 | 2003-02-18 | American Tool Companies, Inc. | Manual leveling rotating laser with swivel head |
US6532676B2 (en) * | 2000-03-09 | 2003-03-18 | Christopher L. Cunningham | Laser leveler |
US6532675B2 (en) * | 2001-04-18 | 2003-03-18 | Guy Letourneau | Device for measuring the angle of orientation with reference to a known frame of reference between a first object having a first axis and a second remote destination |
US20030061720A1 (en) * | 2001-09-28 | 2003-04-03 | Reinhard Waibel | Self-leveling constructional laser |
USD474985S1 (en) * | 2002-07-24 | 2003-05-27 | Black & Decker Inc. | Laser level |
US20030101605A1 (en) * | 2001-12-04 | 2003-06-05 | Tacklind Christopher A. | Servo-controlled automatic level and plumb tool |
US6577388B2 (en) * | 2000-12-22 | 2003-06-10 | Stabila-Messgeräte Gustav Ullrich GmbH | Laser level with protective housing |
USD475938S1 (en) * | 2002-07-09 | 2003-06-17 | Black & Decker Inc. | Laser level |
USD476584S1 (en) * | 2001-02-23 | 2003-07-01 | Black & Decker Inc. | Laser level |
US6593754B1 (en) * | 1999-04-01 | 2003-07-15 | Actuant Corporation | Compact subsurface object locator |
US20030131491A1 (en) * | 2002-01-15 | 2003-07-17 | Peggy Weeks | Digital display tape measuring device |
US20040000918A1 (en) * | 2002-06-28 | 2004-01-01 | Solar Wide Industrial Ltd. | Apparatus and method for locating objects behind a wall lining |
US6674276B2 (en) * | 1999-04-01 | 2004-01-06 | Actuant Corporation | Surface object locator with level indicator and scribe tip |
US20040004825A1 (en) * | 2002-03-01 | 2004-01-08 | Malard Fabrice J. | Manual leveling rotating laser with swivel head |
US20040031163A1 (en) * | 2001-02-23 | 2004-02-19 | Karim El-Katcha | Laser level |
US20050022399A1 (en) * | 2003-08-01 | 2005-02-03 | Wheeler Thomas J. | Laser level |
US6880256B2 (en) * | 2003-02-21 | 2005-04-19 | Paccar Inc | Alignment device |
US20050155238A1 (en) * | 2003-07-01 | 2005-07-21 | Levine Steven R. | Laser line generating device with swivel base |
US20060016083A1 (en) * | 2004-07-23 | 2006-01-26 | Index Measuring Tape Co., Ltd. | Level laser indicator |
US20060037203A1 (en) * | 2004-08-17 | 2006-02-23 | Long Charles K | Modular tool assembly having a vacuum mounting arrangement |
Family Cites Families (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1494722A (en) | 1921-03-21 | 1924-05-20 | Jesse F Tingstrom | Combination level and bevel |
US2544438A (en) | 1947-09-15 | 1951-03-06 | Stefan Johnson | Pendulum level with transparent indicators |
US2498083A (en) | 1948-07-10 | 1950-02-21 | Rollis A Kennedy | Pocket clinometer |
US2571287A (en) | 1949-09-09 | 1951-10-16 | Alfred H Peters | Leveling device |
US2611189A (en) | 1949-11-18 | 1952-09-23 | Bello Pablo Duarte | Level |
US2615426A (en) * | 1950-06-05 | 1952-10-28 | Gilbert N Fryer | Pencil sharpener |
US2754594A (en) | 1953-02-09 | 1956-07-17 | Cecil A Harms | Slope gage |
US2971427A (en) | 1955-01-17 | 1961-02-14 | Keuffel & Esser Co | Self-correcting alidade |
AT201304B (en) | 1956-11-02 | 1958-12-27 | Hensoldt & Soehne Optik | Leveling instrument |
US2859725A (en) | 1957-11-22 | 1958-11-11 | Donald B Genasci | True vertical indicator |
US3233235A (en) | 1963-08-16 | 1966-02-01 | Wright Gilbert | Signaling level |
US3427724A (en) | 1965-09-20 | 1969-02-18 | Harold James Tracy | Indicating device |
US3462845A (en) | 1966-04-29 | 1969-08-26 | Sarazon P Matthews | Apparatus for maintaining an elevation |
GB1349438A (en) | 1971-12-07 | 1974-04-03 | Hartley Lw | Builders level |
US4063365A (en) * | 1971-12-14 | 1977-12-20 | Evan Leon Hopkins | Orientation detection and alignment method and apparatus |
US3936197A (en) | 1974-05-06 | 1976-02-03 | Laser Alignment, Inc. | Self-leveling laser assembly |
US4084328A (en) | 1975-09-26 | 1978-04-18 | Jaquith Industries, Inc. | Method of adjusting angularity of light fixtures |
US4149321A (en) | 1977-03-15 | 1979-04-17 | Kivioja Lassi A | Mercury leveling instruments |
US4221483A (en) | 1978-11-20 | 1980-09-09 | Spectra-Physics, Inc. | Laser beam level instrument |
US4225106A (en) | 1978-11-22 | 1980-09-30 | Eplan Joseph J | Hair dryer holder |
US4333242A (en) | 1979-05-07 | 1982-06-08 | Lasertron Company | Construction laser |
US4467527A (en) | 1982-02-11 | 1984-08-28 | Larry North | Digital head-out level |
US4716534A (en) | 1984-10-31 | 1987-12-29 | Baucom D Michael | Microprocessor based level and angle finder |
JPS61191915A (en) | 1985-02-20 | 1986-08-26 | Nippon Power Eng Kk | Laser measuring apparatus |
JPH0721411B2 (en) | 1987-01-20 | 1995-03-08 | 株式会社ソキア | Optical leveling device |
US4852265A (en) | 1988-04-08 | 1989-08-01 | Spectra-Physics, Inc. | Level/plumb indicator with tilt compensation |
DE3838512C1 (en) | 1988-11-13 | 1990-01-11 | Ronald 6114 Gross-Umstadt De Knittel | |
US5108177A (en) | 1990-09-12 | 1992-04-28 | Laserline, Inc. | Two-axis levelling instrument with a single pendulum for projecting a level laser beam |
US5063679A (en) * | 1990-10-10 | 1991-11-12 | Schwandt Bruce E | Protractor bubble level |
US5075977A (en) | 1990-10-22 | 1991-12-31 | Spectra-Physics, Inc. | Automatic plumb and level tool |
US5144487A (en) | 1991-09-03 | 1992-09-01 | Pacific Laser | Portable laser device for alignment tasks |
US5253421A (en) | 1991-10-31 | 1993-10-19 | Ake Landmark | Circle drawing kit apparatus |
US5366129A (en) | 1991-12-24 | 1994-11-22 | Midori Co., Ltd. | Tape cutter |
US5724744A (en) | 1993-04-07 | 1998-03-10 | Micro Italiana S.P.A. | Self-leveling device mounted on a rotating base for projecting laser rays |
US5606802A (en) | 1995-02-22 | 1997-03-04 | Kabushiki Kaisha Topcon | Laser gradient setting device |
US5450909A (en) | 1993-12-13 | 1995-09-19 | Stevenson; Robert | Grade determining method and apparatus |
US5754852A (en) | 1993-12-29 | 1998-05-19 | International Business Machines Corporation | Apparatus for combining cellular telephone ring signals and PSTN ring signals |
US5552886A (en) | 1994-03-01 | 1996-09-03 | Nikon Corporation | Laser beam transmitting apparatus |
JP3563457B2 (en) | 1994-08-30 | 2004-09-08 | 株式会社トプコン | Laser gradient setting device |
US5505000A (en) | 1994-08-30 | 1996-04-09 | Hein-Werner Corporation | Battery powered laser and mount system |
IT1275249B (en) | 1995-02-22 | 1997-07-31 | Micro Italiana Spa | PROJECTOR DEVICE OF ONE OR MORE FLAT BANDS OF DIVERGENT SELF-LEVELING GRAVITY LASER BEAMS FOR THE PROJECTION OF ONE OR MORE HORIZONTAL AND / OR VERTICAL STRAIGHT ON WALL OR SIMILAR BODIES |
US5539990A (en) | 1995-05-30 | 1996-07-30 | Le; Mike | Three-dimensional optical levelling, plumbing and angle-calibrating instrument |
US5584458A (en) | 1995-07-18 | 1996-12-17 | Levelite Technology, Inc. | Quick-action mount for self-leveling laser |
CH691931A5 (en) | 1995-12-21 | 2001-11-30 | Ammann Holding Ag | Laser leveling device and method for operating a laser leveling instrument and associated auxiliaries. |
DE19617212C1 (en) | 1996-04-30 | 1997-05-28 | Leica Ag | Laser level with instrument base and automatic fine levelling of laser beam |
US5829152A (en) | 1996-08-16 | 1998-11-03 | Anza Corporation | Integrated measuring and marking system |
US5842282A (en) | 1996-10-01 | 1998-12-01 | Opcom Inc. | Laser angle adjustment device for laser measuring instruments |
US5795001A (en) * | 1996-12-18 | 1998-08-18 | Burke; Stephen H. | Vacuum device for handling articles |
US5922931A (en) * | 1997-04-23 | 1999-07-13 | Dekalb Genetics Corporation | Soybean cultivar CX420c |
DE19804051B4 (en) | 1998-02-03 | 2004-10-28 | Robert Bosch Gmbh | distance measuring |
DE19810447A1 (en) | 1998-03-11 | 1999-09-16 | Hilti Ag | Suspension for measuring arrangement influenced by large forces e.g. level, inclinometer |
USD412674S (en) | 1998-04-07 | 1999-08-10 | The Stanley Works | Stud finder |
US6009630A (en) | 1998-04-21 | 2000-01-04 | Levelite Technology, Inc. | Reference laser projector with optional self-leveling mode |
US6073356A (en) | 1998-05-08 | 2000-06-13 | Li; Tianfu | Inclinometer |
US6163969A (en) | 1998-08-04 | 2000-12-26 | Quarton Inc. | 3D laser leveler |
USD418434S (en) | 1998-08-13 | 2000-01-04 | Zircon Corporation | Base for a laser level |
USD418432S (en) | 1998-08-13 | 2000-01-04 | Zircon Corporation | Laser level |
US5999346A (en) | 1998-08-14 | 1999-12-07 | Zircon Corporation | Laser adjustment mechanism |
USD415436S (en) | 1998-08-14 | 1999-10-19 | The Stanley Works | Laser torpedo level |
USD412857S (en) | 1998-09-04 | 1999-08-17 | The Stanley Works | Laser torpedo level |
US5956861A (en) | 1998-10-30 | 1999-09-28 | Barnes; Jeffrey R. | Wall mounted portable hair dryer holder |
US6427347B1 (en) | 1999-01-22 | 2002-08-06 | Roy Butler, Sr. | Line transfer instrument |
IT1307666B1 (en) | 1999-02-03 | 2001-11-14 | Micro Italiana Spa | PORTABLE SELF-LEVELING LASER BEAM DEVICE, PERFECTED |
US6157591A (en) | 1999-08-12 | 2000-12-05 | Zircon Corporation | Sonic range finder with laser pointer |
US20010029675A1 (en) | 1999-12-21 | 2001-10-18 | James Webb | Laser beam alignment device |
AU2343001A (en) * | 1999-12-29 | 2001-07-16 | Chuying Li | Laser plumbing and leveling instrument which adjusting height of horizontal line |
US20010049879A1 (en) | 2000-01-05 | 2001-12-13 | Moore Robert W. | Laser level and square |
US6926473B2 (en) | 2000-06-20 | 2005-08-09 | Actuant Corporation | Hand drill attachment |
USD455430S1 (en) | 2000-08-10 | 2002-04-09 | Zircon Corporation | Hand-held scanning tool |
US6301997B1 (en) | 2000-09-11 | 2001-10-16 | Gregory A. Welte | Positioning device for power-driven fastener |
US6612714B1 (en) | 2000-10-30 | 2003-09-02 | Streamlight, Inc. | Belt clip and mounting receptable, as for a flashlight |
EP1384091B1 (en) | 2001-02-22 | 2013-04-10 | Robert Bosch Company Limited | Detecting tool orientation, alignment, depth and leveling |
EP1357353B1 (en) | 2001-02-23 | 2013-07-17 | Black & Decker Inc. | Laser level |
FR2824392B3 (en) | 2001-05-07 | 2003-04-25 | Ying Chou Liao | LASER LEVEL |
US6735879B2 (en) | 2001-05-15 | 2004-05-18 | Irwin Industrial Tool Company | Laser line generating device |
US7513051B2 (en) * | 2001-05-15 | 2009-04-07 | Irwin Industrial Tool Company | Laser line generating device with graduated base |
US6757554B2 (en) * | 2001-05-22 | 2004-06-29 | Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California | Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution |
JP3532167B2 (en) | 2001-06-01 | 2004-05-31 | 株式会社オーディオテクニカ | Laser line light irradiation method and apparatus in laser marking device |
US20020193964A1 (en) | 2001-06-13 | 2002-12-19 | Hsu Chao Fa | Tape measurer having a recording device |
JP3487837B2 (en) | 2001-06-13 | 2004-01-19 | 株式会社オーディオテクニカ | Laser marking device |
JP3522239B2 (en) | 2001-07-02 | 2004-04-26 | 株式会社オーディオテクニカ | Wide angle laser line irradiation apparatus and method |
TW524308U (en) | 2001-08-10 | 2003-03-11 | Quarton Inc | Projection labeling device |
USD461135S1 (en) | 2001-10-18 | 2002-08-06 | Black & Decker Inc. | Laser level |
US6565227B1 (en) | 2001-11-13 | 2003-05-20 | Greg Davis | Method and device for tool alignment |
GB2383138B (en) | 2001-12-14 | 2006-07-26 | Black & Decker Inc | Projection device |
US20030218469A1 (en) | 2002-02-27 | 2003-11-27 | Brazell Kenneth M. | Multifunctional object sensor |
WO2003086700A1 (en) | 2002-04-18 | 2003-10-23 | Black & Decker Inc | Projection device |
US6914930B2 (en) | 2002-05-31 | 2005-07-05 | Black & Decker Inc. | Laser level |
US20060021237A1 (en) | 2002-05-31 | 2006-02-02 | Marshall James D | Measuring and leveling device |
US7031367B2 (en) | 2002-05-31 | 2006-04-18 | Black & Decker Inc. | Laser level |
US7027480B2 (en) | 2002-05-31 | 2006-04-11 | Black & Decker Inc. | Laser level |
US6763595B1 (en) | 2002-06-21 | 2004-07-20 | Pls - Pacific Laser Systems | Laser-based tool for indicating level, plumb and square |
US6804893B2 (en) | 2002-06-28 | 2004-10-19 | Black & Decker Inc. | Laser leveling system |
US6763596B1 (en) | 2002-08-23 | 2004-07-20 | Chicago Steel Tape Co. | Laser alignment device |
US20060013278A1 (en) | 2002-10-22 | 2006-01-19 | Raskin James R | Laser level |
US6968627B1 (en) | 2002-12-09 | 2005-11-29 | Mcallester Craig L | Slope determination system |
CN2588326Y (en) | 2002-12-27 | 2003-11-26 | 南京泉峰国际贸易有限公司 | Laser line marking device |
US6792685B1 (en) | 2003-03-06 | 2004-09-21 | National University Of Singapore | Stabilized laser plumb |
US6964545B1 (en) | 2003-03-27 | 2005-11-15 | Languasco Ronald S | Apparatus including flash light and bit holder for attachment to an electric drill |
US7044622B2 (en) * | 2003-03-31 | 2006-05-16 | Marshall Research | Apparatus for projecting a light beam through a transparent structure |
US6829834B1 (en) * | 2003-06-11 | 2004-12-14 | Zircon Corporation | Multi-angle self-leveling line generation |
US20060070251A1 (en) | 2003-11-12 | 2006-04-06 | Shuming Wu | Line-marking device with rotatable laser |
US6874239B1 (en) | 2004-01-06 | 2005-04-05 | Troy White | Self-holding and self-leveling device for survey range pole and method of use |
WO2005079480A2 (en) | 2004-02-19 | 2005-09-01 | Mindstorm Technologies Llc | Multiple laser laser level |
US7213342B2 (en) | 2004-03-22 | 2007-05-08 | Ideavillage Products Corp. | Wall mountable laser level |
US7181854B2 (en) * | 2004-08-17 | 2007-02-27 | Eastway Fair Company Limited | Laser leveling device having a suction mounting arrangement |
-
2004
- 2004-08-17 US US10/919,708 patent/US7181854B2/en not_active Expired - Lifetime
-
2005
- 2005-07-21 CA CA002512789A patent/CA2512789A1/en not_active Abandoned
- 2005-08-16 MX MXPA05008686A patent/MXPA05008686A/en unknown
-
2006
- 2006-02-07 US US11/349,038 patent/US7174648B2/en not_active Expired - Fee Related
- 2006-12-21 US US11/643,363 patent/US7260895B2/en not_active Expired - Fee Related
-
2007
- 2007-01-25 US US11/657,795 patent/US7322116B2/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2600857A (en) * | 1949-12-02 | 1952-06-17 | Mater Gayle E De La | Drill hole locating apparatus |
US2711030A (en) * | 1954-04-19 | 1955-06-21 | John F Drew | Measuring tape construction |
US2992487A (en) * | 1957-08-16 | 1961-07-18 | Owen A Miller | Measuring rule |
US3489324A (en) * | 1968-02-08 | 1970-01-13 | Borden Inc | Business office accessory |
US3675886A (en) * | 1970-11-05 | 1972-07-11 | Berol Corp | Manually releasable vacuum holding base construction |
US3724953A (en) * | 1972-02-07 | 1973-04-03 | Lansing Research Corp | Optical alignment device providing a virtual pivoting laser beam |
US3897637A (en) * | 1974-03-18 | 1975-08-05 | Robert Genho | Laser level and square |
US4992741A (en) * | 1986-03-27 | 1991-02-12 | The Stanley Works | Capacitive sensor and metal detector with a display for quantitatively displaying signals resulting from concealed objects |
US4912851A (en) * | 1988-04-08 | 1990-04-03 | Spectra-Physics, Inc. | Level/plumb indicator with tilt compensation |
US4907769A (en) * | 1988-11-04 | 1990-03-13 | Dreedco, Inc. | Flashlight holder |
US4924597A (en) * | 1989-09-26 | 1990-05-15 | Angelo Tursi | Tape measure device |
US5182863A (en) * | 1990-10-22 | 1993-02-02 | Spectra-Physics Laserplane, Inc. | Automatic plumb and level tool with acoustic measuring capability |
US5287627A (en) * | 1990-10-22 | 1994-02-22 | Spectra-Physics Laserplane, Inc. | Automatic plumb and level tool with acoustic measuring capability |
US5218770A (en) * | 1990-11-27 | 1993-06-15 | Asahi Seimitsu Kabushiki Kaisha | Surveying machine for construction work |
US5619128A (en) * | 1992-08-14 | 1997-04-08 | Zircon Corporation | Stud sensor with over-stud miscalibration via circuit which stores an initial calibration density, compares that to a current test density and outputs result via indicator |
US6023159A (en) * | 1992-08-14 | 2000-02-08 | Zircon Corporation | Stud sensor with dual sensitivity |
US5394616A (en) * | 1993-03-05 | 1995-03-07 | Claxton; Douglas | Laser positioning device |
US5619802A (en) * | 1993-08-27 | 1997-04-15 | Levelite Technology, Inc. | Automatic level and plumb tool |
US5541727A (en) * | 1993-08-27 | 1996-07-30 | Rando; Joseph F. | Automatic level and plumb tool |
US5524352A (en) * | 1993-08-27 | 1996-06-11 | Levelite Technology, Inc. | Automatic level and plumb tool |
US5400514A (en) * | 1994-02-22 | 1995-03-28 | Economy Laser, Inc. | Laser instrument for tracing reference lines and other geometric figures |
US5617202A (en) * | 1994-05-24 | 1997-04-01 | Levelite Technology, Inc. | Diode laser co-linear and intersecting light beam generator |
US6073353A (en) * | 1995-01-11 | 2000-06-13 | Kabushiki Kaisha Topcon | Laser leveling device |
US5531031A (en) * | 1995-01-20 | 1996-07-02 | Green; Kevin D. | Laser level and square |
US5519942A (en) * | 1995-03-02 | 1996-05-28 | Webb; James | Levelling and transit system |
US5617645A (en) * | 1995-05-02 | 1997-04-08 | William R. W. Wick | Non-contact precision measurement system |
US6262801B1 (en) * | 1995-05-25 | 2001-07-17 | Kabushiki Kaisha Topcon | Laser reference level setting device |
US5594993A (en) * | 1995-06-22 | 1997-01-21 | Builders Tools, Inc. | Hand-held builder's square and string line device incorporating a laser |
US5630517A (en) * | 1995-07-11 | 1997-05-20 | Maznik; Gary | Holder for hair styling tools and appliances |
US5905455A (en) * | 1995-08-11 | 1999-05-18 | Zircon Corporation | Dual transmitter visual display system |
US5621975A (en) * | 1995-08-22 | 1997-04-22 | Levelite Technology | Remotely controlled self-leveling laser instrument with modular capability |
US6178655B1 (en) * | 1995-10-16 | 2001-01-30 | Michael D. Potter | Marking attachment for measuring system |
US5713135A (en) * | 1995-10-31 | 1998-02-03 | Acopulos; Brad M. | Multi-purpose carpentry measuring device |
US5610711A (en) * | 1995-12-22 | 1997-03-11 | Levelite Technology Inc. | Remote pointing system for a self-leveling laser instrument |
US5872657A (en) * | 1996-05-31 | 1999-02-16 | Levelite Technology, Inc. | Construction laser accessory for generating aligned spots |
US5773721A (en) * | 1996-07-31 | 1998-06-30 | General Electric Company | Laser beam aiming apparatus for ultrasonic inspection |
US5917314A (en) * | 1996-08-08 | 1999-06-29 | Zircon Corporation | Electronic wall-stud sensor with three capacitive elements |
US6198271B1 (en) * | 1996-08-08 | 2001-03-06 | Zircon Corporation | Electronic wall-stud sensor display |
US6351890B1 (en) * | 1996-09-10 | 2002-03-05 | Nigel Emlyn Williams | Laser light referencing tool |
US5864956A (en) * | 1996-11-22 | 1999-02-02 | Dong; Dawei | Level line and limb line combination |
US5748306A (en) * | 1997-02-12 | 1998-05-05 | Louis; Daniel P. | Visual alignment instrument |
US5894675A (en) * | 1997-02-14 | 1999-04-20 | Cericola; Joseph | Combination tool |
US6035540A (en) * | 1997-07-10 | 2000-03-14 | Wu; Chyi-Yiing | Automatic optical levelling, plumbing, and verticality-determining apparatus |
US5859693A (en) * | 1997-08-26 | 1999-01-12 | Laser Technology, Inc. | Modularized laser-based survey system |
US6065217A (en) * | 1997-12-12 | 2000-05-23 | Dong; Dawei | Laser rotary double crossliner |
US6219931B1 (en) * | 1998-03-10 | 2001-04-24 | Northrop Grumman Corporation | Target base for a measuring system |
US6012229A (en) * | 1998-03-26 | 2000-01-11 | Shiao; Hsuan-Sen | Combined leveling device and laser pointer |
US6067152A (en) * | 1998-06-08 | 2000-05-23 | Levelite Technology, Inc. | Alignment range for multidirectional construction laser |
US5900931A (en) * | 1998-06-15 | 1999-05-04 | Levelite Technology, Inc. | Self-leveling system for optical distance measuring instruments |
US5917587A (en) * | 1998-06-23 | 1999-06-29 | Levelite Technology, Inc. | Automatic plumb laser beam generator |
US6037874A (en) * | 1998-06-30 | 2000-03-14 | Zircon Corporation | Electronic level with laser inclination indicator |
US6209219B1 (en) * | 1998-07-30 | 2001-04-03 | The Stanley Works | Measuring device with housing orientation indicator and position transferring focused light-beam source |
US6211662B1 (en) * | 1998-08-07 | 2001-04-03 | The Stanley Works | Hand-held hidden object sensor for sensing a location of objects hidden behind a surface of an architectural structure |
US20010007420A1 (en) * | 1998-08-07 | 2001-07-12 | The Stanley Works | Device for sensing and locating objects hidden behind accessible surfaces of architectural structures |
US6215293B1 (en) * | 1998-08-12 | 2001-04-10 | Solar Wide Industrial Limited | Portable stud detector for detecting wood, metal, and live wires |
USD418763S (en) * | 1998-08-13 | 2000-01-11 | Zircon Corporation | Laser alignment tool |
USD419149S (en) * | 1998-08-13 | 2000-01-18 | Zircon Corporation | Front casing portion of hand held scanning tool |
USD419545S (en) * | 1998-08-13 | 2000-01-25 | Zircon Corporation | Hand held scanning tool casing |
USD419546S (en) * | 1998-08-13 | 2000-01-25 | Zircon Corporation | Hand held scanning tool |
USD427166S (en) * | 1998-08-13 | 2000-06-27 | Zircon Corporation | Grip portion of hand held scanning tool |
USD419544S (en) * | 1998-08-13 | 2000-01-25 | Zircon Corporation | Display portion of a hand held scanning tool |
US6249113B1 (en) * | 1998-08-14 | 2001-06-19 | Zircon Corporation | Hand held sensor and display |
USD420972S (en) * | 1998-08-14 | 2000-02-22 | The Stanley Works | Rotating laser |
US6360446B1 (en) * | 1998-08-14 | 2002-03-26 | The Stanley Works | Level having a laser beam source |
US6202312B1 (en) * | 1999-03-08 | 2001-03-20 | Levelite Technology, Inc. | Laser tool for generating perpendicular lines of light on floor |
US6030091A (en) * | 1999-03-16 | 2000-02-29 | Li; Chih Lin | Tape rule with lighting device |
US6593754B1 (en) * | 1999-04-01 | 2003-07-15 | Actuant Corporation | Compact subsurface object locator |
US6674276B2 (en) * | 1999-04-01 | 2004-01-06 | Actuant Corporation | Surface object locator with level indicator and scribe tip |
US6382574B1 (en) * | 1999-04-28 | 2002-05-07 | Richard Pando | Self-mounting device to support articles |
US6223446B1 (en) * | 1999-05-05 | 2001-05-01 | Mark A. Potter | Grade/level measuring device |
US6259241B1 (en) * | 1999-06-22 | 2001-07-10 | Zircon Corporation | Projected display for portable sensor indicating the location of a detected hidden object behind a surface |
US6594910B2 (en) * | 1999-12-16 | 2003-07-22 | James Scott Wishart | Apparatus for and a method of providing a reference point or line |
US20020017028A1 (en) * | 1999-12-16 | 2002-02-14 | Wishart James Scott | Apparatus for and a method of providing a reference point or line |
US6532676B2 (en) * | 2000-03-09 | 2003-03-18 | Christopher L. Cunningham | Laser leveler |
USD455750S1 (en) * | 2000-08-10 | 2002-04-16 | Zircon Corporation | Hand-held scanning tool |
US6502319B1 (en) * | 2000-10-04 | 2003-01-07 | Levelite Technology, Inc. | Apparatus for producing a visible line of light on a surface |
US20020059735A1 (en) * | 2000-10-19 | 2002-05-23 | Ponce Felix C. | Tape measure with laser beam |
US6581296B2 (en) * | 2000-10-19 | 2003-06-24 | Felix C. Ponce | Tape measure with laser beam |
US20020069543A1 (en) * | 2000-12-04 | 2002-06-13 | Greg Owoc | Level with attachments |
US20020073561A1 (en) * | 2000-12-15 | 2002-06-20 | Ying Chou Liao | Laser level |
US6577388B2 (en) * | 2000-12-22 | 2003-06-10 | Stabila-Messgeräte Gustav Ullrich GmbH | Laser level with protective housing |
US20040031163A1 (en) * | 2001-02-23 | 2004-02-19 | Karim El-Katcha | Laser level |
USD476584S1 (en) * | 2001-02-23 | 2003-07-01 | Black & Decker Inc. | Laser level |
US6532675B2 (en) * | 2001-04-18 | 2003-03-18 | Guy Letourneau | Device for measuring the angle of orientation with reference to a known frame of reference between a first object having a first axis and a second remote destination |
USD469556S1 (en) * | 2001-08-08 | 2003-01-28 | American Tool Companies, Inc. | Laser projection tool |
US20030061720A1 (en) * | 2001-09-28 | 2003-04-03 | Reinhard Waibel | Self-leveling constructional laser |
US20030101605A1 (en) * | 2001-12-04 | 2003-06-05 | Tacklind Christopher A. | Servo-controlled automatic level and plumb tool |
US20030131491A1 (en) * | 2002-01-15 | 2003-07-17 | Peggy Weeks | Digital display tape measuring device |
USD470423S1 (en) * | 2002-03-01 | 2003-02-18 | American Tool Companies, Inc. | Manual leveling rotating laser with swivel head |
US20040004825A1 (en) * | 2002-03-01 | 2004-01-08 | Malard Fabrice J. | Manual leveling rotating laser with swivel head |
US20040000918A1 (en) * | 2002-06-28 | 2004-01-01 | Solar Wide Industrial Ltd. | Apparatus and method for locating objects behind a wall lining |
USD475938S1 (en) * | 2002-07-09 | 2003-06-17 | Black & Decker Inc. | Laser level |
USD474985S1 (en) * | 2002-07-24 | 2003-05-27 | Black & Decker Inc. | Laser level |
US6880256B2 (en) * | 2003-02-21 | 2005-04-19 | Paccar Inc | Alignment device |
US20050155238A1 (en) * | 2003-07-01 | 2005-07-21 | Levine Steven R. | Laser line generating device with swivel base |
US20050022399A1 (en) * | 2003-08-01 | 2005-02-03 | Wheeler Thomas J. | Laser level |
US20050066533A1 (en) * | 2003-08-01 | 2005-03-31 | Olympia Group, Inc. | Laser level |
US20060016083A1 (en) * | 2004-07-23 | 2006-01-26 | Index Measuring Tape Co., Ltd. | Level laser indicator |
US20060037203A1 (en) * | 2004-08-17 | 2006-02-23 | Long Charles K | Modular tool assembly having a vacuum mounting arrangement |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7181854B2 (en) * | 2004-08-17 | 2007-02-27 | Eastway Fair Company Limited | Laser leveling device having a suction mounting arrangement |
US7322116B2 (en) | 2004-08-17 | 2008-01-29 | Eastway Fair Company Limited | Laser leveling device having a suction mounting arrangement |
US20080052927A1 (en) * | 2006-09-05 | 2008-03-06 | Eastway Fair Company Limited | Self-leveling line generator |
US20080137339A1 (en) * | 2006-12-06 | 2008-06-12 | Nash Derek J | Laser guide |
US7966738B2 (en) * | 2006-12-06 | 2011-06-28 | Irwin Industrial Tool Company | Laser guide |
US20080244918A1 (en) * | 2007-04-04 | 2008-10-09 | Hung-Chi Hsu | Handsaw having alignment and calibration functions |
US20120068852A1 (en) * | 2010-09-20 | 2012-03-22 | Oleksiy Sergyeyenko | Tool system with mount configured to be removably coupled to a surface |
US8519861B2 (en) * | 2010-09-20 | 2013-08-27 | Black & Decker Inc. | Tool system with mount configured to be removably coupled to a surface |
WO2012109593A1 (en) * | 2011-02-11 | 2012-08-16 | OPS Solutions, LLC | Light guided assembly system and method |
US10528036B2 (en) | 2011-02-11 | 2020-01-07 | Ops Solutions Llc | Light guided assembly system and method |
US9658614B2 (en) | 2011-02-11 | 2017-05-23 | Ops Solutions Llc | Light guided assembly system and method |
US9965897B2 (en) | 2013-07-08 | 2018-05-08 | OPS Solutions, LLC | Eyewear operational guide system and method |
US9846034B2 (en) | 2014-01-23 | 2017-12-19 | Sure Hang, Llc | Adjustable laser leveling device with distance measuring lasers and self-leveling lasers and related method |
US9518823B2 (en) | 2014-01-23 | 2016-12-13 | Jayson Hill | Adjustable laser leveling device and method |
WO2015112692A1 (en) * | 2014-01-23 | 2015-07-30 | Hill Jayson | Adjustable laser leveling device and method |
WO2018009239A1 (en) * | 2016-07-07 | 2018-01-11 | Hill Jayson | A method and device for project layout using level laser lines projected onto work surface |
US10676211B2 (en) * | 2017-01-16 | 2020-06-09 | The Boeing Company | Remote optical control surface indication system |
US11175136B2 (en) * | 2018-03-09 | 2021-11-16 | Stanley Balck & Decker Inc. | Laser level |
US11287258B2 (en) * | 2019-01-16 | 2022-03-29 | Milwaukee Electric Tool Corporation | Laser projection tools and mounting accessories |
US11781865B2 (en) | 2019-01-16 | 2023-10-10 | Milwaukee Electric Tool Corporation | Laser projection tools and mounting accessories |
US11107236B2 (en) | 2019-04-22 | 2021-08-31 | Dag Michael Peter Hansson | Projected augmented reality interface with pose tracking for directing manual processes |
EP3842741A1 (en) * | 2019-12-24 | 2021-06-30 | Stanley Black & Decker, Inc. | Laser level system |
US11435181B2 (en) | 2019-12-24 | 2022-09-06 | Stanley Black & Decker Inc. | Laser level |
US11668566B2 (en) | 2019-12-24 | 2023-06-06 | Stanley Black & Decker Inc. | Laser level |
US11668565B2 (en) | 2019-12-24 | 2023-06-06 | Stanley Black & Decker Inc. | Laser level |
US20220290981A1 (en) * | 2021-03-10 | 2022-09-15 | Takisha Schulterbrandt | Apparatus and Method for Positioning a Cooking Instrument |
DE102023100317A1 (en) | 2022-01-08 | 2023-07-13 | Bülent Özcinar | Use of a laser mount to hold a laser indoors in buildings |
Also Published As
Publication number | Publication date |
---|---|
US20070240319A1 (en) | 2007-10-18 |
US20070101594A1 (en) | 2007-05-10 |
US7174648B2 (en) | 2007-02-13 |
MXPA05008686A (en) | 2006-03-28 |
CA2512789A1 (en) | 2006-02-17 |
US20060037202A1 (en) | 2006-02-23 |
US7322116B2 (en) | 2008-01-29 |
US7181854B2 (en) | 2007-02-27 |
US7260895B2 (en) | 2007-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7260895B2 (en) | Structure mountable assembly | |
US7191532B2 (en) | Modular tool assembly having a vacuum mounting arrangement | |
US6979155B2 (en) | Hand-held power tool having a detecting device | |
US7055252B2 (en) | Laser level with adjustable laser projection line | |
US4833782A (en) | Saber saw tracing light | |
US7918030B2 (en) | Cutting tools having lighting devices | |
EP0981037A1 (en) | Laser level | |
US9937565B2 (en) | Stud finder and laser level assembly for a power drill | |
US20070079516A1 (en) | Device for marking a straight line | |
CA2624782A1 (en) | Light line generating device | |
US8519861B2 (en) | Tool system with mount configured to be removably coupled to a surface | |
CN102686357B (en) | For guiding device and the using method thereof of cutting tool | |
US20050265033A1 (en) | Light device for attaching to various tools | |
CN100393482C (en) | Modular tool assembly with vacuum mounting | |
KR102381415B1 (en) | Level ruler with lighting | |
US20030014872A1 (en) | Pocket-sized picture hanger | |
CA2519991A1 (en) | Modular tool assembly having a vacuum mounting arrangement | |
TWM634925U (en) | table saw | |
US20080052926A1 (en) | Gravity dial level indicator for line generator | |
US20080052928A1 (en) | Self-leveling line generator | |
CN2924486Y (en) | Laser Leveling Device with Suction Mounting Structure | |
CN1979092A (en) | Laser Leveling Device with Suction Mounting Structure | |
JP2002120202A (en) | Circular saw | |
US20080062669A1 (en) | Gravity dial level indicator for line generator | |
CA2504467A1 (en) | Drywall measuring tape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTWAY FAIR COMPANY, VIRGIN ISLANDS, BRITISH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LONG, CHARLES KEITH;MCCRACKEN, ROBERT E.;MOORE, KEVIN A.;AND OTHERS;REEL/FRAME:017542/0645;SIGNING DATES FROM 20060415 TO 20060421 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: EASTWAY FAIR COMPANY LIMITED, VIRGIN ISLANDS, BRIT Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED ON REEL 017542 FRAME 0645;ASSIGNORS:LONG, CHARLES KEITH;MCCRACKEN, ROBERT E.;MOORE, KEVIN A.;AND OTHERS;REEL/FRAME:022527/0639;SIGNING DATES FROM 20060415 TO 20060421 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150213 |