US20060180500A1 - Upgrading of petroleum by combined ultrasound and microwave treatments - Google Patents
Upgrading of petroleum by combined ultrasound and microwave treatments Download PDFInfo
- Publication number
- US20060180500A1 US20060180500A1 US11/059,115 US5911505A US2006180500A1 US 20060180500 A1 US20060180500 A1 US 20060180500A1 US 5911505 A US5911505 A US 5911505A US 2006180500 A1 US2006180500 A1 US 2006180500A1
- Authority
- US
- United States
- Prior art keywords
- feedstock
- petroleum
- ultrasound
- emulsion
- aqueous liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003208 petroleum Substances 0.000 title claims abstract description 38
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 35
- 238000011282 treatment Methods 0.000 title abstract description 6
- 239000000839 emulsion Substances 0.000 claims abstract description 35
- 238000009835 boiling Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 15
- 239000012074 organic phase Substances 0.000 claims description 15
- 239000008346 aqueous phase Substances 0.000 claims description 13
- 239000010779 crude oil Substances 0.000 claims description 9
- 230000005855 radiation Effects 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 5
- 239000003995 emulsifying agent Substances 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 239000011593 sulfur Substances 0.000 abstract description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 14
- 239000000446 fuel Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 9
- 230000005484 gravity Effects 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 239000002826 coolant Substances 0.000 description 7
- -1 resides Substances 0.000 description 7
- 239000008186 active pharmaceutical agent Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 150000001983 dialkylethers Chemical class 0.000 description 6
- 239000002480 mineral oil Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 235000010446 mineral oil Nutrition 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000009210 therapy by ultrasound Methods 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229940097789 heavy mineral oil Drugs 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- HTZCNXWZYVXIMZ-UHFFFAOYSA-M benzyl(triethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1=CC=CC=C1 HTZCNXWZYVXIMZ-UHFFFAOYSA-M 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000003863 metallic catalyst Substances 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- QBVXKDJEZKEASM-UHFFFAOYSA-M tetraoctylammonium bromide Chemical compound [Br-].CCCCCCCC[N+](CCCCCCCC)(CCCCCCCC)CCCCCCCC QBVXKDJEZKEASM-UHFFFAOYSA-M 0.000 description 2
- RMGHERXMTMUMMV-UHFFFAOYSA-N 2-methoxypropane Chemical compound COC(C)C RMGHERXMTMUMMV-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- DUPIXUINLCPYLU-UHFFFAOYSA-N barium lead Chemical compound [Ba].[Pb] DUPIXUINLCPYLU-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 150000003983 crown ethers Chemical group 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- VNKYTQGIUYNRMY-UHFFFAOYSA-N methoxypropane Chemical compound CCCOC VNKYTQGIUYNRMY-UHFFFAOYSA-N 0.000 description 1
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000010745 number 4 fuel oil Substances 0.000 description 1
- 239000010746 number 5 fuel oil Substances 0.000 description 1
- 239000010747 number 6 fuel oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 150000004714 phosphonium salts Chemical group 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002760 rocket fuel Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- HQAITFAUVZBHNB-UHFFFAOYSA-N sodium;pentahydrate Chemical compound O.O.O.O.O.[Na] HQAITFAUVZBHNB-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- IPILPUZVTYHGIL-UHFFFAOYSA-M tributyl(methyl)azanium;chloride Chemical compound [Cl-].CCCC[N+](C)(CCCC)CCCC IPILPUZVTYHGIL-UHFFFAOYSA-M 0.000 description 1
- FLXZVVQJJIGXRS-UHFFFAOYSA-M trimethyl(octadecyl)azanium;hydroxide Chemical compound [OH-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C FLXZVVQJJIGXRS-UHFFFAOYSA-M 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 229910001456 vanadium ion Inorganic materials 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G32/00—Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
Definitions
- This invention resides in the field of petroleum and petroleum fractions, and is concerned in particular with reformation processes for upgrading petroleum by converting high-boiling components to lower-boiling products with ultrasound.
- Petroleum is the largest and most widely used natural resource in the world. Fuels for consumer and industrial use are derived from petroleum, as are the chemicals used as raw materials in a vast array of consumer and industrial products. The utility of petroleum is often expanded by upgrading the petroleum to remove sulfur in its various forms and to convert some of its high-boiling components to species of lower boiling points and lower molecular weight.
- One of the methods in the literature for achieving these conversions is the use of ultrasound. Disclosures of the treatment of petroleum and petroleum fractions by ultrasound are found in Yen et al., U.S. Pat. No. 6,402,939, issued Jun. 11, 2002; Gunnerman, U.S. Pat. No. 6,500,219, issued Dec. 31, 2002; Gunnerman, U.S. Pat. No.
- the ultrasound treatment in these disclosures is performed on aqueous emulsions of the petroleum.
- petroleum in its natural form is typically an emulsified mixture of oils, waxes, tars, salt, and mineral-laden water
- the emulsions in the disclosures referenced above are formed by adding water or an aqueous solution to the natural petroleum or to fractions of the petroleum.
- the emulsion on which ultrasound is performed contains considerably more water than is typically present in the native material.
- Ultrasound is typically applied to emulsions in which the organic:aqueous phase ratio is from about 25:1 to about 1:5 on a volume basis.
- petroleum or petroleum fraction is used herein to denote any carbonaceous liquid that is derived from petroleum and that is used to generate energy for any kind of use, including industrial uses, agricultural uses, commercial uses, governmental uses, and consumer uses. Included among these liquids are whole crude oil itself, automotive fuels such as gasoline, diesel fuel, jet fuel, and rocket fuel, and petroleum residuum-based fuel oils including bunker fuels and residual oils. Bunker fuels are heavy residual oils used as fuel by ships and industry and in large-scale heating installations. No. 6 fuel oil, which is also known as “Bunker C” fuel oil, is used in oil-fired power plants as the major fuel and is also used as a main propulsion fuel in deep draft vessels in the shipping industry. No.
- the heaviest fuel oil is the vacuum residuum from the fractional distillation, commonly referred to as “vacuum resid,” with a boiling point of 565° C. and above, which is used as asphalt and coker feed.
- the present invention is useful in reducing the sulfur content and lowering the molecular weights of any of these fuels and fuel oils.
- API gravity is used herein as it is among those skilled in the art of petroleum and petroleum-derived fuels. In general, the term represents a scale of measurement adopted by the American Petroleum Institute, the values on the scale increasing as specific gravity values decrease.
- the application of ultrasound in the practice of this invention is performed on an emulsion of the oil in an aqueous fluid.
- the aqueous fluid can be water or any aqueous solution.
- the relative amounts of the oil and aqueous phases in the emulsion may vary, and while the proportion may affect the efficiency of the process or the ease of handling the fluids, the relative amounts are not critical to this invention. In most cases, however, best results will be achieved when the volume ratio of organic phase to aqueous phase is from about 25:1 to about 1:5, preferably from about 20:1 to about 1:2, and most preferably from about 12:1 to about 1:1. A ratio that is presently preferred is 10:1.
- a hydroperoxide can be included in the emulsion as an optional additive, but is not critical to the success of the conversion. When a hydroperoxide is present, the amount can vary. In most cases, best results will be achieved with a hydroperoxide concentration of from about 10 ppm to about 100 ppm by weight, and preferably from about 15 ppm to about 50 ppm by weight, of the aqueous solution, particularly when the hydroperoxide is H 2 O 2 .
- H 2 O 2 amount is calculated as a component of the combined organic and aqueous phases
- H 2 O 2 concentration within the range of from about 0.0003% to about 0.03% by volume (as H 2 O 2 ), and preferably from about 0.001% to about 0.01%, of the combined phases.
- H 2 O 2 concentration within the range of from about 0.0003% to about 0.03% by volume (as H 2 O 2 ), and preferably from about 0.001% to about 0.01%, of the combined phases.
- the preferred concentrations will be those of equivalent molar amounts.
- a surface active agent or other emulsion stabilizer is included to stabilize the emulsion as the organic and aqueous phases are being prepared for the ultrasound exposure.
- Certain petroleum fractions contain surface active agents as naturally-occurring components of the fractions, and these agents may serve by themselves to stabilize the emulsion. In other cases, synthetic or non-naturally-occurring surface active agents can be added. Any of the wide variety of known materials that are effective as emulsion stabilizers can be used.
- McCutcheon's Volume 1 Emulsifiers & Detergents—1999 North American Edition, McCutcheon's Division, MC Publishing Co., Glen Rock, N.J., USA, and other published literature.
- Cationic, anionic and nonionic surfactants can be used.
- Preferred cationic species are quaternary ammonium salts, quaternary phosphonium salts and crown ethers.
- quaternary ammonium salts are tetrabutyl ammonium bromide, tetrabutyl ammonium hydrogen sulfate, tributylmethyl ammonium chloride, benzyltrimethyl ammonium chloride, benzyltriethyl ammonium chloride, methyltricaprylyl ammonium chloride, dodecyltrimethyl ammonium bromide, tetraoctyl ammonium bromide, cetyltrimethyl ammonium chloride, and trimethyloctadecyl ammonium hydroxide.
- Quaternary ammonium halides are useful in many systems, and the most preferred are dodecyltrimethyl ammonium bromide and tetraoctyl ammonium bromide.
- a further class of surface active agents are liquid aliphatic C 15 -C 20 hydrocarbons and mixtures of such hydrocarbons, preferably those having a specific gravity of at least about 0.82, and most preferably at least about 0.85.
- hydrocarbon mixtures that meet this description and are particularly convenient for use and readily available are mineral oils, preferably heavy or extra heavy mineral oil.
- mineral oil preferably heavy or extra heavy mineral oil.
- extra heavy mineral oil are well known in the art and are used herein in the same manner as they are commonly used in the art. Such oils are readily available from commercial chemicals suppliers throughout the world.
- the amount of mineral oil can vary and the optimal amount may depend on the grade of mineral oil, the composition of the petroleum or fraction being treated, the relative amounts of the aqueous and organic phases, and the operating conditions. Appropriate selection will be a matter of routine choice and adjustment to the skilled engineer. In the case of mineral oil, best and most efficient results will generally be obtained using a volume ratio of mineral oil to the organic phase of from about 0.00003 to about 0.003.
- dialkyl ether Another additive that is useful in forming and stabilizing the emulsion is a dialkyl ether.
- Preferred dialkyl ethers are those having a normal boiling point of at least 25° C. Both cyclic and acyclic ethers can be used, and are thus represented by the formula R 1 OR 2 in which R 1 and R 2 are either separate monovalent alkyl groups or are combined into a single divalent alkyl group, in either case either saturated or unsaturated but preferably saturated.
- R 1 OR 2 R 1 and R 2 are either separate monovalent alkyl groups or are combined into a single divalent alkyl group, in either case either saturated or unsaturated but preferably saturated.
- alkyl is used herein to include both saturated and unsaturated alkyl groups.
- R 1 and R 2 are two separate monovalent groups or one combined divalent group
- the total number of carbon atoms in R 1 and R 2 is from 3 to 7, preferably 3 to 6, and most preferably 4 to 6.
- the dialkyl ether is one whose molecular weight is at most about 100. Examples of dialkyl ethers that would be preferred in the practice of this invention are diethyl ether, methyl tertiary-butyl ether, methyl-n-propyl ether, and methyl isopropyl ether. The most preferred is diethyl ether.
- dialkyl ether When a dialkyl ether is used, its amount can vary. In most cases, however, best results will be obtained with a volume ratio of ether to the resid or other material to be treated that is within the range of from about 0.00003 to about 0.003, and preferably within the range of from about 0.0001 to about 0.001.
- the dialkyl ether can be added directly to either the resid or to the aqueous phase, but can also be first diluted in an appropriate solvent to facilitate the addition of the ether to either phase. In a presently preferred method, the ether is first dissolved in kerosene at 1 part by volume ether to 9 parts by volume kerosene, and the resulting solution is added to the resid prior to forming the emulsion.
- a metallic catalyst is a metallic catalyst.
- transition metal catalysts preferably metals having atomic numbers of 21 through 29, 39 through 47, and 57 through 79. Particularly preferred metals from this group are nickel, silver, tungsten (and tungstates), and combinations thereof.
- Fenton catalysts iron (ferrous salts) and metal ion catalysts in general such as iron (II), iron (III), copper (I), copper (II), chromium (III), chromium (VI), molybdenum, tungsten, and vanadium ions, are useful. Of these, iron (II), iron (III), copper (II), and tungsten catalysts are preferred.
- Fenton-type catalysts are preferred, while for others, tungstates are preferred.
- Tungstates include tungstic acid, substituted tungstic acids such as phosphotungstic acid, and metal tungstates.
- the metallic catalyst when present will be used in a catalytically effective amount, which means any amount that will enhance the progress of the reactions by which the resid or oil components are upgraded.
- the catalyst may be present as metal particles, pellets, screens, or any form that has high surface area and can be retained in the ultrasound chamber.
- preheating For heavy petroleum fractions, a further improvement in efficiency is often achievable by preheating the fraction, the aqueous fluid, or both, prior to forming the emulsion or to exposing the emulsion to ultrasound.
- the degree of preheating is not critical and can vary widely, the optimal degree depending on the particular starting material and the ratio of aqueous to organic phases. In general, best results will be obtained by preheating to a temperature within the range of from about 50° C. to about 100° C. For fuels with an API gravity of from about 20 to about 30, preheating is preferably done to a temperature of from about 50° C. to about 75° C., whereas for fuels with an API gravity of from about 8 to about 15, preheating is preferably done to a temperature of from about 85° C. to about 100° C.
- Ultrasound consists of soundlike waves at a frequency above the range of normal human hearing, i.e., above 20 kHz (20,000 cycles per second). Ultrasonic energy with frequencies as high as 10 gigahertz (10,000,000,000 cycles per second) has been generated, but for the purposes of this invention, useful results will be achieved with frequencies within the range of from about 10 kHz to about 100 MHz, and preferably within the range of from about 10 kHz to about 30 MHz. Ultrasonic waves can be generated from mechanical, electrical, electromagnetic, or thermal energy sources. The intensity of the sonic energy may also vary widely.
- the typical electromagnetic source is a magnetostrictive transducer which converts magnetic energy into ultrasonic energy by applying a strong alternating magnetic field to certain metals, alloys and ferrites.
- the typical electrical source is a piezoelectric transducer, which uses natural or synthetic single crystals (such as quartz) or ceramics (such as barium titanate or lead zirconate) and applies an alternating electrical voltage across opposite faces of the crystal or ceramic to cause an alternating expansion and contraction of crystal or ceramic at the impressed frequency.
- Ultrasound has wide applications in such areas as cleaning for the electronics, automotive, aircraft, and precision instruments industries, flow metering for closed systems such as coolants in nuclear power plants or for blood flow in the vascular system, materials testing, machining, soldering and welding, electronics, agriculture, oceanography, and medical imaging.
- the various methods of producing and applying ultrasonic energy, and commercial suppliers of ultrasound equipment, are well known among those skilled in ultrasound technology.
- ultrasound is administered by used of an ultrasonic transducer and an ultrasonic horn. Examples of ultrasonic transducers are disclosed in pending United States Published Patent Application No. US 2004-0227414 A1, published Nov. 18, 2004 (and its published PCT equivalent WO 2004/105085 A1, published Dec. 5, 2004); and pending U.S. patent application Ser. No. 10/994,166, filed Nov. 18, 2004, both of which are co-owned herewith.
- the exposure time of the emulsion to ultrasound is not critical to the practice or the success of the invention, and the optimal exposure time will vary according to the material being treated. In general, however, effective and useful results can be achieved with a relatively short exposure time. Best results will generally be obtained with exposure times ranging from about 8 seconds to about 150 seconds. For starting materials with API gravities of from about 20 to about 30, the preferred exposure time is from about 8 seconds to about 20 seconds, whereas for fuels with API gravities of from about 8 to about 15, the preferred exposure time is from about 100 seconds to about 150 seconds.
- Improvements in the efficiency and effectiveness of the process can in many cases be achieved by exposing the emulsion to ultrasound in a continuous process in a flow-through ultrasound chamber, and even further improvement can be achieved by recycling the organic phase to the chamber with a fresh supply of water. Recycle can be repeated for a total of three passes through the ultrasound chamber for even better results.
- the organic phase emerging from the ultrasound chamber can be subjected to a second stage ultrasound treatment in a separate chamber, and possibly a third stage ultrasound treatment in a third chamber, with a fresh supply of water to each chamber.
- Ultrasound typically generates heat, and in certain embodiments of this invention it is preferable to remove some of the generated heat to maintain control over the reaction.
- Heat can be removed by conventional means, such as a liquid coolant jacket or a coolant circulating through a cooling coil in the interior of the ultrasound chamber. Water at atmospheric pressure is an effective coolant for this process.
- the coolant may be at a temperature of about 50° C. or less, preferably about 20° C. or less, and more preferably within the range of from about ⁇ 5° C. to about 20° C. Suitable cooling methods or devices will be readily apparent to those skilled in the art.
- the pH of the emulsion for example, may range from as low as 1 to as high as 10, although best results are presently believed to be achieved within a pH range of 2 to 7.
- the pressure of the emulsion as it is exposed to ultrasound can likewise vary, ranging from subatmospheric (as low as 5 psia or 0.34 atmosphere) to as high as 3,000 psia (214 atmospheres), although preferably less than about 400 psia (27 atmospheres), and more preferably less than about 50 psia (3.4 atmospheres), and most preferably from about atmospheric pressure to about 50 psia.
- the microwave radiation that follows the ultrasound treatment can be achieved using conventional microwave generators can be used, and the frequency and power level are not critical. Increases in both frequency and power will provide greater speed in breaking the emulsion. In general, however, adequate results will be obtained using microwave radiation at a frequency of from about 900 MHz to about 2,500 MHz. Particularly preferred frequencies are 915 MHz and 2,450 MHz. In terms of the microwave power level, preferred levels are from about 100 watts to about 10,000 watts, and most preferably from about 500 watts to about 5,000 watts.
- the exposure time to the microwave radiation can vary as well, although preferred exposure times are from about 0.03 second to about 30 seconds, most preferably from about 0.1 second to about 1 second. In a currently preferred process, a microwave power level of 1,000 watts is used for an exposure time of 0.1 second to 1 second.
- the organic phase With the organic and aqueous phases thus exposed to microwave radiation, the organic phase is readily isolated and recovered from the aqueous phase by conventional means, examples of which are centrifuges, hydrocyclones, or simple decanting. The resulting organic phase is essentially water-free and the remaining aqueous phase can be recycled for treatment of fresh quantities of petroleum.
- the use of microwave radiation allows the phases to be separated without the addition of chemical de-emulsifying agents that are typically used in petroleum processing. These agents are typically hydrophilic surfactants and synthetic or natural flocculants. Examples are quaternary ammonium siloxanes, tannin, sodium silicate, sodium pentahydrate, and high molecular weight amines, acrylamies, acrylic acids, acrylates, and acrylate salts.
- the emulsion on which the processing stages of this invention are performed is generally a liquid-liquid emulsion of the petroleum and the aqueous liquid. Solids and gases that are often found in crude oil are preferably removed prior to the processing, although some gas will be formed during the ultrasound exposure due to the cavitation caused by the ultrasound.
- the various stages of the process as a whole can be performed either in a batchwise manner or in a continuous-flow operation. Continuous-flow operations are preferred.
- the ultrasound exposure is performed in a flow-through reactor with a cylindrical ultrasound horn extending into the reactor interior and the incoming emulsion impinging a flat end surface of the horn then flowing radially outward to the edges of the end surface and along the sides of the horn before leaving the reactor.
- a reactor of this description is disclosed in Gunnerman et al., United States Published Patent Application No. US 2004-0227414 A1, published Nov. 18, 2004 and its PCT equivalent, Published International Patent Application No. WO 2004/105085 A1, publication date Dec. 5, 2004.
- Microwave exposure is also preferably performed in a continuous manner by passing the ultrasound-treated emulsion through a plastic pipe positioned in a microwave chamber.
- a presently preferred pipe is 1.5 inch (3.8 cm) internal diameter, and 18 inches (46 cm) in length.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
The treatment of petroleum and petroleum fractions by ultrasound to reduce or eliminate the sulfur levels and to upgrade the material by lowering the boiling points of its various components is improved by the exposure of the treated emulsion to microwave energy to separate the phases.
Description
- 1. Field of the Invention
- This invention resides in the field of petroleum and petroleum fractions, and is concerned in particular with reformation processes for upgrading petroleum by converting high-boiling components to lower-boiling products with ultrasound.
- 2. Description of the Prior Art
- Petroleum is the largest and most widely used natural resource in the world. Fuels for consumer and industrial use are derived from petroleum, as are the chemicals used as raw materials in a vast array of consumer and industrial products. The utility of petroleum is often expanded by upgrading the petroleum to remove sulfur in its various forms and to convert some of its high-boiling components to species of lower boiling points and lower molecular weight. One of the methods in the literature for achieving these conversions is the use of ultrasound. Disclosures of the treatment of petroleum and petroleum fractions by ultrasound are found in Yen et al., U.S. Pat. No. 6,402,939, issued Jun. 11, 2002; Gunnerman, U.S. Pat. No. 6,500,219, issued Dec. 31, 2002; Gunnerman, U.S. Pat. No. 6,652,992, issued Nov. 25, 2003; Gunnerman, U.S. Pat. No. 6,827,844, issued Dec. 7, 2004; and United States Published Patent Application No. US 2004-0227414 A1, published Nov. 18, 2004 (and its PCT equivalent, Published International Patent Application No. WO 2004/105085 A1, publication date Dec. 5, 2004).
- The ultrasound treatment in these disclosures is performed on aqueous emulsions of the petroleum. While petroleum in its natural form is typically an emulsified mixture of oils, waxes, tars, salt, and mineral-laden water, the emulsions in the disclosures referenced above are formed by adding water or an aqueous solution to the natural petroleum or to fractions of the petroleum. As a result, the emulsion on which ultrasound is performed contains considerably more water than is typically present in the native material. Ultrasound is typically applied to emulsions in which the organic:aqueous phase ratio is from about 25:1 to about 1:5 on a volume basis.
- Of further possible relevance to this invention is literature disclosing the use of microwave energy for separating emulsions. Examples of these disclosures are found in Hudgins et al., U.S. Pat. No. 4,810,375, issued Mar. 7, 1989; Wolf et al., U.S. Pat. No. 4,853,119, issued Aug. 1, 1989; Samardzija et al., U.S. Pat. No. 4,853,507, issued Aug. 1, 1989; Samardzija et al., U.S. Pat. No. 4,855,695, issued Aug. 8, 1989; Hudgins et al., U.S. Pat. No. 4,889,639, issued Dec. 26, 1989; and Kartchner, U.S. Pat. No. 6,077,400, issued Jun. 20, 2000. The disclosures of all patents and published applications listed in this specification are incorporated herein by reference in their entirety. The typical material that is treated in these disclosures is a mixture of liquid, gas, and solids, the liquid phase being crude oil that contains water at the low levels naturally present from the source.
- It has now been discovered that petroleum and petroleum fractions, which are intended herein to encompass fossil fuels, crude oil, any distillation fractions of crude oil, and petroleum residua, can be efficiently upgraded by first adding water or an aqueous liquid to the petroleum or petroleum fraction to form an emulsion, then exposing the emulsion to ultrasound to cause the chemical conversions that result in the upgrading, and then exposing the treated emulsion to microwave energy to break the emulsion and separate the organic and aqueous phases. The organic phase is then recovered from the aqueous phase by conventional separation units. The result is an efficient recovery of an upgraded petroleum product without the need for costly de-emulsifying agents. These and other objects, advantages, features, and embodiments of the invention will become apparent from the description that follows.
- The term “petroleum or petroleum fraction” is used herein to denote any carbonaceous liquid that is derived from petroleum and that is used to generate energy for any kind of use, including industrial uses, agricultural uses, commercial uses, governmental uses, and consumer uses. Included among these liquids are whole crude oil itself, automotive fuels such as gasoline, diesel fuel, jet fuel, and rocket fuel, and petroleum residuum-based fuel oils including bunker fuels and residual oils. Bunker fuels are heavy residual oils used as fuel by ships and industry and in large-scale heating installations. No. 6 fuel oil, which is also known as “Bunker C” fuel oil, is used in oil-fired power plants as the major fuel and is also used as a main propulsion fuel in deep draft vessels in the shipping industry. No. 4 fuel oil and No. 5 fuel oil are used to heat large buildings such as schools, apartment buildings, and office buildings, and as a power source for large stationary marine engines. The heaviest fuel oil is the vacuum residuum from the fractional distillation, commonly referred to as “vacuum resid,” with a boiling point of 565° C. and above, which is used as asphalt and coker feed. The present invention is useful in reducing the sulfur content and lowering the molecular weights of any of these fuels and fuel oils.
- The properties of crude oil, resides, and other petroleum-derived oils that have been treated by ultrasound followed by microwave irradiation in accordance with this invention are significantly improved as a result of the combined ultrasound and microwave treatments. Included among these improved properties are the boiling point range and the API gravity. The term “API gravity” is used herein as it is among those skilled in the art of petroleum and petroleum-derived fuels. In general, the term represents a scale of measurement adopted by the American Petroleum Institute, the values on the scale increasing as specific gravity values decrease.
- The application of ultrasound in the practice of this invention is performed on an emulsion of the oil in an aqueous fluid. The aqueous fluid can be water or any aqueous solution. The relative amounts of the oil and aqueous phases in the emulsion may vary, and while the proportion may affect the efficiency of the process or the ease of handling the fluids, the relative amounts are not critical to this invention. In most cases, however, best results will be achieved when the volume ratio of organic phase to aqueous phase is from about 25:1 to about 1:5, preferably from about 20:1 to about 1:2, and most preferably from about 12:1 to about 1:1. A ratio that is presently preferred is 10:1.
- A hydroperoxide can be included in the emulsion as an optional additive, but is not critical to the success of the conversion. When a hydroperoxide is present, the amount can vary. In most cases, best results will be achieved with a hydroperoxide concentration of from about 10 ppm to about 100 ppm by weight, and preferably from about 15 ppm to about 50 ppm by weight, of the aqueous solution, particularly when the hydroperoxide is H2O2. Alternatively, when the H2O2 amount is calculated as a component of the combined organic and aqueous phases, best results will generally be achieved in most systems with an H2O2 concentration within the range of from about 0.0003% to about 0.03% by volume (as H2O2), and preferably from about 0.001% to about 0.01%, of the combined phases. For hydroperoxides other than H2O2, the preferred concentrations will be those of equivalent molar amounts.
- In certain embodiments of this invention, a surface active agent or other emulsion stabilizer is included to stabilize the emulsion as the organic and aqueous phases are being prepared for the ultrasound exposure. Certain petroleum fractions contain surface active agents as naturally-occurring components of the fractions, and these agents may serve by themselves to stabilize the emulsion. In other cases, synthetic or non-naturally-occurring surface active agents can be added. Any of the wide variety of known materials that are effective as emulsion stabilizers can be used. These materials are listed in various references such as McCutcheon's Volume 1: Emulsifiers & Detergents—1999 North American Edition, McCutcheon's Division, MC Publishing Co., Glen Rock, N.J., USA, and other published literature. Cationic, anionic and nonionic surfactants can be used. Preferred cationic species are quaternary ammonium salts, quaternary phosphonium salts and crown ethers. Examples of quaternary ammonium salts are tetrabutyl ammonium bromide, tetrabutyl ammonium hydrogen sulfate, tributylmethyl ammonium chloride, benzyltrimethyl ammonium chloride, benzyltriethyl ammonium chloride, methyltricaprylyl ammonium chloride, dodecyltrimethyl ammonium bromide, tetraoctyl ammonium bromide, cetyltrimethyl ammonium chloride, and trimethyloctadecyl ammonium hydroxide. Quaternary ammonium halides are useful in many systems, and the most preferred are dodecyltrimethyl ammonium bromide and tetraoctyl ammonium bromide.
- A further class of surface active agents are liquid aliphatic C15-C20 hydrocarbons and mixtures of such hydrocarbons, preferably those having a specific gravity of at least about 0.82, and most preferably at least about 0.85. Examples of hydrocarbon mixtures that meet this description and are particularly convenient for use and readily available are mineral oils, preferably heavy or extra heavy mineral oil. The terms “mineral oil,” “heavy mineral oil,” and “extra heavy mineral oil” are well known in the art and are used herein in the same manner as they are commonly used in the art. Such oils are readily available from commercial chemicals suppliers throughout the world. The amount of mineral oil can vary and the optimal amount may depend on the grade of mineral oil, the composition of the petroleum or fraction being treated, the relative amounts of the aqueous and organic phases, and the operating conditions. Appropriate selection will be a matter of routine choice and adjustment to the skilled engineer. In the case of mineral oil, best and most efficient results will generally be obtained using a volume ratio of mineral oil to the organic phase of from about 0.00003 to about 0.003.
- Another additive that is useful in forming and stabilizing the emulsion is a dialkyl ether. Preferred dialkyl ethers are those having a normal boiling point of at least 25° C. Both cyclic and acyclic ethers can be used, and are thus represented by the formula R1OR2 in which R1 and R2 are either separate monovalent alkyl groups or are combined into a single divalent alkyl group, in either case either saturated or unsaturated but preferably saturated. The term “alkyl” is used herein to include both saturated and unsaturated alkyl groups. Whether R1 and R2 are two separate monovalent groups or one combined divalent group, the total number of carbon atoms in R1 and R2 is from 3 to 7, preferably 3 to 6, and most preferably 4 to 6. In an alternative characterization, the dialkyl ether is one whose molecular weight is at most about 100. Examples of dialkyl ethers that would be preferred in the practice of this invention are diethyl ether, methyl tertiary-butyl ether, methyl-n-propyl ether, and methyl isopropyl ether. The most preferred is diethyl ether.
- When a dialkyl ether is used, its amount can vary. In most cases, however, best results will be obtained with a volume ratio of ether to the resid or other material to be treated that is within the range of from about 0.00003 to about 0.003, and preferably within the range of from about 0.0001 to about 0.001. The dialkyl ether can be added directly to either the resid or to the aqueous phase, but can also be first diluted in an appropriate solvent to facilitate the addition of the ether to either phase. In a presently preferred method, the ether is first dissolved in kerosene at 1 part by volume ether to 9 parts by volume kerosene, and the resulting solution is added to the resid prior to forming the emulsion.
- Another optional component of the system is a metallic catalyst. Examples are transition metal catalysts, preferably metals having atomic numbers of 21 through 29, 39 through 47, and 57 through 79. Particularly preferred metals from this group are nickel, silver, tungsten (and tungstates), and combinations thereof. In certain systems within the scope of this invention, Fenton catalysts (ferrous salts) and metal ion catalysts in general such as iron (II), iron (III), copper (I), copper (II), chromium (III), chromium (VI), molybdenum, tungsten, and vanadium ions, are useful. Of these, iron (II), iron (III), copper (II), and tungsten catalysts are preferred. For some systems, Fenton-type catalysts are preferred, while for others, tungstates are preferred. Tungstates include tungstic acid, substituted tungstic acids such as phosphotungstic acid, and metal tungstates. The metallic catalyst when present will be used in a catalytically effective amount, which means any amount that will enhance the progress of the reactions by which the resid or oil components are upgraded. The catalyst may be present as metal particles, pellets, screens, or any form that has high surface area and can be retained in the ultrasound chamber.
- For heavy petroleum fractions, a further improvement in efficiency is often achievable by preheating the fraction, the aqueous fluid, or both, prior to forming the emulsion or to exposing the emulsion to ultrasound. The degree of preheating is not critical and can vary widely, the optimal degree depending on the particular starting material and the ratio of aqueous to organic phases. In general, best results will be obtained by preheating to a temperature within the range of from about 50° C. to about 100° C. For fuels with an API gravity of from about 20 to about 30, preheating is preferably done to a temperature of from about 50° C. to about 75° C., whereas for fuels with an API gravity of from about 8 to about 15, preheating is preferably done to a temperature of from about 85° C. to about 100° C.
- Ultrasound consists of soundlike waves at a frequency above the range of normal human hearing, i.e., above 20 kHz (20,000 cycles per second). Ultrasonic energy with frequencies as high as 10 gigahertz (10,000,000,000 cycles per second) has been generated, but for the purposes of this invention, useful results will be achieved with frequencies within the range of from about 10 kHz to about 100 MHz, and preferably within the range of from about 10 kHz to about 30 MHz. Ultrasonic waves can be generated from mechanical, electrical, electromagnetic, or thermal energy sources. The intensity of the sonic energy may also vary widely. For the purposes of this invention, best results will generally be achieved with an intensity ranging from about 30 watts/cm2 to about 300 watts/cm2, or preferably from about 50 watts/cm2 to about 100 watts/cm2. The typical electromagnetic source is a magnetostrictive transducer which converts magnetic energy into ultrasonic energy by applying a strong alternating magnetic field to certain metals, alloys and ferrites. The typical electrical source is a piezoelectric transducer, which uses natural or synthetic single crystals (such as quartz) or ceramics (such as barium titanate or lead zirconate) and applies an alternating electrical voltage across opposite faces of the crystal or ceramic to cause an alternating expansion and contraction of crystal or ceramic at the impressed frequency. Ultrasound has wide applications in such areas as cleaning for the electronics, automotive, aircraft, and precision instruments industries, flow metering for closed systems such as coolants in nuclear power plants or for blood flow in the vascular system, materials testing, machining, soldering and welding, electronics, agriculture, oceanography, and medical imaging. The various methods of producing and applying ultrasonic energy, and commercial suppliers of ultrasound equipment, are well known among those skilled in ultrasound technology. In the presently preferred practice of the invention, ultrasound is administered by used of an ultrasonic transducer and an ultrasonic horn. Examples of ultrasonic transducers are disclosed in pending United States Published Patent Application No. US 2004-0227414 A1, published Nov. 18, 2004 (and its published PCT equivalent WO 2004/105085 A1, published Dec. 5, 2004); and pending U.S. patent application Ser. No. 10/994,166, filed Nov. 18, 2004, both of which are co-owned herewith.
- The exposure time of the emulsion to ultrasound is not critical to the practice or the success of the invention, and the optimal exposure time will vary according to the material being treated. In general, however, effective and useful results can be achieved with a relatively short exposure time. Best results will generally be obtained with exposure times ranging from about 8 seconds to about 150 seconds. For starting materials with API gravities of from about 20 to about 30, the preferred exposure time is from about 8 seconds to about 20 seconds, whereas for fuels with API gravities of from about 8 to about 15, the preferred exposure time is from about 100 seconds to about 150 seconds.
- Improvements in the efficiency and effectiveness of the process can in many cases be achieved by exposing the emulsion to ultrasound in a continuous process in a flow-through ultrasound chamber, and even further improvement can be achieved by recycling the organic phase to the chamber with a fresh supply of water. Recycle can be repeated for a total of three passes through the ultrasound chamber for even better results. Alternatively, the organic phase emerging from the ultrasound chamber can be subjected to a second stage ultrasound treatment in a separate chamber, and possibly a third stage ultrasound treatment in a third chamber, with a fresh supply of water to each chamber.
- Ultrasound typically generates heat, and in certain embodiments of this invention it is preferable to remove some of the generated heat to maintain control over the reaction. Heat can be removed by conventional means, such as a liquid coolant jacket or a coolant circulating through a cooling coil in the interior of the ultrasound chamber. Water at atmospheric pressure is an effective coolant for this process. When cooling is achieved by immersing the ultrasound chamber in a coolant bath or by use of a circulating coolant, the coolant may be at a temperature of about 50° C. or less, preferably about 20° C. or less, and more preferably within the range of from about −5° C. to about 20° C. Suitable cooling methods or devices will be readily apparent to those skilled in the art.
- Operating conditions in general for the practice of this invention can vary widely, depending on the material being treated and the manner of treatment. The pH of the emulsion, for example, may range from as low as 1 to as high as 10, although best results are presently believed to be achieved within a pH range of 2 to 7. The pressure of the emulsion as it is exposed to ultrasound can likewise vary, ranging from subatmospheric (as low as 5 psia or 0.34 atmosphere) to as high as 3,000 psia (214 atmospheres), although preferably less than about 400 psia (27 atmospheres), and more preferably less than about 50 psia (3.4 atmospheres), and most preferably from about atmospheric pressure to about 50 psia.
- The microwave radiation that follows the ultrasound treatment can be achieved using conventional microwave generators can be used, and the frequency and power level are not critical. Increases in both frequency and power will provide greater speed in breaking the emulsion. In general, however, adequate results will be obtained using microwave radiation at a frequency of from about 900 MHz to about 2,500 MHz. Particularly preferred frequencies are 915 MHz and 2,450 MHz. In terms of the microwave power level, preferred levels are from about 100 watts to about 10,000 watts, and most preferably from about 500 watts to about 5,000 watts. The exposure time to the microwave radiation can vary as well, although preferred exposure times are from about 0.03 second to about 30 seconds, most preferably from about 0.1 second to about 1 second. In a currently preferred process, a microwave power level of 1,000 watts is used for an exposure time of 0.1 second to 1 second.
- With the organic and aqueous phases thus exposed to microwave radiation, the organic phase is readily isolated and recovered from the aqueous phase by conventional means, examples of which are centrifuges, hydrocyclones, or simple decanting. The resulting organic phase is essentially water-free and the remaining aqueous phase can be recycled for treatment of fresh quantities of petroleum.
- The use of microwave radiation allows the phases to be separated without the addition of chemical de-emulsifying agents that are typically used in petroleum processing. These agents are typically hydrophilic surfactants and synthetic or natural flocculants. Examples are quaternary ammonium siloxanes, tannin, sodium silicate, sodium pentahydrate, and high molecular weight amines, acrylamies, acrylic acids, acrylates, and acrylate salts. The emulsion on which the processing stages of this invention are performed is generally a liquid-liquid emulsion of the petroleum and the aqueous liquid. Solids and gases that are often found in crude oil are preferably removed prior to the processing, although some gas will be formed during the ultrasound exposure due to the cavitation caused by the ultrasound.
- The various stages of the process as a whole can be performed either in a batchwise manner or in a continuous-flow operation. Continuous-flow operations are preferred. In a currently preferred system, the ultrasound exposure is performed in a flow-through reactor with a cylindrical ultrasound horn extending into the reactor interior and the incoming emulsion impinging a flat end surface of the horn then flowing radially outward to the edges of the end surface and along the sides of the horn before leaving the reactor. A reactor of this description is disclosed in Gunnerman et al., United States Published Patent Application No. US 2004-0227414 A1, published Nov. 18, 2004 and its PCT equivalent, Published International Patent Application No. WO 2004/105085 A1, publication date Dec. 5, 2004. Microwave exposure is also preferably performed in a continuous manner by passing the ultrasound-treated emulsion through a plastic pipe positioned in a microwave chamber. A presently preferred pipe is 1.5 inch (3.8 cm) internal diameter, and 18 inches (46 cm) in length. Crude oil at a throughput rate of 1,000 barrels per day, in the form of an emulsion of which 90% is the crude oil and 10% is water (by volume), is successfully treated in a unit of these dimensions.
- The foregoing is offered primarily for purposes of illustration. Further variations and modifications that still embody the concepts of the invention will be readily apparent to those skilled in the art.
Claims (13)
1. A process for treating a feedstock consisting of petroleum or a fraction thereof to convert components of said feedstock to products having boiling points that are lower than the boiling points of said components, said method comprising:
(a) combining said feedstock with an aqueous liquid to form an emulsion,
(b) exposing said emulsion to ultrasound,
(c) subsequent to step (b), irradiating said emulsion with microwave radiation to separate said emulsion into aqueous and organic phases, and
(d) recovering said organic phase.
2. The process of claim 1 wherein step (a) comprises combining said feedstock with said aqueous liquid at a (feedstock):(aqueous liquid) volume ratio of from about 25:1 to about 1:5.
3. The process of claim 1 wherein step (a) comprises combining said feedstock with said aqueous liquid at a (feedstock):(aqueous liquid) volume ratio of from about 20:1 to about 1:2.
4. The process of claim 1 wherein step (a) comprises combining said feedstock with said aqueous liquid at a (feedstock):(aqueous liquid) volume ratio of from about 12:1 to about 1:1.
5. The process of claim 1 wherein said feedstock is whole crude oil.
6. The process of claim 1 wherein said feedstock is a petroleum fraction.
7. The process of claim 1 wherein said feedstock is petroleum residuum.
8. The process of claim 1 wherein said microwave radiation of step (c) is at a frequency of from about 900 MHz to about 2,500 MHz.
9. The process of claim 1 wherein steps (b) and (c) are performed continuously in flow-through reactors.
10. The process of claim 1 wherein step (c) is performed at a power level of from about 100 watts to about 10,000 watts with an exposure time of from about 0.03 second to about 30 seconds.
11. The process of claim 1 wherein step (c) is performed at a power level of from about 500 watts to about 5,000 watts with an exposure time of from about 0.1 second to about 1 second.
12. The process of claim 1 wherein step (c) is performed in the absence of a chemical de-emulsifying agent.
13. The process of claim 1 wherein said ultrasound of step (b) is at a frequency of from about 10 kHz to about 30 kHz.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/059,115 US20060180500A1 (en) | 2005-02-15 | 2005-02-15 | Upgrading of petroleum by combined ultrasound and microwave treatments |
KR1020077020874A KR20070107120A (en) | 2005-02-15 | 2006-01-06 | Improvement of Petroleum Quality by Combined Treatment of Ultrasonic and Microwave |
CNA2006800111898A CN101155900A (en) | 2005-02-15 | 2006-01-06 | Upgrading of petroleum by combined ultrasound and microwave treatments |
RU2007134398/04A RU2361901C2 (en) | 2005-02-15 | 2006-01-06 | Increasing quality of oil by means of ultra-sonic and microwave frequency treatment |
PCT/US2006/000293 WO2006088567A2 (en) | 2005-02-15 | 2006-01-06 | Upgrading of petroleum by combined ultrasound and microwave treatments |
EP06717486A EP1848788A4 (en) | 2005-02-15 | 2006-01-06 | Upgrading of petroleum by combined ultrasound and microwave treatments |
CA002601578A CA2601578A1 (en) | 2005-02-15 | 2006-01-06 | Upgrading of petroleum by combined ultrasound and microwave treatments |
ARP060100399A AR053670A1 (en) | 2005-02-15 | 2006-02-03 | REFINING OIL THROUGH COMBINED TREATMENTS OF ULTRASOUNDS AND MICROWAVES |
NO20074551A NO20074551L (en) | 2005-02-15 | 2007-09-10 | Upgrading of petroleum by combined treatments with ultrasonic and microwaves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/059,115 US20060180500A1 (en) | 2005-02-15 | 2005-02-15 | Upgrading of petroleum by combined ultrasound and microwave treatments |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060180500A1 true US20060180500A1 (en) | 2006-08-17 |
Family
ID=36814593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/059,115 Abandoned US20060180500A1 (en) | 2005-02-15 | 2005-02-15 | Upgrading of petroleum by combined ultrasound and microwave treatments |
Country Status (9)
Country | Link |
---|---|
US (1) | US20060180500A1 (en) |
EP (1) | EP1848788A4 (en) |
KR (1) | KR20070107120A (en) |
CN (1) | CN101155900A (en) |
AR (1) | AR053670A1 (en) |
CA (1) | CA2601578A1 (en) |
NO (1) | NO20074551L (en) |
RU (1) | RU2361901C2 (en) |
WO (1) | WO2006088567A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080245741A1 (en) * | 2005-11-10 | 2008-10-09 | John Allen | Fuel Enhancement System for an Internal Combustion Engine |
US20090008293A1 (en) * | 2007-07-05 | 2009-01-08 | Richard Penrose | Ultrasonic Transducer and Horn Used in Oxidative Desulfurization of Fossil Fuels |
US20090223809A1 (en) * | 2007-07-05 | 2009-09-10 | Richard Penrose | Ultrasonic transducer and horn used in oxidative desulfurization of fossil fuels |
US20100193349A1 (en) * | 2009-01-30 | 2010-08-05 | Erik Braam | Ultrasonic Horn |
US20120305383A1 (en) * | 2010-01-15 | 2012-12-06 | Sergey Sorokin | Process for the treatment of crude oil and petroleum products |
CN103520959A (en) * | 2012-07-05 | 2014-01-22 | 中国石油化工股份有限公司 | Ultrasonic wave tank type demulsification device and method |
US20150041369A1 (en) * | 2013-08-08 | 2015-02-12 | 1555771 Alberta Ltd. | Method of treating crude oil with ultrasound vibrations and microwave energy |
US9555345B2 (en) | 2011-07-26 | 2017-01-31 | Saudi Arabian Oil Company | Dynamic demulsification system for use in a gas-oil separation plant |
US11203722B2 (en) * | 2017-02-12 | 2021-12-21 | Magëmä Technology LLC | Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101402877B (en) * | 2008-11-07 | 2011-12-21 | 山东大学 | Catalytic oxidation desulfuration method for gasoline |
MX2011006606A (en) | 2008-12-19 | 2011-09-27 | Xyleco Inc | Processing biomass. |
WO2013019142A1 (en) * | 2011-08-04 | 2013-02-07 | Fedotov Aleksandr Alekseevich | Method for de-watering a water-in-oil emulsion |
RU2710181C1 (en) * | 2019-08-06 | 2019-12-24 | Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") | System and method for electromagnetic phase separation of water-oil emulsion |
KR102704396B1 (en) * | 2021-12-20 | 2024-09-06 | (주)던브 | Methods of preparing spherical silicas and spherical silicas preparing therefrom |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582629A (en) * | 1982-03-29 | 1986-04-15 | Conoco Inc. | Use of microwave radiation in separating emulsions and dispersions of hydrocarbons and water |
US4810375A (en) * | 1988-03-28 | 1989-03-07 | Conoco Inc. | Microwave emulsion treater with oily water recycle for water load |
US4853119A (en) * | 1988-03-24 | 1989-08-01 | Conoco Inc. | Microwave emulsion treater with internal coalescer |
US4853507A (en) * | 1988-04-28 | 1989-08-01 | E. I. Dupont De Nemours & Company | Apparatus for microwave separation of emulsions |
US4855695A (en) * | 1988-04-29 | 1989-08-08 | E. I. Du Pont De Nemours & Company | Automated microwave tuning system for de-emulsifier systems |
US4889639A (en) * | 1988-06-16 | 1989-12-26 | Conoco Inc. | Microwave emulsion treater with controlled feed water content |
US5068027A (en) * | 1990-02-20 | 1991-11-26 | The Standard Oil Company | Process for upgrading high-boiling hydrocaronaceous materials |
US5110443A (en) * | 1989-02-14 | 1992-05-05 | Canadian Occidental Petroleum Ltd. | Converting heavy hydrocarbons into lighter hydrocarbons using ultrasonic reactor |
US6077400A (en) * | 1997-09-23 | 2000-06-20 | Imperial Petroleum Recovery Corp. | Radio frequency microwave energy method to break oil and water emulsions |
US6086830A (en) * | 1997-09-23 | 2000-07-11 | Imperial Petroleum Recovery Corporation | Radio frequency microwave energy applicator apparatus to break oil and water emulsion |
US6402939B1 (en) * | 2000-09-28 | 2002-06-11 | Sulphco, Inc. | Oxidative desulfurization of fossil fuels with ultrasound |
US6500219B1 (en) * | 2001-03-19 | 2002-12-31 | Sulphco, Inc. | Continuous process for oxidative desulfurization of fossil fuels with ultrasound and products thereof |
US6652992B1 (en) * | 2002-12-20 | 2003-11-25 | Sulphco, Inc. | Corrosion resistant ultrasonic horn |
US6716358B2 (en) * | 2001-03-09 | 2004-04-06 | Exxonmobil Research And Engineering Company | Demulsification of water-in-oil emulsions |
US20040227414A1 (en) * | 2003-05-16 | 2004-11-18 | Sulphco, Inc. | High-power ultrasound generator and use in chemical reactions |
US6827844B2 (en) * | 2002-10-23 | 2004-12-07 | Sulphco, Inc. | Ultrasound-assisted desulfurization of fossil fuels in the presence of dialkyl ethers |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3616375A (en) * | 1966-03-03 | 1971-10-26 | Inoue K | Method employing wave energy for the extraction of sulfur from petroleum and the like |
SU749399A1 (en) * | 1977-07-11 | 1980-07-23 | Башкирский государственный университет им.40-летия Октября | Plant for breaking emulsion |
EA003072B1 (en) * | 1998-09-16 | 2002-12-26 | Джеймс К. Жанблан | Desulfurization process |
-
2005
- 2005-02-15 US US11/059,115 patent/US20060180500A1/en not_active Abandoned
-
2006
- 2006-01-06 CN CNA2006800111898A patent/CN101155900A/en active Pending
- 2006-01-06 RU RU2007134398/04A patent/RU2361901C2/en not_active IP Right Cessation
- 2006-01-06 CA CA002601578A patent/CA2601578A1/en not_active Abandoned
- 2006-01-06 EP EP06717486A patent/EP1848788A4/en not_active Withdrawn
- 2006-01-06 WO PCT/US2006/000293 patent/WO2006088567A2/en active Application Filing
- 2006-01-06 KR KR1020077020874A patent/KR20070107120A/en not_active Withdrawn
- 2006-02-03 AR ARP060100399A patent/AR053670A1/en unknown
-
2007
- 2007-09-10 NO NO20074551A patent/NO20074551L/en not_active Application Discontinuation
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582629A (en) * | 1982-03-29 | 1986-04-15 | Conoco Inc. | Use of microwave radiation in separating emulsions and dispersions of hydrocarbons and water |
US4853119A (en) * | 1988-03-24 | 1989-08-01 | Conoco Inc. | Microwave emulsion treater with internal coalescer |
US4810375A (en) * | 1988-03-28 | 1989-03-07 | Conoco Inc. | Microwave emulsion treater with oily water recycle for water load |
US4853507A (en) * | 1988-04-28 | 1989-08-01 | E. I. Dupont De Nemours & Company | Apparatus for microwave separation of emulsions |
US4855695A (en) * | 1988-04-29 | 1989-08-08 | E. I. Du Pont De Nemours & Company | Automated microwave tuning system for de-emulsifier systems |
US4889639A (en) * | 1988-06-16 | 1989-12-26 | Conoco Inc. | Microwave emulsion treater with controlled feed water content |
US5110443A (en) * | 1989-02-14 | 1992-05-05 | Canadian Occidental Petroleum Ltd. | Converting heavy hydrocarbons into lighter hydrocarbons using ultrasonic reactor |
US5068027A (en) * | 1990-02-20 | 1991-11-26 | The Standard Oil Company | Process for upgrading high-boiling hydrocaronaceous materials |
US6077400A (en) * | 1997-09-23 | 2000-06-20 | Imperial Petroleum Recovery Corp. | Radio frequency microwave energy method to break oil and water emulsions |
US6086830A (en) * | 1997-09-23 | 2000-07-11 | Imperial Petroleum Recovery Corporation | Radio frequency microwave energy applicator apparatus to break oil and water emulsion |
US6402939B1 (en) * | 2000-09-28 | 2002-06-11 | Sulphco, Inc. | Oxidative desulfurization of fossil fuels with ultrasound |
US6716358B2 (en) * | 2001-03-09 | 2004-04-06 | Exxonmobil Research And Engineering Company | Demulsification of water-in-oil emulsions |
US6500219B1 (en) * | 2001-03-19 | 2002-12-31 | Sulphco, Inc. | Continuous process for oxidative desulfurization of fossil fuels with ultrasound and products thereof |
US6827844B2 (en) * | 2002-10-23 | 2004-12-07 | Sulphco, Inc. | Ultrasound-assisted desulfurization of fossil fuels in the presence of dialkyl ethers |
US6652992B1 (en) * | 2002-12-20 | 2003-11-25 | Sulphco, Inc. | Corrosion resistant ultrasonic horn |
US20040227414A1 (en) * | 2003-05-16 | 2004-11-18 | Sulphco, Inc. | High-power ultrasound generator and use in chemical reactions |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080245741A1 (en) * | 2005-11-10 | 2008-10-09 | John Allen | Fuel Enhancement System for an Internal Combustion Engine |
US7951288B2 (en) * | 2005-11-10 | 2011-05-31 | Jtech (Gb) Limited | Fuel enhancement system for an internal combustion engine |
US20090008293A1 (en) * | 2007-07-05 | 2009-01-08 | Richard Penrose | Ultrasonic Transducer and Horn Used in Oxidative Desulfurization of Fossil Fuels |
US20090223809A1 (en) * | 2007-07-05 | 2009-09-10 | Richard Penrose | Ultrasonic transducer and horn used in oxidative desulfurization of fossil fuels |
US7790002B2 (en) | 2007-07-05 | 2010-09-07 | Nevada Heat Treating, Inc. | Ultrasonic transducer and horn used in oxidative desulfurization of fossil fuels |
US7879200B2 (en) | 2007-07-05 | 2011-02-01 | Nevada Heat Treating, Inc. | Ultrasonic transducer and horn used in oxidative desulfurization of fossil fuels |
WO2010071818A3 (en) * | 2008-12-19 | 2010-09-30 | Nevada Heat Treating, Inc. | Ultrasonic transducer and horn used in oxidative desulfurization of fossil fuels |
US20100193349A1 (en) * | 2009-01-30 | 2010-08-05 | Erik Braam | Ultrasonic Horn |
US20120305383A1 (en) * | 2010-01-15 | 2012-12-06 | Sergey Sorokin | Process for the treatment of crude oil and petroleum products |
US9428699B2 (en) * | 2010-01-15 | 2016-08-30 | Sergey Sorokin | Process for the treatment of crude oil and petroleum products |
US9555345B2 (en) | 2011-07-26 | 2017-01-31 | Saudi Arabian Oil Company | Dynamic demulsification system for use in a gas-oil separation plant |
US10350515B2 (en) | 2011-07-26 | 2019-07-16 | Saudi Arabian Oil Company | Dynamic demulsification system for use in a gas-oil separation plant |
CN103520959A (en) * | 2012-07-05 | 2014-01-22 | 中国石油化工股份有限公司 | Ultrasonic wave tank type demulsification device and method |
US20150041369A1 (en) * | 2013-08-08 | 2015-02-12 | 1555771 Alberta Ltd. | Method of treating crude oil with ultrasound vibrations and microwave energy |
US9932526B2 (en) * | 2013-08-08 | 2018-04-03 | 1555771 Alberta Ltd. | Method of treating crude oil with ultrasound vibrations and microwave energy |
US11203722B2 (en) * | 2017-02-12 | 2021-12-21 | Magëmä Technology LLC | Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization |
Also Published As
Publication number | Publication date |
---|---|
CN101155900A (en) | 2008-04-02 |
AR053670A1 (en) | 2007-05-16 |
WO2006088567A2 (en) | 2006-08-24 |
RU2361901C2 (en) | 2009-07-20 |
RU2007134398A (en) | 2009-03-27 |
EP1848788A4 (en) | 2008-08-27 |
NO20074551L (en) | 2007-11-13 |
KR20070107120A (en) | 2007-11-06 |
EP1848788A2 (en) | 2007-10-31 |
CA2601578A1 (en) | 2006-08-24 |
WO2006088567A3 (en) | 2007-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1848788A2 (en) | Upgrading of petroleum by combined ultrasound and microwave treatments | |
RU2235754C1 (en) | Method for ultrasound-assisted oxidative desulfurization of fossil fuels | |
Margeta et al. | Ultrasound assisted oxidative desulfurization of model diesel fuel | |
US8197763B2 (en) | Ultrasound-assisted oxidative desulfurization of diesel fuel using quaternary ammonium fluoride and portable unit for ultrasound-assisted oxidative desulfurization | |
Sadatshojaie et al. | Applying ultrasonic fields to separate water contained in medium-gravity crude oil emulsions and determining crude oil adhesion coefficients | |
Jalali et al. | Intensification of oxidative desulfurization of gas oil by ultrasound irradiation: Optimization using Box–Behnken design (BBD) | |
WO2002102937A1 (en) | Method to treat emulsified hydrocarbon mixtures | |
RU2337749C1 (en) | Ultra-sound continuous-operation high-capacity reactor | |
WO2002103322A2 (en) | Method to liberate hydrocarbon fractions from hydrocarbon mixtures | |
US20030051988A1 (en) | Treatment of crude oil fractions, fossil fuels, and products thereof with ultrasound | |
WO2002102746A1 (en) | Method to upgrade hydrocarbon mixtures | |
US7300566B2 (en) | Conversion of petroleum resid to usable oils with ultrasound | |
Ye et al. | Desalting and dewatering of crude oil in ultrasonic standing wave field | |
EP1554362A2 (en) | Ultrasound-assisted desulfurization of fossil fuels in the presence of diakyl ethers | |
Sawarkar et al. | Use of ultrasound in petroleum residue upgradation | |
KR20070022765A (en) | High Throughput Continuous Flow Ultrasonic Reactor | |
WO2010117292A1 (en) | Method for reducing the viscosity of heavy oil-bearing fractions | |
MXPA06010562A (en) | Conversion of petroleum resid to usable oils with ultrasound | |
SU958471A1 (en) | Method for processing heavy petroleum residues | |
RU2186825C2 (en) | Method of raising octane number of straight-run gasoline | |
Tumanyan et al. | New Approaches to Modelling of Transformations in Dispersed Oil Systems Under Conditions Of Bubble Cavitations | |
Hamdaoui | Special Issue on “Innovative insights in sonochemical degradation of emerging pollutants in water” | |
Anufriev et al. | Effect of ultrasound waves on hydrogen sulfide stripping process (Russian) | |
VG Sister, ¹ ES Gridneva, ¹ and OV Abramov²* | Ultrasound-induced change in chemical properties of petroleum products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SULPHCO, INC., NEVADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUNNERMAN, RUDOLF W.;REEL/FRAME:016248/0806 Effective date: 20050506 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |