US20060165320A1 - Inlet port for a container made of geotextiles - Google Patents
Inlet port for a container made of geotextiles Download PDFInfo
- Publication number
- US20060165320A1 US20060165320A1 US10/541,134 US54113403A US2006165320A1 US 20060165320 A1 US20060165320 A1 US 20060165320A1 US 54113403 A US54113403 A US 54113403A US 2006165320 A1 US2006165320 A1 US 2006165320A1
- Authority
- US
- United States
- Prior art keywords
- port
- container
- patch
- sleeve
- textile fabric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/12—Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
- E02B3/122—Flexible prefabricated covering elements, e.g. mats, strips
- E02B3/127—Flexible prefabricated covering elements, e.g. mats, strips bags filled at the side
Definitions
- the invention relates to inlet ports for use with geotextile containers.
- Geotextile containers such as disclosed in U.S. Pat. No. 6,186,701, the entirety of which is herein incorporated by this reference, are known. Such containers are generally elongate in shape and formed of a strong, flexible, liquid permeable material, such as polypropylene.
- a sludge comprising both solid and liquid materials is fed through a port sleeve into the geotextile container, which functions as a filter.
- the liquid from the sludge permeates the geotextile container, while the geotextile container retains the solid material (a process called “dewatering”).
- the liquid may then be recycled and the solid material may be destroyed or reused for other purposes.
- waste sludge is fed into the geotextile container and dewatered.
- the liquid exiting the geotextile container may be collected and, in many cases, is clear and safe to use in other applications or to discharge into streams and rivers.
- the solid waste now trapped in the geotextile container may digest and may be easily accessed for use as fertilizer or other nutrients or may be recycled.
- a similar dewatering process may be used to contain and capture undesirable by-products from the pulp and paper manufacturing process. Sludge residue from the manufacturing process is fed into the geotextile container, where the solid residue will remain. The residue can then be burned or disposed in a landfill relatively inexpensively.
- the integrity of the geotextile container is obviously crucial. If the container ruptures or its integrity is at all compromised, undesirable and potentially hazardous material may be introduced into the environment.
- the containers are generally made of a material having sufficient tensile strength and wear resistance to withstand the pressure exerted by the sludge. While the material itself is generally durable, the seams where adjacent pieces of material are joined can be less reliable. The seams are subject to extreme tensile stress and thus, if a rupture is to occur, it typically does so at the seams.
- Geotextile containers generally have a port sleeve for filling the container with sludge.
- the port sleeve is typically made from the same material as the rest of the container.
- the sleeve is attached directly to the container by sewing one end of the sleeve to the periphery of a hole provided in the container.
- a hose or pipe that supplies the sludge material to the container is inserted into the port sleeve and the port sleeve may be cinched around the hose or pipe.
- the hose or pipe often moves and thus stretches and pulls on the port sleeve.
- the seam joining the port sleeve to the container may succumb to such stresses and fail.
- a geotextile container is needed having increased integrity at the port sleeve attachment area to minimize the likelihood of rupture.
- geotextile container port sleeves traditionally have been sewn directly to the container. If the container ruptures, it usually begins at the seam between the port sleeve and the container.
- This invention is directed to a geotextile container having strengthened port sleeve attachments.
- the integrity of the port sleeve of this invention is strengthened by incorporating an inlet port, having a port patch and a port sleeve, into a geotextile container.
- the inlet port is preferably made of a pliable material which renders attachment of the inlet port to the geotextile container easier and results in tighter, stronger seams between the inlet port and the geotextile container. With its stronger material and the resulting tighter seams, the inlet port and port patch are better able to withstand stresses and seams are less likely to rupture, thereby enhancing the integrity of the geotextile container.
- FIG. 1 is a partial perspective view of one embodiment of an inlet port attached to a geotextile container.
- FIG. 2 a is a partial perspective view of an embodiment of a seam that may be used to attach an inlet port to a geotextile container.
- FIG. 2 b is a partial perspective view of an alternative embodiment of a seam that may be used to attach an inlet port to a geotextile container.
- FIG. 2 c is a partial perspective view of another alternative embodiment of a seam that may be used to attach an inlet port to a geotextile container.
- FIG. 2 d is a partial perspective view of yet another alternative embodiment of a seam that may be used to attach an inlet port to a geotextile container.
- FIG. 3 is a perspective view of a geotextile container provided with an inlet port according to an embodiment of this invention.
- FIG. 1 illustrates one embodiment of an inlet port 10 attached to a geotextile container 12 .
- the inlet port 10 includes a port patch 14 and a port sleeve 16 .
- the inlet port 10 is preferably, but does not have to be, made from a material that is stronger and more pliable than the polypropylene material from which geotextile containers 12 are typically made. Any textile material, including, but not limited to, nylon and polyester, may be used to construct the inlet port 10 . Polyester is particularly well-suited to this application. While the port patch 14 and the port sleeve 16 may be integrally-formed from a single piece of fabric, they may also be provided as separate components that are attached together, as shown in FIG. 1 .
- both the port patch 14 and port sleeve 16 need not be constructed from the same material.
- both the port patch 14 and port sleeve 16 be made of polyester.
- the increased pliability of polyester renders attachment of the port sleeve 16 to the port patch 14 and the inlet port 10 to geotextile container 12 easier and results in tighter, stronger seams 19 , 26 between port patch 14 and port sleeve 16 and between inlet port 10 and geotextile container 12 , respectively.
- inlet port 10 is better able to withstand stresses and seams 19 , 26 are less likely to rupture.
- the entire geotextile container 12 can be made from a polyester material, manufacturing costs associated with geotextile containers may be minimized by constructing only the inlet port 10 , which is generally subjected to the most stress, with this more durable fabric.
- Manufacture of one embodiment of the geotextile container 12 of this invention requires (1) assembly of the inlet port 10 (assuming that the port sleeve and port patch are not integrally-formed) and (2) securing the inlet port 10 to the geotextile container 12 .
- a panel of fabric is first cut to form the port patch 14 .
- a hole (not shown), to which the port sleeve 16 will attach and through which material will flow into container 12 , is provided in port patch 14 .
- the size and shape of the hole will generally depend on, among other things, the size and shape of the port sleeve 16 and the amount of material required to secure the port sleeve 16 to the port patch 14 with the desired seam 19 and attachments means, such as stitching 17 .
- the size and shape of the port sleeve 16 will generally depend on the size and shape of the pipe or hose 18 supplying material to container 12 through the port sleeve 16 (see FIG. 1 ). While the port sleeve 16 may be formed in any shape that will receive a pipe or hose 18 , a substantially cylindrical-shaped port sleeve 16 will be suitable in most applications. Moreover, a port sleeve 16 having an eight (8) to twenty-four (24) inch diameter (and preferably an eighteen (18) inch diameter) will generally accommodate most pipe or hoses and be suitable in most applications.
- the port sleeve 16 can easily be cinched with a drawstring 22 (as shown in FIG. 1 ) to accommodate smaller pipes or hoses 18 without jeopardizing the integrity of, but rather ensuring that a tight seal is formed between, the pipe or hose 18 and port sleeve 16 .
- the inlet port 10 may be assembled by placing the port sleeve 16 over (or, alternatively, into) the hole in the port patch 14 and attaching it to the periphery of the hole using any attachment means that will ensure a bond with the strength necessary to withstand the pressures exerted on the port sleeve 16 and the port patch 14 , especially during filling.
- the port sleeve 16 may be attached to the port patch 14 by any suitable method, including, but not limited to, sewing, heat seaming, ultrasonic welding or gluing. Sewing the port sleeve 16 to port patch 14 at seam 19 with stitching 17 , as shown in FIG. 1 , has proven highly effective.
- the inlet port 10 (in particular, the port patch 14 ) may then be attached to the container 12 .
- the port sleeve 16 may be attached to the port patch 14 after the port patch 14 has been attached to the container 12 .
- the inlet port 10 may be integrated into the container 12 after the container 12 is formed.
- the container could be formed leaving a hole shaped to receive and attach with the port patch 14 .
- the container could be formed and then a portion of the container removed to receive the port patch 14 .
- economies of manufacture may be achieved, however, by integrating attachment of the port patch 14 with the formation of the container 12 .
- geotextile containers are often formed by attaching adjacent side edges of container panels 42 , 44 at side seam 60 and then mating the end edges of the panels at longitudinal seams 34 , 36 to form a geotextile container.
- the size and number of the container panels will obviously depend on the desired capacity of the container 12 .
- each container panel may be formed of multiple pieces of fabric secured together to form a single panel.
- the inlet port 10 may be integrated into container 12 manufacture by integrating the port patch 14 into a container panel and then attaching the container panels together to form container 12 .
- FIG. 3 illustrates a container 12 formed of three container panels 40 , 42 , 44 .
- the container panels 42 , 44 are joined at side seam 60 and longitudinal seams 34 , 36 .
- the inlet port 10 is shown integrated into container panel 40 , which is attached to panel 42 at side seam 62 .
- the port patch 14 may be of any size and shape to mate with the edges of panel 40 .
- the port patch 14 should be sized so that, when the port patch 14 is positioned between the end edges of panel 40 , the edges of the port patch material overlap with the container material by an amount sufficient to create the desired longitudinal seam 26 between the port patch 14 and the end edges of panel 40 .
- An overlap of at least six (6) inches has been found preferable, although not necessary. This overlap aids in preventing the port patch 14 from detaching from the edges of panel 40 when subjected to stress. While a rectilinear-shaped port patch 14 may prove the easiest to attach, any shaped port patch 14 may be used as long as it mates with the edges of panel 40 to form an integrated container panel.
- a port patch 14 of the same length (measured in the direction of longitudinal seam 26 ) as panel 40 is particularly suitable, as it may minimize the number of seams on the container 12 .
- a container panel 40 having a width of fifty (50) feet may be joined with an inlet port having a width of ten (10) feet.
- the panel 40 may be formed of two sections each having a width of twenty-five (25) feet.
- the inlet port 10 may be positioned anywhere on the container 12 , and any number of additional container panels or port patches may be added to the container 12 depending on the desired length and capacity of the container 12 .
- the port patch 14 and panel 40 may be attached by any method that will ensure a bond between port patch 14 and the container 12 that can withstand the pressure exerted at seam 26 , particularly during filling.
- the port patch 14 may be attached to the container 12 by heat seaming, gluing, ultrasonic welding or the like, but sewing has proven highly effective.
- the end panels of the container 12 may be closed off to enclose the geotextile container 12 and thereby allow the container to contain materials fed into it via inlet port 10 .
- the edges 70 , 72 of end panel 40 and the edges 74 , 76 of end panel 44 may be secured together (such as by, for example, sewing, heat seaming, gluing, ultrasonic welding, etc.) to enclose container 12 .
- any suitable attachment means for example, heat seaming, gluing, ultrasonic welding, etc.
- any suitable attachment means for example, heat seaming, gluing, ultrasonic welding, etc.
- Sewing the component parts together will generally result in bonds between the port sleeve 16 and port patch 14 and between the container 12 and port patch 14 with the strength necessary to withstand the pressures exerted on the inlet port 10 , especially during filling.
- FIGS. 1 and 3 show the port patch 14 sewn to the port sleeve 16 and to the container 12 at seams 19 , 26 with stitching 17 , 24 , respectively.
- the type of seam chosen may depend on, among other considerations, the particular use of the container 12 and the foreseeable stresses to which the container 12 , and particularly the inlet port 10 , may be subjected.
- the strength of the resulting seams 19 , 26 between the port sleeve 16 and the port patch 14 and between the container 12 and port patch 14 , respectively, can be impacted by a number of factors, including the type of seam, the type of stitch, the type of thread, and the stitch density.
- FIGS. 2 A-D illustrate examples of the types of seams that may be used in the manufacture of the geotextile container 12 of this invention.
- a “flat” or “prayer” seam 32 shown in FIG. 2A , is formed by placing together the facing edges of two textiles, for example, the facing edges of the port patch 14 and the geotextile container 12 .
- a “butterfly” seam 28 ( FIG. 2B ) is formed by placing together the facing edges of two textiles and then folding a portion of each textile back onto itself. This creates four layers of textile that can then be secured together.
- a “J” seam 30 ( FIG. 2C ) is formed by placing together the facing edges of two textiles and then folding a portion of both onto one of the textiles.
- the “J” seam 30 and “butterfly” seam 28 while generally more difficult to form than a prayer seam, are preferable in applications where stronger seams are necessary.
- An “overlap” seam 38 ( FIG. 2D ) is formed by overlapping the edges of two adjacent textiles and securing them together in the area of overlap.
- these seams may also be used to secure the port sleeve 16 to the port patch 14 , assuming the inlet port 10 is not integrally-formed.
- Any type of suitable stitching 17 , 24 that imparts sufficient strength to seams 19 , 26 may be used.
- a double-thread lockstitch has been found to be particularly effective.
- any thread that will provide sufficient seam strength may be used with this invention.
- Kevlar, nylon, polyester or polypropylene threads, among others, are all suitable.
- the ply and denier of the thread used may vary depending on the thread material and the seam strength desired.
- One thousand (1000) denier polyester thread has been found to be effective for stitching both the port sleeve 16 to the port patch 14 and the port patch 14 to the container 12 .
- nine (9) ply thread may be used in the looper, while twelve (12) ply thread is used in the needle.
- Any stitch density suitable to the particular material, thread and seam strength desired may be used as one with skill in the art will readily surmise. Stitches that are too close and/or thread tensions that are too tight tend to cut the geotextile material. Stitch densities of at least 4 to 5 stitches per inch have been found sufficient to impart the necessary strength to the seam. However, higher stitch densities may be desirable for use with geotextiles having heavier, tighter base yarns and lower stitch densities may be desirable for use with lighter geotextiles.
- a geotextile container may be provided with a plurality of inlet ports 10 distributed along its length. During a filling operation, all, some, or only one of the inlet ports 10 may be used. Some of the inlet ports 10 may be selectively closed or may serve as overpressure or over-flow valves. After filling, the inlet ports 10 may be tied off with drawstring 22 or other suitable means to close the geotextile container 12 and secure the filling material within the container 12 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bag Frames (AREA)
Abstract
A geotextile container (12) having strengthened port sleeve attachments. The integrity of the port sleeve of this invention is strengthened by incorporating an inlet port (10), having a port patch and a port sleeve, into a geotextile container (12). The inlet port is preferably made of a pliable material which renders attachment of the inlet port to the geotextile container easier and results in tighter, stronger seams between the inlet port and the geotextile container. With its stronger material and the resulting tighter seams, the inlet port and port patch are better able to withstand stresses and seams are less likely to rupture, thereby enhancing the integrity of the geotextile container.
Description
- The invention relates to inlet ports for use with geotextile containers.
- Geotextile containers, such as disclosed in U.S. Pat. No. 6,186,701, the entirety of which is herein incorporated by this reference, are known. Such containers are generally elongate in shape and formed of a strong, flexible, liquid permeable material, such as polypropylene. In use, a sludge comprising both solid and liquid materials is fed through a port sleeve into the geotextile container, which functions as a filter. The liquid from the sludge permeates the geotextile container, while the geotextile container retains the solid material (a process called “dewatering”). The liquid may then be recycled and the solid material may be destroyed or reused for other purposes.
- These containers are used in a variety of applications, such as waste, mining and mineral processing, and pulp and paper processing. For example, in animal waste processing, waste sludge is fed into the geotextile container and dewatered. The liquid exiting the geotextile container may be collected and, in many cases, is clear and safe to use in other applications or to discharge into streams and rivers. Moreover, the solid waste now trapped in the geotextile container may digest and may be easily accessed for use as fertilizer or other nutrients or may be recycled. A similar dewatering process may be used to contain and capture undesirable by-products from the pulp and paper manufacturing process. Sludge residue from the manufacturing process is fed into the geotextile container, where the solid residue will remain. The residue can then be burned or disposed in a landfill relatively inexpensively.
- The integrity of the geotextile container is obviously crucial. If the container ruptures or its integrity is at all compromised, undesirable and potentially hazardous material may be introduced into the environment. Thus, the containers are generally made of a material having sufficient tensile strength and wear resistance to withstand the pressure exerted by the sludge. While the material itself is generally durable, the seams where adjacent pieces of material are joined can be less reliable. The seams are subject to extreme tensile stress and thus, if a rupture is to occur, it typically does so at the seams.
- Geotextile containers generally have a port sleeve for filling the container with sludge. The port sleeve is typically made from the same material as the rest of the container. The sleeve is attached directly to the container by sewing one end of the sleeve to the periphery of a hole provided in the container. A hose or pipe that supplies the sludge material to the container is inserted into the port sleeve and the port sleeve may be cinched around the hose or pipe. During the filling process, the hose or pipe often moves and thus stretches and pulls on the port sleeve. Eventually the seam joining the port sleeve to the container may succumb to such stresses and fail.
- Accordingly a geotextile container is needed having increased integrity at the port sleeve attachment area to minimize the likelihood of rupture.
- As explained above, geotextile container port sleeves traditionally have been sewn directly to the container. If the container ruptures, it usually begins at the seam between the port sleeve and the container. This invention is directed to a geotextile container having strengthened port sleeve attachments. The integrity of the port sleeve of this invention is strengthened by incorporating an inlet port, having a port patch and a port sleeve, into a geotextile container. The inlet port is preferably made of a pliable material which renders attachment of the inlet port to the geotextile container easier and results in tighter, stronger seams between the inlet port and the geotextile container. With its stronger material and the resulting tighter seams, the inlet port and port patch are better able to withstand stresses and seams are less likely to rupture, thereby enhancing the integrity of the geotextile container.
-
FIG. 1 is a partial perspective view of one embodiment of an inlet port attached to a geotextile container. -
FIG. 2 a is a partial perspective view of an embodiment of a seam that may be used to attach an inlet port to a geotextile container. -
FIG. 2 b is a partial perspective view of an alternative embodiment of a seam that may be used to attach an inlet port to a geotextile container. -
FIG. 2 c is a partial perspective view of another alternative embodiment of a seam that may be used to attach an inlet port to a geotextile container. -
FIG. 2 d is a partial perspective view of yet another alternative embodiment of a seam that may be used to attach an inlet port to a geotextile container. -
FIG. 3 is a perspective view of a geotextile container provided with an inlet port according to an embodiment of this invention. -
FIG. 1 illustrates one embodiment of aninlet port 10 attached to ageotextile container 12. Theinlet port 10 includes aport patch 14 and aport sleeve 16. Theinlet port 10 is preferably, but does not have to be, made from a material that is stronger and more pliable than the polypropylene material from whichgeotextile containers 12 are typically made. Any textile material, including, but not limited to, nylon and polyester, may be used to construct theinlet port 10. Polyester is particularly well-suited to this application. While theport patch 14 and theport sleeve 16 may be integrally-formed from a single piece of fabric, they may also be provided as separate components that are attached together, as shown inFIG. 1 . If so, theport patch 14 andport sleeve 16 need not be constructed from the same material. However, given the benefits of polyester or other similar woven textiles, it is preferable, but not mandatory, that both theport patch 14 andport sleeve 16 be made of polyester. The increased pliability of polyester renders attachment of theport sleeve 16 to theport patch 14 and theinlet port 10 togeotextile container 12 easier and results in tighter,stronger seams port patch 14 andport sleeve 16 and betweeninlet port 10 andgeotextile container 12, respectively. With its stronger material and the resulting tighter seams,inlet port 10 is better able to withstand stresses andseams geotextile container 12 can be made from a polyester material, manufacturing costs associated with geotextile containers may be minimized by constructing only theinlet port 10, which is generally subjected to the most stress, with this more durable fabric. - Manufacture of one embodiment of the
geotextile container 12 of this invention requires (1) assembly of the inlet port 10 (assuming that the port sleeve and port patch are not integrally-formed) and (2) securing theinlet port 10 to thegeotextile container 12. - To create the
inlet port 10, a panel of fabric is first cut to form theport patch 14. A hole (not shown), to which theport sleeve 16 will attach and through which material will flow intocontainer 12, is provided inport patch 14. The size and shape of the hole will generally depend on, among other things, the size and shape of theport sleeve 16 and the amount of material required to secure theport sleeve 16 to theport patch 14 with the desiredseam 19 and attachments means, such asstitching 17. - The size and shape of the
port sleeve 16 will generally depend on the size and shape of the pipe orhose 18 supplying material tocontainer 12 through the port sleeve 16 (seeFIG. 1 ). While theport sleeve 16 may be formed in any shape that will receive a pipe orhose 18, a substantially cylindrical-shaped port sleeve 16 will be suitable in most applications. Moreover, aport sleeve 16 having an eight (8) to twenty-four (24) inch diameter (and preferably an eighteen (18) inch diameter) will generally accommodate most pipe or hoses and be suitable in most applications. Given the pliable nature of theinlet port 10 material, theport sleeve 16 can easily be cinched with a drawstring 22 (as shown inFIG. 1 ) to accommodate smaller pipes orhoses 18 without jeopardizing the integrity of, but rather ensuring that a tight seal is formed between, the pipe orhose 18 andport sleeve 16. - The
inlet port 10 may be assembled by placing theport sleeve 16 over (or, alternatively, into) the hole in theport patch 14 and attaching it to the periphery of the hole using any attachment means that will ensure a bond with the strength necessary to withstand the pressures exerted on theport sleeve 16 and theport patch 14, especially during filling. Theport sleeve 16 may be attached to theport patch 14 by any suitable method, including, but not limited to, sewing, heat seaming, ultrasonic welding or gluing. Sewing theport sleeve 16 to portpatch 14 atseam 19 withstitching 17, as shown inFIG. 1 , has proven highly effective. - The inlet port 10 (in particular, the port patch 14) may then be attached to the
container 12. One of skill in the art will understand, however, that theport sleeve 16 may be attached to theport patch 14 after theport patch 14 has been attached to thecontainer 12. - The
inlet port 10 may be integrated into thecontainer 12 after thecontainer 12 is formed. For example, the container could be formed leaving a hole shaped to receive and attach with theport patch 14. Alternatively, the container could be formed and then a portion of the container removed to receive theport patch 14. - Economies of manufacture may be achieved, however, by integrating attachment of the
port patch 14 with the formation of thecontainer 12. For example, geotextile containers are often formed by attaching adjacent side edges ofcontainer panels side seam 60 and then mating the end edges of the panels atlongitudinal seams container 12. Moreover, each container panel may be formed of multiple pieces of fabric secured together to form a single panel. - The
inlet port 10 may be integrated intocontainer 12 manufacture by integrating theport patch 14 into a container panel and then attaching the container panels together to formcontainer 12.FIG. 3 illustrates acontainer 12 formed of threecontainer panels container panels side seam 60 andlongitudinal seams inlet port 10 is shown integrated intocontainer panel 40, which is attached topanel 42 atside seam 62. Theport patch 14 may be of any size and shape to mate with the edges ofpanel 40. Generally, theport patch 14 should be sized so that, when theport patch 14 is positioned between the end edges ofpanel 40, the edges of the port patch material overlap with the container material by an amount sufficient to create the desiredlongitudinal seam 26 between theport patch 14 and the end edges ofpanel 40. An overlap of at least six (6) inches has been found preferable, although not necessary. This overlap aids in preventing theport patch 14 from detaching from the edges ofpanel 40 when subjected to stress. While a rectilinear-shapedport patch 14 may prove the easiest to attach, any shapedport patch 14 may be used as long as it mates with the edges ofpanel 40 to form an integrated container panel. - Although not necessary, a
port patch 14 of the same length (measured in the direction of longitudinal seam 26) aspanel 40 is particularly suitable, as it may minimize the number of seams on thecontainer 12. To manufacture a container having a sixty (60) foot circumference, acontainer panel 40 having a width of fifty (50) feet may be joined with an inlet port having a width of ten (10) feet. In another embodiment (not shown), thepanel 40 may be formed of two sections each having a width of twenty-five (25) feet. One of skill in the art will readily understand that the dimensions of any of the container panels or port patches may be varied depending on the application. Furthermore, theinlet port 10 may be positioned anywhere on thecontainer 12, and any number of additional container panels or port patches may be added to thecontainer 12 depending on the desired length and capacity of thecontainer 12. - The
port patch 14 andpanel 40 may be attached by any method that will ensure a bond betweenport patch 14 and thecontainer 12 that can withstand the pressure exerted atseam 26, particularly during filling. Theport patch 14 may be attached to thecontainer 12 by heat seaming, gluing, ultrasonic welding or the like, but sewing has proven highly effective. - When the desired number of container panels have been joined together, the end panels of the container 12 (in this case,
panels 40 and 44) may be closed off to enclose thegeotextile container 12 and thereby allow the container to contain materials fed into it viainlet port 10. For example, inFIG. 3 , theedges end panel 40 and theedges end panel 44 may be secured together (such as by, for example, sewing, heat seaming, gluing, ultrasonic welding, etc.) to enclosecontainer 12. - As explained above, any suitable attachment means (for example, heat seaming, gluing, ultrasonic welding, etc.) may be used to secure the
port sleeve 16 to theport patch 14 and theport patch 14 to thecontainer 12. Sewing the component parts together will generally result in bonds between theport sleeve 16 andport patch 14 and between thecontainer 12 andport patch 14 with the strength necessary to withstand the pressures exerted on theinlet port 10, especially during filling. For example,FIGS. 1 and 3 show theport patch 14 sewn to theport sleeve 16 and to thecontainer 12 atseams stitching container 12 and the foreseeable stresses to which thecontainer 12, and particularly theinlet port 10, may be subjected. The strength of the resultingseams port sleeve 16 and theport patch 14 and between thecontainer 12 andport patch 14, respectively, can be impacted by a number of factors, including the type of seam, the type of stitch, the type of thread, and the stitch density. - FIGS. 2A-D illustrate examples of the types of seams that may be used in the manufacture of the
geotextile container 12 of this invention. A “flat” or “prayer”seam 32, shown inFIG. 2A , is formed by placing together the facing edges of two textiles, for example, the facing edges of theport patch 14 and thegeotextile container 12. A “butterfly” seam 28 (FIG. 2B ) is formed by placing together the facing edges of two textiles and then folding a portion of each textile back onto itself. This creates four layers of textile that can then be secured together. A “J” seam 30 (FIG. 2C ) is formed by placing together the facing edges of two textiles and then folding a portion of both onto one of the textiles. The “J”seam 30 and “butterfly”seam 28, while generally more difficult to form than a prayer seam, are preferable in applications where stronger seams are necessary. An “overlap” seam 38 (FIG. 2D ) is formed by overlapping the edges of two adjacent textiles and securing them together in the area of overlap. One of skill in the art will understand that these seams, among others, may also be used to secure theport sleeve 16 to theport patch 14, assuming theinlet port 10 is not integrally-formed. - While any type of seam suitable to sew geotextile fabrics is suitable, the prayer and “J” seams have been found particularly effective in securing the
port sleeve 16 to theport patch 14 and the overlap and “J” seams have been found particularly effective for attaching theport patch 14 to thecontainer 12. - Any type of
suitable stitching seams port sleeve 16 to theport patch 14 and theport patch 14 to thecontainer 12. In particular, nine (9) ply thread may be used in the looper, while twelve (12) ply thread is used in the needle. - Any stitch density suitable to the particular material, thread and seam strength desired may be used as one with skill in the art will readily surmise. Stitches that are too close and/or thread tensions that are too tight tend to cut the geotextile material. Stitch densities of at least 4 to 5 stitches per inch have been found sufficient to impart the necessary strength to the seam. However, higher stitch densities may be desirable for use with geotextiles having heavier, tighter base yarns and lower stitch densities may be desirable for use with lighter geotextiles.
- A geotextile container may be provided with a plurality of
inlet ports 10 distributed along its length. During a filling operation, all, some, or only one of theinlet ports 10 may be used. Some of theinlet ports 10 may be selectively closed or may serve as overpressure or over-flow valves. After filling, theinlet ports 10 may be tied off withdrawstring 22 or other suitable means to close thegeotextile container 12 and secure the filling material within thecontainer 12. - The particular embodiments of the invention illustrated and described above are not limiting of the present invention, and those of skill in the art can readily determine that additional embodiments and features of the invention are within the scope of the appended claims and equivalents thereto.
Claims (20)
1. A flexible container formed of a textile fabric and having at least one inlet port comprising a port sleeve through which material is fed into the container and a port patch for attaching the port sleeve to the container.
2. The container of claim 1 , wherein at least a portion of the container is formed of a liquid permeable textile fabric.
3. The container of claim 1 , wherein the inlet port comprises a textile fabric different from the textile fabric of the container.
4. The container of claim 1 , wherein the textile fabric of the inlet port comprises polyester.
5. The container of claim 1 , wherein the port sleeve and the port patch are integrally-formed from a single piece of textile fabric.
6. The container of claim 5 , wherein the textile fabric of the port sleeve and port patch comprises polyester.
7. The container of claim 1 , wherein the port sleeve and port patch are not integrally-formed from a single piece of textile fabric.
8. The container of claim 7 , wherein the port sleeve and the port patch each comprises a textile fabric, wherein the textile fabric of the port sleeve is different from the textile fabric of the port patch.
9. The container of claim 8 , wherein the textile fabric of at least one of the port sleeve or the port patch comprises polyester.
10. The container of claim 7 , wherein the port patch is attached to the port sleeve by at least one of sewing, heat seaming, welding, or gluing the port patch and the port sleeve together.
11. The container of claim 1 , wherein the container comprises more than one inlet port.
12. The container of claim 1 , wherein the container further comprises multiple panels of the textile fabric secured together to form the container, wherein the port patch is attached to at least one of the panels.
13. The container of claim 12 , wherein the port patch is attached to at least one of the panels by at least one of sewing, heat seaming, or gluing the port patch to the at least one panel.
14. A method of forming a geotextile container comprising:
a. providing an inlet port comprising a port patch and a port sleeve;
b. providing multiple panels of textile fabric;
c. attaching the port patch to at least one of the panels;
d. securing the multiple panels together to form the container.
15. The method of claim 14 , wherein the inlet port comprises a textile fabric different from the textile fabric of the multiple panels.
16. The method of claim 15 , wherein the textile fabric of the inlet port comprises polyester.
17. The method of claim 14 , wherein the port patch and the port sleeve are integrally-formed from a single piece of textile fabric.
18. The method of claim 14 , wherein the port patch and the port sleeve are not integrally-formed from a single piece of textile fabric.
19. The method of claim 18 , wherein the port patch and port sleeve are attached together to form the inlet port.
20. A flexible container comprising:
a. multiple panels of a liquid permeable textile fabric, wherein the panels are secured together to form the container; and
b. at least one inlet port comprising a port sleeve through which material is fed into the container and a port patch for attaching the port sleeve to the container, wherein the port patch is attached to at least one of the panels and wherein the inlet port is formed from a textile fabric different from the textile fabric of the container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/541,134 US20060165320A1 (en) | 2003-01-02 | 2003-12-30 | Inlet port for a container made of geotextiles |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43766303P | 2003-01-02 | 2003-01-02 | |
PCT/US2003/041791 WO2004061241A1 (en) | 2003-01-02 | 2003-12-30 | Inlet port for a container made of geotextiles |
US10/541,134 US20060165320A1 (en) | 2003-01-02 | 2003-12-30 | Inlet port for a container made of geotextiles |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060165320A1 true US20060165320A1 (en) | 2006-07-27 |
Family
ID=32713215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/541,134 Abandoned US20060165320A1 (en) | 2003-01-02 | 2003-12-30 | Inlet port for a container made of geotextiles |
Country Status (3)
Country | Link |
---|---|
US (1) | US20060165320A1 (en) |
AU (1) | AU2003300179A1 (en) |
WO (1) | WO2004061241A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070111184A1 (en) * | 2005-10-24 | 2007-05-17 | Sperle Robin U | External booking cancellation |
US20080000922A1 (en) * | 2006-06-28 | 2008-01-03 | Michael Nevils | Water storage device |
US8088117B2 (en) | 2005-10-25 | 2012-01-03 | Nicolon Corporation | Fill port for a flexible container for relieving or distributing stresses at the fill port |
WO2012145660A1 (en) * | 2011-04-22 | 2012-10-26 | Manno James Joseph Jr | Specialized lined landfill system for the stabilization and containment of drilling wastes and coal combustion residues |
US20130048138A1 (en) * | 2011-08-25 | 2013-02-28 | Bradley Industrial Textiles, Inc. | Multi-ribbed geoxtextile tubes and segments thereof |
WO2020055969A1 (en) * | 2018-09-12 | 2020-03-19 | Robert Neal Alfred Hawkinson | Erosion control system |
US10707802B1 (en) | 2017-03-13 | 2020-07-07 | AquaEnergy, LLC | Pressurized pumped hydro storage system |
US20210340046A1 (en) * | 2020-04-29 | 2021-11-04 | Canadian National Railway Company | Device for dewatering and method of making same |
DE102020121558A1 (en) | 2020-08-17 | 2022-02-17 | Gerhard Peter | Arrangement with a pipe collar |
US11916508B1 (en) | 2017-03-13 | 2024-02-27 | Aquaenergy Llc | Underground pumped hydro storage |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3969667B1 (en) * | 2019-05-13 | 2023-09-27 | Rina Consulting S.p.A. | Geotube for coastal protection barrier and coastal protection barrier comprising the geotube |
Citations (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US649415A (en) * | 1899-09-28 | 1900-05-08 | William A Pleasants | Metal patch. |
US1211853A (en) * | 1913-08-01 | 1917-01-09 | Gurry E Huggins | Bag. |
US1623107A (en) * | 1926-09-18 | 1927-04-05 | Albert M Goodykoontz | Gasoline receptacle |
US1798094A (en) * | 1929-02-27 | 1931-03-24 | Malvern | Sack handle and filler |
US2057748A (en) * | 1935-12-24 | 1936-10-20 | Faith T Smith | Bag structure |
US2069715A (en) * | 1935-10-29 | 1937-02-02 | Beach Erosion Control Company | Artificial reef |
US2273398A (en) * | 1941-05-02 | 1942-02-17 | Flex O Tube Company | Flexible hose coupling |
US2620852A (en) * | 1950-10-14 | 1952-12-09 | Augustus D Forbush | Tire repair method |
US2639750A (en) * | 1951-03-07 | 1953-05-26 | Wingfoot Corp | Inflating means |
US2645591A (en) * | 1950-10-25 | 1953-07-14 | Sydney Thomas Corp | Method of bonding an end closure to a thermoplastic bag |
US2874697A (en) * | 1954-06-22 | 1959-02-24 | William T Sevald | Colostomy device |
US3122297A (en) * | 1961-10-23 | 1964-02-25 | Union Carbide Corp | Multi-ply liner bags |
US3643440A (en) * | 1968-02-28 | 1972-02-22 | Hoechst Ag | Device for reinforcing hydraulic structures |
US3653216A (en) * | 1970-04-09 | 1972-04-04 | Gray Tech Ind Inc | Method and apparatus for preventing erosion |
US3886751A (en) * | 1973-11-12 | 1975-06-03 | Jimenez Labora Mauricio Porraz | Aquatic construction module and method of forming thereof |
US4036674A (en) * | 1975-12-31 | 1977-07-19 | Labenz James W | Fabric repair tool |
US4040526A (en) * | 1976-03-26 | 1977-08-09 | International Paper Company | Dunnage bag |
US4049034A (en) * | 1976-07-14 | 1977-09-20 | Baxter Travenol Laboratories, Inc. | Attaching means and method for attaching flexible tubing to a plastic container |
US4146069A (en) * | 1977-07-29 | 1979-03-27 | Signode Corporation | Apparatus for rapidly inflating and pressurizing a dunnage bag |
US4150848A (en) * | 1977-09-09 | 1979-04-24 | Trelleborg Aktiebolag | Coupling for non-metallic hose |
US4295670A (en) * | 1980-06-11 | 1981-10-20 | Dixon Valve & Coupling Co. | Quick-disconnect cam locking safety coupling |
US4327726A (en) * | 1979-08-15 | 1982-05-04 | Baxter Travenol Laboratories, Inc. | Connector member for dissimilar materials |
US4434712A (en) * | 1982-02-26 | 1984-03-06 | Fabrico Manufacturing Corp. | Silo breather bag |
US4441627A (en) * | 1981-02-19 | 1984-04-10 | Don Fell Limited | Bag system for transportation of bulk liquids |
US4445551A (en) * | 1981-11-09 | 1984-05-01 | Bond Curtis J | Quick-disconnect coupling and valve assembly |
US4449847A (en) * | 1982-09-27 | 1984-05-22 | Nicolon Corporation | Revetment panel |
US4500153A (en) * | 1981-11-09 | 1985-02-19 | Matrix Science Corporation | Self-locking electrical connector |
US4690585A (en) * | 1985-01-17 | 1987-09-01 | Holmberg Dick L | Erosion control foundation mat and method |
US4702274A (en) * | 1986-06-17 | 1987-10-27 | Martinson Manufacturing Company, Inc. | Quick disconnect for sewage system |
US4768563A (en) * | 1987-10-29 | 1988-09-06 | Flexfab, Inc. | Quick-disconnect hose |
US4772134A (en) * | 1987-02-24 | 1988-09-20 | E. R. Squibb & Sons | Fluid container port connector mounting |
US4772152A (en) * | 1985-08-06 | 1988-09-20 | Nomix Manufacturing Co. Limited | Connector for conveying fluid |
US4784520A (en) * | 1986-12-01 | 1988-11-15 | Stevens C Leigh | Shoreline protecting system and apparatus |
US4802694A (en) * | 1987-10-26 | 1989-02-07 | Central Machine And Tool Co. | Quick-disconnect coupling |
US4817824A (en) * | 1986-12-08 | 1989-04-04 | Custom Packaging Systems, Inc. | Collapsible bulk container |
US4878446A (en) * | 1986-11-11 | 1989-11-07 | Nicolon B.V. | Method for the forming and the deposition in a selected place of a bulk |
US4925216A (en) * | 1987-04-09 | 1990-05-15 | E. R. Squibb And Sons, Inc. | Method and apparatus for attaching a catheter to a bag such as a wound drainage bag |
US4966491A (en) * | 1989-08-01 | 1990-10-30 | Sample Jay W | Subsurface dune protection system and method |
US4988119A (en) * | 1988-10-14 | 1991-01-29 | Irvin Automotive Products, Inc. | Vehicle occupant restraint system |
US5028987A (en) * | 1989-07-03 | 1991-07-02 | General Electric Company | High current hermetic package having a lead extending through the package lid and a packaged semiconductor chip |
US5030031A (en) * | 1990-02-01 | 1991-07-09 | Brown Howard L | Damming and barrier-forming device and method |
US5034254A (en) * | 1984-10-29 | 1991-07-23 | The Boeing Company | Blind-side panel repair patch |
US5059065A (en) * | 1991-01-25 | 1991-10-22 | David Doolaege | Apparatus and a method for joining water structure sections or the like |
US5121996A (en) * | 1987-11-04 | 1992-06-16 | Drg Flexpak Limited | Fluid containers and ports therefor |
US5158395A (en) * | 1985-01-17 | 1992-10-27 | Holmberg Dick L | Erosion control foundation mat and method |
US5232429A (en) * | 1991-02-07 | 1993-08-03 | Csir | Method and apparatus for making a continuous tube of flexible sheet material |
US5405217A (en) * | 1990-11-12 | 1995-04-11 | Dias; Alain | Device for erosion control |
US5465768A (en) * | 1994-03-01 | 1995-11-14 | Deroos; Bradley G. | Fluid transport container |
US5481790A (en) * | 1994-07-01 | 1996-01-09 | Clarus Technologies Corp. | Method for allowing selective access to the interior of fluid containment structures |
US5505557A (en) * | 1994-11-22 | 1996-04-09 | Bradley Industrial Textiles, Inc. | Geotextile container |
US5584599A (en) * | 1994-12-19 | 1996-12-17 | Knittel; Richard D. | Modular barrier system with interconnected sandbags |
US5605416A (en) * | 1995-03-27 | 1997-02-25 | Roach; Gary W. | Water, sediment and erosion control apparatus and methods |
US5651403A (en) * | 1992-09-14 | 1997-07-29 | Bates Emballage A/S | Pressurizable flexible-walled container having a snap closure for its filling nozzle |
US5669732A (en) * | 1995-06-19 | 1997-09-23 | Truitt; Willie W. | Self-closing interlocking sandbags and process for erecting dams therefrom |
US5826919A (en) * | 1996-09-16 | 1998-10-27 | S. Bravo Systems, Inc. | Flexible penetration fitting |
US5851072A (en) * | 1996-11-26 | 1998-12-22 | Custom Packaging Systems, Inc. | Spout construction for bulk box liquid liner |
US5853247A (en) * | 1997-05-27 | 1998-12-29 | Shroyer; John Bruce | Sample bag container |
US5865564A (en) * | 1997-05-23 | 1999-02-02 | Aqua-Barrier, Inc. | Water-fillable barrier |
US5902070A (en) * | 1997-06-06 | 1999-05-11 | Bradley Industrial Textiles, Inc. | Geotextile container and method of producing same |
US5971661A (en) * | 1997-07-30 | 1999-10-26 | Johnson; Harold Wayne | Water containment device and levee for impeding a flow of water |
US6013343A (en) * | 1997-09-15 | 2000-01-11 | Radke; Edgar Helge Fred | Patch for fabric air tubes |
US6126362A (en) * | 1999-03-01 | 2000-10-03 | Carter; Timothy L. | Pressure secured liquid damming protective bank device and method |
US6186701B1 (en) * | 1996-02-08 | 2001-02-13 | Ten Cate Nicolon B.V. | Elongate flexible container |
US6200067B1 (en) * | 1999-07-21 | 2001-03-13 | Martin Rangel Pena | Multi-purpose water bag assembly wall system and method |
US6264251B1 (en) * | 1999-10-15 | 2001-07-24 | Victaulic Company Of America | Segmented flange coupler for grooved pipe |
US20010009258A1 (en) * | 2000-01-19 | 2001-07-26 | Takahiro Wakayama | Liquid container |
US6334736B1 (en) * | 1997-07-30 | 2002-01-01 | Aqua Levee, Llc | Flood barrier |
US20020030055A1 (en) * | 2000-06-28 | 2002-03-14 | Maturana Javier Urzua | Storage bag |
US6364571B1 (en) * | 1997-09-22 | 2002-04-02 | David Doolaege | Flexible hydraulic structure with right angle tube fitted therethrough |
US20020131827A1 (en) * | 2001-03-13 | 2002-09-19 | Spangler J. Eric | Modular fiber log erosion and sediment control barrier |
US6460783B1 (en) * | 2001-08-02 | 2002-10-08 | Gilman O. Christopher | Turbo spray nozzle apparatus |
US6575629B1 (en) * | 2001-08-21 | 2003-06-10 | Paper Systems, Inc. | Collapsible bag |
US6623214B1 (en) * | 2002-05-02 | 2003-09-23 | Shiner Moseley & Associates, Inc. | Modification of geotextile tubes |
US6648549B1 (en) * | 1999-10-18 | 2003-11-18 | Humberto Urriola | Modular drainage channels |
US20040000792A1 (en) * | 2002-06-28 | 2004-01-01 | Carhuff Peter W. | Hose fitment for disposable food container |
US6739274B2 (en) * | 2001-04-11 | 2004-05-25 | Albany International Corp. | End portions for a flexible fluid containment vessel and a method of making the same |
US20050126874A1 (en) * | 2000-04-28 | 2005-06-16 | Gunnar Back | Torque transmitting apparatus |
US20060072969A1 (en) * | 2001-07-09 | 2006-04-06 | Henry K. Obermeyer | Water control apparatus |
US20070093776A1 (en) * | 2005-10-25 | 2007-04-26 | Stephens Thomas C | Methods, systems, and apparatus for a fill port for a flexible container |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8602875A (en) * | 1986-11-12 | 1988-06-01 | Nicolon Nv | METHOD FOR FORMING A BODY, FOR EXAMPLE, A BILD BODY, A PIPE BODY INTENDED FOR IT, AND A METHOD FOR MANUFACTURING SUCH A PIPE BODY. |
DE10311296A1 (en) * | 2002-03-28 | 2003-10-16 | Huesker Synthetic Gmbh | Container made of water-permeable fabric used in coastal water engineering for constructing dams/dikes comprises a filling opening for washing in earth or sand |
-
2003
- 2003-12-30 AU AU2003300179A patent/AU2003300179A1/en not_active Abandoned
- 2003-12-30 US US10/541,134 patent/US20060165320A1/en not_active Abandoned
- 2003-12-30 WO PCT/US2003/041791 patent/WO2004061241A1/en not_active Application Discontinuation
Patent Citations (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US649415A (en) * | 1899-09-28 | 1900-05-08 | William A Pleasants | Metal patch. |
US1211853A (en) * | 1913-08-01 | 1917-01-09 | Gurry E Huggins | Bag. |
US1623107A (en) * | 1926-09-18 | 1927-04-05 | Albert M Goodykoontz | Gasoline receptacle |
US1798094A (en) * | 1929-02-27 | 1931-03-24 | Malvern | Sack handle and filler |
US2069715A (en) * | 1935-10-29 | 1937-02-02 | Beach Erosion Control Company | Artificial reef |
US2057748A (en) * | 1935-12-24 | 1936-10-20 | Faith T Smith | Bag structure |
US2273398A (en) * | 1941-05-02 | 1942-02-17 | Flex O Tube Company | Flexible hose coupling |
US2620852A (en) * | 1950-10-14 | 1952-12-09 | Augustus D Forbush | Tire repair method |
US2645591A (en) * | 1950-10-25 | 1953-07-14 | Sydney Thomas Corp | Method of bonding an end closure to a thermoplastic bag |
US2639750A (en) * | 1951-03-07 | 1953-05-26 | Wingfoot Corp | Inflating means |
US2874697A (en) * | 1954-06-22 | 1959-02-24 | William T Sevald | Colostomy device |
US3122297A (en) * | 1961-10-23 | 1964-02-25 | Union Carbide Corp | Multi-ply liner bags |
US3643440A (en) * | 1968-02-28 | 1972-02-22 | Hoechst Ag | Device for reinforcing hydraulic structures |
US3653216A (en) * | 1970-04-09 | 1972-04-04 | Gray Tech Ind Inc | Method and apparatus for preventing erosion |
US3886751A (en) * | 1973-11-12 | 1975-06-03 | Jimenez Labora Mauricio Porraz | Aquatic construction module and method of forming thereof |
US4036674A (en) * | 1975-12-31 | 1977-07-19 | Labenz James W | Fabric repair tool |
US4040526A (en) * | 1976-03-26 | 1977-08-09 | International Paper Company | Dunnage bag |
US4049034A (en) * | 1976-07-14 | 1977-09-20 | Baxter Travenol Laboratories, Inc. | Attaching means and method for attaching flexible tubing to a plastic container |
US4146069A (en) * | 1977-07-29 | 1979-03-27 | Signode Corporation | Apparatus for rapidly inflating and pressurizing a dunnage bag |
US4150848A (en) * | 1977-09-09 | 1979-04-24 | Trelleborg Aktiebolag | Coupling for non-metallic hose |
US4327726A (en) * | 1979-08-15 | 1982-05-04 | Baxter Travenol Laboratories, Inc. | Connector member for dissimilar materials |
US4295670A (en) * | 1980-06-11 | 1981-10-20 | Dixon Valve & Coupling Co. | Quick-disconnect cam locking safety coupling |
US4441627A (en) * | 1981-02-19 | 1984-04-10 | Don Fell Limited | Bag system for transportation of bulk liquids |
US4445551A (en) * | 1981-11-09 | 1984-05-01 | Bond Curtis J | Quick-disconnect coupling and valve assembly |
US4500153A (en) * | 1981-11-09 | 1985-02-19 | Matrix Science Corporation | Self-locking electrical connector |
US4434712A (en) * | 1982-02-26 | 1984-03-06 | Fabrico Manufacturing Corp. | Silo breather bag |
US4449847A (en) * | 1982-09-27 | 1984-05-22 | Nicolon Corporation | Revetment panel |
US5034254A (en) * | 1984-10-29 | 1991-07-23 | The Boeing Company | Blind-side panel repair patch |
US4690585A (en) * | 1985-01-17 | 1987-09-01 | Holmberg Dick L | Erosion control foundation mat and method |
US5158395A (en) * | 1985-01-17 | 1992-10-27 | Holmberg Dick L | Erosion control foundation mat and method |
US4889446A (en) * | 1985-01-17 | 1989-12-26 | Holmberg Dick L | Erosion control foundation mat and method |
US4772152A (en) * | 1985-08-06 | 1988-09-20 | Nomix Manufacturing Co. Limited | Connector for conveying fluid |
US4702274A (en) * | 1986-06-17 | 1987-10-27 | Martinson Manufacturing Company, Inc. | Quick disconnect for sewage system |
US4878446A (en) * | 1986-11-11 | 1989-11-07 | Nicolon B.V. | Method for the forming and the deposition in a selected place of a bulk |
US4784520A (en) * | 1986-12-01 | 1988-11-15 | Stevens C Leigh | Shoreline protecting system and apparatus |
US4817824A (en) * | 1986-12-08 | 1989-04-04 | Custom Packaging Systems, Inc. | Collapsible bulk container |
US4772134A (en) * | 1987-02-24 | 1988-09-20 | E. R. Squibb & Sons | Fluid container port connector mounting |
US4925216A (en) * | 1987-04-09 | 1990-05-15 | E. R. Squibb And Sons, Inc. | Method and apparatus for attaching a catheter to a bag such as a wound drainage bag |
US4802694A (en) * | 1987-10-26 | 1989-02-07 | Central Machine And Tool Co. | Quick-disconnect coupling |
US4768563A (en) * | 1987-10-29 | 1988-09-06 | Flexfab, Inc. | Quick-disconnect hose |
US5121996A (en) * | 1987-11-04 | 1992-06-16 | Drg Flexpak Limited | Fluid containers and ports therefor |
US4988119A (en) * | 1988-10-14 | 1991-01-29 | Irvin Automotive Products, Inc. | Vehicle occupant restraint system |
US5028987A (en) * | 1989-07-03 | 1991-07-02 | General Electric Company | High current hermetic package having a lead extending through the package lid and a packaged semiconductor chip |
US4966491A (en) * | 1989-08-01 | 1990-10-30 | Sample Jay W | Subsurface dune protection system and method |
US5030031A (en) * | 1990-02-01 | 1991-07-09 | Brown Howard L | Damming and barrier-forming device and method |
US5405217A (en) * | 1990-11-12 | 1995-04-11 | Dias; Alain | Device for erosion control |
US5059065A (en) * | 1991-01-25 | 1991-10-22 | David Doolaege | Apparatus and a method for joining water structure sections or the like |
US5232429A (en) * | 1991-02-07 | 1993-08-03 | Csir | Method and apparatus for making a continuous tube of flexible sheet material |
US5651403A (en) * | 1992-09-14 | 1997-07-29 | Bates Emballage A/S | Pressurizable flexible-walled container having a snap closure for its filling nozzle |
US5465768A (en) * | 1994-03-01 | 1995-11-14 | Deroos; Bradley G. | Fluid transport container |
US5481790A (en) * | 1994-07-01 | 1996-01-09 | Clarus Technologies Corp. | Method for allowing selective access to the interior of fluid containment structures |
US5505557A (en) * | 1994-11-22 | 1996-04-09 | Bradley Industrial Textiles, Inc. | Geotextile container |
US5584599A (en) * | 1994-12-19 | 1996-12-17 | Knittel; Richard D. | Modular barrier system with interconnected sandbags |
US5605416A (en) * | 1995-03-27 | 1997-02-25 | Roach; Gary W. | Water, sediment and erosion control apparatus and methods |
US5669732A (en) * | 1995-06-19 | 1997-09-23 | Truitt; Willie W. | Self-closing interlocking sandbags and process for erecting dams therefrom |
US6186701B1 (en) * | 1996-02-08 | 2001-02-13 | Ten Cate Nicolon B.V. | Elongate flexible container |
US5826919A (en) * | 1996-09-16 | 1998-10-27 | S. Bravo Systems, Inc. | Flexible penetration fitting |
US5851072A (en) * | 1996-11-26 | 1998-12-22 | Custom Packaging Systems, Inc. | Spout construction for bulk box liquid liner |
US5865564A (en) * | 1997-05-23 | 1999-02-02 | Aqua-Barrier, Inc. | Water-fillable barrier |
US5853247A (en) * | 1997-05-27 | 1998-12-29 | Shroyer; John Bruce | Sample bag container |
US5902070A (en) * | 1997-06-06 | 1999-05-11 | Bradley Industrial Textiles, Inc. | Geotextile container and method of producing same |
US6056438A (en) * | 1997-06-06 | 2000-05-02 | Bradley Industrial Textiles, Inc. | Geotextile container and method of producing same |
US5971661A (en) * | 1997-07-30 | 1999-10-26 | Johnson; Harold Wayne | Water containment device and levee for impeding a flow of water |
US6334736B1 (en) * | 1997-07-30 | 2002-01-01 | Aqua Levee, Llc | Flood barrier |
US6013343A (en) * | 1997-09-15 | 2000-01-11 | Radke; Edgar Helge Fred | Patch for fabric air tubes |
US6364571B1 (en) * | 1997-09-22 | 2002-04-02 | David Doolaege | Flexible hydraulic structure with right angle tube fitted therethrough |
US6126362A (en) * | 1999-03-01 | 2000-10-03 | Carter; Timothy L. | Pressure secured liquid damming protective bank device and method |
US6200067B1 (en) * | 1999-07-21 | 2001-03-13 | Martin Rangel Pena | Multi-purpose water bag assembly wall system and method |
US6264251B1 (en) * | 1999-10-15 | 2001-07-24 | Victaulic Company Of America | Segmented flange coupler for grooved pipe |
US6648549B1 (en) * | 1999-10-18 | 2003-11-18 | Humberto Urriola | Modular drainage channels |
US20010009258A1 (en) * | 2000-01-19 | 2001-07-26 | Takahiro Wakayama | Liquid container |
US20050126874A1 (en) * | 2000-04-28 | 2005-06-16 | Gunnar Back | Torque transmitting apparatus |
US20020030055A1 (en) * | 2000-06-28 | 2002-03-14 | Maturana Javier Urzua | Storage bag |
US20020131827A1 (en) * | 2001-03-13 | 2002-09-19 | Spangler J. Eric | Modular fiber log erosion and sediment control barrier |
US6547493B2 (en) * | 2001-03-13 | 2003-04-15 | Fiber King, Llp | Modular fiber log erosion and sediment control barrier |
US6739274B2 (en) * | 2001-04-11 | 2004-05-25 | Albany International Corp. | End portions for a flexible fluid containment vessel and a method of making the same |
US20060072969A1 (en) * | 2001-07-09 | 2006-04-06 | Henry K. Obermeyer | Water control apparatus |
US7114879B2 (en) * | 2001-07-09 | 2006-10-03 | Henry K. Obermeyer | Water control gate and actuator therefore |
US6460783B1 (en) * | 2001-08-02 | 2002-10-08 | Gilman O. Christopher | Turbo spray nozzle apparatus |
US6575629B1 (en) * | 2001-08-21 | 2003-06-10 | Paper Systems, Inc. | Collapsible bag |
US6623214B1 (en) * | 2002-05-02 | 2003-09-23 | Shiner Moseley & Associates, Inc. | Modification of geotextile tubes |
US20040000792A1 (en) * | 2002-06-28 | 2004-01-01 | Carhuff Peter W. | Hose fitment for disposable food container |
US20070093776A1 (en) * | 2005-10-25 | 2007-04-26 | Stephens Thomas C | Methods, systems, and apparatus for a fill port for a flexible container |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070111184A1 (en) * | 2005-10-24 | 2007-05-17 | Sperle Robin U | External booking cancellation |
US8088117B2 (en) | 2005-10-25 | 2012-01-03 | Nicolon Corporation | Fill port for a flexible container for relieving or distributing stresses at the fill port |
US20080000922A1 (en) * | 2006-06-28 | 2008-01-03 | Michael Nevils | Water storage device |
US8807871B2 (en) | 2011-04-22 | 2014-08-19 | James Joseph Manno, JR. | Specialized lined landfill system for the stabilization and containment of drilling wastes and coal combustion residues |
WO2012145660A1 (en) * | 2011-04-22 | 2012-10-26 | Manno James Joseph Jr | Specialized lined landfill system for the stabilization and containment of drilling wastes and coal combustion residues |
US9163373B2 (en) * | 2011-08-25 | 2015-10-20 | Bradley Industrial Textiles, Inc. | Multi-ribbed geotextile tubes and segments thereof |
US20130048138A1 (en) * | 2011-08-25 | 2013-02-28 | Bradley Industrial Textiles, Inc. | Multi-ribbed geoxtextile tubes and segments thereof |
US10707802B1 (en) | 2017-03-13 | 2020-07-07 | AquaEnergy, LLC | Pressurized pumped hydro storage system |
US11916508B1 (en) | 2017-03-13 | 2024-02-27 | Aquaenergy Llc | Underground pumped hydro storage |
WO2020055969A1 (en) * | 2018-09-12 | 2020-03-19 | Robert Neal Alfred Hawkinson | Erosion control system |
US10837155B2 (en) | 2018-09-12 | 2020-11-17 | Robert Neal Alfred Hawkinson | Erosion control system |
US20210340046A1 (en) * | 2020-04-29 | 2021-11-04 | Canadian National Railway Company | Device for dewatering and method of making same |
DE102020121558A1 (en) | 2020-08-17 | 2022-02-17 | Gerhard Peter | Arrangement with a pipe collar |
Also Published As
Publication number | Publication date |
---|---|
AU2003300179A1 (en) | 2004-07-29 |
WO2004061241A1 (en) | 2004-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7891914B2 (en) | Geotextile tube | |
US20060165320A1 (en) | Inlet port for a container made of geotextiles | |
US8043477B2 (en) | Belt and method of making a belt for a paper making machine | |
KR870001801B1 (en) | Layer of multiful weaving fabric | |
AU701145B2 (en) | A tubular liner and a method for connecting ends liner tubes | |
CA1295161C (en) | Machine felt, and a method for manufacturing same | |
US5787936A (en) | Laminated papermaker's fabric having projecting seaming loops | |
JPH10510336A (en) | Fiber composite materials | |
US5397612A (en) | Cotton bale within a circular knit cotton bale cover | |
CN101613954A (en) | A kind of lining material for repairing pipelines and manufacture method thereof | |
CN100429349C (en) | Multi-layer woven seam baseweave having different sized seam attachments | |
US20090214822A1 (en) | Multilayered laminated fabric with single seam | |
US20210370640A1 (en) | Animal toy or blanket | |
KR100355215B1 (en) | The method and apparatus for manufacturing for bag | |
RU2005114748A (en) | STITCHABLE HALF-LAYER PRESSING FABRIC FROM MONOFIBERAL THREADS HAVING A SMALL THICKNESS | |
JP3673842B2 (en) | Sewing product manufacturing method | |
KR101251947B1 (en) | Geotube | |
KR101849317B1 (en) | Needlework Machine for High Strength Geotextile and the Geotextile | |
JP2008261162A (en) | Leakproof sewing method | |
DE43464C (en) | Process for producing a tight double lockstitch seam | |
CN102409635A (en) | Sausage Tube Bag with Radial Stiffness | |
JPH0920386A (en) | Container bag and its manufacturing method | |
JP2001120913A (en) | Stitching structure of slurry feed hole of filter cloth for center field type filter press | |
IE85900B1 (en) | An improved filter sock | |
IES84668Y1 (en) | An improved filter sock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |