US20060160154A1 - Materials and methods for detection and treatment of breast cancer - Google Patents
Materials and methods for detection and treatment of breast cancer Download PDFInfo
- Publication number
- US20060160154A1 US20060160154A1 US11/194,051 US19405105A US2006160154A1 US 20060160154 A1 US20060160154 A1 US 20060160154A1 US 19405105 A US19405105 A US 19405105A US 2006160154 A1 US2006160154 A1 US 2006160154A1
- Authority
- US
- United States
- Prior art keywords
- breast cancer
- seq
- protein
- mammal
- proteins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010006187 Breast cancer Diseases 0.000 title claims abstract description 239
- 208000026310 Breast neoplasm Diseases 0.000 title claims abstract description 238
- 238000000034 method Methods 0.000 title claims abstract description 112
- 238000001514 detection method Methods 0.000 title abstract description 27
- 238000011282 treatment Methods 0.000 title abstract description 16
- 239000000463 material Substances 0.000 title description 3
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 363
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 339
- 230000027455 binding Effects 0.000 claims abstract description 71
- 210000002966 serum Anatomy 0.000 claims description 35
- 210000001519 tissue Anatomy 0.000 claims description 35
- 241000124008 Mammalia Species 0.000 claims description 30
- 210000001124 body fluid Anatomy 0.000 claims description 27
- 239000010839 body fluid Substances 0.000 claims description 27
- 210000000481 breast Anatomy 0.000 claims description 19
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 7
- 210000003567 ascitic fluid Anatomy 0.000 claims description 6
- 108010032595 Antibody Binding Sites Proteins 0.000 claims description 5
- 206010036790 Productive cough Diseases 0.000 claims description 4
- 230000001851 biosynthetic effect Effects 0.000 claims description 4
- 210000004369 blood Anatomy 0.000 claims description 4
- 239000008280 blood Substances 0.000 claims description 4
- 210000003756 cervix mucus Anatomy 0.000 claims description 4
- 210000000416 exudates and transudate Anatomy 0.000 claims description 4
- 210000002381 plasma Anatomy 0.000 claims description 4
- 210000003802 sputum Anatomy 0.000 claims description 4
- 208000024794 sputum Diseases 0.000 claims description 4
- 210000002700 urine Anatomy 0.000 claims description 4
- 210000003296 saliva Anatomy 0.000 claims description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 2
- 210000002751 lymph Anatomy 0.000 claims 2
- 210000000582 semen Anatomy 0.000 claims 2
- 210000004243 sweat Anatomy 0.000 claims 2
- 210000001138 tear Anatomy 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 12
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 206010027476 Metastases Diseases 0.000 abstract description 2
- 239000003550 marker Substances 0.000 description 90
- 150000007523 nucleic acids Chemical class 0.000 description 73
- 210000004027 cell Anatomy 0.000 description 71
- 239000000523 sample Substances 0.000 description 61
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 53
- 108091034117 Oligonucleotide Proteins 0.000 description 41
- 108020004707 nucleic acids Proteins 0.000 description 41
- 102000039446 nucleic acids Human genes 0.000 description 41
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 35
- 239000001488 sodium phosphate Substances 0.000 description 34
- 229910000162 sodium phosphate Inorganic materials 0.000 description 34
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 34
- 239000003957 anion exchange resin Substances 0.000 description 30
- 230000014509 gene expression Effects 0.000 description 28
- 239000011780 sodium chloride Substances 0.000 description 27
- 238000001727 in vivo Methods 0.000 description 26
- 108091093037 Peptide nucleic acid Proteins 0.000 description 25
- 238000003556 assay Methods 0.000 description 23
- 239000000499 gel Substances 0.000 description 22
- 102000005221 Cleavage Stimulation Factor Human genes 0.000 description 18
- 108010081236 Cleavage Stimulation Factor Proteins 0.000 description 18
- 229910052759 nickel Inorganic materials 0.000 description 18
- 206010028980 Neoplasm Diseases 0.000 description 17
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 102000014914 Carrier Proteins Human genes 0.000 description 14
- 108020004414 DNA Proteins 0.000 description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 description 14
- 150000001413 amino acids Chemical class 0.000 description 14
- 108091008324 binding proteins Proteins 0.000 description 14
- 239000012634 fragment Substances 0.000 description 14
- 238000004949 mass spectrometry Methods 0.000 description 14
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 201000011510 cancer Diseases 0.000 description 13
- 108020004999 messenger RNA Proteins 0.000 description 13
- 230000000692 anti-sense effect Effects 0.000 description 12
- 239000002299 complementary DNA Substances 0.000 description 12
- 238000009396 hybridization Methods 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 12
- 150000003384 small molecules Chemical class 0.000 description 12
- 108700008625 Reporter Genes Proteins 0.000 description 11
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 11
- 230000000295 complement effect Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 238000013518 transcription Methods 0.000 description 11
- 230000035897 transcription Effects 0.000 description 11
- 238000013519 translation Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 239000000074 antisense oligonucleotide Substances 0.000 description 9
- 238000012230 antisense oligonucleotides Methods 0.000 description 9
- 239000012148 binding buffer Substances 0.000 description 9
- 239000000872 buffer Substances 0.000 description 9
- 239000003814 drug Substances 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 230000003211 malignant effect Effects 0.000 description 8
- 238000003752 polymerase chain reaction Methods 0.000 description 8
- 230000004568 DNA-binding Effects 0.000 description 7
- 108010001515 Galectin 4 Proteins 0.000 description 7
- 102100039556 Galectin-4 Human genes 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 238000002372 labelling Methods 0.000 description 6
- -1 peptidyl nucleic acid Chemical class 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 230000009870 specific binding Effects 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 102000009027 Albumins Human genes 0.000 description 5
- 108010088751 Albumins Proteins 0.000 description 5
- 102000036365 BRCA1 Human genes 0.000 description 5
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 5
- 108091006905 Human Serum Albumin Proteins 0.000 description 5
- 102000008100 Human Serum Albumin Human genes 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 5
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 5
- 102100034461 U2 small nuclear ribonucleoprotein B'' Human genes 0.000 description 5
- 101710181110 U2 small nuclear ribonucleoprotein B'' Proteins 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 238000002512 chemotherapy Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 238000011275 oncology therapy Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 239000012064 sodium phosphate buffer Substances 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 108700028369 Alleles Proteins 0.000 description 4
- 108700020463 BRCA1 Proteins 0.000 description 4
- 101150072950 BRCA1 gene Proteins 0.000 description 4
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 101710163270 Nuclease Proteins 0.000 description 4
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 4
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 4
- 101710120037 Toxin CcdB Proteins 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- YKCWQPZFAFZLBI-UHFFFAOYSA-N cibacron blue Chemical compound C1=2C(=O)C3=CC=CC=C3C(=O)C=2C(N)=C(S(O)(=O)=O)C=C1NC(C=C1S(O)(=O)=O)=CC=C1NC(N=1)=NC(Cl)=NC=1NC1=CC=CC=C1S(O)(=O)=O YKCWQPZFAFZLBI-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 201000000050 myeloid neoplasm Diseases 0.000 description 4
- 239000002853 nucleic acid probe Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- PCMORTLOPMLEFB-ONEGZZNKSA-N sinapic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-ONEGZZNKSA-N 0.000 description 4
- PCMORTLOPMLEFB-UHFFFAOYSA-N sinapinic acid Natural products COC1=CC(C=CC(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-UHFFFAOYSA-N 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 239000000439 tumor marker Substances 0.000 description 4
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 3
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 230000032823 cell division Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 101710194665 1-aminocyclopropane-1-carboxylate synthase Proteins 0.000 description 2
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 2
- 108700010154 BRCA2 Genes Proteins 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 102000008297 Nuclear Matrix-Associated Proteins Human genes 0.000 description 2
- 108010035916 Nuclear Matrix-Associated Proteins Proteins 0.000 description 2
- WSDRAZIPGVLSNP-UHFFFAOYSA-N O.P(=O)(O)(O)O.O.O.P(=O)(O)(O)O Chemical compound O.P(=O)(O)(O)O.O.O.P(=O)(O)(O)O WSDRAZIPGVLSNP-UHFFFAOYSA-N 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000004617 QSAR study Methods 0.000 description 2
- 238000010240 RT-PCR analysis Methods 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000023445 activated T cell autonomous cell death Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 208000035269 cancer or benign tumor Diseases 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000007541 cellular toxicity Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- OUDSFQBUEBFSPS-UHFFFAOYSA-N ethylenediaminetriacetic acid Chemical compound OC(=O)CNCCN(CC(O)=O)CC(O)=O OUDSFQBUEBFSPS-UHFFFAOYSA-N 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000002055 immunohistochemical effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 2
- 108010052968 leupeptin Proteins 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- 238000001668 nucleic acid synthesis Methods 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000004850 protein–protein interaction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 239000003656 tris buffered saline Substances 0.000 description 2
- 239000002753 trypsin inhibitor Substances 0.000 description 2
- 238000003160 two-hybrid assay Methods 0.000 description 2
- 238000010396 two-hybrid screening Methods 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 1
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 108091027075 5S-rRNA precursor Proteins 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 101710081722 Antitrypsin Proteins 0.000 description 1
- 101000639794 Arabidopsis thaliana U2 small nuclear ribonucleoprotein B'' 2 Proteins 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108700040618 BRCA1 Genes Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101150008921 Brca2 gene Proteins 0.000 description 1
- 206010006256 Breast hyperplasia Diseases 0.000 description 1
- 206010006272 Breast mass Diseases 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108010075016 Ceruloplasmin Proteins 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 208000033640 Hereditary breast cancer Diseases 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 108060005987 Kallikrein Proteins 0.000 description 1
- 102000001399 Kallikrein Human genes 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 101150007280 LEU2 gene Proteins 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 101000989950 Otolemur crassicaudatus Hemoglobin subunit alpha-A Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 101150080074 TP53 gene Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000050760 Vitamin D-binding protein Human genes 0.000 description 1
- 101710179590 Vitamin D-binding protein Proteins 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000001475 anti-trypsic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000004611 cancer cell death Effects 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol group Chemical group [C@@H]1(CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)[C@H](C)CCCC(C)C HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 108020001096 dihydrofolate reductase Proteins 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 210000003953 foreskin Anatomy 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 230000004545 gene duplication Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 208000025581 hereditary breast carcinoma Diseases 0.000 description 1
- 239000012145 high-salt buffer Substances 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 108700025694 p53 Genes Proteins 0.000 description 1
- 238000009595 pap smear Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000164 protein isolation Methods 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 238000000734 protein sequencing Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 102000015380 snRNP Core Proteins Human genes 0.000 description 1
- 108010039827 snRNP Core Proteins Proteins 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000000225 tumor suppressor protein Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57415—Specifically defined cancers of breast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- the present invention relates generally to methods and compositions for the detection and/or treatment of breast cancer. More specifically, the present invention relates to breast cancer-associated proteins and nucleic acids encoding such proteins which represent cellular markers for breast cancer detection, and molecular targets for breast cancer therapy.
- breast cancer is a leading cause of death in women. While the pathogenesis of breast cancer is unclear, transformation of normal breast epithelium to a malignant phenotype may be the result of genetic factors, especially in women under 30 (Miki et al. (1994) Science 266: 66-71). However, it is likely that other, non-genetic factors also have a significant effect on the etiology of the disease. Regardless of its origin, breast cancer morbidity increases significantly if it is not detected early in its progression. Thus, considerable effort has focused on the elucidation of early cellular events surrounding transformation in breast tissue. Such effort has led to the identification of several potential breast cancer markers.
- BRCA1 and BRCA2 genes have been linked to hereditary and early-onset breast cancer (Wooster et al. (1994) Science 265: 2088-2090).
- the wild-type BRCA1 allele encodes a tumor suppressor protein. Deletions and/or other alterations in that allele have been linked to transformation of breast epithelium. Accordingly, detection of mutated BRCA1 alleles or their gene products has been proposed as a means for detecting breast, as well as ovarian, cancers (Miki et al., supra).
- BRCA1 is limited as a cancer marker because BRCA1 mutations fail to account for the majority of breast cancers (Ford et al. (1995) British J. Cancer 72: 805-812).
- the BRCA2 gene which has been linked to forms of hereditary breast cancer, accounts for only a small portion of total breast cancer cases (Ford et al., supra).
- genes have been linked to breast cancer and may serve as markers for the disease, either directly or via their gene products.
- potential markers include the TP53 gene and its gene product, the p53 tumor suppressor protein (Malkin et al. (1990) Science 250: 1233-1238).
- the loss of heterozygosity in genes such as the ataxia telangiectasia gene has also been linked to a high risk of developing breast cancer (Swift et al. (1991) N. Engl. J. Med. 325: 1831-1836).
- a problem associated with many of the markers proposed to date is that the oncogenic phenotype is often the result of a gene deletion, thus requiring detection of the absence of the wild-type form as a predictor of transformation.
- the invention provides a variety of methods and compositions for detecting the presence of breast cancer in a mammal, for example, a human, and for treating breast cancer in a mammal diagnosed with the disease.
- the invention is based, in part, upon the discovery of a family of proteins each member of which is detectable at a higher concentration in serum from a mammal, for example, a human, with breast cancer relative to serum from a normal mammal, that is, a mammal without breast cancer. Accordingly, these proteins, as well as nucleic acid sequences encoding such proteins, or sequences complementary thereto, can be used as breast cancer markers useful in diagnosing breast cancer, monitoring the efficacy of a breast cancer therapy and/or as targets of such a therapy.
- the invention provides isolated breast cancer-associated protein markers.
- the protein markers are characterized as being detectable at a higher concentration in the serum of a mammal, specifically, a human, with breast cancer than in serum of a mammal without breast cancer.
- One marker protein is further characterized in that it has a molecular weight of about 16 kD, and fails to bind in a detectable amount to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 17 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 25 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 30 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 25 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 35 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 25 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 20 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 24 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 28 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a nickel SELDI chip.
- Microsequence analysis has identified the marker protein to be a protein known in the art as small nuclear ribonucleoprotein B′′ (Habets et al. (1987) P ROC N ATL A CAD S CI , USA 84, 2421-2425), the amino acid sequence of which is identified hereinbelow as SEQ ID NO: 5.
- Another marker protein is further characterized in that it has a molecular weight of about 35 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 35 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 18 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 100 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 71 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 100 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Microsequence analysis has identified the marker protein to be a protein known in the art as, or related to, the 64 kD subunit of cleavage stimulating factor (Takagaki et al. (1987) P ROC N ATL A CAD S CI , USA 89, 1403-1407), the amino acid sequence of which is identified hereinbelow as SEQ ID NO: 22 and SEQ ID NO: 23.
- Another marker protein is further characterized in that it has a molecular weight of about 12 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 150 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a SAX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 42 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 200 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 56 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 200 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 35 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 400 mM sodium chloride in 50 mM sodium phosphate, pH 7.0.
- This marker protein also has a binding affinity to a copper SELDI chip.
- the aforementioned breast cancer-associated proteins are further characterized as being non-immunoglobulin and/or non-albumin proteins.
- the breast cancer-associated proteins may further define an antigenic region or epitope that may bind specifically to a binding moiety, for example, an antibody, for example, a monoclonal or a polyclonal antibody, an antibody fragment thereof, or a biosynthetic antibody binding site directed against the antigenic region or epitope.
- the invention enables one skilled in the art to isolate nucleic acids encoding the aforementioned breast cancer-associated proteins or nucleic acids capable of hybridizing under specific hybridization conditions to a nucleic acid encoding the breast cancer-associated proteins.
- the skilled artisan may produce nucleic acid sequences encoding the entire isolated marker protein, or fragments thereof, using methods currently available in the art (see, for example, Sambrook et al., eds. (1989) “Molecular Cloning: A Laboratory Manual,” Cold Spring Harbor Press).
- the breast cancer-associated protein of the invention when isolated, can be sequenced using conventional peptide sequencing protocols. Based on the peptide sequence, it is possible to produce oligonucleotide hybridization probes useful in screening a cDNA library. The cDNA library may then be screened with the resultant oligonucleotide to isolate full or partial length cDNA sequences encoding the isolated protein.
- the invention provides a variety of methods, for example, protein or nucleic acid-based methods, for detecting the presence of breast cancer in a mammal.
- the methods of the invention may be performed on any relevant tissue or body fluid sample.
- methods of the invention may be performed on breast tissue, more preferably breast biopsy tissue.
- the methods of the invention may be performed on a human body fluid sample selected from the group consisting of: blood; serum; plasma; fecal matter; urine; vaginal secretion; spinal fluid; saliva; ascitic fluid; peritoneal fluid; sputum; and breast exudate. It is contemplated, however, that the methods of the invention also may be useful in detecting metastasized breast cancer cells in other tissue or body fluid samples. Detection of breast cancer can be accomplished using any one of a number of assay methods well known and used in the art.
- the method of diagnosing cancer in an individual comprises contacting a sample from the individual with a first binding moiety that binds specifically to a breast-cancer associated protein to produce a first binding moiety-cancer-associated protein complex.
- the first binding moiety is capable of binding specifically to at least one of the breast cancer associated marker proteins identified hereinabove to produce a complex.
- the presence and/or amount of marker protein in the complex can then be detected, for example, via the first binding moiety if labeled with a detectable moiety, for example, a radioactive or fluorescent label, or a second binding moiety labeled with a detectable moiety that binds specifically to the first binding moiety using conventional methodologies well known in the art.
- the presence or amount of the marker protein can thus be indicative of the presence of breast cancer in the individual.
- the amount of marker protein in the sample may be compared against a threshold value previously calibrated to indicate the presence or absence of breast cancer, wherein the amount of the complex in the sample relative to the threshold value can be indicative of the presence or absence of cancer in the individual.
- tissue for example, breast tissue, or a body fluid, for example, serum, a body fluid currently is the preferred test sample.
- the invention provides another method for detecting breast cancer in a human.
- the method comprises the step of detecting the presence of a nucleic acid molecule in a tissue or body fluid sample thereby to indicate the presence of breast cancer in an individual.
- the nucleic acid molecule is selected from the group consisting of (i) a nucleic acid molecule comprising a sequence capable of recognizing and being specifically bound by a breast cancer-associated protein, and (ii) a nucleic acid molecule comprising a sequence encoding at least a portion of one or more of the breast cancer-associated proteins identified herein.
- the method comprises exposing a sample from the individual under specific hybridization conditions to a nucleic acid probe, for example, greater than about 10 and more preferably greater than 15 nucleotides in length, capable of hybridizing to a target nucleic acid encoding one of the breast cancer-associated proteins identified herein to produce a duplex. Thereafter, the presence of the duplex can be detected using a variety of detection methods known and used in the art. It is contemplated that the target nucleic acid may be amplified, for example, via conventional polymerase chain reaction (PCR) or reverse transcriptase polymerase chain reaction (RT-PCR) methodologies, prior to hybridization with the nucleic acid probe.
- PCR polymerase chain reaction
- RT-PCR reverse transcriptase polymerase chain reaction
- the target nucleic acid for example, a messenger RNA (mRNA) molecule
- mRNA messenger RNA
- the target nucleic acid is greater than 15 nucleotides, more preferably greater than 50 nucleotides, and most preferably greater than 100 nucleotides in length and encodes an amino acid sequence present in one of the breast cancer-associated proteins identified herein.
- a target mRNA may then be detected, for example, by Northern blot analysis by reacting the sample with a labeled hybridization probe, for example, a 32 P labeled oligonucleotide probe, capable of hybridizing specifically with at least a portion of the nucleic acid molecule encoding the marker protein.
- Detection of a nucleic acid molecule either encoding a breast cancer-associated protein or capable of being specifically bound by a breast cancer-associated protein can thus serve as an indicator of the presence of a breast cancer in the individual being tested.
- kits for detecting the presence of breast cancer or for evaluating the efficacy of a therapeutic treatment of a breast cancer.
- kits may comprise, in combination, (i) a receptacle for receiving a human tissue or body fluid sample from the individual to be tested, (ii) a binding partner which binds specifically either to an epitope on a breast cancer-associated marker protein or a nucleic acid sequence encoding at least a portion of the breast cancer-associated protein or the nucleic acid sequence encoding at least a portion of the breast cancer-associated protein, and (iii) a reference sample.
- the reference sample may comprise a negative and/or positive control. In that embodiment, the negative control would be indicative of a normal breast cell type and the positive control would be indicative of breast cancer.
- the invention provides methods and compositions for treating breast cancer.
- the invention provides proteins or nucleobase-containing sequences useful in the treatment of breast cancer.
- the therapeutic protein could be, for example, a binding moiety, for example, an antibody, for example, a monoclonal antibody, an antigenic binding fragment thereof, or a biosynthetic antibody binding site capable of binding specifically to a breast cancer-associated protein identified herein.
- the method comprises the step of administering to a patient with breast cancer, a therapeutically-effective amount of a compound, preferably an antibody, and most preferably a monoclonal antibody, which binds specifically to a target breast cancer-associated protein thereby to inactivate or reduce the biological activity of the protein.
- the target protein may be any of the breast cancer-associated proteins identified herein.
- the compound may comprise a small molecule, for example, a small organic molecule, which inhibits or reduces the biological activity of the target breast cancer-associated protein.
- the invention provides another method for treating breast cancer.
- the method comprises the step of administering to a patient diagnosed as having breast cancer, a therapeutically-effective amount of a compound which reduces in vivo the expression of a target breast cancer-associated protein thereby to reduce in vivo the expression of the target protein.
- the compound is a nucleobase containing sequence, for example, an anti-sense nucleic acid sequence or a peptidyl nucleic acid (PNA) capable of binding to and reducing the expression (for example, transcription or translation) of a nucleic acid encoding at least a portion of at least one of the breast cancer-associated proteins identified herein.
- PNA peptidyl nucleic acid
- the anti-sense nucleic acid sequence or the anti-sense PNA molecule binds to the nucleic acid sequences encoding, at least in part, the target protein thereby to reduce in vivo expression of the target breast cancer-associated protein.
- the invention provides a wide range of methods and compositions for detecting and treating breast cancer in an individual.
- the invention provides breast cancer-associated proteins, which permit specific and early, preferably before metastases occur, detection of breast cancer in an individual.
- the invention provides kits useful in the detection of breast cancer in an individual.
- the invention provides methods utilizing the breast cancer-associated proteins as targets and indicators, for treating breast cancers and for monitoring of the efficacy of such a treatment.
- FIGS. 1A-1C are spectra resulting from the characterization via mass spectrometry of 28 kD proteins subjected to trypsin digestion and eluted from a polyacrylamide gel.
- FIG. 1A is a spectrum of the heaviest 28 kD protein isolated from the gel
- FIG. 1B is a spectrum of the median 28 kD protein isolated from the gel
- FIG. 1C is a spectrum of the lightest 28 kD protein isolated from the gel.
- the present invention provides methods and compositions for the detection and treatment of breast cancer.
- the invention is based, in part, upon the discovery of breast cancer-associated proteins which generally are present at detectably higher levels in serum of humans with breast cancer relative to serum of humans without breast cancer.
- the breast cancer-associated proteins or nucleic acids encoding such proteins may act as markers useful in the detection of breast cancer or as targets for therapy of breast cancer.
- the marker proteins and binding moieties for example, antibodies that bind to the marker proteins or nucleic acid probes which hybridize to nucleic acid sequences encoding the marker proteins, may be used to detect the presence of breast cancer in an individual.
- novel therapeutics for treating breast cancer which include, for example: antibodies which can be administered to an individual that bind to and reduce or eliminate the biological activity of the target protein in vivo; nucleic acid or peptidyl nucleic acid sequences which hybridize with genes or gene transcripts encoding the target proteins, thereby to reduce expression of the target proteins in vivo; or small molecules, for example, organic molecules which interact with the target proteins or other cellular moieties, for example, receptors for the target proteins, thereby to reduce or eliminate biological activity of the target proteins.
- Marker proteins of the invention are identified by comparing the protein composition of serum of a human diagnosed with breast cancer with the protein composition of serum of a human free of breast cancer.
- breast cancer-associated protein is understood to mean any protein which is detectable at a higher level in a tissue or body fluid of an individual diagnosed with breast cancer relative to a corresponding tissue or body fluid of an individual free of breast cancer and includes species and allelic variants thereof and fragments thereof.
- breast cancer is understood to mean any cancer or cancerous lesion associated with breast tissue or breast tissue cells and can include precursors to breast cancer, for example, atypical ductal hyperplasia or non-atypical hyperplasia.
- the marker protein or target molecule be unique to a breast cancer cell or body fluid of an individual afflicted with breast cancer; rather the marker protein or target molecule should have a signal to noise ratio high enough to discriminate between samples originating from a breast cancer tissue or body fluid and samples originating from normal breast tissue or body fluid.
- a “portion” or a “fragment” of a protein or of an amino acid sequence denotes a contiguous peptide comprising, in sequence, at least ten amino acids from the protein or amino acid sequence (e.g. amino acids 1-10, 34-43, or 127-136 of the protein or sequence).
- the peptide comprises, in sequence, at least twenty amino acids from the protein or amino acid sequence. More preferably, the peptide comprises, in sequence, at least forty amino acids from the protein or amino acid sequence.
- the breast cancer-associated marker proteins of the invention were identified by comparing the proteins present in the serum of individuals with breast cancer to the proteins present in the serum of individuals without breast cancer.
- Albumin and immunoglobulin proteins were removed from the serum, and the proteins were separated into twelve fractions by anion exchange chromatography. Briefly, the proteins were loaded on a strong anion exchange column in the presence of 50 mM sodium phosphate, pH 7.0, and eluted with a stepwise gradient of sodium chloride in 50 mM sodium phosphate, pH 7.0.
- the resulting twelve fractions include a flow-through fraction, a fraction eluting in 25 mM sodium chloride, a 50 mM fraction, a 75 mM fraction, a 100 mM fraction, a 125 mM fraction, a 150 mM fraction, a 200 mM fraction, a 250 mM fraction, a 300 mM fraction, a 400 mM fraction, and a 2 M fraction.
- SELDI surface-enhanced laser desorption and ionization mass spectrometry.
- Samples from each of the twelve fractions were applied to one of four different SELDI chip surfaces.
- a copper or nickel SELDI surface can be generated by adding a copper or nickel salt solution to a chip comprising ethylenediaminetriacetic acid.
- Other SELDI chip surfaces include: WCX-2 which comprises carboxylate moieties, and SAX-2 which comprises quarternary ammonium moieties.
- the breast cancer-associated proteins of the invention can therefore be characterized by their increased presence in serum of individuals having breast cancer relative to individuals without breast cancer, their molecular weight, binding and elution characteristics on an anion exchange resin, and their affinity to a particular SELDI chip.
- the term “affinity” to a particular SELDI chip is understood to mean that the breast cancer-associated proteins of the invention bind preferentially to one type of SELDI chip (e.g., copper SELDI chip) relative to one or more of the other SELDI chips (e.g., the nickel, SAX-2 and WCX-2 chips) disclosed herein.
- SELDI chip e.g., copper SELDI chip
- the other SELDI chips e.g., the nickel, SAX-2 and WCX-2 chips
- the identified proteins can be isolated by standard protein isolation methodologies and sequenced using protein sequencing technologies known and used in the art. See, for example, Examples 5 and 6. Once the amino acid sequences are identified then nucleic acids encoding the marker proteins or portions thereof can be identified using conventional recombinant DNA methodologies. See, for example, Sambrook et al. eds. (1989) “Molecular Cloning: A Laboratory Manual”, Cold Spring Harbor Press. For example, an isolated breast cancer-associated protein can be sequenced using conventional peptide sequencing protocols, and the oligonucleotide hybridization probes designed for sequencing a cDNA library. The cDNA library may then be screened with the resultant hybridization probes to isolate full length or partial length cDNA sequences encoding the isolated marker proteins.
- Marker proteins useful in the present invention encompass not only the particular sequences identified herein but also allelic variants thereof and related proteins that also function as marker proteins. Thus, for example, sequences that result from alternative splice forms, post-translational modification, or gene duplication are each encompassed by the present invention. Species variants are also encompassed by this invention where the patient is a non-human mammal. Other homologous proteins that may function as marker proteins are also envisioned. Preferably, variant sequences are at least 80% similar or 70% identical, more preferably at least 90% similar or 80% identical, and most preferably 95% similar or 90% identical to at least a portion of one of the sequences disclosed herein.
- the candidate amino acid sequence and the reference amino acid sequence are first aligned using the dynamic programming algorithm described in Smith and Waterman (1981), J. Mol. Biol. 147:195-197, in combination with the BLOSUM62 substitution matrix described in FIG. 2 of Henikoff and Henikoff (1992), “Amino acid substitution matrices from protein blocks”, PNAS (November 1992), 89:10915-10919.
- an appropriate value for the gap insertion penalty is -12
- an appropriate value for the gap extension penalty is ⁇ 4.
- a percent similarity score may be calculated.
- the individual amino acids of each sequence are compared sequentially according to their similarity to each other. If the value in the BLOSUM62 matrix corresponding to the two aligned amino acids is zero or a negative number, the pairwise similarity score is zero; otherwise the pairwise similarity score is 1.0.
- the raw similarity score is the sum of the pairwise similarity scores of the aligned amino acids. The raw score is then normalized by dividing it by the number of amino acids in the smaller of the candidate or reference sequences. The normalized raw score is the percent similarity. Alternatively, to calculate a percent identity, the aligned amino acids of each sequence are again compared sequentially.
- the pairwise identity score is zero; otherwise the pairwise identity score is 1.0.
- the raw identity score is the sum of the identical aligned amino acids. The raw score is then normalized by dividing it by the number of amino acids in the smaller of the candidate or reference sequences. The normalized raw score is the percent identity. Insertions and deletions are ignored for the purposes of calculating percent similarity and identity. Accordingly, gap penalties are not used in this calculation, although they are used in the initial alignment.
- variants of the naturally-occurring sequences must be tested for their function as marker proteins. Specifically, their presence or absence in a particular form or in a particular biological compartment must be indicative of the presence or absence of cancer in an individual. This routine experimentation can be carried out by the methods described hereinbelow or by other methods known in the art.
- Marker proteins in a sample of tissue or body fluid may be detected via binding assays, wherein a binding partner for the marker protein is introduced into a sample suspected of containing the marker protein.
- the binding partner may be detectably labeled as, for example, with a radioisotopic or fluorescent marker.
- Labeled antibodies may be used in a similar manner in order to isolate selected marker proteins.
- Nucleic acids encoding marker proteins may be detected using nucleic acid probes having a sequence complementary to at least a portion of the sequence encoding the marker protein. Techniques such as PCR and, in particular, reverse transcriptase PCR, are useful means for isolating nucleic acids encoding a marker protein.
- the examples which follow provide details of the isolation and characterization of breast cancer-associated proteins and methods for their use in the detection and treatment of breast cancer.
- the proteins or nucleic acids encoding the proteins may be used as markers to determine whether an individual has breast cancer and, if so, suitable detection methods can be used to monitor the status of the disease.
- the skilled artisan can produce a variety of detection methods for detecting breast cancer in a human.
- the methods typically comprise the steps of detecting, by some means, the presence of one or more breast cancer-associated proteins or nucleic acids encoding such proteins in a tissue or body fluid sample of the human.
- the accuracy and/or reliability of the method for detecting breast cancer in a human may be further enhanced by detecting the presence of a plurality of breast cancer-associated proteins and/or nucleic acids in a preselected tissue or body fluid sample.
- the detection assays may comprise one or more of the protocols described hereinbelow.
- the marker protein in a sample may be detected, for example, by combining the marker protein with a binding moiety capable of specifically binding the marker protein.
- the binding moiety may comprise, for example, a member of a ligand-receptor pair, i.e., a pair of molecules capable of having a specific binding interaction.
- the binding moiety may comprise, for example, a member of a specific binding pair, such as antibody-antigen, enzyme-substrate, nucleic acid-nucleic acid, protein-nucleic acid, protein-protein, or other specific binding pair known in the art. Binding proteins may be designed which have enhanced affinity for a target protein.
- the binding moiety may be linked with a detectable label, such as an enzymatic, fluorescent, radioactive, phosphorescent or colored particle label.
- a detectable label such as an enzymatic, fluorescent, radioactive, phosphorescent or colored particle label.
- the labeled complex may be detected, e.g., visually or with the aid of a spectrophotometer or other detector.
- Marker proteins may also be detected using gel electrophoresis techniques available in the art. In two-dimensional gel electrophoresis, the proteins are separated first in a pH gradient gel according to their isoelectric point. The resulting gel then is placed on a second polyacrylamide gel, and the proteins separated according to molecular weight (see, for example, O° Farrell (1975) J. Biol. Chem. 250: 4007-4021).
- One or more marker proteins may be detected by first isolating proteins from a sample obtained from an individual suspected of having breast cancer, and then separating the proteins by two-dimensional gel electrophoresis to produce a characteristic two-dimensional gel electrophoresis pattern. The pattern may then be compared with a standard gel pattern produced by separating, under the same or similar conditions, proteins isolated from normal or cancer cells. The standard gel pattern may be stored in, and retrieved from an electronic database of electrophoresis patterns. The presence of a breast cancer-associated protein in the two-dimensional gel provides an indication that the sample being tested was taken from a person with breast cancer.
- the detection of two or more proteins, for example, in the two-dimensional gel electrophoresis pattern further enhances the accuracy of the assay.
- the presence of a plurality, e.g., two to five, breast cancer-associated proteins on the two-dimensional gel provides an even stronger indication of the presence of a breast cancer in the individual.
- the assay thus permits the early detection and treatment of breast cancer.
- a breast cancer-associated marker protein may also be detected using any of a wide range of immunoassay techniques available in the art. For example, the skilled artisan may employ the sandwich immunoassay format to detect breast cancer in a body fluid sample. Alternatively, the skilled artisan may use conventional immuno-histochemical procedures for detecting the presence of the breast cancer-associated protein in a tissue sample using one or more labeled binding proteins.
- two antibodies capable of binding the marker protein generally are used, e.g., one immobilized onto a solid support, and one free in solution and labeled with a detectable chemical compound.
- chemical labels that may be used for the second antibody include radioisotopes, fluorescent compounds, and enzymes or other molecules that generate colored or electrochemically active products when exposed to a reactant or enzyme substrate.
- the complexed protein is detected by washing away non-bound sample components and excess labeled antibody, and measuring the amount of labeled antibody complexed to protein on the support's surface.
- the antibody free in solution which can be labeled with a chemical moiety, for example, a hapten, may be detected by a third antibody labeled with a detectable moiety which binds the free antibody or, for example, the hapten coupled thereto.
- immunoassay design considerations include preparation of antibodies (e.g., monoclonal or polyclonal antibodies) having sufficiently high binding specificity for the target protein to form a complex that can be distinguished reliably from products of nonspecific interactions.
- antibodies e.g., monoclonal or polyclonal antibodies
- the term “antibody” is understood to mean binding proteins, for example, antibodies or other proteins comprising an immunoglobulin variable region-like binding domain, having the appropriate binding affinities and specificities for the target protein. The higher the antibody binding specificity, the lower the target protein concentration that can be detected.
- binding or “binding specifically” are understood to mean that the binding moiety, for example, a binding protein has a binding affinity for the target protein of greater than about 10 5 M ⁇ 1 , more preferably greater than about 10 7 M ⁇ 1 .
- Antibodies to an isolated target breast cancer-associated protein which are useful in assays for detecting a breast cancer in an individual may be generated using standard immunological procedures well known and described in the art. See, for example, Practical Immunology, Butt, N. R., ed., Marcel Dekker, NY, 1984. Briefly, an isolated target protein is used to raise antibodies in a xenogeneic host, such as a mouse, goat or other suitable mammal. The marker protein is combined with a suitable adjuvant capable of enhancing antibody production in the host, and is injected into the host, for example, by intraperitoneal administration. Any adjuvant suitable for stimulating the host's immune response may be used.
- a commonly used adjuvant is Freund's complete adjuvant (an emulsion comprising killed and dried microbial cells and available from, for example, Calbiochem Corp., San Diego, or Gibco, Grand Island, N.Y.). Where multiple antigen injections are desired, the subsequent injections may comprise the antigen in combination with an incomplete adjuvant (e.g., cell-free emulsion).
- Polyclonal antibodies may be isolated from the antibody-producing host by extracting serum containing antibodies to the protein of interest.
- Monoclonal antibodies may be produced by isolating host cells that produce the desired antibody, fusing these cells with myeloma cells using standard procedures known in the immunology art, and screening for hybrid cells (hybridomas) that react specifically with the target protein and have the desired binding affinity.
- Antibody binding domains also may be produced biosynthetically and the amino acid sequence of the binding domain manipulated to enhance binding affinity with a preferred epitope on the target protein. Specific antibody methodologies are well understood and described in the literature. A more detailed description of their preparation can be found, for example, in “ Practical Immunology ” (1984) (supra).
- BABS genetically engineered biosynthetic antibody binding sites
- sFv's genetically engineered biosynthetic antibody binding sites
- Methods for making and using BABS comprising (i) non-covalently associated or disulfide bonded synthetic V H and V L dimers, (ii) covalently linked V H -V L single chain binding sites, (iii) individual V H or V L domains, or (iv) single chain antibody binding sites are disclosed, for example, in U.S. Pat. Nos. 5,091,513; 5,132,405; 4,704,692; and 4,946,778.
- BABS having requisite specificity for the breast cancer-associated proteins can be derived by phage antibody cloning from combinatorial gene libraries (see, for example, Clackson et al. (1991) Nature 352: 624-628). Briefly, phage each expressing on their coat surfaces BABS having immunoglobulin variable regions encoded by variable region gene sequences derived from mice pre-immunized with isolated breast cancer-associated proteins, or fragments thereof, are screened for binding activity against immobilized breast cancer-associated protein. Phage which bind to the immobilized breast cancer-associated proteins are harvested and the gene encoding the BABS is sequenced. The resulting nucleic acid sequences encoding the BABS of interest then may be expressed in conventional expression systems to produce the BABS protein.
- the isolated breast cancer-associated protein also may be used for the development of diagnostic and other tissue evaluating kits and assays to monitor the level of the proteins in a tissue or fluid sample.
- the kit may include antibodies or other specific binding proteins which bind specifically to the breast cancer-associated proteins and which permit the presence and/or concentration of the breast cancer-associated proteins to be detected and/or quantitated in a tissue or fluid sample.
- kits for detecting breast cancer-associated proteins include, e.g., a receptacle or other means for capturing a sample to be evaluated, and means for detecting the presence and/or quantity in the sample of one or more of the breast cancer-associated proteins described herein.
- “means for detecting” in one embodiment includes one or more antibodies specific for these proteins and means for detecting the binding of the antibodies to these proteins by, e.g., a standard sandwich immunoassay as described herein.
- the kit also may comprise means for disrupting the cell structure so as to expose intracellular proteins.
- the presence of a breast cancer in an individual also may be determined by detecting, in a tissue or body fluid sample, a nucleic acid molecule encoding a breast cancer-associated protein.
- a nucleic acid molecule encoding a breast cancer-associated protein.
- the breast cancer-associated proteins of the invention may be sequenced, and then, based on the determined sequence, oligonucleotide probes designed for screening a cDNA library (see, for example, Sambrook et al. (1989) supra).
- a target nucleic acid molecule encoding a marker breast cancer-associated protein may be detected using a labeled binding moiety capable of specifically binding the target nucleic acid.
- the binding moiety may comprise, for example, a protein, a nucleic acid or a peptide nucleic acid.
- a target nucleic acid such as an mRNA encoding a breast cancer-associated protein, may be detected by conducting, for example, a Northern blot analysis using labeled oligonucleotides, e.g., nucleic acid fragments complementary to and capable of hybridizing specifically with at least a portion of a target nucleic acid.
- gene probes comprising complementary RNA or, preferably, DNA to the breast cancer-associated nucleotide sequences or mRNA sequences encoding breast cancer-associated proteins may be produced using established recombinant techniques or oligonucleotide synthesis.
- the probes hybridize with complementary nucleic acid sequences presented in the test specimen, and can provide extraordinar specificity.
- a short, well-defined probe, coding for a single unique sequence is most precise and preferred. Larger probes are generally less specific.
- oligonucleotide of any length may hybridize to an mRNA transcript
- oligonucleotides typically within the range of 8-100 nucleotides, preferably within the range of 15-50 nucleotides are envisioned to be most useful in standard hybridization assays.
- Choices of probe length and sequence allow one to choose the degree of specificity desired.
- Hybridization is carried out at from 50° to 65° C. in a high salt buffer solution, formamide or other agents to set the degree of complementarity required.
- probes can be manufactured to recognize essentially any DNA or RNA sequence. For additional particulars, see, for example, Guide to Molecular Techniques, Berger et al., Methods of Enzymology, Vol. 152, 1987.
- the labeled reagents may be provided in solution or coupled to an insoluble support, depending on the design of the assay.
- the various conjugates may be joined covalently or noncovalently, directly or indirectly. When bonded covalently, the particular linkage group will depend upon the nature of the two moieties to be bonded.
- a large number of linking groups and methods for linking are taught in the literature. Broadly, the labels may be divided into the following categories: chromogens; catalyzed reactions; chemiluminescence; radioactive labels; and colloidal-sized colored particles.
- the chromogens include compounds which absorb light in a distinctive range so that a color may be observed, or emit light when irradiated with light of a particular wavelength or wavelength range, e.g., fluorescers. Both enzymatic and nonenzymatic catalysts may be employed. In choosing an enzyme, there will be many considerations including the stability of the enzyme, whether it is normally present in samples of the type for which the assay is designed, the nature of the substrate, and the effect if any of conjugation on the enzyme's properties. Potentially useful enzyme labels include oxiodoreductases, transferases, hydrolases, lyases, isomerases, ligases, or synthetases. Interrelated enzyme systems may also be used.
- a chemiluminescent label involves a compound that becomes electronically excited by a chemical reaction and may then emit light that serves as a detectable signal or donates energy to a fluorescent acceptor.
- Radioactive labels include various radioisotopes found in common use such as the unstable forms of hydrogen, iodine, phosphorus or the like.
- Colloidal-sized colored particles involve material such as colloidal gold that, in aggregate, form a visually detectable distinctive spot corresponding to the site of a substance to be detected. Additional information on labeling technology is disclosed, for example, in U.S. Pat. No. 4,366,241.
- a common method of in vitro labeling of nucleotide probes involves nick translation wherein the unlabeled DNA probe is nicked with an endonuclease to produce free 3′hydroxyl termini within either strand of the double-stranded fragment. Simultaneously, an exonuclease removes the nucleotide residue from the 5′phosphoryl side of the nick. The sequence of replacement nucleotides is determined by the sequence of the opposite strand of the duplex. Thus, if labeled nucleotides are supplied, DNA polymerase will fill in the nick with the labeled nucleotides. Using this well-known technique, up to 50% of the molecule can be labeled.
- the oligonucleotide selected for hybridizing to the target nucleic acid is isolated and purified using standard techniques and then preferably labeled (e.g., with 35 S or 32 P) using standard labeling protocols.
- a sample containing the target nucleic acid then is run on an electrophoresis gel, the dispersed nucleic acids transferred to a nitrocellulose filter and the labeled oligonucleotide exposed to the filter under stringent hybridizing conditions, e.g., 50% formamide, 5 ⁇ SSPE, 2 ⁇ Denhardt's solution, 0.1% SDS at 42° C., as described in Sambrook et al. (1989) supra.
- the filter may then be washed using 2 ⁇ SSPE, 0.1% SDS at 68° C., and more preferably using 0.1 ⁇ SSPE, 0.1% SDS at 68° C.
- Other useful procedures known in the art include solution hybridization, and dot and slot RNA hybridization.
- the amount of the target nucleic acid present in a sample is then quantitated by measuring the radioactivity of hybridized fragments, using standard procedures known in the art.
- oligonucleotides also may be used to identify other sequences encoding members of the target protein families.
- the methodology also may be used to identify genetic sequences associated with the nucleic acid sequences encoding the proteins described herein, e.g., to identify non-coding sequences lying upstream or downstream of the protein coding sequence, and which may play a functional role in expression of these genes.
- binding assays may be conducted to identify and detect proteins capable of a specific binding interaction with a nucleic acid encoding a breast cancer-associated protein, which may be involved, e.g., in gene regulation or gene expression of the protein.
- the assays described herein may be used to identify and detect nucleic acid molecules comprising a sequence capable of recognizing and being specifically bound by a breast cancer-associated protein.
- oligonucleotide primers i.e., more than one primer
- the skilled artisan may determine the level of expression of a target gene in vivo by standard polymerase chain reaction (PCR) procedures, for example, by quantitative PCR.
- PCR polymerase chain reaction
- Conventional PCR based assays are discussed, for example, in Innes et al (1990) “PCR Protocols; A guide to methods and Applications ”, Academic Press and Innes et al. (1995) “ PCR Strategies” Academic Press, San Diego, Calif.
- cDNA encoding proteins or peptides capable of interacting with breast cancer-associated proteins can be determined using a two-hybrid assay, as reported in Durfee et al. (1993) Genes & Develop. 7: 555-559.
- the principle of the two hybrid system is that noncovalent interaction of two proteins triggers a process (transcription) in which these proteins normally play no direct role, because of their covalent linkage to domains that function in this process.
- detectable expression of a reporter gene occurs when two fusion proteins, one comprising a DNA-binding domain and one comprising a transcription initiation domain, interact.
- reporter genes such as yeast strain Y153, reported in Durfee et al. (1993) supra. This strain carries two chromosomally located reporter genes whose expression is regulated by Gal4. A first reporter gene, is the E. coli lacZ gene under the control of the Gal4 promoter. A second reporter gene is the selectable HIS3 gene.
- Other useful reporter genes may include, for example, the luciferase gene, the LEU2 gene, and the GFP (Green Fluorescent Protein) gene.
- Two sets of plasmids are used in the two hybrid system.
- One set of plasmids contains DNA encoding a Gal4 DNA-binding domain fused in frame to DNA encoding a breast cancer-associated protein.
- the other set of plasmids contain DNA encoding a Gal4 activation domain fused to portions of a human cDNA library constructed from human lymphocytes. Expression from the first set of plasmids results in a fusion protein comprising a Gal4 DNA-binding domain and a breast cancer-associated protein. Expression from the second set of plasmids produces a transcription activation protein fused to an expression product from the lymphocyte cDNA library.
- the two plasmids are transformed into a Gal4-deficient host cell, such as the yeast Y153 cells described above, interaction of the Gal4 DNA binding domain and transcription activation domain occurs only if the breast cancer-associated protein fused to the DNA binding domain binds to a protein expressed from the lymphocyte cDNA library fused to the transcription activating domain.
- a Gal4-deficient host cell such as the yeast Y153 cells described above
- interaction of the Gal4 DNA binding domain and transcription activation domain occurs only if the breast cancer-associated protein fused to the DNA binding domain binds to a protein expressed from the lymphocyte cDNA library fused to the transcription activating domain.
- the breast cancer-associated protein and its in vivo binding partner detectable levels of reporter gene expression occur.
- the skilled artisan may also screen for molecules, for example, small molecules which alter or inhibit specific interaction between a breast cancer-associated protein and its in vivo binding partner.
- a host cell can be transfected with DNA encoding a suitable DNA binding domain/breast cancer-associated protein hybrid and a translation activation domain/putative breast cancer-associated protein binding partner, as disclosed above.
- the host cell also contains a suitable reporter gene in operative association with a cis-acting transcription activation element that is recognized by the transcription factor DNA binding domain.
- the level of reporter gene expressed in the system is assayed. Then, the host cell is exposed to a candidate molecule and the level of reporter gene expression is detected. A reduction in reporter gene expression is indicative of the candidate's ability to interfere with complex formation or stability with respect to the breast cancer-associated protein and its in vivo binding partner.
- the candidate molecule's ability to interfere with other, unrelated protein-protein complexes is also tested.
- Molecules capable of specifically interfering with a breast cancer-associated protein/binding partner interaction, but not other protein-protein interactions, are identified as candidates for production and further analysis. Once a potential candidate has been identified, its efficacy in modulating cell cycling and cell replication can be assayed in a standard cell cycle model system.
- Candidate molecules can be produced as described hereinbelow.
- DNA encoding the candidate molecules can be inserted, using conventional techniques well described in the art (see, for example, Sambrook (1989) supra) into any of a variety of expression vectors and transfected into an appropriate host cell to produce recombinant proteins, including both full length and truncated forms.
- Useful host cells include E. coli, Saccharomyces cerevisiae, Pichia pastoris, the insect/baculovirus cell system, myeloma cells, and various other mammalian cells. The full length forms of such proteins are preferably expressed in mammalian cells, as disclosed herein.
- the nucleotide sequences also preferably include a sequence for targeting the translated sequence to the nucleus, using, for example, a sequence encoding the eight amino acid nucleus targeting sequence of the large T antigen, which is well characterized in the art.
- the vector can additionally include various sequences to promote correct expression of the recombinant protein, including transcription promoter and termination sequences, enhancer sequences, preferred ribosome binding site sequences, preferred mRNA leader sequences, preferred protein processing sequences, preferred signal sequences for protein secretion, and the like.
- the DNA sequence encoding the gene of interest can also be manipulated to remove potentially inhibiting sequences or to minimize unwanted secondary structure formation.
- the recombinant protein can also be expressed as a fusion protein.
- the protein can be purified from the cells themselves or recovered from the culture medium.
- the DNA can also include sequences which aid in expression and/or purification of the recombinant protein.
- the DNA can be expressed directly or can be expressed as part of a fusion protein having a readily cleavable fusion junction.
- the DNA may also be expressed in a suitable mammalian host.
- useful hosts include fibroblast 3T3 cells, (e.g., NIH 3T3, from CRL 1658) COS (simian kidney ATCC, CRL-1650) or CH0 (Chinese hamster ovary) cells (e.g., CHO-DXBI 1, from Chasin (1 980) Proc. Nat'l. Acad. Sci. USA 77 :4216-4222), mink-lung epithelial cells (MV1Lu), human foreskin fibroblast cells, human glioblastoma cells, and teratocarcinoma cells.
- Other useful eukaryotic cell systems include yeast cells, the insect/baculovirus system or myeloma cells.
- the DNA is subcloned into an insertion site of a suitable, commercially available vector along with suitable promoter/enhancer sequences and 3′ termination sequences.
- suitable promoter/enhancer sequence combinations include the CMV promoter (human cytomegalovirus (MIE) promoter) present, for example, on pCDM8, as well as the mammary tumor virus promoter (MMTV) boosted by the Rous sarcoma virus LTR enhancer sequence (e.g., from Clontech, Inc., Palo Alto).
- a useful inducable promoter includes, for example, a Zn 2+ -inducible promoter, such as the Zn 2+ metallothionein promoter (Wrana et al. (1992) Cell 71: 1003-1014).
- Zn 2+ -inducible promoter such as the Zn 2+ metallothionein promoter (Wrana et al. (1992) Cell 71: 1003-1014).
- Other inducible promoters are well known in the art and can be used with similar success. Expression also can be further enhanced using trans-activating enhancer sequences.
- the plasmid also preferably contains an amplifiable marker, such as DHFR under suitable promoter control, e.g., SV40 early promoter (ATCC #37148).
- Transfection, cell culturing, gene amplification and protein expression conditions are standard conditions, well known in the art, such as are described, for example in Ausubel et al., ed., (1989) “ Current Protocols in Molecular Biology”, John Wiley & Sons, NY. Briefly, transfected cells are cultured in medium containing 5-10% dialyzed fetal calf serum (dFCS), and stably transfected high expression cell lines obtained by amplification and subcloning and evaluated by standard Western and Northern blot analysis. Southern blots also can be used to assess the state of integrated sequences and the extent of their copy number amplification.
- dFCS dialyzed fetal calf serum
- the expressed candidate protein is then purified using standard procedures.
- a currently preferred methodology uses an affinity column, such as a ligand affinity column or an antibody affinity column.
- the column then is washed, and the candidate molecules selectively eluted in a gradient of increasing ionic strength, changes in pH, or addition of mild detergent. It is appreciated that in addition to the candidate molecules which bind to the breast cancer-associated proteins, the breast cancer associated proteins themselves may likewise be produced using such recombinant DNA technologies.
- the skilled artisan after identification of breast cancer-associated proteins and proteins which interact with the breast cancer-associated proteins, can develop a variety of therapies for treating breast cancer. Because the marker proteins described herein are present at detectably higher levels in breast cancer cells relative to normal breast cells, the skilled artisan may employ, for example, the marker proteins and/or nucleic acids encoding the marker proteins as target molecules for a cancer chemotherapy.
- a particularly useful cancer therapeutic envisioned is an oligonucleotide or peptide nucleic acid sequence complementary and capable of hybridizing under physiological conditions to part, or all, of the gene encoding the marker protein or to part, or all, of the transcript encoding the marker protein thereby to reduce or inhibit transcription and/or translation of the marker protein gene.
- the same technologies may be applied to reduce or inhibit transcription and/or translation of the proteins which interact with the breast cancer-associated proteins.
- Anti-sense oligonucleotides have been used extensively to inhibit gene expression in normal and abnormal cells. See, for example, Stein et al. (1 988) Cancer Res. 48: 2659-2668, for a pertinent review of anti-sense theory and established protocols.
- the synthesis and use of peptide nucleic acids as anti-sense-based therapeutics are described in PCT publications PCT/EP92/01219 published Nov. 26, 1992, PCT/US92/10921 published Jun. 24, 1993, and PCT/US94/013523 published Jun. 1, 1995. Accordingly, the anti-sense-based therapeutics may be used as part of chemotherapy, either alone or in combination with other therapies.
- Anti-sense oligonucleotide and peptide nucleic acid sequences are capable of hybridizing to a gene and/or mRNA transcript and, therefore, may be used to inhibit transcription and/or translation of the protein described herein. It is appreciated, however, that oligoribonucleotide sequences generally are more susceptible to enzymatic attack by ribonucleases than are deoxyribonucleotide sequences. Hence, oligodeoxyribonucleotides are preferred over oligoribonucleotides for in vivo therapeutic use.
- peptide nucleic acid sequences unlike regular nucleic acid sequences, are not susceptible to nuclease degradation and, therefore, are likely to have greater longevity in vivo. Furthermore, it is appreciated that peptide nucleic acid sequences bind complementary single stranded DNA and RNA strands more strongly than corresponding DNA sequences (see, for example, PCT/EP92/20702 published Nov. 26, 1992). Accordingly, peptide nucleic acid sequences are preferred for in vivo therapeutic use.
- Therapeutically useful anti-sense oligonucleotides or peptide nucleic acid sequences may be synthesized by any of the known chemical oligonucleotide and peptide nucleic acid synthesis methodologies well known and thoroughly described in the art. Alternatively, a sequence complementary to part or all of the natural mRNA sequence may be generated using standard recombinant DNA technologies.
- anti-sense oligonucleotides or peptide nucleic acids which hybridize with any portion of the mRNA transcript or non-coding sequences may be prepared using conventional oligonucleotide and peptide nucleic acid synthesis methodologies.
- Oligonucleotides complementary to, and hybridizable with, any portion of the mRNA transcripts encoding the marker proteins are, in principle, effective for inhibiting translation of the target proteins as described herein.
- oligonucleotides complementary to mRNA at or near the translation initiation codon site may be used to inhibit translation.
- sequences that are too distant in the 3′ direction from the translation initiation site may be less effective in hybridizing the mRNA transcripts because of potential ribosomal “read-through”, a phenomenon whereby the ribosome is postulated to unravel the anti-sense/sense duplex to permit translation of the message.
- oligonucleotide or peptide nucleic acid may be used to hybridize to mRNA transcripts. However, very short sequences (e.g., sequences containing less than 8-15 nucleobases) may bind with less specificity. Moreover, for in vivo use, short oligonucleotide sequences may be particularly susceptible to enzymatic degradation. Peptide nucleic acids, as mentioned above, likely are resistant to nuclease degradation. Where oligonucleotide and peptide nucleic acid sequences are to be provided directly to the cells, very long sequences may be less effective at inhibition because of decreased uptake by the target cell.
- oligonucleotide or peptide nucleic acid is to be provided directly to target cells
- oligonucleotide and/or peptide nucleic acid sequences containing about 8-50 nucleobases, and more preferably 15-30 nucleobases are envisioned to be most advantageous.
- An alternative means for providing anti-sense oligonucleotide sequences to a target cell is gene therapy where, for example, a DNA sequence, preferably as part of a vector and associated with a promoter, is expressed constitutively inside the target cell.
- a DNA sequence preferably as part of a vector and associated with a promoter
- Oeller et al. describe the in vivo inhibition of the ACC synthase enzyme using a constitutively expressible DNA sequence encoding an anti-sense sequence to the full length ACC synthase transcript.
- anti-sense oligonucleotide sequences are provided to a target cell indirectly, for example, as part of an expressible gene sequence to be expressed within the cell, longer oligonucleotide sequences, including sequences complementary to substantially all the protein coding sequence, may be used to advantage.
- therapeutically useful oligonucleotide sequences envisioned also include not only native oligomers composed of naturally occurring nucleotides, but also those comprising modified nucleotides, for example, to improve stability and lipid solubility and thereby enhance cellular uptake.
- modified nucleotides for example, to improve stability and lipid solubility and thereby enhance cellular uptake.
- enhanced lipid solubility and/or resistance to nuclease digestion results by substituting a methyl group or sulfur atom for a phosphate oxygen in the internucleotide phosphodiester linkage.
- S-oligonucleotides wherein a phosphate oxygen is replaced by a sulfur atom
- S-oligonucleotides are stable to nuclease cleavage, are soluble in lipids, and are preferred, particularly for direct oligonucleotide administration.
- S-oligonucleotides may be synthesized chemically using conventional synthesis methodologies well known and thoroughly described in the art.
- Preferred synthetic internucleoside linkages include phosphorothioates, alkylphosphonates, phosphorodithioates, phosphate esters, alkylphosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidate, and carboxymethyl esters.
- one or more of the 5′-3′ phosphate group may be covalently joined to a low molecular weight (e.g., 15-500 Da) organic group, including, for example, lower alkyl chains or aliphatic groups (e.g., methyl, ethyl, propyl, butyl), substituted alkyl and aliphatic groups (e.g., aminoethyl, aminopropyl, aminohydroxyethyl, aminohydroxypropyl), small saccharides or glycosyl groups.
- a low molecular weight organic modifications include additions to the internucleoside phosphate linkages such as cholesteryl or diamine compounds with varying numbers of carbon residues between the amino groups and terminal ribose. Oligonucleotides with these linkages or with other modifications can be prepared using methods well known in the art (see, for example, U.S. Pat. No. 5,149,798).
- Suitable oligonucleotide and/or peptide nucleic acid sequences which inhibit transcription and/or translation of the marker proteins can be identified using standard in vivo assays well characterized in the art.
- a range of doses is used to determine effective concentrations for inhibition as well as specificity of hybridization.
- a dose range of 0-100 ⁇ g oligonucleotide/ml may be assayed.
- the oligonucleotides may be provided to the cells in a single transfection, or as part of a series of transfections.
- Anti-sense efficacy may be determined by assaying a change in cell proliferation over time following transfection, using standard cell counting methodology and/or by assaying for reduced expression of marker protein, e.g., by immunofluorescence.
- the ability of cells to take up and use thymidine is another standard means of assaying for cell division and may be used here, e.g., using 3 H-thymidine.
- Effective anti-sense inhibition should inhibit cell division sufficiently to reduce thymidine uptake, inhibit cell proliferation, and/or reduce detectable levels of marker proteins.
- oligonucleotide or peptide nucleic acid concentrations may vary according to the nature and extent of the neoplasm, the particular nucleobase sequence used, the relative sensitivity of the neoplasm to the oligonucleotide or peptide nucleic acid sequence, and other factors.
- Useful ranges for a given cell type and oligonucleotide and/or peptide nucleic acid may be determined by performing standard dose range experiments. Dose range experiments also may be performed to assess toxicity levels for normal and malignant cells. It is contemplated that useful concentrations may range from about 1 to 100 ⁇ g/ml per 10 5 cells.
- the anti-sense oligonucleotide or peptide nucleic acid sequences may be combined with a pharmaceutically acceptable carrier, such as a suitable liquid vehicle or excipient, and optionally an auxiliary additive or additives.
- a pharmaceutically acceptable carrier such as a suitable liquid vehicle or excipient, and optionally an auxiliary additive or additives.
- Liquid vehicles and excipients are conventional and are available commercially. Illustrative thereof are distilled water, physiological saline, aqueous solutions of dextrose, and the like.
- the anti-sense sequences preferably can be provided directly to malignant cells, for example, by injection directly into the tumor.
- the oligonucleotide or peptide nucleic acid may be administered systemically, provided that the anti-sense sequence is associated with means for directing the sequences to the target malignant cells.
- the anti-sense oligonucleotide or peptide nucleic acid sequences may be administered by a variety of specialized oligonucleotide delivery techniques.
- oligonucleotides may be encapsulated in liposomes, as described in Mannino et al. (1988) BioTechnology 6: 682, and Felgner et al. (1989) Bethesda Res. Lab. Focus 11:21.
- Lipids useful in producing liposomal formulations include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like.
- the pharmaceutical composition of the invention may further include compounds such as cyclodextrins and the like which enhance delivery of oligonucleotides into cells.
- cationic detergents e.g. Lipofectin
- reconstituted virus envelopes have been successfully used to deliver RNA and DNA to cells (see, for example, Arad et al. (1986) Biochem. Biophy. Acta. 859: 88-94).
- the anti-sense oligonucleotide and/or peptide nucleic acid sequences are administered to the individual in a therapeutically effective amount, for example, an amount sufficient to reduce or inhibit target protein expression in malignant cells.
- a therapeutically effective amount for example, an amount sufficient to reduce or inhibit target protein expression in malignant cells.
- the actual dosage administered may take into account whether the nature of the treatment is prophylactic or therapeutic in nature, the age, weight, health of the patient, the route of administration, the size and nature of the malignancy, as well as other factors.
- the daily dosage may range from about 0.01 to 1,000 mg per day. Greater or lesser amounts of oligonucleotide or peptide nucleic acid sequences may be administered, as required.
- a cancer marker protein or a protein that interacts with the cancer marker protein may be used as a target for chemotherapy.
- a binding protein designed to bind the marker protein essentially irreversibly can be provided to the malignant cells, for example, by association with a ligand specific for the cell and known to be absorbed by the cell.
- Means for targeting molecules to particular cells and cell types are well described in the chemotherapeutic art.
- Binding proteins may be obtained and tested using technologies well known in the art. For example, the binding portions of antibodies may be used to advantage. It is contemplated, however, that intact antibodies or BABS that have preferably been humanized may be used in the practice of the invention.
- the term “humanized” is understood to mean a process whereby the framework region sequences of a non-human immunoglobulin variable region are replaced by corresponding human framework sequences. Accordingly, it is contemplated that such humanized binding proteins will elicit a weaker immune response than their unhumanized counterparts. Particularly useful are binding proteins identified with high affinity for the target protein, e.g., greater than about 10 9 M ⁇ 1 .
- DNA encoding the binding protein may be provided to the target cell as part of an expressible gene to be expressed within the cell following the procedures used for gene therapy protocols well described in the art. See, for example, U.S. Pat. No. 4,497,796, and “ Gene Transfer” , Vijay R. Baichwal, ed., (1986). It is anticipated that, once bound by binding protein, the target protein will be inactivated or its biological activity reduced thereby inhibiting or retarding cell division.
- suitable binding proteins for in vivo use may be combined with a suitable pharmaceutically-acceptable carrier, such as physiological saline or other useful carriers well characterized in the medical art.
- the pharmaceutical compositions may be provided directly to malignant cells, for example, by direct injection, or may be provided systemically, provided the binding protein is associated with means for targeting the protein to target cells.
- suitable dose ranges and cell toxicity levels may be assessed using standard dose range experiments.
- Therapeutically-effective concentrations may range from about 0.01 to about 1,000 mg per day.
- actual dosages administered may vary depending, for example, on the nature of the malignancy, the age, weight and health of the individual, as well as other factors.
- the skilled artisan can, using methodologies well known in the art, screen small molecule libraries (either peptide or non-peptide based libraries) to identify candidate molecules that reduce or inhibit the biological function of the breast cancer-associated proteins.
- the small molecules preferably accomplish this function by reducing the in vivo expression of the target molecule, or by interacting with the target molecule thereby to inhibit either the biological activity of the target molecule or an interaction between the target molecule and its in vivo binding partner.
- the skilled artisan may enhance the efficacy of the small molecule using rational drug design methodologies well known in the art.
- the skilled artisan may use a variety of computer programs which assist the skilled artisan to develop quantitative structure activity relationships (QSAR) which further to assist the design of additional candidate molecules de novo.
- QSAR quantitative structure activity relationships
- screening assays may be automated thereby facilitating the screening of a large number of small molecules at the same time. Such automation procedures are within the level of skill in the art of drug screening and, therefore, are not discussed herein.
- Candidate peptide-based small molecules may be produced by expression of an appropriate nucleic acid sequence in a host cell or using synthetic organic chemistries. Similarly, non-peptidyl-based small molecules may be produced using conventional synthetic organic chemistries well known in the art.
- the identified small molecules may be combined with a suitable pharmaceutically acceptable carrier, such as physiological saline or other useful carriers well characterized in the medical art.
- a suitable pharmaceutically acceptable carrier such as physiological saline or other useful carriers well characterized in the medical art.
- the pharmaceutical compositions may be provided directly to malignant cells, for example, by direct injection, or may be provided systemically, provided the binding protein is associated with means for targeting the protein to target cells.
- suitable dose ranges and cell toxicity levels may be assessed using standard dose range experiments. As described above, actual dosages administered may vary depending, for example, on the nature of the malignancy, the age, weight and health of the individual, as well as other factors.
- the progression of the breast cancer or the therapeutic efficacy of chemotherapy may be measured using procedures well known in the art.
- the efficacy of a particular chemotherapeutic agent can be determined by measuring the amount of a breast cancer-associated protein released from breast cancer cells undergoing cell death.
- soluble nuclear matrix proteins and fragments thereof are released by cells upon cell death.
- Such soluble nuclear matrix proteins can be quantitated in a body fluid and used to monitor the degree or rate of cell death in a tissue.
- the levels of one or more breast cancer-associated proteins could be used as an indication of the status of breast cancer in the individual.
- the concentration of a breast cancer-associated protein or a fragment thereof released from cells is compared to standards from healthy, untreated tissue. Fluid samples are collected at discrete intervals during treatment and compared to the standard. It is contemplated that changes in the level of the breast cancer-associated protein, for example, will be indicative of the efficacy of treatment (that is, the rate of cancer cell death). It is contemplated that the release of soluble, breast cancer-associated proteins can be measured in blood, plasma, urine, sputum, vaginal secretion, and breast exudate and other body fluids.
- the step of detecting the presence and abundance of the marker protein or its transcript in samples of interest is repeated at intervals and these values then are compared, the changes in the detected concentrations reflecting changes in the status of the tissue. For example, an increase in the level of one or more breast cancer-associated proteins may correlate with progression of the breast cancer.
- the monitoring steps occur following administration of the therapeutic agent or procedure (e.g., following administration of a chemotherapeutic agent or following radiation treatment). Similarly, a decrease in the level of breast cancer-associated proteins may correlate with a regression of the breast cancer.
- breast cancer may be identified by the presence of breast cancer-associated proteins as taught herein. Once identified, the breast cancer may be treated using compounds that reduce in vivo the expression and/or biological activity of the breast cancer-associated proteins. Furthermore, the methods provided herein can be used to monitor the progression and/or treatment of the disease. The following non-limiting examples provide details of the isolation and characterization of breast cancer-associated proteins and methods for their use in the detection of breast cancer.
- the sera of individuals with breast cancer were compared to the sera of normal individuals by surface-enhanced laser desorption and ionization (SELDI) mass spectrometry. Briefly, 0.5 mL aliquots of sera harvested from the individuals were thawed. Then, 1 ⁇ L of a 1 mg/mL solution of soybean trypsin inhibitor (SBTI) and 1 ⁇ L of a 1 mg/mL solution of leupeptin were added to each aliquot. To remove lipids, 350 ⁇ L of 1,1,2-trifluorotrichloroethane was added to each sample. The samples then were vortexed for five minutes and centrifuged in a microcentrifuge for five minutes at 4° C.
- SBTI soybean trypsin inhibitor
- leupeptin leupeptin
- the resulting supernatants were applied a 1 mL column of agarose coupled to protein G (Hitrap Protein G column, Pharmacia and Upjohn, Peapack, N.J.) to remove immunoglobulin proteins.
- the column then was rinsed with 3 mL of 50 mM sodium phosphate, pH 7.0, with SBTI and leupeptin (“binding buffer”), and the resulting flowthrough applied directly to a 5 mL column of 6% Sepharose coupled to Cibacron blue (Hitrap blue column, Pharmacia and Upjohn, Peapack, N.J.) to remove albumin proteins.
- the Hitrap blue column was rinsed with 20 mL of binding buffer.
- the resulting flowthrough was concentrated using four centrifugation-based concentrators with a 10 kD cutoff (Centricon 10, Millipore Corporation, Bedford, Mass.) to a final volume of about 0.7 mL.
- the resulting serum (substantially free of immunoglobulin and albumin) was subdivided into twelve fractions containing approximately equal amounts of protein by ion exchange chromatography. Specifically, the serum was applied to a Mono Q (Pharmacia and Upjohn, Peapack, N.J.) ion exchange column (a strong anion exchanger with quarternary ammonium groups) in 50 mM sodium phosphate buffer, pH 7.0 and proteins were eluted from the column by increasing the concentration of sodium chloride in a stepwise manner. Thus, the serum was divided into twelve fractions based on the concentration of sodium chloride used for elution.
- Mono Q Pharmaacia and Upjohn, Peapack, N.J.
- each of the twelve fractions were applied and allowed to bind to each of four SELDI chip surfaces, each surface holding up to eight samples.
- the intended location of each sample on the chip was demarcated with a circle drawn using a hydrophobic marker like those used in Pap smears.
- the SELDI chips used herein were purchased from Ciphergen Biosystems, Inc., Palo Alto, Calif., and used as described below.
- a chip containing ethylenediaminetriacetic acid moieties (IMAC, Ciphergen Biosystems, Inc., Palo Alto, Calif.) was pretreated with two five-minute applications of five ⁇ L of a copper salt or nickel salt solution, and washed with deionized water. After a five-minute treatment with five ⁇ L of binding buffer, two to three microliters of sample were applied to the surface for thirty to sixty minutes. Another two to three microliters of sample were then applied for an additional thirty to sixty minutes. The chips then were washed twice with binding buffer to remove unbound proteins. 0.5 ⁇ L of sinapinic acid (12.5 mg/mL) was added twice and allowed to dry each time. The presence of sinapinic acid enhances the vaporization and ionization of the bound proteins upon mass spectrometry.
- IMAC ethylenediaminetriacetic acid moieties
- the chips then were subjected to mass spectrometry utilizing a Ciphergen SELDI PBS One (Ciphergen Biosystems, Inc., Palo Alto, Calif.) running the software program “SELDI v. 2.0”.
- “high mass” was set to 200,000 Daltons
- “starting detector sensitivity” was set to 9 (from a range of 1-10, with 10 being the highest sensitivity)
- NDF neutral density filter
- data acquisition method was set to “Seldi Quantitation”
- SELDI acquisition parameters were set to 20, with increments of 5, and warming with two shots at intensity 50 (out of 100) was included.
- breast cancer-associated proteins based upon the biochemical and mass spectrometry data provided above may be better characterized using well-known techniques. For example, samples of the serum can be fractionated using, for example, column chromatography and/or electrophoresis, to produce purified protein samples corresponding to each of the proteins identified in Table 1. The sequences of the isolated proteins can then be determined using conventional peptide sequencing methodologies (see Examples 5 and 6). It is appreciated that the skilled artisan, in view of the foregoing disclosure, would be able to produce an antibody directed against any breast cancer-associated protein identified by the methods described herein.
- nucleic acid sequences that encode the fragments described above, as well as nucleic acid sequences complementary thereto.
- skilled artisan using conventional recombinant DNA methodologies for example, by screening a cDNA library with such a nucleic acid sequence, would be able to isolate full length nucleic acid sequences encoding target breast cancer-associated proteins. Such full length nucleic acid sequences, or fragments thereof, may be used to generate nucleic acid-based detection systems or therapeutics.
- a breast cancer-associated protein may be detected in a tissue or body fluid sample using numerous binding assays that are well known to those of ordinary skill in the art.
- a breast cancer-associated protein may be detected in either a tissue or body fluid sample using an antibody, for example, a monoclonal antibody, which binds specifically to an epitope disposed upon the breast cancer-associated protein.
- the antibody preferably is labeled with a detectable moiety.
- mice Balb/c by J mice (Jackson Laboratory, Bar Harbor, Me.) are injected intraperitoneally with the target protein every 2 weeks until the immunized mice obtain the appropriate serum titer. Thereafter, the mice are injected with 3 consecutive intravenous boosts. Freund's complete adjuvant (Gibco, Grand Island) is used in the first injection, incomplete Freund's in the second injection; and saline is used for subsequent intravenous injections. The animal then is sacrificed and its spleen removed. Spleen cells (or lymph node cells) then are fused with a mouse myeloma line, e.g., using the method of Kohler et al. (1975) Nature 256: 495.
- Hybridomas producing antibodies that react with the target proteins then are cloned and grown as ascites. Hybridomas are screened by reactivity to the immunogen in any desirable assay. Detailed descriptions of screening protocols, ascites production and immunoassays also are disclosed in PCT/US92/09220, published May 13, 1993.
- a typical assay may employ a commercial immunodetection kit, for example, the ABC Elite Kit from Vector Laboratories, Inc.
- a biopsy sample is removed from the patient under investigation in accordance with the appropriate medical guidelines.
- the sample then is applied to a glass microscope slide and the sample fixed in cold acetone for 10 minutes.
- the slide is rinsed in distilled water and pretreated with a hydrogen peroxide containing solution (2 mL 30% H 2 O 2 and 30 mL cold methanol).
- the slide then is rinsed in a Buffer A comprising Tris Buffered Saline (TBS) with 0.1% Tween and 0.1% Brij.
- TBS Tris Buffered Saline
- a mouse anti-breast cancer-associated protein monoclonal antibody in Buffer A is added to the slide and the slide then incubated for one hour at room temperature.
- the slide then is washed with Buffer A, and a secondary antibody (ABC Elite Kit, Vector Labs, Inc) in Buffer A is added to the slide.
- the slide then is incubated for 15 minutes at 37° C. in a humidity chamber.
- the slides are washed again with Buffer A, and the ABC reagent (ABC Elite Kit, Vector Labs, Inc.) is then added to the slide for amplification of the signal.
- the slide is then incubated for a further 15 minutes at 37° C. in the humidity chamber.
- the slide then is washed in distilled water, and a diaminobenzedine (DAB) substrate added to the slide for 4-5 minutes.
- the slide then is rinsed with distilled water, counterstained with hematoxylin, rinsed with 95% ethanol, rinsed with 100% ethanol, and then rinsed with xylene.
- a cover slip is then applied to the slide and the result observed by light microscopy.
- Example 1 The 28.3 kD breast cancer protein identified in Example 1 was isolated and further characterized as follows.
- Approximately 30 mL of serum was depleted of immunoglobulin G and serum albumin using Protein G chromatography and Cibacron Blue agarose chromatography, respectively, using standard methodologies such as those described in Example 1.
- the albumin and immunoglobulin depleted serum then was fractionated by Mono Q ion-exchange affinity chromatography. Briefly, the serum proteins were applied to a 5 mL Mono Q column (Pharmacia and Upjohn, Peapack, N.J.) in 50 mM sodium phosphate buffer, pH 7.0, and the flow through fraction collected. Thereafter, the serum proteins were eluted stepwise from the column using 50 mM sodium phosphate buffer, pH 7.0 containing increasing concentrations of sodium chloride.
- fractions were obtained, each containing a different amount of sodium chloride.
- the fractions included flow through, and elution buffers of 50 mM sodium phosphate buffer, pH 7.0 containing 25 mM, 50 mM, 75 mM, 100 mM, 125 mM, 150 mM, 200 mM, 250 mM, 300 mM, 400 mM, and 2M sodium chloride.
- the 50 mM sodium chloride fraction containing the protein of interest was subsequently buffer exchanged back into 50 mM sodium phosphate buffer, pH 7.0 and concentrated by means of a Centricon 10 (Millipore) in accordance with the manufacturer's instructions.
- the resulting sample then was fractionated by size exclusion chromatography on a Sephacryl S-200 column (Pharmacia) using an isocratic buffer containing 100 mM sodium phosphate, 150 mM NaCl, pH 7.4. Fractions that eluted from the column were evaluated for the presence of the 28.3 kD protein using the Ciphergen SELDI mass spectroscopy as described in Example 1.
- Fractions containing the 28.3 kD protein were pooled and applied to an IMAC column (Sigma) which had been pre-loaded with Ni 2+ by prior incubation with 50 mM NiCl 2 .
- the IMAC column then was washed with 6 bed volumes of a solution containing 100 mM sodium phosphate, 150 mM NaCl, pH 7.4, and the bound protein fraction eluted with the same solution containing 100 mM imidazole.
- the eluted fraction then was concentrated by means of a Minicon 10 (Millipore) and then was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% Tris glycine SDS-PAGE gel. Samples of the protein fraction were applied to two separate lanes of the gel. After electrophoresis, the resulting gel then was stained with Coomassie Brilliant Blue dye and destained to reveal the presence of proteins. Three bands of about 28.3 kD (characterized as the heaviest molecular weight protein, the medium molecular weight protein, and the lightest molecular weight protein) were excised from one of the 2 lanes and were eluted from the acrylamide slices.
- SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- the proteins were eluted from the gel as follows. Briefly, the gel slices were washed five times with HPLC grade water with vigorous vortexing. The washed slices then were cut into small pieces in 120 ⁇ L of 100 mM sodium acetate pH 8.5, 0.1% SDS and incubated overnight at 37° C. The supernatant was decanted into a fresh tube and dried in a speedvac. The resulting pellet then was reconstituted in 37 ⁇ L HPLC grade water. Approximately 1480 ⁇ L of cold ethanol then was added and the resulting mixture incubated overnight at ⁇ 20° C. The sample was centrifuged at 4° C. for 15 minutes at 11,000 rpm.
- the supernatant was removed and the resulting pellet reconstituted in 5 ⁇ L of water.
- the resulting protein solutions were run on the SELDI and the 28.3 kD protein was identified in one of the three preparations (see FIG. 1A which corresponds to the heaviest 28 kD protein).
- the corresponding band then was excised from the second of the 2 lanes on the gel. After proteolysis with trypsin, the tryptic fragments were eluted from the gel and submitted for microsequence analysis via mass spectrometry.
- the amino acid sequence, in an N- to C-terminal direction, of the U2 SnRNP B′′ protein in single amino acid code is: (SEQ ID NO: 5) MDIRPNHTIY INNMNDKIKK EELKRSLYAL FSQFGHVVDI VALKTMKMRG QAFVIFKELG SSTNALRQLQ GFPFYGKPMR IQYAKTDSDI ISKMRGTFAD KEKKKEKKKA KTVEQTATTT NKKPGQGTPN SANTQGNSTP NPQVPDYPPN YILFLNNLPE ETNEMMLSML FNQFPGFKEV RLVPGRHDIA FVEFENDGQA GAARDALQGF KITPSHAMKI TYAKK
- Example 1 The 71 kD breast cancer protein identified in Example 1 was isolated and further characterized as follows.
- the 200 mL fraction was applied to a series of antibody columns to remove abundant proteins of 50-70 kD. Each of these proteins, alpha-I anti-trypsin, ceruloplasmin, kallikrein, and GC-globulin, had been identified and sequenced during preliminary attempts to isolate the 71 kD protein.
- Commercial antibodies to each of the proteins were purchased and coupled to a solid support (agarose) using conventional NHS ester chemistry (Pierce Aminolink Plus kit—part number 44894).
- the 200 mL fraction was applied to each column in turn until the protein in question could no longer be seen in the flowthrough by Western blot analysis.
- the flowthrough was subjected to size exclusion chromatography using an S200 column. Fractions containing the 71 kD) peak were identified by SELDI as described in Example 1. Because these fractions also appeared to contain a fragment of human serum albumin (HSA) that would not bind to the Cibacron blue column, the fractions were applied to an HSA affinity column with two murine antibodies to HSA to depelete the remaining HSA from the sample. SDS-PAGE analysis of the sample revealed a single band in the 71 kD range by silver staining. The remaining sample was divided into two aliquots and run on two lanes of a 10% tris-glycine gel. The gel was stained with Coomassie Brilliant Blue dye.
- HSA human serum albumin
- the 71 kD band from one of the two lanes was excised and eluted from the gel as described in Example 5. Its identity as the 70.972 kD marker protein was confirmed by SELDI.
- the 71 kD band from the other lane was excised and treated with trypsin.
- the resulting peptides were eluted from the gel and subjected to microsequence analysis by mass spectrometry.
- Sixteen of the predicted trypsin fragments of the 64-kD subunit of cleavage stimulation factor have masses corresponding to those identified in the mass spectrum of the 71 kD protein. The sixteen sequences are set forth in Table 3.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Oncology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
- This application claims the benefit of U.S. Ser. No. 60/165,173, filed Nov. 16, 1999; U.S. Ser. No. 60/172,170, filed Dec. 17, 1999; U.S. Ser. No. 60/178,860, filed Jan. 27, 2000; and U.S. Ser. No.60/201,721, filed May 3, 2000, the disclosures of which are incorporated by reference herein.
- The present invention relates generally to methods and compositions for the detection and/or treatment of breast cancer. More specifically, the present invention relates to breast cancer-associated proteins and nucleic acids encoding such proteins which represent cellular markers for breast cancer detection, and molecular targets for breast cancer therapy.
- Breast cancer is a leading cause of death in women. While the pathogenesis of breast cancer is unclear, transformation of normal breast epithelium to a malignant phenotype may be the result of genetic factors, especially in women under 30 (Miki et al. (1994) Science 266: 66-71). However, it is likely that other, non-genetic factors also have a significant effect on the etiology of the disease. Regardless of its origin, breast cancer morbidity increases significantly if it is not detected early in its progression. Thus, considerable effort has focused on the elucidation of early cellular events surrounding transformation in breast tissue. Such effort has led to the identification of several potential breast cancer markers. For example, alleles of the BRCA1 and BRCA2 genes have been linked to hereditary and early-onset breast cancer (Wooster et al. (1994) Science 265: 2088-2090). The wild-type BRCA1 allele encodes a tumor suppressor protein. Deletions and/or other alterations in that allele have been linked to transformation of breast epithelium. Accordingly, detection of mutated BRCA1 alleles or their gene products has been proposed as a means for detecting breast, as well as ovarian, cancers (Miki et al., supra). However, BRCA1 is limited as a cancer marker because BRCA1 mutations fail to account for the majority of breast cancers (Ford et al. (1995) British J. Cancer 72: 805-812). Similarly, the BRCA2 gene, which has been linked to forms of hereditary breast cancer, accounts for only a small portion of total breast cancer cases (Ford et al., supra).
- Several other genes have been linked to breast cancer and may serve as markers for the disease, either directly or via their gene products. Such potential markers include the TP53 gene and its gene product, the p53 tumor suppressor protein (Malkin et al. (1990) Science 250: 1233-1238). The loss of heterozygosity in genes such as the ataxia telangiectasia gene has also been linked to a high risk of developing breast cancer (Swift et al. (1991) N. Engl. J. Med. 325: 1831-1836). A problem associated with many of the markers proposed to date is that the oncogenic phenotype is often the result of a gene deletion, thus requiring detection of the absence of the wild-type form as a predictor of transformation.
- There is, therefore, a need in the art for specific, reliable markers that are differentially expressed in normal and transformed breast tissue and that may be useful in the diagnosis of breast cancer, in the prediction of its onset or the treatment of breast cancer. Such markers and methods for their use are provided herein.
- The invention provides a variety of methods and compositions for detecting the presence of breast cancer in a mammal, for example, a human, and for treating breast cancer in a mammal diagnosed with the disease. The invention is based, in part, upon the discovery of a family of proteins each member of which is detectable at a higher concentration in serum from a mammal, for example, a human, with breast cancer relative to serum from a normal mammal, that is, a mammal without breast cancer. Accordingly, these proteins, as well as nucleic acid sequences encoding such proteins, or sequences complementary thereto, can be used as breast cancer markers useful in diagnosing breast cancer, monitoring the efficacy of a breast cancer therapy and/or as targets of such a therapy.
- In one aspect, the invention provides isolated breast cancer-associated protein markers. The protein markers are characterized as being detectable at a higher concentration in the serum of a mammal, specifically, a human, with breast cancer than in serum of a mammal without breast cancer.
- One marker protein is further characterized in that it has a molecular weight of about 16 kD, and fails to bind in a detectable amount to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 17 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 25 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 30 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 25 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 35 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 25 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 20 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 24 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 28 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip. Microsequence analysis has identified the marker protein to be a protein known in the art as small nuclear ribonucleoprotein B″ (Habets et al. (1987) P
ROC NATL ACAD SCI , USA 84, 2421-2425), the amino acid sequence of which is identified hereinbelow as SEQ ID NO: 5. - Another marker protein is further characterized in that it has a molecular weight of about 35 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 35 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 50 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 18 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 100 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a WCX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 71 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 100 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a WCX-2 SELDI chip. Microsequence analysis has identified the marker protein to be a protein known in the art as, or related to, the 64 kD subunit of cleavage stimulating factor (Takagaki et al. (1987) P
ROC NATL ACAD SCI , USA 89, 1403-1407), the amino acid sequence of which is identified hereinbelow as SEQ ID NO: 22 and SEQ ID NO: 23. - Another marker protein is further characterized in that it has a molecular weight of about 12 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 150 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a SAX-2 SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 42 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 200 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 56 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 200 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a nickel SELDI chip.
- Another marker protein is further characterized in that it has a molecular weight of about 35 kD, binds to an anion exchange resin in the presence of 50 mM sodium phosphate, pH 7.0, and elutes from the anion exchange resin in the presence of 400 mM sodium chloride in 50 mM sodium phosphate, pH 7.0. This marker protein also has a binding affinity to a copper SELDI chip.
- Furthermore, the aforementioned breast cancer-associated proteins are further characterized as being non-immunoglobulin and/or non-albumin proteins. Furthermore, the breast cancer-associated proteins may further define an antigenic region or epitope that may bind specifically to a binding moiety, for example, an antibody, for example, a monoclonal or a polyclonal antibody, an antibody fragment thereof, or a biosynthetic antibody binding site directed against the antigenic region or epitope. In addition, the invention enables one skilled in the art to isolate nucleic acids encoding the aforementioned breast cancer-associated proteins or nucleic acids capable of hybridizing under specific hybridization conditions to a nucleic acid encoding the breast cancer-associated proteins. Furthermore, the skilled artisan may produce nucleic acid sequences encoding the entire isolated marker protein, or fragments thereof, using methods currently available in the art (see, for example, Sambrook et al., eds. (1989) “Molecular Cloning: A Laboratory Manual,” Cold Spring Harbor Press). For example, the breast cancer-associated protein of the invention, when isolated, can be sequenced using conventional peptide sequencing protocols. Based on the peptide sequence, it is possible to produce oligonucleotide hybridization probes useful in screening a cDNA library. The cDNA library may then be screened with the resultant oligonucleotide to isolate full or partial length cDNA sequences encoding the isolated protein.
- In another aspect, the invention provides a variety of methods, for example, protein or nucleic acid-based methods, for detecting the presence of breast cancer in a mammal. The methods of the invention may be performed on any relevant tissue or body fluid sample. For example, methods of the invention may be performed on breast tissue, more preferably breast biopsy tissue. Alternatively, the methods of the invention may be performed on a human body fluid sample selected from the group consisting of: blood; serum; plasma; fecal matter; urine; vaginal secretion; spinal fluid; saliva; ascitic fluid; peritoneal fluid; sputum; and breast exudate. It is contemplated, however, that the methods of the invention also may be useful in detecting metastasized breast cancer cells in other tissue or body fluid samples. Detection of breast cancer can be accomplished using any one of a number of assay methods well known and used in the art.
- In one aspect, the method of diagnosing cancer in an individual comprises contacting a sample from the individual with a first binding moiety that binds specifically to a breast-cancer associated protein to produce a first binding moiety-cancer-associated protein complex. The first binding moiety is capable of binding specifically to at least one of the breast cancer associated marker proteins identified hereinabove to produce a complex. Thereafter the presence and/or amount of marker protein in the complex can then be detected, for example, via the first binding moiety if labeled with a detectable moiety, for example, a radioactive or fluorescent label, or a second binding moiety labeled with a detectable moiety that binds specifically to the first binding moiety using conventional methodologies well known in the art. The presence or amount of the marker protein can thus be indicative of the presence of breast cancer in the individual. For example, the amount of marker protein in the sample may be compared against a threshold value previously calibrated to indicate the presence or absence of breast cancer, wherein the amount of the complex in the sample relative to the threshold value can be indicative of the presence or absence of cancer in the individual. Although such a method can be performed on tissue, for example, breast tissue, or a body fluid, for example, serum, a body fluid currently is the preferred test sample.
- Detection of the aforementioned nucleic acid molecules can also serve as an indicator of the presence of breast cancer and/or metastasized breast cancer in an individual. Accordingly, in another aspect, the invention provides another method for detecting breast cancer in a human. The method comprises the step of detecting the presence of a nucleic acid molecule in a tissue or body fluid sample thereby to indicate the presence of breast cancer in an individual. The nucleic acid molecule is selected from the group consisting of (i) a nucleic acid molecule comprising a sequence capable of recognizing and being specifically bound by a breast cancer-associated protein, and (ii) a nucleic acid molecule comprising a sequence encoding at least a portion of one or more of the breast cancer-associated proteins identified herein.
- In one embodiment, the method comprises exposing a sample from the individual under specific hybridization conditions to a nucleic acid probe, for example, greater than about 10 and more preferably greater than 15 nucleotides in length, capable of hybridizing to a target nucleic acid encoding one of the breast cancer-associated proteins identified herein to produce a duplex. Thereafter, the presence of the duplex can be detected using a variety of detection methods known and used in the art. It is contemplated that the target nucleic acid may be amplified, for example, via conventional polymerase chain reaction (PCR) or reverse transcriptase polymerase chain reaction (RT-PCR) methodologies, prior to hybridization with the nucleic acid probe.
- In one embodiment, the target nucleic acid (for example, a messenger RNA (mRNA) molecule), is greater than 15 nucleotides, more preferably greater than 50 nucleotides, and most preferably greater than 100 nucleotides in length and encodes an amino acid sequence present in one of the breast cancer-associated proteins identified herein. Such a target mRNA may then be detected, for example, by Northern blot analysis by reacting the sample with a labeled hybridization probe, for example, a 32P labeled oligonucleotide probe, capable of hybridizing specifically with at least a portion of the nucleic acid molecule encoding the marker protein. Detection of a nucleic acid molecule either encoding a breast cancer-associated protein or capable of being specifically bound by a breast cancer-associated protein, can thus serve as an indicator of the presence of a breast cancer in the individual being tested.
- In another aspect, the invention provides a kit for detecting the presence of breast cancer or for evaluating the efficacy of a therapeutic treatment of a breast cancer. Such kits may comprise, in combination, (i) a receptacle for receiving a human tissue or body fluid sample from the individual to be tested, (ii) a binding partner which binds specifically either to an epitope on a breast cancer-associated marker protein or a nucleic acid sequence encoding at least a portion of the breast cancer-associated protein or the nucleic acid sequence encoding at least a portion of the breast cancer-associated protein, and (iii) a reference sample. In one embodiment, the reference sample may comprise a negative and/or positive control. In that embodiment, the negative control would be indicative of a normal breast cell type and the positive control would be indicative of breast cancer.
- In another aspect, the invention provides methods and compositions for treating breast cancer. In one aspect the invention provides proteins or nucleobase-containing sequences useful in the treatment of breast cancer. The therapeutic protein could be, for example, a binding moiety, for example, an antibody, for example, a monoclonal antibody, an antigenic binding fragment thereof, or a biosynthetic antibody binding site capable of binding specifically to a breast cancer-associated protein identified herein. The method comprises the step of administering to a patient with breast cancer, a therapeutically-effective amount of a compound, preferably an antibody, and most preferably a monoclonal antibody, which binds specifically to a target breast cancer-associated protein thereby to inactivate or reduce the biological activity of the protein. The target protein may be any of the breast cancer-associated proteins identified herein. Similarly, it is contemplated that the compound may comprise a small molecule, for example, a small organic molecule, which inhibits or reduces the biological activity of the target breast cancer-associated protein.
- In another aspect, the invention provides another method for treating breast cancer. The method comprises the step of administering to a patient diagnosed as having breast cancer, a therapeutically-effective amount of a compound which reduces in vivo the expression of a target breast cancer-associated protein thereby to reduce in vivo the expression of the target protein. In a preferred embodiment, the compound is a nucleobase containing sequence, for example, an anti-sense nucleic acid sequence or a peptidyl nucleic acid (PNA) capable of binding to and reducing the expression (for example, transcription or translation) of a nucleic acid encoding at least a portion of at least one of the breast cancer-associated proteins identified herein. After administration, the anti-sense nucleic acid sequence or the anti-sense PNA molecule binds to the nucleic acid sequences encoding, at least in part, the target protein thereby to reduce in vivo expression of the target breast cancer-associated protein.
- Thus, the invention provides a wide range of methods and compositions for detecting and treating breast cancer in an individual. Specifically, the invention provides breast cancer-associated proteins, which permit specific and early, preferably before metastases occur, detection of breast cancer in an individual. In addition, the invention provides kits useful in the detection of breast cancer in an individual. In addition, the invention provides methods utilizing the breast cancer-associated proteins as targets and indicators, for treating breast cancers and for monitoring of the efficacy of such a treatment. These and other numerous additional aspects and advantages of the invention will become apparent upon consideration of the following figures, detailed description, and claims which follow.
- The invention can be more completely understood with reference to the following drawings, in which:
-
FIGS. 1A-1C are spectra resulting from the characterization via mass spectrometry of 28 kD proteins subjected to trypsin digestion and eluted from a polyacrylamide gel.FIG. 1A is a spectrum of the heaviest 28 kD protein isolated from the gel,FIG. 1B is a spectrum of the median 28 kD protein isolated from the gel, andFIG. 1C is a spectrum of the lightest 28 kD protein isolated from the gel. - The present invention provides methods and compositions for the detection and treatment of breast cancer. The invention is based, in part, upon the discovery of breast cancer-associated proteins which generally are present at detectably higher levels in serum of humans with breast cancer relative to serum of humans without breast cancer.
- The breast cancer-associated proteins or nucleic acids encoding such proteins may act as markers useful in the detection of breast cancer or as targets for therapy of breast cancer. For example, it is contemplated that the marker proteins and binding moieties, for example, antibodies that bind to the marker proteins or nucleic acid probes which hybridize to nucleic acid sequences encoding the marker proteins, may be used to detect the presence of breast cancer in an individual. Furthermore, it is contemplated that the skilled artisan may produce novel therapeutics for treating breast cancer which include, for example: antibodies which can be administered to an individual that bind to and reduce or eliminate the biological activity of the target protein in vivo; nucleic acid or peptidyl nucleic acid sequences which hybridize with genes or gene transcripts encoding the target proteins, thereby to reduce expression of the target proteins in vivo; or small molecules, for example, organic molecules which interact with the target proteins or other cellular moieties, for example, receptors for the target proteins, thereby to reduce or eliminate biological activity of the target proteins.
- Set forth below are methods for isolating breast cancer-associated proteins, methods for detecting breast cancer using breast cancer-associated proteins as markers, and methods for treating individuals afflicted with breast cancer using breast cancer-associated proteins as targets for cancer therapy.
- 1. Methods for Detecting Breast Cancer-Associated Marker Proteins.
- Marker proteins of the invention, as disclosed herein, are identified by comparing the protein composition of serum of a human diagnosed with breast cancer with the protein composition of serum of a human free of breast cancer. As used herein, the term “breast cancer-associated protein” is understood to mean any protein which is detectable at a higher level in a tissue or body fluid of an individual diagnosed with breast cancer relative to a corresponding tissue or body fluid of an individual free of breast cancer and includes species and allelic variants thereof and fragments thereof. As used herein, the term “breast cancer” is understood to mean any cancer or cancerous lesion associated with breast tissue or breast tissue cells and can include precursors to breast cancer, for example, atypical ductal hyperplasia or non-atypical hyperplasia. It is not necessary that the marker protein or target molecule be unique to a breast cancer cell or body fluid of an individual afflicted with breast cancer; rather the marker protein or target molecule should have a signal to noise ratio high enough to discriminate between samples originating from a breast cancer tissue or body fluid and samples originating from normal breast tissue or body fluid.
- As used herein, a “portion” or a “fragment” of a protein or of an amino acid sequence denotes a contiguous peptide comprising, in sequence, at least ten amino acids from the protein or amino acid sequence (e.g. amino acids 1-10, 34-43, or 127-136 of the protein or sequence). Preferably, the peptide comprises, in sequence, at least twenty amino acids from the protein or amino acid sequence. More preferably, the peptide comprises, in sequence, at least forty amino acids from the protein or amino acid sequence.
- The breast cancer-associated marker proteins of the invention were identified by comparing the proteins present in the serum of individuals with breast cancer to the proteins present in the serum of individuals without breast cancer. Albumin and immunoglobulin proteins were removed from the serum, and the proteins were separated into twelve fractions by anion exchange chromatography. Briefly, the proteins were loaded on a strong anion exchange column in the presence of 50 mM sodium phosphate, pH 7.0, and eluted with a stepwise gradient of sodium chloride in 50 mM sodium phosphate, pH 7.0. The resulting twelve fractions include a flow-through fraction, a fraction eluting in 25 mM sodium chloride, a 50 mM fraction, a 75 mM fraction, a 100 mM fraction, a 125 mM fraction, a 150 mM fraction, a 200 mM fraction, a 250 mM fraction, a 300 mM fraction, a 400 mM fraction, and a 2 M fraction.
- Each fraction was analyzed by SELDI (surface-enhanced laser desorption and ionization) mass spectrometry. Samples from each of the twelve fractions were applied to one of four different SELDI chip surfaces. A copper or nickel SELDI surface can be generated by adding a copper or nickel salt solution to a chip comprising ethylenediaminetriacetic acid. Other SELDI chip surfaces include: WCX-2 which comprises carboxylate moieties, and SAX-2 which comprises quarternary ammonium moieties. The breast cancer-associated proteins of the invention can therefore be characterized by their increased presence in serum of individuals having breast cancer relative to individuals without breast cancer, their molecular weight, binding and elution characteristics on an anion exchange resin, and their affinity to a particular SELDI chip. For example, as used herein, the term “affinity” to a particular SELDI chip is understood to mean that the breast cancer-associated proteins of the invention bind preferentially to one type of SELDI chip (e.g., copper SELDI chip) relative to one or more of the other SELDI chips (e.g., the nickel, SAX-2 and WCX-2 chips) disclosed herein. As discussed in detail in Example 1, comparison of the sera from diseased and healthy individuals revealed a number of proteins frequently present at detectable levels in the sera of diseased individuals, but infrequently present at comparable levels in the sera of healthy individuals.
- Once the breast cancer-associated proteins have been identified by mass spectroscopy, the identified proteins can be isolated by standard protein isolation methodologies and sequenced using protein sequencing technologies known and used in the art. See, for example, Examples 5 and 6. Once the amino acid sequences are identified then nucleic acids encoding the marker proteins or portions thereof can be identified using conventional recombinant DNA methodologies. See, for example, Sambrook et al. eds. (1989) “Molecular Cloning: A Laboratory Manual”, Cold Spring Harbor Press. For example, an isolated breast cancer-associated protein can be sequenced using conventional peptide sequencing protocols, and the oligonucleotide hybridization probes designed for sequencing a cDNA library. The cDNA library may then be screened with the resultant hybridization probes to isolate full length or partial length cDNA sequences encoding the isolated marker proteins.
- Marker proteins useful in the present invention encompass not only the particular sequences identified herein but also allelic variants thereof and related proteins that also function as marker proteins. Thus, for example, sequences that result from alternative splice forms, post-translational modification, or gene duplication are each encompassed by the present invention. Species variants are also encompassed by this invention where the patient is a non-human mammal. Other homologous proteins that may function as marker proteins are also envisioned. Preferably, variant sequences are at least 80% similar or 70% identical, more preferably at least 90% similar or 80% identical, and most preferably 95% similar or 90% identical to at least a portion of one of the sequences disclosed herein.
- To determine whether a candidate peptide region has the requisite percentage similarity or identity to a reference polypeptide or peptide oligomer, the candidate amino acid sequence and the reference amino acid sequence are first aligned using the dynamic programming algorithm described in Smith and Waterman (1981), J. Mol. Biol. 147:195-197, in combination with the BLOSUM62 substitution matrix described in
FIG. 2 of Henikoff and Henikoff (1992), “Amino acid substitution matrices from protein blocks”, PNAS (November 1992), 89:10915-10919. For the present invention, an appropriate value for the gap insertion penalty is -12, and an appropriate value for the gap extension penalty is −4. Computer programs performing alignments using the algorithm of Smith-Waterman and the BLOSUM62 matrix, such as the GCG program suite (Oxford Molecular Group, Oxford, England), are commercially available and widely used by those skilled in the art. - Once the alignment between the candidate and reference sequence is made, a percent similarity score may be calculated. The individual amino acids of each sequence are compared sequentially according to their similarity to each other. If the value in the BLOSUM62 matrix corresponding to the two aligned amino acids is zero or a negative number, the pairwise similarity score is zero; otherwise the pairwise similarity score is 1.0. The raw similarity score is the sum of the pairwise similarity scores of the aligned amino acids. The raw score is then normalized by dividing it by the number of amino acids in the smaller of the candidate or reference sequences. The normalized raw score is the percent similarity. Alternatively, to calculate a percent identity, the aligned amino acids of each sequence are again compared sequentially. If the amino acids are non-identical, the pairwise identity score is zero; otherwise the pairwise identity score is 1.0. The raw identity score is the sum of the identical aligned amino acids. The raw score is then normalized by dividing it by the number of amino acids in the smaller of the candidate or reference sequences. The normalized raw score is the percent identity. Insertions and deletions are ignored for the purposes of calculating percent similarity and identity. Accordingly, gap penalties are not used in this calculation, although they are used in the initial alignment.
- In all instances, variants of the naturally-occurring sequences, as described above, must be tested for their function as marker proteins. Specifically, their presence or absence in a particular form or in a particular biological compartment must be indicative of the presence or absence of cancer in an individual. This routine experimentation can be carried out by the methods described hereinbelow or by other methods known in the art.
- Marker proteins in a sample of tissue or body fluid may be detected via binding assays, wherein a binding partner for the marker protein is introduced into a sample suspected of containing the marker protein. In such an assay, the binding partner may be detectably labeled as, for example, with a radioisotopic or fluorescent marker. Labeled antibodies may be used in a similar manner in order to isolate selected marker proteins. Nucleic acids encoding marker proteins may be detected using nucleic acid probes having a sequence complementary to at least a portion of the sequence encoding the marker protein. Techniques such as PCR and, in particular, reverse transcriptase PCR, are useful means for isolating nucleic acids encoding a marker protein. The examples which follow provide details of the isolation and characterization of breast cancer-associated proteins and methods for their use in the detection and treatment of breast cancer.
- 2. Detection of Breast Cancer
- Once breast cancer-associated proteins have been identified, the proteins or nucleic acids encoding the proteins may be used as markers to determine whether an individual has breast cancer and, if so, suitable detection methods can be used to monitor the status of the disease.
- Using the marker proteins or nucleic acids encoding the proteins, the skilled artisan can produce a variety of detection methods for detecting breast cancer in a human. The methods typically comprise the steps of detecting, by some means, the presence of one or more breast cancer-associated proteins or nucleic acids encoding such proteins in a tissue or body fluid sample of the human. The accuracy and/or reliability of the method for detecting breast cancer in a human may be further enhanced by detecting the presence of a plurality of breast cancer-associated proteins and/or nucleic acids in a preselected tissue or body fluid sample. The detection assays may comprise one or more of the protocols described hereinbelow.
- 2.A. Protein-Based Assays
- The marker protein in a sample may be detected, for example, by combining the marker protein with a binding moiety capable of specifically binding the marker protein. The binding moiety may comprise, for example, a member of a ligand-receptor pair, i.e., a pair of molecules capable of having a specific binding interaction. The binding moiety may comprise, for example, a member of a specific binding pair, such as antibody-antigen, enzyme-substrate, nucleic acid-nucleic acid, protein-nucleic acid, protein-protein, or other specific binding pair known in the art. Binding proteins may be designed which have enhanced affinity for a target protein. Optionally, the binding moiety may be linked with a detectable label, such as an enzymatic, fluorescent, radioactive, phosphorescent or colored particle label. The labeled complex may be detected, e.g., visually or with the aid of a spectrophotometer or other detector.
- Marker proteins may also be detected using gel electrophoresis techniques available in the art. In two-dimensional gel electrophoresis, the proteins are separated first in a pH gradient gel according to their isoelectric point. The resulting gel then is placed on a second polyacrylamide gel, and the proteins separated according to molecular weight (see, for example, O° Farrell (1975) J. Biol. Chem. 250: 4007-4021).
- One or more marker proteins may be detected by first isolating proteins from a sample obtained from an individual suspected of having breast cancer, and then separating the proteins by two-dimensional gel electrophoresis to produce a characteristic two-dimensional gel electrophoresis pattern. The pattern may then be compared with a standard gel pattern produced by separating, under the same or similar conditions, proteins isolated from normal or cancer cells. The standard gel pattern may be stored in, and retrieved from an electronic database of electrophoresis patterns. The presence of a breast cancer-associated protein in the two-dimensional gel provides an indication that the sample being tested was taken from a person with breast cancer. As with the other detection assays described herein, the detection of two or more proteins, for example, in the two-dimensional gel electrophoresis pattern further enhances the accuracy of the assay. The presence of a plurality, e.g., two to five, breast cancer-associated proteins on the two-dimensional gel provides an even stronger indication of the presence of a breast cancer in the individual. The assay thus permits the early detection and treatment of breast cancer.
- A breast cancer-associated marker protein may also be detected using any of a wide range of immunoassay techniques available in the art. For example, the skilled artisan may employ the sandwich immunoassay format to detect breast cancer in a body fluid sample. Alternatively, the skilled artisan may use conventional immuno-histochemical procedures for detecting the presence of the breast cancer-associated protein in a tissue sample using one or more labeled binding proteins.
- In a sandwich immunoassay, two antibodies capable of binding the marker protein generally are used, e.g., one immobilized onto a solid support, and one free in solution and labeled with a detectable chemical compound. Examples of chemical labels that may be used for the second antibody include radioisotopes, fluorescent compounds, and enzymes or other molecules that generate colored or electrochemically active products when exposed to a reactant or enzyme substrate. When a sample containing the marker protein is placed in this system, the marker protein binds to both the immobilized antibody and the labeled antibody, to form a “sandwich” immune complex on the support's surface. The complexed protein is detected by washing away non-bound sample components and excess labeled antibody, and measuring the amount of labeled antibody complexed to protein on the support's surface. Alternatively, the antibody free in solution, which can be labeled with a chemical moiety, for example, a hapten, may be detected by a third antibody labeled with a detectable moiety which binds the free antibody or, for example, the hapten coupled thereto.
- Both the sandwich immunoassay and tissue immunohistochemical procedures are highly specific and very sensitive, provided that labels with good limits of detection are used. A detailed review of immunological assay design, theory and protocols can be found in numerous texts in the art, including “Practical Immunology”, Butt, W. R., ed., (1984) Marcel Dekker, New York and “Antibodies, A Laboratory Approach”, Harlow et al. eds. (1988) Cold Spring Harbor Laboratory.
- In general, immunoassay design considerations include preparation of antibodies (e.g., monoclonal or polyclonal antibodies) having sufficiently high binding specificity for the target protein to form a complex that can be distinguished reliably from products of nonspecific interactions. As used herein, the term “antibody” is understood to mean binding proteins, for example, antibodies or other proteins comprising an immunoglobulin variable region-like binding domain, having the appropriate binding affinities and specificities for the target protein. The higher the antibody binding specificity, the lower the target protein concentration that can be detected. As used herein, the terms “specific binding” or “binding specifically” are understood to mean that the binding moiety, for example, a binding protein has a binding affinity for the target protein of greater than about 105 M−1, more preferably greater than about 107 M−1.
- Antibodies to an isolated target breast cancer-associated protein which are useful in assays for detecting a breast cancer in an individual may be generated using standard immunological procedures well known and described in the art. See, for example, Practical Immunology, Butt, N. R., ed., Marcel Dekker, NY, 1984. Briefly, an isolated target protein is used to raise antibodies in a xenogeneic host, such as a mouse, goat or other suitable mammal. The marker protein is combined with a suitable adjuvant capable of enhancing antibody production in the host, and is injected into the host, for example, by intraperitoneal administration. Any adjuvant suitable for stimulating the host's immune response may be used. A commonly used adjuvant is Freund's complete adjuvant (an emulsion comprising killed and dried microbial cells and available from, for example, Calbiochem Corp., San Diego, or Gibco, Grand Island, N.Y.). Where multiple antigen injections are desired, the subsequent injections may comprise the antigen in combination with an incomplete adjuvant (e.g., cell-free emulsion). Polyclonal antibodies may be isolated from the antibody-producing host by extracting serum containing antibodies to the protein of interest. Monoclonal antibodies may be produced by isolating host cells that produce the desired antibody, fusing these cells with myeloma cells using standard procedures known in the immunology art, and screening for hybrid cells (hybridomas) that react specifically with the target protein and have the desired binding affinity.
- Antibody binding domains also may be produced biosynthetically and the amino acid sequence of the binding domain manipulated to enhance binding affinity with a preferred epitope on the target protein. Specific antibody methodologies are well understood and described in the literature. A more detailed description of their preparation can be found, for example, in “Practical Immunology” (1984) (supra).
- In addition, genetically engineered biosynthetic antibody binding sites, also known in the art as BABS or sFv's, may be used in the practice of the instant invention. Methods for making and using BABS comprising (i) non-covalently associated or disulfide bonded synthetic VH and VL dimers, (ii) covalently linked VH-VL single chain binding sites, (iii) individual VH or VL domains, or (iv) single chain antibody binding sites are disclosed, for example, in U.S. Pat. Nos. 5,091,513; 5,132,405; 4,704,692; and 4,946,778. Furthermore, BABS having requisite specificity for the breast cancer-associated proteins can be derived by phage antibody cloning from combinatorial gene libraries (see, for example, Clackson et al. (1991) Nature 352: 624-628). Briefly, phage each expressing on their coat surfaces BABS having immunoglobulin variable regions encoded by variable region gene sequences derived from mice pre-immunized with isolated breast cancer-associated proteins, or fragments thereof, are screened for binding activity against immobilized breast cancer-associated protein. Phage which bind to the immobilized breast cancer-associated proteins are harvested and the gene encoding the BABS is sequenced. The resulting nucleic acid sequences encoding the BABS of interest then may be expressed in conventional expression systems to produce the BABS protein.
- The isolated breast cancer-associated protein also may be used for the development of diagnostic and other tissue evaluating kits and assays to monitor the level of the proteins in a tissue or fluid sample. For example, the kit may include antibodies or other specific binding proteins which bind specifically to the breast cancer-associated proteins and which permit the presence and/or concentration of the breast cancer-associated proteins to be detected and/or quantitated in a tissue or fluid sample.
- Suitable kits for detecting breast cancer-associated proteins are contemplated to include, e.g., a receptacle or other means for capturing a sample to be evaluated, and means for detecting the presence and/or quantity in the sample of one or more of the breast cancer-associated proteins described herein. As used herein, “means for detecting” in one embodiment includes one or more antibodies specific for these proteins and means for detecting the binding of the antibodies to these proteins by, e.g., a standard sandwich immunoassay as described herein. Where the presence of a protein within a cell is to be detected, e.g., as from a tissue sample, the kit also may comprise means for disrupting the cell structure so as to expose intracellular proteins.
- 2.B. Nucleic Acid-based Assays
- The presence of a breast cancer in an individual also may be determined by detecting, in a tissue or body fluid sample, a nucleic acid molecule encoding a breast cancer-associated protein. Using methods well known to those of ordinary skill in the art, the breast cancer-associated proteins of the invention may be sequenced, and then, based on the determined sequence, oligonucleotide probes designed for screening a cDNA library (see, for example, Sambrook et al. (1989) supra).
- A target nucleic acid molecule encoding a marker breast cancer-associated protein may be detected using a labeled binding moiety capable of specifically binding the target nucleic acid. The binding moiety may comprise, for example, a protein, a nucleic acid or a peptide nucleic acid. Additionally, a target nucleic acid, such as an mRNA encoding a breast cancer-associated protein, may be detected by conducting, for example, a Northern blot analysis using labeled oligonucleotides, e.g., nucleic acid fragments complementary to and capable of hybridizing specifically with at least a portion of a target nucleic acid.
- More specifically, gene probes comprising complementary RNA or, preferably, DNA to the breast cancer-associated nucleotide sequences or mRNA sequences encoding breast cancer-associated proteins may be produced using established recombinant techniques or oligonucleotide synthesis. The probes hybridize with complementary nucleic acid sequences presented in the test specimen, and can provide exquisite specificity. A short, well-defined probe, coding for a single unique sequence is most precise and preferred. Larger probes are generally less specific. While an oligonucleotide of any length may hybridize to an mRNA transcript, oligonucleotides typically within the range of 8-100 nucleotides, preferably within the range of 15-50 nucleotides, are envisioned to be most useful in standard hybridization assays. Choices of probe length and sequence allow one to choose the degree of specificity desired. Hybridization is carried out at from 50° to 65° C. in a high salt buffer solution, formamide or other agents to set the degree of complementarity required. Furthermore, the state of the art is such that probes can be manufactured to recognize essentially any DNA or RNA sequence. For additional particulars, see, for example, Guide to Molecular Techniques, Berger et al., Methods of Enzymology, Vol. 152, 1987.
- A wide variety of different labels coupled to the probes or antibodies may be employed in the assays. The labeled reagents may be provided in solution or coupled to an insoluble support, depending on the design of the assay. The various conjugates may be joined covalently or noncovalently, directly or indirectly. When bonded covalently, the particular linkage group will depend upon the nature of the two moieties to be bonded. A large number of linking groups and methods for linking are taught in the literature. Broadly, the labels may be divided into the following categories: chromogens; catalyzed reactions; chemiluminescence; radioactive labels; and colloidal-sized colored particles. The chromogens include compounds which absorb light in a distinctive range so that a color may be observed, or emit light when irradiated with light of a particular wavelength or wavelength range, e.g., fluorescers. Both enzymatic and nonenzymatic catalysts may be employed. In choosing an enzyme, there will be many considerations including the stability of the enzyme, whether it is normally present in samples of the type for which the assay is designed, the nature of the substrate, and the effect if any of conjugation on the enzyme's properties. Potentially useful enzyme labels include oxiodoreductases, transferases, hydrolases, lyases, isomerases, ligases, or synthetases. Interrelated enzyme systems may also be used. A chemiluminescent label involves a compound that becomes electronically excited by a chemical reaction and may then emit light that serves as a detectable signal or donates energy to a fluorescent acceptor. Radioactive labels include various radioisotopes found in common use such as the unstable forms of hydrogen, iodine, phosphorus or the like. Colloidal-sized colored particles involve material such as colloidal gold that, in aggregate, form a visually detectable distinctive spot corresponding to the site of a substance to be detected. Additional information on labeling technology is disclosed, for example, in U.S. Pat. No. 4,366,241.
- A common method of in vitro labeling of nucleotide probes involves nick translation wherein the unlabeled DNA probe is nicked with an endonuclease to produce free 3′hydroxyl termini within either strand of the double-stranded fragment. Simultaneously, an exonuclease removes the nucleotide residue from the 5′phosphoryl side of the nick. The sequence of replacement nucleotides is determined by the sequence of the opposite strand of the duplex. Thus, if labeled nucleotides are supplied, DNA polymerase will fill in the nick with the labeled nucleotides. Using this well-known technique, up to 50% of the molecule can be labeled. For smaller probes, known methods involving 3′end labeling may be used. Furthermore, there are currently commercially available methods of labeling DNA with fluorescent molecules, catalysts, enzymes, or chemiluminescent materials. Biotin labeling kits are commercially available (Enzo Biochem Inc.) under the trademark Bio-Probe. This type of system permits the probe to be coupled to avidin which in turn is labeled with, for example, a fluorescent molecule, enzyme, antibody, etc. For further disclosure regarding probe construction and technology, see, for example, Sambrook et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor, N.Y., 1982).
- The oligonucleotide selected for hybridizing to the target nucleic acid, whether synthesized chemically or by recombinant DNA methodologies, is isolated and purified using standard techniques and then preferably labeled (e.g., with 35S or 32P) using standard labeling protocols. A sample containing the target nucleic acid then is run on an electrophoresis gel, the dispersed nucleic acids transferred to a nitrocellulose filter and the labeled oligonucleotide exposed to the filter under stringent hybridizing conditions, e.g., 50% formamide, 5× SSPE, 2× Denhardt's solution, 0.1% SDS at 42° C., as described in Sambrook et al. (1989) supra. The filter may then be washed using 2× SSPE, 0.1% SDS at 68° C., and more preferably using 0.1× SSPE, 0.1% SDS at 68° C. Other useful procedures known in the art include solution hybridization, and dot and slot RNA hybridization. Optionally, the amount of the target nucleic acid present in a sample is then quantitated by measuring the radioactivity of hybridized fragments, using standard procedures known in the art.
- In addition, oligonucleotides also may be used to identify other sequences encoding members of the target protein families. The methodology also may be used to identify genetic sequences associated with the nucleic acid sequences encoding the proteins described herein, e.g., to identify non-coding sequences lying upstream or downstream of the protein coding sequence, and which may play a functional role in expression of these genes. Additionally, binding assays may be conducted to identify and detect proteins capable of a specific binding interaction with a nucleic acid encoding a breast cancer-associated protein, which may be involved, e.g., in gene regulation or gene expression of the protein. In a further embodiment, the assays described herein may be used to identify and detect nucleic acid molecules comprising a sequence capable of recognizing and being specifically bound by a breast cancer-associated protein.
- In addition, it is anticipated that using a combination of appropriate oligonucleotide primers, i.e., more than one primer, the skilled artisan may determine the level of expression of a target gene in vivo by standard polymerase chain reaction (PCR) procedures, for example, by quantitative PCR. Conventional PCR based assays are discussed, for example, in Innes et al (1990) “PCR Protocols; A guide to methods and Applications”, Academic Press and Innes et al. (1995) “PCR Strategies” Academic Press, San Diego, Calif.
- 3. Identification of Proteins Which Interact In Vivo With Breast Cancer-Associated Proteins
- In addition, it is contemplated that the skilled artisan, using procedures like those described hereinbelow, may identify other molecules which interact in vivo with the breast cancer-associated proteins described herein. Such molecules also may provide possible targets for chemotherapy.
- By way of example, cDNA encoding proteins or peptides capable of interacting with breast cancer-associated proteins can be determined using a two-hybrid assay, as reported in Durfee et al. (1993) Genes & Develop. 7: 555-559. The principle of the two hybrid system is that noncovalent interaction of two proteins triggers a process (transcription) in which these proteins normally play no direct role, because of their covalent linkage to domains that function in this process. For example, in the two-hybrid assay, detectable expression of a reporter gene occurs when two fusion proteins, one comprising a DNA-binding domain and one comprising a transcription initiation domain, interact.
- The skilled artisan can use a host cell that contains one or more reporter genes, such as yeast strain Y153, reported in Durfee et al. (1993) supra. This strain carries two chromosomally located reporter genes whose expression is regulated by Gal4. A first reporter gene, is the E. coli lacZ gene under the control of the Gal4 promoter. A second reporter gene is the selectable HIS3 gene. Other useful reporter genes may include, for example, the luciferase gene, the LEU2 gene, and the GFP (Green Fluorescent Protein) gene.
- Two sets of plasmids are used in the two hybrid system. One set of plasmids contains DNA encoding a Gal4 DNA-binding domain fused in frame to DNA encoding a breast cancer-associated protein. The other set of plasmids contain DNA encoding a Gal4 activation domain fused to portions of a human cDNA library constructed from human lymphocytes. Expression from the first set of plasmids results in a fusion protein comprising a Gal4 DNA-binding domain and a breast cancer-associated protein. Expression from the second set of plasmids produces a transcription activation protein fused to an expression product from the lymphocyte cDNA library. When the two plasmids are transformed into a Gal4-deficient host cell, such as the yeast Y153 cells described above, interaction of the Gal4 DNA binding domain and transcription activation domain occurs only if the breast cancer-associated protein fused to the DNA binding domain binds to a protein expressed from the lymphocyte cDNA library fused to the transcription activating domain. As a result of the protein-protein interaction between the breast cancer-associated protein and its in vivo binding partner detectable levels of reporter gene expression occur.
- In addition to identifying molecules which interact in vivo with the breast cancer-associated proteins, the skilled artisan may also screen for molecules, for example, small molecules which alter or inhibit specific interaction between a breast cancer-associated protein and its in vivo binding partner.
- For example, a host cell can be transfected with DNA encoding a suitable DNA binding domain/breast cancer-associated protein hybrid and a translation activation domain/putative breast cancer-associated protein binding partner, as disclosed above. The host cell also contains a suitable reporter gene in operative association with a cis-acting transcription activation element that is recognized by the transcription factor DNA binding domain. The level of reporter gene expressed in the system is assayed. Then, the host cell is exposed to a candidate molecule and the level of reporter gene expression is detected. A reduction in reporter gene expression is indicative of the candidate's ability to interfere with complex formation or stability with respect to the breast cancer-associated protein and its in vivo binding partner. As a control, the candidate molecule's ability to interfere with other, unrelated protein-protein complexes is also tested. Molecules capable of specifically interfering with a breast cancer-associated protein/binding partner interaction, but not other protein-protein interactions, are identified as candidates for production and further analysis. Once a potential candidate has been identified, its efficacy in modulating cell cycling and cell replication can be assayed in a standard cell cycle model system.
- Candidate molecules can be produced as described hereinbelow. For example, DNA encoding the candidate molecules can be inserted, using conventional techniques well described in the art (see, for example, Sambrook (1989) supra) into any of a variety of expression vectors and transfected into an appropriate host cell to produce recombinant proteins, including both full length and truncated forms. Useful host cells include E. coli, Saccharomyces cerevisiae, Pichia pastoris, the insect/baculovirus cell system, myeloma cells, and various other mammalian cells. The full length forms of such proteins are preferably expressed in mammalian cells, as disclosed herein. The nucleotide sequences also preferably include a sequence for targeting the translated sequence to the nucleus, using, for example, a sequence encoding the eight amino acid nucleus targeting sequence of the large T antigen, which is well characterized in the art. The vector can additionally include various sequences to promote correct expression of the recombinant protein, including transcription promoter and termination sequences, enhancer sequences, preferred ribosome binding site sequences, preferred mRNA leader sequences, preferred protein processing sequences, preferred signal sequences for protein secretion, and the like. The DNA sequence encoding the gene of interest can also be manipulated to remove potentially inhibiting sequences or to minimize unwanted secondary structure formation. As will be appreciated by the practitioner in the art, the recombinant protein can also be expressed as a fusion protein.
- After translation, the protein can be purified from the cells themselves or recovered from the culture medium. The DNA can also include sequences which aid in expression and/or purification of the recombinant protein. The DNA can be expressed directly or can be expressed as part of a fusion protein having a readily cleavable fusion junction.
- The DNA may also be expressed in a suitable mammalian host. Useful hosts include fibroblast 3T3 cells, (e.g., NIH 3T3, from CRL 1658) COS (simian kidney ATCC, CRL-1650) or CH0 (Chinese hamster ovary) cells (e.g., CHO-DXBI 1, from Chasin (1 980) Proc. Nat'l. Acad. Sci. USA 77 :4216-4222), mink-lung epithelial cells (MV1Lu), human foreskin fibroblast cells, human glioblastoma cells, and teratocarcinoma cells. Other useful eukaryotic cell systems include yeast cells, the insect/baculovirus system or myeloma cells.
- In order to express a candidate molecule, the DNA is subcloned into an insertion site of a suitable, commercially available vector along with suitable promoter/enhancer sequences and 3′ termination sequences. Useful promoter/enhancer sequence combinations include the CMV promoter (human cytomegalovirus (MIE) promoter) present, for example, on pCDM8, as well as the mammary tumor virus promoter (MMTV) boosted by the Rous sarcoma virus LTR enhancer sequence (e.g., from Clontech, Inc., Palo Alto). A useful inducable promoter includes, for example, a Zn2+-inducible promoter, such as the Zn2+ metallothionein promoter (Wrana et al. (1992) Cell 71: 1003-1014). Other inducible promoters are well known in the art and can be used with similar success. Expression also can be further enhanced using trans-activating enhancer sequences. The plasmid also preferably contains an amplifiable marker, such as DHFR under suitable promoter control, e.g., SV40 early promoter (ATCC #37148). Transfection, cell culturing, gene amplification and protein expression conditions are standard conditions, well known in the art, such as are described, for example in Ausubel et al., ed., (1989) “Current Protocols in Molecular Biology”, John Wiley & Sons, NY. Briefly, transfected cells are cultured in medium containing 5-10% dialyzed fetal calf serum (dFCS), and stably transfected high expression cell lines obtained by amplification and subcloning and evaluated by standard Western and Northern blot analysis. Southern blots also can be used to assess the state of integrated sequences and the extent of their copy number amplification.
- The expressed candidate protein is then purified using standard procedures. A currently preferred methodology uses an affinity column, such as a ligand affinity column or an antibody affinity column. The column then is washed, and the candidate molecules selectively eluted in a gradient of increasing ionic strength, changes in pH, or addition of mild detergent. It is appreciated that in addition to the candidate molecules which bind to the breast cancer-associated proteins, the breast cancer associated proteins themselves may likewise be produced using such recombinant DNA technologies.
- 4. Breast Cancer Therapy and Methods for Monitoring Therapy
- The skilled artisan, after identification of breast cancer-associated proteins and proteins which interact with the breast cancer-associated proteins, can develop a variety of therapies for treating breast cancer. Because the marker proteins described herein are present at detectably higher levels in breast cancer cells relative to normal breast cells, the skilled artisan may employ, for example, the marker proteins and/or nucleic acids encoding the marker proteins as target molecules for a cancer chemotherapy.
- 4.A. Anti-Sense-Based Therapeutics
- A particularly useful cancer therapeutic envisioned is an oligonucleotide or peptide nucleic acid sequence complementary and capable of hybridizing under physiological conditions to part, or all, of the gene encoding the marker protein or to part, or all, of the transcript encoding the marker protein thereby to reduce or inhibit transcription and/or translation of the marker protein gene. Alternatively, the same technologies may be applied to reduce or inhibit transcription and/or translation of the proteins which interact with the breast cancer-associated proteins.
- Anti-sense oligonucleotides have been used extensively to inhibit gene expression in normal and abnormal cells. See, for example, Stein et al. (1 988) Cancer Res. 48: 2659-2668, for a pertinent review of anti-sense theory and established protocols. In addition, the synthesis and use of peptide nucleic acids as anti-sense-based therapeutics are described in PCT publications PCT/EP92/01219 published Nov. 26, 1992, PCT/US92/10921 published Jun. 24, 1993, and PCT/US94/013523 published Jun. 1, 1995. Accordingly, the anti-sense-based therapeutics may be used as part of chemotherapy, either alone or in combination with other therapies.
- Anti-sense oligonucleotide and peptide nucleic acid sequences are capable of hybridizing to a gene and/or mRNA transcript and, therefore, may be used to inhibit transcription and/or translation of the protein described herein. It is appreciated, however, that oligoribonucleotide sequences generally are more susceptible to enzymatic attack by ribonucleases than are deoxyribonucleotide sequences. Hence, oligodeoxyribonucleotides are preferred over oligoribonucleotides for in vivo therapeutic use. It is appreciated that the peptide nucleic acid sequences, unlike regular nucleic acid sequences, are not susceptible to nuclease degradation and, therefore, are likely to have greater longevity in vivo. Furthermore, it is appreciated that peptide nucleic acid sequences bind complementary single stranded DNA and RNA strands more strongly than corresponding DNA sequences (see, for example, PCT/EP92/20702 published Nov. 26, 1992). Accordingly, peptide nucleic acid sequences are preferred for in vivo therapeutic use.
- Therapeutically useful anti-sense oligonucleotides or peptide nucleic acid sequences may be synthesized by any of the known chemical oligonucleotide and peptide nucleic acid synthesis methodologies well known and thoroughly described in the art. Alternatively, a sequence complementary to part or all of the natural mRNA sequence may be generated using standard recombinant DNA technologies.
- Because the complete nucleotide sequence encoding the entire marker protein as well as additional 5′ and 3′ untranslated sequences are known for each of the marker proteins and/or can be determined readily using techniques well known in the art, anti-sense oligonucleotides or peptide nucleic acids which hybridize with any portion of the mRNA transcript or non-coding sequences may be prepared using conventional oligonucleotide and peptide nucleic acid synthesis methodologies.
- Oligonucleotides complementary to, and hybridizable with, any portion of the mRNA transcripts encoding the marker proteins are, in principle, effective for inhibiting translation of the target proteins as described herein. For example, as described in U.S. Pat. No. 5,098,890, issued Mar. 24, 1992, oligonucleotides complementary to mRNA at or near the translation initiation codon site may be used to inhibit translation. Moreover, it has been suggested that sequences that are too distant in the 3′ direction from the translation initiation site may be less effective in hybridizing the mRNA transcripts because of potential ribosomal “read-through”, a phenomenon whereby the ribosome is postulated to unravel the anti-sense/sense duplex to permit translation of the message.
- A variety of sequence lengths of oligonucleotide or peptide nucleic acid may be used to hybridize to mRNA transcripts. However, very short sequences (e.g., sequences containing less than 8-15 nucleobases) may bind with less specificity. Moreover, for in vivo use, short oligonucleotide sequences may be particularly susceptible to enzymatic degradation. Peptide nucleic acids, as mentioned above, likely are resistant to nuclease degradation. Where oligonucleotide and peptide nucleic acid sequences are to be provided directly to the cells, very long sequences may be less effective at inhibition because of decreased uptake by the target cell. Accordingly, where the oligonucleotide or peptide nucleic acid is to be provided directly to target cells, oligonucleotide and/or peptide nucleic acid sequences containing about 8-50 nucleobases, and more preferably 15-30 nucleobases, are envisioned to be most advantageous.
- An alternative means for providing anti-sense oligonucleotide sequences to a target cell is gene therapy where, for example, a DNA sequence, preferably as part of a vector and associated with a promoter, is expressed constitutively inside the target cell. Oeller et al. (Oeller et al. (1992) Science 254: 437-539) describe the in vivo inhibition of the ACC synthase enzyme using a constitutively expressible DNA sequence encoding an anti-sense sequence to the full length ACC synthase transcript. Accordingly, where the anti-sense oligonucleotide sequences are provided to a target cell indirectly, for example, as part of an expressible gene sequence to be expressed within the cell, longer oligonucleotide sequences, including sequences complementary to substantially all the protein coding sequence, may be used to advantage.
- Finally, therapeutically useful oligonucleotide sequences envisioned also include not only native oligomers composed of naturally occurring nucleotides, but also those comprising modified nucleotides, for example, to improve stability and lipid solubility and thereby enhance cellular uptake. For example, it is known that enhanced lipid solubility and/or resistance to nuclease digestion results by substituting a methyl group or sulfur atom for a phosphate oxygen in the internucleotide phosphodiester linkage. Phosphorothioates (“S-oligonucleotides” wherein a phosphate oxygen is replaced by a sulfur atom), in particular, are stable to nuclease cleavage, are soluble in lipids, and are preferred, particularly for direct oligonucleotide administration. S-oligonucleotides may be synthesized chemically using conventional synthesis methodologies well known and thoroughly described in the art.
- Preferred synthetic internucleoside linkages include phosphorothioates, alkylphosphonates, phosphorodithioates, phosphate esters, alkylphosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidate, and carboxymethyl esters. Furthermore, one or more of the 5′-3′ phosphate group may be covalently joined to a low molecular weight (e.g., 15-500 Da) organic group, including, for example, lower alkyl chains or aliphatic groups (e.g., methyl, ethyl, propyl, butyl), substituted alkyl and aliphatic groups (e.g., aminoethyl, aminopropyl, aminohydroxyethyl, aminohydroxypropyl), small saccharides or glycosyl groups. Other low molecular weight organic modifications include additions to the internucleoside phosphate linkages such as cholesteryl or diamine compounds with varying numbers of carbon residues between the amino groups and terminal ribose. Oligonucleotides with these linkages or with other modifications can be prepared using methods well known in the art (see, for example, U.S. Pat. No. 5,149,798).
- Suitable oligonucleotide and/or peptide nucleic acid sequences which inhibit transcription and/or translation of the marker proteins can be identified using standard in vivo assays well characterized in the art. Preferably, a range of doses is used to determine effective concentrations for inhibition as well as specificity of hybridization. For example, in the cases of an oligonucleotide, a dose range of 0-100 μg oligonucleotide/ml may be assayed. Further, the oligonucleotides may be provided to the cells in a single transfection, or as part of a series of transfections. Anti-sense efficacy may be determined by assaying a change in cell proliferation over time following transfection, using standard cell counting methodology and/or by assaying for reduced expression of marker protein, e.g., by immunofluorescence. Alternatively, the ability of cells to take up and use thymidine is another standard means of assaying for cell division and may be used here, e.g., using 3H-thymidine. Effective anti-sense inhibition should inhibit cell division sufficiently to reduce thymidine uptake, inhibit cell proliferation, and/or reduce detectable levels of marker proteins.
- It is anticipated that therapeutically effective oligonucleotide or peptide nucleic acid concentrations may vary according to the nature and extent of the neoplasm, the particular nucleobase sequence used, the relative sensitivity of the neoplasm to the oligonucleotide or peptide nucleic acid sequence, and other factors. Useful ranges for a given cell type and oligonucleotide and/or peptide nucleic acid may be determined by performing standard dose range experiments. Dose range experiments also may be performed to assess toxicity levels for normal and malignant cells. It is contemplated that useful concentrations may range from about 1 to 100 μg/ml per 105 cells.
- For in vivo use, the anti-sense oligonucleotide or peptide nucleic acid sequences may be combined with a pharmaceutically acceptable carrier, such as a suitable liquid vehicle or excipient, and optionally an auxiliary additive or additives. Liquid vehicles and excipients are conventional and are available commercially. Illustrative thereof are distilled water, physiological saline, aqueous solutions of dextrose, and the like. For in vivo cancer therapies, the anti-sense sequences preferably can be provided directly to malignant cells, for example, by injection directly into the tumor. Alternatively, the oligonucleotide or peptide nucleic acid may be administered systemically, provided that the anti-sense sequence is associated with means for directing the sequences to the target malignant cells.
- In addition to administration with conventional carriers, the anti-sense oligonucleotide or peptide nucleic acid sequences may be administered by a variety of specialized oligonucleotide delivery techniques. For example, oligonucleotides may be encapsulated in liposomes, as described in Mannino et al. (1988) BioTechnology 6: 682, and Felgner et al. (1989) Bethesda Res. Lab. Focus 11:21. Lipids useful in producing liposomal formulations include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art (see, for example, in U.S. Pat. No. 4,235,871; U.S. Pat. No. 4,501,728; U.S. Pat. No. 4,837,028; and U.S. Pat. No. 4,737,323). The pharmaceutical composition of the invention may further include compounds such as cyclodextrins and the like which enhance delivery of oligonucleotides into cells. When the composition is not administered systemically but, rather, is injected at the site of the target cells, cationic detergents (e.g. Lipofectin) may be added to enhance uptake. In addition, reconstituted virus envelopes have been successfully used to deliver RNA and DNA to cells (see, for example, Arad et al. (1986) Biochem. Biophy. Acta. 859: 88-94).
- For therapeutic use in vivo, the anti-sense oligonucleotide and/or peptide nucleic acid sequences are administered to the individual in a therapeutically effective amount, for example, an amount sufficient to reduce or inhibit target protein expression in malignant cells. The actual dosage administered may take into account whether the nature of the treatment is prophylactic or therapeutic in nature, the age, weight, health of the patient, the route of administration, the size and nature of the malignancy, as well as other factors. The daily dosage may range from about 0.01 to 1,000 mg per day. Greater or lesser amounts of oligonucleotide or peptide nucleic acid sequences may be administered, as required. As will be appreciated by those skilled in the medical art, particularly the chemotherapeutic art, appropriate dose ranges for in vivo administration would be routine experimentation for a clinician. As a preliminary guideline, effective concentrations for in vitro inhibition of the target molecule may be determined first.
- 4.B. Binding Protein-Based Therapeutics.
- As mentioned above, a cancer marker protein or a protein that interacts with the cancer marker protein may be used as a target for chemotherapy. For example, a binding protein designed to bind the marker protein essentially irreversibly can be provided to the malignant cells, for example, by association with a ligand specific for the cell and known to be absorbed by the cell. Means for targeting molecules to particular cells and cell types are well described in the chemotherapeutic art.
- Binding proteins may be obtained and tested using technologies well known in the art. For example, the binding portions of antibodies may be used to advantage. It is contemplated, however, that intact antibodies or BABS that have preferably been humanized may be used in the practice of the invention. As used herein, the term “humanized” is understood to mean a process whereby the framework region sequences of a non-human immunoglobulin variable region are replaced by corresponding human framework sequences. Accordingly, it is contemplated that such humanized binding proteins will elicit a weaker immune response than their unhumanized counterparts. Particularly useful are binding proteins identified with high affinity for the target protein, e.g., greater than about 109 M−1. Alternatively, DNA encoding the binding protein may be provided to the target cell as part of an expressible gene to be expressed within the cell following the procedures used for gene therapy protocols well described in the art. See, for example, U.S. Pat. No. 4,497,796, and “Gene Transfer”, Vijay R. Baichwal, ed., (1986). It is anticipated that, once bound by binding protein, the target protein will be inactivated or its biological activity reduced thereby inhibiting or retarding cell division.
- As described above, suitable binding proteins for in vivo use may be combined with a suitable pharmaceutically-acceptable carrier, such as physiological saline or other useful carriers well characterized in the medical art. The pharmaceutical compositions may be provided directly to malignant cells, for example, by direct injection, or may be provided systemically, provided the binding protein is associated with means for targeting the protein to target cells. Finally, suitable dose ranges and cell toxicity levels may be assessed using standard dose range experiments. Therapeutically-effective concentrations may range from about 0.01 to about 1,000 mg per day. As described above, actual dosages administered may vary depending, for example, on the nature of the malignancy, the age, weight and health of the individual, as well as other factors.
- 4.C Small Molecule-Based Therapeutics.
- After having isolated breast cancer-associated proteins, the skilled artisan can, using methodologies well known in the art, screen small molecule libraries (either peptide or non-peptide based libraries) to identify candidate molecules that reduce or inhibit the biological function of the breast cancer-associated proteins. The small molecules preferably accomplish this function by reducing the in vivo expression of the target molecule, or by interacting with the target molecule thereby to inhibit either the biological activity of the target molecule or an interaction between the target molecule and its in vivo binding partner.
- It is contemplated that, once the candidate small molecules have been elucidated, the skilled artisan may enhance the efficacy of the small molecule using rational drug design methodologies well known in the art. Alternatively, the skilled artisan may use a variety of computer programs which assist the skilled artisan to develop quantitative structure activity relationships (QSAR) which further to assist the design of additional candidate molecules de novo. Once identified, the small molecules may be produced in commercial quantities and subjected to the appropriate safety and efficacy studies.
- It is contemplated that the screening assays may be automated thereby facilitating the screening of a large number of small molecules at the same time. Such automation procedures are within the level of skill in the art of drug screening and, therefore, are not discussed herein.
- Candidate peptide-based small molecules may be produced by expression of an appropriate nucleic acid sequence in a host cell or using synthetic organic chemistries. Similarly, non-peptidyl-based small molecules may be produced using conventional synthetic organic chemistries well known in the art.
- As described above, for in vivo use, the identified small molecules may be combined with a suitable pharmaceutically acceptable carrier, such as physiological saline or other useful carriers well characterized in the medical art. The pharmaceutical compositions may be provided directly to malignant cells, for example, by direct injection, or may be provided systemically, provided the binding protein is associated with means for targeting the protein to target cells. Finally, suitable dose ranges and cell toxicity levels may be assessed using standard dose range experiments. As described above, actual dosages administered may vary depending, for example, on the nature of the malignancy, the age, weight and health of the individual, as well as other factors.
- 4.D. Methods for Monitoring the Status of Breast Cancer in an Individual
- The progression of the breast cancer or the therapeutic efficacy of chemotherapy may be measured using procedures well known in the art. For example, the efficacy of a particular chemotherapeutic agent can be determined by measuring the amount of a breast cancer-associated protein released from breast cancer cells undergoing cell death. As reported in U.S. Pat. Nos. 5,840,503 and 5,965,376, soluble nuclear matrix proteins and fragments thereof are released by cells upon cell death. Such soluble nuclear matrix proteins can be quantitated in a body fluid and used to monitor the degree or rate of cell death in a tissue. Similarly, the levels of one or more breast cancer-associated proteins could be used as an indication of the status of breast cancer in the individual.
- For example, the concentration of a breast cancer-associated protein or a fragment thereof released from cells is compared to standards from healthy, untreated tissue. Fluid samples are collected at discrete intervals during treatment and compared to the standard. It is contemplated that changes in the level of the breast cancer-associated protein, for example, will be indicative of the efficacy of treatment (that is, the rate of cancer cell death). It is contemplated that the release of soluble, breast cancer-associated proteins can be measured in blood, plasma, urine, sputum, vaginal secretion, and breast exudate and other body fluids.
- Where the assay is used to monitor tissue viability or progression of breast cancer, the step of detecting the presence and abundance of the marker protein or its transcript in samples of interest is repeated at intervals and these values then are compared, the changes in the detected concentrations reflecting changes in the status of the tissue. For example, an increase in the level of one or more breast cancer-associated proteins may correlate with progression of the breast cancer. Where the assay is used to evaluate the efficacy of a therapy, the monitoring steps occur following administration of the therapeutic agent or procedure (e.g., following administration of a chemotherapeutic agent or following radiation treatment). Similarly, a decrease in the level of breast cancer-associated proteins may correlate with a regression of the breast cancer.
- Thus, breast cancer may be identified by the presence of breast cancer-associated proteins as taught herein. Once identified, the breast cancer may be treated using compounds that reduce in vivo the expression and/or biological activity of the breast cancer-associated proteins. Furthermore, the methods provided herein can be used to monitor the progression and/or treatment of the disease. The following non-limiting examples provide details of the isolation and characterization of breast cancer-associated proteins and methods for their use in the detection of breast cancer.
- To identify markers for breast cancer, the sera of individuals with breast cancer were compared to the sera of normal individuals by surface-enhanced laser desorption and ionization (SELDI) mass spectrometry. Briefly, 0.5 mL aliquots of sera harvested from the individuals were thawed. Then, 1 μL of a 1 mg/mL solution of soybean trypsin inhibitor (SBTI) and 1 μL of a 1 mg/mL solution of leupeptin were added to each aliquot. To remove lipids, 350 μL of 1,1,2-trifluorotrichloroethane was added to each sample. The samples then were vortexed for five minutes and centrifuged in a microcentrifuge for five minutes at 4° C. The resulting supernatants were applied a 1 mL column of agarose coupled to protein G (Hitrap Protein G column, Pharmacia and Upjohn, Peapack, N.J.) to remove immunoglobulin proteins. The column then was rinsed with 3 mL of 50 mM sodium phosphate, pH 7.0, with SBTI and leupeptin (“binding buffer”), and the resulting flowthrough applied directly to a 5 mL column of 6% Sepharose coupled to Cibacron blue (Hitrap blue column, Pharmacia and Upjohn, Peapack, N.J.) to remove albumin proteins. The Hitrap blue column was rinsed with 20 mL of binding buffer. The resulting flowthrough was concentrated using four centrifugation-based concentrators with a 10 kD cutoff (Centricon 10, Millipore Corporation, Bedford, Mass.) to a final volume of about 0.7 mL.
- The resulting serum (substantially free of immunoglobulin and albumin) was subdivided into twelve fractions containing approximately equal amounts of protein by ion exchange chromatography. Specifically, the serum was applied to a Mono Q (Pharmacia and Upjohn, Peapack, N.J.) ion exchange column (a strong anion exchanger with quarternary ammonium groups) in 50 mM sodium phosphate buffer, pH 7.0 and proteins were eluted from the column by increasing the concentration of sodium chloride in a stepwise manner. Thus, the serum was divided into twelve fractions based on the concentration of sodium chloride used for elution. These fractions accordingly were designated flow through, 25 mM, 50 mM, 75 mM, 100 mM, 125 mM, 150 mM, 200. mM, 250 mM, 300 mM, 400 mM, and 2M sodium chloride. After elution, each fraction was concentrated to approximately 100 μg/mL and buffer exchanged into binding buffer.
- Then 4-10 μL from each of the twelve fractions were applied and allowed to bind to each of four SELDI chip surfaces, each surface holding up to eight samples. The intended location of each sample on the chip was demarcated with a circle drawn using a hydrophobic marker like those used in Pap smears. The SELDI chips used herein were purchased from Ciphergen Biosystems, Inc., Palo Alto, Calif., and used as described below.
- For copper or nickel surfaces, a chip containing ethylenediaminetriacetic acid moieties (IMAC, Ciphergen Biosystems, Inc., Palo Alto, Calif.) was pretreated with two five-minute applications of five μL of a copper salt or nickel salt solution, and washed with deionized water. After a five-minute treatment with five μL of binding buffer, two to three microliters of sample were applied to the surface for thirty to sixty minutes. Another two to three microliters of sample were then applied for an additional thirty to sixty minutes. The chips then were washed twice with binding buffer to remove unbound proteins. 0.5 μL of sinapinic acid (12.5 mg/mL) was added twice and allowed to dry each time. The presence of sinapinic acid enhances the vaporization and ionization of the bound proteins upon mass spectrometry.
- For chip surfaces containing carboxyl moieties (WCX-2, Ciphergen Biosystems, Inc., Palo Alto, Calif.), before use of the hydrophobic pen, the surface was washed with 10 mM HCl for thirty minutes and rinsed five times with deionized water. After use of the pen, the surface was washed five times with five μL of binding buffer and once with deionized water. Two to three μL of sample were applied in two applications of thirty to sixty minutes each. The surface was washed twice with 5 μL of binding buffer, and 0.5 μL of sinapinic acid were applied twice.
- For chip surfaces containing quarternary ammonium moieties (SAX-2, Ciphergen Biosystems, Inc., Palo Alto, Calif.), after use of the pen, the surface was washed five times with five μL of binding buffer and once with deionized water. Application of sample, washing, and application of sinapinic acid were done as described above.
- The chips then were subjected to mass spectrometry utilizing a Ciphergen SELDI PBS One (Ciphergen Biosystems, Inc., Palo Alto, Calif.) running the software program “SELDI v. 2.0”. For all chips, “high mass” was set to 200,000 Daltons, “starting detector sensitivity” was set to 9 (from a range of 1-10, with 10 being the highest sensitivity), NDF (neutral density filter) was set to “OUT”, data acquisition method was set to “Seldi Quantitation”, SELDI acquisition parameters were set to 20, with increments of 5, and warming with two shots at intensity 50 (out of 100) was included. For IMAC chips, mass was optimized from 3000 Daltons to 3001 Daltons, starting laser intensity was set to 80 (out of 100), and transients set to 5 (i.e., 5 laser shots per site). Peaks were identified automatically by the computer. For WCX-2 chips, mass was optimized from 3,000 Daltons to 50,000 Daltons, starting laser intensity was set to 80, and transients set to 8. Peaks were identified automatically by the computer. For SAX-2 chips, mass was optimized from 3,000 Daltons to 50,000 Daltons, starting laser intensity was set to 85, and transients set to 8. Peaks were identified automatically by the computer.
- Ten serum samples (five from normal individuals and five from individuals with breast cancer) were analyzed by mass spectrometry to identify the proteins present in the sixty fractions described above. The resulting peaks in the mass spectrometry trace were compared to identify those peaks present in the serum samples from individuals with breast cancer but not present in the normal samples. If peaks in different samples had a mass difference of no more than one percent, the peaks were presumed to be the same. Eleven mass spectrometry peaks ranging in size from just over 11,000 Da to approximately 103,000 Da were identified as present in all five serum samples from individuals with breast cancer and in none of the samples from normal individuals. The presence or absence of these peaks was then determined for an additional thirty serum samples (fifteen from normal individuals and fifteen from individuals with breast cancer). Seven other peaks that were present in four of the original five breast cancer serum samples, but not in any of the normal samples, were also analyzed because they were present in the same fraction and on the same SELDI surface as one or more of the eleven peaks already under evaluation. Of the eighteen peaks studied, fifteen were present in fifteen or more of the twenty breast cancer serum samples, but absent from 15 or more of the normal serum samples.
- The results of the foregoing analyses are summarized in Table 1. The masses listed in the table are presumed accurate to within one percent.
TABLE 1 Number of Mono Q Number of positive fraction positive samples from (mM samples from individuals sodium SELDI chip individuals with without breast Mass (Da) chloride) surface used breast cancer cancer 16210 0 (flow- Nickel 17 1 through) 17188 25 mM WCX-2 17 2 30183 25 mM WCX-2 15 3 34664 25 mM WCX-2 16 4 20050 50 mM Nickel 19 0 28258 50 mM Nickel 20 0 24170 50 mM Nickel 17 0 35393 50 mM Nickel 17 3 34908 50 mM WCX-2 16 2 70908 100 mM WCX-2 20 0 17840 100 mM WCX-2 18 2 11709 150 mM SAX-2 20 0 42354 200 mM Nickel 17 0 56280 200 mM Nickel 16 0 34517 400 mM Copper 18 1 - Breast cancer-associated proteins based upon the biochemical and mass spectrometry data provided above may be better characterized using well-known techniques. For example, samples of the serum can be fractionated using, for example, column chromatography and/or electrophoresis, to produce purified protein samples corresponding to each of the proteins identified in Table 1. The sequences of the isolated proteins can then be determined using conventional peptide sequencing methodologies (see Examples 5 and 6). It is appreciated that the skilled artisan, in view of the foregoing disclosure, would be able to produce an antibody directed against any breast cancer-associated protein identified by the methods described herein. Moreover, the skilled artisan, in view of the foregoing disclosure, would be able to produce nucleic acid sequences that encode the fragments described above, as well as nucleic acid sequences complementary thereto. In addition, the skilled artisan using conventional recombinant DNA methodologies, for example, by screening a cDNA library with such a nucleic acid sequence, would be able to isolate full length nucleic acid sequences encoding target breast cancer-associated proteins. Such full length nucleic acid sequences, or fragments thereof, may be used to generate nucleic acid-based detection systems or therapeutics.
- Once identified, a breast cancer-associated protein may be detected in a tissue or body fluid sample using numerous binding assays that are well known to those of ordinary skill in the art. For example, as discussed above, a breast cancer-associated protein may be detected in either a tissue or body fluid sample using an antibody, for example, a monoclonal antibody, which binds specifically to an epitope disposed upon the breast cancer-associated protein. In such detection systems, the antibody preferably is labeled with a detectable moiety.
- Provided below is an exemplary protocol for the production of an anti-breast cancer-associated monoclonal antibody. Other protocols also are envisioned. Accordingly, the particular method of producing antibodies to target proteins is not envisioned to be an aspect of the invention.
- Balb/c by J mice (Jackson Laboratory, Bar Harbor, Me.) are injected intraperitoneally with the target protein every 2 weeks until the immunized mice obtain the appropriate serum titer. Thereafter, the mice are injected with 3 consecutive intravenous boosts. Freund's complete adjuvant (Gibco, Grand Island) is used in the first injection, incomplete Freund's in the second injection; and saline is used for subsequent intravenous injections. The animal then is sacrificed and its spleen removed. Spleen cells (or lymph node cells) then are fused with a mouse myeloma line, e.g., using the method of Kohler et al. (1975) Nature 256: 495. Hybridomas producing antibodies that react with the target proteins then are cloned and grown as ascites. Hybridomas are screened by reactivity to the immunogen in any desirable assay. Detailed descriptions of screening protocols, ascites production and immunoassays also are disclosed in PCT/US92/09220, published May 13, 1993.
- The following assay has been developed for tissue samples; however, it is contemplated that similar assays for testing fluid samples may be developed without undue experimentation. A typical assay may employ a commercial immunodetection kit, for example, the ABC Elite Kit from Vector Laboratories, Inc.
- A biopsy sample is removed from the patient under investigation in accordance with the appropriate medical guidelines. The sample then is applied to a glass microscope slide and the sample fixed in cold acetone for 10 minutes. Then, the slide is rinsed in distilled water and pretreated with a hydrogen peroxide containing solution (2 mL 30% H2O2 and 30 mL cold methanol). The slide then is rinsed in a Buffer A comprising Tris Buffered Saline (TBS) with 0.1% Tween and 0.1% Brij. A mouse anti-breast cancer-associated protein monoclonal antibody in Buffer A is added to the slide and the slide then incubated for one hour at room temperature. The slide then is washed with Buffer A, and a secondary antibody (ABC Elite Kit, Vector Labs, Inc) in Buffer A is added to the slide. The slide then is incubated for 15 minutes at 37° C. in a humidity chamber. The slides are washed again with Buffer A, and the ABC reagent (ABC Elite Kit, Vector Labs, Inc.) is then added to the slide for amplification of the signal. The slide is then incubated for a further 15 minutes at 37° C. in the humidity chamber.
- The slide then is washed in distilled water, and a diaminobenzedine (DAB) substrate added to the slide for 4-5 minutes. The slide then is rinsed with distilled water, counterstained with hematoxylin, rinsed with 95% ethanol, rinsed with 100% ethanol, and then rinsed with xylene. A cover slip is then applied to the slide and the result observed by light microscopy.
- The 28.3 kD breast cancer protein identified in Example 1 was isolated and further characterized as follows.
- Approximately 30 mL of serum (combined from multiple breast cancer patients) was depleted of immunoglobulin G and serum albumin using Protein G chromatography and Cibacron Blue agarose chromatography, respectively, using standard methodologies such as those described in Example 1. The albumin and immunoglobulin depleted serum then was fractionated by Mono Q ion-exchange affinity chromatography. Briefly, the serum proteins were applied to a 5 mL Mono Q column (Pharmacia and Upjohn, Peapack, N.J.) in 50 mM sodium phosphate buffer, pH 7.0, and the flow through fraction collected. Thereafter, the serum proteins were eluted stepwise from the column using 50 mM sodium phosphate buffer, pH 7.0 containing increasing concentrations of sodium chloride. In this manner, 12 serum fractions were obtained, each containing a different amount of sodium chloride. The fractions included flow through, and elution buffers of 50 mM sodium phosphate buffer, pH 7.0 containing 25 mM, 50 mM, 75 mM, 100 mM, 125 mM, 150 mM, 200 mM, 250 mM, 300 mM, 400 mM, and 2M sodium chloride.
- The 50 mM sodium chloride fraction containing the protein of interest was subsequently buffer exchanged back into 50 mM sodium phosphate buffer, pH 7.0 and concentrated by means of a Centricon 10 (Millipore) in accordance with the manufacturer's instructions. The resulting sample then was fractionated by size exclusion chromatography on a Sephacryl S-200 column (Pharmacia) using an isocratic buffer containing 100 mM sodium phosphate, 150 mM NaCl, pH 7.4. Fractions that eluted from the column were evaluated for the presence of the 28.3 kD protein using the Ciphergen SELDI mass spectroscopy as described in Example 1. Fractions containing the 28.3 kD protein were pooled and applied to an IMAC column (Sigma) which had been pre-loaded with Ni2+ by prior incubation with 50 mM NiCl2. The IMAC column then was washed with 6 bed volumes of a solution containing 100 mM sodium phosphate, 150 mM NaCl, pH 7.4, and the bound protein fraction eluted with the same solution containing 100 mM imidazole. The eluted fraction then was concentrated by means of a Minicon 10 (Millipore) and then was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% Tris glycine SDS-PAGE gel. Samples of the protein fraction were applied to two separate lanes of the gel. After electrophoresis, the resulting gel then was stained with Coomassie Brilliant Blue dye and destained to reveal the presence of proteins. Three bands of about 28.3 kD (characterized as the heaviest molecular weight protein, the medium molecular weight protein, and the lightest molecular weight protein) were excised from one of the 2 lanes and were eluted from the acrylamide slices.
- The proteins were eluted from the gel as follows. Briefly, the gel slices were washed five times with HPLC grade water with vigorous vortexing. The washed slices then were cut into small pieces in 120 μL of 100 mM sodium acetate pH 8.5, 0.1% SDS and incubated overnight at 37° C. The supernatant was decanted into a fresh tube and dried in a speedvac. The resulting pellet then was reconstituted in 37 μL HPLC grade water. Approximately 1480 μL of cold ethanol then was added and the resulting mixture incubated overnight at −20° C. The sample was centrifuged at 4° C. for 15 minutes at 11,000 rpm. The supernatant was removed and the resulting pellet reconstituted in 5 μL of water. The resulting protein solutions were run on the SELDI and the 28.3 kD protein was identified in one of the three preparations (see
FIG. 1A which corresponds to the heaviest 28 kD protein). The corresponding band then was excised from the second of the 2 lanes on the gel. After proteolysis with trypsin, the tryptic fragments were eluted from the gel and submitted for microsequence analysis via mass spectrometry. - Four individual masses were detected by mass spectrometry. When the four masses were used to search the Swiss Protein Database, all four masses were found to match amino acid sequences present in the protein referred to in the art as U2 small nuclear ribonucleoprotein B″ (U2 snRNP B″) (Habets et al. (1987) supra, Swiss Protein Database Accession Number 4507123). The results are summarized in Table 2.
TABLE 2 SEQ ID Peptide Sequence NO Protein 1 QLQGFPFYGKPMR 1 U2 snRNP B″ 2 HDIAFVEFENDGQAGAAR 2 U2 snRNP B″ 3 LVPGRHDIAFVEFENDGQAGAAR 3 U2 snRNP B″ 4 TVEQTATTTNK 4 U2 snRNP B″ - The amino acid sequence, in an N- to C-terminal direction, of the U2 SnRNP B″ protein in single amino acid code is:
(SEQ ID NO: 5) MDIRPNHTIY INNMNDKIKK EELKRSLYAL FSQFGHVVDI VALKTMKMRG QAFVIFKELG SSTNALRQLQ GFPFYGKPMR IQYAKTDSDI ISKMRGTFAD KEKKKEKKKA KTVEQTATTT NKKPGQGTPN SANTQGNSTP NPQVPDYPPN YILFLNNLPE ETNEMMLSML FNQFPGFKEV RLVPGRHDIA FVEFENDGQA GAARDALQGF KITPSHAMKI TYAKK - The 71 kD breast cancer protein identified in Example 1 was isolated and further characterized as follows.
- 50 mL of serum from each of four individuals was pooled to give a single aliquot of 200 mL. This 200 mL aliquot was subdivided into six aliquots of 33 mL each. Each aliquot was treated with 19 mL of trifluorotrichloroethane as described in Example 1. Each aliquot was applied to Protein G and Cibacron Blue columns as described in Example 1. Fractions containing protein in the flowthrough (approximately 500 mL/aliquot) were pooled and concentrated to approximately 10 mL/aliquot (60 mL total) using Centricon concentrators.
- 3 mL aliquots were loaded onto 5 mL mono Q sepharose columns (60 mL/3mL=20 aliquots). Fractionation was performed as described in Example 1, except that all volumes were multiplied by 5. The fractions eluted with 100 mM sodium chloride from each fractionation were pooled into a single 200 mL fraction and buffer exchanged into binding buffer as described in Example 1.
- The 200 mL fraction was applied to a series of antibody columns to remove abundant proteins of 50-70 kD. Each of these proteins, alpha-I anti-trypsin, ceruloplasmin, kallikrein, and GC-globulin, had been identified and sequenced during preliminary attempts to isolate the 71 kD protein. Commercial antibodies to each of the proteins were purchased and coupled to a solid support (agarose) using conventional NHS ester chemistry (Pierce Aminolink Plus kit—part number 44894). The 200 mL fraction was applied to each column in turn until the protein in question could no longer be seen in the flowthrough by Western blot analysis.
- The flowthrough was subjected to size exclusion chromatography using an S200 column. Fractions containing the 71 kD) peak were identified by SELDI as described in Example 1. Because these fractions also appeared to contain a fragment of human serum albumin (HSA) that would not bind to the Cibacron blue column, the fractions were applied to an HSA affinity column with two murine antibodies to HSA to depelete the remaining HSA from the sample. SDS-PAGE analysis of the sample revealed a single band in the 71 kD range by silver staining. The remaining sample was divided into two aliquots and run on two lanes of a 10% tris-glycine gel. The gel was stained with Coomassie Brilliant Blue dye. The 71 kD band from one of the two lanes was excised and eluted from the gel as described in Example 5. Its identity as the 70.972 kD marker protein was confirmed by SELDI. The 71 kD band from the other lane was excised and treated with trypsin. The resulting peptides were eluted from the gel and subjected to microsequence analysis by mass spectrometry. Sixteen of the predicted trypsin fragments of the 64-kD subunit of cleavage stimulation factor have masses corresponding to those identified in the mass spectrum of the 71 kD protein. The sixteen sequences are set forth in Table 3. Two reported sequences for cleavage stimulation factor are set forth in the Sequence Listing as SEQ ID NO:22 and SEQ ID NO:23.
TABLE 3 SEQ ID Peptide Sequence NO Protein 1 GQVPMQDPR 6 Cleavage Stimulation Factor 2 GSLPANVPTPR 7 Cleavage Stimulation Factor 3 GLLGDAPNDPR 8 Cleavage Stimulation Factor 4 AGLTVRDPAVDR 9 Cleavage Stimulation Factor 5 ALRVDNAASEKNK 10 Cleavage Stimulation Factor 6 GGTLLSVTGEVEPR 11 Cleavage Stimulation Factor 7 DIFSEVGPVVSFR 12 Cleavage Stimulation Factor 8 GIDARGMEARAMEAR 13 Cleavage Stimulation Factor 9 GMEARAMEARGLDAR 14 Cleavage Stimulation Factor 10 AVASLPPEQMFELMK 15 Cleavage Stimulation Factor 11 AMEARAMEVRGMEAR 16 Cleavage Stimulation Factor 12 GYLGPPHQGPPMHHVPGHESR 17 Cleavage Stimulation Factor 13 GPIPSGMQGPSPINMGAVVPQGSR 18 Cleavage Stimulation Factor 14 NMLLQNPQLAYALLQAQVVMR 19 Cleavage Stimulation Factor 15 GGPLPEPRPLMAEPRGPMLDQR 20 Cleavage Stimulation Factor 16 SLGTGAPVIESPYGETISPEDAPESISK 21 Cleavage Stimulation Factor - The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced by reference therein.
- The entire disclosure of each of the aforementioned patent and scientific documents cited hereinabove is expressly incorporated by reference herein.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/194,051 US20060160154A1 (en) | 1999-11-16 | 2005-07-29 | Materials and methods for detection and treatment of breast cancer |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16567399P | 1999-11-16 | 1999-11-16 | |
US17217099P | 1999-12-17 | 1999-12-17 | |
US17886000P | 2000-01-27 | 2000-01-27 | |
US20172100P | 2000-05-03 | 2000-05-03 | |
US09/709,947 US6936424B1 (en) | 1999-11-16 | 2000-11-10 | Materials and methods for detection and treatment of breast cancer |
US11/194,051 US20060160154A1 (en) | 1999-11-16 | 2005-07-29 | Materials and methods for detection and treatment of breast cancer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/709,947 Continuation US6936424B1 (en) | 1999-11-16 | 2000-11-10 | Materials and methods for detection and treatment of breast cancer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060160154A1 true US20060160154A1 (en) | 2006-07-20 |
Family
ID=30449666
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/709,947 Expired - Fee Related US6936424B1 (en) | 1999-11-16 | 2000-11-10 | Materials and methods for detection and treatment of breast cancer |
US11/194,051 Abandoned US20060160154A1 (en) | 1999-11-16 | 2005-07-29 | Materials and methods for detection and treatment of breast cancer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/709,947 Expired - Fee Related US6936424B1 (en) | 1999-11-16 | 2000-11-10 | Materials and methods for detection and treatment of breast cancer |
Country Status (9)
Country | Link |
---|---|
US (2) | US6936424B1 (en) |
EP (2) | EP1232177B1 (en) |
JP (2) | JP2004500056A (en) |
AT (1) | ATE354588T1 (en) |
AU (2) | AU1615201A (en) |
CA (2) | CA2390607A1 (en) |
DE (1) | DE60033555T2 (en) |
ES (1) | ES2282149T3 (en) |
WO (2) | WO2001036977A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180310822A1 (en) * | 2017-04-28 | 2018-11-01 | Masimo Corporation | Spot check measurement system |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6936424B1 (en) * | 1999-11-16 | 2005-08-30 | Matritech, Inc. | Materials and methods for detection and treatment of breast cancer |
AUPQ886100A0 (en) * | 2000-07-19 | 2000-08-10 | Biotron Limited | Diagnostic test |
CA2320549A1 (en) * | 2000-09-25 | 2002-03-25 | Eastern Virginia Medical College | Biomarkers of transitional cell carcinoma of the bladder |
WO2003014724A1 (en) * | 2001-08-03 | 2003-02-20 | Biotron Limited | A novel cancer marker and uses therefor in the diagnosis of cancer |
US6756586B2 (en) | 2001-10-15 | 2004-06-29 | Vanderbilt University | Methods and apparatus for analyzing biological samples by mass spectrometry |
WO2003054549A2 (en) * | 2001-12-08 | 2003-07-03 | Micromass Uk Limited | Method of mass spectrometry |
DE10296200D2 (en) * | 2001-12-21 | 2004-11-04 | Biovision Ag | Methods for diagnosing breast cancer, associated peptides and their uses |
JP2006508326A (en) * | 2002-03-06 | 2006-03-09 | ジョンズ ホプキンス ユニバーシティ | Use of biomarkers to detect breast cancer |
AU2002950878A0 (en) * | 2002-08-20 | 2002-09-12 | Proteome Systems Intellectual Property Pty Ltd | Method for diagnosing disorders |
DE60315715T2 (en) | 2002-12-20 | 2008-06-05 | Roche Diagnostics Gmbh | USE OF NICOTINAMIDE N-METHYLTRANSFERASE FOR THE DIAGNOSIS OF COLORECTAL CANCER |
EP1613966A2 (en) * | 2003-04-08 | 2006-01-11 | Colotech A/S | A method for detection of colorectal cancer in human samples |
US7425700B2 (en) | 2003-05-22 | 2008-09-16 | Stults John T | Systems and methods for discovery and analysis of markers |
US20060003391A1 (en) * | 2003-08-11 | 2006-01-05 | Ring Brian Z | Reagents and methods for use in cancer diagnosis, classification and therapy |
US20050112622A1 (en) * | 2003-08-11 | 2005-05-26 | Ring Brian Z. | Reagents and methods for use in cancer diagnosis, classification and therapy |
US20050037331A1 (en) * | 2003-08-13 | 2005-02-17 | William Galbraith | Apparatuses and methods for reducing albumin in samples |
GB0320648D0 (en) * | 2003-09-03 | 2003-10-01 | Randox Lab Ltd | Molecular marker |
US20080131916A1 (en) * | 2004-08-10 | 2008-06-05 | Ring Brian Z | Reagents and Methods For Use In Cancer Diagnosis, Classification and Therapy |
US20060068434A1 (en) * | 2004-09-21 | 2006-03-30 | Jay Stoerker | Methods and compositions for detecting cancer using components of the U2 spliceosomal particle |
EP1833838A2 (en) * | 2004-12-14 | 2007-09-19 | Applera Corporation, Applied Biosystems Group | Cationic liposomes comprising a charge neutral compound and a cationic phospholipid |
AU2006203948A1 (en) | 2005-01-06 | 2006-07-13 | Eastern Virginia Medical School | Apolipoprotein A-II isoform as a biomarker for prostate cancer |
WO2006098087A1 (en) * | 2005-03-14 | 2006-09-21 | Japan Health Sciences Foundation | Marker protein for use in diagnosis of pancreatic cancer |
US7611908B2 (en) | 2005-05-02 | 2009-11-03 | Bioscale, Inc. | Method and apparatus for therapeutic drug monitoring using an acoustic device |
US7749445B2 (en) | 2005-05-02 | 2010-07-06 | Bioscale, Inc. | Method and apparatus for analyzing bioprocess fluids |
US7300631B2 (en) | 2005-05-02 | 2007-11-27 | Bioscale, Inc. | Method and apparatus for detection of analyte using a flexural plate wave device and magnetic particles |
US7648844B2 (en) | 2005-05-02 | 2010-01-19 | Bioscale, Inc. | Method and apparatus for detection of analyte using an acoustic device |
WO2007002069A2 (en) * | 2005-06-21 | 2007-01-04 | Anthony Goncalves | Serum biomarkers for breast cancer |
US8440409B2 (en) * | 2005-09-19 | 2013-05-14 | The Johns Hopkins University | Protein C inhibitor as a biomarker for prostate cancer |
US20070231909A1 (en) * | 2005-10-13 | 2007-10-04 | Applera Corporation | Methods for the development of a biomolecule assay |
US20100160275A1 (en) * | 2006-09-26 | 2010-06-24 | Lee Eva Y H P | Methods and compositions for cancer prevention and treatment |
US9517240B2 (en) | 2006-09-26 | 2016-12-13 | The Regents Of The University Of California | Methods and compositions for cancer prevention and treatment |
US8354280B2 (en) | 2007-09-06 | 2013-01-15 | Bioscale, Inc. | Reusable detection surfaces and methods of using same |
WO2009075864A1 (en) * | 2007-12-11 | 2009-06-18 | New York University School Of Medicine | Methods for detecting colon carcinoma |
US8809009B2 (en) | 2009-01-02 | 2014-08-19 | Biomarin Pharmaceutical Inc. | Methods of diagnosing a disease and methods of monitoring treatment of a disease by quantifying a non-reducing end glycan residual compound and comparing to a second biomarker |
US8232073B2 (en) | 2009-01-02 | 2012-07-31 | Zacharon Pharmaceuticals, Inc. | Quantification of non-reducing end glycan residual compounds |
US9029530B2 (en) | 2009-01-02 | 2015-05-12 | Biomarin Pharmaceutical Inc. | Detection of oligosaccharides |
CN102575300A (en) * | 2009-08-21 | 2012-07-11 | 肿瘤疗法科学股份有限公司 | CSTF2 for target genes of lung cancer therapy and diagnosis |
CA2838053A1 (en) | 2011-06-03 | 2012-12-06 | University Of South Alabama | Methods and compositions for detecting endometrial or ovarian cancer |
EP3256040A4 (en) * | 2015-02-11 | 2018-08-08 | Abbott Diabetes Care Inc. | Methods, devices and systems for distinguishing cancerous and non-cancerous tissue |
US20170168055A1 (en) * | 2015-12-11 | 2017-06-15 | Expression Pathology, Inc. | SRM/MRM Assays |
CN107677825B (en) * | 2017-10-06 | 2019-04-23 | 汉氏联合(天津)干细胞研究院有限公司 | A kind of tumor diagnosis composition for diagnosis of cervical cancer and the purposes for being used to prepare diagnostic kit |
JP7441303B2 (en) | 2019-08-05 | 2024-02-29 | シアー, インコーポレイテッド | Systems and methods for sample preparation, data generation, and protein corona analysis |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5342764A (en) * | 1985-04-15 | 1994-08-30 | Scios Nova Inc. | Recombinant expression system for human anti-inflammatory phospholipase inhibitor protein |
US5561222A (en) * | 1989-11-15 | 1996-10-01 | Duke University | RNA-binding proteins useful for the control of cellular genetic processing and expression |
US5719060A (en) * | 1993-05-28 | 1998-02-17 | Baylor College Of Medicine | Method and apparatus for desorption and ionization of analytes |
US5792664A (en) * | 1992-05-29 | 1998-08-11 | The Rockefeller University | Methods for producing and analyzing biopolymer ladders |
US5876937A (en) * | 1995-07-03 | 1999-03-02 | Akzo Nobel N.V. | Method for determining the integrity of nucleic acid |
US5962242A (en) * | 1995-09-19 | 1999-10-05 | Immuna Care Corporation | Methods of predicting estrogen-dependent osteopenia |
US6020135A (en) * | 1998-03-27 | 2000-02-01 | Affymetrix, Inc. | P53-regulated genes |
US6197525B1 (en) * | 1995-03-23 | 2001-03-06 | Immunex Corporation | Assay kits for detection and methods of inhibiting IL-17 binding |
US6225047B1 (en) * | 1997-06-20 | 2001-05-01 | Ciphergen Biosystems, Inc. | Use of retentate chromatography to generate difference maps |
US6287521B1 (en) * | 1996-08-27 | 2001-09-11 | Atossa Healthcare, Inc. | Methods and devices for obtaining and assaying mammary fluid samples for evaluating breast diseases, including cancer |
US6410692B2 (en) * | 1998-02-02 | 2002-06-25 | Novadx, Inc. | Removal of abundant interfering proteins from a liquid sample using a collapsible affinity matrix |
US20020081659A1 (en) * | 1999-03-12 | 2002-06-27 | Rosen Craig A. | Nucleic acids, proteins and antibodies |
US6753314B1 (en) * | 1999-04-01 | 2004-06-22 | Curagen Corporation | Protein-protein complexes and methods of using same |
US6936424B1 (en) * | 1999-11-16 | 2005-08-30 | Matritech, Inc. | Materials and methods for detection and treatment of breast cancer |
US7008778B1 (en) * | 1997-02-03 | 2006-03-07 | Human Genome Sciences, Inc. | Breast cancer specific gene 1 |
US20060068434A1 (en) * | 2004-09-21 | 2006-03-30 | Jay Stoerker | Methods and compositions for detecting cancer using components of the U2 spliceosomal particle |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0460607A3 (en) * | 1990-06-05 | 1992-04-01 | Bristol-Myers Squibb Company | Novel monoclonal antibody to novel antigen associated with human tumors |
PL186810B1 (en) | 1996-08-13 | 2004-02-27 | Biovision Ag | Method of determining condition of human body by measurement of peptides |
DE19632521A1 (en) | 1996-08-13 | 1998-02-19 | Forssmann Wolf Georg | Isolating peptide(s) from body fluids, tissues and cell supernatant |
US6399328B1 (en) | 1997-03-21 | 2002-06-04 | Musc Foundation For Research Development | Methods and compositions for diagnosis and treatment of breast cancer |
AU6261998A (en) | 1998-02-02 | 1999-08-16 | Novadx | Removal of abundant interfering proteins from a liquid sample using a collapsible affinity matrix |
-
2000
- 2000-11-10 US US09/709,947 patent/US6936424B1/en not_active Expired - Fee Related
- 2000-11-16 CA CA002390607A patent/CA2390607A1/en not_active Abandoned
- 2000-11-16 JP JP2001538959A patent/JP2004500056A/en active Pending
- 2000-11-16 WO PCT/US2000/031492 patent/WO2001036977A2/en not_active Application Discontinuation
- 2000-11-16 AU AU16152/01A patent/AU1615201A/en not_active Abandoned
- 2000-11-16 DE DE60033555T patent/DE60033555T2/en not_active Expired - Fee Related
- 2000-11-16 ES ES00979182T patent/ES2282149T3/en not_active Expired - Lifetime
- 2000-11-16 JP JP2001538814A patent/JP2003528296A/en not_active Withdrawn
- 2000-11-16 AT AT00979182T patent/ATE354588T1/en not_active IP Right Cessation
- 2000-11-16 AU AU16589/01A patent/AU1658901A/en not_active Abandoned
- 2000-11-16 WO PCT/US2000/031483 patent/WO2001036470A2/en active IP Right Grant
- 2000-11-16 EP EP00979182A patent/EP1232177B1/en not_active Expired - Lifetime
- 2000-11-16 CA CA002391212A patent/CA2391212A1/en not_active Abandoned
- 2000-11-16 EP EP00978722A patent/EP1240521A2/en not_active Withdrawn
-
2005
- 2005-07-29 US US11/194,051 patent/US20060160154A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5342764A (en) * | 1985-04-15 | 1994-08-30 | Scios Nova Inc. | Recombinant expression system for human anti-inflammatory phospholipase inhibitor protein |
US5561222A (en) * | 1989-11-15 | 1996-10-01 | Duke University | RNA-binding proteins useful for the control of cellular genetic processing and expression |
US5792664A (en) * | 1992-05-29 | 1998-08-11 | The Rockefeller University | Methods for producing and analyzing biopolymer ladders |
US5719060A (en) * | 1993-05-28 | 1998-02-17 | Baylor College Of Medicine | Method and apparatus for desorption and ionization of analytes |
US6197525B1 (en) * | 1995-03-23 | 2001-03-06 | Immunex Corporation | Assay kits for detection and methods of inhibiting IL-17 binding |
US5876937A (en) * | 1995-07-03 | 1999-03-02 | Akzo Nobel N.V. | Method for determining the integrity of nucleic acid |
US5962242A (en) * | 1995-09-19 | 1999-10-05 | Immuna Care Corporation | Methods of predicting estrogen-dependent osteopenia |
US6287521B1 (en) * | 1996-08-27 | 2001-09-11 | Atossa Healthcare, Inc. | Methods and devices for obtaining and assaying mammary fluid samples for evaluating breast diseases, including cancer |
US7008778B1 (en) * | 1997-02-03 | 2006-03-07 | Human Genome Sciences, Inc. | Breast cancer specific gene 1 |
US6225047B1 (en) * | 1997-06-20 | 2001-05-01 | Ciphergen Biosystems, Inc. | Use of retentate chromatography to generate difference maps |
US6410692B2 (en) * | 1998-02-02 | 2002-06-25 | Novadx, Inc. | Removal of abundant interfering proteins from a liquid sample using a collapsible affinity matrix |
US6020135A (en) * | 1998-03-27 | 2000-02-01 | Affymetrix, Inc. | P53-regulated genes |
US20020081659A1 (en) * | 1999-03-12 | 2002-06-27 | Rosen Craig A. | Nucleic acids, proteins and antibodies |
US6753314B1 (en) * | 1999-04-01 | 2004-06-22 | Curagen Corporation | Protein-protein complexes and methods of using same |
US6936424B1 (en) * | 1999-11-16 | 2005-08-30 | Matritech, Inc. | Materials and methods for detection and treatment of breast cancer |
US20060068434A1 (en) * | 2004-09-21 | 2006-03-30 | Jay Stoerker | Methods and compositions for detecting cancer using components of the U2 spliceosomal particle |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180310822A1 (en) * | 2017-04-28 | 2018-11-01 | Masimo Corporation | Spot check measurement system |
Also Published As
Publication number | Publication date |
---|---|
WO2001036470A3 (en) | 2002-01-24 |
ATE354588T1 (en) | 2007-03-15 |
AU1658901A (en) | 2001-05-30 |
EP1232177B1 (en) | 2007-02-21 |
DE60033555D1 (en) | 2007-04-05 |
EP1232177A2 (en) | 2002-08-21 |
JP2003528296A (en) | 2003-09-24 |
JP2004500056A (en) | 2004-01-08 |
CA2391212A1 (en) | 2001-05-25 |
WO2001036470A2 (en) | 2001-05-25 |
WO2001036977A3 (en) | 2001-11-22 |
AU1615201A (en) | 2001-05-30 |
WO2001036977A2 (en) | 2001-05-25 |
EP1240521A2 (en) | 2002-09-18 |
ES2282149T3 (en) | 2007-10-16 |
WO2001036977A8 (en) | 2002-01-24 |
US6936424B1 (en) | 2005-08-30 |
CA2390607A1 (en) | 2001-05-25 |
DE60033555T2 (en) | 2007-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6936424B1 (en) | Materials and methods for detection and treatment of breast cancer | |
US6803189B2 (en) | Methods for the detection of cervical cancer | |
US5411860A (en) | Amplification of human MDM2 gene in human tumors | |
Rubinfeld et al. | Association of the APC gene product with β-catenin | |
EP1493033B1 (en) | Use of sc6 for diagnosis and treatment of breast carcinoma | |
CA3020650C (en) | Ros kinase in lung cancer | |
US20060172347A1 (en) | Method of diagnosis, treatment and useful agents for conditions characterised by modulation in the level of activin ssc | |
EP0759986B1 (en) | Diagnostics for cancers expressing tyrosine phosphorylated crkl protein | |
US20100216654A1 (en) | Biomarkers of prostate cancer and uses thereof | |
CA2347656A1 (en) | A novel method of diagnosing, monitoring, staging, imaging and treating lung cancer | |
US20020164664A1 (en) | Detection and treatment of prostate cancer | |
WO2002078636A2 (en) | Detection and treatment of colorectal cancer | |
JPH08507927A (en) | Antibody and assay for mutation determination of APC gene | |
US6300473B1 (en) | SLM-1: a novel Sam68-like mammalian protein | |
US6197744B1 (en) | Tumor necrosis factor inhibitory protein tip B1 and method of using same | |
JP2005527190A (en) | Nuclear protein "SHOCA"-a component of the WNT signaling pathway |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MATRITECH, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WATKINS, BRYNMOR;SZARO, ROBERT P.;REEL/FRAME:017843/0877;SIGNING DATES FROM 20010523 TO 20010604 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, MA Free format text: SECURITY AGREEMENT;ASSIGNOR:MILANO ACQUISITION CORP.;REEL/FRAME:020393/0031 Effective date: 20070627 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, MA Free format text: SECURITY AGREEMENT;ASSIGNOR:MILANO ACQUISITION CORP.;REEL/FRAME:020393/0594 Effective date: 20070627 |
|
AS | Assignment |
Owner name: MILANO ACQUISITION CORP., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATRITECH, INC.;REEL/FRAME:020555/0582 Effective date: 20071212 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |