US20060155029A1 - Fiber reinforced cementitious material - Google Patents
Fiber reinforced cementitious material Download PDFInfo
- Publication number
- US20060155029A1 US20060155029A1 US11/328,551 US32855106A US2006155029A1 US 20060155029 A1 US20060155029 A1 US 20060155029A1 US 32855106 A US32855106 A US 32855106A US 2006155029 A1 US2006155029 A1 US 2006155029A1
- Authority
- US
- United States
- Prior art keywords
- canceled
- bis
- fiber
- titanium
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 title claims abstract description 26
- 150000001875 compounds Chemical class 0.000 claims abstract description 38
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 41
- -1 zirconates Chemical class 0.000 claims description 19
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 11
- 229910000077 silane Inorganic materials 0.000 claims description 11
- 150000004645 aluminates Chemical class 0.000 claims description 7
- 150000004756 silanes Chemical class 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 229920006397 acrylic thermoplastic Polymers 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 239000012783 reinforcing fiber Substances 0.000 claims description 2
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 45
- 229910052726 zirconium Inorganic materials 0.000 abstract description 19
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010936 titanium Substances 0.000 description 44
- 239000007983 Tris buffer Substances 0.000 description 29
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 15
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical group [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000004568 cement Substances 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- GBHRVZIGDIUCJB-UHFFFAOYSA-N hydrogenphosphite Chemical compound OP([O-])[O-] GBHRVZIGDIUCJB-UHFFFAOYSA-N 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 3
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- VTIXMGZYGRZMAW-UHFFFAOYSA-N ditridecyl hydrogen phosphite Chemical compound CCCCCCCCCCCCCOP(O)OCCCCCCCCCCCCC VTIXMGZYGRZMAW-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical class CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- WJECKFZULSWXPN-UHFFFAOYSA-N 1,2-didodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1CCCCCCCCCCCC WJECKFZULSWXPN-UHFFFAOYSA-N 0.000 description 1
- QWOVEJBDMKHZQK-UHFFFAOYSA-N 1,3,5-tris(3-trimethoxysilylpropyl)-1,3,5-triazinane-2,4,6-trione Chemical compound CO[Si](OC)(OC)CCCN1C(=O)N(CCC[Si](OC)(OC)OC)C(=O)N(CCC[Si](OC)(OC)OC)C1=O QWOVEJBDMKHZQK-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- LVACOMKKELLCHJ-UHFFFAOYSA-N 3-trimethoxysilylpropylurea Chemical compound CO[Si](OC)(OC)CCCNC(N)=O LVACOMKKELLCHJ-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N N,N-Diethylethanamine Substances CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- HTDKEJXHILZNPP-UHFFFAOYSA-N dioctyl hydrogen phosphate Chemical compound CCCCCCCCOP(O)(=O)OCCCCCCCC HTDKEJXHILZNPP-UHFFFAOYSA-N 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- HHFWDFNDNSYDED-UHFFFAOYSA-N methanesulfonic acid;zirconium Chemical compound [Zr].CS(O)(=O)=O HHFWDFNDNSYDED-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 1
- 229960003493 octyltriethoxysilane Drugs 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007586 pull-out test Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011378 shotcrete Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0048—Fibrous materials
- C04B20/0068—Composite fibres, e.g. fibres with a core and sheath of different material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0091—Complexes with metal-heteroatom-bonds
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/04—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
- D01F6/06—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00482—Coating or impregnation materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
Definitions
- the present invention is directed to a fiber reinforced cementitious material and the fibers used in that cementitious material.
- fibers can be used to increase the strength of cementitious materials and gypsum products. See U.S. Pat. Nos. 4,105,739 and 4,133,928. Moreover, it is known that if the adhesion between the cementitious material and the reinforcing fibers is increased, that it can have a positive impact on the strength of the material. For example, in U.S. Pat. No. 4,257,993, glass fibers are coated with a resin or sprinkled with quartz sand to increase the adhesion. In U.S. Pat. No. 4,314,003, carbon fibers are coated with an epoxy resin having a fatty acid amine hardener. In U.S. Pat. No.
- the fibers are coated with a reactive copolymer latex and a synthetic resin.
- carbon fibers are coated with epoxy resins and rubber latex.
- carbon fibers are coated with organometallic-based coatings and latex coatings are disclosed as promoting bonding between the carbon fibers and the cement matrix.
- the fiber reinforced cementitious material includes a conventional cementitious material and less than 5 pounds per cubic yard of the cementitious material of fibers dispersed therein.
- the fibers are made of a mixture of a thermoplastic polymer and an organometal compound wherein the metal of the compound is selected from the group consisting of Ti, Si, Zr, Al, and combinations thereof, and the organometal compound comprising less than 10% by weight of said fibers.
- FIG. 1 is a graph illustrating load (N), y axis, as a function of averaged load-crack opening displacement, x axis.
- FIG. 2 is a graph illustrating cumulative energy absorption (N-mm), y axis, as a function of crack opening displacement, x axis.
- a conventional cementitious material refers to any inorganic cement based, hardenable material including, but not limited to concrete, gunite, masonary cement (mortar), block, wall board (gypsum), and the like.
- the fibers may be mixed into the cementitious material so that they are randomly dispersed therein, or they may be aligned within the material whereby they are better able to absorb structural loads.
- the fibers may comprise less than or equal to about 5 pounds, preferably less than or equal to about 3 pounds and most preferably 1-2 pounds, per cubic yard of the cementitious material.
- the fibers are preferably short cut fibers (or chopped fibers or staple fibers; typically 0.5 to 3 inches (10 to 75 mm)), but may be in other forms as well. Those other forms include: filaments, woven or knitted fabrics, and nonwoven fabrics.
- Fibers are made of a mixture of a thermoplastic polymer and an organometal compound.
- the organometal compound is mixed into the thermoplastic material prior to fiber formation, however, the organometal compound may be coated onto the thermoplastic fiber after its formation.
- the organometal compound is less than or equal to 10% by weight of the fiber, most preferably, less than or equal to 5% by weight of the fiber.
- a silane is used in all fiber formulations.
- the most preferred fiber formulations contain a silane and a titanate, or a silane and a zirconate.
- the silane may be coated on to the fiber and the other organometal compounds are mixed into the thermoplastic polymer.
- the organometal compound may be added directly to the thermoplastic melt, added in solution or mixture with a diluent, or added as a concentrate in the thermoplastic resin (masterbatching). Masterbatching is preferred. If a diluent is used, any suitable material may be used, for example, mineral oil.
- a carrier e.g., fumed silica or Accurel, a microporous product of Membrana GmbH, Wuppertal, Germany
- uniform dispersion along the length of the fiber is essential. If possible, a higher concentration of the organometal compound is preferred at the fiber's surface than at its core, that may be obtained by bicomponent extrusion.
- conventional reinforcing elements used in cemetitious materials e.g., rebar, steel fibers, wire mesh, wire rope, and the like, may be coated with the mixture of thermplastic polymer and organometal compound.
- the coating should be sufficiently thick that it will uniformly coat the surface and will not delaminate therefrom under normal field conditions.
- structural fiber and synthetic rebar, wire mesh, or rope may be made of the mixture or coated therewith.
- the thermoplastic polymer of the fiber may be selected from the group consisting of polyolefins, polyesters, nylons, and acrylics.
- the preferred polyolefins include polyethylene and polypropylene.
- the most preferred thermoplastic polymer is polypropylene.
- the organometal compound is used to facilitate or improve interfacial bonding between the fiber and the cementitious material. It is believed that the addition of the organometal compound to the thermoplastic fiber will exhibit higher flexural strength, better multiple cracking capabilities, lower critical fiber volume fractions, and greater fracture toughness values, and will decrease the plastic shrinkage of the cementitious material.
- the organometal compounds include compounds wherein the metal is selected from the group consisting of Ti, Si, Zr, Al, and combinations thereof.
- the organometal compounds may be selected from the group consisting of titanates, silanes, zirconates, aluminates, and combinations thereof.
- organometal compounds such as titanates, zirconates, and aluminates may be found in the Ken - React® Reference Manual , Kenrich Petrochemicals, Inc., Bayonne, N.J., (1993) incorporated herein by reference.
- organometal compounds When selecting the organometal compound, its hydrophilic nature should be considered. Organometals having a greater hydrophilictiy are preferred. Such organometal compounds are commercially available.
- Titanates and zirconates are available from Kenrich Petrochemical, Inc. of Bayonne, N.J. Suitable titanates include: titanium IV 2-propanolato, tris isooctadecanoato-0; titanium IV bis 2-methyl-2-propenoato-0, isooctadecanoato-0 2-propanolato; titanium IV 2-propanoloato, tris (dodecyl)benzenesulfanato-0; titanium IV 2-propanolato, tris (dioctyl)phosphato-0; titanium IV (4-amino)benzene sulfonato-0, bis(dodecyl)benzene sulfonato-0,2-propanolato; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (dioctyl) pryophosphate-0; titanium IV, tris(2 methyl)-2-propenoato
- Suitable zirconates include: zirconium IV 2,2-dimethyl 1,3 propanediolato, bis (dioctyl) pyrophosphato-0, (adduct) 2 moles N,N-dimethylamino-alkyl propenoamide; zirconium IV (2-ethyl, 2-propenolatomethyl) 1,3-propanediolato, cyclo bis 2-dimethylamino pyrophosphato-0,0 adduct with 2 moles of methanesulfonic acid; zirconium IV tetrakis 2,2(bis-2 propenolatomethyl)butanolato, adduct with 2 moles of ditridecyl, hydrogen phosphite; zirconium IV 2-ethyl, 2-propenolatomethyl 1,3-propanediolato, cyclo di 2,2-(bis 2-propenolatomethyl) butanolato pyrophosphato-0,0; zirconium
- Silanes are available from GE Silicones, Waterford, N.Y., and OSi Specialties, Crompton Corporation of Greenwich, Conn. Suitable silanes include: octyltriethoxysilane; methyltriethoxysilane; methyltrimethoxysilane; tris-[3-(trimethoxysilyl)propyl]isocyanurate; vinyltriethoxysilane; vinyltrimethoxysilane; vinyl-tris-(2-methoxyethoxy) silane; vinylmethyldimethoxysilane; gamma-methacryloxypropyltrimethoxysilane; beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; gamma-glycidoxypropyltrimethoxysilane; gamma-mercaptopropyltrimethoxysilane; polysulfide silane; bis-(triethoxysilyprop
- Aluminates are commercially available from Kenrich Petrochemical, Inc. of Bayonne, N.J. Suitable aluminates include: diisobutyl (oleyl) aceto acetyl aluminate and diisopropyl (oleyl) aceto acetyl aluminate.
- a “pull-out” test was used to determine bond strength.
- the pull-out test and apparatus are described in Banthia, N. et al, “Bond-Slip Characteristics of Steel Fibers in HRM Modified Cement Matrices,” Cement and Concrete Research, 26(5), 1996, pp. 651-662; and Banthia, N. et al, “Bond-Slip Mechanisms in steel Micro-Fiber Reinforced Cement Composites,” Materials Research Society Proceedings , Vol. 370, pp. 539-543, 1995, both are incorporated herein by reference.
- the fibers were in the form of a roving with 41 individual strands braided together with a total equivalent bundle diameter of 50 ⁇ m.
- Fibers were embedded in a cementitious matrix (water/cement ratio of 0.5) 40 mm ⁇ 20 mm ⁇ 10 mm, with an artificial crack, formed by a plastic film. Fibers extended 5 mm into the matrix on one side of the crack and 20 mm on the other. Ten specimens of each sample were prepared and tested after an age of 1 day.
- a cementitious matrix water/cement ratio of 0.5
- FIG. 1 illustrates load (N), y axis, as a function of averaged load-crack opening displacement, x axis. (Curves identified by sample number).
- FIG. 2 illustrates cumulative energy absorption (N-mm), y axis, as a function of crack opening displacement, x axis.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
A fiber reinforced cementitious material and the fiber used therein are disclosed. The fiber reinforced cementitious material includes a conventional cementitious material and less than 5 pounds per cubic yard of the cementitious material of fibers dispersed therein. The fibers are made of a mixture of a thermoplastic polymer and an organometal compound wherein the metal of the compound is selected from the group consisting of Ti, Si, Zr, Al, and combinations thereof, and the organometal compound comprising less than 10% by weight of said fibers.
Description
- This application claims the benefit of Provisional Application No. 60/413,326 filed Sep. 25, 2002.
- The present invention is directed to a fiber reinforced cementitious material and the fibers used in that cementitious material.
- In general, it is known that fibers can be used to increase the strength of cementitious materials and gypsum products. See U.S. Pat. Nos. 4,105,739 and 4,133,928. Moreover, it is known that if the adhesion between the cementitious material and the reinforcing fibers is increased, that it can have a positive impact on the strength of the material. For example, in U.S. Pat. No. 4,257,993, glass fibers are coated with a resin or sprinkled with quartz sand to increase the adhesion. In U.S. Pat. No. 4,314,003, carbon fibers are coated with an epoxy resin having a fatty acid amine hardener. In U.S. Pat. No. 4,910,076, the fibers are coated with a reactive copolymer latex and a synthetic resin. In U.S. Pat. No. 4,916,012, carbon fibers are coated with epoxy resins and rubber latex. In U.S. Pat. No. 5,032,181, carbon fibers are coated with organometallic-based coatings and latex coatings are disclosed as promoting bonding between the carbon fibers and the cement matrix.
- While the foregoing has improved the strength of cementitious materials, further improvement is still sought.
- A fiber reinforced cementitious material and the fiber used therein are disclosed. The fiber reinforced cementitious material includes a conventional cementitious material and less than 5 pounds per cubic yard of the cementitious material of fibers dispersed therein. The fibers are made of a mixture of a thermoplastic polymer and an organometal compound wherein the metal of the compound is selected from the group consisting of Ti, Si, Zr, Al, and combinations thereof, and the organometal compound comprising less than 10% by weight of said fibers.
- For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
-
FIG. 1 is a graph illustrating load (N), y axis, as a function of averaged load-crack opening displacement, x axis. -
FIG. 2 is a graph illustrating cumulative energy absorption (N-mm), y axis, as a function of crack opening displacement, x axis. - A conventional cementitious material refers to any inorganic cement based, hardenable material including, but not limited to concrete, gunite, masonary cement (mortar), block, wall board (gypsum), and the like.
- The fibers may be mixed into the cementitious material so that they are randomly dispersed therein, or they may be aligned within the material whereby they are better able to absorb structural loads. The fibers may comprise less than or equal to about 5 pounds, preferably less than or equal to about 3 pounds and most preferably 1-2 pounds, per cubic yard of the cementitious material. The fibers are preferably short cut fibers (or chopped fibers or staple fibers; typically 0.5 to 3 inches (10 to 75 mm)), but may be in other forms as well. Those other forms include: filaments, woven or knitted fabrics, and nonwoven fabrics.
- Fibers are made of a mixture of a thermoplastic polymer and an organometal compound. Preferably, the organometal compound is mixed into the thermoplastic material prior to fiber formation, however, the organometal compound may be coated onto the thermoplastic fiber after its formation. Preferably, the organometal compound is less than or equal to 10% by weight of the fiber, most preferably, less than or equal to 5% by weight of the fiber. Preferably, a silane is used in all fiber formulations. The most preferred fiber formulations contain a silane and a titanate, or a silane and a zirconate. In one embodiment, the silane may be coated on to the fiber and the other organometal compounds are mixed into the thermoplastic polymer.
- In fiber formation, for example, by a melt spinning process or a slit film extrusion process, the organometal compound may be added directly to the thermoplastic melt, added in solution or mixture with a diluent, or added as a concentrate in the thermoplastic resin (masterbatching). Masterbatching is preferred. If a diluent is used, any suitable material may be used, for example, mineral oil. When adding the organometal compound, which is typically a liquid, it may be beneficial for the uniform dispersion of the compound in the thermoplastic to add the compound to a carrier (e.g., fumed silica or Accurel, a microporous product of Membrana GmbH, Wuppertal, Germany) so that the compound becomes a powder. Whichever method is used, uniform dispersion along the length of the fiber is essential. If possible, a higher concentration of the organometal compound is preferred at the fiber's surface than at its core, that may be obtained by bicomponent extrusion.
- Alternatively, conventional reinforcing elements used in cemetitious materials, e.g., rebar, steel fibers, wire mesh, wire rope, and the like, may be coated with the mixture of thermplastic polymer and organometal compound. The coating should be sufficiently thick that it will uniformly coat the surface and will not delaminate therefrom under normal field conditions. Also, structural fiber and synthetic rebar, wire mesh, or rope, may be made of the mixture or coated therewith.
- The thermoplastic polymer of the fiber may be selected from the group consisting of polyolefins, polyesters, nylons, and acrylics. The preferred polyolefins include polyethylene and polypropylene. The most preferred thermoplastic polymer is polypropylene.
- The organometal compound is used to facilitate or improve interfacial bonding between the fiber and the cementitious material. It is believed that the addition of the organometal compound to the thermoplastic fiber will exhibit higher flexural strength, better multiple cracking capabilities, lower critical fiber volume fractions, and greater fracture toughness values, and will decrease the plastic shrinkage of the cementitious material. The organometal compounds include compounds wherein the metal is selected from the group consisting of Ti, Si, Zr, Al, and combinations thereof. Preferably, the organometal compounds may be selected from the group consisting of titanates, silanes, zirconates, aluminates, and combinations thereof. Additional information about organometal compounds such as titanates, zirconates, and aluminates may be found in the Ken-React® Reference Manual, Kenrich Petrochemicals, Inc., Bayonne, N.J., (1993) incorporated herein by reference. When selecting the organometal compound, its hydrophilic nature should be considered. Organometals having a greater hydrophilictiy are preferred. Such organometal compounds are commercially available.
- Titanates and zirconates are available from Kenrich Petrochemical, Inc. of Bayonne, N.J. Suitable titanates include: titanium IV 2-propanolato, tris isooctadecanoato-0; titanium IV bis 2-methyl-2-propenoato-0, isooctadecanoato-0 2-propanolato; titanium IV 2-propanoloato, tris (dodecyl)benzenesulfanato-0; titanium IV 2-propanolato, tris (dioctyl)phosphato-0; titanium IV (4-amino)benzene sulfonato-0, bis(dodecyl)benzene sulfonato-0,2-propanolato; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (dioctyl) pryophosphate-0; titanium IV, tris(2 methyl)-2-propenoato-0, methoxydiglycolylato; titanium IV 2-propanolato, tris(dioctyl)pyrophosphato-0; titanium IV, tris(2-propenoato-0), methoxydiglycolyloto; titanium IV 2-propanolato, tris(3,6-diaza)hexanolato; titanium IV bis[4-(2-phenyl)2-propyl-2]phenolato, oxoethylenediolato; titanium IV bis(dioctyl)pyrophosphato-0, oxoethylenediolato, (adduct), (dioctyl) (hydrogen)phosphite-0; titanium IV oxoethylenediolato, tris(2-methyl)-2-propenoato-0; titanium IV bis(butyl, methyl)pyrophosphato-0, oxoethylene-diolato, (adduct), bis(dioctyl)hydrogen phosphite; titanium IV bis(dioctyl)phosphato-0, ethylenediolato; titanium IV bis(dioctyl)pyrophosphato-0, ethylenediolato (adduct), bis(dioctyl)hydrogen phosphite; titanium IV bis(butyl, methyl)pyrophosphato-0, ethylenediolato, (adduct), bis(dioctyl)hydrogen phosphite; titanium IV bis(dioctyl)pyrophosphato-0, oxoethylenediolato, (adduct) 2 moles of 2-N,N-dimethylamino-2-methylpropanol; titanium IV bis(butyl methyl)pyrophosphato-0, (adduct) 2 moles 2-N,N-dimethylamino-2-methylpropanol; titanium IV ethylenediolato, bis(dioctyl)pyrophosphato-0, bis(triethyl) amine salt; titanium IV ethylenediolato bis(dioctyl)pyrophosphato-0, bis(dialkyl)amino alkyl-2-methyl propenoate; titanium IV bis(dioctyl)pyrophosphato-0, ethylenediolato, (adduct) 2 moles of acrylato-0 active amine; titanium IV bis(dioctyl) pyrophosphato-0, ethylenediolato, (adduct) 2 moles of 2-methylpropenoamido-N active amine; titanium IV bis(butyl, methyl)pyrophosphato, ethylenediolato, bis(dialkyl)amino alkyl acrylate salt; titanium IV (bis-2-propenolato-methyl)-1-butanolato, bis(dioctyl) pyrophosphato-0, (adduct) 3 moles N,N-dimethylamino-alkyl propenoamide; titanium IV tetrakis 2-propanolato,
adduct 2 moles (dioctyl) hydrogen phosphate; titanium IV tetrakis octanolato adduct 2 moles (di-tridecyl) hydrogen phosphite; titanium IV tetrakis(bis 2-propenolato methyl)-1-butanolato adduct 2 moles (di-tridecyl)hydrogen phosphite; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris neodecanoato-0; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (dodecyl) benzenesulfonato-0; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (dioctyl) phosphato-0; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (dioctyl) pyrophosphato-0; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (2-ethylenediamino) ethylato; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (3-amino) phenylato; titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (6-hydroxy) hexanoato-0; titanium IV bis octanolato, cyclo(dioctyl) pyrophosphato-0,0; titanium IV bis cyclo(dioctyl) pyrophosphato-0,0; titanium IV neoalkanolato tris (diisooctyl) pyrophosato-o (adduct)N-substituted methacrylamide; titanium IV neoalkanolato, tris (dodecylphenyl) sulfanato. - Suitable zirconates include: zirconium IV 2,2-
dimethyl tetrakis 2,2(bis-2 propenolatomethyl)butanolato, adduct with 2 moles of ditridecyl, hydrogen phosphite; zirconium IV 2-ethyl, 2-propenolatomethyl 1,3-propanediolato, cyclo di 2,2-(bis 2-propenolatomethyl) butanolato pyrophosphato-0,0; zirconium IV bis 2-ethylhexanolato, cyclo (di 2-ethylhexyl) pyrophosphato; zirconium IV 2,2(bis-2-propenolatomethyl) butanolato, tris neodecanolato-0; zirconium IV 2,2(bis-2-propenolatomethyl) butanolato, tris (dodecyl)benzenesulfonato-0; zirconium IV 2,2(bis-2-propenolatomethyl) butanolato, tris (dioctyl)phosphato-0; zirconium IV 2,2(bis-2-propenolatomethyl)butanolato, tris 2-methyl-2-propenoato-0; zirconium IV 2,2(bis-2-propenolatomethyl) butanolato, tris (dioctyl)pyrophosphato-0; zirconium IV 2,2(bis-2-propenolato)butanolato, tris 2-propenoato-0; zirconium IV 2,2(bis-2-propenolatomethyl) butanolato, tris (2-ethylenediamino) ethylato; zirconium IV bis 2,2(bis-2-propenolatomethyl) butanolato, bis (para amino benzoato-0); zirconium IV bis 2,2(bis-2-propenolatomethyl) butanolato, bis (3-mercapto) propionato-0; zirconium IV 1,1(bis-2-propenolatomethyl) butanolato, tris (2-amino) phenylato; zirconium IV 2,2-bis(2-propenolatomethyl) butanolato, cyclo di 2,2-(bis 2-propenolatomethyl)butanolato pyrophosphato-0,0(C48H84O17P2Zr). - Silanes are available from GE Silicones, Waterford, N.Y., and OSi Specialties, Crompton Corporation of Greenwich, Conn. Suitable silanes include: octyltriethoxysilane; methyltriethoxysilane; methyltrimethoxysilane; tris-[3-(trimethoxysilyl)propyl]isocyanurate; vinyltriethoxysilane; vinyltrimethoxysilane; vinyl-tris-(2-methoxyethoxy) silane; vinylmethyldimethoxysilane; gamma-methacryloxypropyltrimethoxysilane; beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; gamma-glycidoxypropyltrimethoxysilane; gamma-mercaptopropyltrimethoxysilane; polysulfide silane; bis-(triethoxysilypropyl)tetrasulfide; bis-(triethoxysilylopropyl)disulfide; gamma-aminopropyltriethoxysilane (MW=221.3); gamma-aminopropyltriethoxysilane (technical grade) (MW=mixture); gamma-aminopropyltriethoxysilane (technical grade) (MW=221.3); gamma-aminopropylsilsesquioxane (aqueous solution) (MW=oligomer); modified aminoorganosilane; gamma-aminopropyltrimethoxysilane; N-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane; modified aminoorganosilane (40% in methanol); modified aminoorganosilane (50% in methanol); triaminofunctional silane; bis-(gamma-trimethoxysilypropyl)amine; N-phenyl-gamma-aminopropyltrimethoxysilane; polyazamide silane (50% in methanol); N-beta-(aminoethyl)-gamma-aminopropylmethyldimethoxysilane; gamma-ureidopropyltrialkoxysilane (50% in methanol); gamma-ureidopropyltrimethoxysilane; and gamma-isocyanatopropyltriethoxysilane.
- Aluminates are commercially available from Kenrich Petrochemical, Inc. of Bayonne, N.J. Suitable aluminates include: diisobutyl (oleyl) aceto acetyl aluminate and diisopropyl (oleyl) aceto acetyl aluminate.
- In the following examples, polypropylene fiber containing an organometal compound were tested to determine the increase in bond strength over a control, polypropylene fiber without organometal compound. The following samples were prepared using a conventional masterbatching technique.
TABLE 1 PP Masterbatch Total Ti Si Zr Carrier Total PP Weight Sample (oz) (oz) (oz) (oz) (oz) (oz) (oz) 1 0.961 9.602 — 21.44 32.00 288.00 320.00 2 1.923 — — 30.08 32.00 288.00 320.00 3 — 9.602 1.284 21.12 32.00 288.00 320.00 4 0.481 9.602 0.484 21.44 32.00 288.00 320.00 5 1.285 9.602 — 21.12 32.00 288.00 320.00
1CAPOW L 38/H -titanium IV 2,2(bis 2-propenolatomethyl) butanolato, tris (dioctyl) pryophosphate-0 on hydrated amorphous silica.
2Silquest A 1100 - gamma-amino propyltriethoxysilane from GE Silicones, Waterford, NY.
3CAPOW L 38J/H - titanium IV neoalkanolato tris (diisooctyl) pyrophosato-o (adduct)N-substituted methacrylamide on silicon dioxide.
4CAPOW KZ TPP/H -zirconium IV 2,2-bis(2-propenolatomethyl) butanolato, cyclo di 2,2-(bis 2-propenolatomethyl)butanolato pyrophosphato-O,O (C48H84017P2Zr) on silicon dioxide.
5CAPOW L09/H - titanium IV neoalkanolato, tris (dodecylphenyl) sulfanato on silicon dioxide.
- A “pull-out” test was used to determine bond strength. The pull-out test and apparatus are described in Banthia, N. et al, “Bond-Slip Characteristics of Steel Fibers in HRM Modified Cement Matrices,” Cement and Concrete Research, 26(5), 1996, pp. 651-662; and Banthia, N. et al, “Bond-Slip Mechanisms in steel Micro-Fiber Reinforced Cement Composites,” Materials Research Society Proceedings, Vol. 370, pp. 539-543, 1995, both are incorporated herein by reference. The fibers were in the form of a roving with 41 individual strands braided together with a total equivalent bundle diameter of 50 μm. These fibers were embedded in a cementitious matrix (water/cement ratio of 0.5) 40 mm×20 mm×10 mm, with an artificial crack, formed by a plastic film. Fibers extended 5 mm into the matrix on one side of the crack and 20 mm on the other. Ten specimens of each sample were prepared and tested after an age of 1 day.
- The results of the tests are set out in Table 2 and
FIGS. 1 and 2 .FIG. 1 illustrates load (N), y axis, as a function of averaged load-crack opening displacement, x axis. (Curves identified by sample number).FIG. 2 illustrates cumulative energy absorption (N-mm), y axis, as a function of crack opening displacement, x axis. (Curves identified by sample number.)TABLE 2 Cumulative % Energy % Average Improve- Absorbed Improve- Bond ment to 10 mm ment Peak Strength Over Slip Over Load (N) (kPa) Control (N-mm) Control CONTROL 3.8 721 — 33.5 — 1 5.0 948 32 45.1 35 2 4.8 910 26 39.4 18 3 5.5 1043 45 47.8 43 4 4.0 759 5 34.6 3 5 5.9 1119 55 47.4 41 - The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicated the scope of the invention.
Claims (37)
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. A reinforcing fiber for cementitious materials comprising a mixture of a thermoplastic polymer and an organometal compound wherein said compound being selected from the group of titanates, silanes, zirconates, aluminates, and combinations thereof, and said organometal compound being less than 10% by weight of said fiber.
14. The fiber of claim 13 wherein said organometal compound comprises less than 5% by weight of said fibers.
15. The fiber of claim 13 wherein said organometal compounds being selected from the group consisting of titanates, silanes, zirconates, aluminates, and combinations thereof.
16. The fiber of claim 13 wherein said organometal compounds being a silane and another organometal compound being selected from the group consisting of titanates, zirconates, aluminates, and combinations thereof.
17. The fiber of claim 13 wherein said organometal compounds being a silane and a titanate.
18. The fiber of claim 13 wherein said organometal compounds being a silane and a zirconate.
19. The fiber of claim 13 wherein said organometal compounds being a silane.
20. The fiber of claim 13 wherein said thermoplastic polymer being selected from the group of polyolefins, polyesters, nylons, acrylics.
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. (canceled)
34. (canceled)
35. (canceled)
36. (canceled)
37. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/328,551 US20060155029A1 (en) | 2002-09-25 | 2006-01-10 | Fiber reinforced cementitious material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41332602P | 2002-09-25 | 2002-09-25 | |
US10/666,452 US6911077B2 (en) | 2002-09-25 | 2003-09-19 | Fiber reinforced cementitious material |
US11/102,953 US7204879B2 (en) | 2002-09-25 | 2005-04-11 | Fiber reinforced cementitious material |
US11/328,551 US20060155029A1 (en) | 2002-09-25 | 2006-01-10 | Fiber reinforced cementitious material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/102,953 Division US7204879B2 (en) | 2002-09-25 | 2005-04-11 | Fiber reinforced cementitious material |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060155029A1 true US20060155029A1 (en) | 2006-07-13 |
Family
ID=32043234
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/666,452 Expired - Fee Related US6911077B2 (en) | 2002-09-25 | 2003-09-19 | Fiber reinforced cementitious material |
US11/102,953 Expired - Fee Related US7204879B2 (en) | 2002-09-25 | 2005-04-11 | Fiber reinforced cementitious material |
US11/328,563 Abandoned US20060159904A1 (en) | 2002-09-25 | 2006-01-10 | Fiber reinforced cementitious material |
US11/328,551 Abandoned US20060155029A1 (en) | 2002-09-25 | 2006-01-10 | Fiber reinforced cementitious material |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/666,452 Expired - Fee Related US6911077B2 (en) | 2002-09-25 | 2003-09-19 | Fiber reinforced cementitious material |
US11/102,953 Expired - Fee Related US7204879B2 (en) | 2002-09-25 | 2005-04-11 | Fiber reinforced cementitious material |
US11/328,563 Abandoned US20060159904A1 (en) | 2002-09-25 | 2006-01-10 | Fiber reinforced cementitious material |
Country Status (7)
Country | Link |
---|---|
US (4) | US6911077B2 (en) |
EP (1) | EP1599428A4 (en) |
JP (1) | JP2006517171A (en) |
AU (1) | AU2003270740A1 (en) |
BR (1) | BR0314810A (en) |
IL (1) | IL167245A0 (en) |
WO (1) | WO2004028994A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110308782A1 (en) * | 2009-03-02 | 2011-12-22 | Honeywell International Inc. | Thermal interface material and method of making and using the same |
US20130233206A1 (en) * | 2010-09-10 | 2013-09-12 | Salvatore J. Monte | Construction materials and compositions from oil-containing filler |
US10781349B2 (en) | 2016-03-08 | 2020-09-22 | Honeywell International Inc. | Thermal interface material including crosslinker and multiple fillers |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
US11072706B2 (en) | 2018-02-15 | 2021-07-27 | Honeywell International Inc. | Gel-type thermal interface material |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1601880A2 (en) * | 2003-03-01 | 2005-12-07 | Charles T. Brackett | Wire bolt |
US6902002B1 (en) * | 2004-03-17 | 2005-06-07 | Halliburton Energy Services, Inc. | Cement compositions comprising improved lost circulation materials and methods of use in subterranean formations |
JP2006160937A (en) * | 2004-12-09 | 2006-06-22 | Sumitomo Chemical Co Ltd | Propylene polymer composition |
US7422712B2 (en) * | 2005-12-15 | 2008-09-09 | Kimberly-Clark Worldwide, Inc. | Technique for incorporating a liquid additive into a nonwoven web |
US7514485B2 (en) * | 2006-06-20 | 2009-04-07 | Chemtura Corporation | Compatibilizers for composites of PVC and cellulosic materials |
US20110304072A1 (en) * | 2010-06-10 | 2011-12-15 | Concrete Solutions Consulting Llc | Method of fabricating integrated concrete slab |
US10513460B2 (en) | 2013-06-21 | 2019-12-24 | Construction Research & Technology Gmbh | Cementitious composite material including a plurality of filled fibers |
TW201514352A (en) | 2013-08-29 | 2015-04-16 | Dow Corning | Coated fibre and concrete composition comprising the same |
MX355502B (en) * | 2015-12-02 | 2018-04-20 | Martha Emilia Poisot Vazquez | Cellulosic matrix hybrid composite material with inorganic fillings. |
US10717673B2 (en) | 2015-12-30 | 2020-07-21 | Exxonmobil Research And Engineering Company | Polymer fibers for concrete reinforcement |
US10131579B2 (en) | 2015-12-30 | 2018-11-20 | Exxonmobil Research And Engineering Company | Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement |
KR102286554B1 (en) | 2019-09-09 | 2021-08-06 | 한국건설기술연구원 | Textile-reinforced cement composite for restraining occurrence of slip and crack, and method for the same |
CN114274308B (en) * | 2021-12-30 | 2022-08-30 | 宿迁华美新材料有限公司 | Preparation method of high-strength high-toughness pretensioned prestressed concrete square pile |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4105739A (en) * | 1974-07-10 | 1978-08-08 | University Of Salford | Constructional elements of concrete |
US4133928A (en) * | 1972-03-22 | 1979-01-09 | The Governing Council Of The University Of Toronto | Fiber reinforcing composites comprising portland cement having embedded therein precombined absorbent and reinforcing fibers |
US4163073A (en) * | 1977-07-05 | 1979-07-31 | Union Carbide Corporation | Process for treating inorganic siliceous surfaces |
US4257993A (en) * | 1977-02-12 | 1981-03-24 | Schemel H | Method of producing fibre-reinforced concrete and shaped parts produced by this method |
US4314003A (en) * | 1977-12-29 | 1982-02-02 | Union Carbide Corporation | Method of incorporating multifilament strands of carbon fibers into cement to produce reinforced structures having improved flexural strengths |
US4721511A (en) * | 1984-10-05 | 1988-01-26 | W. R. Grace & Co. | Leach resistant antimicrobial fabric |
US4910076A (en) * | 1986-03-11 | 1990-03-20 | Mitsubishi Kasei Corporation | Fiber reinforced cement mortar product |
US4916012A (en) * | 1986-04-23 | 1990-04-10 | Mitsubishi Kasei Corporation | Cement reinforcing fiber |
US4952631A (en) * | 1986-01-03 | 1990-08-28 | Exxon Chemical Patents Inc. | Compositions for preparing cement-adhesive reinforcing fibers |
US5032181A (en) * | 1988-04-20 | 1991-07-16 | Chung Deborah D L | Carbon fiber reinforced cement concrete composites improved by using chemical agents |
US5298071A (en) * | 1990-03-23 | 1994-03-29 | Vontech International Corporation | Interground fiber cement |
US5589265A (en) * | 1994-01-18 | 1996-12-31 | Hoechst Aktiengesellschaft | Aromatic polyamide staple fiber bundles of improved dispersibility in viscous matrices and production of fiber-reinforced composites |
US5965635A (en) * | 1995-06-07 | 1999-10-12 | Illinois Tool Works Inc. | Alkylacrylate ester composition for anchoring materials in or to concrete or masonry |
US6258159B1 (en) * | 1999-08-30 | 2001-07-10 | Polymer Group, Inc. | Product and method for incorporating synthetic polymer fibers into cement mixtures |
US6423134B1 (en) * | 1998-03-11 | 2002-07-23 | Trottier Jean-Francois | Fiber reinforced building materials |
US6723162B1 (en) * | 1998-05-14 | 2004-04-20 | Bouygues | Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3210693A1 (en) * | 1982-03-24 | 1983-10-06 | Schweiger Hubert | Reinforcing and armouring material, process and device for the preparation thereof, and the use thereof |
FR2542349B1 (en) * | 1983-03-07 | 1985-09-20 | Comp Generale Electricite | IMPROVEMENT IN PLASTERS FOR EXTERIOR INSULATION PANEL OF BUILDINGS |
US4810569A (en) * | 1984-02-27 | 1989-03-07 | Georgia-Pacific Corporation | Fibrous mat-faced gypsum board |
US4693749A (en) * | 1985-12-20 | 1987-09-15 | E. I. Dupont De Nemours And Company | Cement reinforcement |
JPH01118611A (en) * | 1987-10-30 | 1989-05-11 | Showa Denko Kk | Organic composite fiber |
CA2028277C (en) * | 1990-10-23 | 1993-02-09 | Alphons D. Beshay | Modified waxes and applications thereof |
DE4238667C1 (en) * | 1992-11-17 | 1994-01-20 | Hoechst Ag | Fiber bundles comprising acrylic fibers with improved dispersibility in viscous matrices, and use of these bundles in the process for producing fiber-reinforced composites |
WO2002020215A2 (en) * | 2000-09-05 | 2002-03-14 | Makino, Inc. | Method and instrument for gauging a workpiece |
US6955844B2 (en) * | 2002-05-24 | 2005-10-18 | Innovative Construction And Building Materials | Construction materials containing surface modified fibers |
US6942726B2 (en) * | 2002-08-23 | 2005-09-13 | Bki Holding Corporation | Cementitious material reinforced with chemically treated cellulose fiber |
US6902797B2 (en) * | 2002-11-12 | 2005-06-07 | Innovative Construction And Building Materials | Gypsum-based composite materials reinforced by cellulose ethers |
-
2003
- 2003-09-19 JP JP2004540102A patent/JP2006517171A/en not_active Withdrawn
- 2003-09-19 US US10/666,452 patent/US6911077B2/en not_active Expired - Fee Related
- 2003-09-19 EP EP03752450A patent/EP1599428A4/en not_active Withdrawn
- 2003-09-19 BR BR0314810A patent/BR0314810A/en not_active IP Right Cessation
- 2003-09-19 WO PCT/US2003/029297 patent/WO2004028994A2/en active Application Filing
- 2003-09-19 AU AU2003270740A patent/AU2003270740A1/en not_active Abandoned
-
2005
- 2005-03-03 IL IL167245A patent/IL167245A0/en unknown
- 2005-04-11 US US11/102,953 patent/US7204879B2/en not_active Expired - Fee Related
-
2006
- 2006-01-10 US US11/328,563 patent/US20060159904A1/en not_active Abandoned
- 2006-01-10 US US11/328,551 patent/US20060155029A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133928A (en) * | 1972-03-22 | 1979-01-09 | The Governing Council Of The University Of Toronto | Fiber reinforcing composites comprising portland cement having embedded therein precombined absorbent and reinforcing fibers |
US4105739A (en) * | 1974-07-10 | 1978-08-08 | University Of Salford | Constructional elements of concrete |
US4257993A (en) * | 1977-02-12 | 1981-03-24 | Schemel H | Method of producing fibre-reinforced concrete and shaped parts produced by this method |
US4163073A (en) * | 1977-07-05 | 1979-07-31 | Union Carbide Corporation | Process for treating inorganic siliceous surfaces |
US4314003A (en) * | 1977-12-29 | 1982-02-02 | Union Carbide Corporation | Method of incorporating multifilament strands of carbon fibers into cement to produce reinforced structures having improved flexural strengths |
US4721511A (en) * | 1984-10-05 | 1988-01-26 | W. R. Grace & Co. | Leach resistant antimicrobial fabric |
US4952631A (en) * | 1986-01-03 | 1990-08-28 | Exxon Chemical Patents Inc. | Compositions for preparing cement-adhesive reinforcing fibers |
US4910076A (en) * | 1986-03-11 | 1990-03-20 | Mitsubishi Kasei Corporation | Fiber reinforced cement mortar product |
US4916012A (en) * | 1986-04-23 | 1990-04-10 | Mitsubishi Kasei Corporation | Cement reinforcing fiber |
US5032181A (en) * | 1988-04-20 | 1991-07-16 | Chung Deborah D L | Carbon fiber reinforced cement concrete composites improved by using chemical agents |
US5298071A (en) * | 1990-03-23 | 1994-03-29 | Vontech International Corporation | Interground fiber cement |
US5589265A (en) * | 1994-01-18 | 1996-12-31 | Hoechst Aktiengesellschaft | Aromatic polyamide staple fiber bundles of improved dispersibility in viscous matrices and production of fiber-reinforced composites |
US5965635A (en) * | 1995-06-07 | 1999-10-12 | Illinois Tool Works Inc. | Alkylacrylate ester composition for anchoring materials in or to concrete or masonry |
US6423134B1 (en) * | 1998-03-11 | 2002-07-23 | Trottier Jean-Francois | Fiber reinforced building materials |
US6723162B1 (en) * | 1998-05-14 | 2004-04-20 | Bouygues | Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes |
US6258159B1 (en) * | 1999-08-30 | 2001-07-10 | Polymer Group, Inc. | Product and method for incorporating synthetic polymer fibers into cement mixtures |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110308782A1 (en) * | 2009-03-02 | 2011-12-22 | Honeywell International Inc. | Thermal interface material and method of making and using the same |
US9353304B2 (en) * | 2009-03-02 | 2016-05-31 | Honeywell International Inc. | Thermal interface material and method of making and using the same |
US9803125B2 (en) | 2009-03-02 | 2017-10-31 | Honeywell International Inc. | Thermal interface material and method of making and using the same |
US20130233206A1 (en) * | 2010-09-10 | 2013-09-12 | Salvatore J. Monte | Construction materials and compositions from oil-containing filler |
US8591646B2 (en) * | 2010-09-10 | 2013-11-26 | S&E Innovative Technologies Llc | Construction materials and compositions from oil-containing filler |
US10781349B2 (en) | 2016-03-08 | 2020-09-22 | Honeywell International Inc. | Thermal interface material including crosslinker and multiple fillers |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
US11072706B2 (en) | 2018-02-15 | 2021-07-27 | Honeywell International Inc. | Gel-type thermal interface material |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
Also Published As
Publication number | Publication date |
---|---|
EP1599428A2 (en) | 2005-11-30 |
US6911077B2 (en) | 2005-06-28 |
IL167245A0 (en) | 2009-02-11 |
US7204879B2 (en) | 2007-04-17 |
AU2003270740A8 (en) | 2004-04-19 |
US20040132868A1 (en) | 2004-07-08 |
US20060159904A1 (en) | 2006-07-20 |
BR0314810A (en) | 2005-08-02 |
EP1599428A4 (en) | 2007-09-05 |
AU2003270740A1 (en) | 2004-04-19 |
WO2004028994A2 (en) | 2004-04-08 |
US20050209373A1 (en) | 2005-09-22 |
JP2006517171A (en) | 2006-07-20 |
WO2004028994A3 (en) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060155029A1 (en) | Fiber reinforced cementitious material | |
US8303708B2 (en) | Concrete composition | |
US7901504B2 (en) | Concrete compositions | |
US20060029785A1 (en) | Gypsum boards with glass fiber reinforcements having a titanate or zirconate coupling coating | |
US4710540A (en) | Composition for preparing cement-adhesive reinforcing fibers | |
JPS62128955A (en) | Method of manufacturing architectural and structural materials | |
TWI583651B (en) | Cement reinforcing fiber and cement hardened body using the same | |
US4952631A (en) | Compositions for preparing cement-adhesive reinforcing fibers | |
EP1461480B1 (en) | Plastic fibers for improved concrete | |
KR102403274B1 (en) | Low carbon-type eco-friendly mortar composition for repairing and reinforcing concrete using geopolymer, and repairing and reinforcing method for concrete structure using the same and mesh-type reinforcing basalt member | |
Johnston | Proportioning, mixing and placement of fibre-reinforced cements and concretes | |
JP2001519318A (en) | Shaped fibers-cement products and reinforcing fibers for such products | |
US4861812A (en) | Compositions for preparing cement-adhesive reinforcing fibers | |
EP3490952B1 (en) | Polymer fibers for reinforcement of cement-based composites | |
JPS63203876A (en) | Surface treatment method of carbon fiber for reinforcement | |
US20060029787A1 (en) | Gypsum boards having a titanate or zirconate coupling agent with glass fiber reinforcements | |
WO1981000252A1 (en) | Fiber-reinforced composite materials and shaped articles | |
CA1277082C (en) | Composition for preparing cement - adhesive reinforcing fibers | |
JPH10183473A (en) | Binding yarn | |
JP3895842B2 (en) | Cement-based inorganic material reinforcing carbon fiber and method for producing the same | |
US20090197993A1 (en) | Preparations for use in concrete | |
WO2006091185A1 (en) | Fiber reinforced concrete/cement products and method of preparation | |
CA2103179A1 (en) | Acrylic fibers of improved dispersibility in viscous matrices and process for producing fiber-reinforced composites | |
JP4743358B2 (en) | Glass fiber mixed concrete | |
JPS6047387B2 (en) | fiber sizing agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |