US20060153916A1 - Novel dosage form - Google Patents
Novel dosage form Download PDFInfo
- Publication number
- US20060153916A1 US20060153916A1 US10/522,989 US52298903A US2006153916A1 US 20060153916 A1 US20060153916 A1 US 20060153916A1 US 52298903 A US52298903 A US 52298903A US 2006153916 A1 US2006153916 A1 US 2006153916A1
- Authority
- US
- United States
- Prior art keywords
- dosage form
- form according
- active ingredient
- poly
- agents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002552 dosage form Substances 0.000 title claims abstract description 154
- 239000004480 active ingredient Substances 0.000 claims abstract description 158
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims abstract description 56
- -1 poly(methyl methacrylate) Polymers 0.000 claims description 149
- 239000011159 matrix material Substances 0.000 claims description 122
- 239000000203 mixture Substances 0.000 claims description 100
- 239000002245 particle Substances 0.000 claims description 90
- 239000003795 chemical substances by application Substances 0.000 claims description 77
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin hydrochloride Natural products CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 claims description 71
- YASAKCUCGLMORW-UHFFFAOYSA-N Rosiglitazone Chemical compound C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O YASAKCUCGLMORW-UHFFFAOYSA-N 0.000 claims description 66
- 238000009472 formulation Methods 0.000 claims description 64
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 55
- 239000011248 coating agent Substances 0.000 claims description 54
- 238000000576 coating method Methods 0.000 claims description 54
- 238000004090 dissolution Methods 0.000 claims description 52
- 230000002209 hydrophobic effect Effects 0.000 claims description 48
- OETHQSJEHLVLGH-UHFFFAOYSA-N metformin hydrochloride Chemical compound Cl.CN(C)C(=N)N=C(N)N OETHQSJEHLVLGH-UHFFFAOYSA-N 0.000 claims description 47
- 229960004329 metformin hydrochloride Drugs 0.000 claims description 46
- 229960004586 rosiglitazone Drugs 0.000 claims description 34
- 239000003472 antidiabetic agent Substances 0.000 claims description 33
- 230000003178 anti-diabetic effect Effects 0.000 claims description 29
- 235000019359 magnesium stearate Nutrition 0.000 claims description 28
- 229960003105 metformin Drugs 0.000 claims description 28
- 239000004359 castor oil Substances 0.000 claims description 27
- 235000019438 castor oil Nutrition 0.000 claims description 27
- 229920001577 copolymer Polymers 0.000 claims description 27
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 27
- 229940079593 drug Drugs 0.000 claims description 22
- 239000003814 drug Substances 0.000 claims description 22
- 238000002360 preparation method Methods 0.000 claims description 22
- 150000003839 salts Chemical class 0.000 claims description 20
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 claims description 15
- 230000009977 dual effect Effects 0.000 claims description 14
- SUFUKZSWUHZXAV-BTJKTKAUSA-N rosiglitazone maleate Chemical group [H+].[H+].[O-]C(=O)\C=C/C([O-])=O.C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O SUFUKZSWUHZXAV-BTJKTKAUSA-N 0.000 claims description 14
- 239000006185 dispersion Substances 0.000 claims description 13
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 claims description 12
- 229960004580 glibenclamide Drugs 0.000 claims description 11
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 claims description 11
- 229960003271 rosiglitazone maleate Drugs 0.000 claims description 11
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 claims description 10
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 claims description 10
- 229960004346 glimepiride Drugs 0.000 claims description 10
- WIGIZIANZCJQQY-RUCARUNLSA-N glimepiride Chemical compound O=C1C(CC)=C(C)CN1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)N[C@@H]2CC[C@@H](C)CC2)C=C1 WIGIZIANZCJQQY-RUCARUNLSA-N 0.000 claims description 10
- UHUSDOQQWJGJQS-UHFFFAOYSA-N glycerol 1,2-dioctadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCCCC UHUSDOQQWJGJQS-UHFFFAOYSA-N 0.000 claims description 10
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 claims description 10
- 229960003512 nicotinic acid Drugs 0.000 claims description 10
- 235000001968 nicotinic acid Nutrition 0.000 claims description 10
- 239000011664 nicotinic acid Substances 0.000 claims description 10
- AEQFSUDEHCCHBT-UHFFFAOYSA-M sodium valproate Chemical compound [Na+].CCCC(C([O-])=O)CCC AEQFSUDEHCCHBT-UHFFFAOYSA-M 0.000 claims description 10
- 229940084026 sodium valproate Drugs 0.000 claims description 10
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 claims description 10
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 claims description 10
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 claims description 10
- 229920003152 Eudragit® RS polymer Polymers 0.000 claims description 9
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 9
- FSXVSUSRJXIJHB-UHFFFAOYSA-M ethyl prop-2-enoate;methyl 2-methylprop-2-enoate;trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CCOC(=O)C=C.COC(=O)C(C)=C.CC(=C)C(=O)OCC[N+](C)(C)C FSXVSUSRJXIJHB-UHFFFAOYSA-M 0.000 claims description 9
- 239000000194 fatty acid Substances 0.000 claims description 9
- 229930195729 fatty acid Natural products 0.000 claims description 9
- PYZRQGJRPPTADH-UHFFFAOYSA-N lamotrigine Chemical compound NC1=NC(N)=NN=C1C1=CC=CC(Cl)=C1Cl PYZRQGJRPPTADH-UHFFFAOYSA-N 0.000 claims description 9
- 229960001848 lamotrigine Drugs 0.000 claims description 9
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims description 8
- 230000001430 anti-depressive effect Effects 0.000 claims description 8
- 239000000935 antidepressant agent Substances 0.000 claims description 8
- 229940005513 antidepressants Drugs 0.000 claims description 8
- 239000003434 antitussive agent Substances 0.000 claims description 8
- 229940124584 antitussives Drugs 0.000 claims description 8
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 claims description 8
- 229920000058 polyacrylate Polymers 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 229920003134 Eudragit® polymer Polymers 0.000 claims description 7
- 239000000556 agonist Substances 0.000 claims description 7
- 229960001495 pravastatin sodium Drugs 0.000 claims description 7
- 230000009747 swallowing Effects 0.000 claims description 7
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 claims description 6
- 229940123208 Biguanide Drugs 0.000 claims description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 6
- 150000004283 biguanides Chemical class 0.000 claims description 6
- 229940099371 diacetylated monoglycerides Drugs 0.000 claims description 6
- 229960005309 estradiol Drugs 0.000 claims description 6
- 229930182833 estradiol Natural products 0.000 claims description 6
- 229940075507 glyceryl monostearate Drugs 0.000 claims description 6
- FETSQPAGYOVAQU-UHFFFAOYSA-N glyceryl palmitostearate Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O FETSQPAGYOVAQU-UHFFFAOYSA-N 0.000 claims description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 6
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 claims description 6
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 claims description 5
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 claims description 5
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 claims description 5
- 229920000623 Cellulose acetate phthalate Polymers 0.000 claims description 5
- 229920008347 Cellulose acetate propionate Polymers 0.000 claims description 5
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 claims description 5
- 229920002284 Cellulose triacetate Polymers 0.000 claims description 5
- 239000001856 Ethyl cellulose Substances 0.000 claims description 5
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 5
- IBAQFPQHRJAVAV-ULAWRXDQSA-N Miglitol Chemical compound OCCN1C[C@H](O)[C@@H](O)[C@H](O)[C@H]1CO IBAQFPQHRJAVAV-ULAWRXDQSA-N 0.000 claims description 5
- 229920001305 Poly(isodecyl(meth)acrylate) Polymers 0.000 claims description 5
- 229920002319 Poly(methyl acrylate) Polymers 0.000 claims description 5
- 229940123464 Thiazolidinedione Drugs 0.000 claims description 5
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 claims description 5
- 235000013871 bee wax Nutrition 0.000 claims description 5
- 239000012166 beeswax Substances 0.000 claims description 5
- 239000004203 carnauba wax Substances 0.000 claims description 5
- 235000013869 carnauba wax Nutrition 0.000 claims description 5
- 229920002301 cellulose acetate Polymers 0.000 claims description 5
- 229920006217 cellulose acetate butyrate Polymers 0.000 claims description 5
- 229940081734 cellulose acetate phthalate Drugs 0.000 claims description 5
- 229920006218 cellulose propionate Polymers 0.000 claims description 5
- 229940082500 cetostearyl alcohol Drugs 0.000 claims description 5
- 229960000541 cetyl alcohol Drugs 0.000 claims description 5
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 5
- 229920001249 ethyl cellulose Polymers 0.000 claims description 5
- 150000002191 fatty alcohols Chemical class 0.000 claims description 5
- ZJJXGWJIGJFDTL-UHFFFAOYSA-N glipizide Chemical compound C1=NC(C)=CN=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZJJXGWJIGJFDTL-UHFFFAOYSA-N 0.000 claims description 5
- 229960001381 glipizide Drugs 0.000 claims description 5
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 claims description 5
- 229940049654 glyceryl behenate Drugs 0.000 claims description 5
- 229940046813 glyceryl palmitostearate Drugs 0.000 claims description 5
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 5
- 229940117841 methacrylic acid copolymer Drugs 0.000 claims description 5
- 229920003145 methacrylic acid copolymer Polymers 0.000 claims description 5
- 239000004200 microcrystalline wax Substances 0.000 claims description 5
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 5
- 229960001110 miglitol Drugs 0.000 claims description 5
- 229940043348 myristyl alcohol Drugs 0.000 claims description 5
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 claims description 5
- 229960005095 pioglitazone Drugs 0.000 claims description 5
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 claims description 5
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 claims description 5
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 claims description 5
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 229920000184 poly(octadecyl acrylate) Polymers 0.000 claims description 5
- 229920000129 polyhexylmethacrylate Polymers 0.000 claims description 5
- 229920000197 polyisopropyl acrylate Polymers 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- 229920000182 polyphenyl methacrylate Polymers 0.000 claims description 5
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 5
- 239000011118 polyvinyl acetate Substances 0.000 claims description 5
- MHXBHWLGRWOABW-UHFFFAOYSA-N tetradecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC MHXBHWLGRWOABW-UHFFFAOYSA-N 0.000 claims description 5
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 claims description 5
- 229960001947 tripalmitin Drugs 0.000 claims description 5
- 229940088594 vitamin Drugs 0.000 claims description 5
- 235000013343 vitamin Nutrition 0.000 claims description 5
- 239000011782 vitamin Substances 0.000 claims description 5
- 229930003231 vitamin Natural products 0.000 claims description 5
- 239000001993 wax Substances 0.000 claims description 5
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 claims description 4
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 claims description 4
- 239000005541 ACE inhibitor Substances 0.000 claims description 4
- 102100025841 Cholecystokinin Human genes 0.000 claims description 4
- 101800001982 Cholecystokinin Proteins 0.000 claims description 4
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 claims description 4
- 229920003151 Eudragit® RL polymer Polymers 0.000 claims description 4
- FAEKWTJYAYMJKF-QHCPKHFHSA-N GlucoNorm Chemical compound C1=C(C(O)=O)C(OCC)=CC(CC(=O)N[C@@H](CC(C)C)C=2C(=CC=CC=2)N2CCCCC2)=C1 FAEKWTJYAYMJKF-QHCPKHFHSA-N 0.000 claims description 4
- 239000000866 Neuromuscular Agent Substances 0.000 claims description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 4
- 208000012886 Vertigo Diseases 0.000 claims description 4
- 239000012190 activator Substances 0.000 claims description 4
- 150000001413 amino acids Chemical class 0.000 claims description 4
- 229960002684 aminocaproic acid Drugs 0.000 claims description 4
- 229940035674 anesthetics Drugs 0.000 claims description 4
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 claims description 4
- 230000000954 anitussive effect Effects 0.000 claims description 4
- 229940069428 antacid Drugs 0.000 claims description 4
- 239000003159 antacid agent Substances 0.000 claims description 4
- 239000005557 antagonist Substances 0.000 claims description 4
- 239000003242 anti bacterial agent Substances 0.000 claims description 4
- 230000001088 anti-asthma Effects 0.000 claims description 4
- 230000002484 anti-cholesterolemic effect Effects 0.000 claims description 4
- 230000001773 anti-convulsant effect Effects 0.000 claims description 4
- 230000001142 anti-diarrhea Effects 0.000 claims description 4
- 230000003474 anti-emetic effect Effects 0.000 claims description 4
- 230000001387 anti-histamine Effects 0.000 claims description 4
- 230000002924 anti-infective effect Effects 0.000 claims description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 4
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 4
- 239000000883 anti-obesity agent Substances 0.000 claims description 4
- 230000002141 anti-parasite Effects 0.000 claims description 4
- 230000000561 anti-psychotic effect Effects 0.000 claims description 4
- 230000001754 anti-pyretic effect Effects 0.000 claims description 4
- 230000002921 anti-spasmodic effect Effects 0.000 claims description 4
- 230000000320 anti-stroke effect Effects 0.000 claims description 4
- 239000000924 antiasthmatic agent Substances 0.000 claims description 4
- 229940088710 antibiotic agent Drugs 0.000 claims description 4
- 229940125681 anticonvulsant agent Drugs 0.000 claims description 4
- 239000001961 anticonvulsive agent Substances 0.000 claims description 4
- 229940125708 antidiabetic agent Drugs 0.000 claims description 4
- 229940125683 antiemetic agent Drugs 0.000 claims description 4
- 239000002111 antiemetic agent Substances 0.000 claims description 4
- 229940125715 antihistaminic agent Drugs 0.000 claims description 4
- 239000000739 antihistaminic agent Substances 0.000 claims description 4
- 239000002579 antinauseant Substances 0.000 claims description 4
- 239000002246 antineoplastic agent Substances 0.000 claims description 4
- 229940041181 antineoplastic drug Drugs 0.000 claims description 4
- 229940125687 antiparasitic agent Drugs 0.000 claims description 4
- 239000003096 antiparasitic agent Substances 0.000 claims description 4
- 239000000164 antipsychotic agent Substances 0.000 claims description 4
- 229940005529 antipsychotics Drugs 0.000 claims description 4
- 239000002221 antipyretic Substances 0.000 claims description 4
- 229940125716 antipyretic agent Drugs 0.000 claims description 4
- 229940124575 antispasmodic agent Drugs 0.000 claims description 4
- 239000003443 antiviral agent Substances 0.000 claims description 4
- 239000002249 anxiolytic agent Substances 0.000 claims description 4
- 239000002830 appetite depressant Substances 0.000 claims description 4
- 239000002948 appetite stimulant Substances 0.000 claims description 4
- 229940029995 appetite stimulants Drugs 0.000 claims description 4
- 239000002327 cardiovascular agent Substances 0.000 claims description 4
- 229940125692 cardiovascular agent Drugs 0.000 claims description 4
- 239000002738 chelating agent Substances 0.000 claims description 4
- 229940107137 cholecystokinin Drugs 0.000 claims description 4
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 claims description 4
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 claims description 4
- 229960003120 clonazepam Drugs 0.000 claims description 4
- 230000019771 cognition Effects 0.000 claims description 4
- 239000002781 deodorant agent Substances 0.000 claims description 4
- 229940000033 dermatological agent Drugs 0.000 claims description 4
- 239000003241 dermatological agent Substances 0.000 claims description 4
- 239000002934 diuretic Substances 0.000 claims description 4
- 229940030606 diuretics Drugs 0.000 claims description 4
- 239000003974 emollient agent Substances 0.000 claims description 4
- 230000000913 erythropoietic effect Effects 0.000 claims description 4
- 239000002871 fertility agent Substances 0.000 claims description 4
- 239000004083 gastrointestinal agent Substances 0.000 claims description 4
- 229940125695 gastrointestinal agent Drugs 0.000 claims description 4
- 239000003193 general anesthetic agent Substances 0.000 claims description 4
- 239000003630 growth substance Substances 0.000 claims description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003688 hormone derivative Substances 0.000 claims description 4
- 239000008141 laxative Substances 0.000 claims description 4
- 229940125722 laxative agent Drugs 0.000 claims description 4
- 229960004400 levonorgestrel Drugs 0.000 claims description 4
- 229940029985 mineral supplement Drugs 0.000 claims description 4
- 235000020786 mineral supplement Nutrition 0.000 claims description 4
- DNKKLDKIFMDAPT-UHFFFAOYSA-N n,n-dimethylmethanamine;2-methylprop-2-enoic acid Chemical compound CN(C)C.CC(=C)C(O)=O.CC(=C)C(O)=O DNKKLDKIFMDAPT-UHFFFAOYSA-N 0.000 claims description 4
- 229940094443 oxytocics prostaglandins Drugs 0.000 claims description 4
- 229960005489 paracetamol Drugs 0.000 claims description 4
- 239000000810 peripheral vasodilating agent Substances 0.000 claims description 4
- 229960002116 peripheral vasodilator Drugs 0.000 claims description 4
- 150000003180 prostaglandins Chemical class 0.000 claims description 4
- 229960002354 repaglinide Drugs 0.000 claims description 4
- 239000003169 respiratory stimulant agent Substances 0.000 claims description 4
- 229940066293 respiratory stimulants Drugs 0.000 claims description 4
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 claims description 4
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 claims description 4
- CXGTZJYQWSUFET-IBGZPJMESA-N tesaglitazar Chemical compound C1=CC(C[C@H](OCC)C(O)=O)=CC=C1OCCC1=CC=C(OS(C)(=O)=O)C=C1 CXGTZJYQWSUFET-IBGZPJMESA-N 0.000 claims description 4
- 239000005526 vasoconstrictor agent Substances 0.000 claims description 4
- 231100000889 vertigo Toxicity 0.000 claims description 4
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 claims description 3
- QNDFBOXBUCDYNZ-NRFANRHFSA-N (2s)-2-ethoxy-3-[4-[2-[4-[(2-methylpropan-2-yl)oxycarbonylamino]phenyl]ethoxy]phenyl]propanoic acid Chemical compound C1=CC(C[C@H](OCC)C(O)=O)=CC=C1OCCC1=CC=C(NC(=O)OC(C)(C)C)C=C1 QNDFBOXBUCDYNZ-NRFANRHFSA-N 0.000 claims description 3
- VDSBXXDKCUBMQC-HNGSOEQISA-N (4r,6s)-6-[(e)-2-[2-(4-fluoro-3-methylphenyl)-4,4,6,6-tetramethylcyclohexen-1-yl]ethenyl]-4-hydroxyoxan-2-one Chemical compound C1=C(F)C(C)=CC(C=2CC(C)(C)CC(C)(C)C=2\C=C\[C@H]2OC(=O)C[C@H](O)C2)=C1 VDSBXXDKCUBMQC-HNGSOEQISA-N 0.000 claims description 3
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 claims description 3
- BOVGTQGAOIONJV-BETUJISGSA-N 1-[(3ar,6as)-3,3a,4,5,6,6a-hexahydro-1h-cyclopenta[c]pyrrol-2-yl]-3-(4-methylphenyl)sulfonylurea Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1C[C@H]2CCC[C@H]2C1 BOVGTQGAOIONJV-BETUJISGSA-N 0.000 claims description 3
- LLJFMFZYVVLQKT-UHFFFAOYSA-N 1-cyclohexyl-3-[4-[2-(7-methoxy-4,4-dimethyl-1,3-dioxo-2-isoquinolinyl)ethyl]phenyl]sulfonylurea Chemical compound C=1C(OC)=CC=C(C(C2=O)(C)C)C=1C(=O)N2CCC(C=C1)=CC=C1S(=O)(=O)NC(=O)NC1CCCCC1 LLJFMFZYVVLQKT-UHFFFAOYSA-N 0.000 claims description 3
- SWLAMJPTOQZTAE-UHFFFAOYSA-N 4-[2-[(5-chloro-2-methoxybenzoyl)amino]ethyl]benzoic acid Chemical class COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(C(O)=O)C=C1 SWLAMJPTOQZTAE-UHFFFAOYSA-N 0.000 claims description 3
- MVDXXGIBARMXSA-PYUWXLGESA-N 5-[[(2r)-2-benzyl-3,4-dihydro-2h-chromen-6-yl]methyl]-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)C1CC1=CC=C(O[C@@H](CC=2C=CC=CC=2)CC2)C2=C1 MVDXXGIBARMXSA-PYUWXLGESA-N 0.000 claims description 3
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 claims description 3
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 claims description 3
- 229920003163 Eudragit® NE 30 D Polymers 0.000 claims description 3
- 241000282414 Homo sapiens Species 0.000 claims description 3
- 102000004877 Insulin Human genes 0.000 claims description 3
- 108090001061 Insulin Proteins 0.000 claims description 3
- 102000023984 PPAR alpha Human genes 0.000 claims description 3
- 108010028924 PPAR alpha Proteins 0.000 claims description 3
- 102000000536 PPAR gamma Human genes 0.000 claims description 3
- 108010016731 PPAR gamma Proteins 0.000 claims description 3
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 claims description 3
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 claims description 3
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 claims description 3
- FZNCGRZWXLXZSZ-CIQUZCHMSA-N Voglibose Chemical compound OCC(CO)N[C@H]1C[C@](O)(CO)[C@@H](O)[C@H](O)[C@H]1O FZNCGRZWXLXZSZ-CIQUZCHMSA-N 0.000 claims description 3
- 229960002632 acarbose Drugs 0.000 claims description 3
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 claims description 3
- 239000003888 alpha glucosidase inhibitor Substances 0.000 claims description 3
- XSEUMFJMFFMCIU-UHFFFAOYSA-N buformin Chemical compound CCCC\N=C(/N)N=C(N)N XSEUMFJMFFMCIU-UHFFFAOYSA-N 0.000 claims description 3
- 229960004111 buformin Drugs 0.000 claims description 3
- YZFWTZACSRHJQD-UHFFFAOYSA-N ciglitazone Chemical compound C=1C=C(CC2C(NC(=O)S2)=O)C=CC=1OCC1(C)CCCCC1 YZFWTZACSRHJQD-UHFFFAOYSA-N 0.000 claims description 3
- 229950009226 ciglitazone Drugs 0.000 claims description 3
- 229950003040 dalvastatin Drugs 0.000 claims description 3
- 229950000269 emiglitate Drugs 0.000 claims description 3
- 229950002375 englitazone Drugs 0.000 claims description 3
- NWWORXYTJRPSMC-QKPAOTATSA-N ethyl 4-[2-[(2r,3r,4r,5s)-3,4,5-trihydroxy-2-(hydroxymethyl)piperidin-1-yl]ethoxy]benzoate Chemical compound C1=CC(C(=O)OCC)=CC=C1OCCN1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](O)C1 NWWORXYTJRPSMC-QKPAOTATSA-N 0.000 claims description 3
- ZZCHHVUQYRMYLW-HKBQPEDESA-N farglitazar Chemical compound N([C@@H](CC1=CC=C(C=C1)OCCC=1N=C(OC=1C)C=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 ZZCHHVUQYRMYLW-HKBQPEDESA-N 0.000 claims description 3
- 229950003707 farglitazar Drugs 0.000 claims description 3
- 229960001764 glibornuride Drugs 0.000 claims description 3
- RMTYNAPTNBJHQI-LLDVTBCESA-N glibornuride Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)N[C@H]1[C@H](C2(C)C)CC[C@@]2(C)[C@H]1O RMTYNAPTNBJHQI-LLDVTBCESA-N 0.000 claims description 3
- 229960000346 gliclazide Drugs 0.000 claims description 3
- 229960003468 gliquidone Drugs 0.000 claims description 3
- ZKUDBRCEOBOWLF-UHFFFAOYSA-N glisoxepide Chemical compound O1C(C)=CC(C(=O)NCCC=2C=CC(=CC=2)S(=O)(=O)NC(=O)NN2CCCCCC2)=N1 ZKUDBRCEOBOWLF-UHFFFAOYSA-N 0.000 claims description 3
- 229960003236 glisoxepide Drugs 0.000 claims description 3
- RIGBPMDIGYBTBJ-UHFFFAOYSA-N glycyclamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NC1CCCCC1 RIGBPMDIGYBTBJ-UHFFFAOYSA-N 0.000 claims description 3
- 229950005514 glycyclamide Drugs 0.000 claims description 3
- 229940125396 insulin Drugs 0.000 claims description 3
- 229950004994 meglitinide Drugs 0.000 claims description 3
- 229960000698 nateglinide Drugs 0.000 claims description 3
- OELFLUMRDSZNSF-BRWVUGGUSA-N nateglinide Chemical compound C1C[C@@H](C(C)C)CC[C@@H]1C(=O)N[C@@H](C(O)=O)CC1=CC=CC=C1 OELFLUMRDSZNSF-BRWVUGGUSA-N 0.000 claims description 3
- AFOGBLYPWJJVAL-UHFFFAOYSA-N phenbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=CC=C1 AFOGBLYPWJJVAL-UHFFFAOYSA-N 0.000 claims description 3
- 229950008557 phenbutamide Drugs 0.000 claims description 3
- ICFJFFQQTFMIBG-UHFFFAOYSA-N phenformin Chemical compound NC(=N)NC(=N)NCCC1=CC=CC=C1 ICFJFFQQTFMIBG-UHFFFAOYSA-N 0.000 claims description 3
- 229960003243 phenformin Drugs 0.000 claims description 3
- VGYFMXBACGZSIL-MCBHFWOFSA-N pitavastatin Chemical compound OC(=O)C[C@H](O)C[C@H](O)\C=C\C1=C(C2CC2)N=C2C=CC=CC2=C1C1=CC=C(F)C=C1 VGYFMXBACGZSIL-MCBHFWOFSA-N 0.000 claims description 3
- 229960002797 pitavastatin Drugs 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- BPRHUIZQVSMCRT-VEUZHWNKSA-N rosuvastatin Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC(O)=O BPRHUIZQVSMCRT-VEUZHWNKSA-N 0.000 claims description 3
- 229960000672 rosuvastatin Drugs 0.000 claims description 3
- 231100000489 sensitizer Toxicity 0.000 claims description 3
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 claims description 3
- 229960002073 sertraline Drugs 0.000 claims description 3
- OUDSBRTVNLOZBN-UHFFFAOYSA-N tolazamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1CCCCCC1 OUDSBRTVNLOZBN-UHFFFAOYSA-N 0.000 claims description 3
- 229960002277 tolazamide Drugs 0.000 claims description 3
- 229960005371 tolbutamide Drugs 0.000 claims description 3
- 229960001641 troglitazone Drugs 0.000 claims description 3
- GXPHKUHSUJUWKP-UHFFFAOYSA-N troglitazone Chemical compound C1CC=2C(C)=C(O)C(C)=C(C)C=2OC1(C)COC(C=C1)=CC=C1CC1SC(=O)NC1=O GXPHKUHSUJUWKP-UHFFFAOYSA-N 0.000 claims description 3
- GXPHKUHSUJUWKP-NTKDMRAZSA-N troglitazone Natural products C([C@@]1(OC=2C(C)=C(C(=C(C)C=2CC1)O)C)C)OC(C=C1)=CC=C1C[C@H]1SC(=O)NC1=O GXPHKUHSUJUWKP-NTKDMRAZSA-N 0.000 claims description 3
- 229960001729 voglibose Drugs 0.000 claims description 3
- OJRHUICOVVSGSY-RXMQYKEDSA-N (2s)-2-chloro-3-methylbutan-1-ol Chemical compound CC(C)[C@H](Cl)CO OJRHUICOVVSGSY-RXMQYKEDSA-N 0.000 claims description 2
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical compound [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 claims description 2
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 claims description 2
- SHIJTGJXUHTGGZ-RVXRQPKJSA-N (3s,4r)-3-(1,3-benzodioxol-5-yloxymethyl)-4-(4-fluorophenyl)piperidin-1-ium;methanesulfonate Chemical compound CS(O)(=O)=O.C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 SHIJTGJXUHTGGZ-RVXRQPKJSA-N 0.000 claims description 2
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 claims description 2
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 claims description 2
- RZPZLFIUFMNCLY-WLHGVMLRSA-N (e)-but-2-enedioic acid;1-(propan-2-ylamino)-3-[4-(2-propan-2-yloxyethoxymethyl)phenoxy]propan-2-ol Chemical compound OC(=O)\C=C\C(O)=O.CC(C)NCC(O)COC1=CC=C(COCCOC(C)C)C=C1 RZPZLFIUFMNCLY-WLHGVMLRSA-N 0.000 claims description 2
- ZKNJEOBYOLUGKJ-ALCCZGGFSA-N (z)-2-propylpent-2-enoic acid Chemical compound CCC\C(C(O)=O)=C\CC ZKNJEOBYOLUGKJ-ALCCZGGFSA-N 0.000 claims description 2
- ULNVBRUIKLYGDF-UHFFFAOYSA-N 1,3-bis(4-methylphenyl)thiourea Chemical compound C1=CC(C)=CC=C1NC(=S)NC1=CC=C(C)C=C1 ULNVBRUIKLYGDF-UHFFFAOYSA-N 0.000 claims description 2
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 claims description 2
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 claims description 2
- YYSCJLLOWOUSHH-UHFFFAOYSA-N 4,4'-disulfanyldibutanoic acid Chemical compound OC(=O)CCCSSCCCC(O)=O YYSCJLLOWOUSHH-UHFFFAOYSA-N 0.000 claims description 2
- ZGDLVKWIZHHWIR-UHFFFAOYSA-N 4-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl]morpholine Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(N2CCOCC2)N=C1 ZGDLVKWIZHHWIR-UHFFFAOYSA-N 0.000 claims description 2
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 claims description 2
- WKEMJKQOLOHJLZ-UHFFFAOYSA-N Almogran Chemical compound C1=C2C(CCN(C)C)=CNC2=CC=C1CS(=O)(=O)N1CCCC1 WKEMJKQOLOHJLZ-UHFFFAOYSA-N 0.000 claims description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 claims description 2
- GHOSNRCGJFBJIB-UHFFFAOYSA-N Candesartan cilexetil Chemical compound C=12N(CC=3C=CC(=CC=3)C=3C(=CC=CC=3)C3=NNN=N3)C(OCC)=NC2=CC=CC=1C(=O)OC(C)OC(=O)OC1CCCCC1 GHOSNRCGJFBJIB-UHFFFAOYSA-N 0.000 claims description 2
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 claims description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 2
- 108010061435 Enalapril Proteins 0.000 claims description 2
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 claims description 2
- LFMYNZPAVPMEGP-PIDGMYBPSA-N Fluvoxamine maleate Chemical compound OC(=O)\C=C/C(O)=O.COCCCC\C(=N/OCCN)C1=CC=C(C(F)(F)F)C=C1 LFMYNZPAVPMEGP-PIDGMYBPSA-N 0.000 claims description 2
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 claims description 2
- 108010007859 Lisinopril Proteins 0.000 claims description 2
- SGDBTWWWUNNDEQ-UHFFFAOYSA-N Merphalan Chemical compound OC(=O)C(N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-UHFFFAOYSA-N 0.000 claims description 2
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 claims description 2
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 claims description 2
- AWEZYKMQFAUBTD-UHFFFAOYSA-N Naratriptan hydrochloride Chemical compound [H+].[Cl-].C12=CC(CCS(=O)(=O)NC)=CC=C2NC=C1C1CCN(C)CC1 AWEZYKMQFAUBTD-UHFFFAOYSA-N 0.000 claims description 2
- IMONTRJLAWHYGT-ZCPXKWAGSA-N Norethindrone Acetate Chemical compound C1CC2=CC(=O)CC[C@@H]2[C@@H]2[C@@H]1[C@@H]1CC[C@](C#C)(OC(=O)C)[C@@]1(C)CC2 IMONTRJLAWHYGT-ZCPXKWAGSA-N 0.000 claims description 2
- IIDJRNMFWXDHID-UHFFFAOYSA-N Risedronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CC1=CC=CN=C1 IIDJRNMFWXDHID-UHFFFAOYSA-N 0.000 claims description 2
- 108010059993 Vancomycin Proteins 0.000 claims description 2
- YEEZWCHGZNKEEK-UHFFFAOYSA-N Zafirlukast Chemical compound COC1=CC(C(=O)NS(=O)(=O)C=2C(=CC=CC=2)C)=CC=C1CC(C1=C2)=CN(C)C1=CC=C2NC(=O)OC1CCCC1 YEEZWCHGZNKEEK-UHFFFAOYSA-N 0.000 claims description 2
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 claims description 2
- 229960004150 aciclovir Drugs 0.000 claims description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 claims description 2
- 229960004343 alendronic acid Drugs 0.000 claims description 2
- 229960002133 almotriptan Drugs 0.000 claims description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 claims description 2
- 229960004538 alprazolam Drugs 0.000 claims description 2
- 229940025084 amphetamine Drugs 0.000 claims description 2
- 229960003555 anagrelide hydrochloride Drugs 0.000 claims description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 claims description 2
- 229960002932 anastrozole Drugs 0.000 claims description 2
- 229960001770 atorvastatin calcium Drugs 0.000 claims description 2
- 229960000560 balsalazide disodium Drugs 0.000 claims description 2
- CHDPSNLJFOQTRK-UHFFFAOYSA-N betaxolol hydrochloride Chemical compound [Cl-].C1=CC(OCC(O)C[NH2+]C(C)C)=CC=C1CCOCC1CC1 CHDPSNLJFOQTRK-UHFFFAOYSA-N 0.000 claims description 2
- 229960004347 betaxolol hydrochloride Drugs 0.000 claims description 2
- 229960003003 biperiden Drugs 0.000 claims description 2
- 229960005400 bisoprolol fumarate Drugs 0.000 claims description 2
- 229960004349 candesartan cilexetil Drugs 0.000 claims description 2
- 229960004195 carvedilol Drugs 0.000 claims description 2
- NPAKNKYSJIDKMW-UHFFFAOYSA-N carvedilol Chemical compound COC1=CC=CC=C1OCCNCC(O)COC1=CC=CC2=NC3=CC=C[CH]C3=C12 NPAKNKYSJIDKMW-UHFFFAOYSA-N 0.000 claims description 2
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 claims description 2
- 229960000590 celecoxib Drugs 0.000 claims description 2
- 230000002490 cerebral effect Effects 0.000 claims description 2
- 229960005110 cerivastatin Drugs 0.000 claims description 2
- SEERZIQQUAZTOL-ANMDKAQQSA-N cerivastatin Chemical compound COCC1=C(C(C)C)N=C(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC(O)=O)=C1C1=CC=C(F)C=C1 SEERZIQQUAZTOL-ANMDKAQQSA-N 0.000 claims description 2
- CKMOQBVBEGCJGW-UHFFFAOYSA-L chembl1200760 Chemical compound [Na+].[Na+].C1=C(C([O-])=O)C(O)=CC=C1N=NC1=CC=C(C(=O)NCCC([O-])=O)C=C1 CKMOQBVBEGCJGW-UHFFFAOYSA-L 0.000 claims description 2
- 229960003405 ciprofloxacin Drugs 0.000 claims description 2
- 229960002227 clindamycin Drugs 0.000 claims description 2
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 claims description 2
- 229960001054 clorazepate dipotassium Drugs 0.000 claims description 2
- 229960004170 clozapine Drugs 0.000 claims description 2
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 claims description 2
- 229960004397 cyclophosphamide Drugs 0.000 claims description 2
- GUBNMFJOJGDCEL-UHFFFAOYSA-N dicyclomine hydrochloride Chemical compound [Cl-].C1CCCCC1C1(C(=O)OCC[NH+](CC)CC)CCCCC1 GUBNMFJOJGDCEL-UHFFFAOYSA-N 0.000 claims description 2
- 229940110321 dicyclomine hydrochloride Drugs 0.000 claims description 2
- QCHSEDTUUKDTIG-UHFFFAOYSA-L dipotassium clorazepate Chemical compound [OH-].[K+].[K+].C12=CC(Cl)=CC=C2NC(=O)C(C(=O)[O-])N=C1C1=CC=CC=C1 QCHSEDTUUKDTIG-UHFFFAOYSA-L 0.000 claims description 2
- VJECBOKJABCYMF-UHFFFAOYSA-N doxazosin mesylate Chemical compound [H+].CS([O-])(=O)=O.C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 VJECBOKJABCYMF-UHFFFAOYSA-N 0.000 claims description 2
- 229960000220 doxazosin mesylate Drugs 0.000 claims description 2
- 229960000413 doxercalciferol Drugs 0.000 claims description 2
- HKXBNHCUPKIYDM-CGMHZMFXSA-N doxercalciferol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)/C=C/[C@H](C)C(C)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C HKXBNHCUPKIYDM-CGMHZMFXSA-N 0.000 claims description 2
- OYFJQPXVCSSHAI-QFPUQLAESA-N enalapril maleate Chemical compound OC(=O)\C=C/C(O)=O.C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 OYFJQPXVCSSHAI-QFPUQLAESA-N 0.000 claims description 2
- 229960000309 enalapril maleate Drugs 0.000 claims description 2
- 229960003276 erythromycin Drugs 0.000 claims description 2
- HZEQBCVBILBTEP-ZFINNJDLSA-N estropipate Chemical compound C1CNCCN1.OS(=O)(=O)OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 HZEQBCVBILBTEP-ZFINNJDLSA-N 0.000 claims description 2
- 229940081345 estropipate Drugs 0.000 claims description 2
- 229940011916 ethacrynate sodium Drugs 0.000 claims description 2
- 229960002568 ethinylestradiol Drugs 0.000 claims description 2
- 229960000255 exemestane Drugs 0.000 claims description 2
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960001596 famotidine Drugs 0.000 claims description 2
- SYWHXTATXSMDSB-GSLJADNHSA-N fludrocortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O SYWHXTATXSMDSB-GSLJADNHSA-N 0.000 claims description 2
- 229960003336 fluorocortisol acetate Drugs 0.000 claims description 2
- 229960002464 fluoxetine Drugs 0.000 claims description 2
- 229960000868 fluvastatin sodium Drugs 0.000 claims description 2
- 229960002107 fluvoxamine maleate Drugs 0.000 claims description 2
- 229960003727 granisetron Drugs 0.000 claims description 2
- MFWNKCLOYSRHCJ-BTTYYORXSA-N granisetron Chemical compound C1=CC=C2C(C(=O)N[C@H]3C[C@H]4CCC[C@@H](C3)N4C)=NN(C)C2=C1 MFWNKCLOYSRHCJ-BTTYYORXSA-N 0.000 claims description 2
- 229960003050 guanabenz acetate Drugs 0.000 claims description 2
- 229960003878 haloperidol Drugs 0.000 claims description 2
- 229960002003 hydrochlorothiazide Drugs 0.000 claims description 2
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 claims description 2
- 229960001410 hydromorphone Drugs 0.000 claims description 2
- NDDAHWYSQHTHNT-UHFFFAOYSA-N indapamide Chemical compound CC1CC2=CC=CC=C2N1NC(=O)C1=CC=C(Cl)C(S(N)(=O)=O)=C1 NDDAHWYSQHTHNT-UHFFFAOYSA-N 0.000 claims description 2
- 229960004569 indapamide Drugs 0.000 claims description 2
- 229960005280 isotretinoin Drugs 0.000 claims description 2
- 229960004384 ketorolac tromethamine Drugs 0.000 claims description 2
- BWHLPLXXIDYSNW-UHFFFAOYSA-N ketorolac tromethamine Chemical compound OCC(N)(CO)CO.OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 BWHLPLXXIDYSNW-UHFFFAOYSA-N 0.000 claims description 2
- 229940099584 lactobionate Drugs 0.000 claims description 2
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 claims description 2
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 claims description 2
- 229960000681 leflunomide Drugs 0.000 claims description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 claims description 2
- 229960003881 letrozole Drugs 0.000 claims description 2
- 229960003918 levothyroxine sodium Drugs 0.000 claims description 2
- SBXXSUDPJJJJLC-YDALLXLXSA-M liothyronine sodium Chemical compound [Na+].IC1=CC(C[C@H](N)C([O-])=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 SBXXSUDPJJJJLC-YDALLXLXSA-M 0.000 claims description 2
- 229960002018 liothyronine sodium Drugs 0.000 claims description 2
- 229960002394 lisinopril Drugs 0.000 claims description 2
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960001571 loperamide Drugs 0.000 claims description 2
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 claims description 2
- 229960003088 loratadine Drugs 0.000 claims description 2
- 229960004391 lorazepam Drugs 0.000 claims description 2
- 229960004844 lovastatin Drugs 0.000 claims description 2
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 claims description 2
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 claims description 2
- OJLOPKGSLYJEMD-URPKTTJQSA-N methyl 7-[(1r,2r,3r)-3-hydroxy-2-[(1e)-4-hydroxy-4-methyloct-1-en-1-yl]-5-oxocyclopentyl]heptanoate Chemical compound CCCCC(C)(O)C\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(=O)OC OJLOPKGSLYJEMD-URPKTTJQSA-N 0.000 claims description 2
- 229960001344 methylphenidate Drugs 0.000 claims description 2
- JUMYIBMBTDDLNG-UHFFFAOYSA-N methylphenidate hydrochloride Chemical compound [Cl-].C=1C=CC=CC=1C(C(=O)OC)C1CCCC[NH2+]1 JUMYIBMBTDDLNG-UHFFFAOYSA-N 0.000 claims description 2
- 229960003632 minoxidil Drugs 0.000 claims description 2
- 229960005249 misoprostol Drugs 0.000 claims description 2
- 229960004021 naratriptan hydrochloride Drugs 0.000 claims description 2
- 229960003753 nitric oxide Drugs 0.000 claims description 2
- 229960001652 norethindrone acetate Drugs 0.000 claims description 2
- 229960002016 oxybutynin chloride Drugs 0.000 claims description 2
- 229960004662 parecoxib Drugs 0.000 claims description 2
- TZRHLKRLEZJVIJ-UHFFFAOYSA-N parecoxib Chemical compound C1=CC(S(=O)(=O)NC(=O)CC)=CC=C1C1=C(C)ON=C1C1=CC=CC=C1 TZRHLKRLEZJVIJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002567 paroxetine mesylate Drugs 0.000 claims description 2
- NRNCYVBFPDDJNE-UHFFFAOYSA-N pemoline Chemical compound O1C(N)=NC(=O)C1C1=CC=CC=C1 NRNCYVBFPDDJNE-UHFFFAOYSA-N 0.000 claims description 2
- 229960000761 pemoline Drugs 0.000 claims description 2
- 239000001103 potassium chloride Substances 0.000 claims description 2
- 235000011164 potassium chloride Nutrition 0.000 claims description 2
- 229960002816 potassium chloride Drugs 0.000 claims description 2
- 229960004431 quetiapine Drugs 0.000 claims description 2
- URKOMYMAXPYINW-UHFFFAOYSA-N quetiapine Chemical compound C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 URKOMYMAXPYINW-UHFFFAOYSA-N 0.000 claims description 2
- IBBLRJGOOANPTQ-JKVLGAQCSA-N quinapril hydrochloride Chemical compound Cl.C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CC2=CC=CC=C2C1)C(O)=O)CC1=CC=CC=C1 IBBLRJGOOANPTQ-JKVLGAQCSA-N 0.000 claims description 2
- 229960003042 quinapril hydrochloride Drugs 0.000 claims description 2
- 229960001778 rabeprazole sodium Drugs 0.000 claims description 2
- HDACQVRGBOVJII-JBDAPHQKSA-N ramipril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](C[C@@H]2CCC[C@@H]21)C(O)=O)CC1=CC=CC=C1 HDACQVRGBOVJII-JBDAPHQKSA-N 0.000 claims description 2
- 229960003401 ramipril Drugs 0.000 claims description 2
- 229960000759 risedronic acid Drugs 0.000 claims description 2
- CWCSCNSKBSCYCS-UHFFFAOYSA-M sodium;2-[2,3-dichloro-4-(2-methylidenebutanoyl)phenoxy]acetate Chemical compound [Na+].CCC(=C)C(=O)C1=CC=C(OCC([O-])=O)C(Cl)=C1Cl CWCSCNSKBSCYCS-UHFFFAOYSA-M 0.000 claims description 2
- KYITYFHKDODNCQ-UHFFFAOYSA-M sodium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [Na+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 KYITYFHKDODNCQ-UHFFFAOYSA-M 0.000 claims description 2
- 229960003553 tolterodine tartrate Drugs 0.000 claims description 2
- 229960002004 valdecoxib Drugs 0.000 claims description 2
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 claims description 2
- 229960001572 vancomycin hydrochloride Drugs 0.000 claims description 2
- LCTORFDMHNKUSG-XTTLPDOESA-N vancomycin monohydrochloride Chemical compound Cl.O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 LCTORFDMHNKUSG-XTTLPDOESA-N 0.000 claims description 2
- 229960004688 venlafaxine Drugs 0.000 claims description 2
- PNVNVHUZROJLTJ-UHFFFAOYSA-N venlafaxine Chemical compound C1=CC(OC)=CC=C1C(CN(C)C)C1(O)CCCCC1 PNVNVHUZROJLTJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002647 warfarin sodium Drugs 0.000 claims description 2
- 229960004764 zafirlukast Drugs 0.000 claims description 2
- 229960000523 zalcitabine Drugs 0.000 claims description 2
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 claims description 2
- 229960000607 ziprasidone Drugs 0.000 claims description 2
- KSGAUXJXDLBIMV-DEOSSOPVSA-N (2s)-2-ethoxy-2-[4-[2-[4-[(2-methylpropan-2-yl)oxycarbonylamino]phenyl]ethoxy]phenyl]propanoic acid Chemical compound C1=CC([C@@](C)(C(O)=O)OCC)=CC=C1OCCC1=CC=C(NC(=O)OC(C)(C)C)C=C1 KSGAUXJXDLBIMV-DEOSSOPVSA-N 0.000 claims 1
- PYHRZPFZZDCOPH-QXGOIDDHSA-N (S)-amphetamine sulfate Chemical compound [H+].[H+].[O-]S([O-])(=O)=O.C[C@H](N)CC1=CC=CC=C1.C[C@H](N)CC1=CC=CC=C1 PYHRZPFZZDCOPH-QXGOIDDHSA-N 0.000 claims 1
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 claims 1
- JHIZNNCGJCHYHI-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO.CCCCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCCCC Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO.CCCCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCCCC JHIZNNCGJCHYHI-UHFFFAOYSA-N 0.000 claims 1
- WDZVGELJXXEGPV-YIXHJXPBSA-N Guanabenz Chemical compound NC(N)=N\N=C\C1=C(Cl)C=CC=C1Cl WDZVGELJXXEGPV-YIXHJXPBSA-N 0.000 claims 1
- XUIIKFGFIJCVMT-LBPRGKRZSA-N L-thyroxine Chemical compound IC1=CC(C[C@H]([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-LBPRGKRZSA-N 0.000 claims 1
- YSXKPIUOCJLQIE-UHFFFAOYSA-N biperiden Chemical compound C1C(C=C2)CC2C1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 YSXKPIUOCJLQIE-UHFFFAOYSA-N 0.000 claims 1
- 229940119751 dextroamphetamine sulfate Drugs 0.000 claims 1
- JUMYIBMBTDDLNG-OJERSXHUSA-N hydron;methyl (2r)-2-phenyl-2-[(2r)-piperidin-2-yl]acetate;chloride Chemical compound Cl.C([C@@H]1[C@H](C(=O)OC)C=2C=CC=CC=2)CCCN1 JUMYIBMBTDDLNG-OJERSXHUSA-N 0.000 claims 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 claims 1
- VWBQYTRBTXKKOG-IYNICTALSA-M pravastatin sodium Chemical compound [Na+].C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC([O-])=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 VWBQYTRBTXKKOG-IYNICTALSA-M 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 44
- 239000003826 tablet Substances 0.000 description 98
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 69
- 239000008187 granular material Substances 0.000 description 64
- 238000007906 compression Methods 0.000 description 40
- 230000006835 compression Effects 0.000 description 40
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 33
- 238000012360 testing method Methods 0.000 description 25
- 230000036470 plasma concentration Effects 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000013268 sustained release Methods 0.000 description 14
- 239000012730 sustained-release form Substances 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 239000000546 pharmaceutical excipient Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000011877 solvent mixture Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 9
- 229920002472 Starch Polymers 0.000 description 8
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 8
- 229940032147 starch Drugs 0.000 description 8
- 235000019698 starch Nutrition 0.000 description 8
- 239000008107 starch Substances 0.000 description 8
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 239000012738 dissolution medium Substances 0.000 description 7
- 239000006186 oral dosage form Substances 0.000 description 7
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 7
- 229940069328 povidone Drugs 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 6
- 239000013543 active substance Substances 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 229940035732 metformin and rosiglitazone Drugs 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000007619 statistical method Methods 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 229960001021 lactose monohydrate Drugs 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000004014 plasticizer Substances 0.000 description 5
- 230000002035 prolonged effect Effects 0.000 description 5
- 229920003109 sodium starch glycolate Polymers 0.000 description 5
- 229940079832 sodium starch glycolate Drugs 0.000 description 5
- 239000008109 sodium starch glycolate Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- UABJPASVFPMIGE-KWZUVTIDSA-N (z)-but-2-enedioic acid;3-(diaminomethylidene)-1,1-dimethylguanidine;5-[[4-[2-[methyl(pyridin-2-yl)amino]ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione;hydrochloride Chemical compound Cl.OC(=O)\C=C/C(O)=O.CN(C)C(=N)N=C(N)N.C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O UABJPASVFPMIGE-KWZUVTIDSA-N 0.000 description 4
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 4
- 238000000540 analysis of variance Methods 0.000 description 4
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 4
- 235000005911 diet Nutrition 0.000 description 4
- 230000037213 diet Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000008203 oral pharmaceutical composition Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 4
- QBQLYIISSRXYKL-UHFFFAOYSA-N 4-[[4-[2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy]phenyl]methyl]-1,2-oxazolidine-3,5-dione Chemical compound CC=1OC(C=2C=CC=CC=2)=NC=1CCOC(C=C1)=CC=C1CC1C(=O)NOC1=O QBQLYIISSRXYKL-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Chemical compound CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 150000001242 acetic acid derivatives Chemical class 0.000 description 3
- 229940062310 avandia Drugs 0.000 description 3
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 3
- 238000010241 blood sampling Methods 0.000 description 3
- 239000008116 calcium stearate Substances 0.000 description 3
- 235000013539 calcium stearate Nutrition 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000007884 disintegrant Substances 0.000 description 3
- 238000013265 extended release Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 229960002965 pravastatin Drugs 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003899 tartaric acid esters Chemical class 0.000 description 3
- WMUIIGVAWPWQAW-XMMPIXPASA-N (2r)-2-ethoxy-3-[4-(2-phenoxazin-10-ylethoxy)phenyl]propanoic acid Chemical compound C1=CC(C[C@@H](OCC)C(O)=O)=CC=C1OCCN1C2=CC=CC=C2OC2=CC=CC=C21 WMUIIGVAWPWQAW-XMMPIXPASA-N 0.000 description 2
- UPHOPMSGKZNELG-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carboxylic acid Chemical class C1=CC=C2C(C(=O)O)=C(O)C=CC2=C1 UPHOPMSGKZNELG-UHFFFAOYSA-N 0.000 description 2
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical class OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 2
- NFFXEUUOMTXWCX-UHFFFAOYSA-N 5-[(2,4-dioxo-1,3-thiazolidin-5-yl)methyl]-2-methoxy-n-[[4-(trifluoromethyl)phenyl]methyl]benzamide Chemical compound C1=C(C(=O)NCC=2C=CC(=CC=2)C(F)(F)F)C(OC)=CC=C1CC1SC(=O)NC1=O NFFXEUUOMTXWCX-UHFFFAOYSA-N 0.000 description 2
- DMIMWGHYIPFAIF-UHFFFAOYSA-N 5-nitro-2-piperidin-1-ylaniline Chemical compound NC1=CC([N+]([O-])=O)=CC=C1N1CCCCC1 DMIMWGHYIPFAIF-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- KCXZNSGUUQJJTR-UHFFFAOYSA-N Di-n-hexyl phthalate Chemical compound CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCC KCXZNSGUUQJJTR-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- 150000000994 L-ascorbates Chemical class 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- MURWRBWZIMXKGC-UHFFFAOYSA-N Phthalsaeure-butylester-octylester Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC MURWRBWZIMXKGC-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 159000000013 aluminium salts Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 235000019700 dicalcium phosphate Nutrition 0.000 description 2
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000002641 glycemic effect Effects 0.000 description 2
- 150000002315 glycerophosphates Chemical class 0.000 description 2
- 235000013773 glyceryl triacetate Nutrition 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229960001375 lactose Drugs 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 150000002688 maleic acid derivatives Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-M methanesulfonate group Chemical class CS(=O)(=O)[O-] AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- PKWDZWYVIHVNKS-UHFFFAOYSA-N netoglitazone Chemical compound FC1=CC=CC=C1COC1=CC=C(C=C(CC2C(NC(=O)S2)=O)C=C2)C2=C1 PKWDZWYVIHVNKS-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229910052700 potassium Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- GHBFNMLVSPCDGN-UHFFFAOYSA-N rac-1-monooctanoylglycerol Chemical compound CCCCCCCC(=O)OCC(O)CO GHBFNMLVSPCDGN-UHFFFAOYSA-N 0.000 description 2
- 238000009490 roller compaction Methods 0.000 description 2
- 150000003873 salicylate salts Chemical class 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 2
- 238000005563 spheronization Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 150000003890 succinate salts Chemical class 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 150000001467 thiazolidinediones Chemical class 0.000 description 2
- 229960002622 triacetin Drugs 0.000 description 2
- 239000001069 triethyl citrate Substances 0.000 description 2
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 2
- 235000013769 triethyl citrate Nutrition 0.000 description 2
- 125000005591 trimellitate group Chemical group 0.000 description 2
- BAVDEDVBIHTHJQ-UVJOBNTFSA-N (2s)-1-[(2s)-6-amino-2-[[(1s)-1-carboxy-3-phenylpropyl]amino]hexanoyl]pyrrolidine-2-carboxylic acid;hydrate Chemical compound O.C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 BAVDEDVBIHTHJQ-UVJOBNTFSA-N 0.000 description 1
- IVTMXOXVAHXCHI-YXLMWLKOSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)propanoic acid;(2s)-3-(3,4-dihydroxyphenyl)-2-hydrazinyl-2-methylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1.NN[C@@](C(O)=O)(C)CC1=CC=C(O)C(O)=C1 IVTMXOXVAHXCHI-YXLMWLKOSA-N 0.000 description 1
- ULVDFHLHKNJICZ-QCWLDUFUSA-N (4e)-4-[[4-[(5-methyl-2-phenyl-1,3-oxazol-4-yl)methoxy]phenyl]methoxyimino]-4-phenylbutanoic acid Chemical compound CC=1OC(C=2C=CC=CC=2)=NC=1COC(C=C1)=CC=C1CO\N=C(/CCC(O)=O)C1=CC=CC=C1 ULVDFHLHKNJICZ-QCWLDUFUSA-N 0.000 description 1
- SWWQQSDRUYSMAR-UHFFFAOYSA-N 1-[(4-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol;hydrochloride Chemical group Cl.C1=CC(O)=CC=C1CC1C2=CC(O)=C(O)C=C2CCN1 SWWQQSDRUYSMAR-UHFFFAOYSA-N 0.000 description 1
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 1
- PZBLUWVMZMXIKZ-UHFFFAOYSA-N 2-o-(2-ethoxy-2-oxoethyl) 1-o-ethyl benzene-1,2-dicarboxylate Chemical compound CCOC(=O)COC(=O)C1=CC=CC=C1C(=O)OCC PZBLUWVMZMXIKZ-UHFFFAOYSA-N 0.000 description 1
- UYGZODVVDUIDDQ-UHFFFAOYSA-N 3-[(2,4-dichlorophenyl)methyl]-2-methyl-n-pentylsulfonylbenzimidazole-5-carboxamide Chemical compound C12=CC(C(=O)NS(=O)(=O)CCCCC)=CC=C2N=C(C)N1CC1=CC=C(Cl)C=C1Cl UYGZODVVDUIDDQ-UHFFFAOYSA-N 0.000 description 1
- LGSOKZOQANLOEU-UHFFFAOYSA-N 4-[2-(2,4-dioxo-1,3-thiazolidin-5-yl)ethoxy]benzonitrile Chemical compound S1C(=O)NC(=O)C1CCOC1=CC=C(C#N)C=C1 LGSOKZOQANLOEU-UHFFFAOYSA-N 0.000 description 1
- PCAZCAZVHLGDBA-UHFFFAOYSA-N 5-[[4-(2-indol-1-ylethoxy)phenyl]methyl]-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)C1CC(C=C1)=CC=C1OCCN1C2=CC=CC=C2C=C1 PCAZCAZVHLGDBA-UHFFFAOYSA-N 0.000 description 1
- HAAXAFNSRADSMK-UHFFFAOYSA-N 5-[[4-[2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy]-1-benzothiophen-7-yl]methyl]-1,3-thiazolidine-2,4-dione Chemical compound CC=1OC(C=2C=CC=CC=2)=NC=1CCOC(C=1C=CSC=11)=CC=C1CC1SC(=O)NC1=O HAAXAFNSRADSMK-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 229920003084 Avicel® PH-102 Polymers 0.000 description 1
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 1
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 1
- LKUNXBRZDFMZOK-GFCCVEGCSA-N Capric acid monoglyceride Natural products CCCCCCCCCC(=O)OC[C@H](O)CO LKUNXBRZDFMZOK-GFCCVEGCSA-N 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- PGIBJVOPLXHHGS-UHFFFAOYSA-N Di-n-decyl phthalate Chemical compound CCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCC PGIBJVOPLXHHGS-UHFFFAOYSA-N 0.000 description 1
- 208000002249 Diabetes Complications Diseases 0.000 description 1
- 206010012655 Diabetic complications Diseases 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- 239000004348 Glyceryl diacetate Substances 0.000 description 1
- MCSPBPXATWBACD-GAYQJXMFSA-N Guanabenz acetate Chemical compound CC(O)=O.NC(N)=N\N=C\C1=C(Cl)C=CC=C1Cl MCSPBPXATWBACD-GAYQJXMFSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- IRLWJILLXJGJTD-UHFFFAOYSA-N Muraglitazar Chemical compound C1=CC(OC)=CC=C1OC(=O)N(CC(O)=O)CC(C=C1)=CC=C1OCCC1=C(C)OC(C=2C=CC=CC=2)=N1 IRLWJILLXJGJTD-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- RDNLAULGBSQZMP-UHFFFAOYSA-N biperiden hydrochloride Chemical compound [Cl-].C1C(C=C2)CC2C1C(C=1C=CC=CC=1)(O)CC[NH+]1CCCCC1 RDNLAULGBSQZMP-UHFFFAOYSA-N 0.000 description 1
- ZDWGXBPVPXVXMQ-UHFFFAOYSA-N bis(2-ethylhexyl) nonanedioate Chemical compound CCCCC(CC)COC(=O)CCCCCCCC(=O)OCC(CC)CCCC ZDWGXBPVPXVXMQ-UHFFFAOYSA-N 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007950 delayed release tablet Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- DUGOZIWVEXMGBE-CHWSQXEVSA-N dexmethylphenidate Chemical compound C([C@@H]1[C@H](C(=O)OC)C=2C=CC=CC=2)CCCN1 DUGOZIWVEXMGBE-CHWSQXEVSA-N 0.000 description 1
- 229960001042 dexmethylphenidate Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- UCVPKAZCQPRWAY-UHFFFAOYSA-N dibenzyl benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC=2C=CC=CC=2)C=1C(=O)OCC1=CC=CC=C1 UCVPKAZCQPRWAY-UHFFFAOYSA-N 0.000 description 1
- PCYQQSKDZQTOQG-NXEZZACHSA-N dibutyl (2r,3r)-2,3-dihydroxybutanedioate Chemical compound CCCCOC(=O)[C@H](O)[C@@H](O)C(=O)OCCCC PCYQQSKDZQTOQG-NXEZZACHSA-N 0.000 description 1
- 229940031954 dibutyl sebacate Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- LWJFYEMVHNGJRR-UHFFFAOYSA-N dimethyl 2-[[4-[(5-methyl-2-phenyl-1,3-oxazol-4-yl)methoxy]phenyl]methyl]propanedioate Chemical compound C1=CC(CC(C(=O)OC)C(=O)OC)=CC=C1OCC1=C(C)OC(C=2C=CC=CC=2)=N1 LWJFYEMVHNGJRR-UHFFFAOYSA-N 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 1
- YCZJVRCZIPDYHH-UHFFFAOYSA-N ditridecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCCC YCZJVRCZIPDYHH-UHFFFAOYSA-N 0.000 description 1
- QQVHEQUEHCEAKS-UHFFFAOYSA-N diundecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCC QQVHEQUEHCEAKS-UHFFFAOYSA-N 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229960005191 ferric oxide Drugs 0.000 description 1
- 229940051164 ferric oxide yellow Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 210000003736 gastrointestinal content Anatomy 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940087068 glyceryl caprylate Drugs 0.000 description 1
- 235000019443 glyceryl diacetate Nutrition 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- ANMYAHDLKVNJJO-LTCKWSDVSA-M levothyroxine sodium hydrate Chemical compound O.[Na+].IC1=CC(C[C@H](N)C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 ANMYAHDLKVNJJO-LTCKWSDVSA-M 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- IVAQJHSXBVHUQT-ZVHZXABRSA-N methyl (e)-3-(3,5-dimethoxyphenyl)-2-[4-[4-[(2,4-dioxo-1,3-thiazolidin-5-yl)methyl]phenoxy]phenyl]prop-2-enoate Chemical compound C=1C=C(OC=2C=CC(CC3C(NC(=O)S3)=O)=CC=2)C=CC=1/C(C(=O)OC)=C\C1=CC(OC)=CC(OC)=C1 IVAQJHSXBVHUQT-ZVHZXABRSA-N 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229910002055 micronized silica Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 238000011294 monotherapeutic Methods 0.000 description 1
- 229950001628 netoglitazone Drugs 0.000 description 1
- BNYHRGTXRPWASY-UHFFFAOYSA-N nonylsulfonylurea Chemical compound CCCCCCCCCS(=O)(=O)NC(N)=O BNYHRGTXRPWASY-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- JQCXWCOOWVGKMT-UHFFFAOYSA-N phthalic acid diheptyl ester Natural products CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC JQCXWCOOWVGKMT-UHFFFAOYSA-N 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- LKUNXBRZDFMZOK-UHFFFAOYSA-N rac-1-monodecanoylglycerol Chemical compound CCCCCCCCCC(=O)OCC(O)CO LKUNXBRZDFMZOK-UHFFFAOYSA-N 0.000 description 1
- 229950008257 ragaglitazar Drugs 0.000 description 1
- 229950005713 reglitazar Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 230000000580 secretagogue effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- MNQYNQBOVCBZIQ-JQOFMKNESA-A sucralfate Chemical compound O[Al](O)OS(=O)(=O)O[C@@H]1[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](COS(=O)(=O)O[Al](O)O)O[C@H]1O[C@@]1(COS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)O1 MNQYNQBOVCBZIQ-JQOFMKNESA-A 0.000 description 1
- 229960004291 sucralfate Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000007939 sustained release tablet Substances 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 229950004704 tesaglitazar Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2086—Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
- A61K9/209—Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/155—Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/4025—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/455—Nicotinic acids, e.g. niacin; Derivatives thereof, e.g. esters, amides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/53—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
- A61K9/2081—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
Definitions
- This invention relates to a dosage form comprising of a high dose, high solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release high dose high solubility active ingredient per unit is from 500 mg to 1500 mg and the weight of immediate release active ingredient is up to 50 mg; a process for preparing the formulation
- Combining two active ingredients in one pharmaceutical unit to improve patient compliance is known in literature. It can be either in the form of two or more active ingredients in immediate release form or a combination of immediate release and modified release form. There are various techniques by which the combination of immediate release and modified release is formulated in single dosage form.
- the pharmaceutical dosage forms are a tablet formulation containing immediate release and delayed release granules; a two or three layer tablet; a tablet with delayed release core surrounded by immediate release shell; a delayed release tablet/granule coated with a film of immediate release active ingredient.
- Jurgen Zeidler et. al describes in U.S. Pat. No. 6,001,391 a process for producing solid combination tablets, which have at least two phases.
- the one of the two phases is processed by melt extrusion technique and contains a water soluble or swellable binder.
- a compressed V-shaped center scored double layer tablet is disclosed by George M. Krause et. al in U.S. Pat. No. 3,336,200, one layer of which contains immediate release Active Ingredient and the other layer contains sustained release Active Ingredient.
- the tablet is divisible in two equal halves.
- Jacob A. Glassman described in U.S. Pat. No. 4,503,031 a super fast starting, slow release medicinal tablet, wherein the tablet is comprised of two layers of compressed matrix that are fused together by means of readily dissolvable adhesive substance.
- Block Jurgen et. al. describes in PCT application No. WO 01/72286 A1 a formulation of vitamin composition whereas a beadlet comprises a slow release core coated by a controlled release coating.
- the sustained release core is coated with an immediate release layer.
- the commonly combined active ingredients include biguanides (metformin)+sulphonylureas, biguanides+PPAR ⁇ agonists (thiazolidinediones), sulphonylureas+thiazolidinediones, non-sulfonylurea secretagogues (repaglinide)+biguanides etc.
- a novel strategy would be to combine a sustained release formulation of one active ingredient (shorter duration of action) with conventional formulation (long duration of action) of another active ingredient. This would make it possible to give the active ingredients in same dosing frequency.
- This type of combination will give better compliance and a relative freedom from mealtime drug administration, thus, improving the quality of life. More importantly, because of prolonged duration of action, it shall produce a stricter control of blood glucose and consequently less diabetic complications.
- the weight of the dosage form becomes very high, or complicated process for manufacturing is required, or accurate dosing of low dose active ingredient is difficult when the techniques reported in the prior art are utilized to make formulation with high dose, high solubility active ingredient in the form of modified release and small dose active ingredient into immediate release form where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release active ingredient per unit is from 500 mg to 1500 mg and also it is inconvenient to swallow due to large size.
- an object of the present invention is a dosage form of combination of a high dose, high solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release active ingredient per unit is from 500 mg to 1500 mg.
- Another object of the present invention is a dosage form which is suitable for swallowing for humans containing two active ingredients one of which is in modified release form and other in immediate release form.
- an object of the present invention to provide a dosage form, which uses dual retard technique to control the release of the high dose, high solubility active ingredient and significantly reduce the amount of release controlling agents which are otherwise required in very high quantity and make the dosage form very bulky and therefore pose difficulty in swallowing.
- a further object of the present invention is to provide a dosage form, containing one active ingredient in an immediate release form and another active ingredient as modified release and the release or disintegration of the immediate release active ingredient is not hindered by the modified release ingredient.
- Another object of the present invention is to provide a dosage form, which effectively avoids the problem of separation of layers of multilayered tablets.
- a further object of the present invention is a formulation, which gives accurate dosing and is prepared by conventional and simple processes.
- a further object of the present invention is to provide a dosage form, which can be given twice a day or more preferably can be given once a day.
- a dosage form which is comprised of an inner portion and an outer portion.
- the inner portion is surrounded by the outer portion in such a manner that only one surface of the inner portion is exposed.
- the inner portion contains a low dose active ingredient in immediate release form and the outer portion contains a high dose, high solubility active ingredient as modified release.
- the weight of the immediate release low dose active ingredient and high dose, high solubility modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release active ingredient per unit is from 500 mg to 1500 mg.
- the present invention also provides solid oral dosage form comprising a composition according to the invention.
- the present invention also teaches the use of dual retard technique to effectively control the release rate of modified release active ingredient by using small quantity of release controlling agents. This dual retard technique thus sufficiently reduces the size of the dosage form, which is convenient for swallowing.
- the present invention further teaches the use of hydrophobic release controlling agents, which do not hinder the release of the immediate release active ingredient.
- the present invention further provides the dosage form that effectively prevents the problem of separation of the layers of the multilayered tablets.
- the present invention also provides a novel process for preparing the novel formulations of the invention.
- the present invention further provides a method of treating an animal, particularly a human in need of treatment utilizing the active agents, comprising administering a therapeutically effective amount of composition or solid oral dosage form according to the invention to provide administration of two active ingredients one in immediate release and other in modified release form.
- This invention relates to a novel dosage form of combination of high dose high solubility active ingredient, as modified release and low dose active ingredient as immediate release, suitable for swallowing comprising dual retard technique to control the release of the high dose high solubility active ingredient, with sufficient reduction in the amount of release controlling agent, without interfering the release of each other.
- modified release as used herein in relation to the composition according to the invention or a rate controlling polymer or used in any other context means release, which is not immediate release and is taken to encompass controlled release, sustained release, prolonged release, timed release, retarded release, extended release and delayed release.
- modified release dosage form as used herein can be described as dosage forms whose drug-release characteristics of time course and/or location are chosen to accomplish therapeutic or convenience objectives not offered by conventional dosage forms such as a solution or an immediate release dosage form.
- Modified release solid oral dosage forms include both delayed and extended release drug products (as per US FDA guideline for ‘SUPAC-MR: Modified Release Solid Oral Dosage Forms’).
- immediate release as used herein in relation to composition according to the invention or used in any other context means release which is not modified release and releases more than 70% of the active ingredient within 60 minutes.
- immediate release dosage form as used herein can be described as dosage form which allows the drug to dissolve in the gastrointestinal contents, with no intention of delaying or prolonging the dissolution or absorption of the drug (as per US FDA guideline for ‘SUPAC-MK Modified Release Solid Oral Dosage Forms’).
- drug form denotes any form of the formulation that contains an amount sufficient to achieve a therapeutic effect with a single administration.
- active ingredient refers to an agent, active ingredient compound or other substance, or compositions and mixture thereof that provide some pharmacological, often beneficial, effect. Reference to a specific active ingredient shall include where appropriate the active ingredient and it's pharmaceutically acceptable salts.
- high dose refers to the weight of active ingredient in unit dosage form according to the invention is from 500 mg to 1500 mg.
- low dose refers to the weight of the active ingredient in unit dosage form according to the invention is less than or equal to 50 mg.
- high solubility as used herein in relation to high dose active ingredient means that from less than 1 part to 30 parts of the water will require dissolving 1 part of active ingredient.
- the invention provides a novel dosage form of high dose, high solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release antidiabetic active ingredient per unit is from 500 mg to 1500 mg; a process for preparing the dosage form.
- the dosage form comprises of two parts (i) inner portion as an immediate release and (ii) outer portion as modified release.
- the two parts are compressed together in such a way that one surface of the inner portion remains exposed and the remaining surfaces are covered by the outer portion.
- Inner portion comprises of a low dose active ingredient and includes one or more commonly used excipients in oral immediate release pharmaceutical formulations.
- the low dose active ingredient can be present in the form of a free base or in the form of pharmaceutically acceptable salts.
- Pharmaceutically acceptable salts forming part of this invention are intended to define but not limited to salts of the carboxylic acid moiety such as alkali metal salts like Li, Na and K salts; alkaline earth metal salts like Ca and Mg salts; salts of organic bases such as lysine, arginine, guanidine, diethanolamine, choline, and the like; ammonium or substituted ammonium salts and aluminium salts.
- Salts may be acid addition salts which defines but not limited to sulfates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, succinates, palmoates, methanesulfonates, benzoates, salicylates, hydroxynaphthoates, benzensulfonates, ascorbates, glycerophosphates, ketoglutarates and the like.
- the low dose active ingredient may be present either in the form of one substantially optically pure enantiomer or as a mixture of enantiomers or polymorphs thereof.
- the inner portion may optionally contain more than one low dose active ingredient.
- the inner portion may optionally contain more than one low dose antidiabetic active ingredient.
- the low dose active ingredient is in the form of immediate release and has dose of 50 mg or less.
- the low dose active ingredients are comprises of the following therapeutic classes but not limited to antidiabetic agents, anti-histamines, anti-depressants, anti-viral agents, anesthetics, antacids, anti-arththriics, antibiotics, anti-psychotics, anti-spasmodics, anxiolytic agents, appetite suppressants, cardiovascular agents, cough suppressants, emollients, gastro-intestinal agents, growth regulators, respiratory stimulants, vitamins, angiotensin converting enzyme inhibitors, anti-asthmatics, anti-cholesterolemics, anti-convulsants, anti-depressants, anti-diarrhea preparations, anti-infective, anti-inflammatory agents, anti-nauseants, anti-stroke agents, anti-tumor drugs, anti-tussives, anti-uricemic drugs, amino-acid preparations, antiemetics, antiobesity drugs, antiparasitics, antipyretics, appetite stimulants, celebral d
- low dose active ingredients comprises of but not limited to zafirlukast, quinapril hydrochloride, isotretinoin, rabeprazole sodium, estradiol (e2), norethindrone acetate, risedronate sodium, pioglitazone HCl, amphetamine, anagrelide hydrochloride, biperiden HCl, mephalan, alprazolam, ramipril, naratriptan hydrochloride, leflunomide, anastrozole, exemestane, paroxetine mesylate, candesartan cilexetil, almotriptan, cerivastatin, betaxolol hydrochloride, bisoprolol fumarate, deloratadine, clonazepam, clorazepate dipotassium, clozapine, methylphenidate HCl, carvedilol, warfarin sodium, norgestrel,
- antidiabetic active ingredients comprises of but not limited to JTT-501 (PNU-182716) (Reglitazar), AR-H039242, MCC-555 (Netoglitazone), AR-H049020, Tesaglitazar), CS-011 (CI-1037), GW-409544 ⁇ KRP-297, RG-12525, BM-15.2054, CLX-0940, CLX-0921, DRF-2189, GW-1929, GW-9820, LR-90, LY-510929, NIP-221, NIP-223, JTP-20993, LY 29311 Na, FK 614, BMS 298585, R 483, TAK 559, DRF 2725 (Ragaglitazar), L-686398, L-168049, L805645, L-054852, Demethyl asteriquinone B1 (L-783281), L-363586, KRP-297, P32/98, CRE-16336 and EML
- the inner portion of the present invention may comprise auxiliary excipients such as for example diluents, binders, lubricants, surfactants, disintegrants, plasticisers, anti-tack agents, opacifying agents, pigments, and such like.
- auxiliary excipients such as for example diluents, binders, lubricants, surfactants, disintegrants, plasticisers, anti-tack agents, opacifying agents, pigments, and such like.
- excipients such as for example diluents, binders, lubricants, surfactants, disintegrants, plasticisers, anti-tack agents, opacifying agents, pigments, and such like.
- Suitable diluents include for example pharmaceutically acceptable inert fillers such as microcrystalline cellulose, lactose, starch, dibasic calcium phosphate, saccharides, and/or mixtures of the foregoing.
- diluents include microcrystalline celluloses such as those sold under the Trade Mark Avicel PH 101, Avicel PH 102, Avicel PH 112, Avicel PH 200, Avicel PH301 and Avicel PH 302; lactose such as lactose monohydrate, lactose anhydrous and Pharmatose DCL21 (Pharmatose is a Trade Mark), including anhydrous, monohydrate and spray dried forms; dibasic calcium phosphate such as Emcompress (Emcompress is a Trade Mark); mannitol; Pearlitol SD 200 (Pearlitol SD 200 is a trade mark); starch; sorbitol; sucrose; and glucose.
- Emcompress Emcompress
- Pearlitol SD 200 Pearlito
- Suitable binders include for example starch, povidone, hydroxypropylmethylcellulose, pregelatinised starch hydroxypropylcellulose and/or mixtures of the foregoing.
- Suitable lubricants including agents that act on the flowability of the powder to be compressed are, for example, colloidal slilcon dioxide such as Aerosil 200 (Aerosil is a Trade Mark); talc; stearic acid, magnesium stearate, calcium stearate and sodium stearyl fumarate.
- colloidal slilcon dioxide such as Aerosil 200 (Aerosil is a Trade Mark)
- talc stearic acid, magnesium stearate, calcium stearate and sodium stearyl fumarate.
- Suitable disintegrants include for example lightly crosslinked polyvinyl pyrrolidone, corn starch, potato starch, maize starch and modified starches, croscarmellose sodium, cross-povidone, sodium starch glycolate and combinations and mixtures thereof
- Outer Portion The outer portion comprises of a) Micro matrix particles containing high dose, high solubility active ingredient and one or more hydrophobic release controlling agent, b) Coating of Micro matrix particles with one or more hydrophobic release controlling agents.
- the outer portion may also include one or more commonly used excipients in oral pharmaceutical formulations.
- the release of the high dose, high solubility active ingredient is controlled through dual retard technique.
- the dual retard technique is a combination of matrix formulations and reservoir formulations.
- micro matrix particles of high dose, high solubility dose active ingredient and one or more hydrophobic release controlling agents are formed and then these are further coated with one or more release controlling agents.
- the dual retard release technique presents the double barriers and effectively controls the diffusion of the high dose, high solubility active ingredients from the present invention in predictable manner and also significantly reduces the amount of release controlling agents which are otherwise required in very high quantity and make the dosage form very bulky and therefore pose difficulty in swallowing.
- the other advantages of the present invention are such as it reduces the chances of dose dumping, unnecessary burst effects and failure of the system, which are otherwise usually associated with simple matrix or reservoir systems.
- the high dose, high solubility active ingredient can be present in the form of a free base or in the form of pharmaceutically acceptable salts.
- Pharmaceutically acceptable salts forming part of this invention are intended to define but not limited to salts of the carboxylic acid moiety such as alkali metal salts like Li, Na and K salts; alkaline earth metal salts like Ca and Mg salts; salts of organic bases such as lysine, arginine, guanidine, diethanolamine, choline, and the like; ammonium or substituted ammonium salts and aluminium salts.
- Salts may be acid addition salts which defines but not limited to sulfates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, succinates, palmoates, methanesulfonates, benzoates, salicylates, hydroxynaphthoates, benzensulfonates, ascorbates, glycerophosphates, ketoglutarates and the like.
- the high dose, high solubility active ingredient may be present either in the form of one substantially optically pure enantiomer or as a mixture of enantiomers or polymorphs thereof.
- the high dose, high solubility active ingredient is in the form of modified release and has dose from 500 mg to 1500 mg.
- the high dose, high solubility active ingredients are comprises of the following therapeutic classes but not limited to antidiabetic agents, anti-histamines, anti-depressants, anti-viral agents, anesthetics, antacids, anti-arthritis, antibiotics, anti-psychotics, anti-spasmodics, anxiolytic agents, appetite suppressants, cardiovascular agents, cough suppressants, emollients, gastrointestinal agents, growth regulators, respiratory stimulants, vitamins, angiotensin converting enzyme inhibitors, anti-asthmatics, anti-cholesterolemics, anti-convulsants, anti-depressants, anti-diarrhea preparations, anti-infective, anti-inflammatory agents, anti-nauseants, anti-stroke agents, anti-tumor drugs, anti-tussives, anti-uricemic drugs, amino-acid preparations, antiemetics, antiobesity drugs, antiparasitics, antipyretics, appetite stimulants, cerebral d
- high dose, high solubility active ingredients comprises of but not limited to potassium chloride, metformin hydrochloride, phenformin, buformin, clindamycin, hydroxyurea, erythromycin, lactobionate, vancomycin hydrochloride, balsalazide disodium, sodium valproate, niacin, aminocaproic acid, acetaminophen, Ciprofloxacin, quetiapine.
- Other drugs suitable for use and meeting the solubility and dose criteria described above will be apparent to those skilled in the art.
- the outer portion may optionally contain more than one high dose high solubility active ingredient.
- the outer portion may optionally contain more than one high dose high solubility antidiabetic active ingredient.
- the outer portion of the present invention may comprise auxiliary excipients such as for example lubricants, plasticisers, anti-tack agents, opacifying agents, pigments, and such like.
- auxiliary excipients such as for example lubricants, plasticisers, anti-tack agents, opacifying agents, pigments, and such like.
- Suitable lubricants including agents that act on the flowability of the powder to be compressed are, for example, colloidal silicon dioxide such as Aerosil 200 (Aerosil is a Trade Mark); talc; stearic acid, magnesium stearate, calcium stearate and sodium stearyl fumarate.
- colloidal silicon dioxide such as Aerosil 200 (Aerosil is a Trade Mark)
- talc stearic acid, magnesium stearate, calcium stearate and sodium stearyl fumarate.
- the active ingredient and one or more hydrophobic release controlling agents are preferably present in a ratio of from 100:1 to 100:75, more particularly from 100:2.5 to 100:50, still more preferably from 100:2.5 to 100:30 and most preferably from 100:2.5 to 100:20.
- micro matrix particles and coating of one or more hydrophobic release controlling agents are preferably present in a ratio of from 100:0.5 to 100:75, more particularly from 100:2.5 to 100:50, still more preferably from 100:2.5 to 100:30 and most preferably from 100:2.5 to 100:20.
- the release controlling agents are pharmaceutically excipients, which are hydrophobic in nature.
- the polymers that can be used to form the rate-controlling membrane or micromatrix are described in greater detail herein below.
- the hydrophobic release controlling agents are selected from but are not limited to Ammonio methacrylate copolymers type A and B as described in USP, methacrylic acid copolymer type A, B and C as described in USP, Polyacrylate dispersion 30% as described in Ph.
- Polyvinyl acetate dispersion ethylcellulose, cellulose acetate, cellulose propionate (lower, medium or higher molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose triacetate, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), and poly(hexyl methacrylate).
- waxes such as beeswax, carnauba wax, microcrystalline wax, and ozo
- the release controlling agents contains ammonio methacrylate co-polymers and fatty acid esters as hereinafter described.
- the suitable hydrophobic agents are polymers sold under the Trade Mark Eudragit RS (Ammonio Methacrylate Copolymer type B USP), (Eudragit NE 30D (Polyacrylate dispersion 30% Ph. Eur.), Eudragit RL (Ammonio Methacrylate Copolymer type A USP) and Kollicoat SR 30 D and fatty acid esters such as glyceryl behenate, glycerol distearate and hydrogenated castor oil.
- Eudragit polymers are polymeric lacquer substances based on acrylate and/or methacrylates.
- the outer portion can also include one or more commonly used excipients in oral pharmaceutical formulations.
- Representative commonly used excipients in oral pharmaceutical formulations include talc, fumed silica, glyceryl monostearate, magnesium stearate, calcium stearate, kaolin, colloidal silica, gypsum, Tween 80, Geleol pastiles (trade mark), micronised silica and magnesium trisilicate.
- the quantity of commonly used excipients in oral pharmaceutical formulations used is from about 0.5% to about 200% by weight, preferably from 2 to 100% more particularly 10 to 60% based on the total dry weight of the polymer.
- the outer portion can also include a material that improves the processing of the release controlling agents.
- materials are generally referred to as “plasticisers” and include, for example, adipates, azelates, benzoates, citrates, isoebucaes, phthalates, sebacates, stearates, tartrates, polyhydric alcohols and glycols.
- plasticisers include acetylated monoglycerides; butyl phthalyl butyl gylcolate; dibutyl tartrate; diethyl phthalate; dimethyl phthalate; ethyl phthalyl ethyl glycolate; glycerin; ethylene glycol, propylene glycol; Triethyl citrate; triacetin; tripropinoin; diacetin; dibutyl phthalate; acetyl monoglyceride; polyethylene glycols; castor oil; triethyl citrate; polyhydric alcohols, acetate esters, glycerol triacetate, acetyl triethyl citrate, dibenzyl phthalate, dihexyl phthalate, butyl octyl phthalate, diisononyl phthalate, butyl octyl phthalate, dioctyl azelate, epoxidised tallate
- the amount of plasticiser to be used is from about 1% to 50% based on the weight of the dry release controlling agent(s).
- the amount of release controlling agent(s) to be used in forming the outer portion will be determined based on various parameters such as the desired delivery properties, including the amount of active ingredient to be delivered, the active ingredient release rate desired, and the size of the micro matrix particles.
- novel dosage form of the present invention can be manufactured by the following procedure:
- the granules of the inner portion can be manufactured in accordance with usual techniques in which the active ingredient and other excipients are mixed and granulated by adding solution of binder in a low or high shear mixer or by fluidized bed granulation.
- the granulate is dried, preferably in a fluidized bed dryer.
- the dried granulate is sieved and mixed with lubricants and disintegrants.
- the manufacture of granules of inner portion can be made by direct mixing of the directly compressible excipients or by roller compaction.
- the micro matrix particles of the outer portion can be manufactured in accordance with usual techniques in which the active ingredient and one or more hydrophobic release controlling agents are mixed and granulated by adding solvent in a low or high shear mixer or by fluidized bed granulator.
- the granulate is dried, preferably in a fluidized bed dryer.
- the dried granulate is sized.
- the sizing of the micromatrix particles can be done using oscillating granulator, comminuting mill or any other conventional method.
- the sieve used for the sizing can have openings from 0.25 mm to 5 mm.
- the micro matrix particles can be made by extrusion, spheronization or by roller compaction.
- the micro matrix particles can be coated by a solution of one or more hydrophobic release controlling agents by any known method, including spray application. Spraying can be carried out using a fluidized bed coated (preferably Wurster coating), or in a pan coating system. Alternatively the coating of the micro matrix particles with one or more rate controlling agents can be done by hot melt process using a granulator or fluidized bed coated (preferably Wurster coating), or in a pan coating system.
- the compression of tablets is carried out on usual press coaters (e.g. machines of the Manesty, Cadmach or Kilian) with slight modification.
- the device such as feed frame and hoppers making top layer are eliminated.
- the granules of the inner layer are charged in the hopper of the machine compressing first layer and the granules of the outer layer are charged in the hopper of the machine compressing the coating.
- On operation only the bottom layer of the coating (outer portion) is deposited into the die and the first layer is placed on it.
- the compression wheels then embed the first layer in the granules of the outer layer, displacing some of latter to form sides, and finally press the whole into the tablet.
- the resultant tablet has inner portion covered by the outer portion from all the sides except top surface that remains uncovered and the level of the inner portion and the outer portion is same.
- the tablets can be made of various sizes and shapes.
- the present invention uses round punch tooling with upper flat bottom punches and lower flat bottom beveled edges lower punches for the compression of inner portion and oblong shaped flat bottom beveled edges punches for the compression of the outer portion.
- FIG. 1 is a plan view of the dosage form described in the present invention.
- FIG. 2 is an edge view of the dosage form described in the present invention.
- FIG. 3 is a transverse section view as seen along the line 3 - 3 of FIG. 1 ;
- FIG. 4 ( a ) is a cross section of coated micro matrix particles prepared by spheronization and coating for the purpose of illustration only.
- FIG. 4 ( b ) is a cross section of coated micro matrix particles prepared by granulation and coating for the purpose of illustration only.
- FIG. 5 is a plot of % active ingredient versus time for immediate release and modified release active agent
- FIG. 6 is a plot of % active ingredient versus time for modified release active agent prepared using dual retard technique as described in the present invention and prepared without retard release technique as per examples 1 and 3;
- FIG. 7 is a plot of % active ingredient versus time for modified release active agent prepared using dual retard technique as described in the present invention and prepared without retard release technique as per examples 2 and 4.
- FIG. 8 is a plot of metformin plasma concentration versus time for test (a) and reference (b) formulation
- FIG. 9 is a plot of rosiglitazone plasma concentration versus time for test (a) and reference (b) formulation
- FIG. 10 is a plot of metformin plasma concentration versus time for test (a and b) and reference (c) formulation
- FIG. 11 is a plot of metformin plasma concentration versus time for test (a) and reference (b) formulation
- FIG. 12 is a plot of rosiglitazone plasma concentration versus time for test (a) and reference (b) formulation
- a dosage form 4 as described in the present invention having an inner portion 1 containing low dose active ingredient as immediate release and outer portion 2 containing high dose, high solubility active ingredient as modified release.
- FIG. 4 ( a ) & 4 ( b ) show the cross section of the coated micro matrix particles 5 and having 6 a high dose, high solubility active ingredient, 7 hydrophobic release controlling agent and 8 a coating of hydrophobic release controlling agent.
- FIG. 5 shows the release profile of a low dose active ingredient as immediate release 9 and the release profile of a high solubility active ingredient as modified release 10 .
- FIGS. 6 and 7 show release of high dose, high solubility active agent 11 & 12 and 15 & 16 as per example 1 & 2 respectively from a dosage form prepared using dual retard technique as described in the present invention and release of high dose, high solubility active agent 13 & 14 and 17 & 18 as per example 3 & 4 respectively from a dosage form prepared without using dual retard release technique.
- the total quantity of the hydrophobic release controlling agent is same in all the dosage forms inspite of that the figures clearly shows that dual retard technology significantly reduces the burst effect and effectively controls the release rate of the high dose, high solubility active
- Dissolution medium 900 ml pH 6.8 buffer For metformin hydrochloride- Instrument Apparatus II, USP (Paddle) Revolution 50/min. Temperature 37 ⁇ 0.5° C. Dissolution medium 900 ml 0.1 N HCl For rosiglitazone maleate- Instrument Apparatus II, USP (Paddle) Revolution 100/min. Temperature 37 ⁇ 0.5° C. Dissolution medium 500 ml 0.01 N HCl For glimepiride- Instrument Apparatus II, USP (Paddle) Revolution 75/min. Temperature 37 ⁇ 0.5° C. Dissolution medium 500 ml 0.5% sodium lauryl sulfate in water
- composition of outer portion in the dosage form comprising high dose high solubility antidiabetic active ingredient is as follows— Micro matrix particles- Metformin hydrochloride 75% w/w to 99% w/w Eudragit RS 1% w/w to 25% w/w Coated micro matrix particles Micro matrix particles 70% w/w to 99% w/w Hydrogenated castor oil 1% w/w to 30% w/w Magnesium stearate 0% w/w to 2% w/w
- the dissolution of high dose high solubility ingredient of the formulation of the present invention is achieved not more than 45% in 1 hour and from 25 to 90% in six hours.
- metformin hydrochloride is achieved not more than 50% in 1 hour, and from 30 to 90% is in four hours and not less than 65% in 12 hours.
- the maximum plasma concentration can be achieved between 700 ng/ml and 2500 ng/ml, preferably from 900 ng/ml to 2400 ng/ml and more preferably from 1000 ng/ml to 2350 ng/ml.
- the invivo mean dissolution time (MDT) of the dosage form of the present invention is 4 to 6 hours.
- the minimum plasma concentration (at 24 hours) of the said dosage form ranges between 0 to 450 ng/ml after oral administration.
- pravastatin sodium 11.71% w/w of pravastatin sodium is mixed with 52.62% w/w of lactose monohydrate and 22.22% w/w starch and the mixture is granulated in a binder of 2.22 v povidone in water and then dried. The granules are sieved and mixed with 1.11% w/w magnesium stearate, 9.0 g sodium starch glycolate, 0.11% w/w lake of sunset yellow. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm
- Micro matrix particles—90.91% w/w of niacin is mixed with 9.09% w/w of Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- Eudragit RSPO Ammonio Methacrylate Copolymer type B USP
- the compression is done on press coater machine in such a manner that the resultant tablet has inner portion covered by the outer portion from all the sides except top surface that remains uncovered and the level of the inner portion and the outer portion is on the same surface.
- the dissolution rate of the novel dosage form was determined (Table 1 and 2) TABLE 1 Dissolution profile of tablet (A) Niacin Pravastatin sodium Time (hour) % Released Time (min) % Released 1 12.4 45 83.8 2 19.1 60 84.1 4 29.4 6 37.4 8 41.9 10 47.1 12 50.6 14 54.6 24 67.7
- 38.47% w/w of lamotrigine is mixed with 2.71% w/w of crosspovidone and 0.18% w/w colloidal silicon dioxide and the mixture is granulated in a binder of 0.71% w/w povidone in water and then dried.
- the granules are sieved and mixed with 28.70% w/w of Mannitol (Pearlitol SD 200®), 12.31% w/w of crosspovidone, 2.31% w/w of magnesium stearate, 6.15% w/w aspartame, 2.31% w/w talc, 5.0% w/w flavour and 1.15% w/w of colloidal silicon dioxide.
- This mixture is compressed to 65 mg weight tablets having a diameter of 5.55 mm.
- Micro matrix particles—90.91% w/w of sodium valproate is mixed with 9.09% w/w of Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- Eudragit RSPO Ammonio Methacrylate Copolymer type B USP
- Tablet (A) 65 Mg granules of inner portion are pressed to tablets (equal to 25 mg lamotrigine) using 5.55 mm round punches and 643 mg granules of outer portion (equal to 500 mg sodium valproate) are compressed using 14.95 ⁇ 8.35 mm oblong punches.
- Tablet (B) 65 mg granules of inner portion are pressed to tablets (equal to 25 mg lamotrigine) using 5.55 mm round punches and 1286 mg granules of outer portion (equal to 1000 mg sodium valproate) are compressed using 20.3 ⁇ 9.8 mm oblong punches.
- the compression procedure is same as Example 1.
- the dissolution rate of the novel dosage form was determined (Table 3 and 4) TABLE 3 Dissolution profile of tablet (A) Sodium valproate Lamotrigine Time (hour) % Released Time (min) % Released 1 23.3 15 83.5 2 36.3 30 88.6 4 55.1 45 91.6 6 67.5 60 92.8 8 77.0 10 83.8 12 88.9 14 92.5 24 104.6
- Dosage forms described in the examples 3 and 4 are prepared by not coating the micro matrix particles of the outer portion but the hydrophobic release controlling agent is mixed with the micro matrix particles.
- the sole purpose of these examples is to demonstrate the usefulness of the present invention as described earlier. The examples clearly show that the rate of release of the modified release active ingredient is significantly faster than the present invention.
- niacin 77.76% w/w of niacin is mixed with 7.78% w/w of Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried.
- the granules are sized and mixed with 13.61% w/w of hydrogenated castor oil and 0.86% w/w of magnesium stearate.
- 77.76% w/w of sodium valproate is mixed with 7.78% w/w of Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried.
- the granules are sized and mixed with 13.61% w/w of hydrogenated castor oil and 0.86% w/w of magnesium stearate.
- rosiglitazone maleate is mixed with 55.89% w/w of lactose monohydrate and 22.22% w/w starch and the mixture is granulated in a binder of 2.78% w/w povidone and 2.78% w/w starch in water and then dried.
- the granules are sieved and mixed with 0.28% w/w magnesium stearate, 10.00% w/w sodium starch glycolate, 0.17% w/w ferric oxide yellow. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm.
- Micro matrix particles—90.91% w/w of metformin hydrochloride is mixed with 9.09% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- the compression is done on press coater machine in such a manner that the resultant tablet has inner portion covered by the outer portion from all the sides except top surface that remains uncovered and the level of the inner portion and the outer portion is on the same surface.
- Micro matrix particles—86.96% w/w of metformin hydrochloride is mixed with 13.07% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- the dissolution rate of the novel dosage form was determined (Table 11) TABLE 11 Dissolution profile Metformin Hydrochloride Rosiglitazone Maleate Time (hour) % Released Time (min) % Released 1 32.10 15 75.63 2 41.65 30 88.35 4 59.05 45 103.49 6 63.90 60 105.70 8 73.63 10 79.35 12 84.21 24 94.91
- Micro matrix particles 89 . 36 % w/w of micro matrix particles is charged in fluidized bed processor. 10 . 15 % w/w of glycerol distearate type 1 Ph. Eur. (Precirol ATO 5®) is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.49% w/w magnesium stearate.
- 2.94% w/w of rosiglitazone maleate is mixed with 87.80% w/w of Mannitol (Pearlitol SD 200®), 6.67% w/w of crosspovidone, 2.0%/w/w of magnesium stearate, 0.56% w/w of colloidal silicon dioxide and 0.03%/w/w ferric oxide red. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm.
- the dissolution rate of the novel dosage form was determined (Table 13) TABLE 13 Dissolution profile Metformin Hydrochloride Rosiglitazone Maleate Time (hour) % Released Time (min) % Released 1 38.29 15 80.2 2 53.40 30 96.1 4 69.51 45 103.4 6 78.11 8 86.86 10 93.60 12 97.65 24 100.17
- 1.11% w/w of glimepiride is mixed with 63.28% w/w of lactose monohydrate and 22.22% w/w starch and the mixture is granulated in a binder of 2.22% w/w povidone in water and then dried.
- the granules are sieved and mixed with 1.11% w/w magnesium stearate, 10.0% w/w sodium starch glycolate, 0.06% w/w lake of brilliant blue. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm.
- Micro matrix particles—83.33% w/w of metformin hydrochloride is mixed with 16.67% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- the dissolution rate of the novel dosage form was determined (Table 14) TABLE 14 Dissolution profile Metformin Hydrochloride Glimepiride Time (hour) % Released Time (min) % Released 1 28.0 15 69.4 2 40.5 30 91.87 4 57.8 45 99.64 6 65.8 60 103.87 8 73.2 10 80.3 12 85.0 24 101.8
- Dosage forms described in the example 11 are prepared by not coating the micro matrix particles of the outer portion but the hydrophobic release controlling agent is mixed with the micro matrix particles.
- the sole purpose of these examples is to demonstrate the usefulness of the present invention as described earlier. The examples clearly show that the rate of the modified release active ingredient is significantly faster than the present invention.
- metformin hydrochloride 77.76% w/w of metformin hydrochloride is mixed with 7.780% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried.
- the granules are sized and mixed with 13.61% w/w of hydrogenated castor oil and 0.86% w/w of magnesium stearate.
- Micro matrix particles—93.02% w/w of metformin hydrochloride is mixed with 6.98% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- the dissolution rate of the novel dosage form was determined (Table 18) TABLE 18 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 40.9 45 89.68 2 52.2 60 91.42 4 68.4 6 79.2 8 88.6 10 99.9 12 101.5
- the dissolution rate of the novel dosage form was determined (Table 19) TABLE 19 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 44.50 15 79.9 2 58.90 30 89.9 4 76.90 45 95.8 6 91.40 60 100.6 8 102.40
- the dissolution rate of the novel dosage form was determined (Table 20) TABLE 20 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 42.40 45 86.05 2 58.1 60 90.73 4 75.9 6 86.5 8 94.5 10 99.0
- Micro matrix particles—90.91% w/w of metformin hydrochloride is mixed with 4.55% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and 4.55% w/w of Eudragit RL (Ammonio Methacrylate Copolymer type A USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- the dissolution rate of the novel dosage form was determined (Table 22) TABLE 22 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 47.56 45 92.94 2 61.93 60 96.70 4 82.42 6 96.0 8 100.0
- 2.22% w/w of glimepiride is mixed with 62.17% w/w of lactose monohydrate and 22.22% w/w starch and the mixture is granulated in a binder of 2.22% w/w povidone in water and then dried.
- the granules are sieved and mixed with 0.56% w/w magnesium stearate, 10.0% w/w sodium starch glycolate, 0.06% w/w lake of erythrocine and 0.56% w/w colloidal silicon dioxide. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm.
- the dissolution rate of the novel dosage form was determined (Table 25) TABLE 25 Dissolution profile Metformin Hydrochloride Glimepiride Time (hour) % Released Time (min) % Released 1 38.79 45 100.7 2 54.12 60 102.2 4 69.54 6 82.04 8 89.78 10 95.06 12 100.48
- the biostudy had an open label, randomized two period, two treatment, two way single dose crossover study with 7 days washout period between treatment days.
- Non-compartmental Pharmacokinetic assessment was based on the plasma levels of Metformin and Rosiglitazone measured by blood sampling. Blood samples were obtained before dosing and at the following times after administration of test and reference formulations;
- Pre-dose 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 18.0, and 24.0 hours.
- Test Formulation 4 mg/1000 mg Rosiglitazone/Metformin SR prepared as per the invention disclosed in the examples.
- the following Pharmacokinetic parameters were calculated using non compartments methods: the area under the drug plasma concentration curve from time of dosing to the time of last sampling point (AUC (0-t) ); the area under the drug plasma concentration versus time curve extrapolated to infinity (AUC (0-Inf) ); the maximum measured concentration of the drug in the plasma (C max ) and the time at which this concentration was measured (t max ); the concentration at 24 hours (C 24h ); the time taken for drug plasma concentration to decrease by 50% (t 1/2 ); and the terminal first-order elimination rate constant (K el ).
- AUC Area Under the curve
- AUC( 0 -t) represents area under the curve from zero to time t, where t represents the time at which last blood sample was taken.
- AUC (0-Inf) represents area under the curve from zero to infinity.
- Elimination half life of a drug is the time in hours necessary to reduce the drug concentration in the blood, plasma or serum to 1 ⁇ 2 after equilibrium is reached.
- C max is the peak plasma concentration achieved after the administration of the drug.
- T max is the time to reach peak plasma concentration.
- Metformin in plasma samples was carried out by High Performance Liquid Chromatography and UV detection at 234 nm. Briefly 0.5 ml of plasma sample was precipitated with 2.0 ml acetonitrile. Samples were centrifuged and supernatant aliquot was washed with dichloromethane. After centrifugation, aqueous layer was injected on HPLC.
- Metformin in test formulation has shown sustained release characteristics with lower C max and prolonged t max ( FIG. 8 ). The relative bioavailability of both the components was studied.
- a biostudy was carried out with the preliminary objective of comparing the relative bioavailability of the 1000 mg metformin sustained release formulations (A & B) relative to immediate release metformin tablets 2 ⁇ 500 mg (marketed as Glycomet® by USV Ltd.; India.).
- a secondary objective was to characterize the plasma concentration profile of metformin in the sustained release formulation relative to immediate release formulation i.e. Glycomet® 2 ⁇ 500 mg tablets.
- the biostudy had an open label, randomized, three periods, three treatment, three way, single dose crossover design with 7 days washout period between treatment days.
- Non-compartmental Pharmacokinetic assessment was based on the plasma levels of metformin measured by blood sampling. Blood samples were obtained before dosing and at the following times after administration of test and reference formulations;
- Pre-dose 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 18.0, and 24.0 hours.
- Formulation A 4 mg/1000 mg Rosiglitazone/Metformin dosage form prepared as per the invention disclosed in the examples.
- Formulation B 4 mg/1000 mg Rosiglitazone/Metformin SR dosage form prepared as per the invention disclosed in the examples.
- Formulation C Immediate release 4 mg Enselin® plus Glycomate® (2 ⁇ 500 mg)
- volunteers received a single oral dose of above products with 200 ml of water following high calorie diet ( ⁇ 800 Kcal).
- Both the formulations according to the invention tested had reduced C max compared to, that of the reference product (Glycomet® tablets), with Formulation B being significantly reduced.
- the t max of both the formulations according to invention were prolonged relative to that of Glycomet® tablets.
- the concentration at 24 hours (C 24h ) of Formulation B was almost 4.5 times higher than Glycomet® tablets and almost 2.6 times higher than Formulation A.
- rosiglitazone immediate release tablet marketed as Avandia® by Glaxo Smithkline; United Kingdom.
- the biostudy had an open label, randomized two period, two treatment, two way single dose crossover study with 7 days washout period between treatment days.
- Non-compartmental Pharmacokinetic assessment was based on the plasma levels of Metformin and Rosiglitazone measured by blood sampling. Blood samples were obtained before dosing and at the following times after administration of test and reference formulations;
- Pre-dose 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 18.0, and 24.0 hours.
- Test Formulation 4 mg/1000 mg Rosiglitazone/Metformin sustained release dosage form prepared as per the invention disclosed in the examples. Volunteers received a single oral dose of above products with 200 ml of water following high calorie dinner ( ⁇ 1400 KCal).
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Emergency Medicine (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
A dosage form comprising of a high dose, high solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release active ingredient per unit is from 500 mg to 1500 mg; a process for preparing the dosage form.
Description
- This invention relates to a dosage form comprising of a high dose, high solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release high dose high solubility active ingredient per unit is from 500 mg to 1500 mg and the weight of immediate release active ingredient is up to 50 mg; a process for preparing the formulation
- Combining two active ingredients in one pharmaceutical unit to improve patient compliance is known in literature. It can be either in the form of two or more active ingredients in immediate release form or a combination of immediate release and modified release form. There are various techniques by which the combination of immediate release and modified release is formulated in single dosage form.
- Several examples of formulations having combination of immediate release active ingredient and modified release active ingredient are described below.
- Shoichi Higo and Kazuo Igusa describes in U.S. Pat. No. 5,985,843 various types of pharmaceutical formulations, which consists of a delayed release of sucralfate and an immediate release fraction of another active ingredient. The pharmaceutical dosage forms are a tablet formulation containing immediate release and delayed release granules; a two or three layer tablet; a tablet with delayed release core surrounded by immediate release shell; a delayed release tablet/granule coated with a film of immediate release active ingredient.
- Similarly Jurgen Zeidler et. al describes in U.S. Pat. No. 6,001,391 a process for producing solid combination tablets, which have at least two phases. The one of the two phases is processed by melt extrusion technique and contains a water soluble or swellable binder.
- A compressed V-shaped center scored double layer tablet is disclosed by George M. Krause et. al in U.S. Pat. No. 3,336,200, one layer of which contains immediate release Active Ingredient and the other layer contains sustained release Active Ingredient. The tablet is divisible in two equal halves.
- Similarly Jacob A. Glassman described in U.S. Pat. No. 4,503,031 a super fast starting, slow release medicinal tablet, wherein the tablet is comprised of two layers of compressed matrix that are fused together by means of readily dissolvable adhesive substance.
- Allan A. Rubin describes in U.S. Pat. No. 6,238,699 B1 a pharmaceutical dosage form of carbidopa and levodopa where both the Active Ingredients are present as immediate release and sustained release. The formulation is in the form of inlay tablet or bilayered tablet or a capsule containing pellets.
- Block Jurgen et. al. describes in PCT application No. WO 01/72286 A1 a formulation of vitamin composition whereas a beadlet comprises a slow release core coated by a controlled release coating. The sustained release core is coated with an immediate release layer.
- Richard Ting and Charles Hscao describes in U.S. Pat. No. 6,372,254 B1 a press coated, pulsatile active ingredient delivery system which comprises a core of immediate release, enveloped by an extended release compartment.
- The need to use active ingredients with different and complementary mechanisms of action frequently arises in treatment of diabetes. There are several reasons to do this, namely, the disease itself is progressive, with deterioration of glycemic control over time; mono-therapeutic attempts to achieve and maintain glycemic control often fail in the long run; multiple defects in the disease and consequently primary drug failures (1, 2, 3).
- Current guidelines for combination therapy advise the use of agents with differing and complementary mechanisms of action in order to maximize therapeutic activity and reduce toxicity. Earlier introduction of combination therapy is increasingly being recommended. The commonly combined active ingredients include biguanides (metformin)+sulphonylureas, biguanides+PPARγ agonists (thiazolidinediones), sulphonylureas+thiazolidinediones, non-sulfonylurea secretagogues (repaglinide)+biguanides etc.
- Fixed dose combinations of many of the above mentioned co-administer active ingredients have also been approved by the FDA. Most of these combinations are conventional formulations combined together into a single tablet. However, because of the disparity in the duration of action (half-life), these combinations are given twice or thrice a day.
- To reduce this disparity in the duration of action, a novel strategy would be to combine a sustained release formulation of one active ingredient (shorter duration of action) with conventional formulation (long duration of action) of another active ingredient. This would make it possible to give the active ingredients in same dosing frequency.
- This type of combination will give better compliance and a relative freedom from mealtime drug administration, thus, improving the quality of life. More importantly, because of prolonged duration of action, it shall produce a stricter control of blood glucose and consequently less diabetic complications.
- The techniques described above do not work well when the difference in the dose of active ingredients are high for example where the weight ratio of active ingredients in immediate release and modified release is from 1:10 to 1:15000 and the dose of modified release active ingredient per unit is from 500 mg to 1500 mg. The techniques described in the prior art do not give good results when the active ingredient is highly soluble. The weight of the dosage form becomes very high, or complicated process for manufacturing is required, or accurate dosing of low dose active ingredient is difficult when the techniques reported in the prior art are utilized to make formulation with high dose, high solubility active ingredient in the form of modified release and small dose active ingredient into immediate release form where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release active ingredient per unit is from 500 mg to 1500 mg and also it is inconvenient to swallow due to large size.
- Accordingly a need exists for a dosage form providing combination of immediate release and modified release active ingredients and providing solution to problems associated with dosage forms described in prior art. Further, the dosage form should be simple and economical to produce.
- Therefore an object of the present invention is a dosage form of combination of a high dose, high solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release active ingredient per unit is from 500 mg to 1500 mg.
- Another object of the present invention is a dosage form which is suitable for swallowing for humans containing two active ingredients one of which is in modified release form and other in immediate release form.
- Accordingly, an object of the present invention to provide a dosage form, which uses dual retard technique to control the release of the high dose, high solubility active ingredient and significantly reduce the amount of release controlling agents which are otherwise required in very high quantity and make the dosage form very bulky and therefore pose difficulty in swallowing.
- A further object of the present invention is to provide a dosage form, containing one active ingredient in an immediate release form and another active ingredient as modified release and the release or disintegration of the immediate release active ingredient is not hindered by the modified release ingredient.
- Another object of the present invention is to provide a dosage form, which effectively avoids the problem of separation of layers of multilayered tablets.
- A further object of the present invention is a formulation, which gives accurate dosing and is prepared by conventional and simple processes.
- A further object of the present invention is to provide a dosage form, which can be given twice a day or more preferably can be given once a day.
- The above objects are realized by a dosage form, which is comprised of an inner portion and an outer portion. The inner portion is surrounded by the outer portion in such a manner that only one surface of the inner portion is exposed. The inner portion contains a low dose active ingredient in immediate release form and the outer portion contains a high dose, high solubility active ingredient as modified release. The weight of the immediate release low dose active ingredient and high dose, high solubility modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release active ingredient per unit is from 500 mg to 1500 mg.
- The present invention also provides solid oral dosage form comprising a composition according to the invention.
- The present invention also teaches the use of dual retard technique to effectively control the release rate of modified release active ingredient by using small quantity of release controlling agents. This dual retard technique thus sufficiently reduces the size of the dosage form, which is convenient for swallowing.
- The present invention further teaches the use of hydrophobic release controlling agents, which do not hinder the release of the immediate release active ingredient.
- The present invention further provides the dosage form that effectively prevents the problem of separation of the layers of the multilayered tablets.
- The present invention also provides a novel process for preparing the novel formulations of the invention.
- The present invention further provides a method of treating an animal, particularly a human in need of treatment utilizing the active agents, comprising administering a therapeutically effective amount of composition or solid oral dosage form according to the invention to provide administration of two active ingredients one in immediate release and other in modified release form.
- This invention relates to a novel dosage form of combination of high dose high solubility active ingredient, as modified release and low dose active ingredient as immediate release, suitable for swallowing comprising dual retard technique to control the release of the high dose high solubility active ingredient, with sufficient reduction in the amount of release controlling agent, without interfering the release of each other.
- The term “modified release” as used herein in relation to the composition according to the invention or a rate controlling polymer or used in any other context means release, which is not immediate release and is taken to encompass controlled release, sustained release, prolonged release, timed release, retarded release, extended release and delayed release. The term “modified release dosage form” as used herein can be described as dosage forms whose drug-release characteristics of time course and/or location are chosen to accomplish therapeutic or convenience objectives not offered by conventional dosage forms such as a solution or an immediate release dosage form. Modified release solid oral dosage forms include both delayed and extended release drug products (as per US FDA guideline for ‘SUPAC-MR: Modified Release Solid Oral Dosage Forms’).
- The term “irnmediate release” as used herein in relation to composition according to the invention or used in any other context means release which is not modified release and releases more than 70% of the active ingredient within 60 minutes. The term “immediate release dosage form” as used herein can be described as dosage form which allows the drug to dissolve in the gastrointestinal contents, with no intention of delaying or prolonging the dissolution or absorption of the drug (as per US FDA guideline for ‘SUPAC-MK Modified Release Solid Oral Dosage Forms’).
- The term “dosage form” denotes any form of the formulation that contains an amount sufficient to achieve a therapeutic effect with a single administration.
- The term “active ingredient” refers to an agent, active ingredient compound or other substance, or compositions and mixture thereof that provide some pharmacological, often beneficial, effect. Reference to a specific active ingredient shall include where appropriate the active ingredient and it's pharmaceutically acceptable salts.
- The term “high dose” as used herein refers to the weight of active ingredient in unit dosage form according to the invention is from 500 mg to 1500 mg.
- The term “low dose” as used herein refers to the weight of the active ingredient in unit dosage form according to the invention is less than or equal to 50 mg.
- The term “high solubility” as used herein in relation to high dose active ingredient means that from less than 1 part to 30 parts of the water will require dissolving 1 part of active ingredient.
- The invention provides a novel dosage form of high dose, high solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of modified release antidiabetic active ingredient per unit is from 500 mg to 1500 mg; a process for preparing the dosage form.
- The dosage form comprises of two parts (i) inner portion as an immediate release and (ii) outer portion as modified release. The two parts are compressed together in such a way that one surface of the inner portion remains exposed and the remaining surfaces are covered by the outer portion.
- (i) Inner portion—Inner portion comprises of a low dose active ingredient and includes one or more commonly used excipients in oral immediate release pharmaceutical formulations.
- The low dose active ingredient can be present in the form of a free base or in the form of pharmaceutically acceptable salts. Pharmaceutically acceptable salts forming part of this invention are intended to define but not limited to salts of the carboxylic acid moiety such as alkali metal salts like Li, Na and K salts; alkaline earth metal salts like Ca and Mg salts; salts of organic bases such as lysine, arginine, guanidine, diethanolamine, choline, and the like; ammonium or substituted ammonium salts and aluminium salts. Salts may be acid addition salts which defines but not limited to sulfates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, succinates, palmoates, methanesulfonates, benzoates, salicylates, hydroxynaphthoates, benzensulfonates, ascorbates, glycerophosphates, ketoglutarates and the like.
- Further, the low dose active ingredient, where applicable, may be present either in the form of one substantially optically pure enantiomer or as a mixture of enantiomers or polymorphs thereof.
- In the dosage form of the present invention, the inner portion may optionally contain more than one low dose active ingredient.
- In the dosage form of the present invention, the inner portion may optionally contain more than one low dose antidiabetic active ingredient.
- The low dose active ingredient is in the form of immediate release and has dose of 50 mg or less.
- The low dose active ingredients are comprises of the following therapeutic classes but not limited to antidiabetic agents, anti-histamines, anti-depressants, anti-viral agents, anesthetics, antacids, anti-arththriics, antibiotics, anti-psychotics, anti-spasmodics, anxiolytic agents, appetite suppressants, cardiovascular agents, cough suppressants, emollients, gastro-intestinal agents, growth regulators, respiratory stimulants, vitamins, angiotensin converting enzyme inhibitors, anti-asthmatics, anti-cholesterolemics, anti-convulsants, anti-depressants, anti-diarrhea preparations, anti-infective, anti-inflammatory agents, anti-nauseants, anti-stroke agents, anti-tumor drugs, anti-tussives, anti-uricemic drugs, amino-acid preparations, antiemetics, antiobesity drugs, antiparasitics, antipyretics, appetite stimulants, celebral dilators, chelating agents, cholecystokinin antagonists, cognition activators, deodorants, dermatological agents, diuretics, erythropoietic drugs, fertility agents, synthetic hormones, laxatives, mineral supplements, neuroleptics, neuromuscular agents, peripheral vaso-dilators, prostaglandins, vaginal preparations, vaso-constrictors, vertigo agents, sulphonylurease, meglitinides, PPAR gama agonist [insulin sensitisers (thiazolidinedione)], PPAR alpha and gamma agonist, alpha-glucosidase inhibitors and the active ingredients described in U.S. Pat. Nos. 2,968,158, 3,097,242, 3,454,635, 3,654,357, 3,668,215, 3,669,966, 3,708,486, 3,801,495, 5,104,888, 5,232,945, 5,264,451, 5,478,852, 6,296,874, and European patent publication numbers EP0008203, EP0032128, EP0139421, EP0155845, EP0177353, EP0208420, EP0257881, EP0306228, EP0319189, EP0332331, EP0332332, EP0428312, EP0489663, EP0508740, EP0528734, EP0533933, EP0833933, EP87112480.6 and Japanese patent number 05271204 and United Kingdom patent numbers 5504078, GB2088365A and PCT patent application numbers WO91/19702, WO92/03425, WO92/18501, WO93/02079, WO93/21166, WO93/22445, WO94/01420, WO94/05659.
- Examples of low dose active ingredients comprises of but not limited to zafirlukast, quinapril hydrochloride, isotretinoin, rabeprazole sodium, estradiol (e2), norethindrone acetate, risedronate sodium, pioglitazone HCl, amphetamine, anagrelide hydrochloride, biperiden HCl, mephalan, alprazolam, ramipril, naratriptan hydrochloride, leflunomide, anastrozole, exemestane, paroxetine mesylate, candesartan cilexetil, almotriptan, cerivastatin, betaxolol hydrochloride, bisoprolol fumarate, deloratadine, clonazepam, clorazepate dipotassium, clozapine, methylphenidate HCl, carvedilol, warfarin sodium, norgestrel, ethinyl estradiol, cyclophosphamide, pemoline, liothyronine sodium, misoprostol, tolterodine tartrate, dextroamphetarine sulfate, dicyclomine hydrochloride, digoxin, oxybutynin chloride, doxazosin mesylate, ethacrynate sodium, venlafaxine HCl, enalapril maleate, estradiol, estropipate, famotidine, letrozole, fludrocortisone acetate, fluoxetine, dexmethylphenidate hci, alendronate sodium, ziprasidone, glipizide, glyburide, miglitol, guanabenz acetate, haloperidol, doxercalciferol, zalcitabine, hydrochlorothiazide, hydromorphone HCl, indapamide, estradiol, nitric oxide, ketorolac tromethamine, clonazepam, granisetron, lamotrigine, fluvastatin sodium, levonorgestrel, levothyroxine sodium, atorvastatin calcium, lisinopril, minoxidil loperamide, loratidine, lorazepam, lovastatin, pravastatin sodium, fluvoxamine maleate, acetaminophen, acyclovir, aminocaproic acid, pitavastatin, rosuvastatin, dalvastatin, sertraline, pitavastatin, rosuvastatin, dalvastatin, escetalopram, sertraline, celecoxib, parecoxib, valdecoxib, glibenclamide(glyburide), glipizide, gliclazide, glimepiride, tolazamide, tolbutamide, clorpropamide, gliquidone, nateglinide, glyburide, glisoxepid, glibornuride, phenbutamide, tolcyclamide, repaglinide, troglitazone, ciglitazone, pioglitazone, englitazone, acarbose, voglibose, emiglitate, miglitol, farglitazar, (S)-2-ethoxy-3-[4-(2-{4-methanesulfonyloxyphenyl}ethoxy)phenyl]propanoic acid, 3-{4-[2-(4-tert-butoxycarbonylaminophenyl)ethoxy]phenyl}-(S)-2-ethoxy propanoic acid and L-6766892. Further examples of low dose, antidiabetic active ingredients comprises of but not limited to JTT-501 (PNU-182716) (Reglitazar), AR-H039242, MCC-555 (Netoglitazone), AR-H049020, Tesaglitazar), CS-011 (CI-1037), GW-409544×KRP-297, RG-12525, BM-15.2054, CLX-0940, CLX-0921, DRF-2189, GW-1929, GW-9820, LR-90, LY-510929, NIP-221, NIP-223, JTP-20993, LY 29311 Na, FK 614, BMS 298585, R 483, TAK 559, DRF 2725 (Ragaglitazar), L-686398, L-168049, L805645, L-054852, Demethyl asteriquinone B1 (L-783281), L-363586, KRP-297, P32/98, CRE-16336 and EML-16257.
- As indicated above the inner portion of the present invention may comprise auxiliary excipients such as for example diluents, binders, lubricants, surfactants, disintegrants, plasticisers, anti-tack agents, opacifying agents, pigments, and such like. As will be appreciated by those skilled in the art the exact choice of excipient and their relative amounts will depend to some extent on the final oral dosage form.
- Suitable diluents include for example pharmaceutically acceptable inert fillers such as microcrystalline cellulose, lactose, starch, dibasic calcium phosphate, saccharides, and/or mixtures of the foregoing. Examples of diluents include microcrystalline celluloses such as those sold under the Trade Mark Avicel PH 101, Avicel PH 102, Avicel PH 112,
Avicel PH 200, Avicel PH301 and Avicel PH 302; lactose such as lactose monohydrate, lactose anhydrous and Pharmatose DCL21 (Pharmatose is a Trade Mark), including anhydrous, monohydrate and spray dried forms; dibasic calcium phosphate such as Emcompress (Emcompress is a Trade Mark); mannitol; Pearlitol SD 200 (Pearlitol SD 200 is a trade mark); starch; sorbitol; sucrose; and glucose. - Suitable binders include for example starch, povidone, hydroxypropylmethylcellulose, pregelatinised starch hydroxypropylcellulose and/or mixtures of the foregoing.
- Suitable lubricants, including agents that act on the flowability of the powder to be compressed are, for example, colloidal slilcon dioxide such as Aerosil 200 (Aerosil is a Trade Mark); talc; stearic acid, magnesium stearate, calcium stearate and sodium stearyl fumarate.
- Suitable disintegrants include for example lightly crosslinked polyvinyl pyrrolidone, corn starch, potato starch, maize starch and modified starches, croscarmellose sodium, cross-povidone, sodium starch glycolate and combinations and mixtures thereof (ii) Outer Portion: The outer portion comprises of a) Micro matrix particles containing high dose, high solubility active ingredient and one or more hydrophobic release controlling agent, b) Coating of Micro matrix particles with one or more hydrophobic release controlling agents. The outer portion may also include one or more commonly used excipients in oral pharmaceutical formulations. The release of the high dose, high solubility active ingredient is controlled through dual retard technique. The dual retard technique is a combination of matrix formulations and reservoir formulations. First the micro matrix particles of high dose, high solubility dose active ingredient and one or more hydrophobic release controlling agents are formed and then these are further coated with one or more release controlling agents. Thus the dual retard release technique presents the double barriers and effectively controls the diffusion of the high dose, high solubility active ingredients from the present invention in predictable manner and also significantly reduces the amount of release controlling agents which are otherwise required in very high quantity and make the dosage form very bulky and therefore pose difficulty in swallowing.
- The other advantages of the present invention are such as it reduces the chances of dose dumping, unnecessary burst effects and failure of the system, which are otherwise usually associated with simple matrix or reservoir systems.
- Further advantages of present invention include the disintegration of inner portion is not hindered as nonswellable release controlling agents are used which do not swell and maintain the shape during operation and it effectively prevents the separation of the layers of the multilayered tablets which is normally associated with normal multilayered tablets.
- The high dose, high solubility active ingredient can be present in the form of a free base or in the form of pharmaceutically acceptable salts. Pharmaceutically acceptable salts forming part of this invention are intended to define but not limited to salts of the carboxylic acid moiety such as alkali metal salts like Li, Na and K salts; alkaline earth metal salts like Ca and Mg salts; salts of organic bases such as lysine, arginine, guanidine, diethanolamine, choline, and the like; ammonium or substituted ammonium salts and aluminium salts. Salts may be acid addition salts which defines but not limited to sulfates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, succinates, palmoates, methanesulfonates, benzoates, salicylates, hydroxynaphthoates, benzensulfonates, ascorbates, glycerophosphates, ketoglutarates and the like.
- Further, the high dose, high solubility active ingredient, where applicable, may be present either in the form of one substantially optically pure enantiomer or as a mixture of enantiomers or polymorphs thereof.
- The high dose, high solubility active ingredient is in the form of modified release and has dose from 500 mg to 1500 mg.
- The high dose, high solubility active ingredients are comprises of the following therapeutic classes but not limited to antidiabetic agents, anti-histamines, anti-depressants, anti-viral agents, anesthetics, antacids, anti-arthritis, antibiotics, anti-psychotics, anti-spasmodics, anxiolytic agents, appetite suppressants, cardiovascular agents, cough suppressants, emollients, gastrointestinal agents, growth regulators, respiratory stimulants, vitamins, angiotensin converting enzyme inhibitors, anti-asthmatics, anti-cholesterolemics, anti-convulsants, anti-depressants, anti-diarrhea preparations, anti-infective, anti-inflammatory agents, anti-nauseants, anti-stroke agents, anti-tumor drugs, anti-tussives, anti-uricemic drugs, amino-acid preparations, antiemetics, antiobesity drugs, antiparasitics, antipyretics, appetite stimulants, cerebral dilators, chelating agents, cholecystokinin antagonists, cognition activators, deodorants, dermatological agents, diuretics, erythropoietic drugs, fertility agents, synthetic hormones, laxatives, mineral supplements, neuroleptics, neuromuscular agents, peripheral vaso-dilators, prostaglandins, vaginal preparations, vaso-constrictors, vertigo agents, biguanides and the active ingredients described in U.S. Pat. Nos. 3,957,853, 4,080,472, 3,174,901, 4,835,184, 6,031,004.
- Examples of high dose, high solubility active ingredients comprises of but not limited to potassium chloride, metformin hydrochloride, phenformin, buformin, clindamycin, hydroxyurea, erythromycin, lactobionate, vancomycin hydrochloride, balsalazide disodium, sodium valproate, niacin, aminocaproic acid, acetaminophen, Ciprofloxacin, quetiapine. Other drugs suitable for use and meeting the solubility and dose criteria described above will be apparent to those skilled in the art.
- In the dosage form of the present invention, the outer portion may optionally contain more than one high dose high solubility active ingredient.
- In the dosage form of the present invention, the outer portion may optionally contain more than one high dose high solubility antidiabetic active ingredient.
- As indicated above the outer portion of the present invention may comprise auxiliary excipients such as for example lubricants, plasticisers, anti-tack agents, opacifying agents, pigments, and such like. As will be appreciated by those skilled in the art, the exact choice of excipient and their relative amounts will depend to some extent on the final oral dosage form.
- Suitable lubricants, including agents that act on the flowability of the powder to be compressed are, for example, colloidal silicon dioxide such as Aerosil 200 (Aerosil is a Trade Mark); talc; stearic acid, magnesium stearate, calcium stearate and sodium stearyl fumarate.
- In micro matrix particles, the active ingredient and one or more hydrophobic release controlling agents are preferably present in a ratio of from 100:1 to 100:75, more particularly from 100:2.5 to 100:50, still more preferably from 100:2.5 to 100:30 and most preferably from 100:2.5 to 100:20.
- In outer portion, micro matrix particles and coating of one or more hydrophobic release controlling agents are preferably present in a ratio of from 100:0.5 to 100:75, more particularly from 100:2.5 to 100:50, still more preferably from 100:2.5 to 100:30 and most preferably from 100:2.5 to 100:20.
- According to one embodiment the release controlling agents are pharmaceutically excipients, which are hydrophobic in nature.
- The polymers that can be used to form the rate-controlling membrane or micromatrix are described in greater detail herein below.
- The hydrophobic release controlling agents are selected from but are not limited to Ammonio methacrylate copolymers type A and B as described in USP, methacrylic acid copolymer type A, B and C as described in USP, Polyacrylate dispersion 30% as described in Ph. Eur., Polyvinyl acetate dispersion, ethylcellulose, cellulose acetate, cellulose propionate (lower, medium or higher molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose triacetate, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), and poly(hexyl methacrylate). Poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl actylate), poly(octadecyl acrylate), waxes such as beeswax, carnauba wax, microcrystalline wax, and ozokerite; fatty alcohols such as cetostearyl alcohol, stearyl alcohol; cetyl alcohol and myristyl alcohol; and fatty acid esters such as glyceryl monostearate, glycerol distearate; glycerol monooleate, acetylated monoglycerides, tristearin, tripalmitin, cetyl esters wax, glyceryl palmitostearate, glyceryl behenate, and hydrogenated castor oil.
- According to an especially preferred embodiment the release controlling agents contains ammonio methacrylate co-polymers and fatty acid esters as hereinafter described.
- The suitable hydrophobic agents are polymers sold under the Trade Mark Eudragit RS (Ammonio Methacrylate Copolymer type B USP), (Eudragit NE 30D (Polyacrylate dispersion 30% Ph. Eur.), Eudragit RL (Ammonio Methacrylate Copolymer type A USP) and Kollicoat SR 30 D and fatty acid esters such as glyceryl behenate, glycerol distearate and hydrogenated castor oil. Eudragit polymers are polymeric lacquer substances based on acrylate and/or methacrylates.
- The outer portion can also include one or more commonly used excipients in oral pharmaceutical formulations.
- Representative commonly used excipients in oral pharmaceutical formulations include talc, fumed silica, glyceryl monostearate, magnesium stearate, calcium stearate, kaolin, colloidal silica, gypsum,
Tween 80, Geleol pastiles (trade mark), micronised silica and magnesium trisilicate. - The quantity of commonly used excipients in oral pharmaceutical formulations used is from about 0.5% to about 200% by weight, preferably from 2 to 100% more particularly 10 to 60% based on the total dry weight of the polymer.
- The outer portion can also include a material that improves the processing of the release controlling agents. Such materials are generally referred to as “plasticisers” and include, for example, adipates, azelates, benzoates, citrates, isoebucaes, phthalates, sebacates, stearates, tartrates, polyhydric alcohols and glycols.
- Representative plasticisers include acetylated monoglycerides; butyl phthalyl butyl gylcolate; dibutyl tartrate; diethyl phthalate; dimethyl phthalate; ethyl phthalyl ethyl glycolate; glycerin; ethylene glycol, propylene glycol; Triethyl citrate; triacetin; tripropinoin; diacetin; dibutyl phthalate; acetyl monoglyceride; polyethylene glycols; castor oil; triethyl citrate; polyhydric alcohols, acetate esters, glycerol triacetate, acetyl triethyl citrate, dibenzyl phthalate, dihexyl phthalate, butyl octyl phthalate, diisononyl phthalate, butyl octyl phthalate, dioctyl azelate, epoxidised tallate, triisoetyl trimellitate, diethylexyl phthalate, di-n-octyl phthalate, di-I-octyl phthalate, di-I-decyl phthalate, di-n-undecyl phthalate, di-n-tridecyl phthalate, tri-2-ethylexyl trimellitate, di-2-ethylexyl adipate, di-2-ethylhexyl sebacate, di-2-ethylhexyl azelate, dibutyl sebacate, glyceryl mono caprylate, glycerol distearate and glyceryl monocaprate.
- The amount of plasticiser to be used is from about 1% to 50% based on the weight of the dry release controlling agent(s).
- The amount of release controlling agent(s) to be used in forming the outer portion will be determined based on various parameters such as the desired delivery properties, including the amount of active ingredient to be delivered, the active ingredient release rate desired, and the size of the micro matrix particles.
- The novel dosage form of the present invention can be manufactured by the following procedure:
- A) Inner Portion
- The granules of the inner portion can be manufactured in accordance with usual techniques in which the active ingredient and other excipients are mixed and granulated by adding solution of binder in a low or high shear mixer or by fluidized bed granulation. The granulate is dried, preferably in a fluidized bed dryer. The dried granulate is sieved and mixed with lubricants and disintegrants. Alternatively the manufacture of granules of inner portion can be made by direct mixing of the directly compressible excipients or by roller compaction.
- B) Outer Portion
- The micro matrix particles of the outer portion can be manufactured in accordance with usual techniques in which the active ingredient and one or more hydrophobic release controlling agents are mixed and granulated by adding solvent in a low or high shear mixer or by fluidized bed granulator. The granulate is dried, preferably in a fluidized bed dryer. The dried granulate is sized. The sizing of the micromatrix particles can be done using oscillating granulator, comminuting mill or any other conventional method. The sieve used for the sizing can have openings from 0.25 mm to 5 mm. Alternatively the micro matrix particles can be made by extrusion, spheronization or by roller compaction.
- The micro matrix particles can be coated by a solution of one or more hydrophobic release controlling agents by any known method, including spray application. Spraying can be carried out using a fluidized bed coated (preferably Wurster coating), or in a pan coating system. Alternatively the coating of the micro matrix particles with one or more rate controlling agents can be done by hot melt process using a granulator or fluidized bed coated (preferably Wurster coating), or in a pan coating system.
- C) Tablet Compression
- The compression of tablets is carried out on usual press coaters (e.g. machines of the Manesty, Cadmach or Kilian) with slight modification. The device such as feed frame and hoppers making top layer are eliminated. The granules of the inner layer are charged in the hopper of the machine compressing first layer and the granules of the outer layer are charged in the hopper of the machine compressing the coating. On operation only the bottom layer of the coating (outer portion) is deposited into the die and the first layer is placed on it. The compression wheels then embed the first layer in the granules of the outer layer, displacing some of latter to form sides, and finally press the whole into the tablet. The resultant tablet has inner portion covered by the outer portion from all the sides except top surface that remains uncovered and the level of the inner portion and the outer portion is same. The tablets can be made of various sizes and shapes. The present invention uses round punch tooling with upper flat bottom punches and lower flat bottom beveled edges lower punches for the compression of inner portion and oblong shaped flat bottom beveled edges punches for the compression of the outer portion.
-
FIG. 1 is a plan view of the dosage form described in the present invention; -
FIG. 2 is an edge view of the dosage form described in the present invention; -
FIG. 3 is a transverse section view as seen along the line 3-3 ofFIG. 1 ; -
FIG. 4 (a) is a cross section of coated micro matrix particles prepared by spheronization and coating for the purpose of illustration only. -
FIG. 4 (b) is a cross section of coated micro matrix particles prepared by granulation and coating for the purpose of illustration only. -
FIG. 5 is a plot of % active ingredient versus time for immediate release and modified release active agent; -
FIG. 6 is a plot of % active ingredient versus time for modified release active agent prepared using dual retard technique as described in the present invention and prepared without retard release technique as per examples 1 and 3; -
FIG. 7 is a plot of % active ingredient versus time for modified release active agent prepared using dual retard technique as described in the present invention and prepared without retard release technique as per examples 2 and 4. -
FIG. 8 is a plot of metformin plasma concentration versus time for test (a) and reference (b) formulation; -
FIG. 9 is a plot of rosiglitazone plasma concentration versus time for test (a) and reference (b) formulation; -
FIG. 10 is a plot of metformin plasma concentration versus time for test (a and b) and reference (c) formulation; -
FIG. 11 is a plot of metformin plasma concentration versus time for test (a) and reference (b) formulation; -
FIG. 12 is a plot of rosiglitazone plasma concentration versus time for test (a) and reference (b) formulation; - Referring to FIGS. 1 to 3, a
dosage form 4 as described in the present invention having aninner portion 1 containing low dose active ingredient as immediate release andouter portion 2 containing high dose, high solubility active ingredient as modified release. -
FIG. 4 (a) & 4(b) show the cross section of the coatedmicro matrix particles 5 and having 6 a high dose, high solubility active ingredient, 7 hydrophobic release controlling agent and 8 a coating of hydrophobic release controlling agent.FIG. 5 shows the release profile of a low dose active ingredient asimmediate release 9 and the release profile of a high solubility active ingredient as modifiedrelease 10.FIGS. 6 and 7 show release of high dose, high solubilityactive agent 11 & 12 and 15 & 16 as per example 1 & 2 respectively from a dosage form prepared using dual retard technique as described in the present invention and release of high dose, high solubilityactive agent 13 & 14 and 17 & 18 as per example 3 & 4 respectively from a dosage form prepared without using dual retard release technique. The total quantity of the hydrophobic release controlling agent is same in all the dosage forms inspite of that the figures clearly shows that dual retard technology significantly reduces the burst effect and effectively controls the release rate of the high dose, high solubility active ingredient for prolonged period. - The following examples further illustrate but by no means limit the present invention.
- The dissolution of novel dosage form of the present invention was determined by following method.
For sodium valproate- Instrument Apparatus I, USP (basket) Revolution 60/min. Temperature 37 ± 0.5° C. Dissolution medium 1000 ml pH 6.8 buffer For niacin- Instrument Apparatus I, USP (Basket) Revolution 100/min. Temperature 37 ± 0.5° C. Dissolution medium 900 ml 0.1 NHCl For lamotrigine- Instrument Apparatus II, USP (Paddle) Revolution 100/min. Temperature 37 ± 0.5° C. Dissolution medium 1000 ml 0.001 NHCl For pravastatin sodium- Instrument Apparatus II, USP (Paddle) Revolution 100/min. Temperature 37 ± 0.5° C. Dissolution medium 900 ml pH 6.8 buffer For metformin hydrochloride- Instrument Apparatus II, USP (Paddle) Revolution 50/min. Temperature 37 ± 0.5° C. Dissolution medium 900 ml 0.1 N HCl For rosiglitazone maleate- Instrument Apparatus II, USP (Paddle) Revolution 100/min. Temperature 37 ± 0.5° C. Dissolution medium 500 ml 0.01 N HCl For glimepiride- Instrument Apparatus II, USP (Paddle) Revolution 75/min. Temperature 37 ± 0.5° C. Dissolution medium 500 ml 0.5% sodium lauryl sulfate in water - The composition of outer portion in the dosage form comprising high dose high solubility antidiabetic active ingredient is as follows—
Micro matrix particles- Metformin hydrochloride 75% w/w to 99% w/ w Eudragit RS 1% w/w to 25% w/w Coated micro matrix particles Micro matrix particles 70% w/w to 99% w/w Hydrogenated castor oil 1% w/w to 30% w/w Magnesium stearate 0% w/w to 2% w/w - The dissolution of high dose high solubility ingredient of the formulation of the present invention is achieved not more than 45% in 1 hour and from 25 to 90% in six hours.
- The dissolution of metformin hydrochloride is achieved not more than 50% in 1 hour, and from 30 to 90% is in four hours and not less than 65% in 12 hours.
- After oral administration of a dosage form of the present invention the maximum plasma concentration can be achieved between 700 ng/ml and 2500 ng/ml, preferably from 900 ng/ml to 2400 ng/ml and more preferably from 1000 ng/ml to 2350 ng/ml. The invivo mean dissolution time (MDT) of the dosage form of the present invention is 4 to 6 hours. The minimum plasma concentration (at 24 hours) of the said dosage form ranges between 0 to 450 ng/ml after oral administration.
- 1) Production of Inner Portion
- 11.71% w/w of pravastatin sodium is mixed with 52.62% w/w of lactose monohydrate and 22.22% w/w starch and the mixture is granulated in a binder of 2.22 v povidone in water and then dried. The granules are sieved and mixed with 1.11% w/w magnesium stearate, 9.0 g sodium starch glycolate, 0.11% w/w lake of sunset yellow. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm
- 2) Production of Outer Portion
- A) Micro matrix particles—90.91% w/w of niacin is mixed with 9.09% w/w of Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- B) Coating of Micro matrix particles—85.84% w/w of micro matrix particles is charged in fluidized bed processor. 13.61% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.86% w/w magnesium stearate.
- 3) Compression of Tablets
- Tablet (A)—90 mg granules of inner portion are pressed to tablets (equal to 10 mg pravastatin) using 6.35 mm round punches and 643 mg granules of outer portion (equal to 500 mg niacin) are compressed using 14.95×8.35 mm oblong punches.
- Tablet (B)—90 mg granules of inner portion are pressed to tablets (equal to 10 mg pravastatin) using 6.35 mm round punches and 1286 mg granules of outer portion (equal to 1000 mg niacin) are compressed using 20.3×9.8 mm oblong punches.
- The compression is done on press coater machine in such a manner that the resultant tablet has inner portion covered by the outer portion from all the sides except top surface that remains uncovered and the level of the inner portion and the outer portion is on the same surface.
- The dissolution rate of the novel dosage form was determined (Table 1 and 2)
TABLE 1 Dissolution profile of tablet (A) Niacin Pravastatin sodium Time (hour) % Released Time (min) % Released 1 12.4 45 83.8 2 19.1 60 84.1 4 29.4 6 37.4 8 41.9 10 47.1 12 50.6 14 54.6 24 67.7 -
TABLE 2 Dissolution profile of tablet (B) Niacin Pravastatin sodium Time (hour) % Released Time (min) % Released 1 9.8 45 84.1 2 15.3 60 85.6 4 24.7 6 28.7 8 31.4 10 35.7 12 39.1 14 41.9 24 51.5 - 1) Production of Inner Portion
- 38.47% w/w of lamotrigine is mixed with 2.71% w/w of crosspovidone and 0.18% w/w colloidal silicon dioxide and the mixture is granulated in a binder of 0.71% w/w povidone in water and then dried. The granules are sieved and mixed with 28.70% w/w of Mannitol (
Pearlitol SD 200®), 12.31% w/w of crosspovidone, 2.31% w/w of magnesium stearate, 6.15% w/w aspartame, 2.31% w/w talc, 5.0% w/w flavour and 1.15% w/w of colloidal silicon dioxide. This mixture is compressed to 65 mg weight tablets having a diameter of 5.55 mm. - 2) Production of Outer Portion
- A) Micro matrix particles—90.91% w/w of sodium valproate is mixed with 9.09% w/w of Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- B) Coating of Micro matrix particles—85.84% w/w of micro matrix particles is charged in fluidized bed processor. 13.61% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.86% w/w magnesium stearate.
- 1) Compression of Tablets
- Tablet (A)—65 Mg granules of inner portion are pressed to tablets (equal to 25 mg lamotrigine) using 5.55 mm round punches and 643 mg granules of outer portion (equal to 500 mg sodium valproate) are compressed using 14.95×8.35 mm oblong punches.
- Tablet (B)—65 mg granules of inner portion are pressed to tablets (equal to 25 mg lamotrigine) using 5.55 mm round punches and 1286 mg granules of outer portion (equal to 1000 mg sodium valproate) are compressed using 20.3×9.8 mm oblong punches. The compression procedure is same as Example 1.
- The dissolution rate of the novel dosage form was determined (Table 3 and 4)
TABLE 3 Dissolution profile of tablet (A) Sodium valproate Lamotrigine Time (hour) % Released Time (min) % Released 1 23.3 15 83.5 2 36.3 30 88.6 4 55.1 45 91.6 6 67.5 60 92.8 8 77.0 10 83.8 12 88.9 14 92.5 24 104.6 -
TABLE 4 Dissolution profile of tablet (B) Sodium valproate Lamotrigine Time (hour) % Released Time (min) % Released 1 19.0 15 90.3 2 29.5 30 95.6 4 45.2 45 98.3 6 55.9 8 65.0 10 71.9 12 77.8 14 82.4 24 95.8 - Dosage forms described in the examples 3 and 4 are prepared by not coating the micro matrix particles of the outer portion but the hydrophobic release controlling agent is mixed with the micro matrix particles. The sole purpose of these examples is to demonstrate the usefulness of the present invention as described earlier. The examples clearly show that the rate of release of the modified release active ingredient is significantly faster than the present invention.
- 1) Production of Inner Portion
- Same for Example 1
- 2) Production of Outer Portion
- 77.76% w/w of niacin is mixed with 7.78% w/w of Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized and mixed with 13.61% w/w of hydrogenated castor oil and 0.86% w/w of magnesium stearate.
- 2) Compression of Tablets
- Tablet (A)—Same as for Example 1
- Tablet (B)—Same as for Example 1
- The dissolution rate of the novel dosage form was determined (Table 5 and 6)
TABLE 5 Dissolution profile of tablet (A) Niacin Pravastatin sodium Time (hour) % Released Time (min) % Released 1 30.1 45 75.9 2 43.6 60 80.9 4 61.6 6 74.1 8 83.9 10 92.1 12 99.4 24 102.6 -
TABLE 6 Dissolution profile of tablet (B) Niacin Pravastatin sodium Time (hour) % Released Time (min) % Released 1 29.9 45 89.6 2 36.3 60 90.0 4 52.8 6 63.4 8 73.5 10 77.8 12 84.5 24 90.5 - 1) Production of Inner Portion
- Same as for Example 2
- 2) Production of Outer Portion
- 77.76% w/w of sodium valproate is mixed with 7.78% w/w of Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized and mixed with 13.61% w/w of hydrogenated castor oil and 0.86% w/w of magnesium stearate.
- 3) Compression of Tablets
- Tablet (A)—Same as for Example 2
- Tablet (B)—Same as for Example 2
- The dissolution rate of the novel dosage form was determined (Table 7 and 8)
TABLE 7 Dissolution profile of tablet (A) Sodium valproate Lamotrigine Time (hour) % Released Time (min) % Released 1 58.3 15 81.8 2 79.9 30 89.8 4 98.5 45 91.7 6 101.6 60 97.4 -
TABLE 8 Dissolution profile of tablet (B) Sodium valproate Lamotrigine Time (hour) % Released Time (min) % Released 1 50.2 15 86.1 2 69.1 30 87.3 4 91.0 45 92.6 6 101.3 60 98.3 - 1) Production of Inner Portion
- 5.89% w/w of rosiglitazone maleate is mixed with 55.89% w/w of lactose monohydrate and 22.22% w/w starch and the mixture is granulated in a binder of 2.78% w/w povidone and 2.78% w/w starch in water and then dried. The granules are sieved and mixed with 0.28% w/w magnesium stearate, 10.00% w/w sodium starch glycolate, 0.17% w/w ferric oxide yellow. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm.
- 2) Production of Outer Portion
- A) Micro matrix particles—90.91% w/w of metformin hydrochloride is mixed with 9.09% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- B) Coating of Micro matrix particles—85.54% w/w of micro matrix particles is charged in fluidized bed processor. 13.61% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.86% w/w magnesium stearate.
- 3) Compression of Tablets
- Tablet (A)—90 mg granules of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using 6.35 mm round punches and 643 mg granules of outer portion (equal to 500 mg metformin hydrochloride) are compressed using 14.95×8.35 mm oblong punches.
- Tablet (B)—90 mg granules of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using 6.35 mm round punches and 1286 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oblong punches.
- The compression is done on press coater machine in such a manner that the resultant tablet has inner portion covered by the outer portion from all the sides except top surface that remains uncovered and the level of the inner portion and the outer portion is on the same surface.
- The dissolution rate of the novel dosage form was determined (Table 9 and 10)
TABLE 9 Dissolution profile of tablet (A) Metformin hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 42.5 15 84.88 2 58.0 30 99.02 4 74.09 45 101.26 6 86.1 60 104.4 8 97.8 10 101.9 12 103.7 -
TABLE 10 Dissolution profile of tablet (B) Metformin hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 38.2 45 96.79 2 53.4 60 99.32 4 69.5 6 78.1 8 86.8 10 93.6 12 97.65 - 1) Production of Inner Portion
- Same as for Example 5
- 2) Production of Outer Portion
- A) Micro matrix particles—86.96% w/w of metformin hydrochloride is mixed with 13.07% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- B) Coating of Micro matrix particles—86.40% w/w of micro matrix particles is charged in fluidized bed processor. 13.15% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.45% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equivalent to 4 mg rosiglitazone) using 6.35 mm round punches and 1331 mg granules of outer portion (equivalent to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oval punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 11)
TABLE 11 Dissolution profile Metformin Hydrochloride Rosiglitazone Maleate Time (hour) % Released Time (min) % Released 1 32.10 15 75.63 2 41.65 30 88.35 4 59.05 45 103.49 6 63.90 60 105.70 8 73.63 10 79.35 12 84.21 24 94.91 - 1) Production of Inner Portion
- Same as for Example 5
- 2) Production of Outer Portion
- A) Micro Matrix Particles—
- Same as for Example 5
- B) Coating of Micro matrix particles—89.36% w/w of micro matrix particles is charged in fluidized bed processor. 10.15% w/w of
glycerol distearate type 1 Ph. Eur. (Precirol ATO 5®) is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.49% w/w magnesium stearate. - 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone maleate) using 6.35 mm round punches and 1231 mg granules of outer portion (equal to 1000 mg metaformin hydrochloride) are compressed using 20.3×9.8 mm oval punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 12)
TABLE 12 Dissolution profile Metformin Hydrochloride Rosiglitazone Maleate Time (hour) % Released Time (min) % Released 1 39.9 15 78.32 2 51.7 30 89.15 4 69.2 45 97.13 6 82.5 60 100.57 8 83.8 10 91.2 12 94.9 24 99.8 - 1) Production of Inner Portion
- 2.94% w/w of rosiglitazone maleate is mixed with 87.80% w/w of Mannitol (
Pearlitol SD 200®), 6.67% w/w of crosspovidone, 2.0%/w/w of magnesium stearate, 0.56% w/w of colloidal silicon dioxide and 0.03%/w/w ferric oxide red. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm. - 2) Production of Outer Portion
- Same as of Example 5.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 2 mg rosiglitazone maleate) using 6.35 mm round punches and 1281 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oval punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 13)
TABLE 13 Dissolution profile Metformin Hydrochloride Rosiglitazone Maleate Time (hour) % Released Time (min) % Released 1 38.29 15 80.2 2 53.40 30 96.1 4 69.51 45 103.4 6 78.11 8 86.86 10 93.60 12 97.65 24 100.17 - 1) Production of Inner Portion
- 1.11% w/w of glimepiride is mixed with 63.28% w/w of lactose monohydrate and 22.22% w/w starch and the mixture is granulated in a binder of 2.22% w/w povidone in water and then dried. The granules are sieved and mixed with 1.11% w/w magnesium stearate, 10.0% w/w sodium starch glycolate, 0.06% w/w lake of brilliant blue. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm.
- 2) Production of Outer Portion
- A) Micro matrix particles—83.33% w/w of metformin hydrochloride is mixed with 16.67% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- B) Coating of Micro matrix particles—86.46% w/w of micro matrix particles is charged in fluidized bed processor.
- 12.61% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.91% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 1 mg glimepiride) using 6.35 mm round punches and 694 mg granules of outer portion (equal to 500 mg metformin hydrochloride) are compressed using 14.95×8.35 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 14)
TABLE 14 Dissolution profile Metformin Hydrochloride Glimepiride Time (hour) % Released Time (min) % Released 1 28.0 15 69.4 2 40.5 30 91.87 4 57.8 45 99.64 6 65.8 60 103.87 8 73.2 10 80.3 12 85.0 24 101.8 - 1) Production of Inner Portion
- Same as for Example 5
- 2) Production of Outer Portion
- C) Micro Matrix Particles—
- Same as for Example 5
- B) Coating of Micro matrix particles—91.21% w/w of micro matrix particles and 8.29% w/w of hydrogenated castor oil is mixed and charged in planetary mixer which is heated from outside to maintain the temperature approximately 80° C. with the help of a water bath. The above blend is mixed by running the planetary mixer for 1 hour to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.50% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone maleate) using 6.35 mm round punches and 1206 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oval punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 15)
TABLE 15 Dissolution profile Metformin Hydrochloride Rosiglitazone Maleate Time (hour) % Released Time (min) % Released 1 25.7 30 85.9 2 36.6 45 100.3 4 49.1 60 104.9 6 57.5 8 66.5 10 71.3 12 76.0 14 90.7 - Dosage forms described in the example 11 are prepared by not coating the micro matrix particles of the outer portion but the hydrophobic release controlling agent is mixed with the micro matrix particles. The sole purpose of these examples is to demonstrate the usefulness of the present invention as described earlier. The examples clearly show that the rate of the modified release active ingredient is significantly faster than the present invention.
- 1) Production of Inner Portion
- Same as for Example 5
- 2) Production of Outer Portion
- 77.76% w/w of metformin hydrochloride is mixed with 7.780% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized and mixed with 13.61% w/w of hydrogenated castor oil and 0.86% w/w of magnesium stearate.
- 3) Compression of Tablets
- Tablet (A)—Same as for Example 5
- Tablet (B)—Same as for Example 5
- The dissolution rate of the novel dosage form was determined (Table 16 and 17)
TABLE 16 Dissolution profile of tablet (A) Metformin hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 63.9 15 100.08 2 85.5 30 106.41 4 102.1 45 109.77 -
TABLE 17 Dissolution profile of tablet (B) Metformin hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 50.3 15 99.22 2 70.5 30 105.26 4 88.0 45 107.53 6 100.9 60 107.53 - 1) Production of Inner Portion
- Same as for Example 7.
- 2) Production of Outer Portion
- A) Micro matrix particles—93.02% w/w of metformin hydrochloride is mixed with 6.98% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- B) Coating of Micro matrix particles—85.18% w/w of micro matrix particles is, charged in fluidized bed processor. 13.87% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.95% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using
- 6.35 mm round punches and 1262 mg granules of outer portion (equal to 1000 mg metaformin hydrochloride) are compressed using 20.3×9.8 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 18)
TABLE 18 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 40.9 45 89.68 2 52.2 60 91.42 4 68.4 6 79.2 8 88.6 10 99.9 12 101.5 - 1) Production of Inner Portion
- Same as for Example 7.
- 2) Production of Outer Portion
- A) Micro matrix particles—Same as for Example 12.
- B) Coating of Micro matrix particles—88.70% w/w of micro matrix particles is charged in fluidized bed processor. 10.31% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.99% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using 6.35 mm round punches and 1212 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using. 20.3×9.8 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 19)
TABLE 19 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 44.50 15 79.9 2 58.90 30 89.9 4 76.90 45 95.8 6 91.40 60 100.6 8 102.40 - 1) Production of Inner Portion
- Same as for Example 11.
- 2) Production of Outer Portion
- A) Micro matrix particles—Same as for Example 12.
- B) Coating of Micro matrix particles—90.56% w/w of micro matrix particles is charged in fluidized bed processor. 8.42% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 1.01% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using 6.35 mm round punches and 1187 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 20)
TABLE 20 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 42.40 45 86.05 2 58.1 60 90.73 4 75.9 6 86.5 8 94.5 10 99.0 - 1) Production of Inner Portion
- Same as for Example 7.
- 2) Production of Outer Portion
- A) Micro matrix particles—90.91% w/w of metformin hydrochloride is mixed with 4.55% w/w of Eudragit RS (Ammonio Methacrylate Copolymer type B USP) and 4.55% w/w of Eudragit RL (Ammonio Methacrylate Copolymer type A USP) and the mixture is granulated with a solvent mixture of acetone and methylene chloride and then dried. The granules are sized.
- B) Coating of Micro matrix particles—85.47% w/w of micro matrix particles is charged in fluidized bed processor. 13.60% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.93% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using 6.35 mm round punches and 1287 mg granules of outer portion (equal to 1000 mg metaformin hydrochloride) are compressed using 20.3×9.8 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 21)
TABLE 21 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 34.8 45 92.65 2 48.3 60 97.02 4 66.2 6 79.3 8 85.9 10 92.6 12 97.6 - 1) Production of Inner Portion
- Same as for Example 7.
- 2) Production of Outer Portion
- A) Micro matrix particles—Same as for Example 15.
- B) Coating of Micro matrix particles—94.66% w/w of micro matrix particles is charged in fluidized bed processor. 4.30% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 1.03% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using 6.35 mm round punches and 1162 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 22)
TABLE 22 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 47.56 45 92.94 2 61.93 60 96.70 4 82.42 6 96.0 8 100.0 - 1) Production of Inner Portion
- Same as for Example 7.
- 2) Production of Outer Portion
- A) Micro matrix particles—Same as for Example 5.
- B) Coating of Micro matrix particles—88.92% w/w of micro matrix particles is charged in fluidized bed processor. 10.11% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 0.97% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using 6.35 mm round punches and 1237 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 23)
TABLE 23 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 35.0 15 69.2 2 47.3 30 79.5 4 60.8 45 85.7 6 72.5 60 90.4 8 81.8 10 89.2 12 94.1 24 98.2 - 1) Production of Inner Portion
- Same as for Example 7.
- 2) Production of Outer Portion
- A) Micro matrix particles—Same as for Example 5.
- B) Coating of Micro matrix particles—87.09% w/w of micro matrix particles is charged in fluidized bed processor. 11.88% w/w of hydrogenated castor oil is dissolved in acetone and this coating solution is sprayed to coat the micro matrix particles. The coated micro matrix particles are sieved and mixed with 1.03% w/w magnesium stearate.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 4 mg rosiglitazone) using 6.35 mm round punches and 1263 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 24)
TABLE 24 Dissolution profile Metformin Hydrochloride Rosiglitazone Time (hour) % Released Time (min) % Released 1 38.7 30 78.66 2 52.9 45 83.47 4 71.6 60 88.06 6 82.3 8 91.3 10 97.3 12 101.1 - 1) Production of Inner Portion
- 2.22% w/w of glimepiride is mixed with 62.17% w/w of lactose monohydrate and 22.22% w/w starch and the mixture is granulated in a binder of 2.22% w/w povidone in water and then dried. The granules are sieved and mixed with 0.56% w/w magnesium stearate, 10.0% w/w sodium starch glycolate, 0.06% w/w lake of erythrocine and 0.56% w/w colloidal silicon dioxide. This mixture is compressed to 90 mg weight tablets having a diameter of 6.35 mm.
- 2) Production of Outer Portion—Same as for Example 18.
- 3) Compression of Tablets
- 90 mg granule of inner portion are pressed to tablets (equal to 2 mg glimepiride) using 6.35 mm round punches and 1263 mg granules of outer portion (equal to 1000 mg metformin hydrochloride) are compressed using 20.3×9.8 mm oblong punches. The compression procedure is same as Example 5.
- The dissolution rate of the novel dosage form was determined (Table 25)
TABLE 25 Dissolution profile Metformin Hydrochloride Glimepiride Time (hour) % Released Time (min) % Released 1 38.79 45 100.7 2 54.12 60 102.2 4 69.54 6 82.04 8 89.78 10 95.06 12 100.48 - Determination of Relative Bioavailability of Metformin Sustained Release Formulation with Respect to Metformin Immediate Release Tablet.
- The study was carried out to demonstrate the sustained release characteristic of metformin in the combination formulation and to evaluate the relative bioavailability of combination formulation of sustained release Metformin hydrochloride and Rosiglitazone maleate versus metformin
immediate release tablet 2×500 mg (marketed as Glycomet® by USV Ltd.; India.) and rosiglitazoneimmediate release tablets 4 mg (marketed as Enselin® by Torrent pharma Ltd.; India.). - Methodology:
- The biostudy had an open label, randomized two period, two treatment, two way single dose crossover study with 7 days washout period between treatment days.
- Non-compartmental Pharmacokinetic assessment was based on the plasma levels of Metformin and Rosiglitazone measured by blood sampling. Blood samples were obtained before dosing and at the following times after administration of test and reference formulations;
- Pre-dose, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 18.0, and 24.0 hours.
- Number of Subjects and Study Population:
- Twelve (12) volunteers were enrolled and all of them completed the study. All 12 volunteers were included in the Pharmacokinetic and safety analyses.
- Criteria for Inclusion:
- Healthy male volunteers aged between 18 to 45 years.
- Test Formulation, Dose and Mode of Administration:
- Test Formulation: 4 mg/1000 mg Rosiglitazone/Metformin SR prepared as per the invention disclosed in the examples.
- Volunteers received a single oral dose of above products with 200 ml of water following high calorie diet (˜800 Kcal).
- Reference Product, Dose and Mode of Administration:
- Reference:
Immediate release 4 mg Enselin® plus Glycomate® (2×500 mg) - Volunteers received a single oral dose of above products with 200 ml of water following high calorie diet (˜800 Kcal).
- Pharmacokinetics:
- The following Pharmacokinetic parameters were calculated using non compartments methods: the area under the drug plasma concentration curve from time of dosing to the time of last sampling point (AUC(0-t)); the area under the drug plasma concentration versus time curve extrapolated to infinity (AUC(0-Inf)); the maximum measured concentration of the drug in the plasma (Cmax) and the time at which this concentration was measured (tmax); the concentration at 24 hours (C24h); the time taken for drug plasma concentration to decrease by 50% (t1/2); and the terminal first-order elimination rate constant (Kel).
- Area Under the curve (AUC) is the integral part of drug blood level over time from zero to infinity and is a measure of quantity of drug absorbed and in the body.
- AUC(0-t) represents area under the curve from zero to time t, where t represents the time at which last blood sample was taken.
- AUC(0-Inf) represents area under the curve from zero to infinity.
- Elimination half life of a drug is the time in hours necessary to reduce the drug concentration in the blood, plasma or serum to ½ after equilibrium is reached.
- Cmax is the peak plasma concentration achieved after the administration of the drug.
- Tmax is the time to reach peak plasma concentration.
- Statistical Methods:
- Descriptive statistics of relevant Pharmacokinetic parameters were performed. An analysis of variance (ANOVA) was used to assess treatment differences.
- Methods Used for Analysis of Metformin and Rosiglitazone in Plasma Samples:
- Analysis of Metformin:
- Estimation of Metformin in plasma samples was carried out by High Performance Liquid Chromatography and UV detection at 234 nm. Briefly 0.5 ml of plasma sample was precipitated with 2.0 ml acetonitrile. Samples were centrifuged and supernatant aliquot was washed with dichloromethane. After centrifugation, aqueous layer was injected on HPLC.
- Analysis of Rosiglitazone:
- Estimation of Rosiglitazone in plasma samples was carried out by LC-MS/MS. Briefly 0.1 ml of plasma sample was precipitated with 0.25 ml acetonitrile. Samples were centrifuged and supernatant aliquot was analyzed by LC-MS/MS.
- Pharmacokinetic Results:
- The summary of the statistical analysis and confidence intervals of the Pharmacokinetic parameters is contained in Tables 26 & 27. The mean plasma concentration versus time curve is depicted in
FIG. 8 (metformin) &FIG. 9 (rosiglitazone) wherein curve a represents Test Formulation and curve b represents Reference Formulation.TABLE 26 Bioavailability Summary and Analysis - Metformin SR (1000 mg) Parameters Unit Test Reference AUC0-inf ng*hr/ml 15980 ± 3456 19551 ± 4265 AUC0-t ng*hr/ml 14983 ± 2930 19091 ± 4200 Cmax ng/ml 1737.61 ± 249.09 2558.37 ± 623.05 C24 h ng/ml 113.87 ± 91.05 56.44 ± 37.94 Tmax Hr 5.42 ± 0.68 4.42 ± 0.88 T1/2 Hr 4.71 ± 1.36 4.26 ± 1.14 -
TABLE 27 Bioavailability Summary and Analysis - Rosiglitazone (4 mg) Parameters Unit Test Reference AUC0-inf ng*hr/ml 1851 ± 414 1730 ± 465 AUC0-t ng*hr/ml 1795 ± 401 1676 ± 438 Cmax Ng/ml 243.48 ± 40.78 247.48 ± 45.38 C24 h Ng/ml 6.36 ± 5.19 3.37 ± 4.36 Tmax hr 3.75 ± 1.03 3.25 ± 1.66 t1/2 hr 3.73 ± 0.60 3.63 ± 0.79
Conclusion: - Metformin in test formulation has shown sustained release characteristics with lower Cmax and prolonged tmax (
FIG. 8 ). The relative bioavailability of both the components was studied. - Determination of Relative Bioavailability of Two Formulations with Different Release Profiles:
- A biostudy was carried out with the preliminary objective of comparing the relative bioavailability of the 1000 mg metformin sustained release formulations (A & B) relative to immediate
release metformin tablets 2×500 mg (marketed as Glycomet® by USV Ltd.; India.). A secondary objective was to characterize the plasma concentration profile of metformin in the sustained release formulation relative to immediate release formulation i.e.Glycomet® 2×500 mg tablets. - Methodology:
- The biostudy had an open label, randomized, three periods, three treatment, three way, single dose crossover design with 7 days washout period between treatment days.
- Non-compartmental Pharmacokinetic assessment was based on the plasma levels of metformin measured by blood sampling. Blood samples were obtained before dosing and at the following times after administration of test and reference formulations;
- Pre-dose, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 18.0, and 24.0 hours.
- Number of Subjects and Study Population:
- Twelve (12) volunteers were enrolled and 11 of them completed the study. All 12 volunteers were included in the Pharmacokinetic and safety analyses.
- Criteria for Inclusion:
- Healthy male volunteers aged between 18 to 45 years.
- Test Product, Dose and Mode of Administration:
- Formulation A: 4 mg/1000 mg Rosiglitazone/Metformin dosage form prepared as per the invention disclosed in the examples.
- Formulation B: 4 mg/1000 mg Rosiglitazone/Metformin SR dosage form prepared as per the invention disclosed in the examples.
- In the morning, volunteers received a single oral dose of above products with 200 ml of water following high calorie diet (˜800 Kcal). Reference Product, Dose and Mode of Administration:
- Formulation C:
Immediate release 4 mg Enselin® plus Glycomate® (2×500 mg) In the morning, volunteers received a single oral dose of above products with 200 ml of water following high calorie diet (˜800 Kcal). - Pharmacokinetics:
- Same as for example 20.
- Statistical Methods:
- Same as for example 20.
- Methods Used for Analysis of Metformin and Rosiglitazone in Plasma Samples:
- Same as for example 20.
- Pharmacokinetic Results:
- The summary of the statistical analysis and confidence intervals of the Pharmacokinetic parameters is contained in
- Table 28. The mean plasma concentration versus time curve is depicted in
FIG. 10 . wherein curve a represents Formulation A, curve b represents Formulation B and curve c represents the Formulation C.TABLE 28 Bioavailability Summary and Analysis - Metformin SR (1000 mg) Parameters Unit Formulation A Formulation B Formulation C AUC0-inf ng*hr/ml 16508 ± 3655 17762 ± 5113 15985 ± 2886 AUC0-t ng*hr/ml 15899 ± 3270 14989 ± 3196 15558 ± 2930 Cmax ng/ml 1801.72 ± 264.82 1551.01 ± 337.49 2121.96 ± 405.95 C24 h ng/ml 79.58 ± 75.10 204.96 ± 151.02 45.48 ± 37.99 Tmax Hr 5.36 ± 0.51 5.46 ± 0.78 4.00 ± 0.74 T1/2 Hr 4.08 ± 1.32 7.23 ± 3.45 4.61 ± 1.54
Conclusion: - Both the formulations according to the invention tested had reduced Cmax compared to, that of the reference product (Glycomet® tablets), with Formulation B being significantly reduced. The tmax of both the formulations according to invention were prolonged relative to that of Glycomet® tablets. The concentration at 24 hours (C24h) of Formulation B was almost 4.5 times higher than Glycomet® tablets and almost 2.6 times higher than Formulation A.
- Determination of Relative Bioavailability of Metformin Sustained Release Formulations
- The study was carried out to assess the effect of night time administration and to evaluate the relative bioavailability of combination formulation of sustained release Metformin and Rosiglitazone (prepared as per the invention disclosed in the examples) versus metformin sustained release tablet (marketed as Glucophage XR® by
- Bristol Myers Squibb; USA) and rosiglitazone immediate release tablet (marketed as Avandia® by Glaxo Smithkline; United Kingdom.).
- Methodology:
- The biostudy had an open label, randomized two period, two treatment, two way single dose crossover study with 7 days washout period between treatment days.
- Non-compartmental Pharmacokinetic assessment was based on the plasma levels of Metformin and Rosiglitazone measured by blood sampling. Blood samples were obtained before dosing and at the following times after administration of test and reference formulations;
- Pre-dose, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 18.0, and 24.0 hours.
- Number of Subjects and Study Population:
- Sixteen (16) volunteers were enrolled and 15 of them completed the study. All 15 volunteers were included in the Pharmacokinetic and safety analyses.
- Criteria for Inclusion:
- Healthy male volunteers aged between 18 to 45 years.
- Test Product, Dose and Mode of Administration:
- Test Formulation: 4 mg/1000 mg Rosiglitazone/Metformin sustained release dosage form prepared as per the invention disclosed in the examples. Volunteers received a single oral dose of above products with 200 ml of water following high calorie dinner (˜1400 KCal).
- Reference Product, Dose and Mode of Administration:
- Reference: 4 mg Avandia® plus Glucophage XR® (2×500 mg)
- Volunteers received a single oral dose of above products with 200 ml of water following calorie dinner (˜1400 Kcal).
- Pharmacokinetics:
- Same as for example 20.
- Statistical Methods:
- Descriptive statistics of relevant Pharmacokinetic parameters were performed. An analysis of variance (ANOVA) was used to assess treatment differences.
- Westlake's 90% confidence interval for the ratio of two formulations for log transformed data were calculated, and to test that the difference between two formulations are within the (80 to 125%) limits.
- Methods used for analysis of Metformin and Rosiglitazone in plasma samples: Same as for example 20.
- Pharmacokinetic Results:
- The summary of the statistical analysis and confidence intervals of the Pharmacokinetic parameters is contained in Table 29 & 30. The mean plasma concentration versus time curve is depicted in
FIG. 11 (Metformin) & 12 (Rosiglitazone) wherein curve a represents Test Formulation and curve b represents Reference Formulation.TABLE 29 Bioavailability Summary and Analysis - Metformin SR (1000 mg) 90% Westlake Interval Parameters Unit Test Reference Upper Lower AUC0-inf ng*hr/ml 16939 ± 2323 16396 ± 3791 83.84 116.16 AUC0-t ng*hr/ml 16107 ± 2114 15951 ± 3543 87.33 112.67 Cmax ng/ml 1515.29 ± 225.97 1558.78 ± 364.23 90.89 109.11 C24 h ng/ml 120.10 ± 74.01 79.63 ± 60.22 — — Tmax hr 7.64 ±1.65 8.86 ± 1.03 — — T1/2 hr 4.12 ± 1.34 3.36 ± 0.70 — — -
TABLE 30 Bioavailability Summary and Analysis - Rosiglitazone (4 mg) 90% Westlake Interval Parameters Unit Test Reference Upper Lower AUC0-inf ng*hr/ml 1308 ± 432 1258 ± 331 85.73 114.27 AUC0-t ng*hr/ml 1266 ± 400 1234 ± 324 86.61 113.39 Cmax ng/ml 145.70 ± 48.90 161.83 ± 55.43 80.88 119.12 C24 h ng/ml 6.07 ± 7.46 1.80 ± 3.11 — — Tmax hr 5.07 ± 2.63 4.13 ± 1.91 — — T1/2 hr 3.59 ± 0.71 3.32 ± 0.59 — —
Conclusion: - The relative bioavailability study shown that bioequivalance was achieved between the 4 mg/1000 mg combination formulation and the respective components, for both AUC and Cmax parameters (Table 29 & 30). Moreover, in the test formulation, the concentration of Metformin at 24 hrs was almost 1.5 times more than Glucophage XR® (
FIG. 11 ) wherein curve a represents Test formulation and b represents Reference formulation (Table 29). Similarly Rosiglitazone component of the test formulation also shown higher concentration at 24 hrs as that of Avandia® (FIG. 12 ; wherein curve a represents Test Formulation and curve b represents Reference Formulation and Table 30).
Claims (74)
1. A dosage form of combination of high dose high solubility active ingredient, as modified release and low dose active ingredient as immediate release suitable for swallowing; comprising of dual retard technique to control the release of high dose, high solubility active ingredient, wherein said dosage form comprising of an inner portion having a low dose active ingredient as immediate release and an outer portion having a high dose, high solubility active ingredient as modified release, in which the outer portion comprises a) micro matrix particles and b) coating on micro matrix particles.
2. A dosage form according to claim 1 , in the form of a tablet, wherein said inner portion is covered by the outer portion from all the sides except top surface that remains uncovered.
3. A dosage form according to claim 1 , wherein the dosage form is with sufficient reduction in the amount of release controlling agent.
4. A dosage form according to claim 1 , wherein the micro matrix particles comprises one or more hydrophobic release controlling agents.
5. A dosage form according to claim 4 , wherein the hydrophobic release controlling agents are selected from the group comprising of ammonio methacrylate copolymers type A and B as described in USP, methacrylic acid copolymer type A, B and C as described in USP, polyacrylate dispersion 30% as described in Ph. Eur., polyvinyl acetate dispersion, ethylcellulose, cellulose acetate, cellulose propionate (lower, medium or higher molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose triacetate, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl actylate), poly(octadecyl acrylate), waxes such as beeswax, carnauba wax, microcrystalline wax, and ozokerite; fatty alcohols such as cetostearyl alcohol, stearyl alcohol; cetyl alcohol and myristyl alcohol; and fatty acid esters such as glyceryl monostearate, glycerol distearate, glycerol monooleate, acetylated monoglycerides, tristearin, tripalmitin, cetyl esters wax, glyceryl palmitostearate, glyceryl behenate and hydrogenated castor oil.
6. A dosage form according to claim 5 , wherein the hydrophobic release controlling agent(s) is selected preferably from ammonio methacrylate co-polymers.
7. A dosage form according to claim 6 , wherein the preferred ammonio methacrylate co-polymers are selected from Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP), Eudragit RL (Ammonio Methacrylate Copolymer type A USP) and Eudragit NE30D (Polyacrylate dispersion 30% Ph. Eur.).
8. A dosage form according to claim 1 , wherein in micro matrix particles, the active ingredient and one or more hydrophobic release controlling agents are present in a ratio of from 100:1 to 100:75.
9. A dosage form according to claim 8 , wherein in micro matrix particles, the active ingredient and one or more hydrophobic release controlling agents are present preferably in ratio of from 100:2.5 to 100:50.
10. A dosage form according to claim 8 , wherein in micro matrix particles, the active ingredient and one or more hydrophobic release controlling agents are present more preferably in ratio of from 100:2.5 to 100:30
11. A dosage form according to claim 8 , wherein in micro matrix particles, the active ingredient and one or more hydrophobic release controlling agents are present most preferably in ratio of from 100:2.5 to 100:20.
12. A dosage form according to claim 1 , coating of micro matrix particles comprises one or more hydrophobic release controlling agents.
13. A dosage form according to claim 12 , wherein the hydrophobic release controlling agents are selected from the group comprising of ammonio methacrylate copolymers type A and B as described in USP, methacrylic acid copolymer type A, B and C as described in USP, polyacrylate dispersion 30% as described in Ph. Eur., polyvinyl acetate dispersion, ethylcellulose, cellulose acetate, cellulose propionate (lower, medium or higher molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose triacetate, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl actylate), poly(octadecyl acrylate), waxes such as beeswax, carnauba wax, microcrystalline wax, and ozokerite; fatty alcohols such as cetostearyl alcohol, stearyl alcohol; cetyl alcohol and myristyl alcohol; and fatty acid esters such as glyceryl monostearate, glycerol distearate, glycerol monooleate, acetylated monoglycerides, tristearin, tripalmitin, cetyl esters wax, glyceryl palmitostearate, glyceryl behenate glycerol distearate, and hydrogenated castor oil.
14. A dosage form according to claim 13 , wherein the hydrophobic release controlling agent (s) is selected from fatty acid esters.
15. A dosage form according to claim 14 , wherein the hydrophobic release controlling agents is selected from the group comprising of hydrogenated castor oil and glycerol distearate.
16. A dosage form according to claim 1 , wherein in outer portion, micro matrix particles and coating of one or more hydrophobic release controlling agents are present in a ratio of from 100:0.5 to 100:75.
17. A dosage form according to claim 16 , wherein in outer portion, micro matrix particles and coating of one or more hydrophobic release controlling agents are present preferably in a ratio of from 100:1 to 100:50.
18. A dosage form according to claim 16 , wherein in outer portion, micro matrix particles and coating of one or more hydrophobic release controlling agents are more preferably present in a ratio of from 100:2.5 to 100:20.
19. A dosage form according to claim 1 , wherein the weight ratio of immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000.
20. A dosage form according to claim 1 , wherein the low dose active ingredient comprises dose less than or equal to 50 mg.
21. A dosage form according to claim 1 , wherein the low dose active ingredient is selected from the group comprising of antidiabetic agents, anti-histamines, anti-depressants, anti-viral agents, anesthetics, antacids, anti-arththriics, antibiotics, anti-psychotics, anti-spasmodics, anxiolytic agents, appetite suppressants, cardiovascular agents, cough suppressants, emollients, gastrointestinal agents, growth regulators, respiratory stimulants, vitamins, angiotensin converting enzyme inhibitors, anti-asthmatics, anti-cholesterolemics, anti-convulsants, anti-depressants, anti-diarrhea preparations, anti-infective, anti-inflammatory agents, anti-nauseants, anti-stroke agents, anti-tumor drugs, anti-tussives, anti-uricemic drugs, amino-acid preparations, antiemetics, antiobesity drugs, antiparasitics, antipyretics, appetite stimulants, cerebral dilators, chelating agents, cholecystokinin antagonists, cognition activators, deodorants, dermatological agents, diuretics, erythropoietic drugs, fertility agents, synthetic hormones, laxatives, mineral supplements, neuroleptics, neuromuscular agents, peripheral vaso-dilators, prostaglandins, vaginal preparations, vaso-constrictors, vertigo agents, sulphonylurease, meglitinides, PPAR gama agonist [insulin sensitisers (thiazolidinedione)], PPAR alpha and gamma agonist, alpha-glucosidase inhibitors and the like.
22. A dosage form according to claim 21 , wherein the low dose active ingredient is selected from the group comprsing of zafirlukast, quinapril hydrochloride, isotretinoin, rabeprazole sodium, estradiol (e2), norethindrone acetate, risedronate sodium, pioglitazone HCl, amphetamine, anagrelide hydrochloride, biperiden HC1, mephalan, alprazolam, ramipril, naratriptan hydrochloride, leflunomide, anastrozole, exemestane, paroxetine mesylate, candesartan cilexetil, almotriptan, cerivastatin, betaxolol hydrochloride, bisoprolol fumarate, deloratadine, clonazepam, clorazepate dipotassium, clozapine, methylphenidate HCl, carvedilol, WARFARIN sodium, norgestrel, ethinyl estradiol, cyclophosphamide, pemoline, liothyronine sodium, misoprostol, tolterodine tartrate, dextroamphetamine sulfate, dicyclomine hydrochloride, dioxin, oxybutynin chloride, doxazosin mesylate, ethacrynate sodium, venlafaxine HCL enalapril maleate, estradiol, estropipate, famotidine, letrozole, fludrocortisone acetate, fluoxetine, dexmethylphenidate HCl, alendronate sodium, ziprasidone, glipizide, glyburide, miglitol, guanabenz acetate, haloperidol, doxercalciferol, zalcitabine, hydrochlorothiazide, hydromorphone HC1, indapamide, estradiol, nitric oxide, ketorolac tromethamine, clonazepam, granisetron, lamotrigine, fluvastatin sodium, levonorgestrel, levothyroxine sodium, atorvastatin calcium, lisinopril, minoxidil, loperamide, loratidine, lorazepam, lovastatin, pravastatin sodium, fluvoxamine maleate, acetaminophen, acyclovir, aminocaproic acid, pitavastatin, rosuvastatin, dalvastatin, escetalopram, sertraline, celecoxib, parecoxib, valdecoxib, glibenclamide(glyburide), glipizide, gliclazide, glimepiride, tolazamide, tolbutamide, clorpropamide, gliquidone, nateglinide, glyburide, glisoxepid, glibornuride, phenbutamide, tolcyclamide, repaglinide, troglitazone, ciglitazone, pioglitazone, englitazone, acarbose, voglibose, emiglitate, miglitol, farglitazar, (S)-2-ethoxy-3-[4-(2-{4-methanesulfonyloxyphenyl}ethoxy) phenyl]propanoic acid, 3-{4-[2-(4-tertbutoxycarbonylaminophenyl)ethoxy]phenyl}-(S)-2-ethoxy propanoic acid, L-6766892 and pharmaceutically acceptable salts thereof.
23. A dosage form according to claim 1 , wherein the high dose, high solubility active ingredient comprises dose from 500 mg to 1500 mg.
24. A dosage form according to claim 1 , wherein the high dose, high solubility active ingredient is selected from the group comprising of antidiabetic agents, anti-histamines, anti-depressants, anti-viral agents, anesthetics, antacids, anti-arththriics, antibiotics, anti-psychotics, anti-spasmodics, anxiolytic agents, appetite suppressants, cardiovascular agents, cough suppressants, emollients, gastro-intestinal agents, growth regulators, respiratory stimulants, vitamins, angiotensin converting enzyme inhibitors, anti-asthmatics, anti-cholesterolemics, anti-convulsants, anti-depressants, anti-diarrhea preparations, anti-infective, anti-inflammatory agents, anti-nauseants, anti-stroke agents, anti-tumor drugs, anti-tussives, anti-uricemic drugs, amino-acid preparations, antiemetics, antiobesity drugs, antiparasitics, antipyretics, appetite stimulants, celebral dilators, chelating agents, cholecystokinin antagonists, cognition activators, deodorants, dermatological agents, diuretics, erythropoietic drugs, fertility agents, synthetic hormones, laxatives, mineral supplements, neuroleptics, neuromuscular agents, peripheral vaso-dilators, prostaglandins, vaginal preparations, vaso-constrictors, biguanides, vertigo agents and the like.
25. A dosage form according to claim 1 , wherein the high dose, high solubility active ingredient is selected from the group comprising of metformin hydrochloride, phenformin, buformin, potassium chloride, clindamycin, hydroxyurea, erythromycin, lactobionate, vancomycin hydrochloride, balsalazide disodium, sodium valproate, niacin, aminocaproic acid, acetaminophen ciprofloxacin, quetiapine and pharmaceutically acceptable salts thereof.
26. A dosage form according to claim 1 , wherein inner portion may optionally contain more than one low dose active ingredients.
27. A dosage form according to claim 1 , wherein the dissolution of high dose, high solubility active ingredient is not more than 45% in 1 hour and between 25% to 90% in 6 hours.
28. A dosage form according to claim 1 , wherein the dosage form can be given twice a day or more preferably can be given once a day oral formulation.
29. A dosage form according to claim 1 , is used for human beings.
30. A process for the preparation of a dosage form comprising a) preparation of inner portion and b) preparation of outer portion.
31. A process for the preparation of a dosage form as claimed in claim 30 , wherein preparation of outer portion comprising a) preparing a micro matrix particles containing high dose, high solubility active ingredient and one or more hydrophobic release controlling agent and b) coating the said micro matrix particles containing high solubility active ingredient and one or more hydrophobic release controlling agent.
32. A dosage form according to claim 1 , wherein outer portion may optionally contain more than one high dose high solubility active ingredients.
33. A dosage form of combination of high dose high solubility antidiabetic active ingredient is as modified release and low dose antidiabetic active ingredient as immediate release, suitable for swallowing; comprising of dual retard technique to control the release of the high dose high solubility antidiabetic active ingredient wherein said dosage form comprising of an inner portion having a low dose antidiabetic active ingredient as immediate release and an outer portion having a high dose high solubility antidiabetic active ingredient as modified release, in which the outer portion comprises a) micro matrix particles and b) coating on micro matrix particles.
34. A dosage form according to claim 33 , which is a tablet, in which the inner portion is covered by the outer portion from all the sides except top surface that remains uncovered.
35. A dosage form according to claim 33 , wherein the dosage form is with sufficient reduction in the amount of release controlling agent.
36. A dosage form according to claim 33 , wherein the micro matrix particles comprises one or more hydrophobic release controlling agents.
37. A dosage form according to claim 36 , wherein the hydrophobic release controlling agents are selected from the group comprising of ammonio methacrylate copolymers type A and B as described in USP, methacrylic acid copolymer type A, B and C as described in USP, polyacrylate dispersion 30% as described in Ph. Eur., polyvinyl acetate dispersion, ethylcellulose, cellulose acetate, cellulose propionate (lower, medium or higher molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose triacetate, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl actylate), poly(octadecyl acrylate), waxes such as beeswax, carnauba wax, microcrystalline wax, and ozokerite; fatty alcohols such as cetostearyl alcohol, stearyl alcohol; cetyl alcohol and myristyl alcohol; and fatty acid esters such as glyceryl monostearate; glycerol monooleate, acetylated monoglycerides, tristearin, tripalmitin, cetyl esters wax, glyceryl palmitostearate, glyceryl behenate, glycerol distearate and hydrogenated castor oil.
38. A dosage form according to claim 37 , wherein the hydrophobic release controlling agent(s) is selected preferably from ammonio methacrylate co-polymers.
39. A dosage form according to claim 38 , wherein the preferred ammonio methacrylate co-polymers are selected from Eudragit RSPO (Ammonio Methacrylate Copolymer type B USP), Eudragit RL (Ammonio Methacrylate Copolymer type A USP) and Eudragit NE30D (Polyacrylate dispersion 30% Ph. Eur.).
40. A dosage form according to claim 33 , wherein in micro matrix particles, the antidiabetic active ingredient and one or more hydrophobic release controlling agents are present in a ratio of from 100:1 to 100:75.
41. A dosage form according to claim 40 , wherein in micro matrix particles, the antidiabetic active ingredient and one or more hydrophobic release controlling agents are present preferably in ratio of from 100:2.5 to 100:50.
42. A dosage form according to claim 40 , wherein in micro matrix particles, the antidiabetic active ingredient and one or more hydrophobic release controlling agents are present more preferably in ratio of from 100:2.5 to 100:30
43. A dosage form according to claim 40 , wherein in micro matrix particles, the antidiabetic active ingredient and one or more hydrophobic release controlling agents are present most preferably in ratio of from 100:2.5 to 100:20.
44. A dosage form according to claim 33 , wherein coating of micro matrix particles comprises one or more hydrophobic release controlling agents.
45. A dosage form according to claim 44 , wherein the hydrophobic release controlling agents are selected from the group comprising of ammonio methacrylate copolymers type A and B as described in USP, methacrylic acid copolymer type A, B and C as described in USP, polyacrylate dispersion 30% as described in Ph. Eur., polyvinyl acetate dispersion, ethylcellulose, cellulose acetate, cellulose propionate (lower, medium or higher molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose triacetate, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl actylate), poly(octadecyl acrylate), waxes such as beeswax, carnauba wax, microcrystalline wax, and ozokerite; fatty alcohols such as cetostearyl alcohol, stearyl alcohol; cetyl alcohol and myristyl alcohol; and fatty acid esters such as glyceryl monostearate; glycerol monooleate, acetylated monoglycerides, tristearin, tripalmitin, cetyl esters wax, glyceryl palmitostearate, glyceryl behenate, glycerol distearate and hydrogenated castor oil.
46. A dosage form according to claim 45 , wherein the hydrophobic release controlling agent (s) is selected from fatty acid esters.
47. A dosage form according to claim 46 , wherein the hydrophobic release controlling agents are selected from the group comprising of hydrogenated castor oil and glycerol distearate.
48. A dosage form according to claim 33 , wherein in outer portion, micro matrix particles and coating of one or more hydrophobic release controlling agents are present in a ratio of from 100:0.5 to 100:75.
49. A dosage form according to claim 48 , wherein in outer portion, micro matrix particles and coating of one or more hydrophobic release controlling agents are present preferably in a ratio of from 100:1 to 100:50.
50. A dosage form according to claim 48 , wherein in outer portion, micro matrix particles and coating of one or more hydrophobic release controlling agents are more preferably present in a ratio of from 100:2.5 to 100:20.
51. A dosage form according to claim 33 , wherein the weight ratio of immediate release antidiabetic active ingredient and modified release antidiabetic active ingredient is from 1:10 to 1:15000
52. A dosage form according to claim 33 , wherein the low dose antidiabetic active ingredient comprises dose less than or equal to 50 mg.
53. A dosage form according to claim 33 , wherein the low dose antidiabetic active ingredient is selected from the group comprsing of sulphonylurease, meglitinides, PPAR gama agonist [insulin sensitisers (thiazolidinedione)], alpha-glucosidase inhibitors, PPAR alpha and gama agonist.
54. A dosage form according to claim 33 , wherein the low dose antidiabetic active ingredient is selected from the group comprsing of glibenclamide(glyburide), glipizide, gliclazide, glimepiride, tolazamide, tolbutamide, clorpropamide, gliquidone, nateglinide, glyburide, glisoxepid, glibornuride, phenbutamide, tolcyclamide, repaglinide, troglitazone, ciglitazone, pioglitazone, englitazone, acarbose, voglibose, emiglitate, miglitol, farglitazar, (S)-2-ethoxy-3-[4-(2-{4-methanesulfonyloxyphenyl}ethoxy)phenyl]propanoic acid, 3 {4-[2-(4-TERT-butoxycarbonylaminophenyl)ethoxy]phenyl}-(S)-2-ETHOXY propanoic acid and pharmaceutically acceptable salts thereof.
55. A dosage form according to claim 33 , wherein the high dose high solubility antidiabetic active ingredient is selected from biguanides.
56. A dosage form according to claim 33 , wherein the high dose high solubility antidiabetic active ingredient is selected from the group comprising of metformin hydrochloride, phenformin and buformin
57. A dosage form according to claim 33 , wherein the high dose high solubility antidiabetic active ingredient comprises dose from 500 mg to 1500 mg.
58. A dosage form according to claim 33 , is once a day oral formulation.
59. A dosage form according to claim 33 , is used for human beings.
60. A dosage form according to claim 33 , wherein the high dose high solubility antidiabetic active ingredient is metformin hydrochloride.
61. A dosage form according to claim 33 , wherein the composition of outer portion is as follows—
Micro matrix particles—
Metformin hydrochloride 75% W/W to 99% w/w
Eudragit RS 1% w/w to 25% w/w
Coated micro matrix particles
Micro matrix particles 70% w/w to 99% w/w
Hydrogenated castor oil 1% w/w to 30% w/w
Magnesium stearate 0% w/w to 2% w/w
62. A dosage form according to claim 33 , wherein the dissolution of metformin hydrochloride is not more than 50% in one hour, from 30 to 90% in four hours and not less than 65% in twelve hours.
63. A dosage form according to claim 33 , wherein the maximum plasma metformin concentration is achieved between 700 ng/ml and 2500 ng/ml.
64. A dosage form according to claim 63 , wherein the maximum plasma metformin concentration is achieved preferably between 900 ng/ml and 2400 ng/ml.
65. A dosage form according to claim 63 , wherein the maximum plasma metformin concentration is achieved more preferably between 1000 ng/ml and 2350 ng/ml.
66. A dosage form according to claim 33 , wherein the modified release metformin hydrochloride formulations for once daily administration exhibit invivo mean dissolution time (MDT) of 4 hours to 6 hours.
67. A dosage form according to claim 33 , wherein the minimum plasma metformin concentration (at 24 hours) ranges between 0 and 450 ng/ml after oral administration.
68. A dosage form according to claim 33 , wherein the low dose antidiabetic active ingredient is rosiglitazone maleate.
69. A dosage form according to claim 33 , wherein the low dose antidiabetic active ingredient is glimepiride.
70. A dosage form as claimed in claim 60 , wherein the bioavailability of rosiglitazone is not affected when it is coadmnistered with metformin hydrochloride.
71. A dosage form according to claim 33 , wherein inner portion may optionally contain more than one antidiabetic active ingredients.
72. A dosage form according to claim 33 , wherein outer portion may optionally contain more than one antidiabetic active ingredients.
73. A process for the preparation of a dosage form as claimed in claim 33 , comprising a) preparation of inner portion and b) preparation of outer portion.
74. A process for the preparation of a dosage form as claimed in claim 73 , wherein preparation of outer portion comprising a) preparing a micro matrix particles containing high dose, antidiabetic active ingredient and one or more hydrophobic release controlling agent and b) coating the said micro matrix particles containing high dose antidiabetic active ingredient and one or more hydrophobic release controlling agent.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN699MU2002 | 2002-08-05 | ||
IN697/MUM/2002 | 2002-08-05 | ||
IN697MU2002 | 2002-08-05 | ||
IN699/MUM/2002 | 2002-08-05 | ||
IN82MU2003 | 2003-01-22 | ||
IN80MU2003 | 2003-01-22 | ||
IN82/MUM/2003 | 2003-01-22 | ||
IN80/MUM/2003 | 2003-01-22 | ||
PCT/IN2003/000262 WO2004012700A2 (en) | 2002-08-05 | 2003-08-01 | Dosage form comprising high dose high soluble active ingredient as modified release and low dose active ingredient as immediate release |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060153916A1 true US20060153916A1 (en) | 2006-07-13 |
Family
ID=31499436
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/630,446 Expired - Fee Related US7985422B2 (en) | 2002-08-05 | 2003-07-29 | Dosage form |
US10/522,989 Abandoned US20060153916A1 (en) | 2002-08-05 | 2003-08-01 | Novel dosage form |
US11/134,633 Expired - Fee Related US8263125B2 (en) | 2002-08-05 | 2005-05-19 | Dosage form for high dose-high solubility active ingredients that provides for immediate release and modified release of the active ingredients |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/630,446 Expired - Fee Related US7985422B2 (en) | 2002-08-05 | 2003-07-29 | Dosage form |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/134,633 Expired - Fee Related US8263125B2 (en) | 2002-08-05 | 2005-05-19 | Dosage form for high dose-high solubility active ingredients that provides for immediate release and modified release of the active ingredients |
Country Status (5)
Country | Link |
---|---|
US (3) | US7985422B2 (en) |
EP (1) | EP1528917B1 (en) |
AU (1) | AU2003274681A1 (en) |
BR (1) | BRPI0313424B8 (en) |
WO (1) | WO2004012700A2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070166375A1 (en) * | 2006-01-18 | 2007-07-19 | Astron Research Limited | Modified release oral dosage form using co-polymer of polyvinyl acetate |
US20080069891A1 (en) * | 2006-09-15 | 2008-03-20 | Cima Labs, Inc. | Abuse resistant drug formulation |
US20080140450A1 (en) * | 2006-11-28 | 2008-06-12 | Ampla Pharmaceuticals Inc. | Treatment of metabolic syndrome with norfluoxetine |
WO2009149058A3 (en) * | 2008-06-02 | 2010-02-25 | Dr. Reddy's Laboratories Ltd. | Modified release niacin formulations |
US20100087408A1 (en) * | 2008-05-28 | 2010-04-08 | Validus Genetics | NON-HORMONAL STEROID MODULATORS OF NF-kB FOR TREATMENT OF DISEASE |
US20100166810A1 (en) * | 2007-07-01 | 2010-07-01 | Joseph Peter Habboushe | Combination tablet with chewable outer layer |
US20100196427A1 (en) * | 2009-01-30 | 2010-08-05 | Nitec Pharma Ag | Delayed-release glucocorticoid treatment of rheumatoid arthritis by improving signs and symptoms, showing major or complete clinical response and by preventing from joint damage |
US20100222312A1 (en) * | 2009-01-26 | 2010-09-02 | Nitec Pharma Ag | Delayed-release glucocorticoid treatment of asthma |
US20100233255A1 (en) * | 2006-01-13 | 2010-09-16 | Moinet Gerard | Combination of trazine derivatives and insulin secretion stimulators |
WO2010134938A1 (en) * | 2009-05-18 | 2010-11-25 | Dr. Reddy's Laboratories Ltd. | Modified release niacin pharmaceutical formulations |
US20120276166A1 (en) * | 2009-12-18 | 2012-11-01 | Mitsubishi Tanabe Pharma Corporation | Elution-stabilized preparation |
US8445018B2 (en) | 2006-09-15 | 2013-05-21 | Cima Labs Inc. | Abuse resistant drug formulation |
US8871275B2 (en) | 2007-08-08 | 2014-10-28 | Inventia Healthcare Private Limited | Extended release compositions comprising tolterodine |
US8920838B2 (en) | 2006-08-03 | 2014-12-30 | Horizon Pharma Ag | Delayed-release glucocorticoid treatment of rheumatoid disease |
US8927025B2 (en) | 2010-05-11 | 2015-01-06 | Cima Labs Inc. | Alcohol-resistant metoprolol-containing extended-release oral dosage forms |
US8951555B1 (en) | 2000-10-30 | 2015-02-10 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US8975273B2 (en) | 1999-10-29 | 2015-03-10 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9198921B2 (en) | 2010-04-05 | 2015-12-01 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-κB for treatment of disease |
US9226891B2 (en) | 2011-10-28 | 2016-01-05 | Vitalis Llc | Anti-flush compositions |
US10060860B2 (en) | 2007-06-30 | 2018-08-28 | Smp Logic Systems | Pharmaceutical dosage forms fabricated with nanomaterials |
US10179130B2 (en) | 1999-10-29 | 2019-01-15 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US10800738B2 (en) | 2017-12-05 | 2020-10-13 | Sunovion Pharmaceuticals Inc. | Crystal forms and production methods thereof |
US10799514B2 (en) | 2015-06-29 | 2020-10-13 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-kappa beta for treatment of disease |
US10874639B2 (en) | 2017-12-05 | 2020-12-29 | Sunovion Pharmaceuticals Inc. | Nonracemic mixtures and uses thereof |
US11160758B2 (en) | 2019-06-04 | 2021-11-02 | Sunovion Pharmaceuticals Inc. | Modified release formulations and uses thereof |
US11382922B2 (en) | 2019-03-07 | 2022-07-12 | Reveragen Biopharma, Inc. | Aqueous oral pharmaceutical suspension compositions |
Families Citing this family (250)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030153607A1 (en) * | 1998-11-12 | 2003-08-14 | Smithkline Beecham P.L.C. | Novel composition and use |
US20040102486A1 (en) * | 1998-11-12 | 2004-05-27 | Smithkline Beecham Corporation | Novel method of treatment |
WO2001034119A2 (en) * | 1999-11-12 | 2001-05-17 | Abbott Laboratories | Inhibitors of crystallization in a solid dispersion |
US7364752B1 (en) | 1999-11-12 | 2008-04-29 | Abbott Laboratories | Solid dispersion pharamaceutical formulations |
CA2359812C (en) * | 2000-11-20 | 2004-02-10 | The Procter & Gamble Company | Pharmaceutical dosage form with multiple coatings for reduced impact of coating fractures |
BE1015608A6 (en) * | 2003-07-15 | 2005-06-07 | Messadek Jallal | TREATMENT arteritis. |
CA2476496C (en) * | 2002-02-21 | 2009-12-15 | Biovail Laboratories Inc. | Controlled release dosage forms |
US8323692B2 (en) | 2002-02-21 | 2012-12-04 | Valeant International Bermuda | Controlled release dosage forms |
US20050215552A1 (en) * | 2002-05-17 | 2005-09-29 | Gadde Kishore M | Method for treating obesity |
WO2003105809A1 (en) | 2002-06-17 | 2003-12-24 | Themis Laboratories Private Limited | Multilayer tablets containing thiazolidinedione and biguanides and methods for producing them |
US7704527B2 (en) * | 2002-10-25 | 2010-04-27 | Collegium Pharmaceutical, Inc. | Modified release compositions of milnacipran |
DE10307728B4 (en) * | 2003-02-24 | 2005-09-22 | Clariant Gmbh | Corrosion and gas hydrate inhibitors with improved water solubility and increased biodegradability and such compounds |
EP1615632B1 (en) * | 2003-04-17 | 2006-12-06 | Jallal Messadek | Floating oral formulations for controlled release of betaine |
ES2303085T3 (en) | 2003-04-29 | 2008-08-01 | Orexigen Therapeutics, Inc. | COMPOSITIONS AFFECTING LOSS OF WEIGHT. |
US20050025825A1 (en) * | 2003-07-31 | 2005-02-03 | Xanodyne Pharmacal, Inc. | Tranexamic acid formulations with reduced adverse effects |
US20090214644A1 (en) * | 2003-07-31 | 2009-08-27 | Xanodyne Pharmaceuticals, Inc. | Tranexamic acid formulations with reduced adverse effects |
US8377952B2 (en) * | 2003-08-28 | 2013-02-19 | Abbott Laboratories | Solid pharmaceutical dosage formulation |
US8025899B2 (en) | 2003-08-28 | 2011-09-27 | Abbott Laboratories | Solid pharmaceutical dosage form |
WO2005065639A2 (en) * | 2003-11-21 | 2005-07-21 | Torrent Pharmaceuticals Limited | Novel pharmaceutical compositions |
CZ300438B6 (en) * | 2003-11-25 | 2009-05-20 | Pliva Hrvatska D.O.O. | Process for preparing solid medicament form for oral administration with instantaneous release of active substance and containing as the active substance finasteride polymorphous form |
EP1841414A1 (en) * | 2003-12-31 | 2007-10-10 | Alpharma, Inc. | Rosiglitazone and metformin formulations |
US8022106B2 (en) * | 2004-03-04 | 2011-09-20 | Ferring B.V. | Tranexamic acid formulations |
US20050245614A1 (en) * | 2004-03-04 | 2005-11-03 | Xanodyne Pharmaceuticals, Inc. | Tranexamic acid formulations |
US7947739B2 (en) | 2004-03-04 | 2011-05-24 | Ferring B.V. | Tranexamic acid formulations |
US20090215898A1 (en) * | 2004-03-04 | 2009-08-27 | Xanodyne Pharmaceuticals, Inc. | Tranexamic acid formulations |
US20050244495A1 (en) | 2004-03-04 | 2005-11-03 | Xanodyne Pharmaceuticals, Inc. | Tranexamic acid formulations |
US20060185357A1 (en) * | 2004-05-07 | 2006-08-24 | Kovacevich Ian D | Independently drawing and tensioning lines with bi-directional rotary device having two spools |
WO2005123134A2 (en) * | 2004-05-14 | 2005-12-29 | Cadila Healthcare Limited | A controlled release delivery system for metformin |
US8226977B2 (en) | 2004-06-04 | 2012-07-24 | Teva Pharmaceutical Industries Ltd. | Pharmaceutical composition containing irbesartan |
BE1016128A6 (en) * | 2004-07-22 | 2006-03-07 | Messadek Jallal | Combination therapy |
US7700608B2 (en) | 2004-08-04 | 2010-04-20 | Shire Holdings Ag | Quinazoline derivatives and their use in the treatment of thrombocythemia |
AR050615A1 (en) * | 2004-08-27 | 2006-11-08 | Novartis Ag | PHARMACEUTICAL COMPOSITIONS FOR ORAL ADMINISTRATION |
CZ2004964A3 (en) * | 2004-09-14 | 2006-03-15 | Pliva-Lachema A. S. | Peroral pharmaceutical composition for targeted transport of platinum complex into colorectal region, process for its preparation and the composition for use as medicament |
WO2006031024A1 (en) | 2004-09-15 | 2006-03-23 | Gl Pharmtech Corp. | A sustained-release tablet containing doxazosin mesylate |
WO2006050581A2 (en) * | 2004-11-10 | 2006-05-18 | Jallal Messadek | Betaine as agent against arthropod - or mosquito -borne diseases |
US7619007B2 (en) | 2004-11-23 | 2009-11-17 | Adamas Pharmaceuticals, Inc. | Method and composition for administering an NMDA receptor antagonist to a subject |
GB0502479D0 (en) * | 2005-02-07 | 2005-03-16 | Sb Pharmco Inc | Novel compositions |
EP2242489A1 (en) * | 2005-02-15 | 2010-10-27 | Jallal Messadek | Combination therapeutic compositions and method of use |
US20060222709A1 (en) * | 2005-03-18 | 2006-10-05 | Agi Therapeutics Research Ltd. | Metformin methods and formulations for treating chronic constipation |
BRPI0607017B8 (en) | 2005-04-06 | 2021-05-25 | Adamas Pharmaceuticals Inc | pharmaceutical composition comprising memantine and donezepil, and their use for the treatment of snc-related conditions |
US7348027B2 (en) * | 2005-04-08 | 2008-03-25 | Bayer Healthcare Llc | Taste masked veterinary formulation |
US20060229261A1 (en) * | 2005-04-12 | 2006-10-12 | John Devane | Acarbose methods and formulations for treating chronic constipation |
US20100087546A1 (en) * | 2005-04-20 | 2010-04-08 | Biogenic Innovations, Llc | Use of dimethyl sulfone (msm) to reduce homocysteine levels |
US20060264458A1 (en) * | 2005-05-03 | 2006-11-23 | Jie Du | Quinine dosage forms and methods of use thereof |
US8088773B2 (en) * | 2005-05-12 | 2012-01-03 | The Texas A&M University System | Therapeutic compositions and methods |
US20070225322A1 (en) * | 2005-05-25 | 2007-09-27 | Transoral Pharmaceuticals, Inc. | Compositions and methods for treating middle-of-the night insomnia |
WO2006128022A2 (en) * | 2005-05-25 | 2006-11-30 | Transcept Pharmaceuticals, Inc. | Solid compositions and methods for treating middle-of-the night insomnia |
US20070287740A1 (en) * | 2005-05-25 | 2007-12-13 | Transcept Pharmaceuticals, Inc. | Compositions and methods of treating middle-of-the night insomnia |
US7919483B2 (en) | 2005-06-24 | 2011-04-05 | Medicis Pharmaceutical Corporation | Method for the treatment of acne |
US8252776B2 (en) | 2007-04-02 | 2012-08-28 | Medicis Pharmaceutical Corporation | Minocycline oral dosage forms for the treatment of acne |
US7541347B2 (en) | 2007-04-02 | 2009-06-02 | Medicis Pharmaceutical Coropration | Minocycline oral dosage forms for the treatment of acne |
US7544373B2 (en) | 2007-04-02 | 2009-06-09 | Medicis Pharmaceutical Corporation | Minocycline oral dosage forms for the treatment of acne |
KR101577554B1 (en) | 2005-08-22 | 2015-12-14 | 멜리어 파마슈티칼스 아이, 인코포레이티드 | Methods and formulations for modulating lyn kinase activity and treating related disorders |
WO2007052299A2 (en) * | 2005-08-24 | 2007-05-10 | Rubicon Research Pvt Ltd. | Controlled release formulation |
US9427419B2 (en) | 2005-09-12 | 2016-08-30 | Abela Pharmaceuticals, Inc. | Compositions comprising dimethyl sulfoxide (DMSO) |
US8435224B2 (en) | 2005-09-12 | 2013-05-07 | Abela Pharmaceuticals, Inc. | Materials for facilitating administration of dimethyl sulfoxide (DMSO) and related compounds |
AU2006291134C1 (en) | 2005-09-12 | 2013-08-15 | Abela Pharmaceuticals, Inc. | Systems for removing dimethyl sulfoxide (DMSO) or related compounds, or odors associated with same |
US8480797B2 (en) * | 2005-09-12 | 2013-07-09 | Abela Pharmaceuticals, Inc. | Activated carbon systems for facilitating use of dimethyl sulfoxide (DMSO) by removal of same, related compounds, or associated odors |
DE102005054610B4 (en) * | 2005-11-08 | 2010-06-10 | Awd.Pharma Gmbh & Co. Kg | Controlled-release drug preparation containing flupirtine |
US20070203079A1 (en) * | 2005-11-21 | 2007-08-30 | Caldwell Guy A | Methods of using small molecule compounds for neuroprotection |
JP5180092B2 (en) | 2005-11-22 | 2013-04-10 | オレキシジェン・セラピューティクス・インコーポレーテッド | Compositions and methods for increasing insulin sensitivity |
JP2009517394A (en) * | 2005-11-28 | 2009-04-30 | オレキシジェン・セラピューティクス・インコーポレーテッド | Sustained release formulation of zonisamide |
US8916195B2 (en) | 2006-06-05 | 2014-12-23 | Orexigen Therapeutics, Inc. | Sustained release formulation of naltrexone |
US7811549B2 (en) * | 2006-07-05 | 2010-10-12 | Adenobio N.V. | Methods, compositions, unit dosage forms, and kits for pharmacologic stress testing with reduced side effects |
US20090238763A1 (en) * | 2006-07-09 | 2009-09-24 | Chongxi Yu | High penetration compositions and uses thereof |
US20090221703A1 (en) | 2006-07-09 | 2009-09-03 | Chongxi Yu | High penetration composition and uses thereof |
US20080095843A1 (en) * | 2006-07-11 | 2008-04-24 | Nutalapati Siva R K | Controlled-release formulations |
US8765178B2 (en) * | 2006-07-19 | 2014-07-01 | Watson Laboratories, Inc. | Controlled release formulations and associated methods |
CN105439877B (en) * | 2006-07-26 | 2019-07-23 | 于崇曦 | The prodrug of positively charged water-soluble Diflunisal and related compound |
CN101500983B (en) * | 2006-07-26 | 2015-09-16 | 于崇曦 | Positively charged water-soluble prodrugs of diflunisal and related compounds with fast skin penetration rate |
WO2008021666A2 (en) * | 2006-08-18 | 2008-02-21 | Morton Grove Pharmaceuticals, Inc. | Stable liquid levetiracetam compositions and methods |
WO2008024922A2 (en) * | 2006-08-23 | 2008-02-28 | Wyeth | 8-hydroxyquinoline compounds and methods thereof |
US20080051380A1 (en) * | 2006-08-25 | 2008-02-28 | Auerbach Alan H | Methods and compositions for treating cancer |
US20080051375A1 (en) * | 2006-08-25 | 2008-02-28 | Auerbach Alan H | Methods for treating cancer comprising the administration of a vitamin d compound and an additional therapeutic agent, and compositions containing the same |
US9744137B2 (en) * | 2006-08-31 | 2017-08-29 | Supernus Pharmaceuticals, Inc. | Topiramate compositions and methods of enhancing its bioavailability |
US20110165236A1 (en) * | 2006-09-22 | 2011-07-07 | Biokey, Inc. | Controlled release hydrogel formulation |
US20080075785A1 (en) * | 2006-09-22 | 2008-03-27 | San-Laung Chow | Controlled release hydrogel formulation |
DK2089005T3 (en) | 2006-11-09 | 2010-07-19 | Orexigen Therapeutics Inc | Layered pharmaceutical formulations comprising a rapidly dissolving intermediate layer |
US20080110792A1 (en) | 2006-11-09 | 2008-05-15 | Orexigen Therapeutics, Inc. | Methods for administering weight loss medications |
EP1973528B1 (en) | 2006-11-17 | 2012-11-07 | Supernus Pharmaceuticals, Inc. | Sustained-release formulations of topiramate |
KR100822180B1 (en) * | 2006-11-22 | 2008-04-16 | 광동제약 주식회사 | Method of stabilizing marginal tablets |
WO2008067549A2 (en) * | 2006-11-30 | 2008-06-05 | Transcept Pharmaceuticals, Inc. | Stabilized zolpidem pharmaceutical compositions |
CA2658521C (en) * | 2006-12-04 | 2015-06-09 | Supernus Pharmaceuticals, Inc. | Enhanced immediate release formulations of topiramate |
US20100168137A1 (en) * | 2006-12-20 | 2010-07-01 | Johan Raud | Combination for use in the treatment of inflammatory disorders |
AU2007344274A1 (en) * | 2007-01-16 | 2008-07-24 | Cardoz Ab | New combination for use in the treatment of inflammatory disorders |
US20100143270A1 (en) * | 2007-02-21 | 2010-06-10 | University Of Louisville Research Foubdation | Therapeutic cotinine compositions |
EP1967182A1 (en) * | 2007-03-07 | 2008-09-10 | KRKA, tovarna zdravil, d.d., Novo mesto | Pharmaceutical composition comprising a salt of rosigliatazone |
WO2008111674A1 (en) * | 2007-03-15 | 2008-09-18 | Toyo Boseki Kabushiki Kaisha | Process for production of buprenorphine pharmaceutical preparation to be applied to mouth mucosa |
WO2008114280A1 (en) * | 2007-03-21 | 2008-09-25 | Lupin Limited | Novel reduced dose pharmaceutical compositions of fexofenadine and pseudoephedrine |
KR100782310B1 (en) | 2007-03-22 | 2007-12-06 | 현대약품 주식회사 | Pharmaceutical composition comprising galantamine or a pharmaceutically acceptable salt thereof |
WO2008121107A1 (en) * | 2007-04-02 | 2008-10-09 | Medicis Pharmaceutical Corporation | Minocycline oral dosage forms for the treatment of acne |
US11241420B2 (en) | 2007-04-11 | 2022-02-08 | Omeros Corporation | Compositions and methods for prophylaxis and treatment of addictions |
US20160331729A9 (en) * | 2007-04-11 | 2016-11-17 | Omeros Corporation | Compositions and methods for prophylaxis and treatment of addictions |
US8426439B2 (en) * | 2007-04-11 | 2013-04-23 | Omeros Corporation | Compositions and methods for prophylaxis and treatment of addictions |
WO2008150845A1 (en) * | 2007-05-31 | 2008-12-11 | Vanderbilt University | Screening for wnt pathway modulators and pyrvinium for the treatment of cance |
CN101687792B (en) * | 2007-06-04 | 2016-03-02 | 于崇曦 | There is prodrug and the medicinal use thereof of the NSAID (non-steroidal anti-inflammatory drug) of fast skin and membranes penetration speed |
WO2009007680A2 (en) | 2007-07-11 | 2009-01-15 | Cardoz Ab | Combinations comprising a mast cell inhibitor and a statin for use in the treatment of inflammatory disorders |
WO2009009132A1 (en) * | 2007-07-12 | 2009-01-15 | Cougar Biotechnology, Inc. | Use of 17alpha-hydroxylase/c17, 20-lyase inhibitors for the treatment of cancer |
US8067632B2 (en) | 2007-07-26 | 2011-11-29 | The Board Of Trustees Of The Leland Stanford Junior University | Process to produce prostratin and structural or functional analogs thereof |
US20090035370A1 (en) * | 2007-08-02 | 2009-02-05 | Drugtech Corporation | Dosage form and method of use |
US8802156B2 (en) | 2007-11-14 | 2014-08-12 | Laboratorios Farmacéuticos Rovi, S.A. | Pharmaceutical forms for the release of active compounds |
WO2009065193A1 (en) * | 2007-11-21 | 2009-05-28 | Jallal Messadek | Treatment of aspirin resistance with betaine and/or betaine enriched molasses |
US20090185973A1 (en) * | 2008-01-22 | 2009-07-23 | Adenobio N.V. | Methods, compositions, unit dosage forms, and kits for pharmacologic stress testing with reduced side effects |
CN101951902A (en) * | 2008-02-28 | 2011-01-19 | 诺瓦提斯公司 | Valsartan solid oral dosage forms and methods of making such formulations |
US20110044968A1 (en) * | 2008-03-10 | 2011-02-24 | Pharmal N Corporation | Compositions for treatment with metallopeptidases, methods of making and using the same |
CN101550162B (en) * | 2008-04-03 | 2015-11-25 | 北京华昊中天生物技术有限公司 | Fostriecin derivant and pharmaceutical usage thereof |
ES2395002T3 (en) * | 2008-04-07 | 2013-02-07 | Cardoz Ab | New combination for use in the treatment of inflammatory disorders |
KR101601649B1 (en) | 2008-04-18 | 2016-03-09 | 인텍 파마 리미티드 | Carbidopa/levodopa gastroretentive drug delivery |
JP2011521973A (en) | 2008-05-30 | 2011-07-28 | オレキシジェン・セラピューティクス・インコーポレーテッド | Methods for treating visceral fat conditions |
US20100178341A1 (en) * | 2008-06-11 | 2010-07-15 | Ranbaxy Laboratories Limited | BILAYERED TABLET COMPRISING NIACIN AND HMG-CoA REDUCTASE INHIBITOR |
US8552184B2 (en) * | 2008-07-03 | 2013-10-08 | Melior Pharmaceuticals I, Inc. | Compounds and methods for treating disorders related to glucose metabolism |
CA2732513C (en) | 2008-08-01 | 2017-04-25 | Arca Biopharma, Inc. | Methods and compositions involving (s)-bucindolol |
WO2010017310A1 (en) | 2008-08-06 | 2010-02-11 | Medicis Pharmaceutical Corporation | Method for the treatment of acne and certain dosage forms thereof |
WO2010025135A2 (en) * | 2008-08-28 | 2010-03-04 | Osteogenex Inc. | Trimeprazine and ethopropazine derivatives for promoting bone growth |
WO2010028211A1 (en) * | 2008-09-04 | 2010-03-11 | Rozmanith Anthony I | Health care |
US20100068233A1 (en) * | 2008-09-16 | 2010-03-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Modifiable dosage form |
US20100068254A1 (en) * | 2008-09-16 | 2010-03-18 | Mahalaxmi Gita Bangera | Modifying a medicament availability state of a final dosage form |
US20100069887A1 (en) * | 2008-09-16 | 2010-03-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Multiple chamber ex vivo adjustable-release final dosage form |
US20100068235A1 (en) * | 2008-09-16 | 2010-03-18 | Searete LLC, a limited liability corporation of Deleware | Individualizable dosage form |
US20100069821A1 (en) * | 2008-09-16 | 2010-03-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Ex vivo modifiable medicament release-sites final dosage form |
US20100068256A1 (en) * | 2008-09-16 | 2010-03-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Ex vivo modifiable medicament release-substance |
US20100068275A1 (en) * | 2008-09-16 | 2010-03-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Personalizable dosage form |
US8198268B2 (en) * | 2008-10-31 | 2012-06-12 | Janssen Biotech, Inc. | Tianeptine sulfate salt forms and methods of making and using the same |
BRPI0921494A2 (en) | 2008-11-03 | 2018-10-30 | Prad Reasearch And Development Ltd | method of planning a underground forming sampling operation, method of controlling a underground forming sampling operation, method of controlling a drilling operation for an underground formation, and method of sampling during the drilling operation. |
US8778398B2 (en) | 2008-11-04 | 2014-07-15 | Jazz Pharmaceuticals, Inc. | Immediate release formulations and dosage forms of gamma-hydroxybutyrate |
US8771735B2 (en) * | 2008-11-04 | 2014-07-08 | Jazz Pharmaceuticals, Inc. | Immediate release dosage forms of sodium oxybate |
RU2630577C2 (en) | 2008-12-04 | 2017-09-11 | Чунси ЮЙ | Compositions of intensive penetration and their application |
JP2012510987A (en) * | 2008-12-04 | 2012-05-17 | インテック ファーマ リミテッド | Zaleplon gastroretentive drug delivery system |
US20100183717A1 (en) * | 2009-01-16 | 2010-07-22 | Kristin Arnold | Controlled-release formulations |
PT2395840T (en) * | 2009-02-13 | 2020-07-06 | Romark Laboratories Lc | Controlled release pharmaceutical formulations of nitazoxanide |
US20100280117A1 (en) * | 2009-04-30 | 2010-11-04 | Xanodyne Pharmaceuticals, Inc. | Menorrhagia Instrument and Method for the Treatment of Menstrual Bleeding Disorders |
NZ596963A (en) | 2009-05-19 | 2014-01-31 | Neuroderm Ltd | Compositions for continuous administration of dopa decarboxylase inhibitors |
KR20120030112A (en) * | 2009-06-05 | 2012-03-27 | 타우 쎄라퓨틱스 엘엘씨 | Interlaced method for treating cancer or a precancerous condition |
MX353712B (en) | 2009-10-30 | 2018-01-24 | Abela Pharmaceuticals Inc | Dimethyl sulfoxide (dmso) and methylsulfonylmethane (msm) formulations to treat osteoarthritis. |
LT2504353T (en) | 2009-11-23 | 2018-09-25 | Cubist Pharmaceuticals Llc | Lipopeptide compositions and related methods |
WO2011069010A2 (en) | 2009-12-02 | 2011-06-09 | Adamas Pharmaceuticals, Inc. | Amantadine compositions and methods of use |
NL1037569C2 (en) * | 2009-12-18 | 2011-06-21 | Eurovet Animal Health B V | Crystalline pimobendan, process for the preparation thereof, pharmaceutical composition and use. |
US20110150986A1 (en) * | 2009-12-18 | 2011-06-23 | Kristin Arnold | Quinine formulations, method of making, and metho of use thereof |
ES2762113T3 (en) | 2010-01-11 | 2020-05-22 | Nalpropion Pharmaceuticals Inc | Methods of providing weight loss therapy in patients with major depression |
USD661900S1 (en) | 2010-02-22 | 2012-06-19 | Bajer Design & Marketing, Inc. | Collapsible structure |
MX360640B (en) | 2010-03-01 | 2018-11-09 | Tau Therapeutics Llc Star | Cancer diagnosis and imaging. |
EA029077B1 (en) * | 2010-03-09 | 2018-02-28 | Алкермес Фарма Айэленд Лимитед | Alcohol resistant pharmaceutical composition |
JP5968300B2 (en) | 2010-03-24 | 2016-08-10 | ジャズ、ファーマシューティカルズ、インコーポレイテッドJazz Pharmaceuticals Inc. | Controlled release dosage forms for high dose, water soluble and hygroscopic drug substrates |
WO2011150300A1 (en) | 2010-05-28 | 2011-12-01 | Melior Pharmaceuticals I, Inc. | Prevention of pancreatic beta cell degeneration |
US8846723B2 (en) | 2010-07-29 | 2014-09-30 | Eastman Chemical Company | Esters of O-substituted hydroxy carboxylic acids and preparations thereof |
US20120052011A1 (en) * | 2010-08-24 | 2012-03-01 | Canon Kabushiki Kaisha | Composition and a method for producing contrast agent using the composition |
US8916194B2 (en) * | 2010-08-30 | 2014-12-23 | Lupin Limited | Controlled release pharmaceutical compositions of milnacipran |
KR101859242B1 (en) | 2010-11-15 | 2018-05-17 | 뉴로덤 엘티디 | Continuous administration of l-dopa, dopa decarboxylase inhibitors, catechol-o-methyl transferase inhibitors and compositions for same |
US8597683B2 (en) | 2010-11-30 | 2013-12-03 | Watson Pharmaceuticals, Inc. | Modified release tranexamic acid formulation |
ES2702848T3 (en) | 2011-02-23 | 2019-03-05 | Coeruleus Ltd | Flumazenil complexes, compositions comprising them and uses thereof |
WO2012158699A1 (en) | 2011-05-16 | 2012-11-22 | Romark Laboratories, L.C. | Use of thiazolide compounds for the prevention and treatment of viral diseases, cancer and diseases caused by intracellular infections |
WO2012171015A2 (en) * | 2011-06-10 | 2012-12-13 | Translational Genomics Research Institute | Therapeutic combination for cancer treatment |
US9561241B1 (en) | 2011-06-28 | 2017-02-07 | Medicis Pharmaceutical Corporation | Gastroretentive dosage forms for minocycline |
WO2013059245A1 (en) * | 2011-10-17 | 2013-04-25 | Vanderbilt University | Indomethacin analogs for the treatment of castrate-resistant prostate cancer |
US9717678B2 (en) * | 2011-11-06 | 2017-08-01 | Murty Pharmaceuticals, Inc. | Delivery systems for improving oral bioavailability of Fenobam, its hydrates, and salts |
US20150190396A1 (en) * | 2011-12-12 | 2015-07-09 | Melior Pharmaceuticals l, Inc. | Treatment of type i and type ii diabetes |
US20130183263A1 (en) | 2012-01-17 | 2013-07-18 | Steven Hoffman | Pharmaceutical compositions and methods |
US10646552B2 (en) | 2012-01-17 | 2020-05-12 | Tyme, Inc. | Pharmaceutical compositions and methods |
US10272068B2 (en) | 2012-01-17 | 2019-04-30 | Tyme, Inc. | Pharmaceutical compositions and methods |
EP2844067A4 (en) * | 2012-03-19 | 2015-11-25 | Althera Life Sciences Llc | Oral tablet formulation consisting of immediate release rosuv astatin and extended release metformin |
EP3939572B1 (en) | 2012-04-12 | 2024-03-27 | Yale University | Vehicles for controlled delivery of different pharmaceutical agents |
US9470675B2 (en) * | 2012-04-30 | 2016-10-18 | Council Of Scientific & Industrial Research | Sensor composition for acetone detection in breath |
ES2715028T3 (en) | 2012-06-05 | 2019-05-31 | Neuroderm Ltd | Compositions comprising apomorphine and organic acids and their uses |
ES2924024T3 (en) | 2012-06-06 | 2022-10-04 | Nalpropion Pharmaceuticals Llc | Composition for use in a method for the treatment of overweight and obesity in patients with high cardiovascular risk |
RU2521572C1 (en) * | 2012-12-21 | 2014-06-27 | Федеральное государственное бюджетное учреждение науки Институт химии растворов им. Г.А. Крестова Российской академии наук (ИХР РАН) | Cocrystalline form of fenbufen |
WO2014122671A2 (en) * | 2013-02-08 | 2014-08-14 | Hetero Research Foundation | Solid oral compositions of saxagliptin |
US10154971B2 (en) | 2013-06-17 | 2018-12-18 | Adamas Pharma, Llc | Methods of administering amantadine |
WO2014203140A1 (en) | 2013-06-22 | 2014-12-24 | Wockhardt Limited | Solid oral pharmaceutical compositions comprising fixed dose combination of acetaminophen, dicyclomine and dextropropoxyphene or salts thereof |
AU2014306759B2 (en) | 2013-08-12 | 2018-04-26 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded immediate release abuse deterrent pill |
WO2015065547A1 (en) | 2013-10-31 | 2015-05-07 | Cima Labs Inc. | Immediate release abuse-deterrent granulated dosage forms |
WO2015066535A1 (en) | 2013-11-01 | 2015-05-07 | Yale University | Modular particles for immunotherapy |
US9492444B2 (en) | 2013-12-17 | 2016-11-15 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
WO2015095391A1 (en) | 2013-12-17 | 2015-06-25 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
US10137137B2 (en) * | 2013-12-23 | 2018-11-27 | Socpra Sciences Et Genie S.E.C. | ATP synthase inhibitors and steroid alkaloids and uses thereof as antimicrobial agents and as potentiators for aminoglycosides against pathogenic bacteria |
US10258585B2 (en) | 2014-03-13 | 2019-04-16 | Neuroderm, Ltd. | DOPA decarboxylase inhibitor compositions |
EP4299128A3 (en) | 2014-03-13 | 2024-04-17 | Neuroderm Ltd. | Dopa decarboxylase inhibitor compositions |
CN104208069A (en) | 2014-05-08 | 2014-12-17 | 上海市计划生育科学研究所 | Anordrin composition and disease treatment method using the same |
HUE043399T2 (en) * | 2014-06-26 | 2019-08-28 | Hennig Arzneimittel Gmbh&Co Kg | Medication for treating dizziness due to various causes |
AU2015290098B2 (en) | 2014-07-17 | 2018-11-01 | Pharmaceutical Manufacturing Research Services, Inc. | Immediate release abuse deterrent liquid fill dosage form |
AU2015336065A1 (en) | 2014-10-20 | 2017-05-04 | Pharmaceutical Manufacturing Research Services, Inc. | Extended release abuse deterrent liquid fill dosage form |
CN104523636B (en) * | 2014-12-25 | 2017-07-18 | 昆明振华制药厂有限公司 | A kind of furazolidone sustained release tablets and preparation method thereof |
US9925233B2 (en) | 2015-01-30 | 2018-03-27 | Par Pharmaceutical, Inc. | Vasopressin formulations for use in treatment of hypotension |
US9687526B2 (en) | 2015-01-30 | 2017-06-27 | Par Pharmaceutical, Inc. | Vasopressin formulations for use in treatment of hypotension |
US9750785B2 (en) | 2015-01-30 | 2017-09-05 | Par Pharmaceutical, Inc. | Vasopressin formulations for use in treatment of hypotension |
US9744239B2 (en) | 2015-01-30 | 2017-08-29 | Par Pharmaceutical, Inc. | Vasopressin formulations for use in treatment of hypotension |
US9937223B2 (en) | 2015-01-30 | 2018-04-10 | Par Pharmaceutical, Inc. | Vasopressin formulations for use in treatment of hypotension |
US9744209B2 (en) | 2015-01-30 | 2017-08-29 | Par Pharmaceutical, Inc. | Vasopressin formulations for use in treatment of hypotension |
US10398662B1 (en) | 2015-02-18 | 2019-09-03 | Jazz Pharma Ireland Limited | GHB formulation and method for its manufacture |
ES2863500T3 (en) | 2015-04-10 | 2021-10-11 | Capsugel Belgium Nv | Abiraterone Acetate Lipid Formulations |
KR101663543B1 (en) * | 2015-07-29 | 2016-10-07 | 고려대학교 산학협력단 | Buspirone derivative and pharmacy composition comprising the same |
US11648212B2 (en) * | 2016-02-03 | 2023-05-16 | Intelgenx Corp. | Loxapine film oral dosage form |
KR20190039137A (en) | 2016-07-14 | 2019-04-10 | 아카오젠, 인코포레이티드 | Combination of ceftibuten and clavulanic acid for use in the treatment of bacterial infections |
US11504347B1 (en) | 2016-07-22 | 2022-11-22 | Flamel Ireland Limited | Modified release gamma-hydroxybutyrate formulations having improved pharmacokinetics |
US11986451B1 (en) | 2016-07-22 | 2024-05-21 | Flamel Ireland Limited | Modified release gamma-hydroxybutyrate formulations having improved pharmacokinetics |
UY37341A (en) | 2016-07-22 | 2017-11-30 | Flamel Ireland Ltd | FORMULATIONS OF GAMMA-MODIFIED RELEASE HYDROXIBUTIRATE WITH IMPROVED PHARMACOCINETICS |
US11602513B1 (en) | 2016-07-22 | 2023-03-14 | Flamel Ireland Limited | Modified release gamma-hydroxybutyrate formulations having improved pharmacokinetics |
US12186296B1 (en) | 2016-07-22 | 2025-01-07 | Flamel Ireland Limited | Modified release gamma-hydroxybutyrate formulations having improved pharmacokinetics |
US11602512B1 (en) | 2016-07-22 | 2023-03-14 | Flamel Ireland Limited | Modified release gamma-hydroxybutyrate formulations having improved pharmacokinetics |
US10695450B2 (en) | 2016-07-26 | 2020-06-30 | Laboratoires Cyclopharma | Synthesis of a radioactive agent composition |
AU2017302660B2 (en) | 2016-07-29 | 2023-04-20 | Janssen Pharmaceutica Nv | Methods of treating prostate cancer |
WO2018064490A1 (en) * | 2016-09-30 | 2018-04-05 | Xenamed Corporation | Compositions of midodrine and methods of using the same |
BR112019009019A2 (en) * | 2016-11-08 | 2019-07-09 | Regeneron Pharma | steroids and protein conjugates thereof |
BR112019018700A2 (en) | 2017-03-10 | 2020-04-07 | Embera Neurotherapeutics Inc | pharmaceutical compositions and their uses |
US20180263936A1 (en) | 2017-03-17 | 2018-09-20 | Jazz Pharmaceuticals Ireland Limited | Gamma-hydroxybutyrate compositions and their use for the treatment of disorders |
WO2018191166A1 (en) | 2017-04-10 | 2018-10-18 | Melior Pharmaceuticals I, Inc. | Treatment of adipocytes |
US11478467B2 (en) * | 2017-05-04 | 2022-10-25 | Sreenivasarao Vepachedu | Targeted drug rescue with novel compositions, combinations, and methods thereof |
US20180318319A1 (en) | 2017-05-04 | 2018-11-08 | Ocular Science, Inc. | Compositions and Methods for Treating Eyes and Methods of Preparation |
WO2018213713A1 (en) * | 2017-05-19 | 2018-11-22 | Embera Neurotherapeutics, Inc. | Compositions and methods for the treatment of addiction, psychiatric disorders, and neurodegenerative disease |
WO2019014201A1 (en) * | 2017-07-10 | 2019-01-17 | Apicore Us Llc | Extended release molindone compositions |
CA3072764A1 (en) | 2017-08-24 | 2019-02-28 | Adamas Pharma, Llc | Amantadine compositions, preparations thereof, and methods of use |
JP7246384B2 (en) | 2017-10-25 | 2023-03-27 | キエージ・フアルマチエウテイチ・エツセ・ピ・ア | Delayed release deferiprone tablets and methods of use thereof |
JP7364568B2 (en) * | 2017-12-22 | 2023-10-18 | ゼナメッド コーポレーション | Extended release midodrine hydrochloride composition and method of use |
EP3546589B1 (en) * | 2018-03-29 | 2022-08-10 | Evonik Operations GmbH | Method for the preparation of sphingolipids |
US10799138B2 (en) | 2018-04-05 | 2020-10-13 | University Of Maryland, Baltimore | Method of administering sotalol IV/switch |
WO2020018888A1 (en) | 2018-07-20 | 2020-01-23 | The Board Of Regents Of The University Of Oklahoma | Antimicrobial peptides and methods of use |
US10512620B1 (en) | 2018-08-14 | 2019-12-24 | AltaThera Pharmaceuticals, LLC | Method of initiating and escalating sotalol hydrochloride dosing |
US11344518B2 (en) | 2018-08-14 | 2022-05-31 | AltaThera Pharmaceuticals LLC | Method of converting atrial fibrillation to normal sinus rhythm and loading oral sotalol in a shortened time frame |
US11610660B1 (en) | 2021-08-20 | 2023-03-21 | AltaThera Pharmaceuticals LLC | Antiarrhythmic drug dosing methods, medical devices, and systems |
US11696902B2 (en) | 2018-08-14 | 2023-07-11 | AltaThera Pharmaceuticals, LLC | Method of initiating and escalating sotalol hydrochloride dosing |
WO2020049505A1 (en) | 2018-09-06 | 2020-03-12 | Innopharmascreen Inc. | Methods and compositions for treatment of asthma or parkinson's disease |
US20200093884A1 (en) | 2018-09-20 | 2020-03-26 | Mark C. Manning | Stable intranasal formulations of carbetocin |
US11207373B2 (en) | 2018-09-20 | 2021-12-28 | Levo Therapeutics, Inc. | Agitation process for preparing a carbetocin drug product |
EP3883549A1 (en) | 2018-11-19 | 2021-09-29 | Jazz Pharmaceuticals Ireland Limited | Alcohol-resistant drug formulations |
KR20200077911A (en) * | 2018-12-21 | 2020-07-01 | (주)유케이케미팜 | A pharmaceutical composition of sustained-release comprising zaltoprofen |
US10869860B2 (en) | 2018-12-28 | 2020-12-22 | Vividion Therapeutics, Inc. | Cereblon modulators and uses thereof |
CN119868330A (en) | 2019-03-01 | 2025-04-25 | 弗拉梅尔爱尔兰有限公司 | Gamma-hydroxybutyrate compositions with improved pharmacokinetics in fed state |
US20220062200A1 (en) | 2019-05-07 | 2022-03-03 | Clexio Biosciences Ltd. | Abuse-deterrent dosage forms containing esketamine |
EP3965733A4 (en) | 2019-05-07 | 2023-01-11 | Clexio Biosciences Ltd. | Abuse-deterrent dosage forms containing esketamine |
US11071724B2 (en) | 2019-05-17 | 2021-07-27 | Ocular Science, Inc. | Compositions and methods for treating presbyopia |
CN111000844B (en) * | 2019-12-19 | 2022-06-28 | 浙江立恩生物科技有限公司 | A drug to treat influenza virus infection |
CN110903247B (en) * | 2019-12-23 | 2022-04-05 | 常州齐晖药业有限公司 | Preparation method for greatly reducing oxfendazole impurity B |
TW202139986A (en) | 2020-02-21 | 2021-11-01 | 愛爾蘭商爵士製藥愛爾蘭有限責任公司 | Methods of treating idiopathic hypersomnia |
US11278602B2 (en) | 2020-03-25 | 2022-03-22 | Therapeutica Borealis Oy | Medicine for Covid-19 and treatment |
US11007187B1 (en) * | 2020-03-25 | 2021-05-18 | Therapeutica Borealis Oy | Medicine for Covid-19 and treatment |
US11638722B2 (en) | 2020-03-25 | 2023-05-02 | Therapeutica Borealis Oy C/O Avance Attorneys Ltd. | Medicine for Covid-19 and treatment |
CN112089823B (en) * | 2020-09-25 | 2024-02-06 | 珠海中科先进技术研究院有限公司 | Composition of aureobasidin A and nystatin and composite ointment, gel and spray thereof |
WO2022091065A1 (en) * | 2020-11-02 | 2022-05-05 | (주)아이엠디팜 | Novel cocrystal, pharmaceutical composition comprising same, and preparation method therefor |
US11213502B1 (en) | 2020-11-17 | 2022-01-04 | Neuroderm, Ltd. | Method for treatment of parkinson's disease |
US11844754B2 (en) | 2020-11-17 | 2023-12-19 | Neuroderm, Ltd. | Methods for treatment of Parkinson's disease |
US11331293B1 (en) | 2020-11-17 | 2022-05-17 | Neuroderm, Ltd. | Method for treatment of Parkinson's disease |
CN113069421A (en) * | 2021-03-29 | 2021-07-06 | 海南锦瑞制药有限公司 | Lansoprazole for injection |
US11779557B1 (en) | 2022-02-07 | 2023-10-10 | Flamel Ireland Limited | Modified release gamma-hydroxybutyrate formulations having improved pharmacokinetics |
US11583510B1 (en) | 2022-02-07 | 2023-02-21 | Flamel Ireland Limited | Methods of administering gamma hydroxybutyrate formulations after a high-fat meal |
KR102762725B1 (en) * | 2022-03-24 | 2025-02-06 | 주식회사 케이에스비튜젠 | Pharmaceutical composition for preventing or treating muscle disease containing Levodropropizine as an active ingredient |
US12016850B2 (en) | 2022-04-11 | 2024-06-25 | Chiesi Farmaceutici S.P.A. | Modified release pharmaceutical formulations comprising deferiprone |
US12016851B2 (en) | 2022-04-11 | 2024-06-25 | Chiesi Farmaceutici S.P.A. | Modified release pharmaceutical formulations comprising deferiprone |
WO2024091572A1 (en) | 2022-10-25 | 2024-05-02 | Veradermics Incorporated | Compositions and methods of use for modified release minoxidil |
US12161612B2 (en) | 2023-04-14 | 2024-12-10 | Neuroderm, Ltd. | Methods and compositions for reducing symptoms of Parkinson's disease |
CN116407557A (en) * | 2023-05-29 | 2023-07-11 | 四川大学华西医院 | Pharmaceutical composition for preventing and treating cerebral arterial thrombosis and application thereof |
CN117607311B (en) * | 2024-01-19 | 2024-03-29 | 地奥集团成都药业股份有限公司 | Detection method of benazepril hydrochloride enantiomer |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4139589A (en) * | 1975-02-26 | 1979-02-13 | Monique Beringer | Process for the manufacture of a multi-zone tablet and tablet manufactured by this process |
US4503031A (en) * | 1982-12-17 | 1985-03-05 | Glassman Jacob A | Super-fast-starting-sustained release tablet |
US4996061A (en) * | 1987-10-07 | 1991-02-26 | Merrell Dow Pharmaceuticals Inc. | Pharmaceutical composition for piperidinoalkanol-decongestant combination |
US5445829A (en) * | 1989-05-05 | 1995-08-29 | Kv Pharmaceutical Company | Extended release pharmaceutical formulations |
US5738875A (en) * | 1994-10-28 | 1998-04-14 | R.P. Scherer Corporation | Process for preparing solid pharmaceutical dosage forms |
US5840332A (en) * | 1996-01-18 | 1998-11-24 | Perio Products Ltd. | Gastrointestinal drug delivery system |
US6475521B1 (en) * | 1998-03-19 | 2002-11-05 | Bristol-Myers Squibb Co. | Biphasic controlled release delivery system for high solubility pharmaceuticals and method |
US20040156902A1 (en) * | 2002-09-28 | 2004-08-12 | Der-Yang Lee | Composite dosage forms having an inlaid portion |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3048526A (en) * | 1958-08-04 | 1962-08-07 | Wander Company | Medicinal tablet |
US3336200A (en) * | 1963-05-28 | 1967-08-15 | Warner Lambert Pharmaceutical | Tablet structure |
IT1198386B (en) | 1982-07-06 | 1988-12-21 | Lepetit Spa | A PROTRACTED RELEASE PRODUCT CONTAINING SULOCTIDYL |
IT1255522B (en) * | 1992-09-24 | 1995-11-09 | Ubaldo Conte | COMPRESSED FOR THERAPEUTIC USE SUITABLE FOR SELLING ONE OR MORE ACTIVE SUBSTANCES WITH DIFFERENT SPEEDS |
EP0823255A4 (en) * | 1995-04-03 | 1999-01-27 | Chugai Pharmaceutical Co Ltd | Pharmaceutical composition containing sucralfate |
DE19710213A1 (en) * | 1997-03-12 | 1998-09-17 | Basf Ag | Process for the manufacture of solid combination dosage forms |
US6756056B2 (en) * | 1997-04-08 | 2004-06-29 | Alan A. Rubin | Treatment of Parkinson's disease and related disorders by novel formulations of the combination carbidopa-levodopa |
US6372254B1 (en) * | 1998-04-02 | 2002-04-16 | Impax Pharmaceuticals Inc. | Press coated, pulsatile drug delivery system suitable for oral administration |
DE19860698A1 (en) | 1998-12-30 | 2000-07-06 | Hexal Ag | New pharmaceutical composition |
GB0007419D0 (en) | 2000-03-27 | 2000-05-17 | Smithkline Beecham Gmbh | Composition |
FR2811571B1 (en) | 2000-07-11 | 2002-10-11 | Flamel Tech Sa | ORAL PHARMACEUTICAL COMPOSITION FOR CONTROLLED RELEASE AND SUSTAINED ABSORPTION OF AN ACTIVE INGREDIENT |
-
2003
- 2003-07-29 US US10/630,446 patent/US7985422B2/en not_active Expired - Fee Related
- 2003-08-01 BR BRPI0313424A patent/BRPI0313424B8/en not_active IP Right Cessation
- 2003-08-01 EP EP03758649.2A patent/EP1528917B1/en not_active Expired - Lifetime
- 2003-08-01 WO PCT/IN2003/000262 patent/WO2004012700A2/en active Search and Examination
- 2003-08-01 US US10/522,989 patent/US20060153916A1/en not_active Abandoned
- 2003-08-01 AU AU2003274681A patent/AU2003274681A1/en not_active Abandoned
-
2005
- 2005-05-19 US US11/134,633 patent/US8263125B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4139589A (en) * | 1975-02-26 | 1979-02-13 | Monique Beringer | Process for the manufacture of a multi-zone tablet and tablet manufactured by this process |
US4503031A (en) * | 1982-12-17 | 1985-03-05 | Glassman Jacob A | Super-fast-starting-sustained release tablet |
US4996061A (en) * | 1987-10-07 | 1991-02-26 | Merrell Dow Pharmaceuticals Inc. | Pharmaceutical composition for piperidinoalkanol-decongestant combination |
US5445829A (en) * | 1989-05-05 | 1995-08-29 | Kv Pharmaceutical Company | Extended release pharmaceutical formulations |
US5738875A (en) * | 1994-10-28 | 1998-04-14 | R.P. Scherer Corporation | Process for preparing solid pharmaceutical dosage forms |
US5840332A (en) * | 1996-01-18 | 1998-11-24 | Perio Products Ltd. | Gastrointestinal drug delivery system |
US6475521B1 (en) * | 1998-03-19 | 2002-11-05 | Bristol-Myers Squibb Co. | Biphasic controlled release delivery system for high solubility pharmaceuticals and method |
US20040156902A1 (en) * | 2002-09-28 | 2004-08-12 | Der-Yang Lee | Composite dosage forms having an inlaid portion |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8975273B2 (en) | 1999-10-29 | 2015-03-10 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US10179130B2 (en) | 1999-10-29 | 2019-01-15 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US10076516B2 (en) | 1999-10-29 | 2018-09-18 | Purdue Pharma L.P. | Methods of manufacturing oral dosage forms |
US9675611B1 (en) | 1999-10-29 | 2017-06-13 | Purdue Pharma L.P. | Methods of providing analgesia |
US9669024B2 (en) | 1999-10-29 | 2017-06-06 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9669022B2 (en) | 1999-10-29 | 2017-06-06 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9320717B2 (en) | 1999-10-29 | 2016-04-26 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9278074B2 (en) | 1999-10-29 | 2016-03-08 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9056107B1 (en) | 1999-10-29 | 2015-06-16 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US8980291B2 (en) | 1999-10-29 | 2015-03-17 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US10022368B2 (en) | 2000-10-30 | 2018-07-17 | Purdue Pharma L.P. | Methods of manufacturing oral formulations |
US9526724B2 (en) | 2000-10-30 | 2016-12-27 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9682077B2 (en) | 2000-10-30 | 2017-06-20 | Purdue Pharma L.P. | Methods of providing analgesia |
US9669023B2 (en) | 2000-10-30 | 2017-06-06 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9572804B2 (en) | 2000-10-30 | 2017-02-21 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9572805B2 (en) | 2000-10-30 | 2017-02-21 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9517236B2 (en) | 2000-10-30 | 2016-12-13 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9504681B2 (en) | 2000-10-30 | 2016-11-29 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9289391B2 (en) | 2000-10-30 | 2016-03-22 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9205055B2 (en) | 2000-10-30 | 2015-12-08 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9205056B2 (en) | 2000-10-30 | 2015-12-08 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9198863B2 (en) | 2000-10-30 | 2015-12-01 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9060940B2 (en) | 2000-10-30 | 2015-06-23 | Purdue Pharma L.P. | Controlled release hydrocodone |
US8951555B1 (en) | 2000-10-30 | 2015-02-10 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9056052B1 (en) | 2000-10-30 | 2015-06-16 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US9023401B1 (en) | 2000-10-30 | 2015-05-05 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
US20100233255A1 (en) * | 2006-01-13 | 2010-09-16 | Moinet Gerard | Combination of trazine derivatives and insulin secretion stimulators |
US8227465B2 (en) | 2006-01-13 | 2012-07-24 | Poxel Sas | Combination of triazine derivatives and insulin secretion stimulators |
US7427414B2 (en) | 2006-01-18 | 2008-09-23 | Astron Research Limited | Modified release oral dosage form using co-polymer of polyvinyl acetate |
US20070166375A1 (en) * | 2006-01-18 | 2007-07-19 | Astron Research Limited | Modified release oral dosage form using co-polymer of polyvinyl acetate |
US9504699B2 (en) | 2006-08-03 | 2016-11-29 | Hznp Limited | Delayed-release glucocorticoid treatment of rheumatoid disease |
US8920838B2 (en) | 2006-08-03 | 2014-12-30 | Horizon Pharma Ag | Delayed-release glucocorticoid treatment of rheumatoid disease |
US9216176B2 (en) | 2006-09-15 | 2015-12-22 | Cima Labs Inc. | Abuse resistant drug formulation |
US9974751B2 (en) | 2006-09-15 | 2018-05-22 | Cima Labs Inc. | Abuse resistant drug formulation |
US9572803B2 (en) | 2006-09-15 | 2017-02-21 | Cima Labs Inc. | Abuse resistant drug formulation |
US8445018B2 (en) | 2006-09-15 | 2013-05-21 | Cima Labs Inc. | Abuse resistant drug formulation |
US20080069891A1 (en) * | 2006-09-15 | 2008-03-20 | Cima Labs, Inc. | Abuse resistant drug formulation |
US20080140450A1 (en) * | 2006-11-28 | 2008-06-12 | Ampla Pharmaceuticals Inc. | Treatment of metabolic syndrome with norfluoxetine |
US10060860B2 (en) | 2007-06-30 | 2018-08-28 | Smp Logic Systems | Pharmaceutical dosage forms fabricated with nanomaterials |
US8652520B2 (en) | 2007-07-01 | 2014-02-18 | Vitalis Llc | Combination tablet with chewable outer layer |
US20100166810A1 (en) * | 2007-07-01 | 2010-07-01 | Joseph Peter Habboushe | Combination tablet with chewable outer layer |
US8404275B2 (en) * | 2007-07-01 | 2013-03-26 | Vitalis Llc | Combination tablet with chewable outer layer |
US8871275B2 (en) | 2007-08-08 | 2014-10-28 | Inventia Healthcare Private Limited | Extended release compositions comprising tolterodine |
US20100087408A1 (en) * | 2008-05-28 | 2010-04-08 | Validus Genetics | NON-HORMONAL STEROID MODULATORS OF NF-kB FOR TREATMENT OF DISEASE |
US8334279B2 (en) | 2008-05-28 | 2012-12-18 | Validus Genetics | Non-hormonal steroid modulators of NF-κB for treatment of disease |
US11833159B2 (en) | 2008-05-28 | 2023-12-05 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-kB for treatment of disease |
US10206933B2 (en) | 2008-05-28 | 2019-02-19 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-kB for treatment of disease |
US8673887B2 (en) | 2008-05-28 | 2014-03-18 | Reveragen Biopharma, Inc | Non-hormonal steroid modulators of NF-kB for treatment of disease |
US9649320B2 (en) | 2008-05-28 | 2017-05-16 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-κB for treatment of disease |
US9434758B2 (en) | 2008-05-28 | 2016-09-06 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-κB for treatment of disease |
US8207151B2 (en) | 2008-05-28 | 2012-06-26 | Validus Biopharma Inc. | Non-hormonal steroid modulators of NF-κB for treatment of disease |
US10857161B2 (en) | 2008-05-28 | 2020-12-08 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-kB for treatment of disease |
WO2009149058A3 (en) * | 2008-06-02 | 2010-02-25 | Dr. Reddy's Laboratories Ltd. | Modified release niacin formulations |
US20110123575A1 (en) * | 2008-06-02 | 2011-05-26 | Dr. Reddy's Laboratories Ltd. | Modified release niacin formulations |
US20100222312A1 (en) * | 2009-01-26 | 2010-09-02 | Nitec Pharma Ag | Delayed-release glucocorticoid treatment of asthma |
US20100196427A1 (en) * | 2009-01-30 | 2010-08-05 | Nitec Pharma Ag | Delayed-release glucocorticoid treatment of rheumatoid arthritis by improving signs and symptoms, showing major or complete clinical response and by preventing from joint damage |
WO2010134938A1 (en) * | 2009-05-18 | 2010-11-25 | Dr. Reddy's Laboratories Ltd. | Modified release niacin pharmaceutical formulations |
US9572806B2 (en) * | 2009-12-18 | 2017-02-21 | Mitsubishi Tanabe Pharma Corporation | Elution-stabilized preparation |
US20120276166A1 (en) * | 2009-12-18 | 2012-11-01 | Mitsubishi Tanabe Pharma Corporation | Elution-stabilized preparation |
US10000525B2 (en) | 2010-04-05 | 2018-06-19 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-κB for treatment of disease |
US9198921B2 (en) | 2010-04-05 | 2015-12-01 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-κB for treatment of disease |
US8927025B2 (en) | 2010-05-11 | 2015-01-06 | Cima Labs Inc. | Alcohol-resistant metoprolol-containing extended-release oral dosage forms |
US9226891B2 (en) | 2011-10-28 | 2016-01-05 | Vitalis Llc | Anti-flush compositions |
US10799514B2 (en) | 2015-06-29 | 2020-10-13 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-kappa beta for treatment of disease |
US11690853B2 (en) | 2015-06-29 | 2023-07-04 | Reveragen Biopharma, Inc. | Non-hormonal steroid modulators of NF-κβ for treatment of disease |
US11517558B2 (en) | 2017-12-05 | 2022-12-06 | Sunovion Pharmaceuticals Inc. | Nonracemic mixtures and uses thereof |
US11370753B2 (en) | 2017-12-05 | 2022-06-28 | Sunovion Pharmaceuticals Inc. | Crystal forms and production methods thereof |
US10874639B2 (en) | 2017-12-05 | 2020-12-29 | Sunovion Pharmaceuticals Inc. | Nonracemic mixtures and uses thereof |
US11767293B2 (en) | 2017-12-05 | 2023-09-26 | Sunovion Pharmaceuticals Inc. | Crystal forms and production methods thereof |
US10800738B2 (en) | 2017-12-05 | 2020-10-13 | Sunovion Pharmaceuticals Inc. | Crystal forms and production methods thereof |
US12161623B2 (en) | 2017-12-05 | 2024-12-10 | Sunovion Pharmaceuticals Inc. | Nonracemic mixtures and uses thereof |
US11382922B2 (en) | 2019-03-07 | 2022-07-12 | Reveragen Biopharma, Inc. | Aqueous oral pharmaceutical suspension compositions |
US11471471B2 (en) | 2019-03-07 | 2022-10-18 | Reveragen Biopharma, Inc. | Aqueous oral pharmaceutical suspension compositions |
US12201639B2 (en) | 2019-03-07 | 2025-01-21 | Reveragen Biopharma, Inc. | Aqueous oral pharmaceutical suspension compositions |
US11160758B2 (en) | 2019-06-04 | 2021-11-02 | Sunovion Pharmaceuticals Inc. | Modified release formulations and uses thereof |
US11654113B2 (en) | 2019-06-04 | 2023-05-23 | Sunovion Pharmaceuticals Inc. | Modified release formulations and uses thereof |
US12161758B2 (en) | 2019-06-04 | 2024-12-10 | Sunovion Pharmaceuticals Inc. | Modified release formulations and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2004012700A3 (en) | 2004-04-01 |
BR0313424A (en) | 2005-06-14 |
US8263125B2 (en) | 2012-09-11 |
BR0313424B1 (en) | 2017-10-31 |
AU2003274681A1 (en) | 2004-02-23 |
EP1528917A2 (en) | 2005-05-11 |
BRPI0313424B8 (en) | 2021-05-25 |
US20060024365A1 (en) | 2006-02-02 |
AU2003274681A8 (en) | 2004-02-23 |
US7985422B2 (en) | 2011-07-26 |
WO2004012700A2 (en) | 2004-02-12 |
EP1528917B1 (en) | 2013-06-19 |
US20040096499A1 (en) | 2004-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7985422B2 (en) | Dosage form | |
US8216609B2 (en) | Modified release composition of highly soluble drugs | |
RU2214233C2 (en) | Ranolazine preparations with prolonged effect | |
US6558701B2 (en) | Multilayer tablet for administering a fixed combination of tramadol and diclofenac | |
US8449910B2 (en) | Stable compositions of famotidine and ibuprofen | |
EP3470067A1 (en) | Immediate release dosage forms of sodium oxybate | |
KR20120008024A (en) | Sustained Release Pharmaceutical Formulations of Nitaoxanide | |
HUP0204409A2 (en) | Sustained release ranolazine pharmaceutical compositions | |
EP1820506B1 (en) | Dipyridamole extended-release formulations and process for preparing same | |
AU2013344281A1 (en) | Pharmaceutical compositions comprising hydromorphone and naloxone | |
WO2005065639A2 (en) | Novel pharmaceutical compositions | |
WO2013110085A1 (en) | Oral dosage forms for delivering metformin and sitagliptin | |
HUP0201687A2 (en) | Oral administration form for administering a fixed tramadol and diclofenac combination | |
US20110151002A1 (en) | Sustained release pharmaceutical compositions comprising quetiapine | |
US20110123575A1 (en) | Modified release niacin formulations | |
CZ298851B6 (en) | Controlled-release tablet for oral administration of active substances | |
WO2010026467A2 (en) | Controlled release dosage form of high solubility active ingredient | |
EP3038607A2 (en) | Unit dosage form comprising emtricitabine, tenofovir, darunavir and ritonavir and a monolithic tablet comprising darunavir and ritonavir | |
US20080081069A1 (en) | Novel controlled release formulations of divalproex sodium | |
CA2481377A1 (en) | Antihistamine-decongestant pharmaceutical compositions | |
US20240100011A1 (en) | Pediatric formulations of ferric citrate | |
WO2022070209A1 (en) | Biphasic release fixed dose combination formulations | |
KR20240040407A (en) | Pharmaceutical composition comprising sacubitril valsartan calcium salt | |
CA3226799A1 (en) | Multiparticulate pharmaceutical composition | |
US20120064161A1 (en) | Modified release niacin pharmaceutical formulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TORRENT PHARMACEUTICALS LIMITED, INDIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAYA, NAVIN;KARAN, RAJESH SINGH;NADKARNI, SUNIL SADANAND;AND OTHERS;REEL/FRAME:017754/0359 Effective date: 20050321 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |