US20060150353A1 - Twist mop - Google Patents
Twist mop Download PDFInfo
- Publication number
- US20060150353A1 US20060150353A1 US11/336,054 US33605406A US2006150353A1 US 20060150353 A1 US20060150353 A1 US 20060150353A1 US 33605406 A US33605406 A US 33605406A US 2006150353 A1 US2006150353 A1 US 2006150353A1
- Authority
- US
- United States
- Prior art keywords
- collar
- pole
- mop
- pawl
- cleaning apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004140 cleaning Methods 0.000 claims description 22
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 239000013013 elastic material Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 46
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000003599 detergent Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003292 glue Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 206010050031 Muscle strain Diseases 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/14—Scrubbing; Scouring; Cleaning; Polishing combined with squeezing or wringing devices
- A47L13/142—Scrubbing; Scouring; Cleaning; Polishing combined with squeezing or wringing devices having torsional squeezing or wringing action
Definitions
- the invention relates to the field of cleaning supplies, and more specifically to a mop and system for wringing the fibers of the mop.
- Wringer mops are well known in the art for augmenting the experience of rinsing the mop head.
- two operating rods on the exterior of the mop handle are used to pull the mop head through sets of wringer rollers to expel fluid from the sponge of the mop head.
- a single operating rod extends through the hollow handle of the mop to connect to the mop head.
- These types of mops generally include a ring insert placed within the handle to limit lateral movement of the rod within the handle. These mops have the problem in that they have a complicated design and, accordingly, are more fragile to use.
- U.S. Pat. No. 6,212,728 to Facca discloses a self-wringing ratchet mop.
- the '728 patent discloses a wall defining at least one pawl.
- Another example of a prior art mop U.S. Pat. No. 6,115,869 to Libman, discloses a wringer mop.
- the '869 patent discloses a pawl on a ring that is resiliently fixed the handle, and a series of elongated ribs (spline) on a movable collar.
- U.S. Pat. No. 5,509,163, to Morad discloses a Quick Squeezing Wringable Mop.
- the '163 patent discloses a complex spring biased pawl, and an annular tie for connecting mop fibers to the collar.
- the complexity of the spring biased pawl and the intricate mounting of the pawl to the collar adversely affects manufacturing cost and time.
- the annual ties are brittle and have poor restraining qualities, causing the loss of necessary mop fibers.
- the patents disclose a ratchet on the pole and a cylindrical button on the handle.
- the button is located within a slot.
- the slot has enough room to allow the button to move towards and away from the ratchet.
- the button engages a peak in the ratchet contour, the button is pushed outwardly, away from the ratchet. Otherwise, the button is supposed to bias towards the ratchet so that the button and handle are allowed to advance in a singular direction. Accordingly, the mop fibers advance in a single direction to assist in the wringing process.
- the 500' patent discloses a nail for controlling the maximum motion of the button in the handle.
- the 051' patent discloses manufacturing the button so that the inward portion has a larger diameter than the outer portion, thereby controlling the maximum motion of the button.
- each Jumonville patent the button in which each handle would freely move outwardly from contacting the ratchet. This motion renders the handle incapable of being restrained from unintentionally unwinding the mop fibers. This motion would result from both of the contours of the ratchet, and the effect of gravity due to the normal use of the mop. Accordingly, both Jumonville patents are not described so that one skilled in the art can make and use the invention, and the patents are fatally invalid.
- the present invention discloses a spline around the pole of the mop, rather than the ratchet of Jumonville.
- the present invention discloses a shaped pawl within the handle, rather than the cylindrical button.
- the pawl snugly connects the pole of the handle, rather than fitting within a slot and being able to move towards and away from the spline.
- the pawl flexes as it moves over the maximum spline contours, rather than moving away from the spline. As the pawl flexes, it absorbs energy. As the pawl rotationally advances over the spline, it advances towards lower contours. At the lower contours, the pawl flexes inwardly, towards the lower contours, and releases the stored energy, rather than requiring a means to bias the pawl against the spline. Accordingly, the pawl and handle are allowed to advance in a singular direction. As a result, the mop fibers advance in a single direction to assist in the wringing process.
- Jumonville is not an enabling reference over the present invention. Furthermore, Jumonville teaches away from the present invention by requiring an extra means for biasing the button against the ratchet. In contrast, the pawl and spline in the present invention are capable of mutual engagement independent of any further biasing means.
- a twist mop comprises a pole, fibers connected to the end of the pole, and a movable collar connected to both the fibers and the pole, so that the collar is movable in an axial and radial direction about the pole, where radial movement of the collar pulls taut the fibers.
- the mop comprises an upper spline is connected to the pole, a pawl connected to the collar, to interact with the upper spline and to allow the collar to move in a radial direction clockwise or counterclockwise.
- the collar has a radial step to engage the pawl.
- the pawl is shaped to flex toward the radial step both when the collar axially traverses the pole and when the collar twists in a first direction, around the upper spline.
- the pawl being shaped to bias towards the upper spline while the collar turns in a second direction, opposite to the first direction, around the upper spline. Accordingly, a reliable and easy to use, and structurally straightforward wringer mop is disclosed.
- FIG. 1 a is a front perspective view of a mop according to the invention with a movable collar in a lower position;
- FIG. 1 b is a front perspective view of an upper spline on the mop
- FIG. 2 is a front perspective view of the mop with the movable collar in an upper position
- FIG. 3 is front perspective view of the mop, with the mop fibers removed to expose the lower section of the mop;
- FIG. 4 is a front perspective view of the mop fibers, with the collar is in the upper position, exposing the lower spline;
- FIG. 5 a is a front perspective view of the movable collar with the pawl
- FIG. 5 b is a front perspective view of the movable collar without the pawl
- FIG. 6 is a bottom perspective view of the movable collar
- FIG. 7 is a top perspective view of the movable collar
- FIG. 8 is a front perspective view of the mop, where the movable collar is twisted for wringing the mop fibers;
- FIG. 9 is a top sectional view of the upper spline (or lower spline) interacting with pawl.
- FIG. 10 is a top perspective view of the pawl.
- twist mop 1 is disclosed according to the preferred embodiment of the invention.
- the principle components of twist mop 1 include pole 2 and components connected to the pole, such as handles 3 a , 3 b , a hook 4 , and fibers 5 .
- Mop 1 has a collar 9 that is connected to fibers 5 and able to rotate and slide along at length of pole 2 . The combined rotation and sliding motion of collar 9 pulls fibers 5 taut.
- a spline 10 is fixed to pole 2 , while a pawl 12 is connected to collar 9 .
- These components form a system for controlling the motion of collar 9 about pole 1 .
- the system is capable of assisting collar 9 in pulling fibers 5 taut.
- mop 1 is disclosed having pole 2 , the preferred length of which is slightly shorter than a person of average height for preventing back strain and is about four feet long.
- the outside diameter of pole 2 dimensioned to be comfortable is handling by a person having an average grip and is about thirteen-sixteenths of an inch.
- Tubular or solid metal, plastic, wood, or composite materials are used in manufacturing pole 2 .
- Mop 1 has top handle 3 a and middle handle 3 b , each connected by a bolt or, alternatively, glue.
- Plastic, rubber, or any elastic that provides a comfortable grip is used in manufacturing handles 3 a , 3 b .
- the dimensions of handles 3 a , 3 b are customary for providing a comfortable grip, where the length of handle 3 a is four and a half inches, the length of handle 3 b is six inches, and the diameter of each is approximately one-and-one-eighth inches.
- Handle 3 b is axially positioned on pole 2 to prevent back strain from a person of average height and is located at about twelve inches from the top of pole 2 .
- the handle 3 a is ergonomically shaped for a user.
- the handle 3 a wraps around the top of pole 2 and acts as a protector. That is, the handle 3 a prevents the pole 2 from unintentionally scratching, poking or injuring a person or surface.
- the handle 3 a is also attached to a fastening mechanism 4 suitable for suspending mop 1 from a hook on a wall.
- the fastening mechanism 4 maybe a loop or a hook, for example.
- the fastening mechanism 4 is fixedly connected to handle 3 a.
- Handle 3 a has hook 4 so that mop 1 can be easily stored on a wall or door hook.
- the outside diameter of hook 4 is about one-and-one-half inches, and the thickness is approximately one-quarter of an inch.
- mop 1 has fibers 5 that are made of cotton or any absorbent material.
- the diameter of fibers 5 is customarily about three-sixteenths of an inch.
- Fibers are woven to mop 1 as a single strand and passed through end cap 6 (discussed below) and collar 9 (discussed below).
- the single fiber strand is illustrated as being woven into one hundred or more fiber segments 5 a , 5 b , etc, each extending a length that allows for mopping as well as wringing, such as about sixteen inches.
- mop 1 has end cap 6 that is semi-circular and mounted to pole 2 with screw thread, bolts or glue.
- the shape and dimensions of cap 6 allow the secure retention of fiber segment 5 a , 5 b etc, and the cap has an outside diameter of about two and seven-sixteenths inches with a thickness of three-thirty-seconds of an inch.
- a retainer strip 7 is connected to cap 6 for restraining each fiber segment 5 a , 5 b , 5 c , etc.
- mop 1 has a system for wringing and controlling mop fibers 5 , including movable collar 9 , upper spline 10 , lower spline 11 , and pawl 12 .
- upper spline 10 is formed upon upper stationary collar 10 b and lower spline 11 is formed upon lower stationary collar 11 b .
- Upper spline 10 consists of axially long projection 10 c , 10 d , 10 e
- lower spline 11 consists of axially short projections 11 c , 11 d , 11 e .
- Each spline 10 , 11 is connected to pole 1 with a bolt or glue.
- Plastic is used to manufacture collars 10 b , 11 b and spline 10 , 11 .
- the cross-sectional shape of spline 10 , 11 is essentially constant along the axial length of pole 2 , being a right triangle with an inclined side.
- the inclined side faces the direction that movable collar 9 turns when wringing mop fibers 5 .
- collar 9 turns in a counterclockwise direction for wringing fibers 5 .
- the inclined side of spline projections 10 faces the counterclockwise direction.
- the height of individual spline projections 10 , 11 is designed for interacting with movable collar 9 . As illustrated, each has a height that is about one-eighth of an inch and the outside diameter of splines 10 , 11 is about one inch.
- collars 10 b , 11 b created a separation that allows for free rotation of collar 9 for the unwinding of fibers 5 .
- the top of collar 10 b is about twenty one and three-quarter inches from the bottom of pole 2
- the top of collar 11 b is about seven and one-quarter inches from the bottom of pole 2 .
- movable collar 9 has external contours and a diameter that provides comfortable grip in a person's hand.
- the internal diameter of collar 9 is larger than the outer diameter of spline 10 , 11 .
- the collar has a bottom section 13 with notches 13 a , 13 b , 13 c , etc, contours 13 d and spline 13 e.
- the combination of notches, contours and spline 13 a - 13 e enables the gripping of fiber segments 5 a , 5 b , 5 c , etc.
- Notch 13 a - 13 c are dimensioned to grip fiber segments 5 a , 5 b , 5 c , and for example, have width that is one-eighth of an inch and a length that is approximately nine-sixteenths of an inch.
- the length of spline 10 on collar 10 b accommodates the downward travel of collar 9 and pawl 12 , discussed below, while the length of spline 11 on collars 11 b controls the maximum downward travel for movable collar 9 .
- the length of upper collar 10 b is about six and three-quarter inches and the length of lower collar 11 b is about one-and-a-half inches.
- collars 10 b , 11 b are molded without spline 10 , 11 to prevent accidental slippage of movable collar 9 from spline 10 , 11 . As illustrated, approximately the bottom five and a half inches of collar 10 b are molded with spline 10 and approximately the top one and three-sixteenths inches of collar 11 b are molded with spline 11 .
- movable collar 9 has a cylindrical step 9 b .
- Step 9 b stabilizes the rotational and axial motion of collar 9 .
- the dimensions of step 9 b are such that step 9 b interacts with collar 10 , where the radial thickness of step 9 b is about one-eighth of an inch, and the axial thickness is one-eighth of an inch.
- Step 9 b is near pawl 12 , and the distance between step 9 b and top of collar 9 is about three and one-half inches.
- two steps are used, at or near opposite sides of pawl 12 .
- movable collar 9 has slot 9 d .
- the dimension of slot 9 d allows the insertion and retention of pawl 12 , such that the width of slot 9 d is about one-eighth of an inch, and the length is approximately one-half of an inch.
- Slot 9 d is located at step 9 b at, for example, three and one-half inches from the top of collar 9 .
- Pawl 12 connects with movable collar 9 .
- Pawl 12 consists of at least three short projections, 12 a , 12 b , 12 c , base 12 d and neck 12 e.
- Projection 12 a is sized to prevent pawl 12 from passing through slot 9 d outwardly from the center of collar 9 .
- the length of neck 12 e is essentially the same as the thickness of collar 9 in the area of slot 9 d , preventing axial movement of pawl 12 .
- the size of base 12 d prevents pawl 12 from passing through slot 9 d , inwardly towards the center of movable collar 9 .
- the connection between base 12 d and projection 12 c places a majority of base 12 d away from projections 12 a - 12 c , having benefits as described below.
- the cross-sectional shape of projections 12 a - 12 c in a direction parallel to the major axis of collar 9 , is essentially a right triangle, having an inclined side.
- the height of projections 12 a - 12 c faces opposite to the direction that movable collar 9 turns when wringing mop fibers 5 .
- collar 9 turns in a counterclockwise direction for wringing fibers 5 .
- the inclined side of projections 12 a - 12 c faces the clockwise direction. Accordingly, the interaction between projections 12 a - 12 c and spline 10 prevents collar 9 from turning clockwise.
- the shape of pawl 12 causes projection 12 c to project toward the center of collar 9 , past the inner edge of radial step b.
- This configuration allows projections 12 c to continuously engage spline 10 , 11 .
- the radius defined by the tips of projections 12 a - 12 c is smaller than the radius created by the tips of spline 10 , 11 .
- the curve formed by the edge of projections 12 a - 12 c can be other than radial, so long as the projection 12 c normally projects past the inner edge of radial step 9 b.
- the pawl 12 is made of plastic for flexing behind radial step 9 b when collar 9 slides over spline 10 prior to and after the wringing of fibers 5 and when collar 9 is rotated for wringing mop fibers 5 .
- This flexing prevent over-strained pawl 12 via shear and compressive friction, preventing premature wearing of spline 10 , 11 and pawl 12 .
- the flexure of the plastic is stored as spring-energy in base 12 d . The release of the energy from base 12 d biases pawl 12 towards spline 10 , 12 to substantially and effectively prevent the unwringing of fibers 5 .
- movable collar 9 In use, when wringing mop fibers 5 , movable collar 9 is positioned at a maximum distance from the bottom of pole 2 , so that pawl 12 engages upper spline 10 ( FIG. 2 ). Movable collar 9 is then rotated counterclockwise, and pawl 12 prevents collar 9 from rotating clockwise ( FIG. 9 ). Collar 9 is continually rotated until fibers 5 are taut and fully wrung ( FIG. 8 ).
Landscapes
- Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
Abstract
Description
- This application is a continuation of co-pending U.S. application Ser. No. 10/630,117 filed Jul. 30, 2003, hereby incorporated by reference, which, in turn, is a continuation-in-part of U.S. application Ser. No. 10/234,587 filed Sep. 4, 2002, now U.S. Pat. No. 6,760,949, hereby incorporated by reference, which, in turn, is a continuation-in-part of U.S. application Ser. No. 10/142,489 filed May 9, 2002, now abandoned, hereby incorporated by reference.
- The invention relates to the field of cleaning supplies, and more specifically to a mop and system for wringing the fibers of the mop.
- In the filed of cleaning it is well known that cleaning floor is often difficult to accomplish while conserving water and detergents, while also insuring that the subject floor adequately cleaned. Typically, floors are mopped using various types of conventional mop heads, the mop head being immersed in a volume of water and soap. Several gallons of water and a proportional amount of detergent are used to clean the floor. After the mop is immersed into the water and detergent, a portion of the liquid is squeezed from the mop head and the mop is then wiped across the floor to be cleaned. This leaves the floor wet for a period of time. After the mop head becomes soiled, or after the cleaning fluids have been used up, the mop head needs to be rinsed in the volume of water and detergent, and the process is repeated.
- Wringer mops are well known in the art for augmenting the experience of rinsing the mop head. In some types of wringer mops, two operating rods on the exterior of the mop handle are used to pull the mop head through sets of wringer rollers to expel fluid from the sponge of the mop head. In other types of wringer mops, a single operating rod extends through the hollow handle of the mop to connect to the mop head. These types of mops generally include a ring insert placed within the handle to limit lateral movement of the rod within the handle. These mops have the problem in that they have a complicated design and, accordingly, are more fragile to use.
- One example of a prior art mop, U.S. Pat. No. 6,212,728 to Facca, discloses a self-wringing ratchet mop. The '728 patent discloses a wall defining at least one pawl. Another example of a prior art mop, U.S. Pat. No. 6,115,869 to Libman, discloses a wringer mop. The '869 patent discloses a pawl on a ring that is resiliently fixed the handle, and a series of elongated ribs (spline) on a movable collar.
- A problem with the arrangements of the above patents is that the pawl projections are incapable of flexing with the movement of the collar over the handle. Over time, the pawl projections suffer extensive shearing and are rendered useless.
- Another example of a prior art mop, U.S. Pat. No. 5,509,163, to Morad, discloses a Quick Squeezing Wringable Mop. The '163 patent discloses a complex spring biased pawl, and an annular tie for connecting mop fibers to the collar. The complexity of the spring biased pawl and the intricate mounting of the pawl to the collar adversely affects manufacturing cost and time. The annual ties are brittle and have poor restraining qualities, causing the loss of necessary mop fibers.
- Other examples of prior art mops include U.S. Pat. Nos. 1,514,051 and 1,520,500 to Jumonville, each disclosing a Mop. The patents teach a pole that holds one end of mop fibers and a handle that holds the other end of the mop fibers. The patents teach turning the handle about the pole to twist and wring the mop fibers.
- The patents disclose a ratchet on the pole and a cylindrical button on the handle. The button is located within a slot. The slot has enough room to allow the button to move towards and away from the ratchet. When the button engages a peak in the ratchet contour, the button is pushed outwardly, away from the ratchet. Otherwise, the button is supposed to bias towards the ratchet so that the button and handle are allowed to advance in a singular direction. Accordingly, the mop fibers advance in a single direction to assist in the wringing process.
- The 500' patent discloses a nail for controlling the maximum motion of the button in the handle. The 051' patent discloses manufacturing the button so that the inward portion has a larger diameter than the outer portion, thereby controlling the maximum motion of the button.
- Both Jumonville inventions suffer from a fatal defect. Both inventions are disclosed as being made of metal. Accordingly, the metal button of both patents would move freely within the slot of the metal handle, unless biased by some means. However, neither patent discloses this bias means.
- According to the disclosure of each Jumonville patent, the button in which each handle would freely move outwardly from contacting the ratchet. This motion renders the handle incapable of being restrained from unintentionally unwinding the mop fibers. This motion would result from both of the contours of the ratchet, and the effect of gravity due to the normal use of the mop. Accordingly, both Jumonville patents are not described so that one skilled in the art can make and use the invention, and the patents are fatally invalid.
- In comparison with the Jumonville patents, the present invention discloses a spline around the pole of the mop, rather than the ratchet of Jumonville. The present invention discloses a shaped pawl within the handle, rather than the cylindrical button. In the present invention, the pawl snugly connects the pole of the handle, rather than fitting within a slot and being able to move towards and away from the spline.
- The pawl flexes as it moves over the maximum spline contours, rather than moving away from the spline. As the pawl flexes, it absorbs energy. As the pawl rotationally advances over the spline, it advances towards lower contours. At the lower contours, the pawl flexes inwardly, towards the lower contours, and releases the stored energy, rather than requiring a means to bias the pawl against the spline. Accordingly, the pawl and handle are allowed to advance in a singular direction. As a result, the mop fibers advance in a single direction to assist in the wringing process.
- According to the above analysis, Jumonville is not an enabling reference over the present invention. Furthermore, Jumonville teaches away from the present invention by requiring an extra means for biasing the button against the ratchet. In contrast, the pawl and spline in the present invention are capable of mutual engagement independent of any further biasing means.
- A twist mop is disclosed that comprises a pole, fibers connected to the end of the pole, and a movable collar connected to both the fibers and the pole, so that the collar is movable in an axial and radial direction about the pole, where radial movement of the collar pulls taut the fibers. The mop comprises an upper spline is connected to the pole, a pawl connected to the collar, to interact with the upper spline and to allow the collar to move in a radial direction clockwise or counterclockwise. The collar has a radial step to engage the pawl. The pawl is shaped to flex toward the radial step both when the collar axially traverses the pole and when the collar twists in a first direction, around the upper spline. The pawl being shaped to bias towards the upper spline while the collar turns in a second direction, opposite to the first direction, around the upper spline. Accordingly, a reliable and easy to use, and structurally straightforward wringer mop is disclosed.
- In order that the manner in which the above recited objectives are realized, a particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that the drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
-
FIG. 1 a is a front perspective view of a mop according to the invention with a movable collar in a lower position; -
FIG. 1 b is a front perspective view of an upper spline on the mop; -
FIG. 2 is a front perspective view of the mop with the movable collar in an upper position; -
FIG. 3 is front perspective view of the mop, with the mop fibers removed to expose the lower section of the mop; -
FIG. 4 is a front perspective view of the mop fibers, with the collar is in the upper position, exposing the lower spline; -
FIG. 5 a is a front perspective view of the movable collar with the pawl; -
FIG. 5 b is a front perspective view of the movable collar without the pawl; -
FIG. 6 is a bottom perspective view of the movable collar; -
FIG. 7 is a top perspective view of the movable collar; -
FIG. 8 is a front perspective view of the mop, where the movable collar is twisted for wringing the mop fibers; -
FIG. 9 is a top sectional view of the upper spline (or lower spline) interacting with pawl; and -
FIG. 10 is a top perspective view of the pawl. - Referring to figures 1 a, 1 b, 5 a, 5 b, 9 and 10, a
twist mop 1 is disclosed according to the preferred embodiment of the invention. The principle components oftwist mop 1 includepole 2 and components connected to the pole, such ashandles hook 4, andfibers 5.Mop 1 has acollar 9 that is connected tofibers 5 and able to rotate and slide along at length ofpole 2. The combined rotation and sliding motion ofcollar 9 pullsfibers 5 taut. - According to the invention, a
spline 10 is fixed topole 2, while apawl 12 is connected tocollar 9. These components form a system for controlling the motion ofcollar 9 aboutpole 1. The system is capable of assistingcollar 9 in pullingfibers 5 taut. - Referring to
FIG. 1 a,mop 1 is disclosed havingpole 2, the preferred length of which is slightly shorter than a person of average height for preventing back strain and is about four feet long. The outside diameter ofpole 2 dimensioned to be comfortable is handling by a person having an average grip and is about thirteen-sixteenths of an inch. Tubular or solid metal, plastic, wood, or composite materials are used inmanufacturing pole 2. -
Mop 1 hastop handle 3 a andmiddle handle 3 b, each connected by a bolt or, alternatively, glue. Plastic, rubber, or any elastic that provides a comfortable grip is used in manufacturing handles 3 a, 3 b. The dimensions ofhandles handle 3 a is four and a half inches, the length ofhandle 3 b is six inches, and the diameter of each is approximately one-and-one-eighth inches.Handle 3 b is axially positioned onpole 2 to prevent back strain from a person of average height and is located at about twelve inches from the top ofpole 2. - The
handle 3 a is ergonomically shaped for a user. Thehandle 3 a wraps around the top ofpole 2 and acts as a protector. That is, thehandle 3 a prevents thepole 2 from unintentionally scratching, poking or injuring a person or surface. Thehandle 3 a is also attached to afastening mechanism 4 suitable for suspendingmop 1 from a hook on a wall. Thefastening mechanism 4 maybe a loop or a hook, for example. Thefastening mechanism 4 is fixedly connected to handle 3 a. -
Handle 3 a hashook 4 so thatmop 1 can be easily stored on a wall or door hook. The outside diameter ofhook 4 is about one-and-one-half inches, and the thickness is approximately one-quarter of an inch. - Turning to
FIG. 2 ,mop 1 hasfibers 5 that are made of cotton or any absorbent material. The diameter offibers 5 is customarily about three-sixteenths of an inch. Fibers are woven to mop 1 as a single strand and passed through end cap 6 (discussed below) and collar 9 (discussed below). The single fiber strand is illustrated as being woven into one hundred ormore fiber segments - Turning to
FIG. 3 ,mop 1 hasend cap 6 that is semi-circular and mounted topole 2 with screw thread, bolts or glue. The shape and dimensions ofcap 6 allow the secure retention offiber segment retainer strip 7 is connected to cap 6 for restraining eachfiber segment - Referring to
FIGS. 1 b and 4-10,mop 1 has a system for wringing and controllingmop fibers 5, includingmovable collar 9,upper spline 10,lower spline 11, andpawl 12. - Referring to
FIGS. 1 b and 4,upper spline 10 is formed upon upperstationary collar 10 b andlower spline 11 is formed upon lowerstationary collar 11 b.Upper spline 10 consists of axiallylong projection lower spline 11 consists of axiallyshort projections spline pole 1 with a bolt or glue. Plastic is used to manufacturecollars spline - Referring to
FIG. 9 , the cross-sectional shape ofspline pole 2, being a right triangle with an inclined side. The inclined side faces the direction thatmovable collar 9 turns when wringingmop fibers 5. In the illustration ofFIG. 9 ,collar 9 turns in a counterclockwise direction for wringingfibers 5. Accordingly, the inclined side ofspline projections 10 faces the counterclockwise direction. The height ofindividual spline projections movable collar 9. As illustrated, each has a height that is about one-eighth of an inch and the outside diameter ofsplines - Referring to figures 1 a, 4 and 8, the placement of
collars collar 9 for the unwinding offibers 5. The top ofcollar 10 b is about twenty one and three-quarter inches from the bottom ofpole 2, while the top ofcollar 11 b is about seven and one-quarter inches from the bottom ofpole 2. - Referring to
FIGS. 1 a and 2, and 5 a-5 b,movable collar 9 has external contours and a diameter that provides comfortable grip in a person's hand. Referring toFIGS. 6 and 7 , the internal diameter ofcollar 9 is larger than the outer diameter ofspline bottom section 13 withnotches contours 13 d andspline 13e. The combination of notches, contours andspline 13 a-13 e enables the gripping offiber segments Notch 13 a-13 c are dimensioned to gripfiber segments - Referring to figures 1 b, 4 and 8, the length of
spline 10 oncollar 10 b accommodates the downward travel ofcollar 9 andpawl 12, discussed below, while the length ofspline 11 oncollars 11 b controls the maximum downward travel formovable collar 9. The length ofupper collar 10 b is about six and three-quarter inches and the length oflower collar 11 b is about one-and-a-half inches. Also,collars spline movable collar 9 fromspline collar 10 b are molded withspline 10 and approximately the top one and three-sixteenths inches ofcollar 11 b are molded withspline 11. - Referring to
FIGS. 6 and 7 ,movable collar 9 has acylindrical step 9 b.Step 9 b stabilizes the rotational and axial motion ofcollar 9. The dimensions ofstep 9 b are such thatstep 9 b interacts withcollar 10, where the radial thickness ofstep 9 b is about one-eighth of an inch, and the axial thickness is one-eighth of an inch.Step 9 b is nearpawl 12, and the distance betweenstep 9 b and top ofcollar 9 is about three and one-half inches. Alternatively, two steps are used, at or near opposite sides ofpawl 12. - Referring to
FIGS. 5 a and 5 b, and according to the invention,movable collar 9 hasslot 9 d. The dimension ofslot 9d allows the insertion and retention ofpawl 12, such that the width ofslot 9 d is about one-eighth of an inch, and the length is approximately one-half of an inch.Slot 9 d is located atstep 9 b at, for example, three and one-half inches from the top ofcollar 9. - Referring to
FIG. 5 a, 9 and 10,pawl 12 connects withmovable collar 9.Pawl 12 consists of at least three short projections, 12 a, 12 b, 12 c,base 12 d andneck 12e.Projection 12 a is sized to preventpawl 12 from passing throughslot 9 d outwardly from the center ofcollar 9. The length ofneck 12 e is essentially the same as the thickness ofcollar 9 in the area ofslot 9 d, preventing axial movement ofpawl 12. The size ofbase 12 d prevents pawl 12 from passing throughslot 9 d, inwardly towards the center ofmovable collar 9. The connection betweenbase 12 d andprojection 12 c places a majority ofbase 12 d away fromprojections 12 a-12 c, having benefits as described below. - Referring to
FIGS. 9 and 10 , the cross-sectional shape ofprojections 12 a-12 c, in a direction parallel to the major axis ofcollar 9, is essentially a right triangle, having an inclined side. The height ofprojections 12 a-12 c faces opposite to the direction thatmovable collar 9 turns when wringingmop fibers 5. For illustration purposes,collar 9 turns in a counterclockwise direction for wringingfibers 5. Accordingly, the inclined side ofprojections 12 a-12 c faces the clockwise direction. Accordingly, the interaction betweenprojections 12 a-12 c andspline 10 preventscollar 9 from turning clockwise. - According to the invention, the shape of
pawl 12 causesprojection 12 c to project toward the center ofcollar 9, past the inner edge of radial step b. This configuration allowsprojections 12 c to continuously engagespline projections 12 a-12 c is smaller than the radius created by the tips ofspline projections 12 a-12 c can be other than radial, so long as theprojection 12 c normally projects past the inner edge ofradial step 9 b. - The
pawl 12 is made of plastic for flexing behindradial step 9 b whencollar 9 slides overspline 10 prior to and after the wringing offibers 5 and whencollar 9 is rotated for wringingmop fibers 5. This flexing preventover-strained pawl 12 via shear and compressive friction, preventing premature wearing ofspline pawl 12. The flexure of the plastic is stored as spring-energy inbase 12 d. The release of the energy frombase 12 d biases pawl 12 towardsspline fibers 5. - In use, when wringing
mop fibers 5,movable collar 9 is positioned at a maximum distance from the bottom ofpole 2, so thatpawl 12 engages upper spline 10 (FIG. 2 ).Movable collar 9 is then rotated counterclockwise, andpawl 12 preventscollar 9 from rotating clockwise (FIG. 9 ).Collar 9 is continually rotated untilfibers 5 are taut and fully wrung (FIG. 8 ). - As
collar 9 rotates aboutspline 10,fibers 5pull collar 9 downwardly (FIG. 8 ). Oncefibers 5 are wrung,collar 9 is moved betweenupper spline 10 andlower spline 11 andfibers 5 are unwound. Oncefibers 5 are unwound,collar 9 is moved to engage lower spline 11 (FIG. 9 ). During mopping, the interaction betweenpawl 12 andlower spline 11 prevents axial rotating ofmovable collar 9. - According to the description, a reliable, easy to use and structurally straightforward twist mop has been disclosed.
- The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not as restrictive. The scope of the invention is, therefore, indicated by the appended claims and their combination in whole or in part rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/336,054 US20060150353A1 (en) | 2002-05-09 | 2006-01-21 | Twist mop |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/142,489 US20060265826A1 (en) | 2002-05-09 | 2002-05-09 | Outdoor broom |
US10/234,587 US6760949B2 (en) | 2002-09-04 | 2002-09-04 | Rotating dish brush |
US10/630,117 US7093315B2 (en) | 2003-07-30 | 2003-07-30 | Twist mop |
US11/336,054 US20060150353A1 (en) | 2002-05-09 | 2006-01-21 | Twist mop |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/630,117 Continuation US7093315B2 (en) | 2002-05-09 | 2003-07-30 | Twist mop |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060150353A1 true US20060150353A1 (en) | 2006-07-13 |
Family
ID=34103775
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/630,117 Expired - Lifetime US7093315B2 (en) | 2002-05-09 | 2003-07-30 | Twist mop |
US11/336,054 Abandoned US20060150353A1 (en) | 2002-05-09 | 2006-01-21 | Twist mop |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/630,117 Expired - Lifetime US7093315B2 (en) | 2002-05-09 | 2003-07-30 | Twist mop |
Country Status (2)
Country | Link |
---|---|
US (2) | US7093315B2 (en) |
WO (1) | WO2006025814A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100975106B1 (en) * | 2008-03-13 | 2010-08-11 | 글로벌모닝스타홀딩스(주) | Rag |
KR200451307Y1 (en) | 2010-06-16 | 2010-12-08 | (주)엘하이코 | Rotating Dewatering Mop |
KR101007943B1 (en) | 2010-04-19 | 2011-01-14 | 이의진 | Rotary dewatering cleaning tools and bag locks for them |
US8402589B2 (en) | 2001-07-25 | 2013-03-26 | The Libman Company | Cleaning implement |
US20160324389A1 (en) * | 2015-05-08 | 2016-11-10 | Ingenious Designs Llc | Mop head with braided cord |
CN109661190A (en) * | 2016-08-25 | 2019-04-19 | 卡尔科德宝两合公司 | Wiping arrangement |
US11419472B2 (en) | 2020-03-13 | 2022-08-23 | The Libman Company | Cleaning implement |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8011055B2 (en) * | 2006-06-01 | 2011-09-06 | Carl Freudenberg Kg | Cleaning implement |
USD562515S1 (en) * | 2006-08-29 | 2008-02-19 | Txf Products, Inc. | Microfiber-tube wet mop |
USD597271S1 (en) | 2007-03-09 | 2009-07-28 | Carl Freudenberg Kg | Wringer for a cleaning implement |
US20090265871A1 (en) * | 2008-04-24 | 2009-10-29 | Alvin Wooten | Floor cleaning system |
CN102525359B (en) * | 2010-12-10 | 2014-03-05 | 笠源科技股份有限公司 | Self-rotating mop |
USD766529S1 (en) * | 2014-03-07 | 2016-09-13 | Samsung Electronics Co., Ltd. | Cleaner |
USD903211S1 (en) * | 2020-07-23 | 2020-11-24 | Hongtao Gao | Dog pooper scooper rod |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1514051A (en) * | 1922-08-03 | 1924-11-04 | Jumonville Charles | Mop |
US1520500A (en) * | 1922-08-03 | 1924-12-23 | Jumonville Charles | Mop |
US1587369A (en) * | 1925-08-03 | 1926-06-01 | Flowers Alphonso | Broom handle |
US1899242A (en) * | 1932-03-02 | 1933-02-28 | Mcnab Alexander | Toothbrush holder |
US2294661A (en) * | 1941-05-14 | 1942-09-01 | Hibbard Helen | Handle attachment |
US3197169A (en) * | 1963-10-09 | 1965-07-27 | Burrows Allen | Broom hanger and guard |
US4064587A (en) * | 1976-07-06 | 1977-12-27 | Martin Schnabl | Broom construction |
USD294073S (en) * | 1985-12-20 | 1988-02-02 | Lin C | Duster or similar article |
US4809388A (en) * | 1988-02-18 | 1989-03-07 | Dietrich & Sons, Incorporated | Portable surface treating apparatus with non-straight handle |
US4974286A (en) * | 1990-03-26 | 1990-12-04 | Smart Design, Inc. | Universal handle for hand-held implement |
USD317068S (en) * | 1987-09-14 | 1991-05-21 | Bosworth Gloria F | Cleaning tool |
USD323727S (en) * | 1989-05-09 | 1992-02-04 | Fratelli Re S.P.A. | Floor cleaning device |
US5509163A (en) * | 1995-03-29 | 1996-04-23 | Worldwide Integrated Resources, Inc. | Quick squeezing wringable mop |
USD410113S (en) * | 1998-08-12 | 1999-05-18 | Kuo-Chin Chen | Handle of a body cleaning brush |
US6003187A (en) * | 1997-04-22 | 1999-12-21 | Easy Day Manufacturing Company | Combination mop and wiper |
US6065188A (en) * | 1996-08-01 | 2000-05-23 | Progressive International Corp. | Ergonomic handle for utensil |
US6115869A (en) * | 1998-11-24 | 2000-09-12 | Libman; Robert J. | Wringer mop |
US6212728B1 (en) * | 1997-12-02 | 2001-04-10 | Multi-Reach, Inc. | Self-wringing ratchet mop |
USD461058S1 (en) * | 2000-08-11 | 2002-08-06 | Hayco Manufacturing Ltd. | Brush |
USD496509S1 (en) * | 2004-02-06 | 2004-09-21 | Quickie Manufacturing Corporation | Deck mop with scrubber |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10207384B4 (en) * | 2002-02-21 | 2009-01-08 | Carl Freudenberg Kg | Self-triggering mop |
US6732396B2 (en) * | 2002-05-07 | 2004-05-11 | O-Cedar Brands, Inc. | Self-wringing ratchet mop |
WO2004023966A1 (en) * | 2002-09-13 | 2004-03-25 | Freudenberg Household Products Lp | Twist mop |
-
2003
- 2003-07-30 US US10/630,117 patent/US7093315B2/en not_active Expired - Lifetime
-
2004
- 2004-07-29 WO PCT/US2004/024599 patent/WO2006025814A1/en active Application Filing
-
2006
- 2006-01-21 US US11/336,054 patent/US20060150353A1/en not_active Abandoned
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1514051A (en) * | 1922-08-03 | 1924-11-04 | Jumonville Charles | Mop |
US1520500A (en) * | 1922-08-03 | 1924-12-23 | Jumonville Charles | Mop |
US1587369A (en) * | 1925-08-03 | 1926-06-01 | Flowers Alphonso | Broom handle |
US1899242A (en) * | 1932-03-02 | 1933-02-28 | Mcnab Alexander | Toothbrush holder |
US2294661A (en) * | 1941-05-14 | 1942-09-01 | Hibbard Helen | Handle attachment |
US3197169A (en) * | 1963-10-09 | 1965-07-27 | Burrows Allen | Broom hanger and guard |
US4064587A (en) * | 1976-07-06 | 1977-12-27 | Martin Schnabl | Broom construction |
USD294073S (en) * | 1985-12-20 | 1988-02-02 | Lin C | Duster or similar article |
USD317068S (en) * | 1987-09-14 | 1991-05-21 | Bosworth Gloria F | Cleaning tool |
US4809388A (en) * | 1988-02-18 | 1989-03-07 | Dietrich & Sons, Incorporated | Portable surface treating apparatus with non-straight handle |
USD323727S (en) * | 1989-05-09 | 1992-02-04 | Fratelli Re S.P.A. | Floor cleaning device |
US4974286A (en) * | 1990-03-26 | 1990-12-04 | Smart Design, Inc. | Universal handle for hand-held implement |
US5509163A (en) * | 1995-03-29 | 1996-04-23 | Worldwide Integrated Resources, Inc. | Quick squeezing wringable mop |
US6065188A (en) * | 1996-08-01 | 2000-05-23 | Progressive International Corp. | Ergonomic handle for utensil |
US6003187A (en) * | 1997-04-22 | 1999-12-21 | Easy Day Manufacturing Company | Combination mop and wiper |
US6212728B1 (en) * | 1997-12-02 | 2001-04-10 | Multi-Reach, Inc. | Self-wringing ratchet mop |
USD410113S (en) * | 1998-08-12 | 1999-05-18 | Kuo-Chin Chen | Handle of a body cleaning brush |
US6115869A (en) * | 1998-11-24 | 2000-09-12 | Libman; Robert J. | Wringer mop |
USD461058S1 (en) * | 2000-08-11 | 2002-08-06 | Hayco Manufacturing Ltd. | Brush |
USD496509S1 (en) * | 2004-02-06 | 2004-09-21 | Quickie Manufacturing Corporation | Deck mop with scrubber |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8402589B2 (en) | 2001-07-25 | 2013-03-26 | The Libman Company | Cleaning implement |
US8719991B2 (en) | 2001-07-25 | 2014-05-13 | The Libman Company | Cleaning implement |
KR100975106B1 (en) * | 2008-03-13 | 2010-08-11 | 글로벌모닝스타홀딩스(주) | Rag |
KR101007943B1 (en) | 2010-04-19 | 2011-01-14 | 이의진 | Rotary dewatering cleaning tools and bag locks for them |
KR200451307Y1 (en) | 2010-06-16 | 2010-12-08 | (주)엘하이코 | Rotating Dewatering Mop |
US20160324389A1 (en) * | 2015-05-08 | 2016-11-10 | Ingenious Designs Llc | Mop head with braided cord |
US10687681B2 (en) * | 2015-05-08 | 2020-06-23 | Ingenious Designs Llc | Mop head with braided cord |
CN109661190A (en) * | 2016-08-25 | 2019-04-19 | 卡尔科德宝两合公司 | Wiping arrangement |
US11419472B2 (en) | 2020-03-13 | 2022-08-23 | The Libman Company | Cleaning implement |
US11771295B2 (en) | 2020-03-13 | 2023-10-03 | The Libman Company | Cleaning implement |
Also Published As
Publication number | Publication date |
---|---|
WO2006025814A1 (en) | 2006-03-09 |
US7093315B2 (en) | 2006-08-22 |
US20050022327A1 (en) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060150353A1 (en) | Twist mop | |
US5850658A (en) | Wringable mop | |
US5509163A (en) | Quick squeezing wringable mop | |
US5581839A (en) | Mop handle and mop | |
US6115869A (en) | Wringer mop | |
US6125494A (en) | Self-wringing mop | |
US5092699A (en) | Floor cleaning using index fabric rolls in removable cassette | |
US20070180640A1 (en) | Flexible Cleaning Tool With Replaceable Non-woven Pad and Cleaning Fluid Reservoir | |
US5890253A (en) | Mop apparatus for unwinding the tangled strands of a mop head | |
CA2242824C (en) | String mop with wringer | |
US6732396B2 (en) | Self-wringing ratchet mop | |
US8079112B2 (en) | Disposable liquid absorbing cleaning pad for a hand held cleaning implement having an elongated handle | |
JP2022530119A (en) | Stick cleaner with multifunctional mop | |
US3008163A (en) | Wringer mop | |
US10743737B1 (en) | Automatic self-wringing microfiber cleaning sponge on an extendable handle | |
USRE38380E1 (en) | Wringer mop | |
US3171152A (en) | Triangular, axially compressible sponge mop | |
US20060026785A1 (en) | Wring mop | |
CN201564435U (en) | Manual water squeezing mop | |
US20060021171A1 (en) | Device for wringing out the material of domestic cleaning tools known as mops | |
US2260390A (en) | Sponge rubber brush | |
US7640616B2 (en) | Mop with integral mop head wringing mechanism | |
GB2285391A (en) | Twist action mop | |
US6523211B2 (en) | Self-wringing mop with rotating offset | |
JP3071400B2 (en) | Swabs worn on brooms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CASABELLA HOLDINGS, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAMINSTEIN IMPORTS, INC.;REEL/FRAME:021362/0487 Effective date: 20080620 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: MANUFACTURERS & TRADERS TRUST COMPANY, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:CASABELLA HOLDINGS, LLC;REEL/FRAME:022793/0211 Effective date: 20090501 |
|
AS | Assignment |
Owner name: CASABELLA HOLDINGS L.L.C., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY;REEL/FRAME:043999/0492 Effective date: 20170922 |