US20060148745A1 - DNA-based aptamers for human cathepsin G - Google Patents
DNA-based aptamers for human cathepsin G Download PDFInfo
- Publication number
- US20060148745A1 US20060148745A1 US11/236,197 US23619705A US2006148745A1 US 20060148745 A1 US20060148745 A1 US 20060148745A1 US 23619705 A US23619705 A US 23619705A US 2006148745 A1 US2006148745 A1 US 2006148745A1
- Authority
- US
- United States
- Prior art keywords
- cathepsin
- inhibiting
- aptamers according
- inhibiting aptamers
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091023037 Aptamer Proteins 0.000 title claims abstract description 55
- 101000933179 Homo sapiens Cathepsin G Proteins 0.000 title 1
- 102000052896 human CTSG Human genes 0.000 title 1
- LKDMKWNDBAVNQZ-UHFFFAOYSA-N 4-[[1-[[1-[2-[[1-(4-nitroanilino)-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)NC(C)C(=O)NC(C)C(=O)N1CCCC1C(=O)NC(C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)CC1=CC=CC=C1 LKDMKWNDBAVNQZ-UHFFFAOYSA-N 0.000 claims abstract description 49
- 108090000617 Cathepsin G Proteins 0.000 claims abstract description 48
- 102000004173 Cathepsin G Human genes 0.000 claims abstract description 48
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 20
- 239000002773 nucleotide Substances 0.000 claims abstract description 13
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 13
- 238000011282 treatment Methods 0.000 claims abstract description 6
- 239000002157 polynucleotide Substances 0.000 claims abstract description 5
- 238000011321 prophylaxis Methods 0.000 claims abstract description 5
- 230000002757 inflammatory effect Effects 0.000 claims abstract description 4
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 4
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 4
- 239000003805 procoagulant Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 7
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 229930010555 Inosine Natural products 0.000 claims description 4
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 claims description 4
- 229960003786 inosine Drugs 0.000 claims description 4
- 230000005778 DNA damage Effects 0.000 claims description 3
- 231100000277 DNA damage Toxicity 0.000 claims description 3
- 208000026350 Inborn Genetic disease Diseases 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 3
- 208000016361 genetic disease Diseases 0.000 claims description 3
- 230000009826 neoplastic cell growth Effects 0.000 claims description 3
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 3
- 208000017520 skin disease Diseases 0.000 claims description 3
- 239000002671 adjuvant Substances 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims description 2
- 239000003112 inhibitor Substances 0.000 abstract description 5
- 238000011160 research Methods 0.000 abstract description 4
- 108020004414 DNA Proteins 0.000 description 23
- 230000027455 binding Effects 0.000 description 22
- 108091034117 Oligonucleotide Proteins 0.000 description 21
- 102000004169 proteins and genes Human genes 0.000 description 20
- 108090000623 proteins and genes Proteins 0.000 description 20
- 239000000872 buffer Substances 0.000 description 17
- 102000053602 DNA Human genes 0.000 description 13
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 8
- 238000003752 polymerase chain reaction Methods 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 3
- 102000008847 Serpin Human genes 0.000 description 3
- 108050000761 Serpin Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000036515 potency Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000003001 serine protease inhibitor Substances 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 239000006137 Luria-Bertani broth Substances 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000004002 Secretory Leukocyte Peptidase Inhibitor Human genes 0.000 description 2
- 108010082545 Secretory Leukocyte Peptidase Inhibitor Proteins 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 230000036964 tight binding Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- JSZAZZQHDRHICK-UHFFFAOYSA-N 1,1-dioxo-1,2,5-thiadiazolidin-3-one Chemical compound O=C1CNS(=O)(=O)N1 JSZAZZQHDRHICK-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical group C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical class O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 1
- 102400000344 Angiotensin-1 Human genes 0.000 description 1
- 101800000734 Angiotensin-1 Proteins 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000005600 Cathepsins Human genes 0.000 description 1
- 108010084457 Cathepsins Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 102100037529 Coagulation factor V Human genes 0.000 description 1
- 102100029117 Coagulation factor X Human genes 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 108010014172 Factor V Proteins 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101000851058 Homo sapiens Neutrophil elastase Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 102000003790 Thrombin receptors Human genes 0.000 description 1
- 108090000166 Thrombin receptors Proteins 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- ORWYRWWVDCYOMK-HBZPZAIKSA-N angiotensin I Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 ORWYRWWVDCYOMK-HBZPZAIKSA-N 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940019748 antifibrinolytic proteinase inhibitors Drugs 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 239000003541 chymotrypsin inhibitor Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229940105756 coagulation factor x Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 102000052502 human ELANE Human genes 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 239000012622 synthetic inhibitor Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/343—Spatial arrangement of the modifications having patterns, e.g. ==--==--==--
Definitions
- Cathepsin G is a serine protease commonly found in the azurophilic granules of neutrophils and monocytes. Together with elastase and proteinase 3 it belongs to the chymotrypsin family and cleaves extracellular matrix proteins such as elastin, collagen, fibronectin and laminin causing extensive lung tissue damage in the animal. Cathepsin G also plays a role in blood clotting; in fact, it is involved in an alternative pathway of leukocytes initiation of coagulation, and by activating coagulation factor X and factor V it can cleave and potentially modulate the thrombin receptor and it can activate platelets in vitro. It is also able to convert angiotensin I into angiotensin II with only minor cleavage occurring elsewhere in the molecule.
- cathepsin G kills bacteria and fungi but this property is not related to its activity, in fact peptides derived from its cleavage showed direct antimicrobial properties. It can also degrade necrotic tissues and is therefore related to several inflammatory diseases like lung emphysema, bronchitis, cystic fibrosis and psoriasis.
- the enzymatic activity of cathepsin G is regulated by two types of protein proteinase inhibitors: the so called “canonical” inhibitors and the serpins.
- the former are relatively small proteins (29-190 amino acids) and are tight-binding reversible inhibitors; among them are Mucus proteinase inhibitor (MPI), eglin c and aprotinin.
- serpins are larger proteins (400-450 residues) that form an irreversible complex with their cognate protein due to the formation of a non-hydrolysable acyl bond between the catalytic site of cathepsin G and their reactive site loop.
- serpins 1-antichymotrypsin is the most important: inhibitors of this family are not selective because they are able to bind to and inhibit other chymotripsins. Moreover, their stability and distribution in vivo is affected by their peptidic nature.
- EP-775745 discloses oligonucleotide cathepsin G-inhibiting aptamers having a chain length of about 40 nucleotides (and in any case lower than 55 nucleotides) and containing G-pairs repeating units which are useful in the treatment and prophylaxis of inflammatory occurrences and procoagulant conditions.
- FIG. 1 represents a comparison of the Kd of the tested oligonucleotides.
- FIG. 2 represents a summarization of the Log concentration-effect curves of GT and AC aptamers.
- FIG. 3 represents a summarization of the Log concentration-effect curves of PolyT aptamers.
- the present research is mainly directed to the identification of non-peptidic inhibitors of cathepsin G characterised by high levels of selectivity and which can be thus more efficaciously used in the treatment and prophylaxis of the above conditions and also in that of genetic diseases, degenerative diseases, DNA damages, neoplasia and/or skin diseases.
- DNA molecules are able to assume a variety of tridimensional structures depending on their sequence. Some of these might be relevant for binding to the target.
- SELEX Systematic evolution of ligands by exponential enrichment
- Aptamer technology combines the capacity of generating huge structural diversity in random pools of oligonucleotides with the power of the polymerase chain reaction (PCR) to amplify selected sequences.
- This technology involves the screening of large, random-sequence pool of oligonucleotides and is based on the fact that they assume a large number of tertiary structures, some of which may possess desirable binding or catalytic activity against target molecules.
- the new cathepsin G-inhibiting aptamers of the present invention are single or double stranded linear DNA or polynucleotide sequences characterized by having a chain length of at least 60 nucleotides, preferably 70, and by being substantially not subjected to inter and/or intra molecular base pairing.
- the DNA sequences may have a chain length of 70 ⁇ 120 nucleotides, preferably of 70 ⁇ 110 nucleotides, even more preferably of 80 ⁇ 100 nucleotides.
- sequences according to the present invention may be single or double stranded, single stranded sequences are preferred.
- sequences according to the present invention are also preferably characterized by having a molar content in guanine of about 25 ⁇ 50%, preferably 35 ⁇ 45% and/or by having a molar ratio AG/TC of about 1.0 ⁇ 2.0, preferably 1.2 ⁇ 1.8 (for the purposes of the present invention AG means the total number of A and G nucleotides of the sequence whereas TC means the total number of T and C nucleotides of the sequence).
- the expression “substantially not subjected to inter and/or intra molecular base pairing” means that the DNA or polynucleotide sequences do not undergo inter and/or intra molecular base pairing to an extent higher than 20%, preferably than 10%, even more preferably than 5%, under both stringent and non stringent conditions. Such a result is the direct consequence of their structure, since the fact of:
- the aptamers according to the present invention do selectively and efficaciously inhibit cathepsin G and, consequently, they can be used in the manufacture of a medicament for the treatment and prophylaxis of inflammatory occurrences, procoagulant conditions, genetic diseases, degenerative diseases, DNA damages, neoplasia and/or skin diseases, which represents therefore an object of the invention.
- a further object of the invention is also represented by the pharmaceutical composition containing the cathepsin G-inhibiting aptamers of the invention together with customary eccipients and/or adjuvants.
- Other objects of the invention may be represented by the cathepsin G-inhibiting aptamers selected from those reported in the sequence listing (i.e. from SEQ ID NO: 1 to SEQ ID NO: 18).
- Cathepsin G was purchased from Europa Bioproducts or from Calbiochem. All oligonucleotides were obtained from Eurogentec Bel SA (Belgium) and purified by PAGE before use. Some oligonucleotides, already purified by PAGE were obtained from Gibco BRL Custom Primers. Taq polymerase was from Pharmacia Amersham Biotech while dNTPs were purchased as sodium salt from Boehringer Mannheim. T4-polynucleotide kinase, ligase and the restriction enzymes were from Gibco Life Technologies. Qiagen kits were used for plasmid miniprep purification, and sequencing was performed using T7 Sequenase (Pharmacia Amersham Biotech) and [gamma- 33 P]dATP (Nen Life Sciences).
- the synthesised random pool is 96 base length, the central part of the molecule has a randomised region that is flanked by two constant regions for amplification, cloning and sequencing; its sequence is 5′-CGTACG GAATTC GCTAGC(N) 60 GGATCC GAGCTCCACGTG-3′.
- the underlined sequences refer to restriction sites for EcoRI and BamHI enzymes respectively.
- the pool was amplified by PCR using primer II-up, which sequence is 5′-CGTACGGAATTCGCTAGC-3′, and primer III-Down 5′Biot-CACGTCGAGCTCGGATCC-3′ which is biotinylated at the 5′ end in order to be bound to a streptavidin column to get ssDNA.
- the starting random pool was radioactive labelled with 32 P, denaturated at high temperature and incubated with cathepsin G in Incubation buffer (buffer IB: 30 mM Tris HCl pH7.5, 150 mM NaCl, 5 mM KCl and 5 mM MgCl 2 ) which is close to the physiological conditions.
- the incubation was conducted for 90 minutes in ice, then the sample was loaded in an affinity chromatography mini-column filled with Sepharose SP (Amersham Pharmacia Biotech), swollen and equilibrated in buffer IB.
- the ssDNA/protein solution was incubated with the resin for 30 minutes at 4° C.
- the unbound oligonucleotide molecules were washed away with buffer IB, while the remaining, more selective ones were eluted from the column a high ionic force elution buffer (buffer EB: 0.8 M NaCl e 50 mM Tris pH 7.8).
- washing volumes were modified during the selection in order to increase the stringency as well as the DNA concentration which was twice the protein at the first cycle, but it was progressively reduced.
- the fractions were counted and the yield of the Selex cycle was expressed as a percentage of the total radioactivity.
- the flow through and the first two fractions of the EB wash were collected and amplified.
- Polymerase chain reaction was done using Taq polymerase at a concentration of 0.3-0.5 u/50 ⁇ l in the buffer indicated by the producer. The number of cycles was adjusted after every different selection.
- the DNA was subjected to a polishing reaction in order to get blunt ends: an aliquot of the normal PCR reaction was incubated with 2.5 u/ ⁇ l of Pfu Turbo polymerase (Stratagene) in the suggested buffer at 72° C. for 30 minutes.
- Pfu Turbo polymerase (Stratagene)
- E. coli competent cells SURE strain Stratagene
- E. coli pulser Biorad
- Plasmids were purified by alkaline lysis and their quality was every time tested by agarose gel electrophoresis.
- the sequence of the aptamers was determined with the Sanger's method, labeling with [gamma- 33 P]dATP and employing two different primers EleA457: 5′-ACG-CCA-AGC-TTG-CAT-3′ (sense) and Ele S: 5′-GGG-TTT-TCC-CAG-TCA-CGA-3′ (antisense).
- the affinity of the oligonucleotides was determined by affinity chromatography as performed in the selection. Different aliquots of each oligonucleotide were previously incubated with 15 ⁇ g of Cathepsin G in ice. The solution was then loaded in the min-chromatography column used for the selection and washed with 15 volumes of buffer IB. After one hour incubation, it was washed with six volumes of buffer EB. Fractions of the same volumes were collected and counted.
- Cathepsin G from human neutrophils, dissolved in HBS EP buffer, pH 7.40 (Biacore) was immobilized on the surface of a CM 5 research grade sensor chip flow cell, according to the procedure suggested by Biacore and using the Biacore amine coupling kit.
- a blank flow cell was prepared using all the above reagents but Cathepsin G.
- the amount of Cathepsin G immobilized on the surface of the flow cell was 5178.91 ⁇ 129.63 RU.
- Aptamers [Poly GT (chain length: 20, 30, 40, 60, 80 and 100) and Poly AC (chain length: 20, 40 and 80,] were dissolved in 30 mM Tris-HCl buffer, pH 7.50, 150 mM NaCl, 5 mM KCl, and 5 mM MgCl 2 and injected over the Cathepsin G surface or the blank surface. Three sets of experiments were run. The first at a concentration of 500 nM, for all the aptamers, the second at a concentration of 6595 ⁇ g/L, for all the aptamers, and the third one at concentrations ranging from 15.6 to 8000 nM, according to the aptamer being tested.
- aptamers for cathepsin G starting from a DNA pool with a randomised region of 60 nucleotides flanked by two regions with conserved sequence for the PCR reaction and restriction sites for the following cloning step (see above).
- the selected molecules were then efficiently removed from the column, together with the bound protein, using a high ionic strength buffer (buffer EB), and then counted by radioactivity.
- buffer EB high ionic strength buffer
- the first two fractions and the flow through were then collected, amplified by PCR and reduced to single stranded molecules in order to be used for the next cycle (see methods section for details).
- the selected molecules were cloned into E. coli cells as described in the experimental selection and sequenced. We found 19 different sequences out of 50 clones. We used two sequence alignment programs, Clustal W and FastA-align, searching for a repeated consensus motif, but the molecule diversity was too high to yield a good alignment even within subsets of the sequenced molecules. Further analysis showed that GT motifs are clearly repeated in 14 sequences. Moreover, a closer look at these molecules showed that they are not prone to undergo either inter and intra molecular base pairing to an appreciable extent, nor do they form more complex tridimensional structures like G quartets. It seemed that the selection led to unstructured, linear and flexible molecules that can tightly bind to the positive protein because of a charge-charge interaction.
- the selected CG51 showed a high affinity for cathepsin G (Kd 0.9 nM). Besides, its Kd was comparable with AC and GT oligonucleotides of the same length (Kd 0.8 nM and 1 nM respectively) and with cmpCG51 (Kd 0.6 nM) ( FIG. 1 ). These data indicate that our hypothesis about tight binding by unstructured and flexible molecules was correct.
- Molecules longer than the 60mer like (AC) 60 and (GT) 40 which are respectively a 120mer and a 80mer, showed an affinity of 1.2 nM.
- the shorter (GT) 20 and (GT) 10 that are shorter molecules have a Kd of 1.5 nM and 2 nM respectively, suggesting that the length of the selected oligonucleotides is important to grant efficient binding.
- Aptamer THR that was selected against thrombin, was also included as a control in order to prove whether the oligonucleotide structure was important for cathepsin binding. This aptamer is known to form stable G quartets.
- GT 80 has a relative potency of about 0.32, GT 60 of about 0.144, AC 80 of about 0.017, GT 40 of about 0.016, AC 40 of about 0.0047 and GT 30 of about 0.0020.
- GT 20 and AC 20 were not evaluable because of their poor binding.
- the aptamers can be divided into three families ( FIG. 2 ); first family: GT 100, GT 80 and GT 60; second family: AC 80, GT 40, AC 40 and GT 30; third family: AC 20 and GT 20.
- a linear and flexible single stranded DNA chain with a length of at least 60, preferably more than 70-80, is more effective in binding cathepsin G than the chromosomal counterpart and also more effective than shorter DNA chains.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Dermatology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Diabetes (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
The present research is directed to the identification of non-peptidic inhibitors of cathepsin G characterised by high levels of selectivity and which can be efficaciously used in the treatment and prophylaxis of inflammatory occurrences and procoagulant conditions. The cathepsin G-inhibiting aptamers according to the invention consist of linear DNA or polynucleotide sequences having a chain length of at least 60 nucleotides and being substantially not subjected to undergo efficient base pairing.
Description
- This application is a continuation of and claims priority to International Application No. PCT/EP2004/006599, filed Jun. 18, 2004, which in turn claims priority to European Application No. 03425428.4, filed Jun. 30, 2003, the teachings of both of which are incorporated herein by reference.
- Cathepsin G is a serine protease commonly found in the azurophilic granules of neutrophils and monocytes. Together with elastase and
proteinase 3 it belongs to the chymotrypsin family and cleaves extracellular matrix proteins such as elastin, collagen, fibronectin and laminin causing extensive lung tissue damage in the animal. Cathepsin G also plays a role in blood clotting; in fact, it is involved in an alternative pathway of leukocytes initiation of coagulation, and by activating coagulation factor X and factor V it can cleave and potentially modulate the thrombin receptor and it can activate platelets in vitro. It is also able to convert angiotensin I into angiotensin II with only minor cleavage occurring elsewhere in the molecule. - It was shown that cathepsin G kills bacteria and fungi but this property is not related to its activity, in fact peptides derived from its cleavage showed direct antimicrobial properties. It can also degrade necrotic tissues and is therefore related to several inflammatory diseases like lung emphysema, bronchitis, cystic fibrosis and psoriasis.
- The enzymatic activity of cathepsin G is regulated by two types of protein proteinase inhibitors: the so called “canonical” inhibitors and the serpins. The former are relatively small proteins (29-190 amino acids) and are tight-binding reversible inhibitors; among them are Mucus proteinase inhibitor (MPI), eglin c and aprotinin. Serpins are larger proteins (400-450 residues) that form an irreversible complex with their cognate protein due to the formation of a non-hydrolysable acyl bond between the catalytic site of cathepsin G and their reactive site loop. Among serpins 1-antichymotrypsin is the most important: inhibitors of this family are not selective because they are able to bind to and inhibit other chymotripsins. Moreover, their stability and distribution in vivo is affected by their peptidic nature.
- Several synthetic inhibitors were found starting from peptidomimetic scaffolds containing 1,2,5-thiadiazolidin-3-one 1,1 dioxide or 1,3-diazetidine-2,4-diones and some of them (particularly those with aromatic side chains) showed a remarkably specific activity for cathepsin G. However, they form non-reversible acyl complexes with the enzyme. Recently, it was shown that both the full length and cleaved chromosomal DNA is able to bind and inhibit Cathepsin G in vitro and in vivo. A 30 bpDNA fragment tightly binds cathepsin G at physiological conditions and showed a decreasing order of affinity for human neutrophil elastase when compared to
proteinase 3 in accordance with their decreasing cationic character. - In particular, EP-775745 discloses oligonucleotide cathepsin G-inhibiting aptamers having a chain length of about 40 nucleotides (and in any case lower than 55 nucleotides) and containing G-pairs repeating units which are useful in the treatment and prophylaxis of inflammatory occurrences and procoagulant conditions.
-
FIG. 1 represents a comparison of the Kd of the tested oligonucleotides. -
FIG. 2 represents a summarization of the Log concentration-effect curves of GT and AC aptamers. -
FIG. 3 represents a summarization of the Log concentration-effect curves of PolyT aptamers. - The present research is mainly directed to the identification of non-peptidic inhibitors of cathepsin G characterised by high levels of selectivity and which can be thus more efficaciously used in the treatment and prophylaxis of the above conditions and also in that of genetic diseases, degenerative diseases, DNA damages, neoplasia and/or skin diseases. Like antibodies, DNA molecules are able to assume a variety of tridimensional structures depending on their sequence. Some of these might be relevant for binding to the target. In the present study we applied a method called SELEX (Systematic evolution of ligands by exponential enrichment) to select and identify ssDNA or RNA molecules, called aptamers, exhibiting high affinity for cathepsin G.
- Aptamer technology combines the capacity of generating huge structural diversity in random pools of oligonucleotides with the power of the polymerase chain reaction (PCR) to amplify selected sequences. This technology involves the screening of large, random-sequence pool of oligonucleotides and is based on the fact that they assume a large number of tertiary structures, some of which may possess desirable binding or catalytic activity against target molecules.
- Although inhibition is not demanded by the selection, in many cases these ligands directly inhibit the biological functions of the targeted proteins. In these cases, the inhibitory functions of the ligands are presumably due to overlapping of their binding sites with the functional region of proteins.
- The outcome of our research has lead us to define a new class of cathepsin G-inhibiting aptamers possessing particularly high levels of selectivity.
- The new cathepsin G-inhibiting aptamers of the present invention are single or double stranded linear DNA or polynucleotide sequences characterized by having a chain length of at least 60 nucleotides, preferably 70, and by being substantially not subjected to inter and/or intra molecular base pairing.
- According to the best embodiment of the invention the DNA sequences may have a chain length of 70÷120 nucleotides, preferably of 70÷110 nucleotides, even more preferably of 80÷100 nucleotides. Although the sequences according to the present invention may be single or double stranded, single stranded sequences are preferred. The sequences according to the present invention are also preferably characterized by having a molar content in guanine of about 25÷50%, preferably 35÷45% and/or by having a molar ratio AG/TC of about 1.0÷2.0, preferably 1.2÷1.8 (for the purposes of the present invention AG means the total number of A and G nucleotides of the sequence whereas TC means the total number of T and C nucleotides of the sequence).
- Preferred Embodiments of the Invention are:
-
- (GT)n or (AC)n oligopolymers in which n is in the range from 35 to 60, preferably from 40 to 50;
- (T)n or (G)n or (A)n or (C)n or (Inosine)n omopolymers in which n is in the range from 70 to 120, preferably from 80 to 100.
- Within the terms of the present invention the expression “substantially not subjected to inter and/or intra molecular base pairing” means that the DNA or polynucleotide sequences do not undergo inter and/or intra molecular base pairing to an extent higher than 20%, preferably than 10%, even more preferably than 5%, under both stringent and non stringent conditions. Such a result is the direct consequence of their structure, since the fact of:
-
- having a molar ratio AG/TC of 1.0÷2.0; or
- being (GT)n or (AC)n oligopolymers in which n is higher than 30; or
- being (T)n or (G)n or (A)n or (C)n or (Inosine)n omopolymers in which n is higher than 60;
defacto prevents any sort of hybridization.
- As it will be apparent from the following discussion, the aptamers according to the present invention do selectively and efficaciously inhibit cathepsin G and, consequently, they can be used in the manufacture of a medicament for the treatment and prophylaxis of inflammatory occurrences, procoagulant conditions, genetic diseases, degenerative diseases, DNA damages, neoplasia and/or skin diseases, which represents therefore an object of the invention. A further object of the invention is also represented by the pharmaceutical composition containing the cathepsin G-inhibiting aptamers of the invention together with customary eccipients and/or adjuvants. Other objects of the invention may be represented by the cathepsin G-inhibiting aptamers selected from those reported in the sequence listing (i.e. from SEQ ID NO: 1 to SEQ ID NO: 18).
- Materials
- Cathepsin G was purchased from Europa Bioproducts or from Calbiochem. All oligonucleotides were obtained from Eurogentec Bel SA (Belgium) and purified by PAGE before use. Some oligonucleotides, already purified by PAGE were obtained from Gibco BRL Custom Primers. Taq polymerase was from Pharmacia Amersham Biotech while dNTPs were purchased as sodium salt from Boehringer Mannheim. T4-polynucleotide kinase, ligase and the restriction enzymes were from Gibco Life Technologies. Qiagen kits were used for plasmid miniprep purification, and sequencing was performed using T7 Sequenase (Pharmacia Amersham Biotech) and [gamma-33P]dATP (Nen Life Sciences).
- ssDNA Library
- The synthesised random pool is 96 base length, the central part of the molecule has a randomised region that is flanked by two constant regions for amplification, cloning and sequencing; its sequence is 5′-CGTACGGAATTCGCTAGC(N)60 GGATCCGAGCTCCACGTG-3′. The underlined sequences refer to restriction sites for EcoRI and BamHI enzymes respectively. The pool was amplified by PCR using primer II-up, which sequence is 5′-CGTACGGAATTCGCTAGC-3′, and primer III-
Down 5′Biot-CACGTCGAGCTCGGATCC-3′ which is biotinylated at the 5′ end in order to be bound to a streptavidin column to get ssDNA. - Selection Protocol
- The starting random pool was radioactive labelled with 32P, denaturated at high temperature and incubated with cathepsin G in Incubation buffer (buffer IB: 30 mM Tris HCl pH7.5, 150 mM NaCl, 5 mM KCl and 5 mM MgCl2) which is close to the physiological conditions.
- The incubation was conducted for 90 minutes in ice, then the sample was loaded in an affinity chromatography mini-column filled with Sepharose SP (Amersham Pharmacia Biotech), swollen and equilibrated in buffer IB. The ssDNA/protein solution was incubated with the resin for 30 minutes at 4° C. The unbound oligonucleotide molecules were washed away with buffer IB, while the remaining, more selective ones were eluted from the column a high ionic force elution buffer (buffer EB: 0.8 M NaCl e 50 mM Tris pH 7.8).
- The washing volumes were modified during the selection in order to increase the stringency as well as the DNA concentration which was twice the protein at the first cycle, but it was progressively reduced.
- The fractions were counted and the yield of the Selex cycle was expressed as a percentage of the total radioactivity. The flow through and the first two fractions of the EB wash were collected and amplified.
- Polymerase Chain Reaction
- Polymerase chain reaction was done using Taq polymerase at a concentration of 0.3-0.5 u/50 μl in the buffer indicated by the producer. The number of cycles was adjusted after every different selection.
- Before the insertion in the plasmid vector for cloning, the DNA was subjected to a polishing reaction in order to get blunt ends: an aliquot of the normal PCR reaction was incubated with 2.5 u/μl of Pfu Turbo polymerase (Stratagene) in the suggested buffer at 72° C. for 30 minutes.
- Generation of ssDNA
- In order to get ssDNA from the amplified dsDNA we used alkaline denaturation protocol. The DNA was amplified using a biotinilated Down-II primer and bound to a chromatography column filled with streptavidin Sepharose (Pierce). After 30 minutes incubation the unbound dsDNA was washed away with buffer NaCl 50 mM, Tris/HCl 100 mM,
EDTA 10 mM (SBB-strepavidin Binding Buffer) while the remaining one was denaturated and washed with NaOH 0.15 N. Then it was precipitated and collected for the selection cycles. - Cloning and Sequencing
- Both the amplified dsDNA and the vector pUC19 (Amersham-Pharmacia Biotech) were treated with 2.5 units of EcoRI while only the plasmid was treated with SmaI that gives blunt ends.
- After
precipitation 3 pmols of dsDNA and 0.6 pmols of pUC19 were reacted with T4 ligase in the suggested buffer. - The plasmid was then inoculated in E. coli competent cells (SURE strain Stratagene) by the electroporation method using E. coli pulser (Biorad) and plated in solid LB media in the presence of Ampicillin, X-Gal and IPTG (for the blue/white screening). 50 white different colonies were picked, grown and harvested separately in liquid LB broth. Plasmids were purified by alkaline lysis and their quality was every time tested by agarose gel electrophoresis.
- The sequence of the aptamers was determined with the Sanger's method, labeling with [gamma-33P]dATP and employing two different primers EleA457: 5′-ACG-CCA-AGC-TTG-CAT-3′ (sense) and Ele S: 5′-GGG-TTT-TCC-CAG-TCA-CGA-3′ (antisense).
- Kd and Ki Determination
- The affinity of the oligonucleotides was determined by affinity chromatography as performed in the selection. Different aliquots of each oligonucleotide were previously incubated with 15 μg of Cathepsin G in ice. The solution was then loaded in the min-chromatography column used for the selection and washed with 15 volumes of buffer IB. After one hour incubation, it was washed with six volumes of buffer EB. Fractions of the same volumes were collected and counted.
- Surface Plasmon Resonance (SPR) Experiments
- Cathepsin G, from human neutrophils, dissolved in HBS EP buffer, pH 7.40 (Biacore) was immobilized on the surface of a
CM 5 research grade sensor chip flow cell, according to the procedure suggested by Biacore and using the Biacore amine coupling kit. A blank flow cell was prepared using all the above reagents but Cathepsin G. The amount of Cathepsin G immobilized on the surface of the flow cell was 5178.91±129.63 RU. Aptamers [Poly GT (chain length: 20, 30, 40, 60, 80 and 100) and Poly AC (chain length: 20, 40 and 80,] were dissolved in 30 mM Tris-HCl buffer, pH 7.50, 150 mM NaCl, 5 mM KCl, and 5mM MgCl 2 and injected over the Cathepsin G surface or the blank surface. Three sets of experiments were run. The first at a concentration of 500 nM, for all the aptamers, the second at a concentration of 6595 μg/L, for all the aptamers, and the third one at concentrations ranging from 15.6 to 8000 nM, according to the aptamer being tested. All the above experiments were run at 25° C., using as running buffer the Biacore HBS EP Buffer, pH 7.40 The Cathepsin G surface was regenerated by two injections of 2 M NaCl. The blank sensorgram was subtracted from each sample sensorgram and the the binding response evaluated. The binding responses, generated in the third set of experiments, were plotted as a function of the Log concentration (nM) to get concentration-effect curves to find out the relative potencies of aptamers in binding Cathepsin G from human neutophils. - Selection and Identification of Aptamers
- We selected aptamers for cathepsin G starting from a DNA pool with a randomised region of 60 nucleotides flanked by two regions with conserved sequence for the PCR reaction and restriction sites for the following cloning step (see above).
- We chose affinity chromatography as selection method, binding the protein to the resin. This appeared to be the easiest protocol because cathepsin G, which is positively charged at physiologic conditions (theoretical isoelectric point 11), can be tightly bound to an ion exchange resin, while an unspecific binding of the DNA molecules to the resin is highly reduced. In fact only the DNA molecules that recognise the protein remain on the column while the unbound material is washed away. We tried to render the binding process between the labelled ssDNA and the protein more selective by including potassium and
magnesuim chloride 5 mM in the binding buffer thus increasing ionic strength in the buffer and stabilising oligonucleotide folding. - The selected molecules were then efficiently removed from the column, together with the bound protein, using a high ionic strength buffer (buffer EB), and then counted by radioactivity. The first two fractions and the flow through were then collected, amplified by PCR and reduced to single stranded molecules in order to be used for the next cycle (see methods section for details).
- We performed nine cycles of selection: after four cycles a significant increase of yield was observed, but the SELEX was terminated when no further increase in pool affinity was observed over three rounds, reaching a final yield of 42% (table 1). The stringency of the selection was increased changing the number and the volumes of the washes. After
cycles 5 and 7 precolumn cycles were performed in order to avoid an unspecific binding of the aptamers to the resin: the pool coming from the previous cycle were loaded in the column without the protein: the first fractions eluted from the column were then amplified and used for the next cycle.TABLE 1 scheme of the SELEX cycles. Cycle Column Cycle number Protein μg Volume (μg) Wash Fraction Yield % 1 100 2000 8 × 1000 μl 0.4 2 50 500 8 × 500 μl 0.7 3 50 400 8 × 600 μl 1.6 4 50 400 8 × 500 μl 38 5 40 1000 9 × 1000 μl 22 precolumn 1000 10 × 250 μl 6 33 1000 20 × 250 μl 22 7 30 500 23 × 500 μl 21 precolumn 300 10 × 200 μl 8 30 500 22 × 500 μl 31 9 30 500 25 × 500 μl 42
Sequence Analysis - The selected molecules were cloned into E. coli cells as described in the experimental selection and sequenced. We found 19 different sequences out of 50 clones. We used two sequence alignment programs, Clustal W and FastA-align, searching for a repeated consensus motif, but the molecule diversity was too high to yield a good alignment even within subsets of the sequenced molecules. Further analysis showed that GT motifs are clearly repeated in 14 sequences. Moreover, a closer look at these molecules showed that they are not prone to undergo either inter and intra molecular base pairing to an appreciable extent, nor do they form more complex tridimensional structures like G quartets. It seemed that the selection led to unstructured, linear and flexible molecules that can tightly bind to the positive protein because of a charge-charge interaction. To confirm this hypothesis, we compared the affinity of one of the selected aptamers, the 60mer CG51, with other oligonucleotides having non-pairing sequences such as oligo GT or AC
CG1 GGGTGGCCCCCTAGTCGCGCACTGGAAGCGGTAGTGTCGTGAGAT TCGTATCTGGGGTAT CG3 CAACGAGTCAGGGCGTGATTGGTGAAGATGTGTGGTTTGGCCAGA AAGGGCGATGGTGGA CG11 AGAGCTGAGACGGACATGCTGCCCATGGAGACTGTTCGAGAGGGT GAGCGGGAGTGGG CG16 ACCCCTAGGTCAGCACGTAGTGTAGGGCGATGTGTTCATGGCGGG AATGTGAGTTGTGGG CG20 GGGCGGCTCGCGTTGTGGAACATTCGTGGTGCCAATGCGTACCAG GGATTGCCTCCTGT CG25 GGGCGATTGGCGAATGCAAGGGTAAGGTTGGGCGATTGATGTGCA CGTAGCGCAGAGCAT CG28 GGAACGTGGTAGGTGTGTCTGCTGTGTGTGGCTCGGGCAGGTTGT CAGGGTGTTT CG32 GGGCATAGGGCGTCGTAGCCTGAAGGTGTGATTCGTGCGTTAGAT GGGGGGCAGTCTGC CG39 CGGTGGAGAGGTCGCAATGACACGGTTGACGATAGGCCCCTTGCT AACATCGGTTGGTG CG43 CAACGTGTGATATGTGGGTATACGCTTGGGTGTTACGCTGAGCAC AGAGGGTATTCGTGT CG48 AGSGGGCAGCAGCACACCACACATGTACGTGGGGGATTGCATTGT GTACTTAGACGGTAT CG49 GGCCTGGGTGATGTACTATGTATGCGTCGTGGTGGCTGGTAAAGG GGGTCTGCTATGGGT CG51 CAACGTGTGATATGTGGGTATACGCTTGGGTGTTACGCTGAGCAC AGAGGGTATTCGTGT CG2 CCACGGACGCTGTGAGCGGCCAACGGATGGGAATCACGATCTGGC CCGAACCACATACCG CG31 TCACACTAGGGCACTTGCTAAGTAGCTATGTAACTCGATCATACT TATTAGGCTTG CG23 AATCGATGGACACTTCAACGCAACTTGACATGGCGGTACGTGGAC TCTTGTGGCGACAGTT CG34 AACCCGTGTGATAAGGATATGGTGACTTCGTGGCACAGCGTCGAC GGACTGCCCATTCCA CG45 GGCGGGCGGTATGGGCTGCAGGATATGCAGGGGCGCAGAGGACAG TCTGGCCATGTACTA CG40 GGCAGGGACGTTCCCAGGAATGCGGCACAGGCAGACAGCTCCCGA CGAGTACCAGGGTG
structures. The sequences of the oligonucleotides coming from the last selection cycle are reported here-below; each one is marked with a different number (CG51 and CG43 are the same). - The above sequences have the following correspondence in the sequence listing: CG1=SEQ ID NO: 1, CG3=SEQ ID NO: 2, CG11=SEQ ID NO: 3, CG16=SEQ ID NO: 4, CG20=SEQ ID NO: 5, CG25=SEQ ID NO: 6, CG28=SEQ ID NO: 7, CG32=SEQ ID NO: 8, CG39=SEQ ID NO: 9, CG43 (and CG51)=SEQ ID NO: 10, CG48=SEQ ID NO: 11, CG49=SEQ ID NO: 12, CG2=SEQ ID NO: 13, CG31=SEQ ID NO: 14, CG23=SEQ ID NO: 15, CG34=SEQ ID NO: 16, CG45=SEQ ID NO: 17, CG40=SEQ ID NO: 18.
- Affinity of Selected Molecules and Related Sequences to Cathepsin G
- We evaluated the oligonucleotide binding to cathepsin G by affinity chromatography in analogy with the selection method. The affinity of the aptamer CG51 was firstly compared with AC and GT oligonucleotides of the same length that, as mentioned, are clearly unable to fold into any structure characterised by Watson-Crick base pairs or G quartets formation. The complementary sequence of CG51, called cmpCG51, was included as a control. Moreover, in order to demonstrate whether the oligonucleotide length was an important factor in the binding to the protein, the affinity of AC and GT oligonucleotides longer and shorter than 60 nucloetides was measured.
- As expected from the high yield of the SELEX, the selected CG51 showed a high affinity for cathepsin G (Kd 0.9 nM). Besides, its Kd was comparable with AC and GT oligonucleotides of the same length (Kd 0.8 nM and 1 nM respectively) and with cmpCG51 (Kd 0.6 nM) (
FIG. 1 ). These data indicate that our hypothesis about tight binding by unstructured and flexible molecules was correct. - Molecules longer than the 60mer like (AC)60 and (GT)40, which are respectively a 120mer and a 80mer, showed an affinity of 1.2 nM. On the other hand, the shorter (GT)20 and (GT)10 that are shorter molecules, have a Kd of 1.5 nM and 2 nM respectively, suggesting that the length of the selected oligonucleotides is important to grant efficient binding. Aptamer THR, that was selected against thrombin, was also included as a control in order to prove whether the oligonucleotide structure was important for cathepsin binding. This aptamer is known to form stable G quartets. The low Kd (4 nM) found in this case shows that this type of structure is not likely to represent an effective recognition motif. Interestingly, double stranded CG51 showed an affinity lower than the single stranded, even if the latter bears a larger number of charged groups. Indeed, the double stranded oligonucleotide is bulkier and stiffer, hence unable to optimally bind the protein.
- Surface Plasmon Resonance (SPR) Experiments
- The data generated in the first set of experiments (each aptamer at 500 nM) gave the first evidence that, in the instance of GT aptamers, increasing the chain length over 60 brings forth an increase in binding but this increase is less steep than that in the range 30-60. The binding is poor in the range 20-30. In the instance of AC aptamers, their binding was less pronounced than that of GT aptamers. SPR resonse is related to the change in surface mass concentration of analyte (in the present instance aptamer) and therefore it depends on the molecular weight of the analyte in relation to the number of binding sites on the surface (made of Cathepsin G, in the present instance). To get rid of the doubt that the apparent aptamer binding was not dependent on the aptamer mass but just on the aptamer structural feature, a second set of experiments was carried out at the same mass concentration (each aptamer at 6595 μg/L). The results were the same as those obtained in the first set of experiments (data not shown for the sake of brevity). In
FIG. 2 , the Log concentration-effect curves of GT and AC aptamers are summarized. In this figure, just each aptamer responses, referring to the concentration range over which a linear regression was obtained, are reported. GT 100 is the most potent aptamer and it has been arbitrarily assigned a potency of one (the relative standard). GT 80 has a relative potency of about 0.32, GT 60 of about 0.144, AC 80 of about 0.017,GT 40 of about 0.016,AC 40 of about 0.0047 andGT 30 of about 0.0020.GT 20 andAC 20 were not evaluable because of their poor binding. Rougly the aptamers can be divided into three families (FIG. 2 ); first family: GT 100, GT 80 and GT 60; second family: AC 80,GT 40,AC 40 andGT 30; third family:AC 20 andGT 20. - In
FIG. 3 , the Log concentration-effect curves of PolyT aptamers are summarized. As it can be appreciated, PolyT1000 and PolyT80, i.e. the aptamers having sequence (T)100 and (T)80, respectively, are much more potent than PolyT60. - Discussion
- After four cycles of selection only, a huge increase of the percentage of molecules bound to the protein was seen and, at the ninth cycle, corresponding to a yield of 42%, it was not possible to further enrich the pool. However sequence analysis of the selected aptamers did not show evidence for a common consensus motif repeated among them. At a closer glance it was found that a large number of these molecules were GT/C deficient, therefore unlikely to undergo pairing and to fold into G quartets. Probably single stranded DNA molecules, negative and flexible, bind to this positively charged protein best. Even in the presence of significant amounts of sodium and magnesium chloride in the SELEX buffer, the binding between the target and the protein could be still mainly governed by charged interactions.
- To confirm the hypothesis of a peculiar “consensus” rationale, the affinity of one of the selected aptamers, CG51, was compared with several AC and GT oligonucleotides. We validated the fact that CG51 has a remarkably high affinity for cathepsin G with a Kd in the nanomolar range, showing that the selection had effectively lead to a pool of efficient binders. The dissociation constants of (AC)30, (GT)30 and cmpCG51 that have the same length (and overall structural characteristics) of CG51 were comparable, while shorter molecules showed lower affinity. Double stranded CG51 showed a lower affinity for cathepsin G: this is very interesting considering that it was proven that chromosomal DNA with an average length of 30 bp is able to bind to this protein.
- We demonstrated that a linear and flexible single stranded DNA chain, with a length of at least 60, preferably more than 70-80, is more effective in binding cathepsin G than the chromosomal counterpart and also more effective than shorter DNA chains.
Claims (13)
1. Cathepsin G-inhibiting aptamers consisting of linear DNA or polynucleotide sequences having a chain length of 70÷120 nucleotides and undergoing inter and/or intra molecular base pairing to an extent lower than 20%, said sequences being characterized by:
having a molar ratio AG/TC of 1.0÷2.0; or
being (GT)n or (AC)n oligopolymers in which n is in the range from 35 to 60; or
being (T)n or (G)n or (A)n or (C)n or (Inosine)n omopolymers in which n is in the range from 70 to 120.
2. Cathepsin G-inhibiting aptamers according to claim 1 characterized by having a chain length of 70÷110 nucleotides.
3. Cathepsin G-inhibiting aptamers according to claim 1 characterized by having a chain length of 80÷100 nucleotides.
4. Cathepsin G-inhibiting aptamers according to claim 1 characterized by the fact of being single stranded sequences.
5. Cathepsin G-inhibiting aptamers according to claim 1 characterized by having a molar ratio AG/TC of 1.2÷1.8.
6. Cathepsin G-inhibiting aptamers according to claim 1 characterized by having a molar content in guanine of 25÷50%.
7. Cathepsin G-inhibiting aptamers according to claim 1 characterized by having a molar content in guanine of 35÷45%.
8. Cathepsin G-inhibiting aptamers according to claim 1 characterized by being (GT)n or (AC)n oligopolymers in which n is in the range from 40 to 50.
9. Cathepsin G-inhibiting aptamers according to claim 1 characterized by being (T)n or (G)n or (A)n or (C)n or (Inosine)n omopolymers in which n is in the range from 80 to 100.
10. Cathepsin G-inhibiting aptamers according to claim 1 characterized by undergoing inter and/or intra molecular base pairing to an extent lower than 10%.
11. Cathepsin G-inhibiting aptamers according to claim 1 characterized by undergoing inter and/or intra molecular base pairing to an extent lower than 5%.
12. A method for the treatment and prophylaxis of inflammatory occurrences, procoagulant conditions, genetic diseases, degenerative diseases, DNA damages, neoplasia and/or skin diseases wherein cathepsin G-inhibiting aptamers according to claim 1 are administered to a patient in need of such a treatment.
13. A pharmaceutical composition containing at least one cathepsin G-inhibiting aptamer according to claim 1 together with customary eccipients and/or adjuvants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/015,663 US7838506B2 (en) | 2003-06-30 | 2008-01-17 | DNA-based aptamers for human cathepsin G |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03425428.4 | 2003-06-30 | ||
EP03425428A EP1493810A1 (en) | 2003-06-30 | 2003-06-30 | DNA-based aptamers for human cathepsin G |
PCT/EP2004/006599 WO2005003347A2 (en) | 2003-06-30 | 2004-06-18 | Dna-based aptamers for human cathepsin g |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/006599 Continuation WO2005003347A2 (en) | 2003-06-30 | 2004-06-18 | Dna-based aptamers for human cathepsin g |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/015,663 Continuation US7838506B2 (en) | 2003-06-30 | 2008-01-17 | DNA-based aptamers for human cathepsin G |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060148745A1 true US20060148745A1 (en) | 2006-07-06 |
Family
ID=33427291
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/236,197 Abandoned US20060148745A1 (en) | 2003-06-30 | 2005-09-27 | DNA-based aptamers for human cathepsin G |
US12/015,663 Expired - Fee Related US7838506B2 (en) | 2003-06-30 | 2008-01-17 | DNA-based aptamers for human cathepsin G |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/015,663 Expired - Fee Related US7838506B2 (en) | 2003-06-30 | 2008-01-17 | DNA-based aptamers for human cathepsin G |
Country Status (16)
Country | Link |
---|---|
US (2) | US20060148745A1 (en) |
EP (3) | EP1493810A1 (en) |
JP (2) | JP2007506413A (en) |
KR (1) | KR20060035624A (en) |
CN (1) | CN1816625A (en) |
AU (1) | AU2004254014B2 (en) |
BR (1) | BRPI0412081A (en) |
CA (1) | CA2528686A1 (en) |
IL (1) | IL172407A0 (en) |
IS (1) | IS8176A (en) |
MX (1) | MXPA05013800A (en) |
NO (1) | NO20060429L (en) |
RS (1) | RS20050955A (en) |
RU (1) | RU2360000C2 (en) |
WO (1) | WO2005003347A2 (en) |
ZA (1) | ZA200510093B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150111306A1 (en) * | 2013-10-21 | 2015-04-23 | National Tsing Hua University | HEMOGLOBIN A1c-SPECIFIC APTAMER, HEMOGLOBIN-SPECIFIC APTAMER, AND APPLICATIONS THEREOF |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3193906B1 (en) | 2014-09-18 | 2020-11-11 | The Provost, Fellows, Foundation Scholars, & the other members of Board, of the College of Holy and Undiv. Trinity of Queen Elizabeth near Dublin | Use of peptide inhibitors of il-36 proteolytic processing for the treatment and/or reduction of inflammation |
RU2683868C1 (en) * | 2018-11-30 | 2019-04-02 | Акционерное общество "Молочный комбинат "Ставропольский" | Milk sugar production method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316190B1 (en) * | 1996-05-20 | 2001-11-13 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Oligonucleotides which specifically bind retroviral nucleocapsid proteins |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1695978A1 (en) | 1990-06-11 | 2006-08-30 | Gilead Sciences, Inc. | Nucleic acid ligands |
IE920562A1 (en) * | 1991-02-21 | 1992-08-26 | Gilead Sciences | Aptamer specific for biomolecules and method of making |
DE19543750C2 (en) * | 1995-11-24 | 1997-10-23 | Crinos Industria Farmaco | Cathepsin G inhibiting aptamers |
US6399302B1 (en) * | 1998-08-21 | 2002-06-04 | University Of Virginia Patent Foundation | Signal generating oligonucleotide-based biosensor |
AUPQ051099A0 (en) * | 1999-05-24 | 1999-06-17 | Tachas, George Dr | Novel products and processes in treatment and/or prophylaxis |
-
2003
- 2003-06-30 EP EP03425428A patent/EP1493810A1/en not_active Withdrawn
-
2004
- 2004-06-18 EP EP10168864A patent/EP2236609A3/en not_active Withdrawn
- 2004-06-18 CN CNA2004800187559A patent/CN1816625A/en active Pending
- 2004-06-18 WO PCT/EP2004/006599 patent/WO2005003347A2/en active Application Filing
- 2004-06-18 RS YUP-2005/0955A patent/RS20050955A/en unknown
- 2004-06-18 AU AU2004254014A patent/AU2004254014B2/en not_active Ceased
- 2004-06-18 JP JP2006518010A patent/JP2007506413A/en active Pending
- 2004-06-18 RU RU2006102521/13A patent/RU2360000C2/en not_active IP Right Cessation
- 2004-06-18 KR KR1020057024363A patent/KR20060035624A/en not_active Withdrawn
- 2004-06-18 BR BRPI0412081-7A patent/BRPI0412081A/en not_active IP Right Cessation
- 2004-06-18 ZA ZA200510093A patent/ZA200510093B/en unknown
- 2004-06-18 EP EP04740045A patent/EP1618196A2/en not_active Withdrawn
- 2004-06-18 CA CA002528686A patent/CA2528686A1/en not_active Abandoned
- 2004-06-18 MX MXPA05013800A patent/MXPA05013800A/en not_active Application Discontinuation
-
2005
- 2005-09-27 US US11/236,197 patent/US20060148745A1/en not_active Abandoned
- 2005-12-06 IL IL172407A patent/IL172407A0/en unknown
- 2005-12-12 IS IS8176A patent/IS8176A/en unknown
-
2006
- 2006-01-26 NO NO20060429A patent/NO20060429L/en not_active Application Discontinuation
-
2008
- 2008-01-17 US US12/015,663 patent/US7838506B2/en not_active Expired - Fee Related
-
2010
- 2010-10-22 JP JP2010237877A patent/JP2011078414A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316190B1 (en) * | 1996-05-20 | 2001-11-13 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Oligonucleotides which specifically bind retroviral nucleocapsid proteins |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150111306A1 (en) * | 2013-10-21 | 2015-04-23 | National Tsing Hua University | HEMOGLOBIN A1c-SPECIFIC APTAMER, HEMOGLOBIN-SPECIFIC APTAMER, AND APPLICATIONS THEREOF |
US9086406B2 (en) * | 2013-10-21 | 2015-07-21 | National Tsing Hua University | Hemoglobin A1c-specific aptamer, hemoglobin-specific aptamer, and applications thereof |
Also Published As
Publication number | Publication date |
---|---|
RU2006102521A (en) | 2006-06-27 |
US7838506B2 (en) | 2010-11-23 |
RU2360000C2 (en) | 2009-06-27 |
EP2236609A3 (en) | 2011-07-20 |
EP1493810A1 (en) | 2005-01-05 |
NO20060429L (en) | 2006-01-26 |
RS20050955A (en) | 2008-06-05 |
BRPI0412081A (en) | 2006-09-05 |
CA2528686A1 (en) | 2005-01-13 |
AU2004254014A1 (en) | 2005-01-13 |
IS8176A (en) | 2005-12-12 |
US20080176814A1 (en) | 2008-07-24 |
IL172407A0 (en) | 2006-04-10 |
CN1816625A (en) | 2006-08-09 |
AU2004254014B2 (en) | 2010-06-10 |
ZA200510093B (en) | 2008-04-30 |
JP2007506413A (en) | 2007-03-22 |
KR20060035624A (en) | 2006-04-26 |
WO2005003347A2 (en) | 2005-01-13 |
MXPA05013800A (en) | 2006-06-27 |
JP2011078414A (en) | 2011-04-21 |
EP1618196A2 (en) | 2006-01-25 |
WO2005003347A3 (en) | 2005-09-15 |
EP2236609A2 (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kubik et al. | High-affinity RNA ligands to human α-thrombin | |
US5472841A (en) | Methods for identifying nucleic acid ligands of human neutrophil elastase | |
JP4773684B2 (en) | Drug modulator | |
US7998939B2 (en) | Aptamers that bind thrombin with high affinity | |
US7531524B2 (en) | Modulators of coagulation factors with enhanced stability | |
US7566701B2 (en) | Aptamers to von Willebrand Factor and their use as thrombotic disease therapeutics | |
RU2579667C2 (en) | Aptamer for chymase, and its use | |
MX2007002772A (en) | Aptamers to von willebrand factor and their use as thrombotic disease therapeutics. | |
US7838506B2 (en) | DNA-based aptamers for human cathepsin G | |
US6177557B1 (en) | High affinity ligands of basic fibroblast growth factor and thrombin | |
Lancellotti et al. | Nucleotide-derived thrombin inhibitors: a new tool for an old issue | |
WO1989001513A1 (en) | Fast-acting prourokinase | |
RU2183214C2 (en) | Natural and recombinant thrombin inhibitors, their preparing and use | |
Manzara et al. | Characterization of the Trn D, Trn K, Psa A locus of Euglena gracilis chloroplast DNA | |
Chang et al. | Cloning, expression, and characterization of mouse tissue factor pathway inhibitor (TFPI) | |
WO1994001543A1 (en) | Human low-molecular pro-urokinase-like polypeptide and production thereof | |
AU2012244176B8 (en) | Modulators of pharmacological agents | |
KR100194284B1 (en) | CDNA of a Novel Plasminogen-Activated Protein Isolated from Korean Centipedes | |
AU2012244176B2 (en) | Modulators of pharmacological agents | |
WO2004064709A2 (en) | Thrombolytic agent | |
MX2008002435A (en) | Aptamers that bind thrombin with high affinity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENTIUM SPA, ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PALUMBO, MANLIO;GATTO, BARBARA;PESCADOR, RODOLFO;AND OTHERS;REEL/FRAME:017047/0217 Effective date: 20050520 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |