US20060146632A1 - Flash memory device and method for fabricating the same, and programming and erasing method thereof - Google Patents
Flash memory device and method for fabricating the same, and programming and erasing method thereof Download PDFInfo
- Publication number
- US20060146632A1 US20060146632A1 US11/364,671 US36467106A US2006146632A1 US 20060146632 A1 US20060146632 A1 US 20060146632A1 US 36467106 A US36467106 A US 36467106A US 2006146632 A1 US2006146632 A1 US 2006146632A1
- Authority
- US
- United States
- Prior art keywords
- memory device
- flash memory
- semiconductor substrate
- layer
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title abstract description 39
- 239000004065 semiconductor Substances 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 230000014759 maintenance of location Effects 0.000 abstract description 2
- 150000004767 nitrides Chemical class 0.000 description 29
- 239000002784 hot electron Substances 0.000 description 16
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 230000005641 tunneling Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 238000005036 potential barrier Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0413—Manufacture or treatment of FETs having insulated gates [IGFET] of FETs having charge-trapping gate insulators, e.g. MNOS transistors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0466—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
- G11C16/0475—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] comprising two or more independent storage sites which store independent data
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/69—IGFETs having charge trapping gate insulators, e.g. MNOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/69—IGFETs having charge trapping gate insulators, e.g. MNOS transistors
- H10D30/691—IGFETs having charge trapping gate insulators, e.g. MNOS transistors having more than two programming levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/031—Manufacture or treatment of data-storage electrodes
- H10D64/037—Manufacture or treatment of data-storage electrodes comprising charge-trapping insulators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/681—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
- H10D64/685—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
Definitions
- the present invention relates to a flash memory device, and more particularly, to a flash memory device having an SONOS (Polysilicon-Oxide-Nitride-Oxide-Semiconductor) structure and a method for fabricating the same, and programming and erasing methods thereof, to improve reliability such as endurance and retention.
- SONOS Polysilicon-Oxide-Nitride-Oxide-Semiconductor
- EEPROM Electrical Erasable Programmable Read Only Memory
- the EEPROM takes a scheme using a floating gate-type cell.
- the cell size With rapid development of high-integration device, it necessarily requires the decrease in a size of the floating gate-type cell according to the related art.
- various nonvolatile memory devices such as SONOS, FeRAM, SET and NROM have been studied actively as the substitute for the floating gate-type cell.
- SONOS cell has attracted great attentions as the next nonvolatile memory device, which can substitute for the stacked floating gate-type cell.
- FIG. 1 is a cross-sectional view illustrating a unit cell of a related art SONOS-type flash memory device.
- the SONOS-type flash memory device includes a p-type semiconductor substrate 11 , an ONO layer 18 , a control gate 15 , and source and drain regions 16 and 17 .
- the ONO layer 18 is formed in a method of sequentially stacking a first oxide layer 12 , a nitride layer 13 and a second oxide layer 14 .
- the control gate 15 is formed on the ONO layer 18 , and the source and drain regions 16 and 17 are formed in a method of implanting highly doped n-type impurity ions into the surface of the semiconductor substrate 11 at both sides of the control gate 15 .
- the first oxide layer 12 acts as a tunneling oxide layer
- the nitride layer 13 acts as a memory layer by controlling a threshold voltage Vth by charging electric charge to a trap site or discharging the electric charge.
- the second oxide layer 14 acts as a blocking oxide layer preventing loss of the electric charge.
- a programming operation uses a CHEI (Channel Hot Electron Injection) method
- an erasing operation uses an HHI (Hot Hole Injection) method to remove injected electrons.
- CHEI Chol Hot Electron Injection
- a predetermined positive (+) voltage is applied to the drain region 17
- a predetermined negative ( ⁇ ) voltage is applied to the control gate 15 .
- the source region 16 and the semiconductor substrate (body) 11 are ground.
- a depletion region is formed in the n-type drain region 17 by a high electric field formed in an overlap area between the drain region. 17 and the control gate 15 .
- pairs of electron and hole are generated by band to band tunneling. Then, the electron escapes to the n-type region, and the hole is accelerated by a lateral electric field of the depletion region, whereby the hole is changed to a hot hole.
- the hot hole jumps over an energy barrier between the first oxide layer 12 and the semiconductor substrate 11 , injected and trapped to a valance band of the nitride layer 13 , thereby performing the erasing operation lowing the threshold voltage.
- This erasing method is referred to as HHI (Hot Hole Injection).
- the aforementioned SONOS-type flash memory device records 2-bit data in one cell. That is, the programming operation of the related art SONOS-type flash memory device uses the CHEI (Channel Hot Electron Injection) method, and the erasing operation thereof uses the HHI (Hot Hole Injection) method.
- the voltage of the aforementioned condition By applying the voltage of the aforementioned condition, the electron is trapped to the nitride layer 13 around the drain region 17 , thereby storing 1-bit data.
- a predetermined positive (+) voltage is applied to the source region 16 and the control gate 15 , and the drain region 17 and the semiconductor substrate (body) are ground, whereby hot electrons are generated around the source region 16 .
- the hot electrons jump over the potential barrier of the first oxide layer 12 , and are trapped to the nitride layer 13 around the source region 16 , thereby storing 1-bit data.
- the hot electrons jump over the potential barrier of the first oxide layer 12 , and are trapped to the nitride layer 13 around the drain region 17 , some of the hot electrons are deeply trapped to the nitride layer 13 , and the other hot electrons are shallowly trapped to the nitride layer 13 .
- the hot electrons shallowly trapped to the nitride layer 13 escape during a storage period due to a damage of the first oxide layer generated by the program and erase cycling, thereby generating loss of the electric charge.
- the source region 16 and the drain region 17 are ground, and the pulse (10 ms) of 10V is applied to the control gate 15 .
- the source region 16 and the drain region 17 are ground (0V), and the pulse (10 ms) of ⁇ 4V is applied to the control gate 15 .
- the electrons shallowly trapped to the nitride layer are removed by the programming electrical anneal, thereby decreasing loss of the electric charge.
- the aforementioned problem becomes more serious.
- the present invention is directed to a flash memory device and a method for fabricating the same, and programming and erasing methods that substantially obviates one or more problems due to limitations and disadvantages of the related art.
- An object of the present invention is to provide a flash memory device and a method for fabricating the same, and programming and erasing methods, to completely remove hopping electrons moved (spread) to a lateral direction, after programming.
- a flash memory device includes a first conductive type semiconductor substrate; an ONO layer on the semiconductor substrate; a first control gate on the ONO layer; second and third control gates on the ONO layer at both sides of the first control gate; and source and drain regions in the surface of the semiconductor substrate at both sides of the second and third control gates.
- the flash memory device includes an insulating layer to insulate the first control gate from the second and third control gates.
- the flash memory device includes a planarization insulating layer on an entire surface of the semiconductor substrate, and having respective contact holes in the first, second and third control gates and the source and drain regions; and a word line, first and second control lines, and first and second bit lines respectively connected with the first, second and third control gates and the source and drain regions through the respective contact holes.
- a method for fabricating a flash memory device includes the steps of forming an ONO layer having a stacked structure of a first oxide layer, a nitride layer and a second oxide layer on a semiconductor substrate on which an active region is defined; forming a first control gate on the ONO layer; forming an insulating layer on the surface of the first control gate; forming second and third control gates on the ONO layer at both sides of the first control gate; and forming source and drain regions on the semiconductor substrate at both sides of the second and third control gates.
- the second oxide layer is formed in a method of oxidizing the nitride layer.
- the insulating layer is formed in a method of oxidizing the exposed surface of the first control gate.
- the source and drain regions are formed in a method of implanting highly doped n-type impurity ions by using the first, second and third control gates as a mask.
- the method includes the steps of forming a planarization insulating layer on the entire surface of the semiconductor substrate including the first, second and third control gates; forming respective contact holes by selectively removing the planarization insulating layer and the ONO layer to expose the first, second and third control gates and the source and drain regions; and forming a word line, first and second control lines, and first and second bit lines respectively connected with the first, second and third control gates and the source and drain regions through the respective contact holes.
- planarization insulating layer is formed of BPSG.
- a programming method of a flash memory device of SONOS structure includes a first step of applying a high voltage pulse to the first and third control gates, and trapping hot electrons to the ONO layer around the drain region; and a second step of annealing the trapped electrons by applying a high voltage pulse to the first control gate.
- 0V is applied to the source region
- a voltage over a threshold voltage is applied to the second control gate
- a voltage pulse of 10V or more is applied to the first and third control gates
- a voltage of 4V or more is applied to the drain region.
- 0V is applied to the source and drain region
- a voltage of ⁇ 4V is applied to the second and third control gates
- a voltage pulse of ⁇ 10V is applied to the first control gate.
- the method includes a third step of trapping hot electrons to the ONO layer around the source region by applying a high voltage pulse to the first and second control gates.
- an erasing method of a flash memory device of SONOS structure includes a first step of injecting a hole to the ONO layer around the source or drain region by applying a negative voltage to the second or third control gate; and a second step of annealing the injected hole applying a positive high voltage pulse to the first control gate, and applying a negative high voltage pulse to the second and third control gates.
- a voltage over 0V or 5V is applied to the source or drain region, a voltage over a threshold voltage is applied to the second or third control gate, and a voltage pulse of ⁇ 3V or more is applied to the first/third or second control gate.
- 0V is applied to the source and drain regions
- a voltage pulse of 10V is applied to the second and third control gates
- a voltage pulse (several tens Ms) of ⁇ 10V is applied to the first control gate, thereby removing electrons moved to a lateral side.
- FIG. 1 is a cross-sectional view illustrating a related art SONOS-type flash memory device
- FIG. 2 is a cross-sectional view illustrating a flash memory device according to the present invention.
- FIG. 3A to FIG. 3H are cross-sectional views illustrating the fabrication process of a flash memory device according to the present invention.
- FIG. 2 is a cross-sectional view illustrating a flash memory device according to the present invention.
- an ONO layer 28 is formed on a p-type semiconductor substrate 21 , wherein the ONO layer 28 is formed by sequentially stacking a first oxide layer 22 , a nitride layer 23 , and a second oxide layer 24 .
- a first control gate 25 is formed on the ONO layer 28
- second and third control gates 29 and 30 are formed on the ONO layer 28 at both sides of the first control gate 25 .
- source and drain regions 26 and 27 are formed in the surface of the p-type semiconductor substrate 21 at both sides of the second and third control gates 29 and 30 by implantation of n-type impurity ions.
- the first control gate 25 is isolated from the second and third control gates 29 and 30 by a third oxide layer 31 .
- a planarization insulating layer 32 is formed on an entire surface of the semiconductor substrate 21 including the first, second and third control gates 25 , 29 and 30 .
- contact holes are respectively formed in the first, second and third control gates 25 , 29 and 30 and the source and drain regions 26 and 27 .
- a word line W/L and first and second control lines CL 1 and CL 2 are connected with the first, second and third control gates 25 , 29 and 30 through the respective contact holes.
- the source and drain regions 26 and 27 are connected with a first bit line BL 1 and a second bit line BL 2 .
- the first oxide layer 22 acts as a tunneling oxide layer.
- the nitride layer 23 acts as a memory layer to charge the electric charge in a trap site, or to discharge the electric charge, whereby the nitride layer 23 has a memory function by controlling a threshold voltage Vth.
- the second oxide layer 24 acts as a blocking oxide layer to prevent loss of the electric charge.
- FIG. 3A to FIG. 3H are cross-sectional views illustrating the fabrication process of the flash memory device according to the present invention.
- a p-type semiconductor substrate 21 is defined as a field region and an active region. Then, a field oxide layer (not shown) is formed in the field region of the p-type semiconductor substrate 21 , and a buffer oxide layer 33 is formed on the p-type semiconductor substrate 21 . Also, the process for ion implantation is progressed to form a well region (not shown) in the active region of the semiconductor substrate 21 and to control a threshold voltage.
- a first oxide layer 22 , a nitride layer 23 and a second oxide layer 24 are sequentially deposited on an entire surface of the semiconductor substrate 21 to form an ONO layer 28 , wherein the first oxide layer 22 acts as a tunneling insulating layer, the nitride layer 23 locally traps electrons, and the second oxide layer 24 acts as a blocking layer. Then, a first polysilicon layer 25 a is formed on the ONO layer 28 . At this time, the second oxide layer 24 may be formed in a method of depositing an oxide layer by CVD, or oxidizing the nitride layer 23 .
- a photosensitive layer (not shown) is formed on the first polysilicon layer 25 a, and then the exposure and development process using a mask is carried out thereto, whereby the first polysilicon layer 25 a is selectively removed to form a first control gate 25 . Thereafter, the photosensitive layer is removed. After patterning the first control gate 25 , the cleaning process is carried out.
- the exposed surface of the first control gate 25 is oxidized, thereby forming an oxide layer 31 covering the side portions and the upper surface of the first control gate 25 .
- a second polysilicon layer (not shown) is formed on the entire surface of the semiconductor substrate 21 including the oxide layer 31 and the first control gate 25 , and then the anisotropic etching process (etch-back process) is carried out, thereby removing the second polysilicon layer, and forming second and third control gates 29 and 30 on the ONO layer 28 in the side portions of the oxide layer 31 at both sides of the first control gate 25 .
- highly doped n-type impurity ions are implanted into the semiconductor substrate 21 by using the first, second and third control gates 25 , 29 and 30 as a mask, thereby forming source and drain regions 26 and 27 in the surface of the semiconductor substrate 21 at the side portions of the second and third control gates.
- a planarization insulating layer 32 of BPSG is deposited on the entire surface of the semiconductor substrate 21 including the first, second and third control gates 25 , 29 and 30 . Then, as shown in FIG. 3H , the planarization insulating layer 32 and the ONO layer 28 are selectively removed to expose the first, second and third control gates 25 , 29 and 30 and the source and drain regions 26 and 27 by photolithography, thereby forming contact holes.
- a metal layer is deposited on the entire surface of the semiconductor substrate, and selectively removed, whereby a word line WL and first, second control lines CL 1 and CL 2 and first and second bit lines BL 1 and BL 2 are respectively connected with the first, second and third control gates 25 , 29 and 30 , and the source region 26 and the drain regions 27 through the respective contact holes.
- programming and programming electrical anneal are repetitively performed. That is, 0V is applied to the first bit line BL 1 , a voltage over the threshold voltage is applied to the first control line CL 1 , a voltage pulse (several tens ⁇ s) over 10V is applied to the word line W/L and the second control line CL 2 , and a voltage over 4V is applied to the second bit line BL 2 , whereby channel electrons are accelerated by a lateral electric field formed from the source region 26 to the drain region 27 , thereby generating hot electrons around the drain region 27 .
- the hot electrons jump over the potential barrier of the first oxide layer 22 , and then the hot electrons are locally trapped to a trap level of the nitride layer 23 around the drain region 27 .
- the programming electrical anneal is performed to trap electrons to the nitride layer 23 , and to remove the electrons moved to the lateral side among the trapped electrons. That is, 0V is applied to the first and second bit lines BL 1 and BL 2 , the voltage pulse (several tens ⁇ s) of ⁇ 4V is applied to the second control line CL 2 , and the voltage pulse (several tens ms) of ⁇ 10V is applied to the word line W/L, so that the electrons moved to the lateral side are removed.
- the programming electrical anneal is performed as follows. That is, 0V is applied to the first and second bit lines BL 1 and BL 2 , the voltage pulse (several tens ⁇ s) of ⁇ 4V is applied to the first and second control lines CL 1 and CL 2 , and the voltage pulse (several tens ms) of ⁇ 10V is applied to the word line W/L, thereby removing the electrons moved to the lateral side.
- erasing and erasing electrical anneal are repetitively performed. That is, 0V is applied to the first bit line BL 1 , the voltage over the threshold voltage Vth is applied to the first control line CL 1 , the voltage pulse (several tens is) over ⁇ 3V is applied to the word line W/L and the second control line CL 2 , and the voltage of SV or more is applied to the second bit line BL 2 .
- a depletion region is formed in the drain region 27 highly-doped with n-type impurity ions by a high electric field formed in an overlap region between the drain region 27 and the third control gate 30 .
- pairs of electron and hole are formed by band to band tunneling.
- the electron escapes to the highly doped n-type impurity region.
- the hole is accelerated by the lateral electric field formed in the depletion region, and changed to the hot hole, whereby the hot hole jumps over an energy barrier between the first oxide layer 12 and the semiconductor substrate 11 , and is injected to a valance band, whereby the erasing operation is completed.
- the erasing electrical anneal is performed. That is, the voltage of 0V is applied to the first and second bit lines BL 1 and BL 2 , the voltage pulse (several tens is) of 10V is applied to the first and second control lines CL 1 and CL 2 , and the voltage pulse (several tens ms) of ⁇ 10V is applied to the word line W/L, thereby removing the electrons moved to the lateral side.
- the flash memory device and the programming and erasing methods according to the present invention have the following advantages.
- the second and third control gates are formed at both sides of the first control gate. Then, in state of applying the predetermined voltage to the second and third control gates for maintaining the programmed electrons, and applying the high voltage to the first control gate, the electrical annealing is progressed to remove the trapped electrons moved to the lateral side, thereby improving reliability of the flash memory device.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
A flash memory device of SONOS structure and a method for fabricating the same, and programming and erasing operation methods, to improve reliability such as endurance and retention, are disclosed, which includes a first conductive type semiconductor substrate; an ONO layer on the semiconductor substrate; a first control gate on the ONO layer; second and third control gates on the ONO layer at both sides of the first control gate; and source and drain regions in the surface of the semiconductor substrate at both sides of the second and third control gates.
Description
- This application claims the benefit of the Korean Application No. P2004-28282 filed on Apr. 23, 2004, which is hereby incorporated by reference.
- 1. Field of the Invention
- The present invention relates to a flash memory device, and more particularly, to a flash memory device having an SONOS (Polysilicon-Oxide-Nitride-Oxide-Semiconductor) structure and a method for fabricating the same, and programming and erasing methods thereof, to improve reliability such as endurance and retention.
- 2. Discussion of the Related Art
- A typical example of a nonvolatile memory device, in which data is not erased even though a voltage is not applied, is EEPROM (Electrically Erasable Programmable Read Only Memory). Generally, the EEPROM takes a scheme using a floating gate-type cell. With rapid development of high-integration device, it necessarily requires the decrease in a size of the floating gate-type cell according to the related art. However, it is impossible to decrease the cell size since it requires a high voltage on programming and erasing modes and it is difficult to obtain the margin of process for defining tunneling. In this reason, various nonvolatile memory devices such as SONOS, FeRAM, SET and NROM have been studied actively as the substitute for the floating gate-type cell. Among them, SONOS cell has attracted great attentions as the next nonvolatile memory device, which can substitute for the stacked floating gate-type cell.
- Hereinafter, a related art SONOS-type flash memory device will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view illustrating a unit cell of a related art SONOS-type flash memory device. - As shown in
FIG. 1 , the SONOS-type flash memory device according to the related art includes a p-type semiconductor substrate 11, anONO layer 18, acontrol gate 15, and source anddrain regions ONO layer 18 is formed in a method of sequentially stacking afirst oxide layer 12, anitride layer 13 and a second oxide layer 14. Then, thecontrol gate 15 is formed on theONO layer 18, and the source anddrain regions semiconductor substrate 11 at both sides of thecontrol gate 15. At this time, thefirst oxide layer 12 acts as a tunneling oxide layer, and thenitride layer 13 acts as a memory layer by controlling a threshold voltage Vth by charging electric charge to a trap site or discharging the electric charge. Also, the second oxide layer 14 acts as a blocking oxide layer preventing loss of the electric charge. - In the aforementioned SONOS-type flash memory device according to the related art, a programming operation uses a CHEI (Channel Hot Electron Injection) method, and an erasing operation uses an HHI (Hot Hole Injection) method to remove injected electrons.
- On the programming operation, a predetermined positive (+) voltage is applied to the
drain region 17 and thecontrol gate 15, and thesource region 16 and the semiconductor substrate (body) are ground. Under this condition, according as a bias is applied, channel electrons are accelerated by a lateral electric field formed from thesource region 16 to thedrain region 17, whereby the channel electrons become hot electrons around thedrain region 17. Also, the hot electrons jump over a potential barrier of thefirst oxide layer 12, and are locally trapped to a trap level of thenitride layer 13 around thedrain region 17, thereby increasing the threshold voltage. This programming method is referred to as CHEI (Channel Hot Electron Injection). - On the erasing operation, a predetermined positive (+) voltage is applied to the
drain region 17, and a predetermined negative (−) voltage is applied to thecontrol gate 15. Also, thesource region 16 and the semiconductor substrate (body) 11 are ground. Under this condition, according as a bias is applied, a depletion region is formed in the n-type drain region 17 by a high electric field formed in an overlap area between the drain region. 17 and thecontrol gate 15. In the depletion region, pairs of electron and hole are generated by band to band tunneling. Then, the electron escapes to the n-type region, and the hole is accelerated by a lateral electric field of the depletion region, whereby the hole is changed to a hot hole. The hot hole jumps over an energy barrier between thefirst oxide layer 12 and thesemiconductor substrate 11, injected and trapped to a valance band of thenitride layer 13, thereby performing the erasing operation lowing the threshold voltage. This erasing method is referred to as HHI (Hot Hole Injection). - Also, the aforementioned SONOS-type flash memory device records 2-bit data in one cell. That is, the programming operation of the related art SONOS-type flash memory device uses the CHEI (Channel Hot Electron Injection) method, and the erasing operation thereof uses the HHI (Hot Hole Injection) method. By applying the voltage of the aforementioned condition, the electron is trapped to the
nitride layer 13 around thedrain region 17, thereby storing 1-bit data. Then, a predetermined positive (+) voltage is applied to thesource region 16 and thecontrol gate 15, and thedrain region 17 and the semiconductor substrate (body) are ground, whereby hot electrons are generated around thesource region 16. The hot electrons jump over the potential barrier of thefirst oxide layer 12, and are trapped to thenitride layer 13 around thesource region 16, thereby storing 1-bit data. - In the programming and erasing operations, if the electron and hole are shallowly trapped to the
nitride layer 13, program and erase cycling becomes low. Accordingly, the technology for overcoming this problem has been published in IEDM document (Novel Operation Schemes to Improve Device Reliability in a Localized Trapping Storage SONOS-Type Flash Memory, 2003). - On the programming operation, when the hot electrons jump over the potential barrier of the
first oxide layer 12, and are trapped to thenitride layer 13 around thedrain region 17, some of the hot electrons are deeply trapped to thenitride layer 13, and the other hot electrons are shallowly trapped to thenitride layer 13. Among them, the hot electrons shallowly trapped to thenitride layer 13 escape during a storage period due to a damage of the first oxide layer generated by the program and erase cycling, thereby generating loss of the electric charge. - According to IEDM document published in 2003, it is proposed to carry out an electrical anneal after Hot Electron Injection of the programming operation or after Hot Hole Injection of the erasing operation, to improve over-erase in state of the low threshold voltage, and to prevent loss of the electric charge in state of the high threshold voltage. On the erasing operation, after hole injection, the electron and hole are recombined in the erasing electrical anneal. On the programming operation, after electron injection, the electron shallowly trapped to the nitride layer is removed, and the electron deeply trapped to the nitride layer remains by the programming electrical anneal. In the erasing electrical anneal, as shown in
FIG. 1 , thesource region 16 and thedrain region 17 are ground, and the pulse (10 ms) of 10V is applied to thecontrol gate 15. In the programming electrical anneal, thesource region 16 and thedrain region 17 are ground (0V), and the pulse (10 ms) of −4V is applied to thecontrol gate 15. - However, the aforementioned IEDM document has the following problems.
- On the programming operation, the electrons shallowly trapped to the nitride layer are removed by the programming electrical anneal, thereby decreasing loss of the electric charge. After programming, it is impossible to remove the hopping electrons moved (spread) to a lateral side by the programming electrical anneal. Accordingly, even in case of Hot Hole Injection in a large amount on the erasing operation, the trapped electrons are not removed completely, thereby degrading reliability. Especially, when separately programming data to the nitride layer around the source region and the drain region, for example, programming 2-bit data in one cell, the aforementioned problem becomes more serious.
- Accordingly, the present invention is directed to a flash memory device and a method for fabricating the same, and programming and erasing methods that substantially obviates one or more problems due to limitations and disadvantages of the related art.
- An object of the present invention is to provide a flash memory device and a method for fabricating the same, and programming and erasing methods, to completely remove hopping electrons moved (spread) to a lateral direction, after programming.
- Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
- To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a flash memory device includes a first conductive type semiconductor substrate; an ONO layer on the semiconductor substrate; a first control gate on the ONO layer; second and third control gates on the ONO layer at both sides of the first control gate; and source and drain regions in the surface of the semiconductor substrate at both sides of the second and third control gates.
- Furthermore, the flash memory device includes an insulating layer to insulate the first control gate from the second and third control gates.
- Furthermore, the flash memory device includes a planarization insulating layer on an entire surface of the semiconductor substrate, and having respective contact holes in the first, second and third control gates and the source and drain regions; and a word line, first and second control lines, and first and second bit lines respectively connected with the first, second and third control gates and the source and drain regions through the respective contact holes.
- In another aspect, a method for fabricating a flash memory device includes the steps of forming an ONO layer having a stacked structure of a first oxide layer, a nitride layer and a second oxide layer on a semiconductor substrate on which an active region is defined; forming a first control gate on the ONO layer; forming an insulating layer on the surface of the first control gate; forming second and third control gates on the ONO layer at both sides of the first control gate; and forming source and drain regions on the semiconductor substrate at both sides of the second and third control gates.
- At this time, the second oxide layer is formed in a method of oxidizing the nitride layer.
- Also, the insulating layer is formed in a method of oxidizing the exposed surface of the first control gate.
- Also, the source and drain regions are formed in a method of implanting highly doped n-type impurity ions by using the first, second and third control gates as a mask.
- Furthermore, the method includes the steps of forming a planarization insulating layer on the entire surface of the semiconductor substrate including the first, second and third control gates; forming respective contact holes by selectively removing the planarization insulating layer and the ONO layer to expose the first, second and third control gates and the source and drain regions; and forming a word line, first and second control lines, and first and second bit lines respectively connected with the first, second and third control gates and the source and drain regions through the respective contact holes.
- At this time, the planarization insulating layer is formed of BPSG.
- In another aspect, a programming method of a flash memory device of SONOS structure, the flash memory device including second and third control gates at both sides of a first control gate, source and drain regions in a surface of a semiconductor substrate at both sides of the second and third control gates, and ONO layers between the control gates and the semiconductor substrate, includes a first step of applying a high voltage pulse to the first and third control gates, and trapping hot electrons to the ONO layer around the drain region; and a second step of annealing the trapped electrons by applying a high voltage pulse to the first control gate.
- In the first step, 0V is applied to the source region, a voltage over a threshold voltage is applied to the second control gate, a voltage pulse of 10V or more is applied to the first and third control gates, and a voltage of 4V or more is applied to the drain region.
- In the second step, 0V is applied to the source and drain region, a voltage of −4V is applied to the second and third control gates, and a voltage pulse of −10V is applied to the first control gate.
- Furthermore, the method includes a third step of trapping hot electrons to the ONO layer around the source region by applying a high voltage pulse to the first and second control gates.
- In another aspect, an erasing method of a flash memory device of SONOS structure, the flash memory device including second and third control gates at both sides of a first control gate, source and drain regions in a surface of a semiconductor substrate at both sides of the second and third control gates, and ONO layers between the control gates and the semiconductor substrate, includes a first step of injecting a hole to the ONO layer around the source or drain region by applying a negative voltage to the second or third control gate; and a second step of annealing the injected hole applying a positive high voltage pulse to the first control gate, and applying a negative high voltage pulse to the second and third control gates.
- In the first step, a voltage over 0V or 5V is applied to the source or drain region, a voltage over a threshold voltage is applied to the second or third control gate, and a voltage pulse of −3V or more is applied to the first/third or second control gate.
- In the second step, 0V is applied to the source and drain regions, a voltage pulse of 10V is applied to the second and third control gates, and a voltage pulse (several tens Ms) of −10V is applied to the first control gate, thereby removing electrons moved to a lateral side.
- It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
- The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
-
FIG. 1 is a cross-sectional view illustrating a related art SONOS-type flash memory device; -
FIG. 2 is a cross-sectional view illustrating a flash memory device according to the present invention; and -
FIG. 3A toFIG. 3H are cross-sectional views illustrating the fabrication process of a flash memory device according to the present invention. - Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
- Hereinafter, a flash memory device and a method for fabricating the same, and programming and erasing methods will be described with reference to the accompanying drawings.
-
FIG. 2 is a cross-sectional view illustrating a flash memory device according to the present invention. In the flash memory device according to the present invention, as shown inFIG. 2 , anONO layer 28 is formed on a p-type semiconductor substrate 21, wherein theONO layer 28 is formed by sequentially stacking afirst oxide layer 22, anitride layer 23, and asecond oxide layer 24. Then, afirst control gate 25 is formed on theONO layer 28, and second andthird control gates ONO layer 28 at both sides of thefirst control gate 25. After that, source and drainregions type semiconductor substrate 21 at both sides of the second andthird control gates - At this time, the
first control gate 25 is isolated from the second andthird control gates third oxide layer 31. Then, aplanarization insulating layer 32 is formed on an entire surface of thesemiconductor substrate 21 including the first, second andthird control gates third control gates regions third control gates regions - Also, the
first oxide layer 22 acts as a tunneling oxide layer. Thenitride layer 23 acts as a memory layer to charge the electric charge in a trap site, or to discharge the electric charge, whereby thenitride layer 23 has a memory function by controlling a threshold voltage Vth. Meanwhile, thesecond oxide layer 24 acts as a blocking oxide layer to prevent loss of the electric charge. - A method for fabricating the aforementioned flash memory device according to the present invention will be described as follows.
FIG. 3A toFIG. 3H are cross-sectional views illustrating the fabrication process of the flash memory device according to the present invention. - As shown in
FIG. 3A , a p-type semiconductor substrate 21 is defined as a field region and an active region. Then, a field oxide layer (not shown) is formed in the field region of the p-type semiconductor substrate 21, and abuffer oxide layer 33 is formed on the p-type semiconductor substrate 21. Also, the process for ion implantation is progressed to form a well region (not shown) in the active region of thesemiconductor substrate 21 and to control a threshold voltage. - Referring to
FIG. 3B , after removing thebuffer oxide layer 33, afirst oxide layer 22, anitride layer 23 and asecond oxide layer 24 are sequentially deposited on an entire surface of thesemiconductor substrate 21 to form anONO layer 28, wherein thefirst oxide layer 22 acts as a tunneling insulating layer, thenitride layer 23 locally traps electrons, and thesecond oxide layer 24 acts as a blocking layer. Then, afirst polysilicon layer 25a is formed on theONO layer 28. At this time, thesecond oxide layer 24 may be formed in a method of depositing an oxide layer by CVD, or oxidizing thenitride layer 23. - As shown in
FIG. 3C , a photosensitive layer (not shown) is formed on thefirst polysilicon layer 25 a, and then the exposure and development process using a mask is carried out thereto, whereby thefirst polysilicon layer 25 a is selectively removed to form afirst control gate 25. Thereafter, the photosensitive layer is removed. After patterning thefirst control gate 25, the cleaning process is carried out. - After that, as shown in
FIG. 3D , the exposed surface of thefirst control gate 25 is oxidized, thereby forming anoxide layer 31 covering the side portions and the upper surface of thefirst control gate 25. Then, as shown inFIG. 3E , a second polysilicon layer (not shown) is formed on the entire surface of thesemiconductor substrate 21 including theoxide layer 31 and thefirst control gate 25, and then the anisotropic etching process (etch-back process) is carried out, thereby removing the second polysilicon layer, and forming second andthird control gates ONO layer 28 in the side portions of theoxide layer 31 at both sides of thefirst control gate 25. - Referring to
FIG. 3F , highly doped n-type impurity ions are implanted into thesemiconductor substrate 21 by using the first, second andthird control gates regions semiconductor substrate 21 at the side portions of the second and third control gates. - As shown in
FIG. 3G , aplanarization insulating layer 32 of BPSG is deposited on the entire surface of thesemiconductor substrate 21 including the first, second andthird control gates FIG. 3H , theplanarization insulating layer 32 and theONO layer 28 are selectively removed to expose the first, second andthird control gates regions third control gates source region 26 and thedrain regions 27 through the respective contact holes. - Hereinafter, programming/erasing and reading operations of the aforementioned flash memory device will be described in detail.
- On the data programming operation in the flash memory device, programming and programming electrical anneal are repetitively performed. That is, 0V is applied to the first bit line BL1, a voltage over the threshold voltage is applied to the first control line CL1, a voltage pulse (several tens μs) over 10V is applied to the word line W/L and the second control line CL2, and a voltage over 4V is applied to the second bit line BL2, whereby channel electrons are accelerated by a lateral electric field formed from the
source region 26 to thedrain region 27, thereby generating hot electrons around thedrain region 27. The hot electrons jump over the potential barrier of thefirst oxide layer 22, and then the hot electrons are locally trapped to a trap level of thenitride layer 23 around thedrain region 27. - Also, the programming electrical anneal is performed to trap electrons to the
nitride layer 23, and to remove the electrons moved to the lateral side among the trapped electrons. That is, 0V is applied to the first and second bit lines BL1 and BL2, the voltage pulse (several tens μs) of −4V is applied to the second control line CL2, and the voltage pulse (several tens ms) of −10V is applied to the word line W/L, so that the electrons moved to the lateral side are removed. At this time, even if the voltage pulse (several tens ms) of −10V is applied to the word line W/L, it is possible to remove only the electrons moved to the lateral side without the effect on the electrons trapped to thenitride layer 23 around thedrain region 27, as shown inFIG. 2 , since the voltage pulse of −4V is applied to thethird control gate 30. - As described above, to program 2-bit data in a unit cell, it is required to trap the electrons to the insulating
layer 23 around thedrain region 27, to apply the voltage over 4V to the first bit line BL1, to apply the voltage over the threshold voltage to the second control line CL2, to apply the voltage pulse (several tens μs) over 10V to the word line W/L and the first control line CL1, and to apply 0V to the second bit line BL2. As a result, the channel electrons are accelerated by the lateral electric field formed from thedrain region 27 to thesource region 26, whereby the channel electrons around thesource region 26 become the hot electrons. The hot electrons jump over the potential barrier of thefirst oxide layer 22, so that the hot electrons are locally trapped to the trap level of thenitride layer 23 around thesource region 26, thereby programming 1-bit data. - If 2-bit data is programmed, in which the electrons are separately trapped to the
nitride layer 23 around the source and drainregions nitride layer 23 around thesource region 26 and thedrain region 27, since the voltage pulse of −4V is applied to the second andthird control gates - On the data erasing operation of the flash memory device, erasing and erasing electrical anneal are repetitively performed. That is, 0V is applied to the first bit line BL1, the voltage over the threshold voltage Vth is applied to the first control line CL1, the voltage pulse (several tens is) over −3V is applied to the word line W/L and the second control line CL2, and the voltage of SV or more is applied to the second bit line BL2. As a result, a depletion region is formed in the
drain region 27 highly-doped with n-type impurity ions by a high electric field formed in an overlap region between thedrain region 27 and thethird control gate 30. In the depletion region, pairs of electron and hole are formed by band to band tunneling. The electron escapes to the highly doped n-type impurity region. Also, the hole is accelerated by the lateral electric field formed in the depletion region, and changed to the hot hole, whereby the hot hole jumps over an energy barrier between thefirst oxide layer 12 and thesemiconductor substrate 11, and is injected to a valance band, whereby the erasing operation is completed. - To remove the electrons moved to the lateral side, the erasing electrical anneal is performed. That is, the voltage of 0V is applied to the first and second bit lines BL1 and BL2, the voltage pulse (several tens is) of 10V is applied to the first and second control lines CL1 and CL2, and the voltage pulse (several tens ms) of −10V is applied to the word line W/L, thereby removing the electrons moved to the lateral side.
- As mentioned above, the flash memory device and the programming and erasing methods according to the present invention have the following advantages.
- The second and third control gates are formed at both sides of the first control gate. Then, in state of applying the predetermined voltage to the second and third control gates for maintaining the programmed electrons, and applying the high voltage to the first control gate, the electrical annealing is progressed to remove the trapped electrons moved to the lateral side, thereby improving reliability of the flash memory device.
- It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Claims (4)
1. A flash memory device comprising:
a first conductive type semiconductor substrate;
an ONO layer on the semiconductor substrate;
a first control gate on the ONO layer;
second and third control gates on the ONO layer at both sides of the first control gate; and
source and drain regions in the surface of the semiconductor substrate at both sides of the second and third control gates.
2. The flash memory device of claim 1 , further comprising an insulating layer to insulate the first control gate from the second and third control gates.
3. The flash memory device of claim 1 , further comprising:
a planarization insulating layer on an entire surface of the semiconductor substrate, and having respective contact holes in the first, second and third control gates and the source and drain regions; and
a word line, first and second control lines, and first and second bit lines respectively connected with the first, second and third control gates and the source and drain regions through the respective contact holes.
4-16. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/364,671 US20060146632A1 (en) | 2004-04-23 | 2006-03-01 | Flash memory device and method for fabricating the same, and programming and erasing method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040028282A KR100546691B1 (en) | 2004-04-23 | 2004-04-23 | Flash memory device, manufacturing method thereof and programming / erasing method |
KRP2004-28282 | 2004-04-23 | ||
US10/879,722 US7366026B2 (en) | 2004-04-23 | 2004-06-30 | Flash memory device and method for fabricating the same, and programming and erasing method thereof |
US11/364,671 US20060146632A1 (en) | 2004-04-23 | 2006-03-01 | Flash memory device and method for fabricating the same, and programming and erasing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/879,722 Division US7366026B2 (en) | 2004-04-23 | 2004-06-30 | Flash memory device and method for fabricating the same, and programming and erasing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060146632A1 true US20060146632A1 (en) | 2006-07-06 |
Family
ID=36640228
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/879,722 Expired - Lifetime US7366026B2 (en) | 2004-04-23 | 2004-06-30 | Flash memory device and method for fabricating the same, and programming and erasing method thereof |
US11/364,671 Abandoned US20060146632A1 (en) | 2004-04-23 | 2006-03-01 | Flash memory device and method for fabricating the same, and programming and erasing method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/879,722 Expired - Lifetime US7366026B2 (en) | 2004-04-23 | 2004-06-30 | Flash memory device and method for fabricating the same, and programming and erasing method thereof |
Country Status (2)
Country | Link |
---|---|
US (2) | US7366026B2 (en) |
KR (1) | KR100546691B1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10238784A1 (en) * | 2002-08-23 | 2004-03-11 | Infineon Technologies Ag | Non-volatile semiconductor memory element and associated manufacturing and control method |
US8022465B2 (en) * | 2005-11-15 | 2011-09-20 | Macronrix International Co., Ltd. | Low hydrogen concentration charge-trapping layer structures for non-volatile memory |
JP2007193862A (en) * | 2006-01-17 | 2007-08-02 | Toshiba Corp | Nonvolatile semiconductor memory device |
KR100748003B1 (en) * | 2006-08-31 | 2007-08-08 | 동부일렉트로닉스 주식회사 | Embedded nonvolatile memory and its manufacturing method |
WO2008067494A1 (en) * | 2006-11-29 | 2008-06-05 | Rambus Inc. | Integrated circuit with built-in heating circuitry to reverse operational degeneration |
US8344475B2 (en) | 2006-11-29 | 2013-01-01 | Rambus Inc. | Integrated circuit heating to effect in-situ annealing |
US11244727B2 (en) | 2006-11-29 | 2022-02-08 | Rambus Inc. | Dynamic memory rank configuration |
US7570514B2 (en) * | 2007-01-22 | 2009-08-04 | Macronix International Co. Ltd. | Method of operating multi-level cell and integrate circuit for using multi-level cell to store data |
EP2191473A2 (en) | 2007-09-05 | 2010-06-02 | Rambus Inc. | Method and apparatus to repair defects in nonvolatile semiconductor memory devices |
US20090065841A1 (en) * | 2007-09-06 | 2009-03-12 | Assaf Shappir | SILICON OXY-NITRIDE (SiON) LINER, SUCH AS OPTIONALLY FOR NON-VOLATILE MEMORY CELLS |
KR100907902B1 (en) * | 2007-09-12 | 2009-07-15 | 주식회사 동부하이텍 | Flash memory device and manufacturing method thereof |
JP5238208B2 (en) | 2007-09-27 | 2013-07-17 | 株式会社東芝 | Nonvolatile semiconductor memory device driving method and nonvolatile semiconductor memory device |
KR20100037964A (en) * | 2008-10-02 | 2010-04-12 | 삼성전자주식회사 | Transistor, method for manufacturing the transistor, and method for adjusting threshold voltage of the transistor |
US8653574B2 (en) * | 2012-02-15 | 2014-02-18 | Tsinghua University | Flash memory and method for fabricating the same |
US9378821B1 (en) | 2013-01-18 | 2016-06-28 | Cypress Semiconductor Corporation | Endurance of silicon-oxide-nitride-oxide-silicon (SONOS) memory cells |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6259142B1 (en) * | 1998-04-07 | 2001-07-10 | Advanced Micro Devices, Inc. | Multiple split gate semiconductor device and fabrication method |
US6822926B2 (en) * | 2001-07-23 | 2004-11-23 | Seiko Epson Corporation | Non-volatile semiconductor memory device |
US6939767B2 (en) * | 2003-11-19 | 2005-09-06 | Freescale Semiconductor, Inc. | Multi-bit non-volatile integrated circuit memory and method therefor |
US6949788B2 (en) * | 1999-12-17 | 2005-09-27 | Sony Corporation | Nonvolatile semiconductor memory device and method for operating the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4488565B2 (en) * | 1999-12-03 | 2010-06-23 | 富士通株式会社 | Manufacturing method of semiconductor memory device |
US6531350B2 (en) * | 2001-02-22 | 2003-03-11 | Halo, Inc. | Twin MONOS cell fabrication method and array organization |
US6586296B1 (en) * | 2001-04-30 | 2003-07-01 | Cypress Semiconductor Corp. | Method of doping wells, channels, and gates of dual gate CMOS technology with reduced number of masks |
-
2004
- 2004-04-23 KR KR1020040028282A patent/KR100546691B1/en not_active Expired - Fee Related
- 2004-06-30 US US10/879,722 patent/US7366026B2/en not_active Expired - Lifetime
-
2006
- 2006-03-01 US US11/364,671 patent/US20060146632A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6259142B1 (en) * | 1998-04-07 | 2001-07-10 | Advanced Micro Devices, Inc. | Multiple split gate semiconductor device and fabrication method |
US6949788B2 (en) * | 1999-12-17 | 2005-09-27 | Sony Corporation | Nonvolatile semiconductor memory device and method for operating the same |
US6822926B2 (en) * | 2001-07-23 | 2004-11-23 | Seiko Epson Corporation | Non-volatile semiconductor memory device |
US6939767B2 (en) * | 2003-11-19 | 2005-09-06 | Freescale Semiconductor, Inc. | Multi-bit non-volatile integrated circuit memory and method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR20050102946A (en) | 2005-10-27 |
US7366026B2 (en) | 2008-04-29 |
KR100546691B1 (en) | 2006-01-26 |
US20050236662A1 (en) | 2005-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060146632A1 (en) | Flash memory device and method for fabricating the same, and programming and erasing method thereof | |
US7382662B2 (en) | Twin insulator charge storage device operation and its fabrication method | |
KR100634266B1 (en) | Nonvolatile memory device, method for manufacturing same and method for operating same | |
US8023328B2 (en) | Memory device with charge trapping layer | |
US6844587B2 (en) | Non-volatile memory device having improved programming and erasing characteristics and method of fabricating the same | |
JP2004522312A (en) | Source / drain injection during ONO formation to improve SONOS-type device isolation | |
US7391653B2 (en) | Twin insulator charge storage device operation and its fabrication method | |
US6844589B2 (en) | Non-volatile SONOS memory device and method for manufacturing the same | |
US7411247B2 (en) | Twin insulator charge storage device operation and its fabrication method | |
US20050285184A1 (en) | Flash memory device and method for programming/erasing the same | |
KR100452037B1 (en) | Method for manufacturing semiconductor device and the device | |
US6979617B2 (en) | Method for fabricating flash memory device | |
US7227216B2 (en) | Mono gate memory device and fabricating method thereof | |
KR100685880B1 (en) | Flash Y pyrom cell and manufacturing method thereof | |
KR20030057897A (en) | Nonvolatile memory device and method of manufacturing the same | |
KR100875166B1 (en) | Flash memory device and manufacturing method thereof | |
KR20090070269A (en) | Flash memory device and manufacturing method thereof | |
JPWO2006080064A1 (en) | Semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |