US20060135796A1 - Antiangiogenic agents - Google Patents
Antiangiogenic agents Download PDFInfo
- Publication number
- US20060135796A1 US20060135796A1 US11/347,880 US34788006A US2006135796A1 US 20060135796 A1 US20060135796 A1 US 20060135796A1 US 34788006 A US34788006 A US 34788006A US 2006135796 A1 US2006135796 A1 US 2006135796A1
- Authority
- US
- United States
- Prior art keywords
- methoxyestradiol
- angiogenesis
- alkyl
- estradiol
- independently
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004037 angiogenesis inhibitor Substances 0.000 title description 8
- 230000033115 angiogenesis Effects 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 27
- 150000001875 compounds Chemical class 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 26
- -1 >C(H)—OH Chemical group 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 7
- 125000005842 heteroatom Chemical group 0.000 claims description 6
- 241001465754 Metazoa Species 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 3
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 125000000304 alkynyl group Chemical group 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 3
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims 1
- CQOQDQWUFQDJMK-SSTWWWIQSA-N 2-methoxy-17beta-estradiol Chemical class C([C@@H]12)C[C@]3(C)[C@@H](O)CC[C@H]3[C@@H]1CCC1=C2C=C(OC)C(O)=C1 CQOQDQWUFQDJMK-SSTWWWIQSA-N 0.000 abstract description 72
- 239000000203 mixture Substances 0.000 abstract description 44
- 201000010099 disease Diseases 0.000 abstract description 37
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 37
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 42
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 42
- 206010028980 Neoplasm Diseases 0.000 description 39
- 210000004027 cell Anatomy 0.000 description 39
- 150000002159 estradiols Chemical class 0.000 description 29
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 23
- 230000000694 effects Effects 0.000 description 22
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 21
- 238000005160 1H NMR spectroscopy Methods 0.000 description 21
- 230000001028 anti-proliverative effect Effects 0.000 description 21
- 229960005309 estradiol Drugs 0.000 description 21
- 229930182833 estradiol Natural products 0.000 description 21
- 230000003595 spectral effect Effects 0.000 description 21
- 238000009472 formulation Methods 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 230000002159 abnormal effect Effects 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 230000002491 angiogenic effect Effects 0.000 description 15
- 210000002889 endothelial cell Anatomy 0.000 description 14
- 230000001076 estrogenic effect Effects 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 12
- 229960001338 colchicine Drugs 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- HVXBOLULGPECHP-WAYWQWQTSA-N Combretastatin A4 Chemical compound C1=C(O)C(OC)=CC=C1\C=C/C1=CC(OC)=C(OC)C(OC)=C1 HVXBOLULGPECHP-WAYWQWQTSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 10
- 210000004204 blood vessel Anatomy 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000006378 damage Effects 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 230000011278 mitosis Effects 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 230000001772 anti-angiogenic effect Effects 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 8
- 206010027476 Metastases Diseases 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 8
- 230000000259 anti-tumor effect Effects 0.000 description 8
- 230000006907 apoptotic process Effects 0.000 description 8
- 239000012267 brine Substances 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 8
- 229960005537 combretastatin A-4 Drugs 0.000 description 8
- HVXBOLULGPECHP-UHFFFAOYSA-N combretastatin A4 Natural products C1=C(O)C(OC)=CC=C1C=CC1=CC(OC)=C(OC)C(OC)=C1 HVXBOLULGPECHP-UHFFFAOYSA-N 0.000 description 8
- 229910052906 cristobalite Inorganic materials 0.000 description 8
- 239000000262 estrogen Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000002207 metabolite Substances 0.000 description 8
- 230000009401 metastasis Effects 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- 230000035755 proliferation Effects 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 8
- 150000003431 steroids Chemical class 0.000 description 8
- 229910052682 stishovite Inorganic materials 0.000 description 8
- 229910052905 tridymite Inorganic materials 0.000 description 8
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 7
- 206010006187 Breast cancer Diseases 0.000 description 7
- 208000026310 Breast neoplasm Diseases 0.000 description 7
- 230000004663 cell proliferation Effects 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 229940011871 estrogen Drugs 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 210000004881 tumor cell Anatomy 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 208000001132 Osteoporosis Diseases 0.000 description 6
- 230000002927 anti-mitotic effect Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 6
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 6
- 235000019341 magnesium sulphate Nutrition 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 230000029663 wound healing Effects 0.000 description 6
- 0 *C1C(*)=C(C=O)C=C(CCC(CC=C2C=O)C=C2O)C1 Chemical compound *C1C(*)=C(C=O)C=C(CCC(CC=C2C=O)C=C2O)C1 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 206010017076 Fracture Diseases 0.000 description 5
- 102000029749 Microtubule Human genes 0.000 description 5
- 108091022875 Microtubule Proteins 0.000 description 5
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 5
- 102000004243 Tubulin Human genes 0.000 description 5
- 108090000704 Tubulin Proteins 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 201000011066 hemangioma Diseases 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 210000004688 microtubule Anatomy 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 206010039073 rheumatoid arthritis Diseases 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- DILDHNKDVHLEQB-XSSYPUMDSA-N 2-hydroxy-17beta-estradiol Chemical compound OC1=C(O)C=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 DILDHNKDVHLEQB-XSSYPUMDSA-N 0.000 description 4
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 4
- 206010012689 Diabetic retinopathy Diseases 0.000 description 4
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 4
- 201000005569 Gout Diseases 0.000 description 4
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 4
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 4
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 4
- 210000002469 basement membrane Anatomy 0.000 description 4
- 210000000625 blastula Anatomy 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 238000001516 cell proliferation assay Methods 0.000 description 4
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000017858 demethylation Effects 0.000 description 4
- 238000010520 demethylation reaction Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 208000002780 macular degeneration Diseases 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000002503 metabolic effect Effects 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 230000016087 ovulation Effects 0.000 description 4
- 230000001575 pathological effect Effects 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 3
- 102000004026 17-Hydroxysteroid Dehydrogenases Human genes 0.000 description 3
- 108010082514 17-Hydroxysteroid Dehydrogenases Proteins 0.000 description 3
- WHEUWNKSCXYKBU-UHFFFAOYSA-N 2-Methoxyestron Natural products C12CCC3(C)C(=O)CCC3C2CCC2=C1C=C(OC)C(O)=C2 WHEUWNKSCXYKBU-UHFFFAOYSA-N 0.000 description 3
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical class C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 3
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 3
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- XJLXINKUBYWONI-NNYOXOHSSA-O NADP(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-O 0.000 description 3
- 206010037649 Pyogenic granuloma Diseases 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 208000004064 acoustic neuroma Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229940062527 alendronate Drugs 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 244000309464 bull Species 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- GUVUOGQBMYCBQP-UHFFFAOYSA-N dmpu Chemical compound CN1CCCN(C)C1=O GUVUOGQBMYCBQP-UHFFFAOYSA-N 0.000 description 3
- 102000015694 estrogen receptors Human genes 0.000 description 3
- 108010038795 estrogen receptors Proteins 0.000 description 3
- 229960003399 estrone Drugs 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 229940009626 etidronate Drugs 0.000 description 3
- 230000023611 glucuronidation Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 125000001475 halogen functional group Chemical group 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 210000004882 non-tumor cell Anatomy 0.000 description 3
- 231100000956 nontoxicity Toxicity 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 206010044325 trachoma Diseases 0.000 description 3
- 230000001836 utereotrophic effect Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- NGUCYKOHBIYXJY-AKBASGECSA-N (8R,9S,13S,14S)-16-ethyl-2-methoxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,17-diol Chemical compound C(C)C1C[C@@H]2[C@](C1O)(C)CC[C@@H]1C3=C(CC[C@@H]21)C=C(O)C(=C3)OC NGUCYKOHBIYXJY-AKBASGECSA-N 0.000 description 2
- AVMHMVJVHYGDOO-NSCUHMNNSA-N (e)-1-bromobut-2-ene Chemical compound C\C=C\CBr AVMHMVJVHYGDOO-NSCUHMNNSA-N 0.000 description 2
- MOMFXATYAINJML-UHFFFAOYSA-N 2-Acetylthiazole Chemical group CC(=O)C1=NC=CS1 MOMFXATYAINJML-UHFFFAOYSA-N 0.000 description 2
- 241000220479 Acacia Species 0.000 description 2
- 201000000736 Amenorrhea Diseases 0.000 description 2
- 206010001928 Amenorrhoea Diseases 0.000 description 2
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 2
- OTCRHGNVDVMLFQ-UHFFFAOYSA-N CC1=CC([RaH])=C([Rb])C2=C1CCC1C2CCC2(C)C1C[C@@]([Rh])([Rh][Rh])C2C Chemical compound CC1=CC([RaH])=C([Rb])C2=C1CCC1C2CCC2(C)C1C[C@@]([Rh])([Rh][Rh])C2C OTCRHGNVDVMLFQ-UHFFFAOYSA-N 0.000 description 2
- 102000055006 Calcitonin Human genes 0.000 description 2
- 108060001064 Calcitonin Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 206010011017 Corneal graft rejection Diseases 0.000 description 2
- 108050006400 Cyclin Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 206010018634 Gouty Arthritis Diseases 0.000 description 2
- 208000031953 Hereditary hemorrhagic telangiectasia Diseases 0.000 description 2
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 2
- 101000950669 Homo sapiens Mitogen-activated protein kinase 9 Proteins 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 description 2
- 102000019145 JUN kinase activity proteins Human genes 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 208000024556 Mendelian disease Diseases 0.000 description 2
- 102100037809 Mitogen-activated protein kinase 9 Human genes 0.000 description 2
- 206010029113 Neovascularisation Diseases 0.000 description 2
- 201000004404 Neurofibroma Diseases 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 102100036691 Proliferating cell nuclear antigen Human genes 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 102000007327 Protamines Human genes 0.000 description 2
- 108010007568 Protamines Proteins 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 108010089417 Sex Hormone-Binding Globulin Proteins 0.000 description 2
- 102100030758 Sex hormone-binding globulin Human genes 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 241000390203 Trachoma Species 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 208000025865 Ulcer Diseases 0.000 description 2
- 206010046851 Uveitis Diseases 0.000 description 2
- 231100000540 amenorrhea Toxicity 0.000 description 2
- 239000002870 angiogenesis inducing agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 201000008275 breast carcinoma Diseases 0.000 description 2
- 229960004015 calcitonin Drugs 0.000 description 2
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000003837 chick embryo Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 208000001780 epistaxis Diseases 0.000 description 2
- 230000001497 fibrovascular Effects 0.000 description 2
- 210000000245 forearm Anatomy 0.000 description 2
- NGGMYCMLYOUNGM-CSDLUJIJSA-N fumagillin Chemical compound C([C@H]([C@H]([C@@H]1[C@]2(C)[C@H](O2)CC=C(C)C)OC)OC(=O)\C=C\C=C\C=C\C=C\C(O)=O)C[C@@]21CO2 NGGMYCMLYOUNGM-CSDLUJIJSA-N 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000002657 hormone replacement therapy Methods 0.000 description 2
- 208000026278 immune system disease Diseases 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 206010023332 keratitis Diseases 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 210000004088 microvessel Anatomy 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 201000003142 neovascular glaucoma Diseases 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229940048914 protamine Drugs 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 238000006798 ring closing metathesis reaction Methods 0.000 description 2
- 201000000306 sarcoidosis Diseases 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 208000006379 syphilis Diseases 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 231100000397 ulcer Toxicity 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- NGGMYCMLYOUNGM-UHFFFAOYSA-N (-)-fumagillin Natural products O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)C=CC=CC=CC=CC(O)=O)CCC21CO2 NGGMYCMLYOUNGM-UHFFFAOYSA-N 0.000 description 1
- AODPIQQILQLWGS-UHFFFAOYSA-N (3alpa,5beta,11beta,17alphaOH)-form-3,11,17,21-Tetrahydroxypregnan-20-one, Natural products C1C(O)CCC2(C)C3C(O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC21 AODPIQQILQLWGS-UHFFFAOYSA-N 0.000 description 1
- HXSHBEIVXXJJIJ-MHEUWTTISA-N (8R,9S,13S,14S)-15-methoxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2[C@H]3CC[C@]4(C)C(O)CC(OC)[C@H]4[C@@H]3CCC2=C1 HXSHBEIVXXJJIJ-MHEUWTTISA-N 0.000 description 1
- GZGPTTWIZTVHKE-BKRJIHRRSA-N (8r,9s,13s,14s,17s)-2-ethoxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,17-diol Chemical compound C([C@@H]12)C[C@]3(C)[C@@H](O)CC[C@H]3[C@@H]1CCC1=C2C=C(OCC)C(O)=C1 GZGPTTWIZTVHKE-BKRJIHRRSA-N 0.000 description 1
- 150000000307 17β-estradiols Chemical class 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- WHEUWNKSCXYKBU-QPWUGHHJSA-N 2-methoxyestrone Chemical compound C([C@@H]12)C[C@]3(C)C(=O)CC[C@H]3[C@@H]1CCC1=C2C=C(OC)C(O)=C1 WHEUWNKSCXYKBU-QPWUGHHJSA-N 0.000 description 1
- CBMYJHIOYJEBSB-KHOSGYARSA-N 5alpha-androstane-3alpha,17beta-diol Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 CBMYJHIOYJEBSB-KHOSGYARSA-N 0.000 description 1
- 102100028187 ATP-binding cassette sub-family C member 6 Human genes 0.000 description 1
- 206010001257 Adenoviral conjunctivitis Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 102100032187 Androgen receptor Human genes 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 206010003226 Arteriovenous fistula Diseases 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 206010044583 Bartonella Infections Diseases 0.000 description 1
- 229940122361 Bisphosphonate Drugs 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- VJRHBVNFLGJWJQ-UHFFFAOYSA-N C.[CH2-]C(C)C Chemical compound C.[CH2-]C(C)C VJRHBVNFLGJWJQ-UHFFFAOYSA-N 0.000 description 1
- PICDNSHFTJQQRS-UHFFFAOYSA-N C.[CH2-]N(C)C Chemical compound C.[CH2-]N(C)C PICDNSHFTJQQRS-UHFFFAOYSA-N 0.000 description 1
- HBKUKGJNLRIBGD-UHFFFAOYSA-N CC1C2(C)CCC3C4=C(C=CC([RaH])=C4)CCC3C2C[C@@]1([Rh])[Rh][Rh] Chemical compound CC1C2(C)CCC3C4=C(C=CC([RaH])=C4)CCC3C2C[C@@]1([Rh])[Rh][Rh] HBKUKGJNLRIBGD-UHFFFAOYSA-N 0.000 description 1
- 102000009728 CDC2 Protein Kinase Human genes 0.000 description 1
- 108010034798 CDC2 Protein Kinase Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000000584 Calmodulin Human genes 0.000 description 1
- 108010041952 Calmodulin Proteins 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 108090000538 Caspase-8 Proteins 0.000 description 1
- 208000009043 Chemical Burns Diseases 0.000 description 1
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 1
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 1
- 208000002691 Choroiditis Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 206010055665 Corneal neovascularisation Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 108010068150 Cyclin B Proteins 0.000 description 1
- 102000002427 Cyclin B Human genes 0.000 description 1
- 102000008178 Cyclin B1 Human genes 0.000 description 1
- 108010060385 Cyclin B1 Proteins 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 208000019878 Eales disease Diseases 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 206010063560 Excessive granulation tissue Diseases 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 201000002563 Histoplasmosis Diseases 0.000 description 1
- 101001054334 Homo sapiens Interferon beta Proteins 0.000 description 1
- 206010051151 Hyperviscosity syndrome Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 206010050017 Lung cancer metastatic Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 206010025412 Macular dystrophy congenital Diseases 0.000 description 1
- 208000024599 Mooren ulcer Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 206010062207 Mycobacterial infection Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 206010030216 Oesophagitis Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 208000010191 Osteitis Deformans Diseases 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000027868 Paget disease Diseases 0.000 description 1
- 241001111421 Pannus Species 0.000 description 1
- 208000004788 Pars Planitis Diseases 0.000 description 1
- 208000034038 Pathologic Neovascularization Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 208000003971 Posterior uveitis Diseases 0.000 description 1
- 208000002158 Proliferative Vitreoretinopathy Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 208000010362 Protozoan Infections Diseases 0.000 description 1
- 201000004613 Pseudoxanthoma elasticum Diseases 0.000 description 1
- 201000002154 Pterygium Diseases 0.000 description 1
- 208000007135 Retinal Neovascularization Diseases 0.000 description 1
- 206010038848 Retinal detachment Diseases 0.000 description 1
- 206010038910 Retinitis Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 206010038934 Retinopathy proliferative Diseases 0.000 description 1
- 206010039705 Scleritis Diseases 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 206010041101 Small intestinal obstruction Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 108010000449 TNF-Related Apoptosis-Inducing Ligand Receptors Proteins 0.000 description 1
- 102000002259 TNF-Related Apoptosis-Inducing Ligand Receptors Human genes 0.000 description 1
- 208000018656 Terrien marginal degeneration Diseases 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 201000005485 Toxoplasmosis Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 102100040112 Tumor necrosis factor receptor superfamily member 10B Human genes 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010064996 Ulcerative keratitis Diseases 0.000 description 1
- 206010046782 Uterine enlargement Diseases 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 208000010011 Vitamin A Deficiency Diseases 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 206010047663 Vitritis Diseases 0.000 description 1
- 208000013058 Weber syndrome Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 108010080146 androgen receptors Proteins 0.000 description 1
- AEMFNILZOJDQLW-QAGGRKNESA-N androst-4-ene-3,17-dione Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 AEMFNILZOJDQLW-QAGGRKNESA-N 0.000 description 1
- AEMFNILZOJDQLW-UHFFFAOYSA-N androstenedione Natural products O=C1CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 AEMFNILZOJDQLW-UHFFFAOYSA-N 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 206010004145 bartonellosis Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 150000004663 bisphosphonates Chemical class 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 201000007293 brain stem infarction Diseases 0.000 description 1
- 210000001775 bruch membrane Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 201000000159 corneal neovascularization Diseases 0.000 description 1
- 210000004246 corpus luteum Anatomy 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000006264 debenzylation reaction Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000011833 dog model Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000002888 effect on disease Effects 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 230000010595 endothelial cell migration Effects 0.000 description 1
- 230000009483 enzymatic pathway Effects 0.000 description 1
- 208000021373 epidemic keratoconjunctivitis Diseases 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 208000006881 esophagitis Diseases 0.000 description 1
- 238000009164 estrogen replacement therapy Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 229960000936 fumagillin Drugs 0.000 description 1
- 208000030304 gastrointestinal bleeding Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 210000001126 granulation tissue Anatomy 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 210000001981 hip bone Anatomy 0.000 description 1
- 230000036732 histological change Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 208000013653 hyalitis Diseases 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 201000001371 inclusion conjunctivitis Diseases 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 208000030776 invasive breast carcinoma Diseases 0.000 description 1
- 230000035984 keratolysis Effects 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 230000002197 limbic effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 208000027202 mammary Paget disease Diseases 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000005906 menstruation Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002395 mineralocorticoid Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- LPUQAYUQRXPFSQ-DFWYDOINSA-M monosodium L-glutamate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCC(O)=O LPUQAYUQRXPFSQ-DFWYDOINSA-M 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 239000004223 monosodium glutamate Substances 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 208000027531 mycobacterial infectious disease Diseases 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
- HXRAMSFGUAOAJR-UHFFFAOYSA-N n,n,n',n'-tetramethyl-1-[(2-methylpropan-2-yl)oxy]methanediamine Chemical compound CN(C)C(N(C)C)OC(C)(C)C HXRAMSFGUAOAJR-UHFFFAOYSA-N 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 208000021971 neovascular inflammatory vitreoretinopathy Diseases 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 208000005368 osteomalacia Diseases 0.000 description 1
- 230000001009 osteoporotic effect Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 210000003668 pericyte Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000037048 polymerization activity Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 description 1
- 229910000105 potassium hydride Inorganic materials 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000006785 proliferative vitreoretinopathy Effects 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000009822 protein phosphorylation Effects 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- 208000023558 pseudoxanthoma elasticum (inherited or acquired) Diseases 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000004264 retinal detachment Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 238000006049 ring expansion reaction Methods 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 201000006476 shipyard eye Diseases 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 206010041569 spinal fracture Diseases 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- AODPIQQILQLWGS-GXBDJPPSSA-N tetrahydrocortisol Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CC[C@@H]21 AODPIQQILQLWGS-GXBDJPPSSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229940086542 triethylamine Drugs 0.000 description 1
- 210000005239 tubule Anatomy 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 201000007790 vitelliform macular dystrophy Diseases 0.000 description 1
- 210000004127 vitreous body Anatomy 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J1/00—Normal steroids containing carbon, hydrogen, halogen or oxygen, not substituted in position 17 beta by a carbon atom, e.g. estrane, androstane
Definitions
- the present invention relates to treating disease states characterized by abnormal cell mitosis and or abnormal angiogenesis. More particularly, the present invention relates to certain analogs of 2-methoxyestradiol (2ME2) and their effect on diseases characterized by abnormal cell mitosis and/or abnormal angiogenesis.
- 2ME2 2-methoxyestradiol
- angiogenesis means the generation of new blood vessels into a tissue or organ. Under normal physiological conditions, humans or animals only undergo angiogenesis in very specific restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonal development and formation of the corpus luteum, endometrium and placenta.
- the control of angiogenesis is a highly regulated system of angiogenic stimulators and inhibitors. The control of angiogenesis has been found to be altered in certain disease states and, in many cases, the pathological damage associated with the disease is related to the uncontrolled angiogenesis.
- Angiogenesis begins with the erosion of the basement membrane by enzymes released by endothelial cells and leukocytes. The endothelial cells, which line the lumen of blood vessels, then protrude through the basement membrane. Angiogenic stimulants induce the endothelial cells to migrate through the eroded basement membrane. The migrating cells form a “sprout” off the parent blood vessel, where the endothelial cells undergo mitosis and proliferate. The endothelial sprouts merge with each other to form capillary loops, creating the new blood vessel. In the disease state, prevention of angiogenesis could avert the damage caused by the invasion of the new microvascular system.
- Persistent, unregulated angiogenesis occurs in a multiplicity of disease states, tumor metastasis and abnormal growth by endothelial cells and supports the pathological damage seen in these conditions.
- the diverse pathological states created due to unregulated angiogenesis have been grouped together as angiogenic dependent or angiogenic associated diseases. Therapies directed at control of the angiogenic processes could lead to the abrogation or mitigation of these diseases.
- ocular neovascular disease This disease is characterized by invasion of new blood vessels into the structures of the eye such as the retina or cornea. It is the most common cause of blindness and is involved in approximately twenty eye diseases. In age-related macular degeneration, the associated visual problems are caused by an ingrowth of chorioidal capillaries through defects in Bruch's membrane with proliferation of fibrovascular tissue beneath the retinal pigment epithelium. Angiogenic damage is also associated with diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma and retrolental fibroplasia.
- corneal neovascularization include, but are not limited to, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phylectenulosis, syphilis, Mycobacteria infections, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, mariginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy, and corneal graph rejection.
- Diseases associated with retinal/choroidal neovascularization include, but are not limited to, diabetic retinopathy, macular degeneration, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis/vitritis, mycobacterial infections, Lyme's disease, systemic lupus erythematosis, retinopathy of prematurity, Eales disease, Bechets disease, infections causing a retinitis or choroiditis, presumed ocular histoplasmosis, Bests disease, myopia, optic pits, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser complications.
- Other diseases include, but are not limited to, diseases associated with rubeosis (n
- angiogenesis Another disease in which angiogenesis is believed to be involved is rheumatoid arthritis.
- the endothelial cells release factors and reactive oxygen species that lead to pannus growth and cartilage destruction.
- the factors involved in angiogenesis may actively contribute to, and help maintain, the chronically inflamed state of rheumatoid arthritis.
- Factors associated with angiogenesis may also have a role in osteoarthritis.
- the activation of the chondrocytes by angiogenic-related factors contributes to the destruction of the joint. At a later stage, the angiogenic factors would promote new bone formation.
- Therapeutic intervention that prevents the bone destruction could halt the progress of the disease and provide relief for persons suffering with arthritis.
- Chronic inflammation may also involve pathological angiogenesis.
- pathological angiogenesis Such disease states as ulcerative colitis and Crohn's disease show histological changes with the ingrowth of new blood vessels into the inflamed tissues. Bartonellosis, a bacterial infection found in South America, can result in a chronic stage that is characterized by proliferation of vascular endothelial cells.
- Another pathological role associated with angiogenesis is found in atherosclerosis. The plaques formed within the lumen of blood vessels have been shown to have angiogenic stimulatory activity.
- hemangioma One of the most frequent angiogenic diseases of childhood is the hemangioma. In most cases, the tumors are benign and regress without intervention. In more severe cases, the tumors progress to large cavernous and infiltrative forms and create clinical complications. Systemic forms of hemangiomas, the hemangiomatoses, have a high mortality rate. Therapy-resistant hemangiomas exist that cannot be treated with therapeutics currently in use.
- Angiogenesis is also responsible for damage found in hereditary diseases such as Osler-Weber-Rendu disease, or hereditary hemorrhagic telangiectasia. This is an inherited disease characterized by multiple small angiomas, tumors of blood or lymph vessels. The angiomas are found in the skin and mucous membranes, often accompanied by epistaxis (nosebleeds) or gastrointestinal bleeding and sometimes with pulmonary or hepatic arteriovenous fistula.
- Angiogenesis is prominent in solid tumor formation and metastasis. Angiogenic factors have been found associated with several solid tumors such as rhabdomyosarcomas, retinoblastoma, Ewing sarcoma, neuroblastoma, and osteosarcoma. A tumor cannot expand without a blood supply to provide nutrients and remove cellular wastes. Tumors in which angiogenesis is important include solid tumors, and benign tumors such as acoustic neuroma, neurofibroma, trachoma and pyogenic granulomas. Prevention of angiogenesis could halt the growth of these tumors and the resultant damage to the animal due to the presence of the tumor.
- angiogenesis has been associated with blood-born tumors such as leukemias, any of various acute or chronic neoplastic diseases of the bone marrow in which unrestrained proliferation of white blood cells occurs, usually accompanied by anemia, impaired blood clotting, and enlargement of the lymph nodes, liver, and spleen. It is believed that angiogenesis plays a role in the abnormalities in the bone marrow that give rise to leukemia-like tumors.
- Angiogenesis is important in two stages of tumor metastasis.
- the first stage where angiogenesis stimulation is important is in the vascularization of the tumor which allows tumor cells to enter the blood stream and to circulate throughout the body. After the tumor cells have left the primary site, and have settled into the secondary, metastasis site, angiogenesis must occur before the new tumor can grow and expand. Therefore, prevention of angiogenesis could lead to the prevention of metastasis of tumors and possibly contain the neoplastic growth at the primary site.
- angiogenesis in the maintenance and metastasis of tumors has led to a prognostic indicator for breast cancer.
- the amount of neovascularization found in the primary tumor was determined by counting the microvessel density in the area of the most intense neovascularization in invasive breast carcinoma. A high level of microvessel density was found to correlate with tumor recurrence. Control of angiogenesis by therapeutic means could possibly lead to cessation of the recurrence of the tumors.
- Angiogenesis is also involved in normal physiological processes such as reproduction and wound healing. Angiogenesis is an important step in ovulation and also in implantation of the blastula after fertilization. Prevention of angiogenesis could be used to induce amenorrhea, to block ovulation or to prevent implantation by the blastula.
- Taylor et al. have used protamine to inhibit angiogenesis, see Taylor et al., Nature 297:307 (1982).
- the toxicity of protamine limits its practical use as a therapeutic.
- Folkman et al. have disclosed the use of heparin and steroids to control angiogenesis. See Folkman et al., Science 221:719 (1983) and U.S. Pat. Nos. 5,001,116 and 4,994,443.
- Steroids, such as tetrahydrocortisol which lack gluco and mineral corticoid activity, have been found to be angiogenic inhibitors.
- interferon inhibits angiogenesis.
- interferon ⁇ or human interferon ⁇ has been shown to inhibit tumor-induced angiogenesis in mouse dermis stimulated by human neoplastic cells.
- Interferon ⁇ is also a potent inhibitor of angiogenesis induced by allogeneic spleen cells. See Sidky et al., Cancer Research 47:5155-5161 (1987).
- ⁇ interferon Human recombinant ⁇ interferon (alpha/A) was reported to be successfully used in the treatment of pulmonary hemangiomatosis, an angiogenesis-induced disease. See White et al., New England J. Med. 320:1197-1200 (1989).
- a fungal product, fumagillin is a potent angiostatic agent in vitro. The compound is toxic in vivo, but a synthetic derivative, AGM 12470, has been used in vivo to treat collagen II arthritis. Fumagmin and O-substituted fumagillin derivatives are disclosed in EPO Publication Nos. 0325199A2 and 0357061A1.
- the above compounds are either topical or injectable therapeutics. Therefore, there are drawbacks to their use as a general angiogenic inhibitor and lack adequate potency. For example, in prevention of excessive wound healing, surgery on internal body organs involves incisions in various structures contained within the body cavities. These wounds are not accessible to local applications of angiogenic inhibitors. Local delivery systems also involve frequent dressings which are impracticable for internal wounds, and increase the risk of infection or damage to delicate granulation tissue for surface wounds.
- a method and composition are needed that are capable of inhibiting angiogenesis and which are easily administered.
- a simple and efficacious method of treatment would be through the oral route. If an angiogenic inhibitor could be given by an oral route, the many kinds of diseases discussed above, and other angiogenic dependent pathologies, could be treated easily.
- the optimal dosage could be distributed in a form that the patient could self-administer.
- Osteoporosis is characterized by a reduction in the bone mass of the skeleton which leads to skeletal fragility and an increased risk of fracture. In humans, the most common sites of fracture are found in the forearm, the vertebrae and the hip bones. Osteoporosis and its attendant fractures are a major cause of morbidity and mortality and lead to increased health costs for care.
- the main objective is to prevent fractures by stopping the loss of skeletal integrity.
- therapies have been tried to achieve this objective, such as calcium, Vitamin D supplements and hormone replacement.
- Calcitonin has been used to improve bone mineral density at all bone sites.
- Bisphosphonates are an important group of therapeutic agents used for treatment of osteoporosis. They act by inhibiting bone resorption and increase bone density. Cyclical etidronate treatment aids in decreasing vertebral fractures, as does hormone replacement therapy and calcitonin. Alendronate has been shown to decrease the risk of symptomatic fractures of the forearm, spine and hip.
- 2-Methoxyestradiol is an endogenous metabolite of estradiol (E2) that has potent anti-proliferative activity and induces apoptosis in a wide variety of tumor and non-tumor cell lines. When administered orally, it exhibits anti-tumor and anti-proliferative activity with little or no toxicity.
- E2 estradiol
- 2-methoxyestradiol does not engage the estrogen receptor for its anti-proliferative activity and is not estrogenic over a wide range of concentrations, as accessed by estrogen dependant MCF-7 cell proliferation.
- the presence of demethylases in vivo may metabolize this compound to 2-hydroxyestradiol, which has been shown to be estrogenic by several approaches.
- estradiol or 2-methoxyestradiol What is needed is a means to improve the bioavailibility of estradiol or 2-methoxyestradiol and to reduce the formation of estrogenic 2-methoxyestradiol metabolities. What is also needed is a means to modify estradiol or 2-methoxyestradiol in such a way that the molecule can not be converted into an uterotropic derivative.
- the present invention provides certain analogs of 2-methoxyestradiol that are effective in treating diseases characterized by abnormal mitosis and/or abnormal angiogenesis. Specifically the present invention relates to analogs of 2-methoxyestradiol that have been modified at the 2 position and the 16 position. Compounds within the general formulae that inhibit cell proliferation are preferred. Preferred compositions may also exhibit a change (increase or decrease) in estrogen receptor binding, improved absorption, transport (e.g. through blood-brain barrier and cellular membranes), biological stability, or decreased toxicity. The invention also provides compounds useful in the method, as described by the general formulae of the claims.
- a mammalian disease characterized by undesirable cell mitosis includes but is not limited to excessive or abnormal stimulation of endothelial cells (e.g., atherosclerosis), solid tumors and tumor metastasis, benign tumors, for example, hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas, vascular malfunctions, abnormal wound healing, inflammatory and immune disorders, Bechet's disease, gout or gouty arthritis, abnormal angiogenesis accompanying: rheumatoid arthritis, psoriasis, diabetic retinopathy, and other ocular angiogenic diseases such as retinopathy of prematurity (retrolental fibroplasic), macular degeneration, comeal graft rejection, neovascular glaucoma and Osler Weber syndrome.
- endothelial cells e.g., atherosclerosis
- solid tumors and tumor metastasis e.g.
- compositions described above can be used to block ovulation and implantation of a blastula or to block menstruation (induce amenorrhea).
- the present invention adds steric bulk and/or modification of electrostatic characteristics at position 16 of 2-methoxyestradiol for retarding or preventing interaction of 17 ⁇ -hydroxysteroid dehydrogenases and co-factor NADP + on this substrate.
- Addition of steric bulk and/or modification of electrostatic characteristics at position 16 of 2-methoxyestradiol may retard or prevent glucuronidation. It is believed that retardation or prevention of these two metabolic deactivation pathways prolongs the serum lifetime of 2-methoxyestradiol and other estrogenic compounds while retaining the desired anti-angiogenic and anti-tumor activity.
- FIG. 1 depicts: I. colchicine, 2-methoxyestradiol and combretastatin A-4, and II. various estradiol derivatives comprising colchicine (a-c) or combretastatin A-4 (d) structural motifs as described below.
- estradiol derivatives that exhibit anti-mitotic, anti-angiogenic and anti-tumor properties.
- Specific compounds according to the invention are described below.
- Preferred compounds of the invention are estradiol derivatives modified at either the 2 or 16 positions.
- FIG. 1 illustrates the molecular formulae of estradiol, colchicine, combretastatin A-4, and improved estradiol derivatives that exhibit anti-mitotic, anti-angiogenic and anti-tumor properties.
- Molecular formulae are drawn and oriented to emphasize structural similarities between the ring structures of colchicine, combretastatin A-4, estradiol, and certain estradiol derivatives.
- Estradiol derivatives are made by incorporating colchicine or combretastatin A-4 structural motifs into the steroidal backbone of estradiol.
- FIG. 1 depicts the chemical formulae of colchicine, 2-methoxyestradiol and combretastatin A-4.
- FIG. 1 part II a-d, illustrates estradiol derivatives that comprise structural motifs found in colchicine or combretastatin A-4.
- part II a-c shows estradiol derivatives with an A and/or B ring expanded from six to seven carbons as found in colchicine and part Ild depicts an estradiol derivative with a partial B ring as found in combretastatin A-4.
- Each C ring of an estradiol derivative including those shown in FIG. 1 , may be fully saturated as found in 2-methoxyestradiol.
- R 1-6 represent a subset of the substitution groups found in the claims.
- Each R 1- R 6 can independently be defined as —R 1 , OR 1 , —OCOR 11 —SR 1 , —F, —NHR 2 , —Br, —I, or —C ⁇ CH.
- 2-Methoxyestradiol is an endogenous metabolite of estradiol that has potent anti-proliferative activity and induces apoptosis in a wide variety of tumor and non-tumor cell lines. When administered orally, it exhibits anti-tumor and anti-proliferative activity with little or no toxicity. 2-Methoxyestradiol is metabolized to a much less active metabolite, 2-methoxyestrone as indicated by in vitro and in vivo results. Although not wishing to be bound by theory, it is believed that this metabolite is formed through the same enzymatic pathway as estrone is formed from estradiol.
- estradiol the enzymes responsible for this reversible reaction on estradiol are the 17 ⁇ -hydroxysteroid dehydrogenases (17 ⁇ -HSD) and NADP+ co-factor (Han et al., J. Biol. Chem. 275:2, 1105-1111 (Jan. 12, 2000) and other references cited earlier).
- 17 ⁇ -HSD type 1 catalyzes the reductive reaction (estrone to estradiol)
- 17 ⁇ -HSD type 2 catalyzes the oxidation reaction (estradiol to estrone)
- type 3 catalyzes 4-androstenedione to testosterone.
- An additional metabolic deactivation pathway results in glucuronidation of 2-methoxyestradiol.
- the present invention adds steric bulk and/or modification of electrostatic characteristics at position 16 of 2-methoxyestradiol for retarding or preventing interaction of the family of 17 ⁇ -hydroxysteroid dehydrogenases and co-factor NADP + on this substrate. Addition of steric bulk and/or modification of electrostatic characteristics at position 16 of 2-methoxyestradiol also retards or prevents glucuronidation. It is believed that retardation or prevention of these two metabolic deactivation pathways prolongs the serum lifetime of 2-methoxyestradiol and other estradiol derivatives while retaining the desired anti-angiogenic and anti-tumor activity.
- estradiol derivatives are modified at the 2 position.
- Anti-proliferative activity is evaluated in situ by testing the ability of an improved estradiol derivative to inhibit the proliferation of new blood vessel cells (angiogenesis).
- a suitable assay is the chick embryo chorioallantoic membrane (CAM) assay described by Crum et al. Science 230:1375 (1985). See also, U.S. Pat. No. 5,001,116, hereby incorporated by reference, which describes the CAM assay. Briefly, fertilized chick embryos are removed from their shell on day 3 or 4, and a methylcellulose disc containing the drug is implanted on the chorioallantoic membrane. The embryos are examined 48 hours later and, if a clear avascular zone appears around the methylcellulose disc, the diameter of that zone. is measured.
- 2ME 2 affects cell growth remains unclear, however, a number of studies have implicated various mechanisms of action and cellular targets. 2ME 2 induced changes in the levels and activities of various proteins involved in the progression of the cell cycle. These include cofactors of DNA replication and repair, e.g., proliferating cell nuclear antigen (PCNA) (Klauber, N., Parangi, S., Flynn, E., Hamel, E. and D'Amato, R. J.
- PCNA proliferating cell nuclear antigen
- Assays relevant to the mechanisms of action and activity are well-known in the art.
- anti-mitotic activity mediated by effects on tubulin polymerization activity can be evaluated by testing the ability of an estradiol derivative to inhibit tubulin polymerization and microtubule assembly in vitro.
- Microtubule assembly is followed in a Gilford recording spectrophotometer (model 250 or 2400S) equipped with electronic temperature controllers.
- a reaction mixture (all concentrations refer to a final reaction volume of 0.25 ⁇ l ) contains 1.0M monosodium glutamate (pH 6.6), 1.
- omg/ml 10 ⁇ M tubulin, 1.0 mM MgCl 2 , 4% (v/v) dimethlylsulfoxide and 20-75 ⁇ M of a composition to be tested.
- the 0.24 ml reaction mixtures are incubated for 15 min. at 37° C. and then chilled on ice. After addition of 10 ⁇ l 2.5 mM GTP, the reaction mixture is transferred to a cuvette at 0° C., and a baseline established. At time zero, the temperature controller of the spectrophotometer is set at 37° C. Microtubule assembly is evaluated by increased turbity at 350 nm. Alternatively, inhibition of microtubule assembly can be followed by transmission electron microscopy as described in Example 2 below.
- antiangiogenic activity may be evaluated through endothelial cell migration, endothelial cell tubule formation, or vessel outgrowth in ex-vivo models such as rat aortic rings.
- the invention can be used to treat any disease characterized by abnormal cell mitosis.
- diseases include, but are not limited to: abnormal stimulation of endothelial cells (e.g., atherosclerosis), solid tumors and tumor metastasis, benign tumors, for example, hemangiomas, acoustic neuromas, neurofribomas, trachomas, and pyogenic granulomas, vascular malfunctions, abnormal wound healing, inflammatory and immune disorders, Bechet's disease, gout or gouty arthritis, abnormal angiogenesis accompanying: rheumatoid arthritis, psoriasis, diabetic retinopathy, and other ocular angiogenic diseases such as retinopathy of prematurity (retrolental fibroplasic), macular degeneration, corneal graft rejection, neuroscular glacoma and Oster Webber syndrome.
- endothelial cells e.g., atherosclerosis
- solid tumors and tumor metastasis benign
- the invention can be used to treat a variety of post-menapausal symptoms, including osteoporosis, cardiovascular disease, Alzheimer's disease, to reduce the incidence of strokes, and as an alternative to prior estrogen replacement therapies.
- the compounds of the present invention can work by estrogenic and non-estrogenic biochemical pathways.
- Known compounds that are used in accordance with the invention and precursors to novel compounds according to the invention can be purchased, e.g., from Sigma Chemical Co., St. Louis, Steraloids and Research Plus.
- Other compounds according to the invention can be synthesized according to known methods from publicly available precursors.
- estradiol has been described (Eder, V. et al., Ber 109, 2948 (1976); Oppolzer, D. A. and Roberts, D A. Helv. Chim. Acta. 63, 1703, (1980)).
- Synthetic methods for making seven-membered rings in multi-cyclic compounds are known (Nakamuru, T. et al. Chem. Pharm. Bull. 10, 281 (1962); Sunagawa, G. et al. Chem. Pharm. Bull. 9, 81 (1961); Van Tamelen, E. E. et al. Tetrahedren 14, 8-34 (1961); Evans, D. E. et al. JACS 103, 5813 (1981)).
- estradiol can be modified to include 7-membered rings by making appropriate changes to the starting materials, so that ring closure yields seven-membered rings.
- Estradiol or estradiol derivatives can be modified to include appropriate chemical side groups according to the invention by known chemical methods ( The Merck Index, 11th Ed., Merck & Co., Inc., Rahway, N.J. USA (1989), pp. 583-584).
- Analogs of 2ME2 or 2-ethoxyestradiol containing 7 membered rings can be modified to include appropriate chemical side groups according to the invention by known chemical methods (see for example, Miller, T. A.; Bulman, A. L.; Thompson, C. D.; Garst, M. E.; Macdonald, T. L. “Synthesis and Structure-Activity Profiles of A-Homoestranes, the Estratropones.” J. Med. Chem., 1997, 40, 3836-3841; Miller, T. A.; Bulman, A. L.; Thompson, C. D.; Garst, M. E.; Macdonald, T. L.
- compositions described above can be provided as physiologically acceptable formulations using known techniques, and these formulations can be administered by standard routes.
- the combinations may be administered by the topical, oral, rectal or parenteral (e.g., intravenous, subcutaneous or intramuscular) route.
- the combinations may be incorporated into biodegradable polymers allowing for sustained release, the polymers being implanted in the vicinity of where delivery is desired, for example, at the site of a tumor.
- the biodegradable polymers and their use are described in detail in Brem et al., J. Neurosurg. 74:441-446 (1991).
- the dosage of the composition will depend on the condition being treated, the particular derivative used, and other clinical factors such as weight and condition of the patient and the route of administration of the compound. However, for oral administration to humans, a dosage of 0.01 to 100 mg/kg/day, preferably 0.01-1 mg/kg/day, is generally sufficient.
- the formulations include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intraocular, intratracheal, and epidural) administration.
- the formulations may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the active ingredient and the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into associate the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion and as a bolus, etc.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent.
- Molded tables may be made by molding, in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally coated or scored and may be formulated so as to provide a slow or controlled release of the active ingredient therein.
- Formulations suitable for topical administration in the mouth include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the ingredient to be administered in a suitable liquid carrier.
- Formulations suitable for topical administration to the skin may be presented as ointments, creams, gels and pastes comprising the ingredient to be administered in a pharmaceutical acceptable carrier.
- a preferred topical delivery system is a transdermal patch containing the ingredient to be administered.
- Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
- Formulations suitable for nasal administration include a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
- Suitable formulations, wherein the carrier is a liquid, for administration, as for example, a nasal spray or as nasal drops, include aqueous or oily solutions of the active ingredient.
- Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such as carriers as are known in the art to be appropriate.
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) conditions requiring only the addition of the sterile liquid carrier, for example, water for injections, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tables of the kind previously described.
- Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the administered ingredient.
- 2-Methoxyestradiol is an endogenous metabolite of estradiol (E2) that has potent anti-proliferative activity and induces apoptosis in a wide variety of tumor and non-tumor cell lines. When administered orally, it exhibits anti-tumor and anti-proliferative activity with little or no toxicity.
- E2 estradiol
- 2-methoxyestradiol does not engage the estrogen receptor for its anti-proliferative activity and is not estrogenic over a wide range of concentrations, as accessed by estrogen dependant MCF-7 cell proliferation.
- the presence of demethylases in vivo may metabolize this compound to 2-hydroxyestradiol, which has been shown to be estrogenic by several approaches.
- the present invention improves the bioavallibility of estradiol or 2-methoxyestradiol and to reduces the formation of estrogenic 2-methoxyestradiol metabolities.
- the present invention modifies estradiol or 2-methoxyestradiol in such a way that the molecule can not be converted into an uterotropic derivative.
- One embodiment of the invention modifies the methyl ether of 2-methoxyestradiol so that it can not be a substrate for demethylase. Additionally, it has been demonstrated (Cushman et al J. Med. Chem. 1995, 38, 2041-2049) that other electron-rich groups at the 2-position of estradiol (propyne, propene, ethoxy) have good anti-proliferative activity in vitro.
- estradiol such as formyl, acetyl, methanol, 1-ethanol, 2-ethanol, amino, alkylamino, dialkyl amino, methyleneamine, methylene alkyl amine and methylene dialkylamine, and alkyl amide are be anti-proliferative and anti-angiogenic agents have reduced or removed uterotropic activity.
- Alkyl is defined as any carbon chain up to 6 carbons in length that is branched or straight. Listed below in Table 1 are data of 2-modified estradiol derivatives in HUVEC, MDA-MB-231 and MCF7 proliferation data. The synthetic paths for preparation of these analogs can be found in Pert et al Aust. J. Chem.
- molecular modeling suggests that there may be a hydrogen bond that forms between the 3-hydroxy group and the methoxy group of 2-methoxyestradiol. This interaction may be important for both 2-methoxyestradiol's anti-proliferative and anti-angiogenic action as well as its non-estrogenic activity. It is claimed that any group that can be placed at position 2 of estradiol and has the potential to form a hydrogen bond with the 3-hydroxy group is an anti-proliferative and anti-angiogenic agent that lacks estrogenic activity.
- formulations of this invention may include other agents convention in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include flavoring agents.
- R b and R o are independently —H, —Cl, —Br, —I, —F, —CN, lower alkyl, —OH, —CH 2 —OH, —NH 2 ; or N(R 6 )(R 7 ), wherein R 6 and R 7 are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;
- R a is —N 3 , —C ⁇ N, —C ⁇ C—R, —C ⁇ CH—R, —R—C ⁇ CH 2 , —C ⁇ CH, —O—R, —R—R 1 , or —O—R—R 1 where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R 1 is —OH, —NH 2 , —Cl, —Br, —I, —F or CF 3 ;
- Z′ is >CH, >COH, or >C—R 2 —OH, where R 2 is an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- R g is >CH 2 , >C(H)—OH, >C ⁇ O, >C ⁇ N—OH, >C(R 3 )OH, >C ⁇ N—OR 3 , >C(H)—NH 2 , >C(H)—NHR 3 , >C(H)—NR 3 R 4 , or >C(H)—C(O)—R 3 , where each R 3 and R 4 is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- R h1 and R h2 are independently H, or a straight or branched chain alkyl, alkenyl or alkynyl with up to 6 carbons that is unsubstituted, or substituted with one or more groups selected from a hetero functionality (O—Y, N—Y or S—Y) where Y is H, Me or an alkyl chain up to 6 carbons; a halo functionality (F, Cl, Br or I); an aromatic group optionally substituted with hetero, halo or alkyl; or R h1 and R h2 are independently an aromatic group optionally substituted with hetero, halo or alkyl, provided that both R h1 and R h2 are not H;
- a hetero functionality O—Y, N—Y or S—Y
- Y is H, Me or an alkyl chain up to 6 carbons
- a halo functionality F, Cl, Br or I
- R h1 and R h2 are independently an aromatic group optionally substituted with hetero, halo or
- f) Z′′ is >CH 2 , >C ⁇ O, >C(H)—OH, >C ⁇ N—OH, >C ⁇ N—OR 5 , >C(H)—C ⁇ N, or >C(H)—NR 5 R 5 , wherein each R 5 is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- Lower alkyl is defined as a small carbon chain having 1-8 carbon atoms.
- the chain may be branched or unbranched.
- 2-Methoxyestradiol (10.09 g, 33.4 nmmol) and potassium carbonate (22 g, 278 mmol) were suspended in anhydrous ethanol and cooled to 0° C.
- Benzyl bromide (11.4 mL, 95.8 mmol) was added dropwise, and following the addition, the mixture was brought to reflux for 8 h.
- the solution was cooled to room temperature (rt), and the solvent was removed via rotoevap.
- the resulting residue was diluted with approximately 200 ml water, and washed with ethyl acetate (3 ⁇ 200 mL).
- Oxalyl chloride 38 mmol, 19 mL, 2M, methylene chloride
- anhydrous methylene chloride 25 mL
- Methyl sulfoxide 5.40 mL, 76 mmol
- 3-Benzyl-2-methoxyestradiol in methylene chloride/methyl sulfoxide (10 mL/15 mL) and added within 5 minutes and the resulting mixture was stirred for 1 h.
- Triethyl amine (170 mmol, 23.5 mL) was added drop-wise, stirred 5 minutes and warmed to rt.
- Lithium diisopropyl amide (2M, Aldrich, heptane/THF/ethylbenzene) was dissolved in THF and cooled to ⁇ 78° C., and 3-benzyl-2-methoxyestrone in THF (10 mL) was added dropwise. Following addition, the mixture was warmed to 0° C. and stirred 1 hour (h). The mixture was then cooled to ⁇ 78° C. and DMPU (1 mL) followed by crotyl bromide (205 ⁇ L, 2.0 mmol) were added dropwise. The mixture was warmed to rt over 4 h.
- the reaction was quenched by carefully adding water (100 mL) and washing with ethyl acetate (2 ⁇ 100 mL). The combined organics were washed with water (100 mL) and brine (100 mL). The solution was dried with magnesium sulfate, filtered and rotoevaped.
- the crude product was purified using hexane/ethyl acetate (9:1) SiO 2 Biotage FLASH apparatus. 680 mg (1.53 mmol) of product was obtained and approximately 121 mg (0.31 mmol) of starting material was recovered (90% yield based on recovered starting material). Diastereomeric ratio of 16 ⁇ / ⁇ is approximately 2:1 (s H18 signals at 0.88, 0.79 ppm).
- 3-benzyl-2-methoxyestrone (1.51 g, 3.87 mmol) was suspended in tert-butoxy bis(dimethylamino)methane (1.64 mL, 8.13 mmol) and heated in an oil bath (155° C.) for 1.5 h, during which time the steroid dissolved.
- the reaction mixture was cooled to rt, and poured into ice water (100 mL) and washed with methylene chloride (2 ⁇ 100 mL). The organics were washed with brine (100 mL) dried with magnesium sulfate, filtered and rotoevaped to give product which was used without further purification (1.82 g, quanitative yield).
- 16 ⁇ -crotyl-3-benzyl-2methoxyesttone (680 mg, 1.53 mmol) was dissolved in anhydrous THF (10 mL), and cooled to ⁇ 78° C. Lithium aluminum hydride (3.06 mmol, 116 mg) was added and the solution was stirred for 2 h. The reaction was quenched by carefully adding water (2 mL) and warming to rt, then adding additional 50 mL portion of water. The mixture was washed with ethyl acetate (2 ⁇ 50 mL) and the combined organics were washed with water (50 mL), brine (50 mL), dried with magnesium sulfate, filtered and rotoevaped. The mixture was purified with 3:1 hexane:ethyl acetate SiO 2 Biotage FLASH apparatus to give 500 mg purified product (1.12 mmol, 73% yield).
- 16 ⁇ -crotyl-3-benzyl-2-methoxyestradiol 500 mg, 1.12 mmol was dissolved in ethyl acetate (25 mL) in Parr reaction bottle.
- the bottle was flushed with argon, and Pd/C (10%, 2.5 g) was added.
- the bottle was fitted to a Parr hydrogenator, filled and purged with hydrogen five times, pressurized to 50 psi, and agitated for 24 h.
- the mixture was filtered through a celite pad, rotoevaped and purified with a 3:1 hexane ethyl acetate SiO 2 flash column. Obtain 358 mg product (1.0 mmol, 89%).
- FIG. 1 illustrates the antiproliferative activity in cells and tumor by 2-methoxyestradiol compounds of the present invention which are modified at the 16 position.
- MDA-MB-231 human breast carcinoma cells were grown in DMEM containing 10% FCS (Hyclone Laboratories, Logan Utah) and supplemented with 2 mM L-Glutamine, 100 units/ml penicillin, 100 ⁇ g/ml streptomycin (Irvine Scientific, Santa Anna, Calif.).
- MDA-MB-231 cells were plated at 5000 cells/ml in 96 well plates. After allowing the cells to attach overnight, the appropriate fresh media were applied containing differing concentrations of 2-ME2 or derivatives thereof, as described below. Drug was dissolved in DMSO (Sigma, St. Louis, Mo.) and added to the wells in a volume of 200 ⁇ l. Cells were incubated for two days at 37° C.; at 32 h BrdU was added. BrdU cell proliferation assay (a nucleotide analogue with a fluorescein tag that is incorporated into DNA) was performed as described by the manufacturer (Roche). Each condition was prepared in triplicate and the experiments were carried out a minimum of two times. Results are presented and means ⁇ SE.
- HUVAC Cells were Grown in EGM (Clonetics)
- HUVEC cells were plated at 5000 cells/ml in 96-well plates. After allowing the cells to attach overnight, the cells were washed with PBS and incubated in the absence of growth factor for 24 h (EBM, 2% FCS, Clonetics). Cells were treated with increasing concentrations of drug in EBM containing 2% FCS and 10 ng.ml bFGF for 48 h at 37° C. Drug preparation, volumes added and BrdU proliferation assay were performed as indicated above.
- 2-Methoxyestradiol is a potent anti-angiogenic and anti-tumor agent.
- the MDA-MB-231 tumor cell line has a much greater sensitivity to substitutions at position 16 compared to HUVEC cells. Any group at position 16 larger than ethyl has a significant decrease in antiproliferative activity (IC 50 >22 ⁇ M). Of the active compounds, 16 ⁇ -methyl has better activity than 2-methoxyestradiol, whereas 16 ⁇ -methyl (which is a 1:2 mixture of ⁇ : ⁇ , so the presence of the ⁇ isomer may account for this activity) has about 5-fold less activity than 2-methoxyestradiol, and racemnic 16-ethyl has about a 3-fold drop in activity compared to 2-methoxyestradiol.
- 16 ⁇ -propyl is greater than ten-fold less active in inhibiting tumor growth while it has good activity inhibiting endothelial cell proliferation.
- Other examples include: 16 ⁇ -propyl (4-fold difference), 16 ⁇ -i-butyl (5-fold difference), 16 ⁇ -n-butyl (4-fold difference) and 16 ⁇ -methanol (10-fold difference).
- a small alkyl group at position 16 can be added without significantly impacting the anti-proliferative activity of the molecule.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present invention relates to treating disease states characterized by abnormal cell mitosis and or abnormal angiogenesis. More particularly, the present invention relates to certain analogs of 2-methoxyestradiol (2ME2) and their effect on diseases characterized by abnormal cell mitosis and/or abnormal angiogenesis.
- As used herein, the term “angiogenesis” means the generation of new blood vessels into a tissue or organ. Under normal physiological conditions, humans or animals only undergo angiogenesis in very specific restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonal development and formation of the corpus luteum, endometrium and placenta. The control of angiogenesis is a highly regulated system of angiogenic stimulators and inhibitors. The control of angiogenesis has been found to be altered in certain disease states and, in many cases, the pathological damage associated with the disease is related to the uncontrolled angiogenesis.
- Both controlled and uncontrolled angiogenesis are thought to proceed in a similar manner. Endothelial cells and pericytes, surrounded by a basement membrane, form capillary blood vessels. Angiogenesis begins with the erosion of the basement membrane by enzymes released by endothelial cells and leukocytes. The endothelial cells, which line the lumen of blood vessels, then protrude through the basement membrane. Angiogenic stimulants induce the endothelial cells to migrate through the eroded basement membrane. The migrating cells form a “sprout” off the parent blood vessel, where the endothelial cells undergo mitosis and proliferate. The endothelial sprouts merge with each other to form capillary loops, creating the new blood vessel. In the disease state, prevention of angiogenesis could avert the damage caused by the invasion of the new microvascular system.
- Persistent, unregulated angiogenesis occurs in a multiplicity of disease states, tumor metastasis and abnormal growth by endothelial cells and supports the pathological damage seen in these conditions. The diverse pathological states created due to unregulated angiogenesis have been grouped together as angiogenic dependent or angiogenic associated diseases. Therapies directed at control of the angiogenic processes could lead to the abrogation or mitigation of these diseases.
- One example of a disease mediated by angiogenesis is ocular neovascular disease. This disease is characterized by invasion of new blood vessels into the structures of the eye such as the retina or cornea. It is the most common cause of blindness and is involved in approximately twenty eye diseases. In age-related macular degeneration, the associated visual problems are caused by an ingrowth of chorioidal capillaries through defects in Bruch's membrane with proliferation of fibrovascular tissue beneath the retinal pigment epithelium. Angiogenic damage is also associated with diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma and retrolental fibroplasia. Other diseases associated with corneal neovascularization include, but are not limited to, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phylectenulosis, syphilis, Mycobacteria infections, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, mariginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy, and corneal graph rejection.
- Diseases associated with retinal/choroidal neovascularization include, but are not limited to, diabetic retinopathy, macular degeneration, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis/vitritis, mycobacterial infections, Lyme's disease, systemic lupus erythematosis, retinopathy of prematurity, Eales disease, Bechets disease, infections causing a retinitis or choroiditis, presumed ocular histoplasmosis, Bests disease, myopia, optic pits, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser complications. Other diseases include, but are not limited to, diseases associated with rubeosis (neovasculariation of the angle) and diseases caused by the abnormal proliferation of fibrovascular or fibrous tissue including all forms of proliferative vitreoretinopathy.
- Another disease in which angiogenesis is believed to be involved is rheumatoid arthritis. The blood vessels in the synovial lining of the joints undergo angiogenesis. In addition to forming new vascular networks, the endothelial cells release factors and reactive oxygen species that lead to pannus growth and cartilage destruction. The factors involved in angiogenesis may actively contribute to, and help maintain, the chronically inflamed state of rheumatoid arthritis.
- Factors associated with angiogenesis may also have a role in osteoarthritis. The activation of the chondrocytes by angiogenic-related factors contributes to the destruction of the joint. At a later stage, the angiogenic factors would promote new bone formation. Therapeutic intervention that prevents the bone destruction could halt the progress of the disease and provide relief for persons suffering with arthritis.
- Chronic inflammation may also involve pathological angiogenesis. Such disease states as ulcerative colitis and Crohn's disease show histological changes with the ingrowth of new blood vessels into the inflamed tissues. Bartonellosis, a bacterial infection found in South America, can result in a chronic stage that is characterized by proliferation of vascular endothelial cells. Another pathological role associated with angiogenesis is found in atherosclerosis. The plaques formed within the lumen of blood vessels have been shown to have angiogenic stimulatory activity.
- One of the most frequent angiogenic diseases of childhood is the hemangioma. In most cases, the tumors are benign and regress without intervention. In more severe cases, the tumors progress to large cavernous and infiltrative forms and create clinical complications. Systemic forms of hemangiomas, the hemangiomatoses, have a high mortality rate. Therapy-resistant hemangiomas exist that cannot be treated with therapeutics currently in use.
- Angiogenesis is also responsible for damage found in hereditary diseases such as Osler-Weber-Rendu disease, or hereditary hemorrhagic telangiectasia. This is an inherited disease characterized by multiple small angiomas, tumors of blood or lymph vessels. The angiomas are found in the skin and mucous membranes, often accompanied by epistaxis (nosebleeds) or gastrointestinal bleeding and sometimes with pulmonary or hepatic arteriovenous fistula.
- Angiogenesis is prominent in solid tumor formation and metastasis. Angiogenic factors have been found associated with several solid tumors such as rhabdomyosarcomas, retinoblastoma, Ewing sarcoma, neuroblastoma, and osteosarcoma. A tumor cannot expand without a blood supply to provide nutrients and remove cellular wastes. Tumors in which angiogenesis is important include solid tumors, and benign tumors such as acoustic neuroma, neurofibroma, trachoma and pyogenic granulomas. Prevention of angiogenesis could halt the growth of these tumors and the resultant damage to the animal due to the presence of the tumor.
- It should be noted that angiogenesis has been associated with blood-born tumors such as leukemias, any of various acute or chronic neoplastic diseases of the bone marrow in which unrestrained proliferation of white blood cells occurs, usually accompanied by anemia, impaired blood clotting, and enlargement of the lymph nodes, liver, and spleen. It is believed that angiogenesis plays a role in the abnormalities in the bone marrow that give rise to leukemia-like tumors.
- Angiogenesis is important in two stages of tumor metastasis. The first stage where angiogenesis stimulation is important is in the vascularization of the tumor which allows tumor cells to enter the blood stream and to circulate throughout the body. After the tumor cells have left the primary site, and have settled into the secondary, metastasis site, angiogenesis must occur before the new tumor can grow and expand. Therefore, prevention of angiogenesis could lead to the prevention of metastasis of tumors and possibly contain the neoplastic growth at the primary site.
- Knowledge of the role of angiogenesis in the maintenance and metastasis of tumors has led to a prognostic indicator for breast cancer. The amount of neovascularization found in the primary tumor was determined by counting the microvessel density in the area of the most intense neovascularization in invasive breast carcinoma. A high level of microvessel density was found to correlate with tumor recurrence. Control of angiogenesis by therapeutic means could possibly lead to cessation of the recurrence of the tumors.
- Angiogenesis is also involved in normal physiological processes such as reproduction and wound healing. Angiogenesis is an important step in ovulation and also in implantation of the blastula after fertilization. Prevention of angiogenesis could be used to induce amenorrhea, to block ovulation or to prevent implantation by the blastula.
- In wound healing, excessive repair or fibroplasia can be a detrimental side effect of surgical procedures and may be caused or exacerbated by angiogenesis. Adhesions are a frequent complication of surgery and lead to problems such as small bowel obstruction.
- Several kinds of compounds have been used to prevent angiogenesis. Taylor et al. have used protamine to inhibit angiogenesis, see Taylor et al., Nature 297:307 (1982). The toxicity of protamine limits its practical use as a therapeutic. Folkman et al. have disclosed the use of heparin and steroids to control angiogenesis. See Folkman et al., Science 221:719 (1983) and U.S. Pat. Nos. 5,001,116 and 4,994,443. Steroids, such as tetrahydrocortisol, which lack gluco and mineral corticoid activity, have been found to be angiogenic inhibitors.
- Other factors found endogenously in animals, such as a 4 kDa glycoprotein from bovine vitreous humor and a cartilage derived factor, have been used to inhibit angiogenesis. Cellular factors such as interferon inhibit angiogenesis. For example, interferon α or human interferon β has been shown to inhibit tumor-induced angiogenesis in mouse dermis stimulated by human neoplastic cells. Interferon β is also a potent inhibitor of angiogenesis induced by allogeneic spleen cells. See Sidky et al., Cancer Research 47:5155-5161 (1987). Human recombinant α interferon (alpha/A) was reported to be successfully used in the treatment of pulmonary hemangiomatosis, an angiogenesis-induced disease. See White et al., New England J. Med. 320:1197-1200 (1989).
- Other agents which have been used to inhibit angiogenesis include ascorbic acid ethers and related compounds. See Japanese Kokai Tokkyo Koho No. 58-131978. Sulfated polysaccharide DS 4152 also shows angiogenic inhibition. See Japanese Kokai Tokkyo Koho No. 63-119500. A fungal product, fumagillin, is a potent angiostatic agent in vitro. The compound is toxic in vivo, but a synthetic derivative, AGM 12470, has been used in vivo to treat collagen II arthritis. Fumagmin and O-substituted fumagillin derivatives are disclosed in EPO Publication Nos. 0325199A2 and 0357061A1. Folkman et al., described several proteins derived from endogenous proteins including angiostatin and endostatin. (See, for example, U.S. Pat. Nos. 6,024,688 and 5,854,205 which are incorporated in their entirety) D'Amato et al., described 2-methoxyestradiol and derivatives of 2-methoxyestradiol in U.S. Pat. Nos. 5,504,074 and 5,661,143 which are incorporated herein by reference entirety.
- The above compounds are either topical or injectable therapeutics. Therefore, there are drawbacks to their use as a general angiogenic inhibitor and lack adequate potency. For example, in prevention of excessive wound healing, surgery on internal body organs involves incisions in various structures contained within the body cavities. These wounds are not accessible to local applications of angiogenic inhibitors. Local delivery systems also involve frequent dressings which are impracticable for internal wounds, and increase the risk of infection or damage to delicate granulation tissue for surface wounds.
- Thus, a method and composition are needed that are capable of inhibiting angiogenesis and which are easily administered. A simple and efficacious method of treatment would be through the oral route. If an angiogenic inhibitor could be given by an oral route, the many kinds of diseases discussed above, and other angiogenic dependent pathologies, could be treated easily. The optimal dosage could be distributed in a form that the patient could self-administer.
- Other diseases are also characterized by an abnormal balance between cellular mitosis and apoptosis. One of these diseases is osteoporosis. Osteoporosis is characterized by a reduction in the bone mass of the skeleton which leads to skeletal fragility and an increased risk of fracture. In humans, the most common sites of fracture are found in the forearm, the vertebrae and the hip bones. Osteoporosis and its attendant fractures are a major cause of morbidity and mortality and lead to increased health costs for care.
- In treating osteoporosis the main objective is to prevent fractures by stopping the loss of skeletal integrity. A variety of different therapies have been tried to achieve this objective, such as calcium, Vitamin D supplements and hormone replacement. Calcitonin has been used to improve bone mineral density at all bone sites. Bisphosphonates are an important group of therapeutic agents used for treatment of osteoporosis. They act by inhibiting bone resorption and increase bone density. Cyclical etidronate treatment aids in decreasing vertebral fractures, as does hormone replacement therapy and calcitonin. Alendronate has been shown to decrease the risk of symptomatic fractures of the forearm, spine and hip.
- None of these treatments have proven to be effective in large numbers of osteoporotic patients. Additionally, the currently used therapies have unwanted side effects that create compliance and tolerance problems in treatment regimens. The most common adverse events with cyclical etidronate and alendronate are gastrointestinal disturbances. Esophagitis has also been a complication of therapies with alendronate. Cyclical etidronate has been shown to lead to focal osteomalacia. Hormone replacement therapies lead to estrogen effects such as uterine hypertrophy, and a potential for stimulation of estrogen-sensitive tumors leading to complications such as breast cancer.
- What is needed are safe and effective treatments that do not create unwanted side effects.
- 2-Methoxyestradiol is an endogenous metabolite of estradiol (E2) that has potent anti-proliferative activity and induces apoptosis in a wide variety of tumor and non-tumor cell lines. When administered orally, it exhibits anti-tumor and anti-proliferative activity with little or no toxicity. In vitro data suggests that 2-methoxyestradiol does not engage the estrogen receptor for its anti-proliferative activity and is not estrogenic over a wide range of concentrations, as accessed by estrogen dependant MCF-7 cell proliferation. However, the presence of demethylases in vivo may metabolize this compound to 2-hydroxyestradiol, which has been shown to be estrogenic by several approaches. What is needed is a means to improve the bioavailibility of estradiol or 2-methoxyestradiol and to reduce the formation of estrogenic 2-methoxyestradiol metabolities. What is also needed is a means to modify estradiol or 2-methoxyestradiol in such a way that the molecule can not be converted into an uterotropic derivative.
- The present invention provides certain analogs of 2-methoxyestradiol that are effective in treating diseases characterized by abnormal mitosis and/or abnormal angiogenesis. Specifically the present invention relates to analogs of 2-methoxyestradiol that have been modified at the 2 position and the 16 position. Compounds within the general formulae that inhibit cell proliferation are preferred. Preferred compositions may also exhibit a change (increase or decrease) in estrogen receptor binding, improved absorption, transport (e.g. through blood-brain barrier and cellular membranes), biological stability, or decreased toxicity. The invention also provides compounds useful in the method, as described by the general formulae of the claims.
- A mammalian disease characterized by undesirable cell mitosis, as defined herein, includes but is not limited to excessive or abnormal stimulation of endothelial cells (e.g., atherosclerosis), solid tumors and tumor metastasis, benign tumors, for example, hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas, vascular malfunctions, abnormal wound healing, inflammatory and immune disorders, Bechet's disease, gout or gouty arthritis, abnormal angiogenesis accompanying: rheumatoid arthritis, psoriasis, diabetic retinopathy, and other ocular angiogenic diseases such as retinopathy of prematurity (retrolental fibroplasic), macular degeneration, comeal graft rejection, neovascular glaucoma and Osler Weber syndrome. Other undesired angiogenesis involves normal processes including ovulation and implantation of a blastula Accordingly, the compositions described above can be used to block ovulation and implantation of a blastula or to block menstruation (induce amenorrhea).
- Since 2-methoxyestradiol is metabolized to a much less active metabolite, the present invention adds steric bulk and/or modification of electrostatic characteristics at position 16 of 2-methoxyestradiol for retarding or preventing interaction of 17β-hydroxysteroid dehydrogenases and co-factor NADP+ on this substrate. Addition of steric bulk and/or modification of electrostatic characteristics at position 16 of 2-methoxyestradiol may retard or prevent glucuronidation. It is believed that retardation or prevention of these two metabolic deactivation pathways prolongs the serum lifetime of 2-methoxyestradiol and other estrogenic compounds while retaining the desired anti-angiogenic and anti-tumor activity.
- Aside from preventing the possible metabolism of 2ME2 to 2ME1, which may occur by making these steroids poor substrates for 17B-HSD (by either steric and/or electronic effects), it is not possible for these analogs to undergo the demethylation known to occur with 2ME2 since there is no methyl ether group at that position. This is desirable since it has been demonstrated that 2-hydroxyestradiol (the product of demethylation of 2ME2) has estrogenic activity.
- Also disclosed is a method for modifying the methyl ether of 2-methoxyestradiol so that it can not be a substrate for demethylase and the resulting compounds.
- Other features and advantages of the invention will be apparent from the following description of preferred embodiments thereof.
-
FIG. 1 depicts: I. colchicine, 2-methoxyestradiol and combretastatin A-4, and II. various estradiol derivatives comprising colchicine (a-c) or combretastatin A-4 (d) structural motifs as described below. - As described below, compounds that are useful in accordance with the invention include novel estradiol derivatives that exhibit anti-mitotic, anti-angiogenic and anti-tumor properties. Specific compounds according to the invention are described below. Preferred compounds of the invention are estradiol derivatives modified at either the 2 or 16 positions. Those skilled in the art will appreciate that the invention extends to other compounds within the formulae given in the claims below, having the described characteristics. These characteristics can be determined for each test compound using the assays detailed below and elsewhere in the literature.
- Without wishing to be bound to specific mechanisms or theory, it appears that certain compounds that are known to exhibit anti-mitotic properties such as colchicine and combretastatin A-4 share certain structural similarities with estradiol.
FIG. 1 illustrates the molecular formulae of estradiol, colchicine, combretastatin A-4, and improved estradiol derivatives that exhibit anti-mitotic, anti-angiogenic and anti-tumor properties. Molecular formulae are drawn and oriented to emphasize structural similarities between the ring structures of colchicine, combretastatin A-4, estradiol, and certain estradiol derivatives. Estradiol derivatives are made by incorporating colchicine or combretastatin A-4 structural motifs into the steroidal backbone of estradiol. -
FIG. 1 , part I, depicts the chemical formulae of colchicine, 2-methoxyestradiol and combretastatin A-4.FIG. 1 , part II a-d, illustrates estradiol derivatives that comprise structural motifs found in colchicine or combretastatin A-4. For example, part II a-c shows estradiol derivatives with an A and/or B ring expanded from six to seven carbons as found in colchicine and part Ild depicts an estradiol derivative with a partial B ring as found in combretastatin A-4. Each C ring of an estradiol derivative, including those shown inFIG. 1 , may be fully saturated as found in 2-methoxyestradiol. R1-6 represent a subset of the substitution groups found in the claims. Each R1-R6 can independently be defined as —R1, OR1, —OCOR11—SR1, —F, —NHR2, —Br, —I, or —C≡CH. - 2-Methoxyestradiol is an endogenous metabolite of estradiol that has potent anti-proliferative activity and induces apoptosis in a wide variety of tumor and non-tumor cell lines. When administered orally, it exhibits anti-tumor and anti-proliferative activity with little or no toxicity. 2-Methoxyestradiol is metabolized to a much less active metabolite, 2-methoxyestrone as indicated by in vitro and in vivo results. Although not wishing to be bound by theory, it is believed that this metabolite is formed through the same enzymatic pathway as estrone is formed from estradiol. Although not wishing to be bound by theory, it is believed that the enzymes responsible for this reversible reaction on estradiol are the 17β-hydroxysteroid dehydrogenases (17β-HSD) and NADP+ co-factor (Han et al., J. Biol. Chem. 275:2, 1105-1111 (Jan. 12, 2000) and other references cited earlier). Each of the four members of this enzyme family, types 1, 2, 3, and 4, have distinct activity. It appears that 17β-
HSD type 1 catalyzes the reductive reaction (estrone to estradiol), while 17β-HSD type 2 catalyzes the oxidation reaction (estradiol to estrone), and type 3 catalyzes 4-androstenedione to testosterone. An additional metabolic deactivation pathway results in glucuronidation of 2-methoxyestradiol. - Since 2-methoxyestradiol is metabolized to a much less active metabolite, the present invention adds steric bulk and/or modification of electrostatic characteristics at position 16 of 2-methoxyestradiol for retarding or preventing interaction of the family of 17β-hydroxysteroid dehydrogenases and co-factor NADP+ on this substrate. Addition of steric bulk and/or modification of electrostatic characteristics at position 16 of 2-methoxyestradiol also retards or prevents glucuronidation. It is believed that retardation or prevention of these two metabolic deactivation pathways prolongs the serum lifetime of 2-methoxyestradiol and other estradiol derivatives while retaining the desired anti-angiogenic and anti-tumor activity.
- Aside from preventing the possible metabolism of 2ME2 to 2ME1, which may occur by making these steroids poor substrates for 17B-HSD (by either steric and/or electronic effects), it is not possible for these analogs to undergo the demethylation known to occur with 2ME2 since there is no methyl ether group at that position. This is desirable since it has been demonstrated that 2-hydroxyestradiol (the product of demethylation of 2ME2) has estrogenic activity.
- In another embodiment of the invention, estradiol derivatives are modified at the 2 position.
- Anti-Proliferative Activity In Situ
- Anti-proliferative activity is evaluated in situ by testing the ability of an improved estradiol derivative to inhibit the proliferation of new blood vessel cells (angiogenesis). A suitable assay is the chick embryo chorioallantoic membrane (CAM) assay described by Crum et al. Science 230:1375 (1985). See also, U.S. Pat. No. 5,001,116, hereby incorporated by reference, which describes the CAM assay. Briefly, fertilized chick embryos are removed from their shell on
day 3 or 4, and a methylcellulose disc containing the drug is implanted on the chorioallantoic membrane. The embryos are examined 48 hours later and, if a clear avascular zone appears around the methylcellulose disc, the diameter of that zone. is measured. Using this assay, a 100 mg disk of the estradiol derivative 2-methoxyestradiol was found to inhibit cell mitosis and the growth of new blood vessels after 48 hours. This result indicates that the anti-mitotic action of 2-methoxyestradiol can inhibit cell mitosis and angiogenesis. - Anti-Proliferative Activity In Vitro
- The process by which 2ME2 affects cell growth remains unclear, however, a number of studies have implicated various mechanisms of action and cellular targets. 2ME2 induced changes in the levels and activities of various proteins involved in the progression of the cell cycle. These include cofactors of DNA replication and repair, e.g., proliferating cell nuclear antigen (PCNA) (Klauber, N., Parangi, S., Flynn, E., Hamel, E. and D'Amato, R. J. (1997), Inhibition of angiogenesis and breast cancer in mice by the nicrotubule inhibitors 2-methoxyestradiol and Taxol., Cancer Research 57, 81-86; Lottering, M-L., de Kock, M., Viljoen, T. C., Grobler, C. J. S. and Seegers, J. C. (1996) 17β-estradiol metabolites affect some regulators of the MCF-7 cell cycle. Cancer Letters 110, 181-186); cell division cycle kinases and regulators, e.g., p34cdc2 and cyclin B (Lottering et al. (1996); Attalla, H., Mäkelä, T. P., Adlercreutz, H. and Andersson, L. C. (1996) 2-methoxyestradiol arrests cells in mitosis without depolymerizing tubulin. Biochemnical and Biophysical Research Communications 228, 467-473; Zoubine, M. N., Weston, A. P., Johnson, D. C., Campbell, D. R. and Banerjee, S. K. (1999) 2-Methoxyestradiol-induced growth suppression and lethality in estrogen-responsive MCF-7 cells may be mediated by down regulation of p34cdc2 and cyclin B1 expression. Int J Oncol 15, 639-646); transcription factor modulators, e.g., SAPK/JNK (Yue, T-L., Wang, X., Louden, C. S., Gupta, L. S., Pillarisetti, K., Gu, J-L., Hart, T. K., Lysko, P. G. and Feuerstein, G. Z. (1997) 2-methoxyestradiol, an endogenous estrogen metabolite induces apoptosis in endothelial cells and inhibits angiogenesis: Possible role for stress-activated protein kinase signaling pathway and fas expression. Molecular Pharmacology 51, 951-962; Attalla, H., Westberg, J. A., Andersson, L. C., Aldercreutz, H. and Makela, T. P. (1998) 2-Methoxyestradiol-induced phosphorylation of bcl-2: uncoupling from JNK/SAPK activation. Biochem and Biophys Res Commun 247, 616-619); and regulators of cell arrest and apoptosis, e.g., tubulin (D'Amato, R. J., Lin, C. M., Flynn, E., Folkman, J. and Hamel, E. (1994) 2-Methoxyestradiol, and endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl. Acad. Sci. USA 91, 3964-3968; Hamel, E., Lin, C. M., Flynn, E. and D'Amato, R. J. (1996) Interactions of 2-methoxyestradiol, and endogenous mammalian metabolite, with unploymerized tubulin and with tubulin polymers. Biochemistry 35, 1304-1310), P21WAF1/C1P1 (Mukhopadhyay, T. and Roth, J. A. (1997) Induction of apoptosis in human lung cancer cells after wild-type p53 activation by methoxyestradiol. Oncogene 14, 379-384), bcl-2 and FAS (Yue et al. (1997); Attalla et al. (1998)), and p53 (Kataoka, M., Schumacher, G., Cristiano, R. J., Atkinson, E. N., Roth, J. A. and Mukhopadhyay, T. (1998) An agent that increases tumor suppressor transgene product coupled with systemic transgene delivery inhibits growth of metastatic lung cancer in vivo. Cancer Res 58, 47614765; Mukhopadhyay et al. (1997); Seegers, J. C., Lottering, M-L., Grobler C. J. S., van Papendorp, D. H., Habbersett, R. C., Shou, Y. and Lehnert B. E. (1997) The mammalian metabolite, 2-methoxyestradiol, affects p53 levels and apoptosis induction in transformed cells but not in normal cells. J. Steroid Biochem. Molec. Biol. 62, 253-267). The effects on the level of cAMP, calmodulin activity and protein phosphorylation may also be related to each other. More recently, 2ME2 was shown to upregulate Death Receptor 5 and caspase 8 in human endothelial and tumor cell lines (LaVallee, T. M., Hembrough, W. A., Williams, M. S., Zhan, X. H., Pribluda, V. S., Papathanassiu, A., and Green, S. J. 2-Methoxyestradiol upregulates DR5 and induces apoptosis independently of p53. (Submitted for publication)). All cellular targets described above are not necessarily mutually exclusive to the inhibitory effects of 2ME2 in actively dividing cells.
- The high affinity binding to SHBG. has been mechanistically associated to its efficacy in a canine model of prostate cancer, in which signaling by estradiol and 5α-androstan-3α,17β-diol were inhibited by 2ME2 (Ding, V. D., Moller, D. E., Feeney, W. P., Didolkar, V., Nakhla, A. M., Rhodes, L., Rosner, W. and Smith, R. G. (1998) Sex hormone-binding globulin mediates prostate androgen receptor action via a novel signaling pathway. Endocrinology 139, 213-218).
- The more relevant mechanism described above have been extensively discussed in Victor S. Pribluda, Theresa M. LaVallee and Shawn J. Green, 2-methoxyestradiol: a novel endogenous chemotherapeutic and antiangiogenic in The New Angiotherapy, Tai-Ping Fan and Robert Auerbach eds., Human Press Publisher.
- Assays relevant to the mechanisms of action and activity are well-known in the art. For example, anti-mitotic activity mediated by effects on tubulin polymerization activity can be evaluated by testing the ability of an estradiol derivative to inhibit tubulin polymerization and microtubule assembly in vitro. Microtubule assembly is followed in a Gilford recording spectrophotometer (model 250 or 2400S) equipped with electronic temperature controllers. A reaction mixture (all concentrations refer to a final reaction volume of 0.25 μl ) contains 1.0M monosodium glutamate (pH 6.6), 1. omg/ml (10 μM) tubulin, 1.0 mM MgCl2, 4% (v/v) dimethlylsulfoxide and 20-75 μM of a composition to be tested. The 0.24 ml reaction mixtures are incubated for 15 min. at 37° C. and then chilled on ice. After addition of 10 μl 2.5 mM GTP, the reaction mixture is transferred to a cuvette at 0° C., and a baseline established. At time zero, the temperature controller of the spectrophotometer is set at 37° C. Microtubule assembly is evaluated by increased turbity at 350 nm. Alternatively, inhibition of microtubule assembly can be followed by transmission electron microscopy as described in Example 2 below.
- Other such assays include counting of cells in tissue culture plates or assessment of cell number through metabolic assays or incorporation into DNA of labeled (3H-thymidine) or immuno-reactive (BrdU) nucleotides. In addition, antiangiogenic activity may be evaluated through endothelial cell migration, endothelial cell tubule formation, or vessel outgrowth in ex-vivo models such as rat aortic rings.
- Indications
- The invention can be used to treat any disease characterized by abnormal cell mitosis. Such diseases include, but are not limited to: abnormal stimulation of endothelial cells (e.g., atherosclerosis), solid tumors and tumor metastasis, benign tumors, for example, hemangiomas, acoustic neuromas, neurofribomas, trachomas, and pyogenic granulomas, vascular malfunctions, abnormal wound healing, inflammatory and immune disorders, Bechet's disease, gout or gouty arthritis, abnormal angiogenesis accompanying: rheumatoid arthritis, psoriasis, diabetic retinopathy, and other ocular angiogenic diseases such as retinopathy of prematurity (retrolental fibroplasic), macular degeneration, corneal graft rejection, neuroscular glacoma and Oster Webber syndrome.
- In addition, the invention can be used to treat a variety of post-menapausal symptoms, including osteoporosis, cardiovascular disease, Alzheimer's disease, to reduce the incidence of strokes, and as an alternative to prior estrogen replacement therapies. The compounds of the present invention can work by estrogenic and non-estrogenic biochemical pathways.
- Improved Estradiol Derivative Synthesis
- Known compounds that are used in accordance with the invention and precursors to novel compounds according to the invention can be purchased, e.g., from Sigma Chemical Co., St. Louis, Steraloids and Research Plus. Other compounds according to the invention can be synthesized according to known methods from publicly available precursors.
- The chemical synthesis of estradiol has been described (Eder, V. et al., Ber 109, 2948 (1976); Oppolzer, D. A. and Roberts, D A. Helv. Chim. Acta. 63, 1703, (1980)). Synthetic methods for making seven-membered rings in multi-cyclic compounds are known (Nakamuru, T. et al. Chem. Pharm. Bull. 10, 281 (1962); Sunagawa, G. et al. Chem. Pharm. Bull. 9, 81 (1961); Van Tamelen, E. E. et al. Tetrahedren 14, 8-34 (1961); Evans, D. E. et al. JACS 103, 5813 (1981)). Those skilled in the art will appreciate that the chemical synthesis of estradiol can be modified to include 7-membered rings by making appropriate changes to the starting materials, so that ring closure yields seven-membered rings. Estradiol or estradiol derivatives can be modified to include appropriate chemical side groups according to the invention by known chemical methods (The Merck Index, 11th Ed., Merck & Co., Inc., Rahway, N.J. USA (1989), pp. 583-584).
- Analogs of 2ME2 or 2-ethoxyestradiol containing 7 membered rings can be modified to include appropriate chemical side groups according to the invention by known chemical methods (see for example, Miller, T. A.; Bulman, A. L.; Thompson, C. D.; Garst, M. E.; Macdonald, T. L. “Synthesis and Structure-Activity Profiles of A-Homoestranes, the Estratropones.” J. Med. Chem., 1997, 40, 3836-3841; Miller, T. A.; Bulman, A. L.; Thompson, C. D.; Garst, M. E.; Macdonald, T. L. “The Synthesis and Evaluation of Functionalized Estratropones-Potent Inhibitors of Tubulin Polymerization.” Bioorg. Med. Chem. Letters, 1997, 7, 1851-1856; and Wang, Z.; Yang, D.; Mohanakrishnan, A. K.; Fanwick, P. E.; Nampoothiri, P.; Hamel, E.; Cushman, M. “Synthesis of B-Ring Homologated Estradiol Analogs that Modulate Tubulin Polymerization and Microtubule Stability.” J. Med. Chem., 2000, 43, 2419-2429. These articles do not utilize ring closure strategies to make the seven membered ring, rather they use a ring expansion strategy. The Cushman article explores B-Ring expanded analogs whereas the other articles deal with the expanded the A-ring.)
- The synthetic pathways used to prepare the derivatives of the present invention are based on modified published literature procedures for estradiol derivatives and dimethylenamines (Trembley et al., Bioorganic & Med. Chem. 1995 3, 505-523; Fevig et al:, J. Org. Chem., 1987 52, 247-251; Gonzalez et al., Steroids 1982, 40, 171-187; Trembley et al., Synthetic Communications 1995, 25, 2483-2495; Newkome et al., J. Org. Chem. 1966, 31, 677-681; Corey et al Tetrahedron Lett 1976, 3-6; and Corey et. al., Tetrahedron Lett, 1976, 3667-3668]. The modifications are provided in Example 1 below. Initial screening of epimeric 16-ethyl-2-methoxyestradiol and related analogues showed that it is about equipotent to 2-methoxyestradiol in inhibition of HUVEC cell proliferation in vitro.
- Administration
- The compositions described above can be provided as physiologically acceptable formulations using known techniques, and these formulations can be administered by standard routes. In general, the combinations may be administered by the topical, oral, rectal or parenteral (e.g., intravenous, subcutaneous or intramuscular) route. In addition, the combinations may be incorporated into biodegradable polymers allowing for sustained release, the polymers being implanted in the vicinity of where delivery is desired, for example, at the site of a tumor. The biodegradable polymers and their use are described in detail in Brem et al., J. Neurosurg. 74:441-446 (1991). The dosage of the composition will depend on the condition being treated, the particular derivative used, and other clinical factors such as weight and condition of the patient and the route of administration of the compound. However, for oral administration to humans, a dosage of 0.01 to 100 mg/kg/day, preferably 0.01-1 mg/kg/day, is generally sufficient.
- The formulations include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intraocular, intratracheal, and epidural) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the active ingredient and the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into associate the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion and as a bolus, etc.
- A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent. Molded tables may be made by molding, in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally coated or scored and may be formulated so as to provide a slow or controlled release of the active ingredient therein.
- Formulations suitable for topical administration in the mouth include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the ingredient to be administered in a suitable liquid carrier.
- Formulations suitable for topical administration to the skin may be presented as ointments, creams, gels and pastes comprising the ingredient to be administered in a pharmaceutical acceptable carrier. A preferred topical delivery system is a transdermal patch containing the ingredient to be administered.
- Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
- Formulations suitable for nasal administration, wherein the carrier is a solid, include a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose. Suitable formulations, wherein the carrier is a liquid, for administration, as for example, a nasal spray or as nasal drops, include aqueous or oily solutions of the active ingredient.
- Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such as carriers as are known in the art to be appropriate.
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) conditions requiring only the addition of the sterile liquid carrier, for example, water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tables of the kind previously described.
- Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the administered ingredient.
- 2-Methoxyestradiol is an endogenous metabolite of estradiol (E2) that has potent anti-proliferative activity and induces apoptosis in a wide variety of tumor and non-tumor cell lines. When administered orally, it exhibits anti-tumor and anti-proliferative activity with little or no toxicity. In vitro data suggests that 2-methoxyestradiol does not engage the estrogen receptor for its anti-proliferative activity and is not estrogenic over a wide range of concentrations, as accessed by estrogen dependant MCF-7 cell proliferation. However, the presence of demethylases in vivo may metabolize this compound to 2-hydroxyestradiol, which has been shown to be estrogenic by several approaches. The present invention improves the bioavallibility of estradiol or 2-methoxyestradiol and to reduces the formation of estrogenic 2-methoxyestradiol metabolities. The present invention modifies estradiol or 2-methoxyestradiol in such a way that the molecule can not be converted into an uterotropic derivative.
- One embodiment of the invention modifies the methyl ether of 2-methoxyestradiol so that it can not be a substrate for demethylase. Additionally, it has been demonstrated (Cushman et al J. Med. Chem. 1995, 38, 2041-2049) that other electron-rich groups at the 2-position of estradiol (propyne, propene, ethoxy) have good anti-proliferative activity in vitro. It is disclosed that modifications at C-2 of estradiol such as formyl, acetyl, methanol, 1-ethanol, 2-ethanol, amino, alkylamino, dialkyl amino, methyleneamine, methylene alkyl amine and methylene dialkylamine, and alkyl amide are be anti-proliferative and anti-angiogenic agents have reduced or removed uterotropic activity. Alkyl is defined as any carbon chain up to 6 carbons in length that is branched or straight. Listed below in Table 1 are data of 2-modified estradiol derivatives in HUVEC, MDA-MB-231 and MCF7 proliferation data. The synthetic paths for preparation of these analogs can be found in Pert et al Aust. J. Chem. 1989, 42, 405-419. Lovely et al Tetrahedron Lett. 1994, 35, 8735-8738. Gonzalez et al Steroids 1982, 40, 171-187. Nambara et al Chem. Pharm. Bull. 1970, 18, 474-480. Cushman et al J. Med. Chem. 1995, 38, 2041-2049 and methods developed in-house and are discussed below.
TABLE 1 HUVEC MDA-MB-231 MCF7 Proliferation Compound (IC50 μM) (IC50 μM) Index E2 NA NA 13.1 2ME2 0.5 0.9 4.4 2-methyl 10 >25 7.4 hydroxy-E2 2-formyl-E2 8 >25 5.4 2-acetyl-E2 18 9 4.4 - All of the 2-modified analogs presented in Table 1 have significantly less estrogenic activity (compared to estradiol) as represented by their proliferation index in estrogen dependant MCF-7 cells. All of these analogs have the capacity to from a hydrogen bond with the hydroxy group at position 3 and this may be the reason for their relatively low estrogenic character compared to estradiol. Both the 2-methylhydroxy and 2-formyl derivatives had good antiproliferative activity (IC50<10 microM) in HUVEC cells, whereas the 2-acetyl had poor activity in the same assay. In contrast, 2-methylhydroxy and 2-formyl were inactive in breast tumor MDA-MB-231 cells while 2-acetyl E2 had good activity in this cell line.
- Although not wishing to be bound by theory, molecular modeling suggests that there may be a hydrogen bond that forms between the 3-hydroxy group and the methoxy group of 2-methoxyestradiol. This interaction may be important for both 2-methoxyestradiol's anti-proliferative and anti-angiogenic action as well as its non-estrogenic activity. It is claimed that any group that can be placed at
position 2 of estradiol and has the potential to form a hydrogen bond with the 3-hydroxy group is an anti-proliferative and anti-angiogenic agent that lacks estrogenic activity. - It should be understood that in addition to the ingredients, particularly mentioned above, the formulations of this invention may include other agents convention in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include flavoring agents.
- Experimental Data
-
- a) Rb and Ro are independently —H, —Cl, —Br, —I, —F, —CN, lower alkyl, —OH, —CH2—OH, —NH2; or N(R6)(R7), wherein R6 and R7 are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;
- b) Ra is —N3, —C≡N, —C≡C—R, —C═CH—R, —R—C═CH2, —C≡CH, —O—R, —R—R1, or —O—R—R1 where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R1 is —OH, —NH2, —Cl, —Br, —I, —F or CF3;
- c) Z′ is >CH, >COH, or >C—R2—OH, where R2 is an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- d) >C—Rg is >CH2, >C(H)—OH, >C═O, >C═N—OH, >C(R3)OH, >C═N—OR3, >C(H)—NH2, >C(H)—NHR3, >C(H)—NR3R4, or >C(H)—C(O)—R3, where each R3 and R4 is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- e) Rh1 and Rh2 are independently H, or a straight or branched chain alkyl, alkenyl or alkynyl with up to 6 carbons that is unsubstituted, or substituted with one or more groups selected from a hetero functionality (O—Y, N—Y or S—Y) where Y is H, Me or an alkyl chain up to 6 carbons; a halo functionality (F, Cl, Br or I); an aromatic group optionally substituted with hetero, halo or alkyl; or Rh1 and Rh2 are independently an aromatic group optionally substituted with hetero, halo or alkyl, provided that both Rh1 and Rh2 are not H;
- f) Z″ is >CH2, >C═O, >C(H)—OH, >C═N—OH, >C═N—OR5, >C(H)—C═N, or >C(H)—NR5R5, wherein each R5 is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- and wherein all monosubstituted substituents have either an α or β configuration.
- Lower alkyl is defined as a small carbon chain having 1-8 carbon atoms. The chain may be branched or unbranched.
- Synthesis of 2-ME Derivatives and Modifications at the 16 Position
- Synthesis of the 2-ME derivatives described herein is within the capability of one ordinarily skilled in the art. A specific description of the synthesis of the 2-ME derivatives having modifications at the 2 and 6 positions and analogs discussed herein can be found in M. Cushman, H-M. He, J. A. Katzenellenbogen, C. M. Lin and E. Hamel, Synthesis, antitubulin and antimitotic activity, and cytotoxicity of 2-methoxyestradiol, and endogenous mammalian metabolite of estradiol that inhibits tubulin polymerization by binding to the colchicine binding site, J. Med. Chem., 38(12): 2042 (1995); and M. Cushman, H-M. He, J. Katzenellenbogen, R. Varma, E. Hamel, C. Lin, S. Ram and Y. P. Sachdeva, Synthesis of analogs of 2-methoxyestradiol with enhanced inhibitory effects on tubulin polymerization and cancer cell growth, J. Med. Chem. 40(15): 2323 (1997).
- The synthetic pathways used to prepare the derivatives of the estradiol derivatives modified at the 16 position of the present invention are based on modified published literature procedures for estradiol derivatives cited earlier. Examples of the modifications are provided in Examples 2 through 23 below.
- Preparation of 3-Benzyl-2-methoxyestradiol
- 2-Methoxyestradiol (10.09 g, 33.4 nmmol) and potassium carbonate (22 g, 278 mmol) were suspended in anhydrous ethanol and cooled to 0° C. Benzyl bromide (11.4 mL, 95.8 mmol) was added dropwise, and following the addition, the mixture was brought to reflux for 8 h. The solution was cooled to room temperature (rt), and the solvent was removed via rotoevap. The resulting residue was diluted with approximately 200 ml water, and washed with ethyl acetate (3×200 mL). The combined organics were washed with water (200 mL), sodium bicarbonate (saturated (satd), 200mL) and brine (200 mL). Dry with sodium sulfate, filter and roto-evaporation (rotoevap). Product was dried under vacuo with occasional gentle heating using a heat gun to give a yellowish glass (13.54 g, quanitative yield) and used without further purification.
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.29-7.53 (m, 5H), 6.88 (s, 1H), 6.65 (s, 3H), 5.11 (s, 2H), 3.87 (s, 3H), 3.7 (t, J=8 Hz, 1H), 0.80 (s, 3H). FT-IR (neat) 3341, 2920, 2864, 1605, 1513, 1453, 1254, 1211, 1117, 1022 cm−1.
- Preparation of 3-Benzyl-2-methoxyestrone
- Oxalyl chloride (38 mmol, 19 mL, 2M, methylene chloride) was added to anhydrous methylene chloride (25 mL) and cooled to −46° C. Methyl sulfoxide (5.40 mL, 76 mmol) was added dropwise, and the mixture was stirred for 2 minutes. 3-Benzyl-2-methoxyestradiol in methylene chloride/methyl sulfoxide (10 mL/15 mL) and added within 5 minutes and the resulting mixture was stirred for 1 h. Triethyl amine (170 mmol, 23.5 mL) was added drop-wise, stirred 5 minutes and warmed to rt. Water (˜200 mL) was added and the mixture was washed with methylene chloride (3×200 mL). The combined organics were washed with water (200 mL), dilute HCl (1% aq., 200 mL), sodium carbonate (satd, 200 mL) and brine (200 mL). The organics were dried with magnesium sulfate, filtered and rotoevaped to give a white solid. The solid was crystallized with hot ethanol to give white crystals (9.94g, 25.5 mmol, 76% overall yield from 2-methoxyestradiol).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.28-7.48 (m, 5H), 6.86 (s, 1H), 6.66 (s, 1H), 3.88 (s, 3H), 0.94 (s, 3H). IR (neat) 2920, 1731, 1519, 1202, 1012 cm−1.
- Representative Preparation of 16α-alkyl-3-benzyl-2-methoxyestrone
- Lithium diisopropyl amide (2M, Aldrich, heptane/THF/ethylbenzene) was dissolved in THF and cooled to −78° C., and 3-benzyl-2-methoxyestrone in THF (10 mL) was added dropwise. Following addition, the mixture was warmed to 0° C. and stirred 1 hour (h). The mixture was then cooled to −78° C. and DMPU (1 mL) followed by crotyl bromide (205 μL, 2.0 mmol) were added dropwise. The mixture was warmed to rt over 4 h. The reaction was quenched by carefully adding water (100 mL) and washing with ethyl acetate (2×100 mL). The combined organics were washed with water (100 mL) and brine (100 mL). The solution was dried with magnesium sulfate, filtered and rotoevaped. The crude product was purified using hexane/ethyl acetate (9:1) SiO2 Biotage FLASH apparatus. 680 mg (1.53 mmol) of product was obtained and approximately 121 mg (0.31 mmol) of starting material was recovered (90% yield based on recovered starting material). Diastereomeric ratio of 16 α/β is approximately 2:1 (s H18 signals at 0.88, 0.79 ppm).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.28-7.48 (m, 5H), 6.86 (s, 1H), 6.66 (s, 1H), 5.34-5.59 (m, 2H), 5.13 (s, 2H), 3.88 (s, 3H), 0.87 & 0.97 (s, total 3H, ratio 1:2).
- Representative Preparation of 16β-alkyl-3-benzyl-2-methoxyestrone
- 3-Benzyl-2-methoxyestrone (1.175 g, 3.0 mmol) was dissolved in anhydrous THF (15 mL), cooled to −78° C. and lithium diisopropyl amide (2M Aldrich, heptane/THF/ethylbenzene) was added dropwise and stirred 1 h. DMPU (1 mL) followed by crotyl bromide (302 μL) were added and the mixture warmed to rt over 24 h. Workup as above and purify using hexane:ethyl acetate (4:1) SiO2 flash column gave 492 mg purified product (1.1 mol, 37% yield).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.28-7.48 (m, 5H), 6.86 (s, 1H), 6.66 (s, 1H), 5.62-5.34 (m, 2H), 5.13 (s, 2H), 3.89 (s, 3H), 0.98 and 0.87 (s, 3H total, ratio 2:1). IR (neat) 2928, 2854, 1732, 1606, 1508, 1452, 1215, 1016 cm−1.
- Representative Preparation of 16β-alkyl-3-benzyl-2-methoxyestrone
- 3-benzyl-16-carbomethoxy-2-methoxyestrone (0.840 g, 1.87 mmol), potassium hydride (1.5 g, 10.9 mmol, 30% mineral oil dispursion, washed in hexanes) and 18-crown-6 (120 mg, 0.4 mmol) was mixed in THF (40 mL) and refluxed for 1 h. The mixture was cooled to rt, and allyl bromide (537 μL, 6.2 mmol) was added and the mixture was refluxed for 18 h. After cooling to rt, the reaction was quenched by carefully adding approximately 2 ml of water with stirring, then adding an additional 100 mL water. This mixture was washed with ethyl acetate (2×100 mL) and the combined organics were washed with brine (100 mL). The organics were dried with magnesium sulfate, filtered and rotoevaped. Purification using 85:5 hexanes:ethyl acetate SiO2 Biotage FLASH apparatus yielded 697 mg of product (1.42 mol, 76% yield).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.28-7.48 (m, 5H), 6.85 (s, 1H), 6.66 (s, 1H), 566-5.79 (m, 1H), 5.15-5.20 (m, 2H), 5.13 (s, 2H), 3.88 (s, 3H), 3.75 (s, 3H), 0.99 (s, 3H).
- Representative decarboxylation of 16-alkyl-16-carbomethoxy-3-benzyl-2-methoxyestrone
- 16-allyl-16-carbomethoxy-3-benzyl-2-methoxyestrone (697 mg, 1.42 mmol), lithium chloride (1.15 g, 27 mmol), water (485 μL, 27 mmol) were dissolved in DMF (63 mL) and refluxed for 20 h. Cool to rt, add 1N HCl (100 mL) and wash with ether (2×100 mL) the combined organics were washed with water (100 mL), and brine 100 mL), dry with magnesium sulfate, filter and rotoevap. Purification by 85:15 hexanes:ethyl acetate SiO2 Biotage Flash apparatus gave 271 mg product and 189 mg recovered starting material. Starting material was resubjected to the reaction (308 mg LiCl, 132 μL, water, 17 mL DMF) for 28 h and worked up as above to give 130 mg product. Overall yield for reaction was 66% (401 mg, 0.93 mmol).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.28-7.48 (m, 5H), 6.85 (s, 1H), 6.65 (s, 1H), 5.69-5.88 (m, 1H), 5.13 (s, 2H), 5.00-5.08 (m, 2H), 5.88 (s, 3H), 0.98 nd 0.88 (s, total 3H, ratio 1:1.4). FT-IR (neat), 2925, 2855, 1726, 1514, 1214, 1103 cm−1.
- Preparation of 16-methane-dimethylenamine-3-benzyl-2-methoxyestrone
- 3-benzyl-2-methoxyestrone (1.51 g, 3.87 mmol) was suspended in tert-butoxy bis(dimethylamino)methane (1.64 mL, 8.13 mmol) and heated in an oil bath (155° C.) for 1.5 h, during which time the steroid dissolved. The reaction mixture was cooled to rt, and poured into ice water (100 mL) and washed with methylene chloride (2×100 mL). The organics were washed with brine (100 mL) dried with magnesium sulfate, filtered and rotoevaped to give product which was used without further purification (1.82 g, quanitative yield).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.23-7.47 (m, 5H), 6.87 (s, 1H), 6.64 (s, 1H), 5.12 (s, 2H), 3.88 (s, 3H), 3.07 (s, 6H), 0.91 (s, 3H).
- Preparation of 16-carbomethoxy-3-benzyl-2-methoxy estrone
- 3-Benzyl-2-methoxyestrone (1.6113 g, 2.978 mmol) was dissolved in THF (15 mL), cooled to −78° C. and lithium diisopropyl amide (2M, Aldrich, Heptane/THF/ethylbenzene) was added dropwise and stirred for 1 h. Methyl cyanoforrnate (237 μL, 3 mmol) in DMPU (1 mL) was added and the mixture warmed to rt over 18 h. Water (100 ml) was carefully added, and the mixture was washed with ethyl acetate (3×100 mL) and the combined organics were washed with brine (100 mL), dried with sodium sulfate, filtered and rotoevaped. Final purification of product using hexane:ethyl acetate (85:15) then switching to hexane:ethyl acetate (75:25) SiO2 flash column yielded 806 mg product (1.8 mmol, 60%).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.28-7.48 (m, 5H), 6.85 (s, 1H), 6.66 (s, 1H), 5.13 (s, 2H), 3.88 (s, 3H), 3.78 (s, 3H), 3.23 (dd, J =9, 10 Hz, 1H), 1.0 (s, 3H). FT-IR (neat) 2929, 2860, 1750, 1723, 1604, 1508, 1211, 1014 cm1.
- Representative Procedure for Preparation of 16-alkyl-3-benzyl-2-methoxyestra-17β-diol
- 16α-crotyl-3-benzyl-2methoxyesttone (680 mg, 1.53 mmol) was dissolved in anhydrous THF (10 mL), and cooled to −78° C. Lithium aluminum hydride (3.06 mmol, 116 mg) was added and the solution was stirred for 2 h. The reaction was quenched by carefully adding water (2 mL) and warming to rt, then adding additional 50 mL portion of water. The mixture was washed with ethyl acetate (2×50 mL) and the combined organics were washed with water (50 mL), brine (50 mL), dried with magnesium sulfate, filtered and rotoevaped. The mixture was purified with 3:1 hexane:ethyl acetate SiO2 Biotage FLASH apparatus to give 500 mg purified product (1.12 mmol, 73% yield).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 7.28-7.48 (m, 5H), 6.87 (s, 1H), 6.64 (s, 1H), 5.47-5.56 (m, 2H), 5.12 (s, 2H), 3.88 (s, 3H), 3.8 (d, J=9 Hz) and 3.33 (d, J=8Hz) total 1H, ratio 1:1.7, 0.84 and 0.81 (s, 3H total).
- Preparation of 16-methanol-3-benzyl-2-methoxyestradiol
- Reaction procedure and work up as above, (used 806 mg, 1.8 mmol 16-carbomethoxy-3-benzyl-2-methoxyestrone), except warm to rt for 2 h before quenching. Purify final product with 3:2 hexane:ethyl acetate SiO2 flash column. Obtain 304 mg β isomer, 51 mg α isomer which were separated by chromatography. Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ Major isomer 7.28-7.48 (m, 5H), 6.87 (s, 1H), 6.64 (s, 1H), 5.12 (s, 2H), 3.97 (d, J=10 Hz), 3.88 (s and obscured d, 4H), 3.67 (dd, J=4, 7Hz, 1H), 0.87 (s, 3H). Minor isomer 7.28-7.47 (m, 5H), 6.86 (s, 1H), 6.64 (s, 1H), 3.88 (s, 3H), 3.83 (d, J=14Hz, 1H), 3.69 (t, J=9Hz, 1H), 3.54 (d, J=7Hz, 1H), 0.87 (s, 3H).
- Representative Debenzylation of 16-alkyl-3-benzyl-2-methoxyestradiol
- 16α-crotyl-3-benzyl-2-methoxyestradiol (500 mg, 1.12 mmol) was dissolved in ethyl acetate (25 mL) in Parr reaction bottle. The bottle was flushed with argon, and Pd/C (10%, 2.5 g) was added. The bottle was fitted to a Parr hydrogenator, filled and purged with hydrogen five times, pressurized to 50 psi, and agitated for 24 h. The mixture was filtered through a celite pad, rotoevaped and purified with a 3:1 hexane ethyl acetate SiO2 flash column. Obtain 358 mg product (1.0 mmol, 89%).
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.81 (s, 1H), 6.66 (s, 1H), 3.87 (s, 3H), 3.76 (d, J=10 Hz) and 3.29 (d, J=8Hz) (total 1H, ratio 1:2), 0.82 and 0.79 (s, 3H). FT-IR (neat) 3245, 2914, 1606, 1523, 1414, 1258, 1028 cm−1. Analysis calculated (Anal. Calcd) for C20H34O3: C, 77.44; H, 9.56. Found: C, 76.64; H, 9.51.
- 16β-methyl-2methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.81 (s, 1H), 6.66 (s, 1H), 3.87 (s, 3H), 3.73 (d, J=10 Hz) and 3.23 (d, J=8 Hz) (total 1H, 2:1), 0.83 and 0.81(s, 3 H total). Anal. Calcd for C20H28O3, 1/4 H2O: C, 74.85; H, 8.95. Found: C, 74.93; H, 8.94.
- 16α-methyl-2methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.81 (s, 1H), 6.66 (s, 1H), 3.87 (s, 3H), 3.23 (d, J=7 Hz) (s, 1H), 0.81 (s, 3 H). Anal. Calcd for C20H28O3, 1/4 H2O: C, 74.85; H, 8.95. Found: C, 74.98; H, 8.65.
- Racemic 16-ethyl-2-methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.82 (s, 1H), 6.66 (s, 1H), 3.88 (s, 3H), 3.76 (d, J=9 Hz) and 3.30 (d, J=10 Hz), (1H total, ratio 1:1), 0.83 and 0.79 (s, 3H total). FT-IR (neat) 3214, 2918, 1605, 1522, 1229, 1201, 1024 cm−1. Anal. Calcd for C21H30O3: C, 76.33; H, 9.15. Found: C, 76.18; H, 9.16.
- 16α-n-propyl-2-methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.81 (s, 1H), 6.66 (s, 1H), 5.43 (s, 1H), 3.87 (s, 3H), 3.29 (t, J=7 Hz, 1H), 0.95 (t, J=7 Hz, 3H), 0.83 and 0.80 (s, total 3H, ratio 7.3:1). Anal. Calcd for C22H32O3: C, 76.69; H, 9.37. Found: C, 76.55; H, 9.44.
- 16β-n-propyl-2-methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.81 (s, 1H), 6.66 (s, 1H), 3.87 (s, 3H), 3.76 (d, J=10 Hz) and 3.29 (t, J=7 Hz) (total 1H, ratio 2:1), 0.95 (t, J=7 Hz, 3H), 0.83 and 0.80 (s, total 3H). FT-IR (neat) 3411, 2923, 1504, 1446, 1267, 1202, 1118, 1024 cm−1. Anal. Calcd for C22H32O3, 1/4 H2O: C, 75.71; H, 9.39. Found: C, 75.61; H, 9.33.
- 16β-n-butyl-2-methoxyestradiol
- Selected spectral data: 1 H-NMR (300 MHz, CDCl3) δ 6.81 (s, 1H), 6.66 (s, 1H), 5.43 (s, 1H), 3.88 (s, 3H), 3.76 (d, J=10 Hz) 3.29 (d, J=8 Hz) (total 1H, ratio 2.6:1), 0.83 and 0.80 (s, total 3H). FT-IR (neat) 3221, 2921, 1594, 1504, 1416, 1265, 1200, 1021 cm−1. Anal. Calcd for C23H34O3: C, 77.04; H, 9.56. Found: C, 77.06; H, 9.65.
- 16β-isobutyl-2-methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.81 (s, 1H), 6.66 (s, 1H), 5.43 (s, 1H), 3.88 (s, 3H), 3.77 (dd, J=9, 10 Hz) and 3.26 (t, J=7 Hz) (total 1 H, ratio 2:1), 0.84 and 0.80 (s, total 3H). IR (neat) 3525, 2913, 1506, 1258, 1202, 1026 cm−1. Anal. Calcd for C22H30O3: C, 76.69; H, 9.37. Found: C, 76.82; H, 9.47.
- 16β-methyl(dimethyl amine)-2-methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.81 (s, 1H), 6.65 (s, 1H), 3.88 (s) and 3.85 (obscured d) (total 4H), 2.28 (s, 6H), 0.87 (s, 3H). Anal. Calcd for C22H33O3N, 1/4 H2O: C, 72.59; H, 9.28; N, 3.85. Found: C, 72.80; H, 9.17; N, 3.66.
- 16,β-methanol-2-methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.78 (s, 1H), 6.61 (s, 1H), 3.92 (d, J=11Hz, 1H), 3.84 (s, 3H), 3.80 (d, J=10 Hz, 1H), 3.63 (d, J=8, 11Hz, 1H), 0.83 (s, 3H). FT-IR (neat) 3283, 3091, 2919, 1602, 1513, 1445, 1204, 1119, 1013 cm−1. Anal. Calcd for C20H28O4: C, 72.25; H, 8.49. Found: C, 72.24; H, 8.48.
- 16β-methanol-2-methoxyestradiol
- Selected spectral data: 1H-NMR (300 MHz, CDCl3) δ 6.77 (s, 1H), 6.61 (s, 1H), 3.84 (s, 3H), 3.84 (dd, J=7, 8 Hz, 1H), 3.61 (dd, J=9, 11 Hz, 1H), 3.45 (d, J=8 Hz, 1H), 0.83 (s, 3H).
- MDA-MB-231 In Vitro Cellular Proliferation Inhibition
- MDA-MB-231 Cells and Culture Conditions
-
FIG. 1 illustrates the antiproliferative activity in cells and tumor by 2-methoxyestradiol compounds of the present invention which are modified at the 16 position. - MDA-MB-231 human breast carcinoma cells were grown in DMEM containing 10% FCS (Hyclone Laboratories, Logan Utah) and supplemented with 2 mM L-Glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin (Irvine Scientific, Santa Anna, Calif.).
- Proliferation Assays
- MDA-MB-231 cells were plated at 5000 cells/ml in 96 well plates. After allowing the cells to attach overnight, the appropriate fresh media were applied containing differing concentrations of 2-ME2 or derivatives thereof, as described below. Drug was dissolved in DMSO (Sigma, St. Louis, Mo.) and added to the wells in a volume of 200 μl. Cells were incubated for two days at 37° C.; at 32 h BrdU was added. BrdU cell proliferation assay (a nucleotide analogue with a fluorescein tag that is incorporated into DNA) was performed as described by the manufacturer (Roche). Each condition was prepared in triplicate and the experiments were carried out a minimum of two times. Results are presented and means ±SE.
- HUVAC In Vitro Cellular Proliferation Inhibition
- HUVAC Cells and Culture Conditions
- Proliferation Assays
- HUVEC cells were plated at 5000 cells/ml in 96-well plates. After allowing the cells to attach overnight, the cells were washed with PBS and incubated in the absence of growth factor for 24 h (EBM, 2% FCS, Clonetics). Cells were treated with increasing concentrations of drug in EBM containing 2% FCS and 10 ng.ml bFGF for 48 h at 37° C. Drug preparation, volumes added and BrdU proliferation assay were performed as indicated above.
- Results
- The breast cancer cell line activities and the cell panels most sensitive to selected analogs are shown in Table 2.
TABLE 2 α/β ratio at HUVEC MDA-MB-231 R position 16 IC50 (μM) IC50 (μM) H N/A 0.5 0.9 methyl (—CH3) All alpha <0.5 <0.5 methyl 1:2 1.3 5 ethyl (—CH2CH3) 1:1 2 3 n-propyl 7.3:1 6 >50 (—CH2CH2CH3) n-propyl 1:2 9 36 1:2 7.5 40 n-butyl 2:1 25 82 (—CH2CH2CH2CH3) n-butyl 1:2.6 9 39 methanol All alpha 15 22 (—CH2OH) methanol All beta 5 50 All beta 9 22 - 2-Methoxyestradiol is a potent anti-angiogenic and anti-tumor agent. In order to assess the biological activity of modifications at position 16, the anti-proliferative activity of these analogs was evaluated on human umbilical vein endothelial cells (HUVEC) and breast carcinoma cell line, MDA-MB-231 as models for the anti-angiogenic and anti-tumor activity, respectively. It was found that a moderate decrease (approximately 18 fold) in antiproliferative activity occurs as steric bulk increased (note trend from R=Et to R=Bu). The most active compound in this series is 16α-methyl, which has greater activity than 2-methoxyestradiol.
- The MDA-MB-231 tumor cell line, has a much greater sensitivity to substitutions at position 16 compared to HUVEC cells. Any group at position 16 larger than ethyl has a significant decrease in antiproliferative activity (IC50>22 μM). Of the active compounds, 16α-methyl has better activity than 2-methoxyestradiol, whereas 16β-methyl (which is a 1:2 mixture of α:β, so the presence of the α isomer may account for this activity) has about 5-fold less activity than 2-methoxyestradiol, and racemnic 16-ethyl has about a 3-fold drop in activity compared to 2-methoxyestradiol.
- These data suggest that it is possible to design compounds that are selective anti-angiogenic agents. For example, 16α-propyl is greater than ten-fold less active in inhibiting tumor growth while it has good activity inhibiting endothelial cell proliferation. Other examples include: 16β-propyl (4-fold difference), 16β-i-butyl (5-fold difference), 16β-n-butyl (4-fold difference) and 16β-methanol (10-fold difference). Additionally, a small alkyl group at position 16 can be added without significantly impacting the anti-proliferative activity of the molecule.
- All of the publications mentioned herein are hereby incorporated by reference in their entireties. The above examples are merely demonstrative of the present invention, and are not intended to limit the scope of the appended claims.
Claims (9)
1-2. (canceled)
3. The method of claim 10 , wherein:
Rh1 and Rh2 are independently H and Et.
4. The method of claim 10 , wherein:
Rh1 and Rh2 are independently H and n-Pr.
5. The method of claim 10 , wherein:
Rh1 and Rh2 are independently H and i-Bu.
6. The method of claim 10 , wherein:
Rh1 and Rh2 are independently H and CH2OH.
7. The compound method of claim 10 , wherein:
Rh1 and Rh2 are independently H and n-Bu.
8. The method of claim 10 , wherein:
Rh1 and Rh2 are independently H and Me.
9. The method of claim 10 , wherein:
Rh1 and Rh2 are independently H and (CH2)n—C(Me)2.
10. A method of inhibiting angiogenesis in a human or an animal comprising administering to the human or animal an angiogenesis inhibiting amount of a compound of the formula:
wherein:
a) Ra is —N3, —C≡N, —C≡C—R, —C═CH—R, —R—C═CH2, —C≡CH, —O—R, —R—R1, or —O—R—R1 where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R1 is —OH, —NH2, —Cl, —Br, —I, —F or CF3;
b) Z′ is >CH or >C—R2—OH, where R2 is an alkyl or branched alkyl with up to 10 carbons or aralkyl;
c) >C—Rg is >CH2, >C(H)—OH, >C═O, >C═N—OH, >C(R3)OH, >C═N—OR3, >C(H)—NH2, >C(H)—NHR3, >C(H)—NR3R4, or >C(H)—C(O)—R3, where each R3 and R4 is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl;
d) Rh1 and Rh2 are independently H, or a straight or branched chain alkyl, alkenyl or alkynyl with up to 6 carbons that is unsubstituted, or substituted with one or more groups selected from a hetero functionality (O—Y, N—Y or S—Y) where Y is H, Me or an alkyl chain up to 6 carbons; a halo functionality (F, Cl, Br or I); an aromatic group optionally substituted with hetero, halo or alkyl; or Rh1 and Rh2 are independently an aromatic group optionally substituted with hetero, halo or alkyl, provided that both Rh1 and Rh2 are not H; and
wherein all monosubstituted substituents have either an α or β configuration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/347,880 US20060135796A1 (en) | 2000-08-18 | 2006-02-06 | Antiangiogenic agents |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64132700A | 2000-08-18 | 2000-08-18 | |
US09/779,331 US6995278B2 (en) | 2000-08-18 | 2001-02-08 | Antiangiogenic agents |
US11/347,880 US20060135796A1 (en) | 2000-08-18 | 2006-02-06 | Antiangiogenic agents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/779,331 Continuation US6995278B2 (en) | 2000-08-18 | 2001-02-08 | Antiangiogenic agents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060135796A1 true US20060135796A1 (en) | 2006-06-22 |
Family
ID=46277317
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/779,331 Expired - Fee Related US6995278B2 (en) | 2000-08-18 | 2001-02-08 | Antiangiogenic agents |
US11/347,880 Abandoned US20060135796A1 (en) | 2000-08-18 | 2006-02-06 | Antiangiogenic agents |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/779,331 Expired - Fee Related US6995278B2 (en) | 2000-08-18 | 2001-02-08 | Antiangiogenic agents |
Country Status (1)
Country | Link |
---|---|
US (2) | US6995278B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070135400A1 (en) * | 2003-05-28 | 2007-06-14 | Agoston Gregory E | Estradiol derivatives |
US20070176403A1 (en) * | 2006-02-01 | 2007-08-02 | Dennis Calderone | Air adjustable seat |
US20070231410A1 (en) * | 2006-03-20 | 2007-10-04 | Fogler William E | Disease modifying anti-arthritic activity of 2-Methoxyestradiol |
US7381848B2 (en) | 1993-08-06 | 2008-06-03 | The Children's Medical Center Corporation | Estrogenic compounds as anti-mitotic agents |
US20080234243A1 (en) * | 2007-01-31 | 2008-09-25 | Lavallee Theresa M | Method of treating amyloidosis mediated diseases |
US7495089B2 (en) | 1995-10-23 | 2009-02-24 | The Children's Medical Center Corporation | Therapeutic antiangiogenic endostatin compositions |
US7498322B2 (en) | 2004-03-12 | 2009-03-03 | Entremed, Inc. | Antiangiogenic agents |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040214807A1 (en) * | 1993-08-06 | 2004-10-28 | D'amato Robert J. | Estrogenic compounds as anti-mitotic agents |
US20050192258A1 (en) * | 2000-08-18 | 2005-09-01 | Agoston Gregory E. | Antiangiogenic agents |
US6995278B2 (en) * | 2000-08-18 | 2006-02-07 | Entre Med, Inc. | Antiangiogenic agents |
US20070004689A1 (en) * | 2004-03-12 | 2007-01-04 | Agoston Gregory E | Antiangiogenic agents |
JP2007536251A (en) * | 2004-05-04 | 2007-12-13 | チルドレンズ メディカル センター コーポレーション | Methods and compositions for the treatment of pre-eclampsia |
CA2587448A1 (en) * | 2004-11-29 | 2006-06-01 | Entremed, Inc. | A method of administering anti-angiogenic agents and a method of treating disease using same |
WO2007011926A2 (en) * | 2005-07-15 | 2007-01-25 | Children's Medical Center Corporation | Methods for treating and diagnosing complications of premature birth |
US20070185069A1 (en) * | 2005-11-14 | 2007-08-09 | Plum Stacy M | Anti-angiogenic activity of 2-methoxyestradiol in combination with anti-cancer agents |
WO2008103202A2 (en) * | 2006-11-21 | 2008-08-28 | Beth Israel Deaconess Medical Center | Hypoxia related genes and proteins for the treatment and diagnosis of pregnancy related complications |
Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2584271A (en) * | 1948-06-19 | 1952-02-05 | Searle & Co | Steroid derivatives and method for producing the same |
US2846453A (en) * | 1957-05-28 | 1958-08-05 | Searle & Co | Alpha-ring-acylated estrone derivatives, and corresponding alcohols, their esters, and ethers |
US3166577A (en) * | 1956-05-29 | 1965-01-19 | Syntex Corp | 1, 2-dimethyl estrogens and intermediates used in the production thereof |
US3410879A (en) * | 1967-04-12 | 1968-11-12 | American Home Prod | Process for preparing gonahexaenes |
US3470218A (en) * | 1966-12-27 | 1969-09-30 | Allied Chem | New 2-substituted estrogenic steroids |
US3492321A (en) * | 1968-01-22 | 1970-01-27 | Syntex Corp | Cyclopropenyl estra, -1,3,5(10)-trienes |
US3496272A (en) * | 1968-01-23 | 1970-02-17 | American Home Prod | Ester of 3-(2-propynyloxy)-estradiol |
US3562260A (en) * | 1965-08-23 | 1971-02-09 | Ormonoterapia Richter Spa | 2-carbonyl-estratrienes and method of their preparation |
US3956348A (en) * | 1974-02-27 | 1976-05-11 | Schering Aktiengesellschaft | Steroid ether splitting |
US4172132A (en) * | 1977-07-26 | 1979-10-23 | Schering Corporation | 1,3,5(10),6,8,14-19-Nor-pregnahexaenes, their use as anti-psoriatic agents, and pharmaceutical formulations useful therefor |
US4212864A (en) * | 1976-11-26 | 1980-07-15 | Akzona Incorporated | Branched chain and cycloaliphatic esters of the androstane and oestrane series and pharmaceutical compositions containing same |
US4444767A (en) * | 1981-10-27 | 1984-04-24 | Roussel Uclaf | Derivatives of 3-amino-pregn-5-ene |
US4522758A (en) * | 1983-12-22 | 1985-06-11 | Eli Lilly And Company | Method of preparing 2-fluoro-17β-estradiol |
US4552758A (en) * | 1983-12-20 | 1985-11-12 | St. Jude Children's Research Hospital | Human use of avian-human reassortants as vaccines for influenza A virus |
US4634705A (en) * | 1984-06-06 | 1987-01-06 | Abbott Laboratories | Adrenergic amidines |
US4743597A (en) * | 1986-01-27 | 1988-05-10 | Javitt Norman B | Composition comprising an oxygenated cholesterol and use thereof for topical treatment of diseases |
US4808402A (en) * | 1987-05-29 | 1989-02-28 | Northwestern University | Method and compositions for modulating neovascularization |
US4994443A (en) * | 1982-12-20 | 1991-02-19 | The Children's Medical Center Corporation | Inhibition of angiogenesis |
US5001116A (en) * | 1982-12-20 | 1991-03-19 | The Children's Medical Center Corporation | Inhibition of angiogenesis |
US5135919A (en) * | 1988-01-19 | 1992-08-04 | Children's Medical Center Corporation | Method and a pharmaceutical composition for the inhibition of angiogenesis |
US5504074A (en) * | 1993-08-06 | 1996-04-02 | Children's Medical Center Corporation | Estrogenic compounds as anti-angiogenic agents |
US5521168A (en) * | 1994-10-13 | 1996-05-28 | Alcon Laboratories, Inc. | Estrogen metabolites for lowering intraocular pressure |
US5621124A (en) * | 1992-10-22 | 1997-04-15 | Schering Aktiengesellschaft | Process for the alkylation of estrone derivatives |
US5629340A (en) * | 1993-01-11 | 1997-05-13 | Tsumura & Co. | Angiogenesis inhibitor and novel compound |
US5639725A (en) * | 1994-04-26 | 1997-06-17 | Children's Hospital Medical Center Corp. | Angiostatin protein |
US5643900A (en) * | 1993-07-02 | 1997-07-01 | Fotsis; Theodore | Method for treatment of pathological conditions associated with angiogenesis and preparation therefor |
US5646136A (en) * | 1994-01-04 | 1997-07-08 | Duke University | Methods of inhibiting angiogenesis and tumor growth, and treating ophthalmologic conditions with angiostatic and therapeutic steroids |
US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US5763432A (en) * | 1997-01-29 | 1998-06-09 | Sri International | Steriod inhibitors of estrone sulfatase and associated pharmaceutical compositions and methods of use |
US5837682A (en) * | 1996-03-08 | 1998-11-17 | The Children's Medical Center Corporation | Angiostatin fragments and method of use |
US5854221A (en) * | 1996-12-12 | 1998-12-29 | The Children's Medical Center Corporation | Endothelial cell proliferation inhibitor and method of use |
US5854205A (en) * | 1995-10-23 | 1998-12-29 | The Children's Medical Center Corporation | Therapeutic antiangiogenic compositions and methods |
US5861372A (en) * | 1996-02-22 | 1999-01-19 | The Children's Medical Center Corporation | Aggregate angiostatin and method of use |
US5885795A (en) * | 1994-04-26 | 1999-03-23 | The Children's Medical Center Corporation | Methods of expressing angiostatic protein |
US5919459A (en) * | 1993-05-27 | 1999-07-06 | Entremed, Inc. | Compositions and methods for treating cancer and hyperproliferative disorders |
US5958892A (en) * | 1996-07-30 | 1999-09-28 | Board Of Regents, The University Of Texas System | 2-methoxyestradiol-induced apoptosis in cancer cells |
US5962445A (en) * | 1996-05-09 | 1999-10-05 | Amrad Operations Pty Ltd. | Treatment of asthma and airway diseases |
US6011023A (en) * | 1997-08-27 | 2000-01-04 | Alcon Laboratories, Inc. | Angiostatic steroids |
US6011024A (en) * | 1991-08-28 | 2000-01-04 | Imperial College Of Science Technology & Medicine | Steroid sulphatase inhibitors |
US6046186A (en) * | 1997-12-24 | 2000-04-04 | Sri International | Estrone sulfamate inhibitors of estrone sulfatase, and associated pharmaceutical compositions and methods of use |
US6051726A (en) * | 1997-03-13 | 2000-04-18 | Pharm-Eco Laboratories, Inc. | Synthesis of 2-alkoxyestradiols |
US6136992A (en) * | 1997-03-13 | 2000-10-24 | The United States Of America As Represented By The Department Of Health And Human Services | 2-alkoxy estradiols and derivatives thereof |
US6239123B1 (en) * | 1998-08-11 | 2001-05-29 | Entremed, Inc. | Use of estrogenic compounds as anti-fungal agents |
US6284789B1 (en) * | 1998-09-04 | 2001-09-04 | The Research Foundation Of State University Of New York | Formation and composition of new optically active compounds |
US20020002294A1 (en) * | 1997-09-24 | 2002-01-03 | D' Amato Robert J. | Estrogenic compounds as antiangiogenic agents |
US6358940B1 (en) * | 1999-09-07 | 2002-03-19 | Rutgers, The State University | Modified 2-Alkoxyestradiol derivatives with prolonged pharmacological activity |
US20020035098A1 (en) * | 2000-03-17 | 2002-03-21 | Oncology Sciences Corporation | Agents and methods for the prevention of initial onset and recurrence of existing cancers |
US6399773B1 (en) * | 1998-10-29 | 2002-06-04 | Bristol-Myers Squibb Co. | Compounds derived from an amine nucleus that are inhibitors of IMPDH enzyme |
US20020068724A1 (en) * | 2000-03-17 | 2002-06-06 | Oncology Sciences Corporation | Method and composition of novel compounds for the therapy and targeting of the primary modalities of cancer cell proliferation and homeostasis |
US6407086B2 (en) * | 1998-05-13 | 2002-06-18 | Novo Nordisk A/S | Meiosis regulating compounds |
US20020165212A1 (en) * | 1993-08-06 | 2002-11-07 | D'amato Robert John | Estrogenic compounds as anti-mitotic agents |
US6514971B1 (en) * | 1996-03-15 | 2003-02-04 | Zeneca Limited | Cinnoline derivatives and use as medicine |
US20030027803A1 (en) * | 2000-03-17 | 2003-02-06 | Oncology Sciences Corporation | Method and composition for inhibiting the incidence and proliferation of nervous system and brain cancer cells |
US6730665B1 (en) * | 1999-05-12 | 2004-05-04 | Mayo Foundation For Medical Education And Research | Treatment of bone cancer |
US6953785B2 (en) * | 2000-04-24 | 2005-10-11 | Kyowa Hakko Kogyo Co., Ltd. | Estra-1,3,5(10)-triene derivatives |
US20060025393A1 (en) * | 1999-04-30 | 2006-02-02 | Shutsung Liao | Steroid derivatives |
US6995278B2 (en) * | 2000-08-18 | 2006-02-07 | Entre Med, Inc. | Antiangiogenic agents |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB587081A (en) | 1944-11-13 | 1947-04-14 | Dewey And Almy Chem Comp | Improvements in or relating to textile-printing |
GB857080A (en) | 1956-05-29 | 1960-12-29 | Syntex Sa | Cyclopentanophenanthrene derivatives and process for the production thereof |
US3487155A (en) | 1968-02-19 | 1969-12-30 | Sandoz Ag | Substituted estradiol alkyl ethers |
DE2004516A1 (en) | 1969-03-05 | 1970-09-10 | VEB Jenapharm, Jena | Thermpentic steroidal sulphonate esters |
JPS5265259A (en) * | 1975-11-27 | 1977-05-30 | Takeda Chem Ind Ltd | Synthesis of 16beta-alkylestradiol or its 17-esters |
SU1240038A1 (en) | 1984-11-23 | 1996-10-27 | Уральский политехнический институт им.С.М.Кирова | 3-hydroxyestra-1,3,5-triene-17-hydrazone showing hormonal and antitumor activity |
WO1987002367A2 (en) | 1985-10-18 | 1987-04-23 | The Upjohn Company | Cyclic hydrocarbons with an aminoalkyl sidechain |
DE3625315A1 (en) | 1986-07-25 | 1988-01-28 | Schering Ag | 11SS- (4-ISOPROPENYLPHENYL) -ESTRA-4,9-DIENES, THEIR PRODUCTION AND THE PHARMACEUTICAL PREPARATIONS CONTAINING THEM |
JP2517561B2 (en) | 1986-10-03 | 1996-07-24 | 新技術事業団 | Category Estrogen Immunoassay Kit |
DE3872234T2 (en) | 1987-04-16 | 1993-01-07 | Upjohn Co | CYCLIC HYDROCARBONS WITH AMINOALKYL SIDE CHAIN. |
WO1990015816A1 (en) | 1989-06-16 | 1990-12-27 | The Upjohn Company | Suramin type compounds and angiostatic steroids to inhibit angiogenesis |
WO1993003729A1 (en) | 1991-08-12 | 1993-03-04 | Research Corporation Technologies, Inc. | N-substituted phenoxazines for treating multidrug resistant cancer cells |
CA2208916A1 (en) | 1997-07-03 | 1999-01-03 | Hyal Pharmaceutical Corporation | Promotion of wound healing utilizing steroids having reduced deterioroussystemic side effects typical of glucocorticoids, mineralocorticoids andsex steroids |
US6054446A (en) | 1997-12-24 | 2000-04-25 | Sri International | Anti-estrogenic steroids, and associated pharmaceutical compositions and methods of use |
JPH11209322A (en) | 1998-01-27 | 1999-08-03 | Kao Corp | Isovanillyl alcohol derivative |
AR021757A1 (en) * | 1998-08-07 | 2002-08-07 | Endorech Inc | METHOD FOR INHIBITING THE CONVERSION OF 4-ANDROSTAN-3,17-DIONA IN TESTOSTERONE OR 3ALFA-ANDROSTAN-3,17-DIONA IN DIHYDROTESTOSTERONE, INHIBIT THE ACTIVITY OF 3ALFA-HYDROXYSTEROID DEHYDROGENASE OF TYPE 3 OF HIFTIVA OF TYPE 3 PUTATIVE INHIBITOR OF THE CONVERSION OF 4-ANDROSTEN-3 |
AU5687199A (en) | 1998-08-24 | 2000-03-14 | Global Vascular Concepts, Inc. | Use of anti-angiogenic agents for inhibiting vessel wall injury |
IL145995A0 (en) | 1999-04-30 | 2002-07-25 | Sterix Ltd | Use |
GB9910934D0 (en) | 1999-05-11 | 1999-07-14 | Res Inst Medicine Chem | Chemical compounds |
AUPQ342599A0 (en) * | 1999-10-14 | 1999-11-04 | University Of Melbourne, The | Conjugates and uses thereof |
DE60112438T2 (en) | 2000-05-11 | 2006-06-08 | Research Institute For Medicine And Chemistry Inc., Cambridge | 2-SUBSTITUTED PREGNA-1,3,5 (10) -TRIEN- AND CHOLA-1,3,5 (10) -TRIENDEDIVES AND THEIR BIOLOGICAL ACTIVITY |
WO2002062347A1 (en) | 2001-02-05 | 2002-08-15 | Oncology Sciences Corporation | Method and composition of novel compounds for the therapy and targeting of the primary modalities of cancer cell proliferation and homeostasis |
US6448419B1 (en) * | 2001-08-07 | 2002-09-10 | Tetrionics, Inc. | Synthesis of 2-hydroxyestradiol derivatives |
-
2001
- 2001-02-08 US US09/779,331 patent/US6995278B2/en not_active Expired - Fee Related
-
2006
- 2006-02-06 US US11/347,880 patent/US20060135796A1/en not_active Abandoned
Patent Citations (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2584271A (en) * | 1948-06-19 | 1952-02-05 | Searle & Co | Steroid derivatives and method for producing the same |
US3166577A (en) * | 1956-05-29 | 1965-01-19 | Syntex Corp | 1, 2-dimethyl estrogens and intermediates used in the production thereof |
US2846453A (en) * | 1957-05-28 | 1958-08-05 | Searle & Co | Alpha-ring-acylated estrone derivatives, and corresponding alcohols, their esters, and ethers |
US3562260A (en) * | 1965-08-23 | 1971-02-09 | Ormonoterapia Richter Spa | 2-carbonyl-estratrienes and method of their preparation |
US3470218A (en) * | 1966-12-27 | 1969-09-30 | Allied Chem | New 2-substituted estrogenic steroids |
US3410879A (en) * | 1967-04-12 | 1968-11-12 | American Home Prod | Process for preparing gonahexaenes |
US3492321A (en) * | 1968-01-22 | 1970-01-27 | Syntex Corp | Cyclopropenyl estra, -1,3,5(10)-trienes |
US3496272A (en) * | 1968-01-23 | 1970-02-17 | American Home Prod | Ester of 3-(2-propynyloxy)-estradiol |
US3956348A (en) * | 1974-02-27 | 1976-05-11 | Schering Aktiengesellschaft | Steroid ether splitting |
US4212864A (en) * | 1976-11-26 | 1980-07-15 | Akzona Incorporated | Branched chain and cycloaliphatic esters of the androstane and oestrane series and pharmaceutical compositions containing same |
US4307086A (en) * | 1976-11-26 | 1981-12-22 | Akzona Incorporated | Branched chain and cycloaliphatic esters of the androstane and destrane series and pharmaceutical compositions containing same |
US4172132A (en) * | 1977-07-26 | 1979-10-23 | Schering Corporation | 1,3,5(10),6,8,14-19-Nor-pregnahexaenes, their use as anti-psoriatic agents, and pharmaceutical formulations useful therefor |
US4444767A (en) * | 1981-10-27 | 1984-04-24 | Roussel Uclaf | Derivatives of 3-amino-pregn-5-ene |
US4994443A (en) * | 1982-12-20 | 1991-02-19 | The Children's Medical Center Corporation | Inhibition of angiogenesis |
US5001116A (en) * | 1982-12-20 | 1991-03-19 | The Children's Medical Center Corporation | Inhibition of angiogenesis |
US4552758A (en) * | 1983-12-20 | 1985-11-12 | St. Jude Children's Research Hospital | Human use of avian-human reassortants as vaccines for influenza A virus |
US4522758A (en) * | 1983-12-22 | 1985-06-11 | Eli Lilly And Company | Method of preparing 2-fluoro-17β-estradiol |
US4634705A (en) * | 1984-06-06 | 1987-01-06 | Abbott Laboratories | Adrenergic amidines |
US4743597A (en) * | 1986-01-27 | 1988-05-10 | Javitt Norman B | Composition comprising an oxygenated cholesterol and use thereof for topical treatment of diseases |
US4808402A (en) * | 1987-05-29 | 1989-02-28 | Northwestern University | Method and compositions for modulating neovascularization |
US5135919A (en) * | 1988-01-19 | 1992-08-04 | Children's Medical Center Corporation | Method and a pharmaceutical composition for the inhibition of angiogenesis |
US6011024A (en) * | 1991-08-28 | 2000-01-04 | Imperial College Of Science Technology & Medicine | Steroid sulphatase inhibitors |
US5621124A (en) * | 1992-10-22 | 1997-04-15 | Schering Aktiengesellschaft | Process for the alkylation of estrone derivatives |
US5629340A (en) * | 1993-01-11 | 1997-05-13 | Tsumura & Co. | Angiogenesis inhibitor and novel compound |
US5919459A (en) * | 1993-05-27 | 1999-07-06 | Entremed, Inc. | Compositions and methods for treating cancer and hyperproliferative disorders |
US5643900A (en) * | 1993-07-02 | 1997-07-01 | Fotsis; Theodore | Method for treatment of pathological conditions associated with angiogenesis and preparation therefor |
US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US6908910B2 (en) * | 1993-08-06 | 2005-06-21 | The Children's Medical Center Corporation | Estrogenic compounds as anti-mitotic agents |
US5661143A (en) * | 1993-08-06 | 1997-08-26 | The Children's Medical Center Corp. | Estrogenic compounds as anti-mitotic agents |
US6723858B2 (en) * | 1993-08-06 | 2004-04-20 | The Children's Medical Center Corporation | Estrogenic compounds as anti-mitotic agents |
US20040072813A1 (en) * | 1993-08-06 | 2004-04-15 | D'amato Robert John | Estrogenic compounds as anti-mitotic agents |
US20030096800A1 (en) * | 1993-08-06 | 2003-05-22 | D'amato Robert John | Estrogenic compounds as anti-mitotic agents |
US6528676B1 (en) * | 1993-08-06 | 2003-03-04 | The Children's Medical Center Corporation | Estrogenic compounds as anti-mitotic agents |
US20020165212A1 (en) * | 1993-08-06 | 2002-11-07 | D'amato Robert John | Estrogenic compounds as anti-mitotic agents |
US6930128B2 (en) * | 1993-08-06 | 2005-08-16 | The Children's Medical Center Corporation | Estrogenic compounds as anti-mitotic agents |
US5504074A (en) * | 1993-08-06 | 1996-04-02 | Children's Medical Center Corporation | Estrogenic compounds as anti-angiogenic agents |
US5892069A (en) * | 1993-08-06 | 1999-04-06 | The Children's Medical Center Corporation | Estrogenic compounds as anti-mitotic agents |
US5646136A (en) * | 1994-01-04 | 1997-07-08 | Duke University | Methods of inhibiting angiogenesis and tumor growth, and treating ophthalmologic conditions with angiostatic and therapeutic steroids |
US5885795A (en) * | 1994-04-26 | 1999-03-23 | The Children's Medical Center Corporation | Methods of expressing angiostatic protein |
US5776704A (en) * | 1994-04-26 | 1998-07-07 | The Children Medical Center Corporation | Method of detecting angiogenic protein |
US5639725A (en) * | 1994-04-26 | 1997-06-17 | Children's Hospital Medical Center Corp. | Angiostatin protein |
US5733876A (en) * | 1994-04-26 | 1998-03-31 | The Children's Medical Center Corporation | Method of inhibiting angiogenesis |
US5792845A (en) * | 1994-04-26 | 1998-08-11 | The Children's Medical Center Corporation | Nucleotides encoding angiostatin protein and method of use |
US5521168A (en) * | 1994-10-13 | 1996-05-28 | Alcon Laboratories, Inc. | Estrogen metabolites for lowering intraocular pressure |
US5854205A (en) * | 1995-10-23 | 1998-12-29 | The Children's Medical Center Corporation | Therapeutic antiangiogenic compositions and methods |
US5861372A (en) * | 1996-02-22 | 1999-01-19 | The Children's Medical Center Corporation | Aggregate angiostatin and method of use |
US5837682A (en) * | 1996-03-08 | 1998-11-17 | The Children's Medical Center Corporation | Angiostatin fragments and method of use |
US6514971B1 (en) * | 1996-03-15 | 2003-02-04 | Zeneca Limited | Cinnoline derivatives and use as medicine |
US5962445A (en) * | 1996-05-09 | 1999-10-05 | Amrad Operations Pty Ltd. | Treatment of asthma and airway diseases |
US6200966B1 (en) * | 1996-05-09 | 2001-03-13 | Amrad Operations Pty. Ltd. | Compositions for inhibiting airway wall inflammation |
US6410029B1 (en) * | 1996-07-30 | 2002-06-25 | Board Of Regents, The University Of Texas System | 2-methoxyestradiol-induced apoptosis in cancer cells |
US5958892A (en) * | 1996-07-30 | 1999-09-28 | Board Of Regents, The University Of Texas System | 2-methoxyestradiol-induced apoptosis in cancer cells |
US5854221A (en) * | 1996-12-12 | 1998-12-29 | The Children's Medical Center Corporation | Endothelial cell proliferation inhibitor and method of use |
US5763432A (en) * | 1997-01-29 | 1998-06-09 | Sri International | Steriod inhibitors of estrone sulfatase and associated pharmaceutical compositions and methods of use |
US6136992A (en) * | 1997-03-13 | 2000-10-24 | The United States Of America As Represented By The Department Of Health And Human Services | 2-alkoxy estradiols and derivatives thereof |
US6054598A (en) * | 1997-03-13 | 2000-04-25 | Pharm-Eco Laboratories, Inc. | Synthesis of 2-alkoxyestradiols |
US6051726A (en) * | 1997-03-13 | 2000-04-18 | Pharm-Eco Laboratories, Inc. | Synthesis of 2-alkoxyestradiols |
US6011023A (en) * | 1997-08-27 | 2000-01-04 | Alcon Laboratories, Inc. | Angiostatic steroids |
US20020002294A1 (en) * | 1997-09-24 | 2002-01-03 | D' Amato Robert J. | Estrogenic compounds as antiangiogenic agents |
US6046186A (en) * | 1997-12-24 | 2000-04-04 | Sri International | Estrone sulfamate inhibitors of estrone sulfatase, and associated pharmaceutical compositions and methods of use |
US6407086B2 (en) * | 1998-05-13 | 2002-06-18 | Novo Nordisk A/S | Meiosis regulating compounds |
US20050101573A1 (en) * | 1998-05-13 | 2005-05-12 | Novo Nordisk A/S | Meiosis regulating compounds |
US6605622B2 (en) * | 1998-08-11 | 2003-08-12 | Entremed, Inc. | Use of anti-estrogenic compounds as anti-fungal agents |
US6239123B1 (en) * | 1998-08-11 | 2001-05-29 | Entremed, Inc. | Use of estrogenic compounds as anti-fungal agents |
US6284789B1 (en) * | 1998-09-04 | 2001-09-04 | The Research Foundation Of State University Of New York | Formation and composition of new optically active compounds |
US6399773B1 (en) * | 1998-10-29 | 2002-06-04 | Bristol-Myers Squibb Co. | Compounds derived from an amine nucleus that are inhibitors of IMPDH enzyme |
US20060025393A1 (en) * | 1999-04-30 | 2006-02-02 | Shutsung Liao | Steroid derivatives |
US6730665B1 (en) * | 1999-05-12 | 2004-05-04 | Mayo Foundation For Medical Education And Research | Treatment of bone cancer |
US6358940B1 (en) * | 1999-09-07 | 2002-03-19 | Rutgers, The State University | Modified 2-Alkoxyestradiol derivatives with prolonged pharmacological activity |
US20040053906A1 (en) * | 2000-03-17 | 2004-03-18 | Oncology Sciences Corporation | Method and composition of novel compounds for the therapy and targeting of the primary modalitites of cancer cell proliferation and homeostasis |
US20020035098A1 (en) * | 2000-03-17 | 2002-03-21 | Oncology Sciences Corporation | Agents and methods for the prevention of initial onset and recurrence of existing cancers |
US20030027803A1 (en) * | 2000-03-17 | 2003-02-06 | Oncology Sciences Corporation | Method and composition for inhibiting the incidence and proliferation of nervous system and brain cancer cells |
US20020068724A1 (en) * | 2000-03-17 | 2002-06-06 | Oncology Sciences Corporation | Method and composition of novel compounds for the therapy and targeting of the primary modalities of cancer cell proliferation and homeostasis |
US20030036539A1 (en) * | 2000-03-17 | 2003-02-20 | Oncology Sciences Corporation | Use of 2-ME in promotion of apoptosis in the prevention of initial onset and recurrence of existing cancers |
US6953785B2 (en) * | 2000-04-24 | 2005-10-11 | Kyowa Hakko Kogyo Co., Ltd. | Estra-1,3,5(10)-triene derivatives |
US6995278B2 (en) * | 2000-08-18 | 2006-02-07 | Entre Med, Inc. | Antiangiogenic agents |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7381848B2 (en) | 1993-08-06 | 2008-06-03 | The Children's Medical Center Corporation | Estrogenic compounds as anti-mitotic agents |
US7495089B2 (en) | 1995-10-23 | 2009-02-24 | The Children's Medical Center Corporation | Therapeutic antiangiogenic endostatin compositions |
US7867975B2 (en) | 1995-10-23 | 2011-01-11 | The Children's Medical Center Corporation | Therapeutic antiangiogenic endostatin compositions |
US20070135400A1 (en) * | 2003-05-28 | 2007-06-14 | Agoston Gregory E | Estradiol derivatives |
US7371741B2 (en) | 2003-05-28 | 2008-05-13 | Entremed, Inc. | Estradiol derivatives and pharmaceutical compositions using same |
US7498322B2 (en) | 2004-03-12 | 2009-03-03 | Entremed, Inc. | Antiangiogenic agents |
US8158612B2 (en) | 2004-03-12 | 2012-04-17 | Entremed, Inc. | Methods of treating disease states using antiangiogenic agents |
US20070176403A1 (en) * | 2006-02-01 | 2007-08-02 | Dennis Calderone | Air adjustable seat |
US20070231410A1 (en) * | 2006-03-20 | 2007-10-04 | Fogler William E | Disease modifying anti-arthritic activity of 2-Methoxyestradiol |
US8399440B2 (en) | 2006-03-20 | 2013-03-19 | Entremed, Inc. | Disease modifying anti-arthritic activity of 2-methoxyestradiol |
US20080234243A1 (en) * | 2007-01-31 | 2008-09-25 | Lavallee Theresa M | Method of treating amyloidosis mediated diseases |
Also Published As
Publication number | Publication date |
---|---|
US6995278B2 (en) | 2006-02-07 |
US20020147183A1 (en) | 2002-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060135796A1 (en) | Antiangiogenic agents | |
US6958327B1 (en) | 18 Norsteroids as selectively active estrogens | |
US20070135400A1 (en) | Estradiol derivatives | |
AU2001288386B2 (en) | 2-substituted estrogens as antiangiogenic agents | |
US20030187076A1 (en) | Non-steroidal analogs of 2-methoxyestradiol | |
US20090105205A1 (en) | Methods of treating disease states using antiangiogenic agents | |
JP5042411B2 (en) | Use of estrone derivatives as antitumor agents | |
AU2001288386A1 (en) | 2-substituted estrogens as antiangiogenic agents | |
RU2159774C2 (en) | Sulfamate derivatives, method of preparation thereof, and pharmaceutical compositions | |
US7135581B2 (en) | Antiangiogenic agents | |
ES2286042T3 (en) | 18-NOR-STEROIDS AS EFFECTIVE STROGENS SELECTIVELY. | |
US20050192258A1 (en) | Antiangiogenic agents | |
EA008442B1 (en) | 9-alpha-substituted estratrienes as selectively active estrogen | |
WO2006032885A2 (en) | 2-substituted estrogen sulphamates for inhibition of steroid sulphatase | |
WO2003073985A2 (en) | New methods of using antiangiogenic agents | |
EA017124B1 (en) | 8-beta-substituted estratrienes as selectively active estrogens | |
AU2007200470A1 (en) | Antiangiogenic Agents | |
AU2002339536B2 (en) | 17alpha-hydroxy-14beta-steroids with hormonal effect | |
DE19954105A1 (en) | Treatment of estrogen deficiency-associated conditions, e.g. menopausal syndrome, osteoporosis, infertility or prostatic hypertrophy, using new or known gonatrienes having tissue-selective estrogenic activity | |
US20050282791A1 (en) | 18-nor steroids as selectively active estrogens | |
AU2002339536A1 (en) | 17alpha-hydroxy-14beta-steroids with hormonal effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENTREMED, INC., MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AGOSTON, GREGORY E.;PRIBLUDA, VICTOR;TRESTON, ANTHONY M.;AND OTHERS;REEL/FRAME:017285/0020;SIGNING DATES FROM 20010620 TO 20010625 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |