US20060134108A1 - Method for retarding or precluding Alzheimer's dementia - Google Patents
Method for retarding or precluding Alzheimer's dementia Download PDFInfo
- Publication number
- US20060134108A1 US20060134108A1 US11/351,997 US35199706A US2006134108A1 US 20060134108 A1 US20060134108 A1 US 20060134108A1 US 35199706 A US35199706 A US 35199706A US 2006134108 A1 US2006134108 A1 US 2006134108A1
- Authority
- US
- United States
- Prior art keywords
- gfap
- alzheimer
- dementia
- disease
- autoantibodies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000000979 retarding effect Effects 0.000 title claims description 5
- 208000024827 Alzheimer disease Diseases 0.000 title abstract description 60
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 claims abstract description 31
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 claims abstract description 31
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 claims abstract description 28
- 210000004027 cell Anatomy 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 16
- 206010057249 Phagocytosis Diseases 0.000 claims abstract description 13
- 230000008782 phagocytosis Effects 0.000 claims abstract description 13
- 230000003140 astrocytic effect Effects 0.000 claims abstract description 7
- 210000001124 body fluid Anatomy 0.000 claims description 8
- 239000010839 body fluid Substances 0.000 claims description 8
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 abstract description 18
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 abstract description 18
- 238000011161 development Methods 0.000 abstract description 7
- 210000000987 immune system Anatomy 0.000 abstract description 3
- 239000003150 biochemical marker Substances 0.000 abstract description 2
- 101000888419 Homo sapiens Glial fibrillary acidic protein Proteins 0.000 abstract 1
- 102000051520 human GFAP Human genes 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 30
- 102000004169 proteins and genes Human genes 0.000 description 28
- 210000001130 astrocyte Anatomy 0.000 description 20
- 206010012289 Dementia Diseases 0.000 description 15
- 201000010099 disease Diseases 0.000 description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 14
- 210000004556 brain Anatomy 0.000 description 13
- 239000000499 gel Substances 0.000 description 12
- 210000002540 macrophage Anatomy 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 238000003745 diagnosis Methods 0.000 description 8
- 230000000977 initiatory effect Effects 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000003556 assay Methods 0.000 description 6
- 230000027455 binding Effects 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 210000005013 brain tissue Anatomy 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 5
- 102000004142 Trypsin Human genes 0.000 description 5
- 108090000631 Trypsin Proteins 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000008499 blood brain barrier function Effects 0.000 description 5
- 210000001218 blood-brain barrier Anatomy 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 4
- 206010061818 Disease progression Diseases 0.000 description 4
- 108010058683 Immobilized Proteins Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 4
- 230000005750 disease progression Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000008506 pathogenesis Effects 0.000 description 4
- 239000008177 pharmaceutical agent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 208000037259 Amyloid Plaque Diseases 0.000 description 3
- 239000000090 biomarker Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003930 cognitive ability Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 238000001155 isoelectric focusing Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004770 neurodegeneration Effects 0.000 description 3
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 239000003656 tris buffered saline Substances 0.000 description 3
- 208000000044 Amnesia Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 206010018341 Gliosis Diseases 0.000 description 2
- 208000026139 Memory disease Diseases 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 206010029350 Neurotoxicity Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 206010044221 Toxic encephalopathy Diseases 0.000 description 2
- 201000004810 Vascular dementia Diseases 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 208000037875 astrocytosis Diseases 0.000 description 2
- 239000010836 blood and blood product Substances 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 208000029028 brain injury Diseases 0.000 description 2
- 230000001364 causal effect Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 239000000544 cholinesterase inhibitor Substances 0.000 description 2
- 230000019771 cognition Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000011539 homogenization buffer Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000006984 memory degeneration Effects 0.000 description 2
- 208000023060 memory loss Diseases 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000016273 neuron death Effects 0.000 description 2
- 230000007171 neuropathology Effects 0.000 description 2
- 230000007135 neurotoxicity Effects 0.000 description 2
- 231100000228 neurotoxicity Toxicity 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 108010040003 polyglutamine Proteins 0.000 description 2
- 229920000155 polyglutamine Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 210000000225 synapse Anatomy 0.000 description 2
- 102000013498 tau Proteins Human genes 0.000 description 2
- 108010026424 tau Proteins Proteins 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 1
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 102000011767 Acute-Phase Proteins Human genes 0.000 description 1
- 108010062271 Acute-Phase Proteins Proteins 0.000 description 1
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 1
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 1
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 1
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 102000004420 Creatine Kinase Human genes 0.000 description 1
- 108010042126 Creatine kinase Proteins 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000010831 Cytoskeletal Proteins Human genes 0.000 description 1
- 108010037414 Cytoskeletal Proteins Proteins 0.000 description 1
- 208000031124 Dementia Alzheimer type Diseases 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102000012411 Intermediate Filament Proteins Human genes 0.000 description 1
- 108010061998 Intermediate Filament Proteins Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 208000027382 Mental deterioration Diseases 0.000 description 1
- 206010027374 Mental impairment Diseases 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 102000047918 Myelin Basic Human genes 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- RDHQFKQIGNGIED-MRVPVSSYSA-N O-acetyl-L-carnitine Chemical compound CC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C RDHQFKQIGNGIED-MRVPVSSYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 208000002667 Subdural Hematoma Diseases 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 239000006180 TBST buffer Substances 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000007341 astrogliosis Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000942 confocal micrograph Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229960000958 deferoxamine Drugs 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007387 gliosis Effects 0.000 description 1
- 206010061989 glomerulosclerosis Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000003585 interneuronal effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000007102 metabolic function Effects 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 238000002610 neuroimaging Methods 0.000 description 1
- 230000006764 neuronal dysfunction Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 201000003077 normal pressure hydrocephalus Diseases 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000011422 pharmacological therapy Methods 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 238000012123 point-of-care testing Methods 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 201000008158 rapidly progressive glomerulonephritis Diseases 0.000 description 1
- 230000007342 reactive astrogliosis Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000007832 reinnervation Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000002636 symptomatic treatment Methods 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
- G01N33/6896—Neurological disorders, e.g. Alzheimer's disease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
- C12Q1/32—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/564—Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3679—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
- G01N2800/2814—Dementia; Cognitive disorders
- G01N2800/2821—Alzheimer
Definitions
- the present invention relates to a method useful in treating a condition related to the development of Alzheimer's disease (AD).
- the invention particularly relates to a process retarding or precluding Alzheimer's dementia by reducing or eliminating the concentration of at least one auto-antibody whose presence has been shown to initiate phagocytosis of astrocytic cells, thereby leading to Alzheimer's disease.
- AD Alzheimer's disease
- AD is a progressive neurodegenerative disorder that causes memory loss and serious mental deterioration. Diagnosticians have long sought a means to definitively identify AD during the lifetime of demented patients, as opposed to histopathological examination of brain tissue, which is the only present means available for rendering an ultimate diagnosis of AD.
- AD is the most common form of dementia, accounting for more than half of all dementias and affecting as many as 4 million Americans and nearly 15 million people worldwide. Dementia may start with slight memory loss and confusion, but advances with time reaching severe impairment of intellectual and social abilities.
- age 65 the community prevalence of AD is between 1-2%. By age 75, the figure rises to 7%, and by age 85 it is 18%. The prevalence of dementia in all individuals over age 65 is 8%. Of those residing in institutions, the prevalence is about 50%, at any age.
- MMSE Mini Mental State Examination
- FAQ Functional Assessment Questionnaire
- MMSE an office-based psychometric test in the form of a Functional Assessment Questionnaire
- Laboratory tests complete blood count, measurement of thyroid stimulating hormone, serum electrolytes, serum calcium and serum glucose levels
- Neuroimaging most commonly used is computed tomography (CT) which has a role in detecting certain causes of dementia such as vascular dementia (VaD), tumor, normal pressure hydrocephalus or subdural hematoma.
- CT computed tomography
- VaD vascular dementia
- tumor normal pressure hydrocephalus
- subdural hematoma subdural hematoma
- Alzheimer's is the most common form of dementia, accounting for at least 60% of cases, diagnostic procedures for determining the exact cause of dementia, among more than 80 different species, is difficult at best.
- AD Alzheimer's disease
- the field of dementia raises questions concerning the value of diagnosis, since there is currently no cure or effective therapy available.
- the certainty of a diagnosis has an important impact on the management of the patient.
- the first drugs acetylcholinesterase inhibitors
- Other drugs are at different stages of clinical trials: (1) Drugs to prevent decline in AD—DESFERRIOXAMINE, ALCAR, anti-inflammatory drugs, antioxidants, estrogen, (2) Neurotrophic Factors: NGF, (3) Vaccine: the recent most exciting report by Schenk et al.
- AD Alzheimer's disease
- a diagnosis is made by pathologic examination of postmortem brain tissue in conjunction with a clinical history of dementia. This diagnosis is based on the presence in brain tissue of neurofibrillary tangles and of neuritic (senile) plaques, which have been correlated with clinical dementia.
- Neuritic plaques are made up of a normally harmless protein called amyloid-beta. Before neurons begin to die and symptoms develop, plaque deposits form between neurons early on in the disease process.
- the neurofibrillary tangles are interneuronal aggregates composed of normal and paired helical filaments and presumably consist of several different proteins.
- the internal support structure for brain neurons depends on the normal functioning of a protein called tau.
- biochemical marker refers to any enzyme, protein, polypeptide, peptide, isomeric form thereof, immunologically detectable fragments thereof, or other molecule that is released from the brain during the course of AD pathogenesis.
- markers may include, but are not limited to, any unique proteins or isoforms thereof that are particularly associated with the brain.
- the markers particularly targeted according to the method of the invention are glial fibrillary acidic protein (GFAP) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
- GFAP glial fibrillary acidic protein
- GPDH glyceraldehyde-3-phosphate dehydrogenase
- Glial fibrillary acidic protein is an intermediate filament protein found almost exclusively in astrocytes which, in adults, control the level of GFAP expression.
- Astrocytes are a major type of glial cell which perform a variety of structural and metabolic functions, such as processing neurotransmitters, controlling extracellular ion levels, regulating the direction and amount of nerve growth, maintaining the blood-brain barrier, and participating in immune reactions.
- processing neurotransmitters controlling extracellular ion levels, regulating the direction and amount of nerve growth, maintaining the blood-brain barrier, and participating in immune reactions.
- GFAP expression is up-regulated. Since levels have been found to increase in the brain tissue and cerebrospinal fluid in patients suffering from AD, it has been suggested that reactive astrocytes may contribute to the neuropathology of AD (Wallin et al.
- GFAP is a major component of the gliotic scars which result from gliosis, and which may interfere with subsequent reinnervation.
- Glyceraldehyde-3-phosphate dehydrogenase is ubiquitous in the cell, with the major fraction in the cytoplasm associated with cytoskeletal proteins and membranes, and small amounts in the nucleus (van Tuinen et al., J. Histochem. Cytochem., 35 (1987)). Its size has been characterized in the prior art as between 35,000 to 38,000 Daltons. As a monomer, GAPDH promotes tubulin polymerization, the major constituent of microtubules (Durrieu et al., Arch. Biochem. Biophys., 252, 32 (1987)).
- GAPDH has many enzymatic and binding activities including forming complexes with the C-terminal region of the amyloid precursor protein (Schulze et al., J. Neurochem., 60 (1993)).
- the disruption in binding of GAPDH to cytoskeletal elements such as tubulin can result in the alteration of neuronal morphology, function, and survival. Its involvement in the neurodegeneration during the development of AD has been hypothesized due to its link to amyloid plaques (Sunaga et al., Neurosci. Lett., 200, 2 (1995)).
- the present inventors have theorized that when autoantibodies to GFAP and/or GAPDH proliferate in the bloodstream and cross the blood-brain barrier, they couple with GFAP positive cells, particularly astrocytic cells. In the presence of these autoantibodies, e.g. anti-GFAP antibodies, the macrophages become clumped around the astrocytes, thereby initiating the phagocytosis process.
- autoantibodies e.g. anti-GFAP antibodies
- Certain types of treatment devices are known to be useful for the removal of biological markers. Removal of these markers is also known to be a valuable tool for reducing the manifestations of disease progression.
- Pardridge describes the use of modified antibodies for treatment and diagnosis of neurological diseases.
- a diagnostic composition is claimed involving an antibody capable of binding to antigens present in GFAP protein or an antibody to an Alzheimer's disease amyloid peptide. Delivery of these antibodies across the blood-brain barrier (BBB) is essential to the Pardridge invention in order to achieve diagnostic and/or therapeutic efficacy. Pardridge therefore requires modification of the antibodies by a process of cationization. There is no disclosure regarding the removal of circulating autoantibodies as a treatment method.
- U.S. Pat. No. 6,187,756, a divisional of U.S. Pat. No. 6,043,224, issued to Lee et al. describes a method of alleviating the negative effects of a neurological disorder or neurodegenerative disease.
- the manner of alleviation is by administration of an antagonist of a ⁇ -adrenergic receptor coupled to cAMP or the administration of a protein kinase A or C signaling agent, for example.
- the importance of GFAP is only seen as it relates to cAMP; GFAP expression in astrocytes is increased by elevation in cAMP levels. Neither GFAP nor its autoantibody are recognized as having any significance in the treatment of AD.
- U.S. Pat. No. 5,723,301 issued to Burke et al. teaches a method to screen compounds that affect GAPDH binding to polyglutamine.
- the role of GAPDH in neuronal death as a result of brain injury is described.
- a link of GAPDH to Alzheimer's disease is disclosed, the interest lies only in polyglutamine regions. Neither GAPDH nor its autoantibody are recognized as a target useful for direct intervention in the disease.
- the present invention is directed toward a process and a device which is useful for altering the progression of astrocyte phagocytosis, whereby the progression or development of Alzheimer's dementia may be altered or even eliminated.
- the instant inventors have recognized what appears to be a causal relationship between the presence of certain autoantibodies, particularly those which bind to GAPDH and GFAP in circulating sera, and the progressive loss of cognitive ability associated with AD. It is theorized that reduction of these autoantibodies within the circulating sera, as a sole therapeutic modality or alternatively in conjunction with pharmacologic therapeutic agents, e.g.
- acetylcholinesterase inhibitors may be effective in altering the development and/or progression of the disease, including but not limited to retardation of disease progression and/or increase of the period of efficacy of adjunct therapy.
- the instant inventors have demonstrated a causal relationship between the presence of autoantibodies to GFAP and the initiation of phagocytosis of astrocyte cells.
- a device to facilitate antigen-antibody interaction by creating an interfacial area containing a population of immobilized proteins which bind to the targeted autoantibodies, will result in a reduction in said phagocytosis, coupled with a concomitant reduction in the formation of plaques associated with Alzheimer's.
- immobilized proteins which function as a ligand, may be attached in various ways to a base, e.g. polystyrene, silicone, silica, or SEPHAROSE.
- the proteins may be oriented or non-oriented, fashioned in some orderly mode of attachment or alternatively by means of a single point attachment or flexible attachment to improve the accessibility of the binding site.
- Illustrative, but non-limiting means of attachment may include the use of histidine residues for immobilization of proteins on various metal-chelate supports (Ho 1998); protein/autoantibody interaction (Kann 2000), and avidin-biotin mediated immobilization (Patel 2000).
- immobilized protein devices for blood treatment contemplated for use in the instant invention include functionalized hollow fiber cartridges containing the immobilized protein therein and capable of removal of autoantibodies by adsorption from blood which is allowed to flow through the cartridges (Legallais et al. 1999). Processes for extracorporeal immunoadsorption have been disclosed for treatment of diseases such as rapidly progressive glomerulonephritis, recurrent glomerular sclerosis, systemic lupus erythematosus, cancer, myasthenia gravis, Guillain-Barre Syndrome and hemophilia.
- diseases such as rapidly progressive glomerulonephritis, recurrent glomerular sclerosis, systemic lupus erythematosus, cancer, myasthenia gravis, Guillain-Barre Syndrome and hemophilia.
- the advantages which flow from the use of biological markers as treatment targets include strengthening the effectiveness of pharmaceutical agents, and assisting in slowing down the rate of disease progression.
- test kit for gauging the progression or retardation of AD comprising a non-invasive point-of-care test which can be performed utilizing a sample comprising blood or any blood product.
- FIG. 1 is of Western blots of brain tissue extracts comparing proteins found in AD brain to normal brain
- FIG. 2 is of 2D gels of brain extract from FIG. 1 highlighting the proteins of interest found in AD brain only;
- FIG. 3 is a confocal micrograph of astrocytic cell interaction with macrophage dependent upon the presence of anti-GFAP antibodies.
- the markers which are targeted according to the method of the invention are those which are released into the circulation as a consequence of disease state and may be present in the blood or in any blood product, for example plasma, serum, cytolyzed blood, e.g. by treatment with hypotonic buffer or detergents and dilutions and preparations thereof, and other body fluids, e.g. CSF, saliva, urine, lymph, and the like.
- blood product for example plasma, serum, cytolyzed blood, e.g. by treatment with hypotonic buffer or detergents and dilutions and preparations thereof, and other body fluids, e.g. CSF, saliva, urine, lymph, and the like.
- detectable levels of the marker are present normally in an individual. However, in response to a variety of physical, chemical, and etiologic insults such as brain injury, or disease, i.e. Alzheimer's, epilepsy, and multiple sclerosis, these levels become elevated due to a modification of stimulation, ultimately causing neuronal dysfunction and death.
- tissue samples are obtained postmortem and are stored frozen until use.
- tissue samples are thawed and minced with a scalpel and subsequently transferred to glass tubes.
- a detergent (TRITON X100) is added to the homogenization buffer to enhance the extraction of proteins that are normally associated with cell membranes.
- the crude homogenate is centrifuged at 10,000 RPM in a refrigerated super-speed centrifuge to remove unbroken cells and cell debris which form a pellet.
- the pellet is extracted two more times by resuspending the pellet in the homogenization buffer and centrifugation as described above.
- the tissue extract containing the proteins is further subjected to electrophoresis on a polyacrylamide gel (12.5%) containing SDS and DTT to denature all the proteins.
- the proteins are transferred onto a membrane (PVDF), blocked overnight with 5 % Blotto/50 mM Tris Buffered Saline (TBS) pH7.4 at 4° C. and incubated with serum from patients diagnosed with Alzheimer's Disease for a period of 1 hour.
- the membrane is washed with TBS containing 0.05% TWEEN 20 (TTBS); and a solution containing the secondary antibody (goat anti-human IgG) conjugated to alkaline phosphate is added and incubated for an additional 2 hours.
- the membrane is washed and the substrate (BioRad's alkaline phosphate substrate kit) is added which initiates the reaction for color development. Rinsing with ultra pure water terminates the reaction.
- the membrane is allowed to air dry, then is photographed. The photograph is then analyzed using specialized software to identify the protein bands that are present.
- brain tissue extracts are separated by isoelectric focusing (IEF) using the Novex IEF gel system (pH gradient 3-10) for the first dimension. Proteins are further separated by SDS-PAGE (12.5% acrylamide) for the second dimension. Gels are then stained using Coomassie Blue stain and appropriately destained to remove background. Gels are imaged using a camera connected to a computer.
- IEF isoelectric focusing
- Spots of interest are physically cut out of the gel (see arrows— FIG. 2 ) using a scalpel and placed in individual tubes.
- Gel pieces are dehydrated to remove water, making it easier for the trypsin enzyme to penetrate the gel and digest the proteins.
- the gel pieces are incubated overnight (16 hours) at 37° C. with the trypsin.
- An aliquot of the trypsin digest fluid is removed and an initial separation step is conducted using Millipore's C18 zip tips.
- the filtrate is then spotted onto Ciphergen's NP1 chips and peptide sequencing is conducted.
- a trypsin blank is included on a blank piece of gel to enable a comparison of the peptide map of trypsin cleaving itself versus the protein of interest.
- the sequences identified from the two spots cut out are GAPDH and GFAP; the upper band on the 2D gel ( FIG. 2 ) corresponds to the sequence of GFAP and the lower band corresponds to GAPDH. It is apparent these bands do not appear on the normal brain extract 2D gel which would suggest these proteins play a role in the pathogenesis of AD.
- a method of immune system modulation can be employed utilizing a patient's own immune system to specifically target autoantibodies of interest associated with AD to be attacked and eliminated. It has long been known in the prior art to incorporate an individual's own T-lymphocyte cells to kill tumor cells. Only recently has this type of therapy demonstrated success. By focusing on proteins particularly expressed by the biochemical markers of interest, antigen-presenting cells with this protein particularly expressed on its surface can bind to CD28 on the T-cell surface to then induce the cascade of events, ultimately eliminating cells expressing the protein particularly expressed. In current strategies, single chain antibodies are fused to the said protein particularly expressed by a cell type of interest assisting in the T-cell activation process.
- CCF-STTG1 cells (brain astrocytes that are GFAP +ve) are co-cultured with RAW cells (macrophage cell line) in the presence of, or without mouse anti-GFAP antibodies. Astrocytes are incubated with anti-GFAP Ab for 10 minutes and then the macrophages are added after and left to incubate for 30 min.
- the macrophages are not associated with the astrocytes, but in the presence of anti-GFAP antibodies the macrophages are clumped around the astrocytes. This initiates the phagocytosis process.
- CCF-STTG1 cells (brain astrocytes that are GFAP +ve) are co-cultured with RAW cells (macrophage cell line) in the presence of normal serum or AD serum. Astrocytes are incubated with serum for 10 minutes and then the macrophages are added after and left to incubate for 30 min.
- the macrophages are not associated with the astrocytes, but with AD serum the macrophages are clumped around the astrocytes. This demonstrates the start of phagocytosis and attack of the brain cells.
- CCF-STTG1 astrocyte cells (arrowhead) and RAW macrophages (arrows) were co-cultured in the presence of a non-specific antibodies mixture (C-D) or anti-human GFAP antibody (E-F) or absence of antibodies (A-B). Binding of macrophages to astrocytes before wash is shown in A-C-E, and interactions remaining after wash in B-D-F. Specific binding occurs only in the presence of antibody specific to GFAP protein.
- the level of any one or all of the specific markers of interest found in the patient's body fluid may be used for purposes of monitoring removal efficiency.
- Body fluid samples may be taken from a patient at one point in time or at different points in time for ongoing analysis.
- a first sample is taken from a patient upon presentation with possible symptoms of AD and analyzed for presence of the particular markers.
- sample is meant a body fluid such as blood. All the markers can be measured with one assay device or by using a separate assay device for each marker in which case aliquots of the same sample can be used. It is preferred to measure each of the markers in the same single sample, irrespective of whether the analyses are carried out in a single analytical device or in separate devices so that the level of each marker simultaneously present in a single sample can be used to provide meaningful data.
- each marker is determined using antibodies specific for each of the markers and detecting specific binding of each antibody to its respective marker.
- Any suitable direct or indirect assay method may be used, including those which are commercially available to determine the level of each of the specific markers measured according to the invention.
- the assays may be competitive assays, sandwich assays, and the label may be selected from the group of well-known labels such as radioimmunoassay, fluorescent or chemiluminescence immunoassay, or immunoPCR technology. Extensive discussion of the known immunoassay techniques is not required here since these are known to those of skilled in the art. See Takahashi et al. (Clin Chem 1999;45(8):1307) for S100B assay.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Zoology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Wood Science & Technology (AREA)
- Cell Biology (AREA)
- Rehabilitation Therapy (AREA)
- Biophysics (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Rheumatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
A method for treating a condition related to the development of Alzheimer's disease (AD) is disclosed. The method involves the removal of circulating autoantibodies of a biochemical marker or markers, specifically human glial fibrillary acidic protein (GFAP) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), from the sera of a patient in an amount effective to reduce or eliminate phagocytosis of astrocytic cells. The invention further includes a process of immune system modulation effective for autoantibody removal.
Description
- This application is a continuation of U.S. patent application Ser. No. 10/334,701, filed Dec. 30, 2002, which is a continuation-in-part of U.S. patent application Ser. No. 09/859,559, filed on May 16, 2001, the entire contents of which is incorporated herein by reference.
- The present invention relates to a method useful in treating a condition related to the development of Alzheimer's disease (AD). The invention particularly relates to a process retarding or precluding Alzheimer's dementia by reducing or eliminating the concentration of at least one auto-antibody whose presence has been shown to initiate phagocytosis of astrocytic cells, thereby leading to Alzheimer's disease.
- Alzheimer's disease, also referred to as Alzheimer's dementia or AD is a progressive neurodegenerative disorder that causes memory loss and serious mental deterioration. Diagnosticians have long sought a means to definitively identify AD during the lifetime of demented patients, as opposed to histopathological examination of brain tissue, which is the only present means available for rendering an ultimate diagnosis of AD. AD is the most common form of dementia, accounting for more than half of all dementias and affecting as many as 4 million Americans and nearly 15 million people worldwide. Dementia may start with slight memory loss and confusion, but advances with time reaching severe impairment of intellectual and social abilities. At age 65, the community prevalence of AD is between 1-2%. By
age 75, the figure rises to 7%, and by age 85 it is 18%. The prevalence of dementia in all individuals over age 65 is 8%. Of those residing in institutions, the prevalence is about 50%, at any age. - The social impact of this disease is enormous, caused by the burden placed on caregivers, particularly in the latter stages of the disease. The substantial economic costs are largely related to supportive care and institutional admission. The rapidly increasing proportion of elderly people in society means that the number of individuals affected with AD will grow dramatically, therefore finding an early accurate diagnosis and a cure for AD is becoming an issue of major importance world wide.
- When an individual is suspected of AD, several recommended tests are performed: (1) Mini Mental State Examination (MMSE)—an office-based psychometric test in the form of a Functional Assessment Questionnaire (FAQ) to examine the scale for functional autonomy, (2) Laboratory tests—complete blood count, measurement of thyroid stimulating hormone, serum electrolytes, serum calcium and serum glucose levels, (3) Neuroimaging—most commonly used is computed tomography (CT) which has a role in detecting certain causes of dementia such as vascular dementia (VaD), tumor, normal pressure hydrocephalus or subdural hematoma. However, neuroimaging is less effective in distinguishing AD or other cortical dementias from normal aging. In primary care settings, some suggest that CT could be limited to atypical cases, but others recommend routine scanning. Magnetic resonance imaging (MRI) currently offers no advantage over CT in most cases of dementia.
- While Alzheimer's is the most common form of dementia, accounting for at least 60% of cases, diagnostic procedures for determining the exact cause of dementia, among more than 80 different species, is difficult at best.
- In comparison to other disease areas, the field of dementia raises questions concerning the value of diagnosis, since there is currently no cure or effective therapy available. In dementia, as in all other branches of medicine, the certainty of a diagnosis has an important impact on the management of the patient. While AD cannot be cured at present time, there is symptomatic treatment available and the first drugs (acetylcholinesterase inhibitors) for the temporary improvement of cognition and behavior are now licensed by the U.S. Food and Drug Administration. Other drugs are at different stages of clinical trials: (1) Drugs to prevent decline in AD—DESFERRIOXAMINE, ALCAR, anti-inflammatory drugs, antioxidants, estrogen, (2) Neurotrophic Factors: NGF, (3) Vaccine: the recent most exciting report by Schenk et al. (Nature 1999;400:173-7) raises the hope of a vaccine for AD. Unfortunately, a percentage of patients cannot tolerate the pharmaceutical agents currently made available due to allergic reactions, drug interactions, genetic inability to properly metabolize the agent, or the like, and therefore are unable to utilize the medicinal advantages of these agents. In addition, the pharmaceutical agents themselves have limited therapeutic value. After a length of time, the agent no longer is able to function as intended due to the body's tolerance, resulting in the buildup of autoantibodies. In this case, alternate therapy to control the level of autoantibodies circulating in the body by periodic removal may increase the length of time of an agent's medicinal value.
- The specificity of the various therapies thus require sophisticated diagnostic methodologies, having a high degree of sensitivity for AD, in order to insure their success.
- Currently there are a multitude of tests available which aid in the diagnosis of AD. However, the only true existing diagnosis is made by pathologic examination of postmortem brain tissue in conjunction with a clinical history of dementia. This diagnosis is based on the presence in brain tissue of neurofibrillary tangles and of neuritic (senile) plaques, which have been correlated with clinical dementia. Neuritic plaques are made up of a normally harmless protein called amyloid-beta. Before neurons begin to die and symptoms develop, plaque deposits form between neurons early on in the disease process. The neurofibrillary tangles are interneuronal aggregates composed of normal and paired helical filaments and presumably consist of several different proteins. The internal support structure for brain neurons depends on the normal functioning of a protein called tau. In Alzheimer's disease, threads of tau protein undergo alterations that cause them to become twisted. The neurohistopathologic identification and counting of neuritic plaques and neurofibrillary tangles requires staining and microscopic examination of several brain sections. However, the results of this methodology can widely vary and is time-consuming and labor-intensive.
- Given the ability of both current and prospective pharmacological therapies to forestall and/or reverse the onset and/or progress of Alzheimer's dementia, it behooves us to promulgate interim methodologies to delay the seemingly irreversible loss of cognitive function.
- Various biochemical markers for AD are known and analytical techniques for the determination of such markers have been described in the art. As used herein the term “marker” “biochemical marker” or “marker protein” refers to any enzyme, protein, polypeptide, peptide, isomeric form thereof, immunologically detectable fragments thereof, or other molecule that is released from the brain during the course of AD pathogenesis. Such markers may include, but are not limited to, any unique proteins or isoforms thereof that are particularly associated with the brain.
- The markers particularly targeted according to the method of the invention are glial fibrillary acidic protein (GFAP) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
- Glial fibrillary acidic protein is an intermediate filament protein found almost exclusively in astrocytes which, in adults, control the level of GFAP expression. Astrocytes are a major type of glial cell which perform a variety of structural and metabolic functions, such as processing neurotransmitters, controlling extracellular ion levels, regulating the direction and amount of nerve growth, maintaining the blood-brain barrier, and participating in immune reactions. As astrocytes transform from a resting state into a process-bearing reactive state during events such as aging, GFAP expression is up-regulated. Since levels have been found to increase in the brain tissue and cerebrospinal fluid in patients suffering from AD, it has been suggested that reactive astrocytes may contribute to the neuropathology of AD (Wallin et al. Dementia, 7, 267 (1996)). In the AD brain, the loss of synapses is associated with an increase in the number of GFAP-positive astrocytes. In addition, this loss of synapses appears to be related to the extent of reactive astrogliosis (Brun et al., Neurodegeneration, 4, 171 (1995)). GFAP is a major component of the gliotic scars which result from gliosis, and which may interfere with subsequent reinnervation.
- Glyceraldehyde-3-phosphate dehydrogenase is ubiquitous in the cell, with the major fraction in the cytoplasm associated with cytoskeletal proteins and membranes, and small amounts in the nucleus (van Tuinen et al., J. Histochem. Cytochem., 35 (1987)). Its size has been characterized in the prior art as between 35,000 to 38,000 Daltons. As a monomer, GAPDH promotes tubulin polymerization, the major constituent of microtubules (Durrieu et al., Arch. Biochem. Biophys., 252, 32 (1987)). GAPDH has many enzymatic and binding activities including forming complexes with the C-terminal region of the amyloid precursor protein (Schulze et al., J. Neurochem., 60 (1993)). The disruption in binding of GAPDH to cytoskeletal elements such as tubulin can result in the alteration of neuronal morphology, function, and survival. Its involvement in the neurodegeneration during the development of AD has been hypothesized due to its link to amyloid plaques (Sunaga et al., Neurosci. Lett., 200, 2 (1995)).
- The present inventors have theorized that when autoantibodies to GFAP and/or GAPDH proliferate in the bloodstream and cross the blood-brain barrier, they couple with GFAP positive cells, particularly astrocytic cells. In the presence of these autoantibodies, e.g. anti-GFAP antibodies, the macrophages become clumped around the astrocytes, thereby initiating the phagocytosis process. If it could be demonstrated that the concentration of these autoantibodies are a controlling factor in the initiation of astrocytosis, then it would be possible to alter the course of disease progression by modifying anti-GFAP or the like autoantibodies associated with biochemical markers for AD in the circulating sera, thus providing physicians with an additional method for possibly circumventing or delaying loss of cognition at an early stage in the pathogenesis of this disease.
- Certain types of treatment devices are known to be useful for the removal of biological markers. Removal of these markers is also known to be a valuable tool for reducing the manifestations of disease progression.
- What is lacking in the art is a method effective for altering the course of disease initiation/progression in living Alzheimer's dementia patients alone, or in conjunction with, the use of pharmaceutical agents.
- Generally, most scientific papers tend to focus on the peptide, β-amyloid, since it is postulated to be a major determinant of AD. This is supported by the observation that certain forms of familial AD mutations result in the over production of β-amyloid, particularly the longer form (1-42) which aggregates more readily than the shorter form. Hensley et al. (Proc. Natl. Acad. Sci., (1994), 91, pp 3270-3274) examine the neurotoxicity based on free radical generation by the peptide β-amyloid in its aggregation state. Several synthetic fragments of the peptide are tested for resulting neurotoxicity. Based on the fact that oxygen seems to be a requirement for radical generation and glutamate synthetase and creatine kinase enzymes are oxidation-sensitive biomarkers, the inactivation of these enzymes are utilized as indicators of active attack on biological molecules by these fragmented β-amyloid aggregates.
- In U.S. Pat. No. 5,004,697, Pardridge describes the use of modified antibodies for treatment and diagnosis of neurological diseases. A diagnostic composition is claimed involving an antibody capable of binding to antigens present in GFAP protein or an antibody to an Alzheimer's disease amyloid peptide. Delivery of these antibodies across the blood-brain barrier (BBB) is essential to the Pardridge invention in order to achieve diagnostic and/or therapeutic efficacy. Pardridge therefore requires modification of the antibodies by a process of cationization. There is no disclosure regarding the removal of circulating autoantibodies as a treatment method.
- In U.S. Pat. No. 5,627,047, Brenner et al teaches astroctye-specific transcription of human genes. GFAP is acknowledged in the evaluation of AD, specifically the gene which encodes GFAP, however the patent is silent regarding autoantibodies to GFAP.
- U.S. Pat. No. 6,187,756, a divisional of U.S. Pat. No. 6,043,224, issued to Lee et al. describes a method of alleviating the negative effects of a neurological disorder or neurodegenerative disease. The manner of alleviation is by administration of an antagonist of a β-adrenergic receptor coupled to cAMP or the administration of a protein kinase A or C signaling agent, for example. The importance of GFAP is only seen as it relates to cAMP; GFAP expression in astrocytes is increased by elevation in cAMP levels. Neither GFAP nor its autoantibody are recognized as having any significance in the treatment of AD.
- U.S. Pat. No. 5,723,301 issued to Burke et al. teaches a method to screen compounds that affect GAPDH binding to polyglutamine. The role of GAPDH in neuronal death as a result of brain injury is described. Although a link of GAPDH to Alzheimer's disease is disclosed, the interest lies only in polyglutamine regions. Neither GAPDH nor its autoantibody are recognized as a target useful for direct intervention in the disease.
- Many scientists have explored the significance of myelin basic protein, neuron specific enolase, and S100 autoantibodies in AD. As far as GFAP, there are conflicting results and opinions regarding the significance of serum autoantibodies against this protein. Although it has been suggested that the presence of anti-GFAP autoantibodies is related to Alzheimer's dementia, it is only as a secondary response. Generally, when GAPDH is utilized in Alzheimer's work, it is as a housekeeping gene or mRNA probe for other proteins of interest in the disease. Nothing in the prior art would suggest that a reduction in the amount of circulating autoantibodies to GFAP and GAPDH could have a beneficial effect in retarding the manifestations of Alzheimer's dementia. In addition, it has not been previously suggested to remove the circulating autoantibodies associated with these proteins to alleviate symptoms of the disease state.
- The present invention is directed toward a process and a device which is useful for altering the progression of astrocyte phagocytosis, whereby the progression or development of Alzheimer's dementia may be altered or even eliminated. Although not wishing to be bound to any particular theory or hypothesis, the instant inventors have recognized what appears to be a causal relationship between the presence of certain autoantibodies, particularly those which bind to GAPDH and GFAP in circulating sera, and the progressive loss of cognitive ability associated with AD. It is theorized that reduction of these autoantibodies within the circulating sera, as a sole therapeutic modality or alternatively in conjunction with pharmacologic therapeutic agents, e.g. acetylcholinesterase inhibitors, may be effective in altering the development and/or progression of the disease, including but not limited to retardation of disease progression and/or increase of the period of efficacy of adjunct therapy. To this end, the instant inventors have demonstrated a causal relationship between the presence of autoantibodies to GFAP and the initiation of phagocytosis of astrocyte cells.
- While it has not yet been conclusively demonstrated that a process for reduction of GFAP autoantibodies in circulating sera will modulate the development of Alzheimer's disease, it has nevertheless been shown that removal of such autoantibodies from circulating sera does, in fact, eliminate the initiation of phagocytosis of astrocytes.
- While not wishing to be bound to a particular theory or mode of operation, it is believed that provision of a device to facilitate antigen-antibody interaction by creating an interfacial area containing a population of immobilized proteins which bind to the targeted autoantibodies, will result in a reduction in said phagocytosis, coupled with a concomitant reduction in the formation of plaques associated with Alzheimer's. These immobilized proteins, which function as a ligand, may be attached in various ways to a base, e.g. polystyrene, silicone, silica, or SEPHAROSE. The proteins may be oriented or non-oriented, fashioned in some orderly mode of attachment or alternatively by means of a single point attachment or flexible attachment to improve the accessibility of the binding site. Illustrative, but non-limiting means of attachment may include the use of histidine residues for immobilization of proteins on various metal-chelate supports (Ho 1998); protein/autoantibody interaction (Kann 2000), and avidin-biotin mediated immobilization (Patel 2000).
- Alternative forms of immobilized protein devices for blood treatment contemplated for use in the instant invention include functionalized hollow fiber cartridges containing the immobilized protein therein and capable of removal of autoantibodies by adsorption from blood which is allowed to flow through the cartridges (Legallais et al. 1999). Processes for extracorporeal immunoadsorption have been disclosed for treatment of diseases such as rapidly progressive glomerulonephritis, recurrent glomerular sclerosis, systemic lupus erythematosus, cancer, myasthenia gravis, Guillain-Barre Syndrome and hemophilia.
- What has not heretofore been known in the art is that a disease process which occurs behind the blood-brain barrier, such as Alzheimer's dementia, could be effectively mediated by removal, from circulating body fluids, of those autoantibodies directly associated with reduction in cognitive ability associated with the disease.
- The advantages which flow from the use of biological markers as treatment targets include strengthening the effectiveness of pharmaceutical agents, and assisting in slowing down the rate of disease progression.
- Accordingly, it is an objective of the instant invention to provide a process effective for delaying, reducing and/or retarding the initiation of phagocytosis of astrocytic cells, which process has been linked to loss of cognitive ability associated with the progression of Alzheimer's disease.
- It is a further objective of the invention to provide a method which includes analysis of at least one body fluid of a patient to determine the presence of at least one marker indicative of Alzheimer's dementia.
- It is a still further objective of the instant invention to provide an immunoassay effective for the recognition of autoantibodies linked to the progression or manifestation of Alzheimer's dementia.
- It is a still further objective of the invention to provide a test kit for gauging the progression or retardation of AD comprising a non-invasive point-of-care test which can be performed utilizing a sample comprising blood or any blood product.
- It is yet a still further objective of the instant invention to provide a process and a related device effective for the selective removal of at least one antibody linked to the progression and/or manifestation of Alzheimer's dementia.
- Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying figures wherein are set forth, by way of illustration and example, certain embodiments of this invention. The figures constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
-
FIG. 1 is of Western blots of brain tissue extracts comparing proteins found in AD brain to normal brain; -
FIG. 2 is of 2D gels of brain extract fromFIG. 1 highlighting the proteins of interest found in AD brain only; -
FIG. 3 is a confocal micrograph of astrocytic cell interaction with macrophage dependent upon the presence of anti-GFAP antibodies. - The markers which are targeted according to the method of the invention are those which are released into the circulation as a consequence of disease state and may be present in the blood or in any blood product, for example plasma, serum, cytolyzed blood, e.g. by treatment with hypotonic buffer or detergents and dilutions and preparations thereof, and other body fluids, e.g. CSF, saliva, urine, lymph, and the like.
- For some markers, detectable levels of the marker are present normally in an individual. However, in response to a variety of physical, chemical, and etiologic insults such as brain injury, or disease, i.e. Alzheimer's, epilepsy, and multiple sclerosis, these levels become elevated due to a modification of stimulation, ultimately causing neuronal dysfunction and death.
- Western Blotting
- With reference to
FIG. 1 , tissue samples are obtained postmortem and are stored frozen until use. For experimental preparation, tissue samples are thawed and minced with a scalpel and subsequently transferred to glass tubes. A solution of phosphate buffered saline (PBS) containing a protease inhibitor cocktail, is added to the minced tissue, then homogenized using a polytron homogenizer. A detergent (TRITON X100) is added to the homogenization buffer to enhance the extraction of proteins that are normally associated with cell membranes. The crude homogenate is centrifuged at 10,000 RPM in a refrigerated super-speed centrifuge to remove unbroken cells and cell debris which form a pellet. The pellet is extracted two more times by resuspending the pellet in the homogenization buffer and centrifugation as described above. The tissue extract containing the proteins is further subjected to electrophoresis on a polyacrylamide gel (12.5%) containing SDS and DTT to denature all the proteins. Following electrophoresis, the proteins are transferred onto a membrane (PVDF), blocked overnight with 5% Blotto/50 mM Tris Buffered Saline (TBS) pH7.4 at 4° C. and incubated with serum from patients diagnosed with Alzheimer's Disease for a period of 1 hour. After this incubation, the membrane is washed with TBS containing 0.05% TWEEN 20 (TTBS); and a solution containing the secondary antibody (goat anti-human IgG) conjugated to alkaline phosphate is added and incubated for an additional 2 hours. Following this incubation, the membrane is washed and the substrate (BioRad's alkaline phosphate substrate kit) is added which initiates the reaction for color development. Rinsing with ultra pure water terminates the reaction. The membrane is allowed to air dry, then is photographed. The photograph is then analyzed using specialized software to identify the protein bands that are present. - 2D-Gel Electrophoresis
- With reference to
FIG. 2 , brain tissue extracts are separated by isoelectric focusing (IEF) using the Novex IEF gel system (pH gradient 3-10) for the first dimension. Proteins are further separated by SDS-PAGE (12.5% acrylamide) for the second dimension. Gels are then stained using Coomassie Blue stain and appropriately destained to remove background. Gels are imaged using a camera connected to a computer. - Protein ID
- Spots of interest are physically cut out of the gel (see arrows—
FIG. 2 ) using a scalpel and placed in individual tubes. Gel pieces are dehydrated to remove water, making it easier for the trypsin enzyme to penetrate the gel and digest the proteins. The gel pieces are incubated overnight (16 hours) at 37° C. with the trypsin. An aliquot of the trypsin digest fluid is removed and an initial separation step is conducted using Millipore's C18 zip tips. The filtrate is then spotted onto Ciphergen's NP1 chips and peptide sequencing is conducted. A trypsin blank is included on a blank piece of gel to enable a comparison of the peptide map of trypsin cleaving itself versus the protein of interest. - The sequences identified from the two spots cut out are GAPDH and GFAP; the upper band on the 2D gel (
FIG. 2 ) corresponds to the sequence of GFAP and the lower band corresponds to GAPDH. It is apparent these bands do not appear on thenormal brain extract 2D gel which would suggest these proteins play a role in the pathogenesis of AD. - The presence of antigen-presenting, HLA-DR-positive and other immunoregulatory cells, components of complement, inflammatory cytokines and acute phase reactants have been established in tissue of AD neuropathology. Although the data do not confirm the immune response as a primary cause of AD, they indicate involvement of immune processes at least as a secondary or tertiary reaction to the preexisting pathogen and point out its driving-force role in AD pathogenesis (Popovic et al., Int. J. Neurosci., 95, 3-4, (1998)).
- In a further contemplated embodiment of the invention, a method of immune system modulation can be employed utilizing a patient's own immune system to specifically target autoantibodies of interest associated with AD to be attacked and eliminated. It has long been known in the prior art to incorporate an individual's own T-lymphocyte cells to kill tumor cells. Only recently has this type of therapy demonstrated success. By focusing on proteins particularly expressed by the biochemical markers of interest, antigen-presenting cells with this protein particularly expressed on its surface can bind to CD28 on the T-cell surface to then induce the cascade of events, ultimately eliminating cells expressing the protein particularly expressed. In current strategies, single chain antibodies are fused to the said protein particularly expressed by a cell type of interest assisting in the T-cell activation process.
- Confocal Microscopy
-
Experiment # 1 - CCF-STTG1 cells (brain astrocytes that are GFAP +ve) are co-cultured with RAW cells (macrophage cell line) in the presence of, or without mouse anti-GFAP antibodies. Astrocytes are incubated with anti-GFAP Ab for 10 minutes and then the macrophages are added after and left to incubate for 30 min.
- Results:
- Without the Ab, the macrophages are not associated with the astrocytes, but in the presence of anti-GFAP antibodies the macrophages are clumped around the astrocytes. This initiates the phagocytosis process.
- Experiment #2
- CCF-STTG1 cells (brain astrocytes that are GFAP +ve) are co-cultured with RAW cells (macrophage cell line) in the presence of normal serum or AD serum. Astrocytes are incubated with serum for 10 minutes and then the macrophages are added after and left to incubate for 30 min.
- With normal serum, the macrophages are not associated with the astrocytes, but with AD serum the macrophages are clumped around the astrocytes. This demonstrates the start of phagocytosis and attack of the brain cells.
- As seen in
FIG. 3 , CCF-STTG1 astrocyte cells (arrowhead) and RAW macrophages (arrows) were co-cultured in the presence of a non-specific antibodies mixture (C-D) or anti-human GFAP antibody (E-F) or absence of antibodies (A-B). Binding of macrophages to astrocytes before wash is shown in A-C-E, and interactions remaining after wash in B-D-F. Specific binding occurs only in the presence of antibody specific to GFAP protein. - Thus, removal or reduction of the concentration of antibody specific to GFAP protein will retard or eliminate the initiation of phagocytosis, and concomitantly retard or eliminate the initiation of Alzheimer's related changes in the brain.
- The level of any one or all of the specific markers of interest found in the patient's body fluid may be used for purposes of monitoring removal efficiency. Body fluid samples may be taken from a patient at one point in time or at different points in time for ongoing analysis. Typically, a first sample is taken from a patient upon presentation with possible symptoms of AD and analyzed for presence of the particular markers. By “sample” is meant a body fluid such as blood. All the markers can be measured with one assay device or by using a separate assay device for each marker in which case aliquots of the same sample can be used. It is preferred to measure each of the markers in the same single sample, irrespective of whether the analyses are carried out in a single analytical device or in separate devices so that the level of each marker simultaneously present in a single sample can be used to provide meaningful data.
- The presence of each marker is determined using antibodies specific for each of the markers and detecting specific binding of each antibody to its respective marker. Any suitable direct or indirect assay method may be used, including those which are commercially available to determine the level of each of the specific markers measured according to the invention. The assays may be competitive assays, sandwich assays, and the label may be selected from the group of well-known labels such as radioimmunoassay, fluorescent or chemiluminescence immunoassay, or immunoPCR technology. Extensive discussion of the known immunoassay techniques is not required here since these are known to those of skilled in the art. See Takahashi et al. (Clin Chem 1999;45(8):1307) for S100B assay.
- All patents and publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
- It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement of parts herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification and drawings.
- One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The oligonucleotides, peptides, polypeptides, biologically related compounds, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.
Claims (1)
1. A process for retarding phagocytosis of astrocytic cells comprising:
removing autoantibodies against glial fibrillary acidic protein (GFAP) from a body fluid;
whereby removing said autoantibodies from said body fluid retards phagocytosis of astrocytic cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/351,997 US20060134108A1 (en) | 2001-05-16 | 2006-02-10 | Method for retarding or precluding Alzheimer's dementia |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/859,559 US20020172676A1 (en) | 2001-05-16 | 2001-05-16 | Method of treatment of alzheimer's disease and device therefor |
US10/334,701 US7014854B2 (en) | 2001-05-16 | 2002-12-30 | Method for retarding or precluding Alzheimer's dementia |
US11/351,997 US20060134108A1 (en) | 2001-05-16 | 2006-02-10 | Method for retarding or precluding Alzheimer's dementia |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/334,701 Continuation US7014854B2 (en) | 2001-05-16 | 2002-12-30 | Method for retarding or precluding Alzheimer's dementia |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060134108A1 true US20060134108A1 (en) | 2006-06-22 |
Family
ID=25331202
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/859,559 Abandoned US20020172676A1 (en) | 2001-05-16 | 2001-05-16 | Method of treatment of alzheimer's disease and device therefor |
US10/334,701 Expired - Fee Related US7014854B2 (en) | 2001-05-16 | 2002-12-30 | Method for retarding or precluding Alzheimer's dementia |
US11/351,997 Abandoned US20060134108A1 (en) | 2001-05-16 | 2006-02-10 | Method for retarding or precluding Alzheimer's dementia |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/859,559 Abandoned US20020172676A1 (en) | 2001-05-16 | 2001-05-16 | Method of treatment of alzheimer's disease and device therefor |
US10/334,701 Expired - Fee Related US7014854B2 (en) | 2001-05-16 | 2002-12-30 | Method for retarding or precluding Alzheimer's dementia |
Country Status (3)
Country | Link |
---|---|
US (3) | US20020172676A1 (en) |
AU (1) | AU2002302238A1 (en) |
WO (1) | WO2002093174A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100158893A1 (en) * | 2008-12-19 | 2010-06-24 | Baxter International Inc. | Systems and methods for obtaining immunoglobulin from blood |
EP3509646A4 (en) * | 2016-09-09 | 2020-06-17 | Mayo Foundation for Medical Education and Research | METHODS AND MATERIALS FOR IDENTIFYING AND TREATING AUTOIMMUNE ASTROCYTOPATHY |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020172676A1 (en) * | 2001-05-16 | 2002-11-21 | George Jackowski | Method of treatment of alzheimer's disease and device therefor |
US20030054414A1 (en) * | 2001-09-17 | 2003-03-20 | George Jackowski | Diagnosis and treatment of early pre-type-1 diabetes utilizing glial fibrillary acidic protein |
WO2005122712A2 (en) * | 2003-06-11 | 2005-12-29 | Socratech L.L.C. | Soluble low-density lipoprotein receptor related protein binds directly to alzheimer’s amyloid-beta peptide |
DE102006003782A1 (en) * | 2006-01-25 | 2007-08-02 | Protagen Ag | Treatment and prevention of autoimmune diseases, e.g. hemolytic anemia or arteriosclerosis, by extracorporeal adsorption of autoantibodies on to specific autoantigens |
EP2080519A1 (en) * | 2008-01-15 | 2009-07-22 | Max-Delbrück-Centrum für Molekulare Medizin (MDC) | Peptides having binding affinity to an antibody which recognizes an epitope on an alpha1 loop 2 or beta 2 loop 1 of an adrenoreceptor |
JP5781436B2 (en) | 2008-08-11 | 2015-09-24 | バンヤン・バイオマーカーズ・インコーポレーテッド | Biomarker detection methods and assays for neurological conditions |
CA2774173A1 (en) * | 2009-09-14 | 2011-03-17 | Banyan Biomarkers, Inc. | Micro-rna, autoantibody and protein markers for diagnosis of neuronal injury |
EP2521915A4 (en) * | 2010-01-04 | 2013-05-29 | Mayo Foundation | PERIPHERIN-SPECIFIC AUTOANTIBODIES AS MARKERS OF NEUROLOGICAL DISEASES AND THE ENDOCRINE SYSTEM |
EP3312611B1 (en) * | 2016-10-21 | 2020-02-26 | Dr. Power Stem Biomedical Research Inc., Ltd. | Method for diagnosis of alzheimer's disease |
US11193933B2 (en) * | 2016-10-26 | 2021-12-07 | Dr. Power Stem Biomedical Research Inc., Ltd. | Measuring GAPDH protein for diagnosis and treatment of alzheimer's disease |
TWI622771B (en) * | 2016-10-27 | 2018-05-01 | 百威研發股份有限公司 | Method for diagnosis of alzheimer's disease |
CN110366558A (en) | 2016-10-28 | 2019-10-22 | 班扬生物标记公司 | For the antibody and correlation technique of ubiquitin c-terminal hydrolase-l 1 (UCH-L1) and glial fibrillary acid protein (GFAP) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4627915A (en) * | 1983-04-06 | 1986-12-09 | Asahi Kasei Kogyo Kabushiki Kaisha | Absorbent of autoantibody and immune complexes, adsorbing device and blood purifying apparatus comprising the same |
US5004697A (en) * | 1987-08-17 | 1991-04-02 | Univ. Of Ca | Cationized antibodies for delivery through the blood-brain barrier |
US5098372A (en) * | 1986-04-24 | 1992-03-24 | Stafilum Ab | Methods and machine based on blood separation by filtration for plasma exchange treatment, plasma donation and cytapheresis such as platelet apheresis |
US5627047A (en) * | 1991-10-04 | 1997-05-06 | United States Of America Department Of Health And Human Services | Astrocyte-specific transcription of human genes |
US5723301A (en) * | 1995-11-03 | 1998-03-03 | Duke University | Method to screen compounds that affect GAPDH binding to polyglutamine |
US5935927A (en) * | 1994-02-03 | 1999-08-10 | The Picower Institute For Medical Research | Compositions and methods for stimulating amyloid removal in amyloidogenic diseases using advanced glycosylation endproducts |
US6043224A (en) * | 1996-09-05 | 2000-03-28 | The Massachusetts Institute Of Technology | Compositions and methods for treatment of neurological disorders and neurodegenerative diseases |
US7014854B2 (en) * | 2001-05-16 | 2006-03-21 | Syn X Pharma, Inc. | Method for retarding or precluding Alzheimer's dementia |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2123211C (en) * | 1991-11-12 | 2008-09-16 | Colin L. Masters | A method for assaying and treating alzheimer's disease |
JPH1080480A (en) * | 1996-09-09 | 1998-03-31 | Kanegafuchi Chem Ind Co Ltd | Method and device for processing blood by plasma exchange |
US6451547B1 (en) * | 2001-04-25 | 2002-09-17 | Syn X Pharma | Process for differential diagnosis of Alzheimer's dementia and device therefor |
-
2001
- 2001-05-16 US US09/859,559 patent/US20020172676A1/en not_active Abandoned
-
2002
- 2002-05-16 AU AU2002302238A patent/AU2002302238A1/en not_active Abandoned
- 2002-05-16 WO PCT/CA2002/000708 patent/WO2002093174A2/en not_active Application Discontinuation
- 2002-12-30 US US10/334,701 patent/US7014854B2/en not_active Expired - Fee Related
-
2006
- 2006-02-10 US US11/351,997 patent/US20060134108A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4627915A (en) * | 1983-04-06 | 1986-12-09 | Asahi Kasei Kogyo Kabushiki Kaisha | Absorbent of autoantibody and immune complexes, adsorbing device and blood purifying apparatus comprising the same |
US5098372A (en) * | 1986-04-24 | 1992-03-24 | Stafilum Ab | Methods and machine based on blood separation by filtration for plasma exchange treatment, plasma donation and cytapheresis such as platelet apheresis |
US5004697A (en) * | 1987-08-17 | 1991-04-02 | Univ. Of Ca | Cationized antibodies for delivery through the blood-brain barrier |
US5627047A (en) * | 1991-10-04 | 1997-05-06 | United States Of America Department Of Health And Human Services | Astrocyte-specific transcription of human genes |
US5935927A (en) * | 1994-02-03 | 1999-08-10 | The Picower Institute For Medical Research | Compositions and methods for stimulating amyloid removal in amyloidogenic diseases using advanced glycosylation endproducts |
US5723301A (en) * | 1995-11-03 | 1998-03-03 | Duke University | Method to screen compounds that affect GAPDH binding to polyglutamine |
US6043224A (en) * | 1996-09-05 | 2000-03-28 | The Massachusetts Institute Of Technology | Compositions and methods for treatment of neurological disorders and neurodegenerative diseases |
US6187756B1 (en) * | 1996-09-05 | 2001-02-13 | The Massachusetts Institute Of Technology | Composition and methods for treatment of neurological disorders and neurodegenerative diseases |
US7014854B2 (en) * | 2001-05-16 | 2006-03-21 | Syn X Pharma, Inc. | Method for retarding or precluding Alzheimer's dementia |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100158893A1 (en) * | 2008-12-19 | 2010-06-24 | Baxter International Inc. | Systems and methods for obtaining immunoglobulin from blood |
EP3509646A4 (en) * | 2016-09-09 | 2020-06-17 | Mayo Foundation for Medical Education and Research | METHODS AND MATERIALS FOR IDENTIFYING AND TREATING AUTOIMMUNE ASTROCYTOPATHY |
US11402379B2 (en) | 2016-09-09 | 2022-08-02 | Mayo Foundation For Medical Education And Research | Methods and materials for identifying and treating autoimmune GFAP astrocytopathy |
US12105088B2 (en) | 2016-09-09 | 2024-10-01 | Mayo Foundation For Medical Education And Research | Methods and materials for identifying and treating autoimmune GFAP astrocytopathy |
Also Published As
Publication number | Publication date |
---|---|
US20020172676A1 (en) | 2002-11-21 |
WO2002093174A3 (en) | 2003-07-10 |
WO2002093174A2 (en) | 2002-11-21 |
AU2002302238A1 (en) | 2002-11-25 |
US20030152570A1 (en) | 2003-08-14 |
US7014854B2 (en) | 2006-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060134108A1 (en) | Method for retarding or precluding Alzheimer's dementia | |
Hampel et al. | Core biological marker candidates of Alzheimer’s disease–perspectives for diagnosis, prediction of outcome and reflection of biological activity | |
EP1882944B1 (en) | Method for the detection of amyloid-beta oligomers in body fluids | |
JP5281397B2 (en) | Diagnosis of brain injury related disorders | |
Mecocci et al. | Serum anti-GFAP and anti-S100 autoantibodies in brain aging, Alzheimer's disease and vascular dementia | |
JP5005690B2 (en) | In vitro method for detection of neurodegenerative diseases | |
WO1997008560A1 (en) | QUANTITATION OF p97 TO DIAGNOSE AND MONITOR ALZHEIMER'S DISEASE | |
US20140294839A1 (en) | Methylated Peptides Derived from Tau Protein and Their Antibodies for Diagnosis and Therapy of Alzheimer's Disease | |
Lewczuk et al. | Neurochemical dementia diagnostics: state of the art and research perspectives | |
JPH05508919A (en) | Cell necrosis detection by analysis of spectrin or its decay products | |
JP2024112950A (en) | Methods for developing pharmaceutical agents for treating neurodegenerative conditions - Patents.com | |
Rostgaard et al. | Cerebrospinal fluid biomarkers in familial forms of Alzheimer's disease and frontotemporal dementia | |
US20220057409A1 (en) | Combinatorial temporal biomarkers and precision medicines with detection and treatment methods for use in neuro injury, neuro disease, and neuro repair | |
Wang et al. | Synaptic vesicle glycoprotein 2 A in serum is an ideal biomarker for early diagnosis of Alzheimer’s disease | |
Wang et al. | Will posttranslational modifications of brain proteins provide novel serological markers for dementias? | |
KR20220163936A (en) | Kinases as biomarkers of neurodegenerative conditions | |
WO2012015050A1 (en) | Method for detection of cleavage product of soluble amyloid-β precursor protein 770β for diagnosis of diseases associated with accumulation of amyloid-β peptide | |
Yuan et al. | Intracisternal injection of beta-amyloid seeds promotes cerebral amyloid angiopathy | |
JP2005513480A (en) | Diagnosis and treatment of dementia using thrombospondin | |
JP2010511159A (en) | Method for diagnosis and early diagnosis of neurodegenerative diseases in vitro | |
WO2020197399A1 (en) | Methods and means for stratification of an individual suffering from, or suspected to suffer from, a progressive neurodegenerative disease | |
US9618522B2 (en) | Diagnostic testing in dementia and methods related thereto | |
US20220308073A1 (en) | Biomarker for alzheimer's disease | |
Tzara | Identification and Exploration of Neuronal Protein Fragments in Serum ad Biomarkers for Neurodegenerative Diseases | |
Gaddam | Check for updates Biomarkers for Alzheimer's Disease Mareechika Gaddam, Esther Rani Motamarri, and Abha Sharma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PORTSIDE GROWTH & OPPORTUNITY FUND, AS COLLATERAL Free format text: GRANT OF SECURITY INTEREST;ASSIGNOR:NANOGEN, INC.;REEL/FRAME:021291/0605 Effective date: 20080327 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |