US20060131877A1 - Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications - Google Patents
Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications Download PDFInfo
- Publication number
- US20060131877A1 US20060131877A1 US10/905,211 US90521104A US2006131877A1 US 20060131877 A1 US20060131877 A1 US 20060131877A1 US 90521104 A US90521104 A US 90521104A US 2006131877 A1 US2006131877 A1 US 2006131877A1
- Authority
- US
- United States
- Prior art keywords
- fitting
- tube
- fluid
- joint
- nest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L13/00—Non-disconnectable pipe joints, e.g. soldered, adhesive, or caulked joints
- F16L13/14—Non-disconnectable pipe joints, e.g. soldered, adhesive, or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling
- F16L13/141—Non-disconnectable pipe joints, e.g. soldered, adhesive, or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling by crimping or rolling from the outside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/14—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/04—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L25/00—Construction or details of pipe joints not provided for in, or of interest apart from, groups F16L13/00 - F16L23/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L33/00—Arrangements for connecting hoses to rigid members; Rigid hose-connectors, i.e. single members engaging both hoses
- F16L33/20—Undivided rings, sleeves, or like members contracted on the hose or expanded inside the hose by means of tools; Arrangements using such members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49803—Magnetically shaping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49909—Securing cup or tube between axially extending concentric annuli
- Y10T29/49913—Securing cup or tube between axially extending concentric annuli by constricting outer annulus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49925—Inward deformation of aperture or hollow body wall
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49925—Inward deformation of aperture or hollow body wall
- Y10T29/49927—Hollow body is axially joined cup or tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49947—Assembling or joining by applying separate fastener
- Y10T29/49966—Assembling or joining by applying separate fastener with supplemental joining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49947—Assembling or joining by applying separate fastener
- Y10T29/49966—Assembling or joining by applying separate fastener with supplemental joining
- Y10T29/4997—At least one part nonmetallic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/49—Member deformed in situ
- Y10T403/4966—Deformation occurs simultaneously with assembly
Definitions
- the present invention is related to U.S. patent application (Attorney Docket Numbers 04-1054/04-1055/90-79) entitled “Electromagnetic Mechanical Pulse Forming of Fluid Joints for Low-Pressure Applications”, U.S. patent application (Attorney Docket Numbers 03-0722) entitled “Magnetic Field Concentrator for Electromagnetic Forming and Magnetic Pulse Welding of Fluid Joints”, and U.S. patent application (Attorney Docket Number 03-1335) entitled “Electromagnetic Pulse Welding of Fluid Joints”, which are incorporated by reference herein.
- the present invention generally relates to the solid state coupling of metallic tubes and fittings. More specifically, the present invention is related to the mechanical magnetic coupling of the tubes to the fittings.
- Metallic tubes are commonly used to carry fluid in the form of gas or fluid throughout various fluid circuits in many industries. This is especially true in the aerospace industry, due to the lightweight and strong mechanical features of the metallic tubes.
- thin-walled aluminum and stainless steel tubing is often utilized within an aircraft to carry oxygen and hydraulic fluid for various applications, such as to breathing apparatuses and to and from vehicle brakes.
- the fluid circuits typically contain a vast number of interlock joints, which reside between the tubing and the end fittings, such as fittings.
- the current technique used to join the different sized tubes and fittings is referred to as a roller swaging process.
- a tube is inserted into a fitting while the fitting is constrained using a clamp.
- the tube is then expanded into the fitting using a roller.
- the inner walls of the fitting typically contain grooves within which the tube is expanded.
- An interlock is created between the tube and the fitting due to the expansion and deformation of the tube against the inner walls and into the grooves of the fitting.
- GTAW Gas Tungsten Arc Welding
- a need for an improved leak tight joint between a tube and a fitting and a technique for forming the leak tight joint that may be applied to various fluid circuit applications It is desirable that the improved technique be economical, have an associated quick production set-up time, and account for different sized tube and fitting combinations.
- the present invention satisfies the above-stated desires and provides a leak tight joint for high-pressure applications utilizing magnetic interactions.
- One embodiment of the present invention provides an electromagnetically formed fluid circuit joint that includes a tubular conduit with an outer surface.
- the outer surface has a groove.
- a hollow fitting is mechanically separate from and received over the tubular conduit.
- the hollow fitting includes an electromagnetic field formed wall deformation that extends into the groove.
- the embodiments of the present invention provide several advantages.
- One such advantage is the provision of electromagnet mechanically joining process for forming a liquid tight joint between a ferrule and a tube. This process is quick and economical.
- Another advantage provided by an embodiment of the present invention is the provision of a tube having one or more grooves for deformation therein by a ferrule wall. The deformation within the grooves provides a leak tight joint.
- the present invention provides joint forming techniques with improved repeatability, with quick assembly times, that do not require lubrication to form, and that have low associated scrap rates.
- the scrap rates, as a result of the joint forming techniques, is approximately zero.
- FIG. 1 is a block diagrammatic view of a magnetic forming system in accordance with an embodiment of the present invention.
- FIG. 2A is a cross-sectional side view of a field shaper/nest that may be incorporated into the system of FIG. 1 in accordance with an embodiment of the present invention.
- FIG. 2B is a front cross-sectional view of the field shaper/nest of FIG. 2A .
- FIG. 2C is a perspective view of the two halves of the field shaper/nest of FIG. 2A .
- FIG. 3 is a perspective view of a fitting, a metallic sleeve, and a tube utilized to form a fluid tight joint in accordance with an embodiment of the present invention.
- FIG. 4 is a half-side cross-sectional view of a tube and fitting coupling prior to electromagnetic forming in accordance with yet another embodiment of the present invention.
- FIG. 5 is a half-side cross-sectional view of the tube/fitting coupling of FIG. 4 as attached to a corresponding union subsequent to electromagnetic forming in accordance with yet another embodiment of the present invention.
- FIG. 6 is a side view of the tube and fitting coupling of FIG. 4 after forming.
- FIG. 7 is a sample method of magnetically forming a fluid joint in accordance with an embodiment of the present invention.
- the same reference numerals are used to refer to the same components. While the present invention is described with respect to a system for electromagnetically forming a fluid joint and to the joints formed therefrom, the present invention may be adapted for various applications, such as air, gas, liquid, and fluid applications.
- the present invention may be applied to high-pressure fluid applications of equal or greater than approximately 5000 psi.
- the present invention may be applied to fluid applications in the aerospace, automotive, railway, and nautical or watercraft industries.
- the present invention allows for the electromagnetic formation of fluid tight joints between fittings and tubular conduits having various diameters.
- the present invention may be applied to applications where the fittings and the tubular conduits have outer diameters of greater than approximately two inches, as well as to applications where the outer diameters are less than or equal to approximately two inches.
- fitting may refer to a ferrule, a nut, a union, or other fitting known in the art.
- a fitting may be magnetically formed or magnetically welded to or with a tubular conduit, as is described below.
- FIG. 1 a block diagrammatic view of a magnetic forming system 10 in accordance with an embodiment of the present invention is shown.
- the magnetic forming system 10 includes an induction coil and field shaper assembly 11 with an induction coil 12 that is utilized to magnetically form a fluid joint between fluid carrying tubes and fittings, some examples of fluid joints, fluid carrying tubes, and fittings are shown in FIGS. 2A-6 .
- the induction coil 12 receives current generated from a current supply circuit 14 and generates an electromagnetic field, which is utilized to mechanically form and/or weld portions of a tube and a corresponding fitting to form a fluid joint.
- the current supply circuit 1 4 may include a capacitor bank 16 and a power source 18 , as shown.
- Control circuitry and switching devices 20 is coupled to the capacitor bank 16 , via transmission lines and buses 17 , and controls charge and discharge thereof via the power source 18 .
- the induction coil 12 is coupled to a field shaper 22 , which focuses the electrical current within the induction coil 12 .
- various field shapers 26 , nests 28 , mandrels 30 , and metallic sleeves 31 within a storage unit 32 may be selected that correspond to a particular tube and fitting combination.
- the selected field shaper and nest are inserted into the induction coil 12 prior to electromagnetic forming of a tube and/or a fitting.
- the control circuitry may include switches for the setting of various power levels.
- the control circuitry may be in various forms known in the art and is used to control the power received by the capacitor bank 16 and transmitted to the induction coil 12 .
- the field shaper 22 is used to adapt a compression coil, such as the induction coil 12 , to a smaller diameter workpiece, having a smaller diameter than the induction coil.
- the field shaper 22 concentrates the magnetically exerted pressure to a specific location on a tube, a fitting, and/or a metallic sleeve.
- the capacitor bank 16 When the capacitor bank 16 is discharged through the induction coil 12 , the induced current in the magnetic field produces a magnetic pressure on the conductive tube, fitting, and/or metallic sleeve.
- the amount of discharged power produces a sufficient amount of magnetic compressive or expansive pressure to conform and deform the tube, fitting, and/or metallic sleeve.
- the metallic sleeves 31 are utilized to improve the electromagnetic field effect on and to increase the deformation of, for example, a fitting during electromagnetic deformation.
- a fitting is utilized that is formed of a high tensile material that has low electrical conductivity, such as titanium
- a metallic sleeve may be utilized to aid in the deformation of the fitting.
- the metallic sleeves may be formed of stainless steel or copper. In one example embodiment, a copper sleeve having 99.5% purity is utilized.
- FIGS. 2 A-C is a sample embodiment that may be utilized in the electromagnetic forming of the walls of a fitting to form a fluid tight joint. Other similar embodiments may be utilized.
- FIGS. 2 A-C a cross-sectional side view of an field shaper/nest assembly 50 , a front cross-sectional view of the field shaper/nest assembly 50 , and a perspective view of the two halves 52 and 54 of the field shaper/nest assembly 50 are shown in accordance with an embodiment of the present invention.
- the field shaper/nest assembly 50 is used to compress a fitting 56 onto a tube 58 via an electromagnetic field generated by the induction coil 12 and the field shaper 60 .
- Tube and fitting features are described with respect to the sample embodiment of FIGS. 3-6 below.
- the field shaper/nest assembly 50 utilizes the field shaper 60 , which may be one of the field shapers 26 , to form a fluid tight joint.
- the field shaper/nest assembly 50 includes the first half 52 and the second half 54 , which is a mirror image of the first half 52 .
- the field shaper 60 is put into the induction coil 12 .
- An insulation layer 71 resides between the induction coil 12 and the field shaper 60 and is used to prevent short circuiting between the induction coil 12 and the field shaper 60 .
- the induction coil 12 generates an electromagnetic field, which is imposed on the fitting 56 via the field shaper 60 .
- the electromagnetic field accelerates the tube-forming portion 72 of the fitting 56 toward the tube 58 , thereby compressing the tube-forming portion 72 within the grooves 74 of the tube 58 .
- the field shaper 60 is generally cylindrically shaped and is utilized to generate an electromagnetic field to cause the deformation of the fitting 56 to form a fluid joint.
- the cross-section of the field shaper 60 is “I”-shaped.
- the field shaper 60 includes a first shaper half 73 and a second shaper half 75 .
- the combined halves 73 and 75 form an outer ring 80 and a main center disc 82 that extends inward toward a tube/fitting forming region 84 .
- the center disc 82 has a semi-circular opening 87 in the tube/fitting forming region 84 .
- the field shaper halves 73 and 75 are, respectively, connected and have internal dimensions and geometry that correspond with the nest halves 52 and 54 .
- the field shaper 60 is held fixed in place within the nest 86 during electromagnetic forming.
- a metallic sleeve 88 may be used to increase deformation of the fitting.
- the metallic sleeve 88 is oriented to reside over the tube-forming portion 72 and aids in the formation thereof.
- the metallic sleeve 88 reacts to and is formed by the electromagnetic field induced by the field shaper 60 causing the tube-forming portion 72 to be compressed and formed at least partially into the grooves 74 .
- the metallic sleeve 88 allows for increased deformation in the tube-forming region by improving field effects thereon.
- the metallic sleeve 88 may be formed of high purity copper or other highly conductive material. In one embodiment, the metallic sleeve is formed of at least approximately 99.5% pure copper.
- a second insulation layer 90 may be utilized between the tube-forming portion 72 and the metallic sleeve 88 .
- the insulation layer 90 provides a layer of protection during removal of the metallic sleeve 88 from the fitting 56 after electromagnetic forming. This is explained in further detail below with respect to the method of FIG. 7 .
- Fly distance gaps G 1 reside between the fitting 56 and the tube 58 , which allow for the acceleration of the fitting material in the tube-forming portion 72 to compress and be accelerated towards the grooves of the tube 58 .
- a gap G 3 may also reside between the shaper halves 73 and 75 .
- the field shaper 60 and the nest 86 are split to provide ease in set-up and disassembling of the field shaper/nest assembly 50 .
- the field shaper 60 may be formed of beryllium copper BeCu or other material having similar properties.
- the nest 86 may be of various sizes, shapes, and styles, and may be formed of various non-metallic materials. In one embodiment, the nest 86 is formed of plastic. The nest 86 holds the fitting 56 and the tube 58 in alignment.
- the fitting 56 and the tube 58 may be formed of various metallic materials, such as aluminum, stainless steel, and titanium.
- the tube 58 includes the grooves 74 , in a fitting inlay section 92 , in which the wall 94 of the fitting 56 is deformed therein. This deformation into the grooves 74 provides a non-sealant based fluid tight seal.
- sealants known in the art may be utilized, for example, an adhesive may be utilized between the fitting 56 and the tube 58 .
- a mandrel 96 may be used to limit the inward lateral displacement of the fitting 56 and the tube 58 .
- a mandrel 96 resides within the nest 86 and includes an insert portion or stem 97 , which is inserted into the tube 58 through the tube/fitting forming region 84 .
- the stem 97 may be slightly tapered, although not shown, and is inserted within the tube 58 .
- the outer edges 102 of the stem 97 when tapered, are tapered inward towards the centerline 103 away from the handle portion 98 .
- the stem 97 is coupled to a handle portion 98 , which resides in a recessed portion 100 of the nest 86 .
- a plug 104 may be located within a second recessed portion 106 of the nest 86 and prevent lateral displacement of the tube 58 .
- the nest 86 may include alignment tabs 108 on, for example, the second half 54 , and corresponding receivers 110 , on the first half 52 .
- the tabs 108 and the receivers 110 ease the alignment and coupling of the first half 52 to the second half 54 .
- a carry handle 112 is shown and may be coupled to the nest 86 for easy inserting and removing from the induction coil 12 , and easy carrying and transporting thereof.
- FIGS. 3-6 a perspective view of a fitting 56 ′, a metallic sleeve 88 ′, and a tube 58 ′ utilized to form a fluid tight joint 150 , half-side cross-sectional views prior and subsequent to electromagnetic forming, and a side view are shown of a tube/fitting coupling 152 in accordance with yet another embodiment of the present invention.
- the tube/fitting joint 150 is capable of withstanding internal fluid pressures of greater than 5000 psi when formed from high tensile strength materials, such as stainless steel and titanium.
- the tube/fitting coupling 152 includes the tube 58 ′ having multiple grooves 153 on an exterior surface 154 and the fitting 56 ′ for formation thereon.
- the tube 56 ′ includes electromagnetic forming grooves 156 and a fitting end groove 158 .
- the fitting 56 ′ includes a tube-forming portion 72 ′, a nut step 160 , and a curved end 162 with a tip 164 .
- the tube-forming portion 72 ′ is deformed such that a portion or section thereof is bent into the electromagnetic grooves 153 . This bent section may be referred to as an electromagnetic field formed wall deformation. Two such sections 165 are shown.
- the nut step 160 includes an arched side 166 , for abutting an interior side 168 of a nut 170 , and a linear side 172 , for abutting a union 174 .
- the curved end 162 corresponds with an interior side 176 of the union 174 to allow for a continuous contact area between the curved end 162 and the union 174 .
- This continuous contact area aids in providing a leak free joint and increases the rated pressure of the tube/fitting joint 150 .
- the tip 164 may be bent or formed such that it is placed within the fitting end groove 158 .
- the fitting 56 ′ and the tube 58 ′ may be formed of similar materials as mentioned above.
- the tube 58 ′ may have any number of electromagnetic forming grooves.
- the grooves may be of various widths and have various associated separation distances therebetween.
- the groove geometry and the placement of the grooves 153 on the outer surface 154 , the radius of curvature of the front end 162 , and other geometry of the fitting 56 ′ and the tube 58 ′ enhances strength of the fluid joint 150 between the fitting 56 ′ and the tube 58 ′ after applying an initial torque of approximately 1200 in-lb on the nut 170 .
- the grooves 156 are circular in shape to prevent cracking within the tube-forming portion 72 ′.
- the tube 58 ′ is a “thick-walled” tube.
- the term “thick-walled” refers to a tube in which the ratio between the inner diameter and the outer diameter of the tube is approximately greater than 1.2.
- the tube-forming portion 72 ′ also provides support and absorbs a significant portion of the stresses experienced in the material around and near the electromagnetic forming grooves 156 .
- the material compositions of the tubes and the fittings utilized can affect the ability of the tubes and or the fittings to be deformed.
- the material composition of the fitting may be adjusted and/or have less tensile strength than that of the tube to allow for such deformation.
- the thickness of the tube and fitting walls may also be adjusted to provide various degrees of tensile strength.
- the electromagnetic current pulses utilized may also be adjusted to provide the desired deformation in the tube and the fitting.
- FIG. 7 a sample method of magnetically forming a fluid joint, such as the fluid joint 150 , in accordance with an embodiment of the present invention is shown.
- Dashed box 188 represents the following steps that are included in the tube/fitting preparation phase.
- step 190 grooves, such as the grooves 153 , are machined within a current tube, such as the tube 58 or the tube 58 ′. The grooves are machined using techniques known in the art.
- step 192 the tube is chemically cleaned to remove any dirt and/or lubricant within or exterior to the tube.
- a field shaper such as the field shaper 60
- the current tube is inserted into a current fitting, such as the fitting 56 or the fitting 56 ′.
- the fitting is placed in the appropriate location on the tube for forming.
- a metallic sleeve such as the metallic sleeve 88 or the metallic sleeve 88 ′ is placed over the fitting.
- a mandrel such as the mandrel 96
- a thin layer of insulation is applied to the exterior of the fitting, such as the insulation layer 90 .
- the insulation layer may be rolled onto the sleeve.
- step 208 the tube, the fitting with the insulation layer, the metallic sleeve, and the mandrel are inserted into a current nest.
- the tube, the fitting, the metallic sleeve, and the mandrel are placed on a first half of the nest, such as half 52 .
- a second half, such as half 54 , of the nest is placed over the first half covering the fitting, the tube, the metallic sleeve, and the mandrel.
- the nest is set into an induction coil, such as the induction coil 12 .
- step 211 a power setting is selected and entered into the control circuitry, depending upon the tube/fitting coupling being formed.
- the control circuitry 20 via an induction coil generates a first stage electromagnetic current that is passed into the field shaper via coupling between the induction coil and the field shaper.
- the field shaper focuses the first stage electromagnetic current to form an electromagnetic field.
- step 216 the electromagnetic field is imposed upon the exterior of the metallic sleeve and/or fitting and accelerates and compresses the metallic sleeve and the tube-forming portion of the fitting, such as the tube-forming portion 72 ′, onto the tube.
- the tube-forming portion of the fitting In accelerating and compressing the fitting onto the tube, the tube-forming portion of the fitting is deformed into the grooves of the tube. The compression and deformation of the tube-forming portion forms a pressure tight fluid joint with the tube.
- the fly distance gaps between the fitting and the tube, such as gaps G 1 allow for the acceleration of the tube-forming portion.
- the mandrel constrains or limits the compression of the fitting and the tube during electromagnetic formation. Steps 212 - 218 are substantially performed simultaneously.
- a high current pulse of short duration is introduced to the coils of the induction coil, which generates the electromagnetic field to instantaneously deform the fitting radially inward towards the tube, resulting in the crimping of the fitting onto the tube to form the fluid joint.
- the pulse is strong enough to induce magnetic forces above the yield strength of the material in the fitting.
- step 220 upon completion of steps 220 - 228 the current nest is removed from the induction coil containing the fluid joint.
- step 221 deformation of the fitting within the grooves of the tube is checked. When the deformations are of appropriate dimension step 222 is performed and 224 is performed. When the deformations are of inappropriate dimension, for example, the depth of the deformations is smaller than desired step 222 is performed followed by returning to the tube/fitting preparation phase and repeating steps 190 - 221 to form another tube/fitting coupling with increased deformation depth. To increase deformation depth the power setting selected in step 211 is increased.
- step 222 the tube/fitting coupling including the fluid joint is removed from the current nest.
- the first half and the second half of the current nest are separated to allow for the removal of the tube/fitting coupling.
- the metallic sleeve is removed from the tube/fitting coupling.
- the metallic sleeve may be cut using a rotating end mill and pulled of the tube/fitting coupling using a pair of pliers.
- the metallic sleeve may be removed using other techniques known in the art.
- an insulation layer such as the insulation layer 90 is used, the insulation layer aids in protecting the fitting during the cutting and removing of the metallic sleeve.
- step 226 it is determined whether the current setup and configuration of the current tube and the current fitting is to be reused or replaced. Either another tube/fitting coupling is formed using the current field shaper and nest arrangement or a replacement field shaper and nest arrangement is selected.
- the replacement field shaper and nest may have different internal dimensions as compared with the current field shaper and nest and may be selected from the field shapers 26 and the nests 28 .
- the different internal dimensions may correspond to a tube/fitting coupling of different size, to a tube/fitting coupling having a different tube/fitting configuration, to a tube/fitting coupling formed using a different electromagnetic forming technique, or to other known tube/fitting related differences known in the art.
- the present invention provides fluid tight leak joints with reduced scrap rate. Further, because the insert/nest assemblies are quickly and easily inserted and removed from a fixed structure, a large quantity of tubular joints may be quickly formed. The above stated reduces costs associated with manufacturing down times.
- the present invention reduces manufacturing processing steps as compared to conventional welding and roller swaging or elastomeric processes.
- the present invention also reduces inspection process steps, cost of production, and provides a highly reproducible manufacturing process to maintain consistent quality.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
An electromagnetically formed fluid circuit joint (150) includes a tubular conduit (58) that has an outer surface (154) with a groove (72). A hollow fitting (56) is mechanically separate from and received over the tubular conduit (58). The hollow fitting (56) includes an electromagnetic field formed wall deformation (165) that extends into the groove (72).
Description
- The present invention is related to U.S. patent application (Attorney Docket Numbers 04-1054/04-1055/90-79) entitled “Electromagnetic Mechanical Pulse Forming of Fluid Joints for Low-Pressure Applications”, U.S. patent application (Attorney Docket Numbers 03-0722) entitled “Magnetic Field Concentrator for Electromagnetic Forming and Magnetic Pulse Welding of Fluid Joints”, and U.S. patent application (Attorney Docket Number 03-1335) entitled “Electromagnetic Pulse Welding of Fluid Joints”, which are incorporated by reference herein.
- The present invention generally relates to the solid state coupling of metallic tubes and fittings. More specifically, the present invention is related to the mechanical magnetic coupling of the tubes to the fittings.
- Metallic tubes are commonly used to carry fluid in the form of gas or fluid throughout various fluid circuits in many industries. This is especially true in the aerospace industry, due to the lightweight and strong mechanical features of the metallic tubes. For example, thin-walled aluminum and stainless steel tubing is often utilized within an aircraft to carry oxygen and hydraulic fluid for various applications, such as to breathing apparatuses and to and from vehicle brakes.
- The fluid circuits typically contain a vast number of interlock joints, which reside between the tubing and the end fittings, such as fittings. The current technique used to join the different sized tubes and fittings, is referred to as a roller swaging process. During this process, a tube is inserted into a fitting while the fitting is constrained using a clamp. The tube is then expanded into the fitting using a roller. The inner walls of the fitting typically contain grooves within which the tube is expanded. An interlock is created between the tube and the fitting due to the expansion and deformation of the tube against the inner walls and into the grooves of the fitting.
- Another technique that is commonly used to join metallic tubes to end fittings is referred to as Gas Tungsten Arc Welding (GTAW), which is a fusion welding process. The formed joints produced from fusion welding are sometimes rejected by penetrant inspection or by radiographic inspection and must be weld repaired. A weld formed joint may need to be repaired as many as three times, at significant costs.
- A desire exists to increase the operating lifetime of a mechanical or fluid tight joint. Thus, there exists a need for an improved leak tight joint between a tube and a fitting and a technique for forming the leak tight joint that may be applied to various fluid circuit applications. It is desirable that the improved technique be economical, have an associated quick production set-up time, and account for different sized tube and fitting combinations.
- The present invention satisfies the above-stated desires and provides a leak tight joint for high-pressure applications utilizing magnetic interactions.
- One embodiment of the present invention provides an electromagnetically formed fluid circuit joint that includes a tubular conduit with an outer surface. The outer surface has a groove. A hollow fitting is mechanically separate from and received over the tubular conduit. The hollow fitting includes an electromagnetic field formed wall deformation that extends into the groove.
- The embodiments of the present invention provide several advantages. One such advantage is the provision of electromagnet mechanically joining process for forming a liquid tight joint between a ferrule and a tube. This process is quick and economical.
- Another advantage provided by an embodiment of the present invention, is the provision of a tube having one or more grooves for deformation therein by a ferrule wall. The deformation within the grooves provides a leak tight joint.
- Furthermore, the present invention provides joint forming techniques with improved repeatability, with quick assembly times, that do not require lubrication to form, and that have low associated scrap rates. The scrap rates, as a result of the joint forming techniques, is approximately zero.
- Other features, benefits and advantages of the present invention will become apparent from the following description of the invention, when viewed in accordance with the attached drawings and appended claims.
-
FIG. 1 is a block diagrammatic view of a magnetic forming system in accordance with an embodiment of the present invention. -
FIG. 2A is a cross-sectional side view of a field shaper/nest that may be incorporated into the system ofFIG. 1 in accordance with an embodiment of the present invention. -
FIG. 2B is a front cross-sectional view of the field shaper/nest ofFIG. 2A . -
FIG. 2C is a perspective view of the two halves of the field shaper/nest ofFIG. 2A . -
FIG. 3 is a perspective view of a fitting, a metallic sleeve, and a tube utilized to form a fluid tight joint in accordance with an embodiment of the present invention. -
FIG. 4 is a half-side cross-sectional view of a tube and fitting coupling prior to electromagnetic forming in accordance with yet another embodiment of the present invention. -
FIG. 5 is a half-side cross-sectional view of the tube/fitting coupling ofFIG. 4 as attached to a corresponding union subsequent to electromagnetic forming in accordance with yet another embodiment of the present invention. -
FIG. 6 is a side view of the tube and fitting coupling ofFIG. 4 after forming. -
FIG. 7 is a sample method of magnetically forming a fluid joint in accordance with an embodiment of the present invention. - In each of the following Figures, the same reference numerals are used to refer to the same components. While the present invention is described with respect to a system for electromagnetically forming a fluid joint and to the joints formed therefrom, the present invention may be adapted for various applications, such as air, gas, liquid, and fluid applications. The present invention may be applied to high-pressure fluid applications of equal or greater than approximately 5000 psi. The present invention may be applied to fluid applications in the aerospace, automotive, railway, and nautical or watercraft industries.
- The present invention allows for the electromagnetic formation of fluid tight joints between fittings and tubular conduits having various diameters. The present invention may be applied to applications where the fittings and the tubular conduits have outer diameters of greater than approximately two inches, as well as to applications where the outer diameters are less than or equal to approximately two inches.
- In the following description, various operating parameters and components are described for one constructed embodiment. These specific parameters and components are included as examples and are not meant to be limiting.
- Also, in the following description the term “fitting” may refer to a ferrule, a nut, a union, or other fitting known in the art. A fitting may be magnetically formed or magnetically welded to or with a tubular conduit, as is described below.
- Referring now to
FIG. 1 , a block diagrammatic view of a magnetic formingsystem 10 in accordance with an embodiment of the present invention is shown. The magnetic formingsystem 10 includes an induction coil andfield shaper assembly 11 with aninduction coil 12 that is utilized to magnetically form a fluid joint between fluid carrying tubes and fittings, some examples of fluid joints, fluid carrying tubes, and fittings are shown inFIGS. 2A-6 . - In operation, the
induction coil 12 receives current generated from acurrent supply circuit 14 and generates an electromagnetic field, which is utilized to mechanically form and/or weld portions of a tube and a corresponding fitting to form a fluid joint. Thecurrent supply circuit 1 4 may include acapacitor bank 16 and apower source 18, as shown. Control circuitry and switchingdevices 20 is coupled to thecapacitor bank 16, via transmission lines andbuses 17, and controls charge and discharge thereof via thepower source 18. Theinduction coil 12 is coupled to a field shaper 22, which focuses the electrical current within theinduction coil 12. Prior to forming a fluid joint,various field shapers 26,nests 28,mandrels 30, andmetallic sleeves 31 within astorage unit 32 may be selected that correspond to a particular tube and fitting combination. The selected field shaper and nest are inserted into theinduction coil 12 prior to electromagnetic forming of a tube and/or a fitting. - The control circuitry may include switches for the setting of various power levels. The control circuitry may be in various forms known in the art and is used to control the power received by the
capacitor bank 16 and transmitted to theinduction coil 12. - The field shaper 22 is used to adapt a compression coil, such as the
induction coil 12, to a smaller diameter workpiece, having a smaller diameter than the induction coil. The field shaper 22 concentrates the magnetically exerted pressure to a specific location on a tube, a fitting, and/or a metallic sleeve. When thecapacitor bank 16 is discharged through theinduction coil 12, the induced current in the magnetic field produces a magnetic pressure on the conductive tube, fitting, and/or metallic sleeve. The amount of discharged power produces a sufficient amount of magnetic compressive or expansive pressure to conform and deform the tube, fitting, and/or metallic sleeve. - The
metallic sleeves 31 are utilized to improve the electromagnetic field effect on and to increase the deformation of, for example, a fitting during electromagnetic deformation. When a fitting is utilized that is formed of a high tensile material that has low electrical conductivity, such as titanium, a metallic sleeve may be utilized to aid in the deformation of the fitting. The metallic sleeves may be formed of stainless steel or copper. In one example embodiment, a copper sleeve having 99.5% purity is utilized. - The below described embodiment of FIGS. 2A-C, is a sample embodiment that may be utilized in the electromagnetic forming of the walls of a fitting to form a fluid tight joint. Other similar embodiments may be utilized.
- Referring now to FIGS. 2A-C, a cross-sectional side view of an field shaper/
nest assembly 50, a front cross-sectional view of the field shaper/nest assembly 50, and a perspective view of the twohalves nest assembly 50 are shown in accordance with an embodiment of the present invention. The field shaper/nest assembly 50 is used to compress a fitting 56 onto atube 58 via an electromagnetic field generated by theinduction coil 12 and thefield shaper 60. Tube and fitting features are described with respect to the sample embodiment ofFIGS. 3-6 below. - The field shaper/
nest assembly 50 utilizes thefield shaper 60, which may be one of thefield shapers 26, to form a fluid tight joint. The field shaper/nest assembly 50 includes thefirst half 52 and thesecond half 54, which is a mirror image of thefirst half 52. Thefield shaper 60 is put into theinduction coil 12. Aninsulation layer 71 resides between theinduction coil 12 and thefield shaper 60 and is used to prevent short circuiting between theinduction coil 12 and thefield shaper 60. Theinduction coil 12 generates an electromagnetic field, which is imposed on the fitting 56 via thefield shaper 60. The electromagnetic field accelerates the tube-formingportion 72 of the fitting 56 toward thetube 58, thereby compressing the tube-formingportion 72 within thegrooves 74 of thetube 58. - The
field shaper 60 is generally cylindrically shaped and is utilized to generate an electromagnetic field to cause the deformation of the fitting 56 to form a fluid joint. The cross-section of thefield shaper 60 is “I”-shaped. Thefield shaper 60 includes afirst shaper half 73 and asecond shaper half 75. The combined halves 73 and 75 form anouter ring 80 and amain center disc 82 that extends inward toward a tube/fitting forming region 84. Thecenter disc 82 has asemi-circular opening 87 in the tube/fitting forming region 84. The field shaper halves 73 and 75 are, respectively, connected and have internal dimensions and geometry that correspond with the nest halves 52 and 54. Thefield shaper 60 is held fixed in place within thenest 86 during electromagnetic forming. - When the fitting 56 is formed of stainless steel, titanium, or other material having similar conductivity and tensile characteristics, a
metallic sleeve 88 may be used to increase deformation of the fitting. Themetallic sleeve 88 is oriented to reside over the tube-formingportion 72 and aids in the formation thereof. Themetallic sleeve 88 reacts to and is formed by the electromagnetic field induced by thefield shaper 60 causing the tube-formingportion 72 to be compressed and formed at least partially into thegrooves 74. Themetallic sleeve 88 allows for increased deformation in the tube-forming region by improving field effects thereon. Themetallic sleeve 88 may be formed of high purity copper or other highly conductive material. In one embodiment, the metallic sleeve is formed of at least approximately 99.5% pure copper. - In addition, a
second insulation layer 90 may be utilized between the tube-formingportion 72 and themetallic sleeve 88. Theinsulation layer 90 provides a layer of protection during removal of themetallic sleeve 88 from the fitting 56 after electromagnetic forming. This is explained in further detail below with respect to the method ofFIG. 7 . - Fly distance gaps G1 reside between the fitting 56 and the
tube 58, which allow for the acceleration of the fitting material in the tube-formingportion 72 to compress and be accelerated towards the grooves of thetube 58. A gap G3 may also reside between the shaper halves 73 and 75. - The
field shaper 60 and thenest 86 are split to provide ease in set-up and disassembling of the field shaper/nest assembly 50. Thefield shaper 60 may be formed of beryllium copper BeCu or other material having similar properties. Thenest 86 may be of various sizes, shapes, and styles, and may be formed of various non-metallic materials. In one embodiment, thenest 86 is formed of plastic. Thenest 86 holds the fitting 56 and thetube 58 in alignment. - The fitting 56 and the
tube 58 may be formed of various metallic materials, such as aluminum, stainless steel, and titanium. Thetube 58 includes thegrooves 74, in afitting inlay section 92, in which thewall 94 of the fitting 56 is deformed therein. This deformation into thegrooves 74 provides a non-sealant based fluid tight seal. Although a non-sealant based fluid tight seal may be formed as suggested, sealants known in the art may be utilized, for example, an adhesive may be utilized between the fitting 56 and thetube 58. - A
mandrel 96 may be used to limit the inward lateral displacement of the fitting 56 and thetube 58. Amandrel 96 resides within thenest 86 and includes an insert portion orstem 97, which is inserted into thetube 58 through the tube/fitting forming region 84. Thestem 97 may be slightly tapered, although not shown, and is inserted within thetube 58. Theouter edges 102 of thestem 97, when tapered, are tapered inward towards thecenterline 103 away from thehandle portion 98. Thestem 97 is coupled to ahandle portion 98, which resides in a recessedportion 100 of thenest 86. - A
plug 104 may be located within a second recessedportion 106 of thenest 86 and prevent lateral displacement of thetube 58. Thenest 86 may includealignment tabs 108 on, for example, thesecond half 54, andcorresponding receivers 110, on thefirst half 52. Thetabs 108 and thereceivers 110 ease the alignment and coupling of thefirst half 52 to thesecond half 54. Acarry handle 112 is shown and may be coupled to thenest 86 for easy inserting and removing from theinduction coil 12, and easy carrying and transporting thereof. - Referring now to
FIGS. 3-6 , a perspective view of a fitting 56′, ametallic sleeve 88′, and atube 58′ utilized to form a fluid tight joint 150, half-side cross-sectional views prior and subsequent to electromagnetic forming, and a side view are shown of a tube/fitting coupling 152 in accordance with yet another embodiment of the present invention. The tube/fitting joint 150 is capable of withstanding internal fluid pressures of greater than 5000 psi when formed from high tensile strength materials, such as stainless steel and titanium. - The tube/
fitting coupling 152 includes thetube 58′ havingmultiple grooves 153 on anexterior surface 154 and the fitting 56′ for formation thereon. Thetube 56′ includes electromagnetic forminggrooves 156 and afitting end groove 158. The fitting 56′ includes a tube-formingportion 72′, anut step 160, and acurved end 162 with atip 164. The tube-formingportion 72′, during electromagnetic forming, is deformed such that a portion or section thereof is bent into theelectromagnetic grooves 153. This bent section may be referred to as an electromagnetic field formed wall deformation. Twosuch sections 165 are shown. Thenut step 160 includes anarched side 166, for abutting aninterior side 168 of anut 170, and alinear side 172, for abutting aunion 174. Thecurved end 162 corresponds with aninterior side 176 of theunion 174 to allow for a continuous contact area between thecurved end 162 and theunion 174. This continuous contact area aids in providing a leak free joint and increases the rated pressure of the tube/fitting joint 150. Thetip 164 may be bent or formed such that it is placed within thefitting end groove 158. - The fitting 56′ and the
tube 58′ may be formed of similar materials as mentioned above. Thetube 58′ may have any number of electromagnetic forming grooves. The grooves may be of various widths and have various associated separation distances therebetween. - The groove geometry and the placement of the
grooves 153 on theouter surface 154, the radius of curvature of thefront end 162, and other geometry of the fitting 56′ and thetube 58′ enhances strength of the fluid joint 150 between the fitting 56′ and thetube 58′ after applying an initial torque of approximately 1200 in-lb on thenut 170. Thegrooves 156 are circular in shape to prevent cracking within the tube-formingportion 72′. - In order for the
tube 58′ to have the electromagnetic forminggrooves 156 and withstand the electromagnetic forming process and in-process fluid pressures of 5000 psi or greater, thetube 58′ is a “thick-walled” tube. The term “thick-walled” refers to a tube in which the ratio between the inner diameter and the outer diameter of the tube is approximately greater than 1.2. The tube-formingportion 72′ also provides support and absorbs a significant portion of the stresses experienced in the material around and near the electromagnetic forminggrooves 156. - In the method of
FIG. 7 , the material compositions of the tubes and the fittings utilized can affect the ability of the tubes and or the fittings to be deformed. As an example, when it is desired for a fitting to be deformed as opposed to a tube, the material composition of the fitting may be adjusted and/or have less tensile strength than that of the tube to allow for such deformation. The thickness of the tube and fitting walls may also be adjusted to provide various degrees of tensile strength. In addition, the electromagnetic current pulses utilized may also be adjusted to provide the desired deformation in the tube and the fitting. - Referring now to
FIG. 7 , a sample method of magnetically forming a fluid joint, such as the fluid joint 150, in accordance with an embodiment of the present invention is shown. - Dashed
box 188 represents the following steps that are included in the tube/fitting preparation phase. Instep 190, grooves, such as thegrooves 153, are machined within a current tube, such as thetube 58 or thetube 58′. The grooves are machined using techniques known in the art. Instep 192, the tube is chemically cleaned to remove any dirt and/or lubricant within or exterior to the tube. - In
step 200, a field shaper, such as thefield shaper 60, is attached and/or inserted into a nest, such as thenest 86. Instep 202, the current tube is inserted into a current fitting, such as the fitting 56 or the fitting 56′. The fitting is placed in the appropriate location on the tube for forming. Instep 204, a metallic sleeve, such as themetallic sleeve 88 or themetallic sleeve 88′ is placed over the fitting. Instep 206, a mandrel, such as themandrel 96, is inserted into the tube. Instep 207, a thin layer of insulation is applied to the exterior of the fitting, such as theinsulation layer 90. The insulation layer may be rolled onto the sleeve. - In
step 208, the tube, the fitting with the insulation layer, the metallic sleeve, and the mandrel are inserted into a current nest. The tube, the fitting, the metallic sleeve, and the mandrel are placed on a first half of the nest, such ashalf 52. A second half, such ashalf 54, of the nest is placed over the first half covering the fitting, the tube, the metallic sleeve, and the mandrel. Instep 210, the nest is set into an induction coil, such as theinduction coil 12. - In
step 211, a power setting is selected and entered into the control circuitry, depending upon the tube/fitting coupling being formed. Instep 212, thecontrol circuitry 20 via an induction coil generates a first stage electromagnetic current that is passed into the field shaper via coupling between the induction coil and the field shaper. Instep 214, the field shaper focuses the first stage electromagnetic current to form an electromagnetic field. - In
step 216, the electromagnetic field is imposed upon the exterior of the metallic sleeve and/or fitting and accelerates and compresses the metallic sleeve and the tube-forming portion of the fitting, such as the tube-formingportion 72′, onto the tube. In accelerating and compressing the fitting onto the tube, the tube-forming portion of the fitting is deformed into the grooves of the tube. The compression and deformation of the tube-forming portion forms a pressure tight fluid joint with the tube. The fly distance gaps between the fitting and the tube, such as gaps G1, allow for the acceleration of the tube-forming portion. Instep 218, the mandrel constrains or limits the compression of the fitting and the tube during electromagnetic formation. Steps 212-218 are substantially performed simultaneously. - Electrical current from the capacitor bank is passed through the induction coil, which generates an intense electromagnetic field and creates high magnitude eddy currents in the tube end. The opposing magnetic fields that are directly generated by the induction coil and that are generated by the eddy currents accelerate the fitting walls towards the tube.
- A high current pulse of short duration, approximately between about 10 and 100 microseconds, is introduced to the coils of the induction coil, which generates the electromagnetic field to instantaneously deform the fitting radially inward towards the tube, resulting in the crimping of the fitting onto the tube to form the fluid joint. The pulse is strong enough to induce magnetic forces above the yield strength of the material in the fitting.
- In
step 220, upon completion of steps 220-228 the current nest is removed from the induction coil containing the fluid joint. Instep 221, deformation of the fitting within the grooves of the tube is checked. When the deformations are ofappropriate dimension step 222 is performed and 224 is performed. When the deformations are of inappropriate dimension, for example, the depth of the deformations is smaller than desiredstep 222 is performed followed by returning to the tube/fitting preparation phase and repeating steps 190-221 to form another tube/fitting coupling with increased deformation depth. To increase deformation depth the power setting selected instep 211 is increased. - In
step 222, the tube/fitting coupling including the fluid joint is removed from the current nest. The first half and the second half of the current nest are separated to allow for the removal of the tube/fitting coupling. - In
step 224, the metallic sleeve is removed from the tube/fitting coupling. The metallic sleeve may be cut using a rotating end mill and pulled of the tube/fitting coupling using a pair of pliers. Of course, the metallic sleeve may be removed using other techniques known in the art. When an insulation layer, such as theinsulation layer 90 is used, the insulation layer aids in protecting the fitting during the cutting and removing of the metallic sleeve. - In
step 226, it is determined whether the current setup and configuration of the current tube and the current fitting is to be reused or replaced. Either another tube/fitting coupling is formed using the current field shaper and nest arrangement or a replacement field shaper and nest arrangement is selected. The replacement field shaper and nest may have different internal dimensions as compared with the current field shaper and nest and may be selected from thefield shapers 26 and thenests 28. The different internal dimensions may correspond to a tube/fitting coupling of different size, to a tube/fitting coupling having a different tube/fitting configuration, to a tube/fitting coupling formed using a different electromagnetic forming technique, or to other known tube/fitting related differences known in the art. Upon selection of a second or replacement tube, a second or replacement fitting, a replacement field shaper, and a replacement nest,step 200 is performed. - The above-described steps are meant to be an illustrative example; the steps may be performed synchronously, continuously, or in a different order depending upon the application.
- The present invention provides fluid tight leak joints with reduced scrap rate. Further, because the insert/nest assemblies are quickly and easily inserted and removed from a fixed structure, a large quantity of tubular joints may be quickly formed. The above stated reduces costs associated with manufacturing down times.
- The present invention reduces manufacturing processing steps as compared to conventional welding and roller swaging or elastomeric processes. The present invention also reduces inspection process steps, cost of production, and provides a highly reproducible manufacturing process to maintain consistent quality.
- While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention, numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (25)
1. An electromagnetically formed fluid circuit joint comprising:
a tubular conduit having an outer surface with at least one groove; and
a hollow fitting mechanically separate from and received at least partially over said tubular conduit, said hollow fitting comprising an electromagnetic field formed wall deformation extending into said at least one groove.
2. A fluid circuit joint as in claim 1 wherein said hollow fitting and said tubular conduit have a high-pressure maximum fluid rating of approximately equal to or greater than 5000 psi.
3. A fluid circuit joint as in claim 1 wherein said hollow fitting and said tubular conduit are formed of at least one material selected from stainless steel and titanium.
4. A fluid circuit joint as in claim 1 wherein said electromagnetic field formed wall deformation forms a non-sealant based fluid tight seal with said outer surface.
5. A fluid circuit joint as in claim 1 wherein said fitting has curved front end with curvature corresponding to a union inner surface curvature.
6. A fluid circuit joint as in claim 1 wherein the fitting comprises a tip that resides at least partially within said at least one groove.
7. A fluid circuit joint as in claim 1 wherein said at least one groove is circular in shape.
8. A fluid circuit joint as in claim 1 further comprising:
a union; and
a nut residing over said hollow fitting and mechanically coupling said at least one hollow fitting to said union.
9. A fluid circuit joint as in claim 8 wherein said hollow fitting abuts an inner side of said nut when said nut is fastened to said union.
10. A magnetic forming system for creating a fluid circuit joint between a tube having at least one groove and a fitting comprising:
an induction coil forming an electromagnetic field; and
a nest configured to contain the tube at least partially positioned within the fitting;
said induction coil imposing said electromagnetic field on and to conform at least a portion of the fitting in the at least one groove to form the fluid circuit joint.
11. A system as in claim 10 wherein said induction coil imposes said electromagnetic field to compress the fitting on the tube to form the fluid circuit joint.
12. A system as in claim 10 wherein said nest resides at least partially within said induction coil.
13. A system as in claim 10 further comprising a mandrel inwardly constraining the tube and the fitting.
14. A system as in claim 10 further comprising:
control circuitry generating a current pulse signal; and
a current supply circuit generating a current pulse in response to said current pulse signal;
said induction coil generating said electromagnetic field in response to said current pulse.
15. A system as in claim 10 further comprising a metallic sleeve residing over the fitting and increasing deformation in the fitting.
16. A system as in claim 15 wherein said metallic sleeve comprises copper.
17. A system as in claim 15 wherein said metallic sleeve is formed of at least approximately 99% pure copper.
18. A system as in claim 15 further comprising an insulating sleeve residing between said fitting and said metallic sleeve.
19. A method of magnetically forming a fluid joint comprising:
inserting a first tube at least partially into a first fitting;
inserting said first tube and said first fitting into an induction coil;
generating an electromagnetic field; and
imposing said electromagnetic field on and to compress at least a first portion of said first fitting into at least one groove of said first tube to form a first fluid joint.
20. A method as in claim 19 further comprising inwardly constraining said first tube and said first fitting.
21. A method as in claim 19 further comprising inserting said first fitting in a metallic sleeve and imposing said electromagnetic field on and to compress said metallic sleeve.
22. A method as in claim 21 wherein compressing said metallic sleeve comprises compressing said first portion into said at least one groove.
23. A method as in claim 21 further comprising:
removing a current nest containing said first fluid joint;
separating a first half and a second half of said current nest;
removing said metallic sleeve from said first fitting; and
removing said first fluid joint from said current nest.
24. A method as in claim 23 further comprising:
removing a current nest containing said first fluid joint;
separating a first half and a second half of said current nest;
removing said first fluid joint from said current nest;
selecting a replacement nest;
inserting a second tube and a second fitting within said replacement nest;
inserting said replacement nest within said induction coil; and
imposing said electromagnetic field on and to compress at least a second portion of said second fitting onto said second tube to form a second fluid joint.
25. A method as in claim 21 further comprising inserting a mandrel within said first tube and said first fitting and forming said first fluid joint over said mandrel.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/905,211 US20060131877A1 (en) | 2004-12-21 | 2004-12-21 | Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications |
US12/124,944 US7954221B2 (en) | 2004-12-21 | 2008-05-21 | Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/905,211 US20060131877A1 (en) | 2004-12-21 | 2004-12-21 | Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/124,944 Division US7954221B2 (en) | 2004-12-21 | 2008-05-21 | Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060131877A1 true US20060131877A1 (en) | 2006-06-22 |
Family
ID=36594720
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/905,211 Abandoned US20060131877A1 (en) | 2004-12-21 | 2004-12-21 | Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications |
US12/124,944 Active 2025-12-09 US7954221B2 (en) | 2004-12-21 | 2008-05-21 | Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/124,944 Active 2025-12-09 US7954221B2 (en) | 2004-12-21 | 2008-05-21 | Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications |
Country Status (1)
Country | Link |
---|---|
US (2) | US20060131877A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016028197A1 (en) * | 2014-08-18 | 2016-02-25 | Valmet Ab | Welding head for magnetic pulse welding of tubular profiles to a cylindrical inner member |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120006810A1 (en) * | 2010-07-09 | 2012-01-12 | GM Global Technology Operations LLC | Induction heating-assisted vibration welding method and apparatus |
CN101905262B (en) * | 2010-07-29 | 2011-10-26 | 哈尔滨工业大学 | Magnetic concentrator structure for magnetic pulse formation |
US9500304B2 (en) | 2012-08-07 | 2016-11-22 | Ford Global Technologies, Llc | Assembly including parts made of dissimilar metals and the method of manufacturing the assembly |
CN103433347B (en) * | 2013-09-12 | 2015-08-19 | 哈尔滨工业大学 | A kind of inductor of subregion progressive molding composite bimetal pipe |
US20150328712A1 (en) * | 2014-05-19 | 2015-11-19 | Conocophillips Company | Coiled tubing lap welds by magnetic pulse welding |
CN108500441A (en) * | 2018-05-29 | 2018-09-07 | 湖北科技学院 | A kind of high speed electromagnetic impulsed spot welding device |
CN111922176A (en) * | 2020-08-17 | 2020-11-13 | 华中科技大学 | Magnetic collector, electromagnetic forming impact welding device and application |
Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2687904A (en) * | 1950-12-06 | 1954-08-31 | Appleton Electric Co | Fitting for flexible conduits |
US2782060A (en) * | 1952-05-01 | 1957-02-19 | Arthur I Appleton | Separable conduit fitting |
US2976907A (en) * | 1958-08-28 | 1961-03-28 | Gen Dynamics Corp | Metal forming device and method |
US3210842A (en) * | 1962-09-28 | 1965-10-12 | Robert J Schwinghamer | Method of securing objects together by expanding the inner object |
US3252313A (en) * | 1964-12-21 | 1966-05-24 | Gen Motors Corp | Electromagnetic forming method and apparatus |
US3391558A (en) * | 1964-09-03 | 1968-07-09 | Siemens Ag | Device for magnetic-pulse forming of metallic workpieces |
US3610007A (en) * | 1969-06-30 | 1971-10-05 | Gulf General Atomic Inc | Electromagnetic forming coil |
US3618350A (en) * | 1969-12-15 | 1971-11-09 | Boeing Co | Reusable tooling for electromagnetic forming |
US3654787A (en) * | 1968-10-15 | 1972-04-11 | Gulf Oil Corp | Electromagnetic forming apparatus |
US3703958A (en) * | 1969-08-11 | 1972-11-28 | Massachusetts Inst Technology | Eddy current apparatus and method of application to a conductive material |
US3837755A (en) * | 1973-10-17 | 1974-09-24 | Grumman Aerospace Corp | Multi-piece rod for control and structural members |
US3961739A (en) * | 1972-04-17 | 1976-06-08 | Grumman Aerospace Corporation | Method of welding metals using stress waves |
US3998081A (en) * | 1974-07-17 | 1976-12-21 | The Boeing Company | Electromagnetic dent puller |
US4143532A (en) * | 1977-11-02 | 1979-03-13 | Khimenko Lev T | Inductor for forming metals by the pressure of a pulsed magnetic field |
US4170887A (en) * | 1977-08-10 | 1979-10-16 | Kharkovsky Politekhnichesky Institut | Inductor for working metals by pressure of pulsating magnetic field |
US4214358A (en) * | 1977-03-25 | 1980-07-29 | Commissariat A L'energie Atomique | Method of assembly of two metallic parts |
US4504714A (en) * | 1981-11-02 | 1985-03-12 | Jack Katzenstein | System and method for impact welding by magnetic propulsion |
US4525098A (en) * | 1981-12-15 | 1985-06-25 | Werner Krude | Assembly for connecting together torque-transmitting members |
US4531393A (en) * | 1983-10-11 | 1985-07-30 | Maxwell Laboratories, Inc. | Electromagnetic forming apparatus |
US4702543A (en) * | 1986-04-30 | 1987-10-27 | G & H Technology, Inc. | Environmental seal and alignment means for an electromagnetically formed backshell |
US4768275A (en) * | 1984-09-10 | 1988-09-06 | Cameron Iron Works, Inc. | Method of joining pipe |
US4807351A (en) * | 1988-02-18 | 1989-02-28 | Asea Composites, Inc. | Method for attaching an end-fitting to a drive shaft tube |
US5242199A (en) * | 1990-01-29 | 1993-09-07 | Deutsche Airbus Gmbh | Threaded tubing connection |
US5322205A (en) * | 1991-04-22 | 1994-06-21 | Nippon Aluminum Co., Ltd. | Joining method of aluminum member to dissimilar metal member |
US5353617A (en) * | 1992-12-14 | 1994-10-11 | Xerox Corporation | Method of sizing metal sleeves using a magnetic field |
US5442846A (en) * | 1993-09-23 | 1995-08-22 | Snaper; Alvin A. | Procedure and apparatus for cold joining of metallic pipes |
US5549335A (en) * | 1994-04-06 | 1996-08-27 | Peerless Of America, Incorporated | Solderless metallurgical joint |
US5586460A (en) * | 1994-10-13 | 1996-12-24 | Magnet-Physik Dr. Steingroever Gmbh | Device with peak current loop and process for the magnetic shaping of metal parts |
US5824998A (en) * | 1995-12-20 | 1998-10-20 | Pulsar Welding Ltd. | Joining or welding of metal objects by a pulsed magnetic force |
US5826320A (en) * | 1997-01-08 | 1998-10-27 | Northrop Grumman Corporation | Electromagnetically forming a tubular workpiece |
US5836070A (en) * | 1994-04-12 | 1998-11-17 | Northrop Grumman Corporation | Method and forming die for fabricating torque joints |
US5953805A (en) * | 1996-08-08 | 1999-09-21 | Magnet-Physik Dr. Steingroever Gmbh | Magnet field concentrator for shaping metal parts |
US5964127A (en) * | 1997-04-12 | 1999-10-12 | Magnet-Physik Dr. Steingroever Gmbh | Process and apparatus for manufacturing metallic hollow bodies with structural bulges |
US5983478A (en) * | 1996-09-18 | 1999-11-16 | The Boeing Company | Tube forming on an end fitting |
US5992898A (en) * | 1997-08-21 | 1999-11-30 | Echlin, Inc. | Quick-connect assembly and method of manufacture |
US6065317A (en) * | 1997-04-12 | 2000-05-23 | Magnet-Physik Dr. Steingroever Gmbh | Apparatus and procedure for manufacturing metallic hollow bodies with structural bulges |
US6229125B1 (en) * | 1996-11-24 | 2001-05-08 | Pulsar Welding Ltd. | Electromagnetic forming apparatus |
US6452139B1 (en) * | 2000-05-01 | 2002-09-17 | Fuel Cell Components And Integrators, Inc. | Method of joining metal components |
US6619701B1 (en) * | 1997-09-12 | 2003-09-16 | Parker-Hannifan Plc | Connection of a metal pipe with a metal sleeve |
US6630649B1 (en) * | 1998-06-14 | 2003-10-07 | Oren Gafri | Inducing physical changes in metal objects |
US20030209536A1 (en) * | 2002-05-07 | 2003-11-13 | Ford Motor Company | An apparatus for electromagnetic forming, joining and welding |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1060528A (en) | 1964-12-08 | 1967-03-01 | Siemens Ag | Process for the production of torsion-resistant metal-ceramic connections |
US3313536A (en) | 1965-02-01 | 1967-04-11 | Gen Motors Corp | Shock absorber |
US6379254B1 (en) | 1997-06-20 | 2002-04-30 | Spicer Driveshaft, Inc. | End fitting adapted to be secured to driveshaft tube by electromagnetic pulse welding |
US5981921A (en) * | 1997-06-20 | 1999-11-09 | Dana Corporation | Method of magnetic pulse welding an end fitting to a driveshaft tube of a vehicular driveshaft |
KR100527482B1 (en) * | 2003-11-10 | 2005-11-09 | 현대자동차주식회사 | Combination device using electromagnetic molding |
US20060208481A1 (en) | 2004-12-22 | 2006-09-21 | The Boeing Company | Electromagnetic pulse welding of fluid joints |
-
2004
- 2004-12-21 US US10/905,211 patent/US20060131877A1/en not_active Abandoned
-
2008
- 2008-05-21 US US12/124,944 patent/US7954221B2/en active Active
Patent Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2687904A (en) * | 1950-12-06 | 1954-08-31 | Appleton Electric Co | Fitting for flexible conduits |
US2782060A (en) * | 1952-05-01 | 1957-02-19 | Arthur I Appleton | Separable conduit fitting |
US2976907A (en) * | 1958-08-28 | 1961-03-28 | Gen Dynamics Corp | Metal forming device and method |
US3210842A (en) * | 1962-09-28 | 1965-10-12 | Robert J Schwinghamer | Method of securing objects together by expanding the inner object |
US3391558A (en) * | 1964-09-03 | 1968-07-09 | Siemens Ag | Device for magnetic-pulse forming of metallic workpieces |
US3252313A (en) * | 1964-12-21 | 1966-05-24 | Gen Motors Corp | Electromagnetic forming method and apparatus |
US3654787A (en) * | 1968-10-15 | 1972-04-11 | Gulf Oil Corp | Electromagnetic forming apparatus |
US3610007A (en) * | 1969-06-30 | 1971-10-05 | Gulf General Atomic Inc | Electromagnetic forming coil |
US3703958A (en) * | 1969-08-11 | 1972-11-28 | Massachusetts Inst Technology | Eddy current apparatus and method of application to a conductive material |
US3618350A (en) * | 1969-12-15 | 1971-11-09 | Boeing Co | Reusable tooling for electromagnetic forming |
US3961739A (en) * | 1972-04-17 | 1976-06-08 | Grumman Aerospace Corporation | Method of welding metals using stress waves |
US3837755A (en) * | 1973-10-17 | 1974-09-24 | Grumman Aerospace Corp | Multi-piece rod for control and structural members |
US3998081A (en) * | 1974-07-17 | 1976-12-21 | The Boeing Company | Electromagnetic dent puller |
US4214358A (en) * | 1977-03-25 | 1980-07-29 | Commissariat A L'energie Atomique | Method of assembly of two metallic parts |
US4170887A (en) * | 1977-08-10 | 1979-10-16 | Kharkovsky Politekhnichesky Institut | Inductor for working metals by pressure of pulsating magnetic field |
US4143532A (en) * | 1977-11-02 | 1979-03-13 | Khimenko Lev T | Inductor for forming metals by the pressure of a pulsed magnetic field |
US4504714A (en) * | 1981-11-02 | 1985-03-12 | Jack Katzenstein | System and method for impact welding by magnetic propulsion |
US4525098A (en) * | 1981-12-15 | 1985-06-25 | Werner Krude | Assembly for connecting together torque-transmitting members |
US4531393A (en) * | 1983-10-11 | 1985-07-30 | Maxwell Laboratories, Inc. | Electromagnetic forming apparatus |
US4768275A (en) * | 1984-09-10 | 1988-09-06 | Cameron Iron Works, Inc. | Method of joining pipe |
US4702543A (en) * | 1986-04-30 | 1987-10-27 | G & H Technology, Inc. | Environmental seal and alignment means for an electromagnetically formed backshell |
US4807351A (en) * | 1988-02-18 | 1989-02-28 | Asea Composites, Inc. | Method for attaching an end-fitting to a drive shaft tube |
US5242199A (en) * | 1990-01-29 | 1993-09-07 | Deutsche Airbus Gmbh | Threaded tubing connection |
US5322205A (en) * | 1991-04-22 | 1994-06-21 | Nippon Aluminum Co., Ltd. | Joining method of aluminum member to dissimilar metal member |
US5353617A (en) * | 1992-12-14 | 1994-10-11 | Xerox Corporation | Method of sizing metal sleeves using a magnetic field |
US5442846A (en) * | 1993-09-23 | 1995-08-22 | Snaper; Alvin A. | Procedure and apparatus for cold joining of metallic pipes |
US5549335A (en) * | 1994-04-06 | 1996-08-27 | Peerless Of America, Incorporated | Solderless metallurgical joint |
US5836070A (en) * | 1994-04-12 | 1998-11-17 | Northrop Grumman Corporation | Method and forming die for fabricating torque joints |
US5586460A (en) * | 1994-10-13 | 1996-12-24 | Magnet-Physik Dr. Steingroever Gmbh | Device with peak current loop and process for the magnetic shaping of metal parts |
US5824998A (en) * | 1995-12-20 | 1998-10-20 | Pulsar Welding Ltd. | Joining or welding of metal objects by a pulsed magnetic force |
US5953805A (en) * | 1996-08-08 | 1999-09-21 | Magnet-Physik Dr. Steingroever Gmbh | Magnet field concentrator for shaping metal parts |
US5983478A (en) * | 1996-09-18 | 1999-11-16 | The Boeing Company | Tube forming on an end fitting |
US6229125B1 (en) * | 1996-11-24 | 2001-05-08 | Pulsar Welding Ltd. | Electromagnetic forming apparatus |
US5826320A (en) * | 1997-01-08 | 1998-10-27 | Northrop Grumman Corporation | Electromagnetically forming a tubular workpiece |
US5964127A (en) * | 1997-04-12 | 1999-10-12 | Magnet-Physik Dr. Steingroever Gmbh | Process and apparatus for manufacturing metallic hollow bodies with structural bulges |
US6065317A (en) * | 1997-04-12 | 2000-05-23 | Magnet-Physik Dr. Steingroever Gmbh | Apparatus and procedure for manufacturing metallic hollow bodies with structural bulges |
US5992898A (en) * | 1997-08-21 | 1999-11-30 | Echlin, Inc. | Quick-connect assembly and method of manufacture |
US6619701B1 (en) * | 1997-09-12 | 2003-09-16 | Parker-Hannifan Plc | Connection of a metal pipe with a metal sleeve |
US6630649B1 (en) * | 1998-06-14 | 2003-10-07 | Oren Gafri | Inducing physical changes in metal objects |
US6452139B1 (en) * | 2000-05-01 | 2002-09-17 | Fuel Cell Components And Integrators, Inc. | Method of joining metal components |
US20030209536A1 (en) * | 2002-05-07 | 2003-11-13 | Ford Motor Company | An apparatus for electromagnetic forming, joining and welding |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016028197A1 (en) * | 2014-08-18 | 2016-02-25 | Valmet Ab | Welding head for magnetic pulse welding of tubular profiles to a cylindrical inner member |
CN106714999A (en) * | 2014-08-18 | 2017-05-24 | 维美德公司 | Welding head for magnetic pulse welding of tubular profiles to a cylindrical inner member |
Also Published As
Publication number | Publication date |
---|---|
US7954221B2 (en) | 2011-06-07 |
US20080240850A1 (en) | 2008-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7513025B2 (en) | Magnetic field concentrator for electromagnetic forming | |
US7847223B2 (en) | Electromagnetic pulse welding of fluid joints | |
US7954221B2 (en) | Electromagnetic mechanical pulse forming of fluid joints for high-pressure applications | |
US5826320A (en) | Electromagnetically forming a tubular workpiece | |
RU2178349C2 (en) | Method for joining or welding metallic objects by means of electromagnetic field | |
US6654995B1 (en) | Method for joining tubular members | |
EP1276570B1 (en) | Hydroforming a tubular structure of varying diameter from a tubular blank using electromagnetic pulse welding | |
US3675949A (en) | Coupling fitting for connecting two pipes | |
US7596848B2 (en) | Method for producing bimetallic line pipe | |
US6065317A (en) | Apparatus and procedure for manufacturing metallic hollow bodies with structural bulges | |
JPH08226584A (en) | Flexible metallic hose connector and its formation | |
WO1997032686A1 (en) | A method of friction welding tubular members | |
US20090078682A1 (en) | Insertion type resistance welding method for welding copper and aluminum tubing | |
JP2001058279A (en) | Manufacture of joined body of carbon steel pipes suitable for tube expansion and tube expansion method | |
US20060145474A1 (en) | Electromagnetic mechanical pulse forming of fluid joints for low-pressure applications | |
EP1641589B1 (en) | Magnetic pulse welding method for sealing a vessel | |
CN113474099B (en) | Metal pipe and method for manufacturing metal pipe | |
US2816211A (en) | Refrigerating apparatus | |
US3766633A (en) | Method of joining metals of different melting points | |
US20080164695A1 (en) | Ferrules Manufactured From Hollow Stock | |
US2949319A (en) | Pipe coupling between relatively hard and soft tubes | |
WO1995013903A1 (en) | Method and apparatus for a unitary assembly of tubing and a pressed on, interference fit, terminating fitting | |
US3820229A (en) | Method of joining wire of compound material | |
JPH11290939A (en) | Manufacture of long double metallic tube | |
Haneklaus et al. | Development of engineering parameters for low pressure diffusion bonds of 316 SS tube-to-tube sheet joints for fhr heat exchangers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE BOEING COMPANY, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAHA, PRADIP K.;BICE, MARK E.;NORRIS, DON E.;AND OTHERS;REEL/FRAME:015477/0601;SIGNING DATES FROM 20041212 TO 20041220 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |