US20060111658A1 - Sampling tube holder for blood sampling system - Google Patents
Sampling tube holder for blood sampling system Download PDFInfo
- Publication number
- US20060111658A1 US20060111658A1 US11/250,717 US25071705A US2006111658A1 US 20060111658 A1 US20060111658 A1 US 20060111658A1 US 25071705 A US25071705 A US 25071705A US 2006111658 A1 US2006111658 A1 US 2006111658A1
- Authority
- US
- United States
- Prior art keywords
- blood
- flow path
- holder
- container
- sampling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005070 sampling Methods 0.000 title abstract description 65
- 238000010241 blood sampling Methods 0.000 title abstract description 8
- 210000004369 blood Anatomy 0.000 claims description 105
- 239000008280 blood Substances 0.000 claims description 105
- 238000012545 processing Methods 0.000 claims description 40
- 229920003023 plastic Polymers 0.000 claims description 15
- 239000004033 plastic Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 17
- 230000008901 benefit Effects 0.000 description 9
- 239000000306 component Substances 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 8
- 239000004014 plasticizer Substances 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 230000036512 infertility Effects 0.000 description 7
- 239000004800 polyvinyl chloride Substances 0.000 description 7
- 229920000915 polyvinyl chloride Polymers 0.000 description 7
- 230000001954 sterilising effect Effects 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- 210000003462 vein Anatomy 0.000 description 7
- 239000003146 anticoagulant agent Substances 0.000 description 6
- 229940127219 anticoagulant drug Drugs 0.000 description 6
- 239000012503 blood component Substances 0.000 description 6
- 210000002381 plasma Anatomy 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 5
- -1 but not limited to Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- RSGFPIWWSCWCFJ-VAXZQHAWSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;phosphoric acid Chemical compound OP(O)(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O RSGFPIWWSCWCFJ-VAXZQHAWSA-N 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJRKANNOPXMZSG-SSPAHAAFSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O IJRKANNOPXMZSG-SSPAHAAFSA-N 0.000 description 2
- 206010069803 Injury associated with device Diseases 0.000 description 2
- 239000010836 blood and blood product Substances 0.000 description 2
- 210000001772 blood platelet Anatomy 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005534 hematocrit Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 230000001012 protector Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 1
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003000 extruded plastic Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 238000013187 longer-term treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- DCTZJRUXIXPDJP-UHFFFAOYSA-N trihexyl 2-hydroxy-4-oxoheptane-1,2,3-tricarboxylate Chemical compound CCCCCCOC(=O)CC(O)(C(=O)OCCCCCC)C(C(=O)CCC)C(=O)OCCCCCC DCTZJRUXIXPDJP-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/02—Blood transfusion apparatus
- A61M1/0209—Multiple bag systems for separating or storing blood components
- A61M1/0236—Multiple bag systems for separating or storing blood components with sampling means, e.g. sample bag or sampling port
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/15003—Source of blood for venous or arterial blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150366—Blood collection bags, e.g. connected to the patient by a catheter comprising means for removing a small sample of collected blood from the bag
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/150572—Pierceable protectors, e.g. shields, caps, sleeves or films, e.g. for hygienic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150732—Needle holders, for instance for holding the needle by the hub, used for example with double-ended needle and pre-evacuated tube
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150992—Blood sampling from a fluid line external to a patient, such as a catheter line, combined with an infusion line; Blood sampling from indwelling needle sets, e.g. sealable ports, luer couplings or valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/153—Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
- A61B5/154—Devices using pre-evacuated means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/155—Devices specially adapted for continuous or multiple sampling, e.g. at predetermined intervals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/02—Blood transfusion apparatus
- A61M1/0209—Multiple bag systems for separating or storing blood components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S604/00—Surgery
- Y10S604/905—Aseptic connectors or couplings, e.g. frangible, piercable
Definitions
- Blood or blood components often plays a critical role in the emergency and/or long term treatment of patients.
- Blood or the individual components of blood may be administered or transfused to patients to treat a variety of conditions.
- blood may be administered to a patient to replace blood lost as a result of trauma, while individual blood components may be administered as part of a longer term treatment of patients suffering from cancer or certain blood related diseases.
- the blood or blood components administered to the patient come from blood previously collected from donors.
- “manual” collection refers to a collection method where whole blood is allowed to drain from the donor and into a collection container without the use of external pumps or similar devices. This is in contrast to the so-called “automated” procedures where blood is withdrawn from a donor and further processed by an instrument that typically includes a processing or separation device and pumps for moving blood or blood components into and out of the device.
- withdrawing blood from the donor typically includes inserting a vein access device, such as a needle, into the donor's arm (and, more specifically, the donor's vein) and withdrawing blood from the donor through the needle.
- a vein access device such as a needle
- the “venipuncture” needle typically has attached to it, one end of a plastic tube that provides a flow path for the blood. The other end of the plastic tube terminates in one or more preattached plastic blood containers or bags for collecting the blood.
- the needle, tubing and containers make up a blood processing set which is pre-sterilized and disposed of after a single use.
- the collection container and plastic tubing may also include a volume of a liquid anticoagulant, while in the automated technique, a separate container of anticoagulant may be provided from which the anticoagulant is metered into the flow path and mixed with the incoming whole blood.
- anticoagulant is required because of the tendency of blood to clot and adhere to the walls of the plastic surfaces which it contacts.
- the blood After collection but prior to transfusion to a patient, the blood is typically tested for determining blood type and the presence of pathogens such as virus, bacteria and/or other foreign substances in the donor's blood. Typically, testing of the collected blood requires obtaining a sample of the blood from the blood donor at or near the time of collection.
- One well-known technique of obtaining a blood sample is to simply withdraw or collect the blood remaining in the flow path of the disposable set after donation. This involves removing the needle from the donor, inserting the needle into a vacuum sealed sampling tube or tube and allowing the blood from the flow path to drain into the tube.
- the technician obtaining the sample may continue draining the blood from the tubing, eventually withdrawing the collected anticoagulated blood from the collection container.
- Withdrawing blood from the collection container may be less desirable in that it may expose the collected blood in the collection container to the outside environment. Withdrawing blood from the collection container for sampling also reduces the volume of available blood for later processing and transfusion.
- An alternative to collecting anticoagulated blood from the collection container is to clamp off the flow path near the collection container and divert the blood being withdrawn from the donor to a collection (sampling) tube or tube of the type described above.
- This procedure typically employs a particular type of disposable tubing set having a preattached sampling site on the main flow path. Blood at or near the sampling site may be obtained by piercing the sampling site with a separately provided needle or other piercing device, and attaching a sampling tube thereto.
- the sample is typically collected after completion of the blood donation.
- the sample is typically obtained after the blood product (intended for further processing and transfusion) has been collected so as to preserve the sterility of the closed system.
- the donation procedure must be terminated before completion, there may not be an opportunity to obtain a sample directly from the donor.
- vacuum-filled tubes or tubes are common in blood sampling processes.
- suction may cause the tubing of the blood processing set to collapse and restrict blood flow.
- suction may cause the donor's vein to collapse.
- the sampling system includes a holder (with a piercing member) for receiving a sampling tube
- a holder for receiving a sampling tube
- the present invention is embodied in a holder for receiving a blood sampling tube.
- the holder includes a distal end, a proximal end and a central body portion between the ends.
- the body portion of the holder defines an interior pocket.
- the interior pocket may be conformed to receive a sampling tube.
- the present invention is embodied in a holder for receiving a sampling tube wherein the holder includes a distal end, a proximal end, a central body portion and a piercing member assembly attachable at the distal end.
- the assembly has a first portion disposed within the interior pocket and a second portion extending from the distal end to the exterior.
- the holder also includes a fluid reservoir located at the distal end.
- the present invention is embodied in a holder for receiving a sampling tube wherein the holder includes a distal end, a proximal end and a central body portion including at least one tab with an aperture extending therethrough.
- FIG. 1 is a perspective view of a disposable blood collection or processing set including a sampling system embodying the present invention
- FIG. 1A is a perspective view of a portion of an alternative disposable blood collection or processing set including a sampling system embodying the present invention
- FIG. 2A is a perspective view of another variant of a disposable blood collection or processing set including a sampling system embodying the present invention
- FIG. 2B is a perspective view of another variant of a disposable blood collection or processing set including sampling system embodying the present invention.
- FIG. 2C is a perspective view of another variant of a disposable blood collection or processing set including a sampling system embodying the present invention.
- FIG. 2D is a perspective view of another variant of a disposable blood collection or processing set including a sampling system embodying the present invention.
- FIG. 3 is a perspective view of the sampling system embodying the present invention.
- FIG. 4 is a perspective view of the sampling system of FIG. 3 with an another embodiment of the holder;
- FIG. 4A is a perspective view of the sampling system of FIG. 4 with the holder open;
- FIG. 4B is a perspective view of the sampling system of FIG. 4 with the sampling tube disposed within the holder;
- FIG. 4C is a cross-sectional view of the holder of FIG. 4 , taken along 4 C- 4 C;
- FIG. 4D is a partial cross-sectional view of the holder of FIG. 4 with a portion broken away to show the interior of the holder;
- FIG. 4E is a perspective view from the distal end of a holder embodying the present invention with an attachable piercing member assembly;
- FIG. 4F is a perspective view from the proximal end of a holder embodying the present invention.
- FIG. 4G is a perspective view from the proximal end of the holder of FIG. 4F in an open position
- FIG. 4H is a plan view of the holder embodying the present invention.
- FIG. 4I is a cross-sectional side view of the holder of FIG. 4F taken along 4 I- 4 I;
- FIG. 4J is a cross-sectional side view of the holder of FIG. 4F taken along 4 J- 4 J;
- FIG. 4K is a cross-sectional side view of the holder of FIG. 4G taken along 4 K- 4 K;
- FIG. 4L is a cross-sectional end view of the holder of 4 G taken along 4 L- 4 L;
- FIG. 5A is a diagram showing one step in the method of obtaining a blood sample in accordance with the present invention.
- FIG. 5B is a diagram showing the step of collecting a blood sample in accordance with the present invention.
- FIG. 5C is a diagram showing the steps of isolating the blood sampling system from the remainder of the processing set and collecting blood in the collection container.
- FIG. 5D is a diagram showing the step of withdrawing the blood sample from the sampling container and collecting it in a sampling tube.
- the present invention may be embodied in a liquid flow conduit set such as a disposable processing set 10 , which is particularly suitable for use in the manual collection of blood from a donor 11 .
- the illustrated disposable set 10 may include a needle such as venipuncture needle 12 , and plastic tubings 14 and 15 extending from needle 12 to a collection container such as a flexible plastic container 16 .
- a needle protector 17 may also be provided for retraction and storage of needle 12 after use.
- the blood processing set 10 may include a single blood collection container 16 or, more preferably, as shown in FIG. 1 , may be a multiple blood container system including additional containers 20 and 24 .
- disposable processing set 10 includes a sampling system 18 , described in more detail below.
- blood processing set 10 may include a primary container 16 and one or more integrally attached transfer containers 20 and 24 .
- primary container 16 (sometimes referred to as the donor bag) receives whole blood from the donor through integrally attached donor tubings 14 and 15 and venipuncture needle 12 .
- Container 16 typically includes a suitable anticoagulant such as citrate phosphate dextrose (CPD), citrate phosphate dextrose adenine (CPDA) or acid citrate dextrose (ACD).
- CPD citrate phosphate dextrose
- CPDA citrate phosphate dextrose adenine
- ACD acid citrate dextrose
- Containers 20 and 24 may be attached to primary container 16 by integrally attached transfer tubing 30 and 32 .
- Containers 20 and 24 are provided to receive blood components such as, but not limited to, red blood cells and plasma that have been separated from whole blood.
- blood components such as, but not limited to, red blood cells and plasma that have been separated from whole blood.
- collected whole blood in container 16 may be centrifuged to separate the blood into layers of such components.
- the heavier cellular components, such as red blood cells settle to the bottom of the container 16 and the lighter, less dense components, such as plasma (with or without platelets), remain in the top layer.
- the components may then be separated by expressing the lighter components through transfer tubing 30 and into container 20 .
- the heavier components may be expressed through transfer tubing 32 to container 24 .
- Such “top and bottom” separation techniques and disposable processing sets are well known and are available from Baxter Healthcare Corporation of Deerfield, Ill. under the name Optipac®.
- FIG. 24 may include a volume of a preservative or storage solution which is introduced into container 16 and combined with separated red cells after plasma has been expressed to container 20 .
- Such blood processing sets are also available from Baxter Healthcare Corporation.
- Containers 16 , 20 and 24 and associated tubing segments of processing set 10 are typically made from conventional and approved medical grade plastic materials.
- One such material may be polyvinyl chloride that includes a plasticizer such as, but not limited to, plasticizers selected from the family of citrate esters, which are described in U.S. Pat. Nos. 5,167,657, 5,100,401 and 5,026,347, all of which are incorporated by reference herein.
- Containers made from polyvinyl chloride plasticized with citrate ester or other plasticizers are available from Baxter Healthcare Corporation of Deerfield, Ill.
- containers may be made from other materials such as polyolefin materials with or without plasticizer.
- sampling system 18 may be integrally attached to the disposable processing set 10 at Y-connector 40 .
- sampling system 18 may include a container 42 having an inlet port 46 and outlet port 50 .
- Container 42 further includes an interior chamber 54 defined by walls 56 and 58 ( FIG. 4 ) that are joined together in a facing arrangement. Walls 56 and 58 may be made from sheets of extruded plastic.
- Container 42 may be made by heat sealing together walls 56 and 58 or by any other method known to those of skill in the art.
- walls 56 and 58 may joined together by radio frequency (RF) sealing the walls substantially along their peripheries.
- RF radio frequency
- a bushing 47 (typically made of polyvinyl chloride) may be included at, for example, inlet port 46 , and may also be RF sealed to walls 56 and 58 .
- Container 42 may typically be made of any conventional medical grade plastic material that is sterilizable by known sterilization techniques including autoclaving.
- a plasticizer such as a citrate ester (e.g. n-butyryltri-n-hexyl citrate), as substantially described above.
- TEHTM and DEHP may also be used.
- the material used to make walls 56 and 58 may include approximately 70%, by weight, polyvinyl chloride and approximately 30%, by weight, plasticizer.
- Container 42 may also include drain tube 43 . As shown in FIGS. 3-4 , one end of drain tube 43 is attached to container 42 and may provide outlet port 50 . Preferably, drain tube 43 may be RF sealed to container walls 56 and 58 . Drain tube may be made of any typical medical grade material such as polyvinyl chloride with a plasticizer. Drain tube 43 extends substantially into interior chamber 54 and terminates near inlet port 46 . Extending drain tube 43 substantially into interior chamber 54 assures that the end of drain tube 43 will reside within or near the liquid inside container 42 , making it less likely that air will be present when liquid (such as blood) is withdrawn from container 42 into a sampling tube.
- liquid such as blood
- Tube 43 also separates walls 56 and 58 to provide chamber 54 and assists in preventing walls 56 and 58 from collapsing during, for example, heat sterilization.
- interior chamber 54 may be generally circular. This may allow, for more complete drainage of container 42 by eliminating corners where the blood may be retained.
- interior chamber of container 42 may have a volume of approximately 20-50 ml and, more preferably, approximately 30-40 ml.
- sampling device 18 may include tubing segment 62 attached to container 42 at inlet port 46 .
- Tubing segment 62 may be attached to container 42 and, more specifically, bushing 47 by, for example, solvent bonding.
- the other end of tubing segment may be bonded to Y-connector 40 .
- Tubing segments 62 may further include an openable barrier 64 such as a frangible cannula or connector of the type described in U.S. Pat. No. 5,330,464, assigned to the assignee of the present application and incorporated by reference herein.
- Barrier 64 preserves the sterility of the flow path defined by tubing segment 62 .
- Flow restrictor clamps, such as Roberts clamps 65 and 66 ( FIG. 1 ), on tubing segment 62 and tubing segment 15 may also be provided to allow for flow control through blood processing set 10 by the technician.
- Sampling device 18 may further include a receptacle or holder 68 as shown in FIG. 3 .
- holder 68 is adapted to receive a blood sampling tube 70 .
- Holder 68 may be attached to container 42 at outlet port 50 to provide an integrated system.
- holder 68 includes distal end port 69 which may be mated with and bonded to outlet port 50 prior to heat sterilization. More preferably, distal end port 69 may be bonded to drain tube 43 . Subsequent heat sterilization forms a bond between the polycarbonate material of distal end port 69 and, for example, drain tube 43 .
- holder 68 may be separately provided and attached to outlet port 50 at the time of use.
- holder 68 may have a central body portion 71 , generally in the shape of a hollow cylinder. Holder 68 is open at its proximal end to allow for insertion of sampling tube 70 . Holder 68 may be made of any plastic sterilizable material. Holders of the type generally discussed above are available from, for example, Becton-Dickinson Co. of Franklin Lakes, N.J.
- Holder 68 may include a piercing member 74 as generally shown in FIG. 3 (or FIGS. 4 and 4 C).
- Piercing member 74 may be a needle, cannula or other biocompatible device having a sharpened tip.
- piercing member 74 includes a piercing end 76 .
- Piercing member 74 may be made of any material of sufficient strength such as metal or plastic.
- end 76 of piercing member 74 may be enclosed within a protective sheath 80 (best shown, for example, in FIG. 4C ).
- Protective sheath 80 may preferably be made of a flexible material, such as latex, which is capable of being penetrated by the tip of piercing member end 76 .
- protective sheath 80 should be sufficiently resilient to return to its original shape (covering end 76 ) upon withdrawal of sampling tube 70 .
- holder 68 may be provided with an interior pocket which may be conformed to receive the sampling tube, as generally shown in FIG. 4 .
- holder 68 may include a proximal end 110 , a distal end portion 114 and a generally rectangular central body portion 118 having oppositely facing walls 78 a and 78 b ( FIG. 4G ), which define an interior pocket 81 .
- Walls 78 a and 78 b are longitudinally hinged or creased to allow for flexing of holder 68 as shown in FIG. 4A . More specifically, as shown in FIG.
- each of the facing walls 78 a and 78 b may include a central longitudinal hinge 122 and 126 respectively near the central axis of each of the walls.
- body portion 118 may include longitudinal hinges 130 , 134 , 138 and 140 spaced from central longitudinal hinges 122 , 126 and located near the peripheral edges of walls 78 a and 78 b , as perhaps best seen in FIGS. 4G and 4L .
- the central longitudinal hinge 122 and the peripheral hinges 130 , 134 , 138 and 142 may be provided as thinned areas (i.e., areas of reduced thickness) of the walls 78 a and 78 b .
- walls 78 a and 78 b may typically have a thickness of between approximately 0.6-1.0 mm
- the thickness of the walls at hinges 122 , 126 , 130 , 134 , 138 and 140 may typically be between approximately 0.2-0.4 mm.
- the hinges of walls 78 a and 78 b allow interior pocket 81 to be conformed from a “closed” position as shown in FIG. 4F to an “open” position as shown in FIG. 4G .
- walls 78 a and 78 b may include pinching tabs 82 and 83 for compression by the technician to conform and flex open interior pocket 81 as generally shown in FIG. 4A .
- Pinching tabs 82 and 83 may be generally concave and include ridges 146 to provide gripping surfaces for the user.
- pinching tabs are joined to springs 97 , so that springs 97 are compressed when pinching tabs are squeezed, but return to their normal expanded position when pressure on the tabs 82 and 83 is withdrawn. This returns holder 68 to its “closed” position (which protects the user from the possibility of an accidental needle stick).
- Holder 68 shown in FIGS. 4-4L may further include finger grasping tabs 86 and 88 .
- Finger grasping tabs 86 and 88 provide grasping areas for the operator when inserting sample tube 70 as shown in FIG. 4B .
- the bottom grasping surface 147 of tabs 86 and 88 may be generally straight and forms a right angle with central body portion 118 as shown in FIG. 4-4D or, more preferably, curved for easier and more comfortable grasping by the user, as shown in FIGS. 4E-4L .
- finger grasping tabs 86 and 88 may further include apertures 89 for retaining tubing segments before, during and after use of disposable processing set 10 .
- apertures 89 should be sufficient to receive the tubing of the blood processing set.
- Apertures 89 are defined by a pair of jaws 89 a and 89 b ( FIG. 4F ) which are partially separable to allow the tubing to be inserted into apertures 89 .
- holder 68 shown in FIGS. 4-4L may further include positioning prongs 98 and 100 .
- Positioning prongs 98 and 100 are laterally spaced relative to piercing member 74 and assist in guiding tube 70 over piercing member 74 .
- Positioning prongs 98 and 100 also limit the degree of flexing so that when holder 68 is flexed to the open position, interior pocket 81 provides a generally square cross-sectional area sufficient to allow insertion of the cylindrical sampling tube.
- Holder 68 shown in FIG. 4-4D may further include a reservoir 99 to retain any uncollected drops of blood.
- holder 68 may include a piercing member assembly 74 .
- Piercing member 74 may be integral with holder 68 or, as shown in FIG. 4E , may be attachable to holder 68 .
- piercing member 78 may be or may include a needle, cannula or other biocompatible device having a sharpened tip.
- piercing member assembly 74 includes a first proximal piercing end 76 attached to a hub 146 .
- the opposite, distal end of piercing member assembly 74 includes luer 150 with a fluid passageway 154 provided inside luer 150 .
- piercing member 74 may further include means for attaching piercing member assembly 74 to holder 68 .
- piercing member 74 may include a threaded portion 158 .
- holder 68 may include a threaded slot 159 to receive the threaded portion 158 of piercing member 74 . This allows piercing members to be securely screwed into holder 68 .
- piercing member assembly 74 and, more particularly, the proximal portion of piercing member may be made of any material of sufficient strength such as metal or plastic.
- end 76 of piercing member 74 may be enclosed within a protective sheath 80 ( FIG. 4E ).
- Protective sheath 80 may preferably be made of a flexible material, such as latex, which can be penetrated by the tip of piercing member end 76 .
- protective sheath 80 should be sufficiently resilient to return to its original shape (covering end 76 ) upon withdrawal of sampling tube 70 .
- piercing member namely, luer 150 and threaded portion 158 may be made of any suitable, heat or radiation (gamma or electron beam) sterilizable plastic such as polycarbonate.
- At least luers 150 should be made of a material capable of being bonded, such as by solvent bonding or heat sealing, to the tubing of processing set 10 such as drain tube 43 at, for example, outlet port 50 .
- the holder 68 described above and shown in FIGS. 4-4L provides several benefits. From the manufacturing standpoint, for example, the flat shape of holder 68 (when in the closed “position”) makes for more efficient packaging by allowing more units to be packaged per case. For example, when in the “closed” position, holder may have a width of approximately 10 mm or less. Additionally, the flat shape of holder 68 provides for a shorter heat sterilization cycle (i.e., by reducing the thickness of the holder). From the user's standpoint, the flat shape of holder 68 (when in the closed position) protects the user from accidental needle sticks by limiting access to the interior pocket. The limited thickness also reduces waste volume.
- Holder 68 may also serve as a receptacle for holding a needle protector (with retracted venipuncture needle therein) after completion of the blood donation. Use of the holder in this manner is described in pending U.S. patent application Ser. No. 09/442,210, filed Nov. 17, 1999, which is incorporated by reference herein.
- the holder shown in FIGS. 4-4L may be made of any suitable, biocompatible, flexible and sterilizable (either by heat or radiation such as gamma or electron beam radiation) material such as polyolefin, and preferably polypropylene or polyethylene, including high-density polyethylene.
- Holder 68 of FIG. 4 may typically be made by casting, injection molding or other techniques known to those of skill in the art.
- the holder shown in FIGS. 4-4D may also include a distal end port 69 made, for example, of polycarbonate or other suitable material, that may be bonded to outlet port 50 and/or drain tube 43 during heat sterilization. More, preferably, the distal end port is the distal portion of piercing member assembly 74 . e.g., (luer 150 ) described above, which portion may be bonded to outlet port 50 and/or drain tube 43 during heat sterilization.
- a distal end port 69 made, for example, of polycarbonate or other suitable material, that may be bonded to outlet port 50 and/or drain tube 43 during heat sterilization.
- the distal end port is the distal portion of piercing member assembly 74 . e.g., (luer 150 ) described above, which portion may be bonded to outlet port 50 and/or drain tube 43 during heat sterilization.
- a sampling tube 70 may be inserted into the interior of holder 68 .
- tube 70 which is typically a vacuum sealed tube, may itself include a piercable cap 84 .
- Such tubes are available from the Becton-Dickinson Co. of Franklin Lakes, N.J. and are sold under the trade name VACUTAINER®.
- disposable processing set 10 may be provided with clamps 65 and 66 in a closed position, as shown in FIG. 5A .
- frangible connector 64 is opened and needle 12 is inserted into the arm of the donor 11 .
- clamp 65 is opened and container 42 is allowed to fill with the blood from the donor.
- clamp 65 may be opened prior to venipuncture.
- sampling system 18 may be isolated from the remainder of the processing set 10 by heat sealing tubing segment 62 in ways that are known to those of skill in the art.
- One device that may be used for sealing is the tubing sealing device known as the Hematron®, sold by Baxter Healthcare Corporation.
- line 62 may be sealed by a metal retaining clip or other means known to those of skill in the art.
- clamp 65 is closed and the clamp 66 is opened to allow blood flow into container 16 as shown in FIG. 5C .
- clamp 65 may be closed and clamp 66 may be opened (to allow blood flow into container 16 ) before heat sealing tubing segment 62 .
- sampling tube 70 may be transferred to a sampling tube 70 as shown in FIG. 5D and in more detail in FIGS. 3 and 4 C.
- Sampling tube 70 is inserted into the interior of holder 68 so that cap 84 of tube 70 is pierced by the piercing end 76 of piercing member 74 , as generally shown in FIG. 4B .
- Applicants have discovered that such blood flow results in less hemolysis of red blood cells as compared to other collection techniques where the blood is allowed to drip into an upright tube.
- the blood processing sets shown therein are variants of the processing set 10 of FIG. 1 . While the sampling system 18 shown in these embodiments is similar to the sampling system described above, the processing sets differ, in general, in the location of openable barriers 64 , the orientation of certain components and the like.
- the blood processing set shown in FIG. 1A is virtually identical to the set of FIG. 1 with the exception that Y-connector 40 is oriented in the opposite direction (which may be desirable for packaging purposes).
- an additional openable barrier 64 of the type described above may be included on line 15 .
- Inclusion of barrier 64 on line 14 may prevent additional anticoagulant from entering line 14 distal to Y-connector 40 .
- FIG. 2B A similar but alternative embodiment is shown in FIG. 2B where an openable barrier 64 a (such as a polyvinyl chloride frangible cannula) is located near the inlet port of container 16 . In these embodiments, barrier 64 or 64 A would be opened just prior to collection of blood in container 16 .
- an openable barrier 64 may be included on line 14 , but not on line 62 .
- holder 68 preserves the sterility of the system.
- a Y-connector of the type described in U.S. Pat. No. 5,372,143, which is incorporated by reference herein, may be used in combination with the sampling system 18 of the present invention.
- the disposable processing set and sampling system of the present invention provide many benefits.
- One benefit is that a blood sample may be obtained prior to the donation while still preserving the sterility of flow path between the donor and collection container.
- a blood sample may be collected in container 42 , which container may then be isolated from the remainder of the system (by, for example, sealing or clipping).
- a sampling tube may be introduced into the holder of the sampling system without the risk that bacteria or other foreign substances on the tube will contaminate the rest of the blood processing set, including flow path 14 .
- pre-donation sampling is that bacteria or foreign substances that may be present on the donor's skin will not be transmitted to collection container 16 , but will be diverted to sampling container 42 .
- pre-donation sampling allows for collection of sample for testing, even if the donation is not completed.
- pre-donation sampling may provide a more accurate profile of the donor's blood, particularly regarding the hemoglobin level of the donor. For example, during donation, the loss of blood volume in the donor is compensated by plasma. This compensation by plasma typically lowers the hematocrit of the donor's blood. If the sample is taken after donation, the donor hematocrit may be lower (by possibly as much as 0.5 g/dL) than it otherwise would be if the sample is collected prior to donation.
- the present invention provides additional advantages, whether used for pre-donation or post-donation sampling.
- One advantage is the reduced risk of tubing or donor vein collapse as described above.
- Container 42 acts as a buffer between the sampling tube and tube or vein. Thus, any suction forces generated by introduction of the vacuum sealed tube will be absorbed by the container 42 and not tube or donor vein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Hematology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- External Artificial Organs (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
- This is a continuation-in-part of U.S. application Ser. No. 09/364,628 filed on Jul. 29, 1999.
- The administration of blood or blood components often plays a critical role in the emergency and/or long term treatment of patients. Blood or the individual components of blood (such as platelets, plasma, red blood cells, etc.) may be administered or transfused to patients to treat a variety of conditions. For example, blood may be administered to a patient to replace blood lost as a result of trauma, while individual blood components may be administered as part of a longer term treatment of patients suffering from cancer or certain blood related diseases. The blood or blood components administered to the patient come from blood previously collected from donors.
- One of the most common blood collection techniques, and perhaps the most well-known, is the “manual” collection of whole blood from healthy donors. As commonly understood and as used herein, “manual” collection refers to a collection method where whole blood is allowed to drain from the donor and into a collection container without the use of external pumps or similar devices. This is in contrast to the so-called “automated” procedures where blood is withdrawn from a donor and further processed by an instrument that typically includes a processing or separation device and pumps for moving blood or blood components into and out of the device.
- Regardless of whether the blood collection technique is manual or automated, withdrawing blood from the donor typically includes inserting a vein access device, such as a needle, into the donor's arm (and, more specifically, the donor's vein) and withdrawing blood from the donor through the needle. The “venipuncture” needle typically has attached to it, one end of a plastic tube that provides a flow path for the blood. The other end of the plastic tube terminates in one or more preattached plastic blood containers or bags for collecting the blood. The needle, tubing and containers make up a blood processing set which is pre-sterilized and disposed of after a single use.
- In the manual technique, the collection container and plastic tubing may also include a volume of a liquid anticoagulant, while in the automated technique, a separate container of anticoagulant may be provided from which the anticoagulant is metered into the flow path and mixed with the incoming whole blood. In any event, anticoagulant is required because of the tendency of blood to clot and adhere to the walls of the plastic surfaces which it contacts.
- An important consideration in any blood collection technique or system is ensuring that the system or set does not become contaminated by airborne bacteria or other foreign substances that may compromise the sterility of the system. Thus, the sterility of the above-described disposable blood processing set or system is maintained by minimizing exposure of the flow paths and interiors of the blood containers to the outside environment. Such systems are commonly referred to as “closed” systems.
- After collection but prior to transfusion to a patient, the blood is typically tested for determining blood type and the presence of pathogens such as virus, bacteria and/or other foreign substances in the donor's blood. Typically, testing of the collected blood requires obtaining a sample of the blood from the blood donor at or near the time of collection.
- One well-known technique of obtaining a blood sample is to simply withdraw or collect the blood remaining in the flow path of the disposable set after donation. This involves removing the needle from the donor, inserting the needle into a vacuum sealed sampling tube or tube and allowing the blood from the flow path to drain into the tube. However, because there is a limited supply of blood remaining in the flow path, there may not be enough blood to provide enough of a sample to perform all of the required or desired testing. Accordingly, if a larger volume or numerous samples of blood are required, the technician obtaining the sample may continue draining the blood from the tubing, eventually withdrawing the collected anticoagulated blood from the collection container. Withdrawing blood from the collection container, however, may be less desirable in that it may expose the collected blood in the collection container to the outside environment. Withdrawing blood from the collection container for sampling also reduces the volume of available blood for later processing and transfusion.
- An alternative to collecting anticoagulated blood from the collection container is to clamp off the flow path near the collection container and divert the blood being withdrawn from the donor to a collection (sampling) tube or tube of the type described above. This procedure typically employs a particular type of disposable tubing set having a preattached sampling site on the main flow path. Blood at or near the sampling site may be obtained by piercing the sampling site with a separately provided needle or other piercing device, and attaching a sampling tube thereto. To minimize the risk that the incoming blood (which is intended for later processing and transfusion) will be exposed to the outside environment, the sample is typically collected after completion of the blood donation.
- Still another example of a blood sampling system is described in U.S. Pat. No. 5,167,656, which is assigned to the assignee of the present application. That patent describes a disposable tubing set wherein the flow path includes an enlarged sample collection portion. Blood for sampling is collected in the enlarged portion by clamping off the flow path near the collection container and allowing the enlarged tubing portion to fill with blood. Once the desired volume of blood for sampling is collected in the enlarged tubing portion, the needle is removed from the donor and the blood is transferred to a tube by piercing the cap of the tube with the needle and allowing the blood to drain into the sampling tube.
- While these known techniques have generally worked satisfactorily, efforts continue to provide further improvements in the area of blood sampling. For example, as set forth above, the sample is typically obtained after the blood product (intended for further processing and transfusion) has been collected so as to preserve the sterility of the closed system. However, if the donation procedure must be terminated before completion, there may not be an opportunity to obtain a sample directly from the donor. Thus, it would be desirable to provide a sampling system in which blood samples can be obtained either before or after donation, but without the risk of compromising the sterility of the system and/or the collected blood product.
- In addition, as discussed above, the use of vacuum-filled tubes or tubes is common in blood sampling processes. When such vacuum-filled tubes are used, there is the possibility that the suction may cause the tubing of the blood processing set to collapse and restrict blood flow. Of even greater concern, particularly in small-veined donors, is the possibility that the suction may cause the donor's vein to collapse. Thus, it would also be desirable to provide a sampling system where the risk of donor vein or tubing collapse is minimized.
- It would also be desirable to provide a sampling system which is integrated with the blood collection set and requires few separate or external components.
- Finally, where the sampling system includes a holder (with a piercing member) for receiving a sampling tube, it would also be desirable to provide a holder that is compact in size, easily sterilized and reduces the risk that the user will inadvertently come into contact with the sharpened tip of the piercing member within the holder.
- In one aspect, the present invention is embodied in a holder for receiving a blood sampling tube. The holder includes a distal end, a proximal end and a central body portion between the ends. The body portion of the holder defines an interior pocket. The interior pocket may be conformed to receive a sampling tube.
- In another aspect, the present invention is embodied in a holder for receiving a sampling tube wherein the holder includes a distal end, a proximal end, a central body portion and a piercing member assembly attachable at the distal end. The assembly has a first portion disposed within the interior pocket and a second portion extending from the distal end to the exterior. The holder also includes a fluid reservoir located at the distal end.
- In another aspect, the present invention is embodied in a holder for receiving a sampling tube wherein the holder includes a distal end, a proximal end and a central body portion including at least one tab with an aperture extending therethrough.
-
FIG. 1 is a perspective view of a disposable blood collection or processing set including a sampling system embodying the present invention; -
FIG. 1A is a perspective view of a portion of an alternative disposable blood collection or processing set including a sampling system embodying the present invention; -
FIG. 2A is a perspective view of another variant of a disposable blood collection or processing set including a sampling system embodying the present invention; -
FIG. 2B is a perspective view of another variant of a disposable blood collection or processing set including sampling system embodying the present invention; -
FIG. 2C is a perspective view of another variant of a disposable blood collection or processing set including a sampling system embodying the present invention; -
FIG. 2D is a perspective view of another variant of a disposable blood collection or processing set including a sampling system embodying the present invention; -
FIG. 3 is a perspective view of the sampling system embodying the present invention; -
FIG. 4 is a perspective view of the sampling system ofFIG. 3 with an another embodiment of the holder; -
FIG. 4A is a perspective view of the sampling system ofFIG. 4 with the holder open; -
FIG. 4B is a perspective view of the sampling system ofFIG. 4 with the sampling tube disposed within the holder; -
FIG. 4C is a cross-sectional view of the holder ofFIG. 4 , taken along 4C-4C; -
FIG. 4D is a partial cross-sectional view of the holder ofFIG. 4 with a portion broken away to show the interior of the holder; -
FIG. 4E is a perspective view from the distal end of a holder embodying the present invention with an attachable piercing member assembly; -
FIG. 4F is a perspective view from the proximal end of a holder embodying the present invention; -
FIG. 4G is a perspective view from the proximal end of the holder ofFIG. 4F in an open position; -
FIG. 4H is a plan view of the holder embodying the present invention; -
FIG. 4I is a cross-sectional side view of the holder ofFIG. 4F taken along 4I-4I; -
FIG. 4J is a cross-sectional side view of the holder ofFIG. 4F taken along 4J-4J; -
FIG. 4K is a cross-sectional side view of the holder ofFIG. 4G taken along 4K-4K; -
FIG. 4L is a cross-sectional end view of the holder of 4G taken along 4L-4L; -
FIG. 5A is a diagram showing one step in the method of obtaining a blood sample in accordance with the present invention; -
FIG. 5B is a diagram showing the step of collecting a blood sample in accordance with the present invention; -
FIG. 5C is a diagram showing the steps of isolating the blood sampling system from the remainder of the processing set and collecting blood in the collection container; and -
FIG. 5D is a diagram showing the step of withdrawing the blood sample from the sampling container and collecting it in a sampling tube. - Turning now to
FIG. 1 of the drawings, the present invention may be embodied in a liquid flow conduit set such as a disposable processing set 10, which is particularly suitable for use in the manual collection of blood from a donor 11. The illustrateddisposable set 10 may include a needle such asvenipuncture needle 12, andplastic tubings needle 12 to a collection container such as a flexibleplastic container 16. Aneedle protector 17 may also be provided for retraction and storage ofneedle 12 after use. - The blood processing set 10 may include a single
blood collection container 16 or, more preferably, as shown inFIG. 1 , may be a multiple blood container system includingadditional containers sampling system 18, described in more detail below. - As set forth above, blood processing set 10 may include a
primary container 16 and one or more integrally attachedtransfer containers donor tubings venipuncture needle 12.Container 16 typically includes a suitable anticoagulant such as citrate phosphate dextrose (CPD), citrate phosphate dextrose adenine (CPDA) or acid citrate dextrose (ACD). -
Containers primary container 16 by integrally attachedtransfer tubing Containers container 16 may be centrifuged to separate the blood into layers of such components. The heavier cellular components, such as red blood cells, settle to the bottom of thecontainer 16 and the lighter, less dense components, such as plasma (with or without platelets), remain in the top layer. The components may then be separated by expressing the lighter components throughtransfer tubing 30 and intocontainer 20. Likewise, the heavier components may be expressed throughtransfer tubing 32 tocontainer 24. Such “top and bottom” separation techniques and disposable processing sets are well known and are available from Baxter Healthcare Corporation of Deerfield, Ill. under the name Optipac®. - Of course, it will be understood that the present invention is not limited to the processing sets shown in the figures and that processing sets having different container and tubing configurations are also within the scope of the present invention. For example, a multiple container system wherein
tubing segments container 16 at or near the top ofcontainer 16 may also be used.Container 24 may include a volume of a preservative or storage solution which is introduced intocontainer 16 and combined with separated red cells after plasma has been expressed tocontainer 20. Such blood processing sets are also available from Baxter Healthcare Corporation. -
Containers - Turning now to the sampling system, as shown in
FIG. 1 ,sampling system 18 may be integrally attached to the disposable processing set 10 at Y-connector 40. In general, and as shown in greater detail inFIG. 3 ,sampling system 18 may include acontainer 42 having aninlet port 46 andoutlet port 50.Container 42 further includes aninterior chamber 54 defined bywalls 56 and 58 (FIG. 4 ) that are joined together in a facing arrangement.Walls Container 42 may be made by heat sealing togetherwalls walls bushing 47, (typically made of polyvinyl chloride) may be included at, for example,inlet port 46, and may also be RF sealed towalls - Container 42 (or the
walls 56 and 58) may typically be made of any conventional medical grade plastic material that is sterilizable by known sterilization techniques including autoclaving. One such preferred material is polyvinyl chloride with a plasticizer, such as a citrate ester (e.g. n-butyryltri-n-hexyl citrate), as substantially described above. Of course, other known plasticizers such as TEHTM and DEHP may also be used. In one example, the material used to makewalls -
Container 42 may also includedrain tube 43. As shown inFIGS. 3-4 , one end ofdrain tube 43 is attached tocontainer 42 and may provideoutlet port 50. Preferably,drain tube 43 may be RF sealed tocontainer walls Drain tube 43 extends substantially intointerior chamber 54 and terminates nearinlet port 46. Extendingdrain tube 43 substantially intointerior chamber 54 assures that the end ofdrain tube 43 will reside within or near the liquid insidecontainer 42, making it less likely that air will be present when liquid (such as blood) is withdrawn fromcontainer 42 into a sampling tube.Tube 43 also separateswalls chamber 54 and assists in preventingwalls FIG. 3 , in a preferred embodiment,interior chamber 54 may be generally circular. This may allow, for more complete drainage ofcontainer 42 by eliminating corners where the blood may be retained. In one embodiment, interior chamber ofcontainer 42 may have a volume of approximately 20-50 ml and, more preferably, approximately 30-40 ml. - As further shown in
FIG. 3 ,sampling device 18 may includetubing segment 62 attached tocontainer 42 atinlet port 46.Tubing segment 62 may be attached tocontainer 42 and, more specifically, bushing 47 by, for example, solvent bonding. The other end of tubing segment may be bonded to Y-connector 40.Tubing segments 62 may further include anopenable barrier 64 such as a frangible cannula or connector of the type described in U.S. Pat. No. 5,330,464, assigned to the assignee of the present application and incorporated by reference herein.Barrier 64 preserves the sterility of the flow path defined bytubing segment 62. Flow restrictor clamps, such as Roberts clamps 65 and 66 (FIG. 1 ), ontubing segment 62 andtubing segment 15 may also be provided to allow for flow control through blood processing set 10 by the technician. -
Sampling device 18 may further include a receptacle orholder 68 as shown inFIG. 3 . As will be described in more detailed below,holder 68 is adapted to receive ablood sampling tube 70.Holder 68 may be attached tocontainer 42 atoutlet port 50 to provide an integrated system. In one embodiment,holder 68 includesdistal end port 69 which may be mated with and bonded tooutlet port 50 prior to heat sterilization. More preferably,distal end port 69 may be bonded to draintube 43. Subsequent heat sterilization forms a bond between the polycarbonate material ofdistal end port 69 and, for example,drain tube 43. Of course, other ways ofbonding holder 68 tocontainer 42, such as solvent bonding, may also be used. Alternatively,holder 68 may be separately provided and attached tooutlet port 50 at the time of use. - In one embodiment (shown in
FIG. 3 ),holder 68 may have a central body portion 71, generally in the shape of a hollow cylinder.Holder 68 is open at its proximal end to allow for insertion ofsampling tube 70.Holder 68 may be made of any plastic sterilizable material. Holders of the type generally discussed above are available from, for example, Becton-Dickinson Co. of Franklin Lakes, N.J. -
Holder 68 may include a piercingmember 74 as generally shown inFIG. 3 (orFIGS. 4 and 4 C). Piercingmember 74 may be a needle, cannula or other biocompatible device having a sharpened tip. As set forth above, piercingmember 74 includes a piercingend 76. Piercingmember 74 may be made of any material of sufficient strength such as metal or plastic. In addition, end 76 of piercingmember 74 may be enclosed within a protective sheath 80 (best shown, for example, inFIG. 4C ).Protective sheath 80 may preferably be made of a flexible material, such as latex, which is capable of being penetrated by the tip of piercingmember end 76. Alsoprotective sheath 80 should be sufficiently resilient to return to its original shape (covering end 76) upon withdrawal ofsampling tube 70. - In an alternative embodiment,
holder 68 may be provided with an interior pocket which may be conformed to receive the sampling tube, as generally shown inFIG. 4 . As shown inFIG. 4E ,holder 68 may include aproximal end 110, adistal end portion 114 and a generally rectangularcentral body portion 118 having oppositely facingwalls FIG. 4G ), which define aninterior pocket 81.Walls holder 68 as shown inFIG. 4A . More specifically, as shown inFIG. 4F , each of the facingwalls longitudinal hinge body portion 118 may includelongitudinal hinges longitudinal hinges walls FIGS. 4G and 4L . In one embodiment, the centrallongitudinal hinge 122 and the peripheral hinges 130, 134, 138 and 142 may be provided as thinned areas (i.e., areas of reduced thickness) of thewalls walls walls interior pocket 81 to be conformed from a “closed” position as shown inFIG. 4F to an “open” position as shown inFIG. 4G . - In a preferred embodiment,
walls tabs interior pocket 81 as generally shown inFIG. 4A . Pinchingtabs ridges 146 to provide gripping surfaces for the user. As shown inFIG. 4E and more clearly in 4J, pinching tabs are joined tosprings 97, so that springs 97 are compressed when pinching tabs are squeezed, but return to their normal expanded position when pressure on thetabs holder 68 to its “closed” position (which protects the user from the possibility of an accidental needle stick). -
Holder 68 shown inFIGS. 4-4L may further includefinger grasping tabs tabs sample tube 70 as shown inFIG. 4B . Thebottom grasping surface 147 oftabs central body portion 118 as shown inFIG. 4-4D or, more preferably, curved for easier and more comfortable grasping by the user, as shown inFIGS. 4E-4L . Turning now toFIGS. 4B and 4E ,finger grasping tabs apertures 89 for retaining tubing segments before, during and after use of disposable processing set 10. The diameter ofapertures 89 should be sufficient to receive the tubing of the blood processing set.Apertures 89 are defined by a pair ofjaws 89 a and 89 b (FIG. 4F ) which are partially separable to allow the tubing to be inserted intoapertures 89. - In addition,
holder 68 shown inFIGS. 4-4L may further includepositioning prongs member 74 and assist in guidingtube 70 over piercingmember 74. Positioning prongs 98 and 100 also limit the degree of flexing so that whenholder 68 is flexed to the open position,interior pocket 81 provides a generally square cross-sectional area sufficient to allow insertion of the cylindrical sampling tube.Holder 68 shown inFIG. 4-4D may further include areservoir 99 to retain any uncollected drops of blood. - As shown in
FIG. 4 ,holder 68 may include a piercingmember assembly 74. Piercingmember 74 may be integral withholder 68 or, as shown inFIG. 4E , may be attachable toholder 68. In any event, piercingmember 78 may be or may include a needle, cannula or other biocompatible device having a sharpened tip. - As shown in
FIG. 4E , piercingmember assembly 74 includes a first proximal piercingend 76 attached to ahub 146. The opposite, distal end of piercingmember assembly 74 includesluer 150 with afluid passageway 154 provided insideluer 150. Where piercingmember 74 is attachable toholder 78, it may further include means for attaching piercingmember assembly 74 toholder 68. As shown inFIG. 4E , for example, piercingmember 74 may include a threadedportion 158. Accordingly,holder 68 may include a threadedslot 159 to receive the threadedportion 158 of piercingmember 74. This allows piercing members to be securely screwed intoholder 68. - As described above, piercing
member assembly 74 and, more particularly, the proximal portion of piercing member, may be made of any material of sufficient strength such as metal or plastic. In addition, end 76 of piercingmember 74 may be enclosed within a protective sheath 80 (FIG. 4E ).Protective sheath 80 may preferably be made of a flexible material, such as latex, which can be penetrated by the tip of piercingmember end 76. Also, as previously described,protective sheath 80 should be sufficiently resilient to return to its original shape (covering end 76) upon withdrawal ofsampling tube 70. The remainder of piercing member, namely,luer 150 and threadedportion 158 may be made of any suitable, heat or radiation (gamma or electron beam) sterilizable plastic such as polycarbonate. Atleast luers 150 should be made of a material capable of being bonded, such as by solvent bonding or heat sealing, to the tubing of processing set 10 such asdrain tube 43 at, for example,outlet port 50. - The
holder 68 described above and shown inFIGS. 4-4L provides several benefits. From the manufacturing standpoint, for example, the flat shape of holder 68 (when in the closed “position”) makes for more efficient packaging by allowing more units to be packaged per case. For example, when in the “closed” position, holder may have a width of approximately 10 mm or less. Additionally, the flat shape ofholder 68 provides for a shorter heat sterilization cycle (i.e., by reducing the thickness of the holder). From the user's standpoint, the flat shape of holder 68 (when in the closed position) protects the user from accidental needle sticks by limiting access to the interior pocket. The limited thickness also reduces waste volume. -
Holder 68 may also serve as a receptacle for holding a needle protector (with retracted venipuncture needle therein) after completion of the blood donation. Use of the holder in this manner is described in pending U.S. patent application Ser. No. 09/442,210, filed Nov. 17, 1999, which is incorporated by reference herein. - The holder shown in
FIGS. 4-4L may be made of any suitable, biocompatible, flexible and sterilizable (either by heat or radiation such as gamma or electron beam radiation) material such as polyolefin, and preferably polypropylene or polyethylene, including high-density polyethylene. -
Holder 68 ofFIG. 4 may typically be made by casting, injection molding or other techniques known to those of skill in the art. As in the embodiment ofFIG. 3 , the holder shown inFIGS. 4-4D may also include adistal end port 69 made, for example, of polycarbonate or other suitable material, that may be bonded tooutlet port 50 and/ordrain tube 43 during heat sterilization. More, preferably, the distal end port is the distal portion of piercingmember assembly 74. e.g., (luer 150) described above, which portion may be bonded tooutlet port 50 and/ordrain tube 43 during heat sterilization. Of course, other ways ofbonding holder 68 tocontainer 42 may also be used. - During a collection procedure, a
sampling tube 70, as shown inFIG. 3 , may be inserted into the interior ofholder 68. As shown inFIGS. 3 and 4 B,tube 70, which is typically a vacuum sealed tube, may itself include apiercable cap 84. Such tubes are available from the Becton-Dickinson Co. of Franklin Lakes, N.J. and are sold under the trade name VACUTAINER®. - The method of collecting a blood sample from a donor during a blood donation using the blood processing system generally described above will now be described. In one embodiment, at the outset of the donation procedure, disposable processing set 10 may be provided with
clamps FIG. 5A . Next,frangible connector 64 is opened andneedle 12 is inserted into the arm of the donor 11. As shown inFIG. 5B , clamp 65 is opened andcontainer 42 is allowed to fill with the blood from the donor. Alternatively, clamp 65 may be opened prior to venipuncture. - Once a sufficient volume of blood for sampling has been collected,
sampling system 18 may be isolated from the remainder of the processing set 10 by heat sealingtubing segment 62 in ways that are known to those of skill in the art. One device that may be used for sealing is the tubing sealing device known as the Hematron®, sold by Baxter Healthcare Corporation. Alternatively,line 62 may be sealed by a metal retaining clip or other means known to those of skill in the art. After isolation byseal 67,clamp 65 is closed and theclamp 66 is opened to allow blood flow intocontainer 16 as shown inFIG. 5C . Of course, it will also be appreciated by those of skill in the art that, clamp 65 may be closed and clamp 66 may be opened (to allow blood flow into container 16) before heat sealingtubing segment 62. - In any event, once
sampling system 18 has been isolated from the remainder of the blood processing set 10, blood collected incontainer 42 may be transferred to asampling tube 70 as shown inFIG. 5D and in more detail inFIGS. 3 and 4 C. Sampling tube 70 is inserted into the interior ofholder 68 so thatcap 84 oftube 70 is pierced by the piercingend 76 of piercingmember 74, as generally shown inFIG. 4B . As shown inFIGS. 3 and 4 , it is preferred thatsampling tube 70 be introduced intoholder 68 in an inverted position so that blood flows up intotube 70. Applicants have discovered that such blood flow results in less hemolysis of red blood cells as compared to other collection techniques where the blood is allowed to drip into an upright tube. - Finally, turning briefly to FIGS. 1A and 2A-2D, the blood processing sets shown therein are variants of the processing set 10 of
FIG. 1 . While thesampling system 18 shown in these embodiments is similar to the sampling system described above, the processing sets differ, in general, in the location ofopenable barriers 64, the orientation of certain components and the like. For example, the blood processing set shown inFIG. 1A is virtually identical to the set ofFIG. 1 with the exception that Y-connector 40 is oriented in the opposite direction (which may be desirable for packaging purposes). - In
FIG. 2A , an additionalopenable barrier 64 of the type described above may be included online 15. Inclusion ofbarrier 64 online 14 may prevent additional anticoagulant from enteringline 14 distal to Y-connector 40. A similar but alternative embodiment is shown inFIG. 2B where an openable barrier 64 a (such as a polyvinyl chloride frangible cannula) is located near the inlet port ofcontainer 16. In these embodiments,barrier 64 or 64A would be opened just prior to collection of blood incontainer 16. - In another embodiment, shown in
FIG. 2C , anopenable barrier 64 may be included online 14, but not online 62. In this embodiment,holder 68 preserves the sterility of the system. Finally, as shown inFIG. 2D , a Y-connector of the type described in U.S. Pat. No. 5,372,143, which is incorporated by reference herein, may be used in combination with thesampling system 18 of the present invention. - The disposable processing set and sampling system of the present invention provide many benefits. One benefit is that a blood sample may be obtained prior to the donation while still preserving the sterility of flow path between the donor and collection container. Specifically, as described above, a blood sample may be collected in
container 42, which container may then be isolated from the remainder of the system (by, for example, sealing or clipping). Oncecontainer 42 has been isolated, a sampling tube may be introduced into the holder of the sampling system without the risk that bacteria or other foreign substances on the tube will contaminate the rest of the blood processing set, includingflow path 14. - An advantage of pre-donation sampling is that bacteria or foreign substances that may be present on the donor's skin will not be transmitted to
collection container 16, but will be diverted to samplingcontainer 42. - Another advantage of pre-donation sampling is that it allows for collection of sample for testing, even if the donation is not completed.
- Another advantage of pre-donation sampling is that it may provide a more accurate profile of the donor's blood, particularly regarding the hemoglobin level of the donor. For example, during donation, the loss of blood volume in the donor is compensated by plasma. This compensation by plasma typically lowers the hematocrit of the donor's blood. If the sample is taken after donation, the donor hematocrit may be lower (by possibly as much as 0.5 g/dL) than it otherwise would be if the sample is collected prior to donation.
- The present invention provides additional advantages, whether used for pre-donation or post-donation sampling. One advantage is the reduced risk of tubing or donor vein collapse as described above.
Container 42 acts as a buffer between the sampling tube and tube or vein. Thus, any suction forces generated by introduction of the vacuum sealed tube will be absorbed by thecontainer 42 and not tube or donor vein. - Of course, there may be other advantages of the present system not discussed herein which will be apparent to those of skill in the art.
- The present invention has been described in accordance with the preferred embodiments. However, it will be understood that minor variations to the embodiments shown herein may be made without departing from the present invention which is specifically set forth in the appended claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/250,717 US20060111658A1 (en) | 1999-07-29 | 2005-10-13 | Sampling tube holder for blood sampling system |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/364,628 US6387086B2 (en) | 1999-07-29 | 1999-07-29 | Blood processing set including an integrated blood sampling system |
US09/492,060 US6520948B1 (en) | 1999-07-29 | 2000-01-27 | Sampling tube holder for blood sampling system |
US10/304,299 US7044941B2 (en) | 1999-07-29 | 2002-11-26 | Method and apparatus for collecting blood samples prior to a blood collection procedure |
US10/957,016 US8079997B2 (en) | 1999-07-29 | 2004-10-01 | Apparatus for collecting blood samples |
US11/250,717 US20060111658A1 (en) | 1999-07-29 | 2005-10-13 | Sampling tube holder for blood sampling system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/957,016 Division US8079997B2 (en) | 1999-07-29 | 2004-10-01 | Apparatus for collecting blood samples |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060111658A1 true US20060111658A1 (en) | 2006-05-25 |
Family
ID=27002565
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/304,299 Expired - Lifetime US7044941B2 (en) | 1999-07-29 | 2002-11-26 | Method and apparatus for collecting blood samples prior to a blood collection procedure |
US10/957,016 Expired - Fee Related US8079997B2 (en) | 1999-07-29 | 2004-10-01 | Apparatus for collecting blood samples |
US11/251,283 Expired - Fee Related US7699828B2 (en) | 1999-07-29 | 2005-10-13 | Container for receiving a blood sample |
US11/250,717 Abandoned US20060111658A1 (en) | 1999-07-29 | 2005-10-13 | Sampling tube holder for blood sampling system |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/304,299 Expired - Lifetime US7044941B2 (en) | 1999-07-29 | 2002-11-26 | Method and apparatus for collecting blood samples prior to a blood collection procedure |
US10/957,016 Expired - Fee Related US8079997B2 (en) | 1999-07-29 | 2004-10-01 | Apparatus for collecting blood samples |
US11/251,283 Expired - Fee Related US7699828B2 (en) | 1999-07-29 | 2005-10-13 | Container for receiving a blood sample |
Country Status (5)
Country | Link |
---|---|
US (4) | US7044941B2 (en) |
EP (1) | EP1377216A2 (en) |
AU (2) | AU6498600A (en) |
CA (1) | CA2373689A1 (en) |
WO (1) | WO2001008546A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040082898A1 (en) * | 1999-07-29 | 2004-04-29 | Jean-Marie Mathias | Biological sample device receiver |
US20050143712A1 (en) * | 1999-07-29 | 2005-06-30 | Jean-Marie Mathias | Sampling tube holder for blood sampling system |
US20050148993A1 (en) * | 1999-07-29 | 2005-07-07 | Jean-Marie Mathias | Method and apparatus for blood sampling |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030176813A1 (en) * | 1999-07-29 | 2003-09-18 | Jean-Marie Mathias | Biological fluid sampling apparatus |
US6742760B2 (en) | 2001-09-27 | 2004-06-01 | Baxter International Inc. | Flow control device |
US8262639B2 (en) * | 2002-01-31 | 2012-09-11 | Fenwal, Inc. | Irreversible flow control clamp |
ATE480293T1 (en) | 2002-01-31 | 2010-09-15 | Fenwal Inc | IRREVERSIBLY CLOSABLE CURRENT CONTROL TERMINAL |
US11083841B2 (en) | 2002-08-09 | 2021-08-10 | Fenwal, Inc. | Needle protector, needle assembly and fluid processing set including the same |
EP1413874A1 (en) | 2002-10-16 | 2004-04-28 | Streck Laboratories, Inc. | Method and device for collecting and preserving cells for analysis |
AU2011218658B2 (en) * | 2003-02-19 | 2013-12-05 | Maco Pharma | A bag system comprising a means of associating sampling receptacles |
FR2851167B1 (en) * | 2003-02-19 | 2005-10-28 | Maco Pharma Sa | POCKET SYSTEM COMPRISING A MEANS OF ASSOCIATION OF SAMPLING CONTAINERS |
ATE440541T1 (en) * | 2005-09-13 | 2009-09-15 | Edwards Lifesciences Corp | CLOSED BLOOD COLLECTION SYSTEM WITH ISOLATED PRESSURE MONITORING |
US7489111B2 (en) * | 2005-12-08 | 2009-02-10 | Robert W. Wise | Holstered cordless power tool |
US8197420B2 (en) | 2006-12-18 | 2012-06-12 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US8075468B2 (en) | 2008-02-27 | 2011-12-13 | Fenwal, Inc. | Systems and methods for mid-processing calculation of blood composition |
US8685258B2 (en) | 2008-02-27 | 2014-04-01 | Fenwal, Inc. | Systems and methods for conveying multiple blood components to a recipient |
WO2010078194A1 (en) | 2008-12-30 | 2010-07-08 | Streck, Inc. | Method for screening blood using a preservative that may be in a substantially solid state form |
US11634747B2 (en) * | 2009-01-21 | 2023-04-25 | Streck Llc | Preservation of fetal nucleic acids in maternal plasma |
NO2398912T3 (en) | 2009-02-18 | 2018-02-10 | ||
EP2499259B1 (en) * | 2009-11-09 | 2016-04-06 | Streck Inc. | Stabilization of rna in and extracting from intact cells within a blood sample |
US9744498B2 (en) | 2011-03-11 | 2017-08-29 | Fenwal, Inc. | Disposable fluid circuits and methods for cell washing with on-line dilution of cell feed |
US9033948B2 (en) | 2011-04-19 | 2015-05-19 | Fenwel, Inc. | Single collection bag blood collection system, method and apparatus |
EP2704740B1 (en) | 2011-05-04 | 2016-10-05 | Streck, Inc. | Inactivated swine flu virus and methods of preparing it |
EP2720730B1 (en) * | 2011-09-22 | 2017-01-11 | Fenwal, Inc. | Disposable fluid circuits and methods for cell washing |
US8535241B2 (en) | 2011-10-13 | 2013-09-17 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US8864684B2 (en) | 2011-10-13 | 2014-10-21 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US20140221793A1 (en) * | 2012-03-14 | 2014-08-07 | Terumo Kabushiki Kaisha | Container for testing blood and blood drawing instrument |
US9022950B2 (en) | 2012-05-30 | 2015-05-05 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9060724B2 (en) | 2012-05-30 | 2015-06-23 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9204864B2 (en) | 2012-08-01 | 2015-12-08 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
JP5918372B2 (en) * | 2012-08-31 | 2016-05-18 | テルモ株式会社 | Blood collection instrument and blood bag system |
US9833606B2 (en) | 2012-09-07 | 2017-12-05 | Fenwal, Inc. | Non-reopenable flow control clamp |
WO2014058945A1 (en) | 2012-10-11 | 2014-04-17 | Bullington Gregory J | Systems and methods for delivering a fluid to a patient with reduced contamination |
EP4353151A3 (en) | 2012-11-30 | 2024-06-19 | Magnolia Medical Technologies, Inc. | Syringe based fluid diversion mechanism for bodily-fluid sampling |
US10251590B2 (en) | 2012-12-04 | 2019-04-09 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
US10772548B2 (en) | 2012-12-04 | 2020-09-15 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
WO2014164263A1 (en) | 2013-03-12 | 2014-10-09 | Bullington Gregory J | Methods and apparatus for selectively occluding the lumen of a needle |
CA2917912C (en) | 2013-07-24 | 2019-09-17 | Streck, Inc. | Compositions and methods for stabilizing circulating tumor cells |
TW201521818A (en) * | 2013-08-29 | 2015-06-16 | Sanofi Sa | Safety device for drug containers |
EP3113747B1 (en) | 2014-03-03 | 2019-11-27 | Magnolia Medical Technologies, Inc. | Apparatus and methods for disinfection of a specimen container |
EP3209323B1 (en) | 2014-10-23 | 2024-06-12 | Q-Sera Pty Ltd | Improved clotting composition |
US10729366B2 (en) | 2014-12-02 | 2020-08-04 | Fenwal, Inc. | Spherical biomedical sampling and mixing container |
US11168351B2 (en) | 2015-03-05 | 2021-11-09 | Streck, Inc. | Stabilization of nucleic acids in urine |
EP3307359B1 (en) | 2015-06-12 | 2020-07-01 | Gregory J. Bullington | Apparatus for syringe-based fluid transfer for bodily-fluid sampling |
CN108366904B (en) | 2015-09-03 | 2020-12-01 | 木兰医药技术股份有限公司 | Apparatus and method for maintaining sterility of a sample container |
US20170145475A1 (en) | 2015-11-20 | 2017-05-25 | Streck, Inc. | Single spin process for blood plasma separation and plasma composition including preservative |
EP3429540B1 (en) | 2016-03-16 | 2021-05-05 | Dignity Health | Apparatus for reducing contamination in blood draw samples |
EP3235527B1 (en) | 2016-04-21 | 2022-03-23 | Fenwal, Inc. | Systems for reducing the risk of bacterial contamination in collected platelets |
US11506655B2 (en) | 2016-07-29 | 2022-11-22 | Streck, Inc. | Suspension composition for hematology analysis control |
US10351750B2 (en) | 2017-02-03 | 2019-07-16 | Saudi Arabian Oil Company | Drilling fluid compositions with enhanced rheology and methods of using same |
CN111212597B (en) | 2017-09-12 | 2023-04-11 | 木兰医药技术股份有限公司 | Fluid control device and method of use |
US11419531B2 (en) | 2017-12-07 | 2022-08-23 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
EP3920801A1 (en) | 2019-02-08 | 2021-12-15 | Magnolia Medical Technologies, Inc. | Devices and methods for bodily fluid collection and distribution |
EP3938108B1 (en) | 2019-03-11 | 2023-08-02 | Magnolia Medical Technologies, Inc. | Fluid control devices |
CN112472084B (en) * | 2020-11-30 | 2022-07-19 | 重庆医科大学附属第一医院 | Aseptic blood collection facility based on pre-testing of organ transplantation |
CN119242426A (en) * | 2024-09-30 | 2025-01-03 | 宁波市疾病预防控制中心(宁波市健康教育与促进中心) | A device for collecting and pre-processing Mycobacterium tuberculosis based on tongue swab specimens |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2950716A (en) * | 1956-01-23 | 1960-08-30 | Fenwal Lab Inc | Fluid handling method and apparatus |
US2955595A (en) * | 1959-05-19 | 1960-10-11 | Fenwal Lab Inc | Therapeutic fluid sampling means |
US3127892A (en) * | 1960-07-13 | 1964-04-07 | Baxter Laboratories Inc | Blood handling apparatus |
US3187750A (en) * | 1963-01-15 | 1965-06-08 | Baxter Laboratories Inc | Multiple bag blood storage unit |
US3467095A (en) * | 1967-04-24 | 1969-09-16 | Eugene Ross Lab Inc | Blood collection set |
US3647386A (en) * | 1969-09-26 | 1972-03-07 | Gilford Instr Labor Inc | Sample processing container |
US3654924A (en) * | 1970-05-14 | 1972-04-11 | Abbott Lab | Blood collection assembly |
US3752158A (en) * | 1970-11-23 | 1973-08-14 | Snyder Manuf Co Inc | Apparatus and method for suprapubic drainage of the urinary bladder |
US3902489A (en) * | 1972-06-23 | 1975-09-02 | Avon Medicals | Couplings |
US3945380A (en) * | 1974-08-21 | 1976-03-23 | Cutter Laboratories, Inc. | Plasmapheresis assembly |
US4007738A (en) * | 1974-07-31 | 1977-02-15 | Terumo Corporation | Mechanism for allowing blood bags to communicate with each other |
US4141361A (en) * | 1970-02-09 | 1979-02-27 | Snyder Manufacturing Co., Incorporated | Evacuator |
US4181140A (en) * | 1978-02-10 | 1980-01-01 | Baxter Travenol Laboratories, Inc. | Frangible resealable closure for a flexible tube having hold open means |
US4195632A (en) * | 1978-05-03 | 1980-04-01 | Cutter Laboratories, Inc. | Fluid flow valve |
US4197847A (en) * | 1977-03-31 | 1980-04-15 | Isaac Djerassi | Method and apparatus for collecting transfusable granulocytes |
US4270534A (en) * | 1979-08-08 | 1981-06-02 | Baxter Travenol Laboratories, Inc. | Frangible valve assembly for blood bags and the like |
US4294247A (en) * | 1977-07-25 | 1981-10-13 | Baxter Travenol Laboratories, Inc. | Frangible, resealable closure for a flexible tube |
US4325369A (en) * | 1976-05-07 | 1982-04-20 | Kenova Ab | Disposable container for a syringe |
US4386622A (en) * | 1979-10-18 | 1983-06-07 | Baxter Travenol Laboratories, Inc. | Breakaway valve |
US4407660A (en) * | 1981-09-08 | 1983-10-04 | Baxter Travenol Laboratories, Inc. | Plasmapheresis assembly and associated fluid manifold |
US4429693A (en) * | 1980-09-16 | 1984-02-07 | Blake L W | Surgical fluid evacuator |
US4507123A (en) * | 1982-05-28 | 1985-03-26 | Terumo Kabushiki Kaisha | Medical containers |
US4586928A (en) * | 1984-10-09 | 1986-05-06 | Miles Laboratories, Inc. | Pivoting frangible valve for plastic bags |
US4655741A (en) * | 1985-08-27 | 1987-04-07 | Takeo Jyuji | Blood component restoration apparatus |
US4664652A (en) * | 1985-02-07 | 1987-05-12 | Snyder Laboratories, Inc. | Wound evacuator |
US4670013A (en) * | 1982-12-27 | 1987-06-02 | Miles Laboratories, Inc. | Container for blood and blood components |
US4687474A (en) * | 1982-05-28 | 1987-08-18 | Terumo Kabushiki Kaisha | Junction for medical instruments |
US4804363A (en) * | 1986-07-16 | 1989-02-14 | Autologous Blood Corporation | Apparatus and method for storing and processing blood |
US4820297A (en) * | 1986-12-12 | 1989-04-11 | Baxter International Inc. | Fluid delivery system with integrally formed sample cell |
US4846005A (en) * | 1986-12-12 | 1989-07-11 | Baxter International Inc. | Set with attachable sample cell |
US4846795A (en) * | 1983-06-27 | 1989-07-11 | Terumo Kabushiki Kaisha | Blood bag system |
US4892537A (en) * | 1985-02-11 | 1990-01-09 | Miles Laboratories, Inc. | Bag for separation and isolation of blood components |
US4900322A (en) * | 1986-09-22 | 1990-02-13 | Adams James D | Blood component pooling valve and kit |
US4900321A (en) * | 1986-12-12 | 1990-02-13 | Baxter International Inc. | Set with integrally formed sample cell |
US4911696A (en) * | 1988-06-27 | 1990-03-27 | Terumo Kabushiki Kaisha | Branch tube |
US4938758A (en) * | 1986-04-07 | 1990-07-03 | Al Sioufi Habib | Anti-pathogenic blood collection system and method |
US4943283A (en) * | 1988-07-20 | 1990-07-24 | City Of Hope | Blood collecting apparatus with shielded needles |
US4994039A (en) * | 1985-11-15 | 1991-02-19 | Mattson Philip D | Apparatus and method for patients from a single donor or a restricted group of donors |
US5002066A (en) * | 1988-12-22 | 1991-03-26 | Medex, Inc. | Blood sampling apparatus |
US5045067A (en) * | 1987-03-19 | 1991-09-03 | Terumo Kabushiki Kaisha | Breakaway tube assembly |
US5046509A (en) * | 1988-12-30 | 1991-09-10 | Spacelabs, Inc. | Device for the conditioning, handling and measurement of blood |
US5061365A (en) * | 1991-01-22 | 1991-10-29 | Utterberg David S | Medical fluid flow set |
US5084034A (en) * | 1990-06-08 | 1992-01-28 | Tufts University | Method for sampling body fluids |
US5098371A (en) * | 1987-10-24 | 1992-03-24 | Kawasumi Laboratories, Inc. | Switch bag type blood gathering set |
US5112323A (en) * | 1990-02-08 | 1992-05-12 | Snyder Laboratories, Inc. | Wound evacuator |
USRE33924E (en) * | 1986-07-16 | 1992-05-12 | Autologous Blood Corp. | Apparatus and method for storing and processing blood |
US5122129A (en) * | 1990-05-09 | 1992-06-16 | Olson Donald J | Sampler coupler device useful in the medical arts |
US5141490A (en) * | 1989-06-25 | 1992-08-25 | Terumo Kabushiki Kaisha | Single-needle type plasma separation apparatus and plasma collection apparatus |
US5141645A (en) * | 1986-01-24 | 1992-08-25 | Terumo Corporation | Apparatus for separation of blood components |
US5154716A (en) * | 1990-11-06 | 1992-10-13 | Miles Inc. | Bottom blood bag separation system |
US5180504A (en) * | 1991-05-22 | 1993-01-19 | Baxter International Inc. | Systems and methods for removing undesired matter from blood cells |
US5188629A (en) * | 1990-06-21 | 1993-02-23 | Nissho Corporation | Closing appliance used in flexible tube |
US5300060A (en) * | 1989-06-12 | 1994-04-05 | Miles Inc. | Blood bag system for separation and isolation of neocytes and gerocytes |
US5330462A (en) * | 1990-10-05 | 1994-07-19 | Terumo Kabushiki Kaisha | Multiple bag |
US5403304A (en) * | 1990-05-02 | 1995-04-04 | Terumo Kabushiki Kaisha | Blood collection device |
US5417681A (en) * | 1991-11-11 | 1995-05-23 | Terumo Kabushiki Kaisha | Medical container device and method for manufacturing same |
US5431174A (en) * | 1994-04-04 | 1995-07-11 | Via Medical Corporation | Method of fluid delivery and collection |
US5480378A (en) * | 1990-05-14 | 1996-01-02 | Weis-Fogh; Ulla | Apparatus for preparing a concentrate of coagulation factors from a blood sample |
US5496299A (en) * | 1994-09-21 | 1996-03-05 | C. R. Bard, Inc. | Suction reservoir |
US5496281A (en) * | 1994-03-26 | 1996-03-05 | Krebs; Peter | Spinal cannula with transparent grip part |
US5512187A (en) * | 1991-05-08 | 1996-04-30 | Baxter International Inc. | Methods for processing red cell products for long term storage free of microorganisms |
US5523004A (en) * | 1992-12-04 | 1996-06-04 | Terumo Kabushiki Kaisha | Method for treatment of blood using a blood bag |
US5527472A (en) * | 1993-06-14 | 1996-06-18 | Baxter International Inc. | Closed systems and methods for removing undesired matter from blood cells |
US5601730A (en) * | 1992-09-02 | 1997-02-11 | Pall Corporation | Process and apparatus for removal of unwanted fluids from processed blood products |
US5649907A (en) * | 1994-06-27 | 1997-07-22 | Kenji Mori | Device for dissolving and delivering a drug in a transfusion liquid |
USRE35804E (en) * | 1989-12-20 | 1998-05-26 | Baxter International Inc. | Systems and methods for removing undesired matter from blood cells |
US5769839A (en) * | 1994-11-14 | 1998-06-23 | Pall Corporation | Long-term blood components storage system and method |
US5772608A (en) * | 1994-12-28 | 1998-06-30 | The Research Foundation Of State University Of New York | System for sampling arterial blood from a patient |
US5776338A (en) * | 1994-08-18 | 1998-07-07 | Biofil S.R.L. | Disposable sterile apparatus for blood filtration with a system for optimizing the recovery of blood between pouches |
US5858015A (en) * | 1993-09-29 | 1999-01-12 | Dideco S.P.A. | Container for blood |
US5879318A (en) * | 1997-08-18 | 1999-03-09 | Npbi International B.V. | Method of and closed system for collecting and processing umbilical cord blood |
US5885261A (en) * | 1996-04-25 | 1999-03-23 | C. R. Bard, Inc. | Autotransfusion system and method |
US5928214A (en) * | 1994-12-05 | 1999-07-27 | New York Blood Center, Inc. | High concentration white cells, a method for agglomeration of the high concentration and a bag set for use in conjunction therewith |
US6027938A (en) * | 1997-03-20 | 2000-02-22 | Barnes; Allen C. | Micropathological patient replica based on unadulterated whole blood |
US6123859A (en) * | 1998-04-22 | 2000-09-26 | Hemasure Inc. | Method for in-line filtering biological liquid |
US6221264B1 (en) * | 1998-05-19 | 2001-04-24 | Terumo Kabushiki Kaisha | White blood cell-removing device, white blood cell-removing apparatus and white blood cell-removing method |
US6234538B1 (en) * | 1998-06-26 | 2001-05-22 | Fresenius Medical Care Deutschland Gmbh | Connector element |
US6267564B1 (en) * | 1999-05-12 | 2001-07-31 | Sims Deltec, Inc. | Medical reservoir bag and system |
US6267745B1 (en) * | 1998-05-21 | 2001-07-31 | Baxter International Inc. | Confined air tube and methods for handling air in closed blood processing systems |
US6287265B1 (en) * | 1999-06-23 | 2001-09-11 | Cindy L. Gleason | Blood collection kit |
US20010025167A1 (en) * | 2000-02-14 | 2001-09-27 | Teva Medical Ltd. | Donor blood sampling system |
US6344139B1 (en) * | 1997-10-21 | 2002-02-05 | Dsu Medical Corporation | Arterial and venous blood tubing set |
US20020019621A1 (en) * | 1999-07-29 | 2002-02-14 | Jean-Marie Mathias | Blood processing set including an integrated blood sampling system |
US6358420B2 (en) * | 1998-06-01 | 2002-03-19 | Baxter International Inc. | Blood collection method employing an air venting blood sample tube |
US6364847B1 (en) * | 1999-10-07 | 2002-04-02 | Sunscope International, Inc. | Blood sampling device |
US6387069B1 (en) * | 1996-09-23 | 2002-05-14 | Dsu Medical Corporation | Blood set priming method and apparatus |
US6517508B1 (en) * | 1999-11-03 | 2003-02-11 | Dsu Medical Corporation | Set for blood processing |
US6585875B1 (en) * | 1999-07-30 | 2003-07-01 | Cap Technologies, Llc | Process and apparatus for cleaning and/or coating metal surfaces using electro-plasma technology |
US6592613B1 (en) * | 1998-01-16 | 2003-07-15 | Terumo Kabushiki Kaisha | Blood collecting apparatus and blood collecting method using blood collecting apparatus |
US20030144607A1 (en) * | 1999-07-29 | 2003-07-31 | Jean-Marie Mathias | Method and apparatus for collecting blood samples prior to a blood collection procedure |
US20030176813A1 (en) * | 1999-07-29 | 2003-09-18 | Jean-Marie Mathias | Biological fluid sampling apparatus |
US6626884B1 (en) * | 1998-10-26 | 2003-09-30 | Noble House Group Pty. Ltd. | Sampling in blood collection |
US20040019344A1 (en) * | 2002-07-26 | 2004-01-29 | Grant Peterson | Integrated, one-piece sampling connector unit |
US20040082899A1 (en) * | 1999-07-29 | 2004-04-29 | Jean-Marie Mathias | Biological fluid sampling apparatus |
Family Cites Families (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US35804A (en) * | 1862-07-01 | Improvement in smoking-tubes | ||
US2460641A (en) | 1945-08-14 | 1949-02-01 | Joseph J Kleiner | Blood collecting apparatus |
US2469641A (en) | 1947-01-04 | 1949-05-10 | Central Nat Bank Of Cleveland | Method of and machine for making unitary setup covered boxes |
US3064647A (en) | 1957-06-13 | 1962-11-20 | Baxter Laboratories Inc | Blood component separation method and apparatus |
US3416528A (en) | 1959-08-17 | 1968-12-17 | Cutter Lab | Blood handling equipment |
FR1320869A (en) | 1962-01-31 | 1963-03-15 | Bottle with control tube | |
US3217710A (en) | 1963-03-25 | 1965-11-16 | Abbott Lab | Blood collection and sampling apparatus provided with separable coupling means |
US3342179A (en) | 1965-06-18 | 1967-09-19 | Abbott Lab | Blood collection and sampling apparatus having separable coupling means |
US3469572A (en) | 1966-08-18 | 1969-09-30 | Becton Dickinson Co | Apparatus for taking multiple fluid samples |
FR1586087A (en) | 1968-12-10 | 1970-02-06 | ||
US3494352A (en) | 1969-03-26 | 1970-02-10 | Becton Dickinson Co | Apparatus for taking multiple samples |
US3874384A (en) * | 1971-11-01 | 1975-04-01 | American Hospital Supply Corp | Improved blood storage unit and method of storing blood |
BE791340A (en) | 1972-01-06 | 1973-03-01 | Becton Dickinson Co | NEW METHOD AND APPARATUS FOR TAKING A CULTURE AND IDENTIFYING MICRO-ORGANISMS OF MOODS |
US3817240A (en) | 1972-06-28 | 1974-06-18 | Becton Dickinson Co | Multiple sample needle assembly with one-way valve and blood flow indicator |
US3931815A (en) | 1973-08-29 | 1976-01-13 | Jintan Terumo Company, Ltd. | Assembly having an adapter and a holder with a double ended needle |
US4056101A (en) | 1976-09-01 | 1977-11-01 | Baxter Travenol Laboratories, Inc. | Means for reducing tissue thromboplastin in collected blood |
US4121585A (en) | 1977-01-24 | 1978-10-24 | Becker Jr Karl E | Anti backflow injection device |
US4296759A (en) | 1977-06-27 | 1981-10-27 | Sherwood Medical Industries Inc. | Blood collection device and method with anti-backflow means |
US4140108A (en) | 1977-08-10 | 1979-02-20 | Becton, Dickinson And Company | Blood collection assembly |
US4212308A (en) | 1977-12-27 | 1980-07-15 | Becton, Dickinson And Company | Parallel-flow one-way blood sampling device |
US4320769A (en) * | 1978-05-19 | 1982-03-23 | Becton, Dickinson And Company | Universal holder for blood collecting tubes |
US4307731A (en) | 1978-06-15 | 1981-12-29 | Becton, Dickinson And Company | Multiple sampling needle having one-way valve |
US4253458A (en) | 1979-03-08 | 1981-03-03 | Baxter Travenol Laboratories, Inc. | Method and apparatus for collecting blood plasma |
US4295477A (en) | 1979-08-15 | 1981-10-20 | Becton, Dickinson And Company | Multiple sampling device having molded valve and hub |
US4340049A (en) | 1979-10-18 | 1982-07-20 | Baxter Travenol Laboratories, Inc. | Breakaway valve |
US4256120A (en) | 1980-01-07 | 1981-03-17 | Sherwood Medical Industries Inc. | Fluid sample collection device |
US4547186A (en) | 1983-03-07 | 1985-10-15 | Bartlett Robert H | Autotransfusion system |
JPS59166162A (en) | 1983-03-11 | 1984-09-19 | テルモ株式会社 | Medical needle and medical instrument having same |
JPS6029150A (en) | 1983-07-26 | 1985-02-14 | テルモ株式会社 | Medical liquid collecting apparatus |
EP0155003B1 (en) * | 1984-03-15 | 1990-07-04 | ASAHI MEDICAL Co., Ltd. | Filtering unit for removing leukocytes |
US4637934A (en) * | 1984-04-12 | 1987-01-20 | Baxter Travenol Laboratories, Inc. | Liquid container with integral opening apparatus |
JPS62501890A (en) | 1985-02-26 | 1987-07-30 | バクスタ−、トラベノ−ル、ラボラトリ−ズ、インコ−ポレイテッド | fluid transfer system |
US4763648A (en) | 1986-09-12 | 1988-08-16 | Migada, Inc. | Method and apparatus for arterial and venous blood sampling |
JPS63104916A (en) | 1986-10-22 | 1988-05-10 | Terumo Corp | Hemolysis inhibitor |
AU607703B2 (en) | 1986-12-11 | 1991-03-14 | Terumo Kabushiki Kaisha | Blood sampling tube |
AU610120B2 (en) | 1987-01-13 | 1991-05-16 | Kao Corporation | Hemolysis depressent and blood preserving composition |
US4790815A (en) * | 1987-03-12 | 1988-12-13 | Baxter Travenol Laboratories, Inc. | Heat sterilizable plastic container with non-stick interior surfaces |
US4784650A (en) | 1987-03-23 | 1988-11-15 | Coburn Timothy J | Needle holder |
US4932418A (en) | 1987-03-23 | 1990-06-12 | Coburn Timothy J | Needle holder |
US4865583A (en) | 1987-05-04 | 1989-09-12 | Tu Ho C | Combination blood sampling and intravenous infusion apparatus and method |
US5114400A (en) | 1990-06-19 | 1992-05-19 | Lynn Lawrence A | Blood withdrawal apparatus and method |
US4838855A (en) | 1987-07-31 | 1989-06-13 | Lynn Lawrence A | Blood aspiration assembly and method |
US5100376A (en) | 1987-08-26 | 1992-03-31 | Blake Joseph W Iii | Body-cavity drainage and autotransfusion system |
DK587687A (en) | 1987-11-10 | 1989-05-11 | Stig Eric Weibel | SUCCESS AND INJECTION UNIT |
US5135489A (en) | 1988-01-25 | 1992-08-04 | Baxter International Inc. | Pre-slit injection site and tapered cannula |
US4867172A (en) | 1988-02-23 | 1989-09-19 | Habley Medical Technology Corporation | Collapsible blood collector |
DE3815643A1 (en) | 1988-05-07 | 1989-11-30 | Biotest Pharma Gmbh | DEVICE FOR SEPARATING COMPONENTS OF A LIQUID, IN PARTICULAR OF TOTAL BLOOD |
JPH01291830A (en) | 1988-05-20 | 1989-11-24 | Terumo Corp | Blood-collecting tube holder |
JPH0622614B2 (en) | 1988-06-21 | 1994-03-30 | テルモ株式会社 | Blood reservoir |
WO1990000880A1 (en) | 1988-07-26 | 1990-02-08 | Terumo Kabushiki Kaisha | Blood collecting device |
DK515688D0 (en) | 1988-09-16 | 1988-09-16 | Tina Moeller Noergaard | BLOOD TEST EQUIPMENT |
JP2821686B2 (en) | 1989-04-27 | 1998-11-05 | テルモ株式会社 | Blood bag and blood collection tube holding member for attaching blood bag |
US5100564A (en) * | 1990-11-06 | 1992-03-31 | Pall Corporation | Blood collection and processing system |
FR2655532A1 (en) | 1989-12-08 | 1991-06-14 | R D Sarl | Device for taking a sample for a blood sample collection |
US5102407A (en) | 1990-03-13 | 1992-04-07 | Miles Inc. | Blood separation system |
US5048537A (en) | 1990-05-15 | 1991-09-17 | Medex, Inc. | Method and apparatus for sampling blood |
US5123570A (en) | 1990-05-25 | 1992-06-23 | Dubow Brian C | Container for inverted dispensing |
US5203775A (en) | 1990-09-18 | 1993-04-20 | Medex, Inc. | Needleless connector sample site |
US5176655A (en) | 1990-11-08 | 1993-01-05 | Mbo Laboratories, Inc. | Disposable medical needle and catheter placement assembly having full safety enclosure means |
IT1244805B (en) | 1990-11-22 | 1994-09-05 | Roerig Farmaceutici Italiana S | SINGLE NEEDLE PLASMAFERESIS EXTRA-BODY CIRCUIT |
US5167656A (en) | 1991-01-22 | 1992-12-01 | Baxter International Inc. | Blood container having lay-flat sample reservoir |
US5259841A (en) | 1991-02-25 | 1993-11-09 | Gemini Trade Overseas Ltd. | Safety syringe |
US5128048A (en) | 1991-05-22 | 1992-07-07 | Baxter International Inc. | Systems and methods for removing undesired matter from blood cells |
US5269946A (en) | 1991-05-22 | 1993-12-14 | Baxter Healthcare Corporation | Systems and methods for removing undesired matter from blood cells |
US5356373A (en) * | 1991-11-15 | 1994-10-18 | Miles Inc. | Method and apparatus for autologous transfusions in premature infants |
US5395349A (en) | 1991-12-13 | 1995-03-07 | Endovascular Technologies, Inc. | Dual valve reinforced sheath and method |
JPH0716484B2 (en) | 1992-03-24 | 1995-03-01 | 株式会社ニッショー | Blood collection device adapter |
IL101680A (en) | 1992-04-23 | 1995-08-31 | Travenol Lab Israel Ltd | Blood sampling device |
US5345070A (en) * | 1992-09-25 | 1994-09-06 | Cobe Laboratories, Inc. | Radio frequency tubing sealer |
US5454806A (en) | 1992-11-06 | 1995-10-03 | Terumo Kabushiki Kaisha | Medical device |
US5270003A (en) | 1992-11-20 | 1993-12-14 | Baxter International Inc. | Blood sampling system |
US5372143A (en) | 1992-11-20 | 1994-12-13 | Baxter International Inc. | Blood sampling system with luer adaptor |
US5505716A (en) * | 1993-02-02 | 1996-04-09 | Simmet; Ludwig O. | Embryo collector |
US5591337A (en) * | 1993-09-14 | 1997-01-07 | Baxter International Inc. | Apparatus for filtering leukocytes from blood cells |
US5836619A (en) | 1993-11-05 | 1998-11-17 | Migada, Inc. | Manually-severable coupling device, and medical infusion assembly including same |
US5458593A (en) * | 1993-11-24 | 1995-10-17 | Bayer Corporation | Dockable bag system and method |
US5464397A (en) | 1994-01-11 | 1995-11-07 | Powers Jr.; Carleton A. | Bacteria valve |
US5545339A (en) * | 1994-02-25 | 1996-08-13 | Pall Corporation | Method for processing biological fluid and treating separated component |
FR2718033B1 (en) * | 1994-03-31 | 1998-02-13 | Inoteb | Biological fluid filtration device and its application. |
US5702383A (en) | 1994-07-01 | 1997-12-30 | Baxter International Inc. | Blood component collection systems and methods using an integral sampling device |
US5573526A (en) | 1995-05-08 | 1996-11-12 | Minntech Corporation | Soft shell reservoir |
US5665074A (en) | 1995-09-28 | 1997-09-09 | Liebel Flarsheim Company | Limited backflow reflux valve |
US5897526A (en) | 1996-06-26 | 1999-04-27 | Vaillancourt; Vincent L. | Closed system medication administering system |
US7166084B2 (en) | 1996-09-23 | 2007-01-23 | Dsu Medical Corporation | Blood set priming method and apparatus |
WO1998028057A1 (en) | 1996-12-24 | 1998-07-02 | Pall Corporation | Biological fluid processing |
JP3361440B2 (en) | 1997-01-29 | 2003-01-07 | テルモ株式会社 | Blood collection device and blood processing method using blood collection device |
DE19712298C2 (en) | 1997-03-24 | 1999-05-20 | Fresenius Ag | Device and method for separating blood into blood components |
CN2301263Y (en) | 1997-06-13 | 1998-12-23 | 郑雷法 | Plasma separating bowl |
US6491679B1 (en) | 1997-10-20 | 2002-12-10 | Rodney Okamoto | System for infusing intravenous nutrition solutions |
US6019750A (en) | 1997-12-04 | 2000-02-01 | Baxter International Inc. | Sliding reconstitution device with seal |
JP3776227B2 (en) | 1998-01-16 | 2006-05-17 | テルモ株式会社 | Blood collection instrument |
US6059968A (en) | 1998-01-20 | 2000-05-09 | Baxter International Inc. | Systems for processing and storing placenta/umbilical cord blood |
US6132413A (en) | 1998-03-06 | 2000-10-17 | Baxter International Inc. | Breakable cannula assemblies and methods for manipulating them |
US6669905B1 (en) | 1998-05-21 | 2003-12-30 | Baxter International Inc. | Systems and methods for collecting plasma that is free or virtually free of cellular blood species |
DE69924852T2 (en) | 1998-07-24 | 2006-07-06 | Noble House Group Pty. Ltd., Fyshwick | PROTECT THE NEEDLES DURING INTRAVENOUS INTERVENTIONS |
WO2000007642A1 (en) | 1998-08-07 | 2000-02-17 | Pall Corporation | Biological fluid processing system |
US6126618A (en) | 1999-01-14 | 2000-10-03 | Baxter International Inc. | Apparatus for obtaining liquid samples |
US6969419B1 (en) | 1999-05-06 | 2005-11-29 | Segars California Partners Lp | Method for removing gas bubbles from a fluid-containing chamber |
FR2795647B1 (en) | 1999-06-30 | 2004-05-07 | Maco Pharma Sa | POCKET ASSEMBLY FOR RECEIVING BIOLOGICAL FLUID AND HIGHLIGHTING POSSIBLE BIOLOGICAL FLUID CONTAMINATION |
US7824343B2 (en) | 1999-07-29 | 2010-11-02 | Fenwal, Inc. | Method and apparatus for blood sampling |
US6325775B1 (en) | 1999-09-03 | 2001-12-04 | Baxter International Inc. | Self-contained, transportable blood processsing device |
US6632201B1 (en) | 1999-11-17 | 2003-10-14 | Baxter International Inc. | Locking needle protector |
US6238726B1 (en) * | 2000-03-07 | 2001-05-29 | Kurt F. Fischer | Jerky-type pet treat manufacturing process and product |
CA2405443A1 (en) | 2000-03-31 | 2001-10-11 | Baxter International, Inc. | Systems and methods for collecting leukocyte-reduced blood components, including plasma that is free or virtually free of cellular blood species |
FR2825261B1 (en) | 2001-06-01 | 2003-09-12 | Maco Pharma Sa | PLACENTAL BLOOD COLLECTION LINE COMPRISING A RINSING POCKET |
US7384416B2 (en) | 2002-08-12 | 2008-06-10 | Macopharma | Device and method for irreversible closure of fluid communication in a container system |
FR2856285B1 (en) | 2003-06-20 | 2005-08-05 | Maco Pharma Sa | POCKET SYSTEM FOR THE COLLECTION AND SAMPLING OF A BIOLOGICAL FLUID FROM A DONOR |
DE20311868U1 (en) | 2003-07-30 | 2003-12-24 | Bachmann, Walter, Dr.Med. | Closed system of container and tube for safe removal and disposal of body fluids in surgery |
-
2000
- 2000-07-28 WO PCT/US2000/020580 patent/WO2001008546A2/en not_active Application Discontinuation
- 2000-07-28 CA CA002373689A patent/CA2373689A1/en not_active Abandoned
- 2000-07-28 AU AU64986/00A patent/AU6498600A/en not_active Abandoned
- 2000-07-28 EP EP00952255A patent/EP1377216A2/en not_active Withdrawn
-
2001
- 2001-11-02 AU AU89321/01A patent/AU8932101A/en not_active Abandoned
-
2002
- 2002-11-26 US US10/304,299 patent/US7044941B2/en not_active Expired - Lifetime
-
2004
- 2004-10-01 US US10/957,016 patent/US8079997B2/en not_active Expired - Fee Related
-
2005
- 2005-10-13 US US11/251,283 patent/US7699828B2/en not_active Expired - Fee Related
- 2005-10-13 US US11/250,717 patent/US20060111658A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2950716A (en) * | 1956-01-23 | 1960-08-30 | Fenwal Lab Inc | Fluid handling method and apparatus |
US2955595A (en) * | 1959-05-19 | 1960-10-11 | Fenwal Lab Inc | Therapeutic fluid sampling means |
US3127892A (en) * | 1960-07-13 | 1964-04-07 | Baxter Laboratories Inc | Blood handling apparatus |
US3187750A (en) * | 1963-01-15 | 1965-06-08 | Baxter Laboratories Inc | Multiple bag blood storage unit |
US3467095A (en) * | 1967-04-24 | 1969-09-16 | Eugene Ross Lab Inc | Blood collection set |
US3647386A (en) * | 1969-09-26 | 1972-03-07 | Gilford Instr Labor Inc | Sample processing container |
US4141361A (en) * | 1970-02-09 | 1979-02-27 | Snyder Manufacturing Co., Incorporated | Evacuator |
US3654924A (en) * | 1970-05-14 | 1972-04-11 | Abbott Lab | Blood collection assembly |
US3752158A (en) * | 1970-11-23 | 1973-08-14 | Snyder Manuf Co Inc | Apparatus and method for suprapubic drainage of the urinary bladder |
US3902489A (en) * | 1972-06-23 | 1975-09-02 | Avon Medicals | Couplings |
US4007738A (en) * | 1974-07-31 | 1977-02-15 | Terumo Corporation | Mechanism for allowing blood bags to communicate with each other |
US3945380A (en) * | 1974-08-21 | 1976-03-23 | Cutter Laboratories, Inc. | Plasmapheresis assembly |
US4325369A (en) * | 1976-05-07 | 1982-04-20 | Kenova Ab | Disposable container for a syringe |
US4197847A (en) * | 1977-03-31 | 1980-04-15 | Isaac Djerassi | Method and apparatus for collecting transfusable granulocytes |
US4294247A (en) * | 1977-07-25 | 1981-10-13 | Baxter Travenol Laboratories, Inc. | Frangible, resealable closure for a flexible tube |
US4181140A (en) * | 1978-02-10 | 1980-01-01 | Baxter Travenol Laboratories, Inc. | Frangible resealable closure for a flexible tube having hold open means |
US4195632A (en) * | 1978-05-03 | 1980-04-01 | Cutter Laboratories, Inc. | Fluid flow valve |
US4270534A (en) * | 1979-08-08 | 1981-06-02 | Baxter Travenol Laboratories, Inc. | Frangible valve assembly for blood bags and the like |
US4386622A (en) * | 1979-10-18 | 1983-06-07 | Baxter Travenol Laboratories, Inc. | Breakaway valve |
US4429693A (en) * | 1980-09-16 | 1984-02-07 | Blake L W | Surgical fluid evacuator |
US4407660A (en) * | 1981-09-08 | 1983-10-04 | Baxter Travenol Laboratories, Inc. | Plasmapheresis assembly and associated fluid manifold |
US4507123A (en) * | 1982-05-28 | 1985-03-26 | Terumo Kabushiki Kaisha | Medical containers |
US4687474A (en) * | 1982-05-28 | 1987-08-18 | Terumo Kabushiki Kaisha | Junction for medical instruments |
US4670013A (en) * | 1982-12-27 | 1987-06-02 | Miles Laboratories, Inc. | Container for blood and blood components |
US4846795A (en) * | 1983-06-27 | 1989-07-11 | Terumo Kabushiki Kaisha | Blood bag system |
US4586928A (en) * | 1984-10-09 | 1986-05-06 | Miles Laboratories, Inc. | Pivoting frangible valve for plastic bags |
US4664652A (en) * | 1985-02-07 | 1987-05-12 | Snyder Laboratories, Inc. | Wound evacuator |
US4892537A (en) * | 1985-02-11 | 1990-01-09 | Miles Laboratories, Inc. | Bag for separation and isolation of blood components |
US4655741A (en) * | 1985-08-27 | 1987-04-07 | Takeo Jyuji | Blood component restoration apparatus |
US4994039A (en) * | 1985-11-15 | 1991-02-19 | Mattson Philip D | Apparatus and method for patients from a single donor or a restricted group of donors |
US5141645A (en) * | 1986-01-24 | 1992-08-25 | Terumo Corporation | Apparatus for separation of blood components |
US4938758A (en) * | 1986-04-07 | 1990-07-03 | Al Sioufi Habib | Anti-pathogenic blood collection system and method |
US4804363A (en) * | 1986-07-16 | 1989-02-14 | Autologous Blood Corporation | Apparatus and method for storing and processing blood |
USRE33924E (en) * | 1986-07-16 | 1992-05-12 | Autologous Blood Corp. | Apparatus and method for storing and processing blood |
US4900322A (en) * | 1986-09-22 | 1990-02-13 | Adams James D | Blood component pooling valve and kit |
US4900321A (en) * | 1986-12-12 | 1990-02-13 | Baxter International Inc. | Set with integrally formed sample cell |
US4846005A (en) * | 1986-12-12 | 1989-07-11 | Baxter International Inc. | Set with attachable sample cell |
US4820297A (en) * | 1986-12-12 | 1989-04-11 | Baxter International Inc. | Fluid delivery system with integrally formed sample cell |
US5045067A (en) * | 1987-03-19 | 1991-09-03 | Terumo Kabushiki Kaisha | Breakaway tube assembly |
US5098371A (en) * | 1987-10-24 | 1992-03-24 | Kawasumi Laboratories, Inc. | Switch bag type blood gathering set |
US4911696A (en) * | 1988-06-27 | 1990-03-27 | Terumo Kabushiki Kaisha | Branch tube |
US4943283A (en) * | 1988-07-20 | 1990-07-24 | City Of Hope | Blood collecting apparatus with shielded needles |
US5002066A (en) * | 1988-12-22 | 1991-03-26 | Medex, Inc. | Blood sampling apparatus |
US5046509A (en) * | 1988-12-30 | 1991-09-10 | Spacelabs, Inc. | Device for the conditioning, handling and measurement of blood |
US5300060A (en) * | 1989-06-12 | 1994-04-05 | Miles Inc. | Blood bag system for separation and isolation of neocytes and gerocytes |
US5141490A (en) * | 1989-06-25 | 1992-08-25 | Terumo Kabushiki Kaisha | Single-needle type plasma separation apparatus and plasma collection apparatus |
USRE35804E (en) * | 1989-12-20 | 1998-05-26 | Baxter International Inc. | Systems and methods for removing undesired matter from blood cells |
US5112323A (en) * | 1990-02-08 | 1992-05-12 | Snyder Laboratories, Inc. | Wound evacuator |
US5403304A (en) * | 1990-05-02 | 1995-04-04 | Terumo Kabushiki Kaisha | Blood collection device |
US5122129A (en) * | 1990-05-09 | 1992-06-16 | Olson Donald J | Sampler coupler device useful in the medical arts |
US5480378A (en) * | 1990-05-14 | 1996-01-02 | Weis-Fogh; Ulla | Apparatus for preparing a concentrate of coagulation factors from a blood sample |
US5084034A (en) * | 1990-06-08 | 1992-01-28 | Tufts University | Method for sampling body fluids |
US5188629A (en) * | 1990-06-21 | 1993-02-23 | Nissho Corporation | Closing appliance used in flexible tube |
US5330462A (en) * | 1990-10-05 | 1994-07-19 | Terumo Kabushiki Kaisha | Multiple bag |
US5154716A (en) * | 1990-11-06 | 1992-10-13 | Miles Inc. | Bottom blood bag separation system |
US5061365A (en) * | 1991-01-22 | 1991-10-29 | Utterberg David S | Medical fluid flow set |
US5512187A (en) * | 1991-05-08 | 1996-04-30 | Baxter International Inc. | Methods for processing red cell products for long term storage free of microorganisms |
US5180504A (en) * | 1991-05-22 | 1993-01-19 | Baxter International Inc. | Systems and methods for removing undesired matter from blood cells |
US5417681A (en) * | 1991-11-11 | 1995-05-23 | Terumo Kabushiki Kaisha | Medical container device and method for manufacturing same |
US5601730A (en) * | 1992-09-02 | 1997-02-11 | Pall Corporation | Process and apparatus for removal of unwanted fluids from processed blood products |
US5523004A (en) * | 1992-12-04 | 1996-06-04 | Terumo Kabushiki Kaisha | Method for treatment of blood using a blood bag |
US5527472A (en) * | 1993-06-14 | 1996-06-18 | Baxter International Inc. | Closed systems and methods for removing undesired matter from blood cells |
US5858015A (en) * | 1993-09-29 | 1999-01-12 | Dideco S.P.A. | Container for blood |
US5496281A (en) * | 1994-03-26 | 1996-03-05 | Krebs; Peter | Spinal cannula with transparent grip part |
US5431174A (en) * | 1994-04-04 | 1995-07-11 | Via Medical Corporation | Method of fluid delivery and collection |
US5649907A (en) * | 1994-06-27 | 1997-07-22 | Kenji Mori | Device for dissolving and delivering a drug in a transfusion liquid |
US5776338A (en) * | 1994-08-18 | 1998-07-07 | Biofil S.R.L. | Disposable sterile apparatus for blood filtration with a system for optimizing the recovery of blood between pouches |
US6051136A (en) * | 1994-08-18 | 2000-04-18 | Mari; Giorgio | Disposable sterile apparatus for blood filtration with a system for optimizing the recovery of blood between pouches |
US5496299A (en) * | 1994-09-21 | 1996-03-05 | C. R. Bard, Inc. | Suction reservoir |
US5769839A (en) * | 1994-11-14 | 1998-06-23 | Pall Corporation | Long-term blood components storage system and method |
US5928214A (en) * | 1994-12-05 | 1999-07-27 | New York Blood Center, Inc. | High concentration white cells, a method for agglomeration of the high concentration and a bag set for use in conjunction therewith |
US5772608A (en) * | 1994-12-28 | 1998-06-30 | The Research Foundation Of State University Of New York | System for sampling arterial blood from a patient |
US5885261A (en) * | 1996-04-25 | 1999-03-23 | C. R. Bard, Inc. | Autotransfusion system and method |
US6387069B1 (en) * | 1996-09-23 | 2002-05-14 | Dsu Medical Corporation | Blood set priming method and apparatus |
US6027938A (en) * | 1997-03-20 | 2000-02-22 | Barnes; Allen C. | Micropathological patient replica based on unadulterated whole blood |
US5879318A (en) * | 1997-08-18 | 1999-03-09 | Npbi International B.V. | Method of and closed system for collecting and processing umbilical cord blood |
US6344139B1 (en) * | 1997-10-21 | 2002-02-05 | Dsu Medical Corporation | Arterial and venous blood tubing set |
US6592613B1 (en) * | 1998-01-16 | 2003-07-15 | Terumo Kabushiki Kaisha | Blood collecting apparatus and blood collecting method using blood collecting apparatus |
US6123859A (en) * | 1998-04-22 | 2000-09-26 | Hemasure Inc. | Method for in-line filtering biological liquid |
US6221264B1 (en) * | 1998-05-19 | 2001-04-24 | Terumo Kabushiki Kaisha | White blood cell-removing device, white blood cell-removing apparatus and white blood cell-removing method |
US6997893B2 (en) * | 1998-05-21 | 2006-02-14 | Baxter International Inc. | Confined air tube and methods for handling air in closed blood processing systems |
US6267745B1 (en) * | 1998-05-21 | 2001-07-31 | Baxter International Inc. | Confined air tube and methods for handling air in closed blood processing systems |
US6358420B2 (en) * | 1998-06-01 | 2002-03-19 | Baxter International Inc. | Blood collection method employing an air venting blood sample tube |
US6234538B1 (en) * | 1998-06-26 | 2001-05-22 | Fresenius Medical Care Deutschland Gmbh | Connector element |
US6626884B1 (en) * | 1998-10-26 | 2003-09-30 | Noble House Group Pty. Ltd. | Sampling in blood collection |
US6267564B1 (en) * | 1999-05-12 | 2001-07-31 | Sims Deltec, Inc. | Medical reservoir bag and system |
US6287265B1 (en) * | 1999-06-23 | 2001-09-11 | Cindy L. Gleason | Blood collection kit |
US20030176813A1 (en) * | 1999-07-29 | 2003-09-18 | Jean-Marie Mathias | Biological fluid sampling apparatus |
US20030144607A1 (en) * | 1999-07-29 | 2003-07-31 | Jean-Marie Mathias | Method and apparatus for collecting blood samples prior to a blood collection procedure |
US20020019621A1 (en) * | 1999-07-29 | 2002-02-14 | Jean-Marie Mathias | Blood processing set including an integrated blood sampling system |
US20040082899A1 (en) * | 1999-07-29 | 2004-04-29 | Jean-Marie Mathias | Biological fluid sampling apparatus |
US20050143712A1 (en) * | 1999-07-29 | 2005-06-30 | Jean-Marie Mathias | Sampling tube holder for blood sampling system |
US20060111687A1 (en) * | 1999-07-29 | 2006-05-25 | Jean-Marie Mathias | Sampling tube holder for blood sampling system |
US6585875B1 (en) * | 1999-07-30 | 2003-07-01 | Cap Technologies, Llc | Process and apparatus for cleaning and/or coating metal surfaces using electro-plasma technology |
US6364847B1 (en) * | 1999-10-07 | 2002-04-02 | Sunscope International, Inc. | Blood sampling device |
US6517508B1 (en) * | 1999-11-03 | 2003-02-11 | Dsu Medical Corporation | Set for blood processing |
US6692479B2 (en) * | 2000-02-14 | 2004-02-17 | Teva Medical Ltd. | Donor blood sampling system |
US20010025167A1 (en) * | 2000-02-14 | 2001-09-27 | Teva Medical Ltd. | Donor blood sampling system |
US20040019344A1 (en) * | 2002-07-26 | 2004-01-29 | Grant Peterson | Integrated, one-piece sampling connector unit |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040082898A1 (en) * | 1999-07-29 | 2004-04-29 | Jean-Marie Mathias | Biological sample device receiver |
US20040082899A1 (en) * | 1999-07-29 | 2004-04-29 | Jean-Marie Mathias | Biological fluid sampling apparatus |
US20050143712A1 (en) * | 1999-07-29 | 2005-06-30 | Jean-Marie Mathias | Sampling tube holder for blood sampling system |
US20050148993A1 (en) * | 1999-07-29 | 2005-07-07 | Jean-Marie Mathias | Method and apparatus for blood sampling |
US20060111687A1 (en) * | 1999-07-29 | 2006-05-25 | Jean-Marie Mathias | Sampling tube holder for blood sampling system |
US7435231B2 (en) | 1999-07-29 | 2008-10-14 | Fenwal, Inc. | Biological sample device receiver |
US7479131B2 (en) | 1999-07-29 | 2009-01-20 | Fenwal, Inc. | Biological fluid sampling apparatus, assembly and method |
US7699828B2 (en) | 1999-07-29 | 2010-04-20 | Fenwal, Inc. | Container for receiving a blood sample |
US7824343B2 (en) | 1999-07-29 | 2010-11-02 | Fenwal, Inc. | Method and apparatus for blood sampling |
US8079997B2 (en) | 1999-07-29 | 2011-12-20 | Fenwal, Inc. | Apparatus for collecting blood samples |
Also Published As
Publication number | Publication date |
---|---|
AU6498600A (en) | 2001-02-19 |
US20060111687A1 (en) | 2006-05-25 |
US20030144607A1 (en) | 2003-07-31 |
CA2373689A1 (en) | 2001-02-08 |
WO2001008546A2 (en) | 2001-02-08 |
US7699828B2 (en) | 2010-04-20 |
AU8932101A (en) | 2002-03-07 |
WO2001008546A3 (en) | 2003-11-06 |
US7044941B2 (en) | 2006-05-16 |
US20050143712A1 (en) | 2005-06-30 |
US8079997B2 (en) | 2011-12-20 |
EP1377216A2 (en) | 2004-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7044941B2 (en) | Method and apparatus for collecting blood samples prior to a blood collection procedure | |
US6520948B1 (en) | Sampling tube holder for blood sampling system | |
US7824343B2 (en) | Method and apparatus for blood sampling | |
AU762878B2 (en) | Apparatus for obtaining liquid samples | |
JPH11197236A (en) | Blood collecting instrument and blood processing by using the same | |
JP4030682B2 (en) | Blood collection instrument | |
US20030176813A1 (en) | Biological fluid sampling apparatus | |
JP3361440B2 (en) | Blood collection device and blood processing method using blood collection device | |
AU2003220295A1 (en) | Biological fluid sampling apparatus | |
AU2005202959B2 (en) | Blood processing set including an integrated blood sampling system | |
WO2002005707A1 (en) | Apparatus for obtaining liquid samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAXTER INTERNATIONAL INC.,ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATHIAS, JEAN-MARIE;BERNES, JEAN-CLAUDE;REEL/FRAME:017255/0588 Effective date: 20060118 Owner name: BAXTER HEALTHCARE S.A.,SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATHIAS, JEAN-MARIE;BERNES, JEAN-CLAUDE;REEL/FRAME:017255/0588 Effective date: 20060118 Owner name: BAXTER INTERNATIONAL INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATHIAS, JEAN-MARIE;BERNES, JEAN-CLAUDE;REEL/FRAME:017255/0588 Effective date: 20060118 Owner name: BAXTER HEALTHCARE S.A., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATHIAS, JEAN-MARIE;BERNES, JEAN-CLAUDE;REEL/FRAME:017255/0588 Effective date: 20060118 |
|
AS | Assignment |
Owner name: FENWAL, INC.,ILLINOIS Free format text: PATENT ASSIGNMENT;ASSIGNORS:BAXTER INTERNATIONAL INC.;BAXTER HEALTHCARE S.A.;REEL/FRAME:019129/0097 Effective date: 20070301 Owner name: FENWAL, INC.,ILLINOIS Free format text: PATENT ASSIGNMENT;ASSIGNOR:BAXTER INTERNATIONAL INC.;REEL/FRAME:019129/0001 Effective date: 20070301 Owner name: FENWAL, INC., ILLINOIS Free format text: PATENT ASSIGNMENT;ASSIGNORS:BAXTER INTERNATIONAL INC.;BAXTER HEALTHCARE S.A.;REEL/FRAME:019129/0097 Effective date: 20070301 Owner name: FENWAL, INC., ILLINOIS Free format text: PATENT ASSIGNMENT;ASSIGNOR:BAXTER INTERNATIONAL INC.;REEL/FRAME:019129/0001 Effective date: 20070301 |
|
AS | Assignment |
Owner name: MORGAN STANLEY & CO. INCORPORATED,NEW YORK Free format text: FIRST-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FENWAL, INC.;FENWAL HOLDINGS, INC.;REEL/FRAME:019280/0211 Effective date: 20070228 Owner name: MORGAN STANLEY & CO. INCORPORATED, NEW YORK Free format text: FIRST-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FENWAL, INC.;FENWAL HOLDINGS, INC.;REEL/FRAME:019280/0211 Effective date: 20070228 |
|
AS | Assignment |
Owner name: MORGAN STANLEY & CO. INCORPORATED,NEW YORK Free format text: SECOND-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FENWAL, INC.;FENWAL HOLDINGS, INC.;REEL/FRAME:019297/0168 Effective date: 20070228 Owner name: MORGAN STANLEY & CO. INCORPORATED, NEW YORK Free format text: SECOND-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FENWAL, INC.;FENWAL HOLDINGS, INC.;REEL/FRAME:019297/0168 Effective date: 20070228 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: FENWAL HOLDINGS, INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY & CO. LLC;REEL/FRAME:029480/0549 Effective date: 20121213 Owner name: FENWAL HOLDINGS, INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY & CO. LLC;REEL/FRAME:029480/0597 Effective date: 20121213 Owner name: FENWAL, INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY & CO. LLC;REEL/FRAME:029480/0549 Effective date: 20121213 Owner name: FENWAL, INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY & CO. LLC;REEL/FRAME:029480/0597 Effective date: 20121213 |