US20060105956A1 - Phenotypic reversion of pancreatic carcinoma cells - Google Patents
Phenotypic reversion of pancreatic carcinoma cells Download PDFInfo
- Publication number
- US20060105956A1 US20060105956A1 US11/142,051 US14205105A US2006105956A1 US 20060105956 A1 US20060105956 A1 US 20060105956A1 US 14205105 A US14205105 A US 14205105A US 2006105956 A1 US2006105956 A1 US 2006105956A1
- Authority
- US
- United States
- Prior art keywords
- peptide
- cells
- cancer
- derivative
- analog
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000008443 pancreatic carcinoma Diseases 0.000 title claims abstract description 16
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 title description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 179
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 83
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 53
- 201000011510 cancer Diseases 0.000 claims abstract description 42
- 239000013598 vector Substances 0.000 claims abstract description 42
- 241000701161 unidentified adenovirus Species 0.000 claims abstract description 34
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 16
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims abstract description 13
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims abstract description 12
- 201000002528 pancreatic cancer Diseases 0.000 claims abstract description 12
- 239000002773 nucleotide Substances 0.000 claims abstract description 11
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 10
- 230000010076 replication Effects 0.000 claims abstract description 8
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 28
- 150000001413 amino acids Chemical class 0.000 claims description 21
- 108010014186 ras Proteins Proteins 0.000 claims description 18
- 102000016914 ras Proteins Human genes 0.000 claims description 18
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 12
- MCYTYTUNNNZWOK-LCLOTLQISA-N penetratin Chemical compound C([C@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCCNC(N)=N)[C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(N)=O)C1=CC=CC=C1 MCYTYTUNNNZWOK-LCLOTLQISA-N 0.000 claims description 9
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 8
- 125000000539 amino acid group Chemical group 0.000 claims description 8
- 208000029742 colonic neoplasm Diseases 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 7
- 108010043655 penetratin Proteins 0.000 claims description 7
- 206010009944 Colon cancer Diseases 0.000 claims description 6
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 5
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 101100107610 Arabidopsis thaliana ABCF4 gene Proteins 0.000 claims description 4
- 206010005003 Bladder cancer Diseases 0.000 claims description 4
- 241000724254 Cowpea chlorotic mottle virus Species 0.000 claims description 4
- 101001105692 Homo sapiens Pre-mRNA-processing factor 6 Proteins 0.000 claims description 4
- 241000714259 Human T-lymphotropic virus 2 Species 0.000 claims description 4
- 241000725303 Human immunodeficiency virus Species 0.000 claims description 4
- 241000713772 Human immunodeficiency virus 1 Species 0.000 claims description 4
- 206010027406 Mesothelioma Diseases 0.000 claims description 4
- 102100021232 Pre-mRNA-processing factor 6 Human genes 0.000 claims description 4
- 101100068078 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GCN4 gene Proteins 0.000 claims description 4
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims description 4
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 4
- 206010017758 gastric cancer Diseases 0.000 claims description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 3
- 201000011549 stomach cancer Diseases 0.000 claims description 3
- 101710085003 Alpha-tubulin N-acetyltransferase Proteins 0.000 claims description 2
- 101710085461 Alpha-tubulin N-acetyltransferase 1 Proteins 0.000 claims description 2
- 101100109397 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) arg-8 gene Proteins 0.000 claims description 2
- 101710175714 Tyrosine aminotransferase Proteins 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 140
- 206010042602 Supraventricular extrasystoles Diseases 0.000 description 74
- 108090000623 proteins and genes Proteins 0.000 description 47
- 102000004169 proteins and genes Human genes 0.000 description 37
- 235000018102 proteins Nutrition 0.000 description 35
- 210000000287 oocyte Anatomy 0.000 description 28
- 239000013612 plasmid Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 27
- 231100000590 oncogenic Toxicity 0.000 description 26
- 230000002246 oncogenic effect Effects 0.000 description 26
- 239000000203 mixture Substances 0.000 description 20
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 16
- 230000035800 maturation Effects 0.000 description 16
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 description 13
- 102100037808 Mitogen-activated protein kinase 8 Human genes 0.000 description 13
- 230000014509 gene expression Effects 0.000 description 11
- 238000001890 transfection Methods 0.000 description 11
- 101100342473 Drosophila melanogaster Raf gene Proteins 0.000 description 10
- 101100523543 Rattus norvegicus Raf1 gene Proteins 0.000 description 10
- 101100523549 Xenopus laevis raf1 gene Proteins 0.000 description 10
- 101150037250 Zhx2 gene Proteins 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- 102000053602 DNA Human genes 0.000 description 9
- 102000043136 MAP kinase family Human genes 0.000 description 9
- 108091054455 MAP kinase family Proteins 0.000 description 9
- 241000699660 Mus musculus Species 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- 230000001613 neoplastic effect Effects 0.000 description 9
- 238000011580 nude mouse model Methods 0.000 description 9
- 102000004877 Insulin Human genes 0.000 description 8
- 108090001061 Insulin Proteins 0.000 description 8
- 229940125396 insulin Drugs 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- YNAGLKOBLOKHEO-OOJXKGFFSA-N (4r,5s,6r,7r)-4,5,6,7,8-pentahydroxy-2-methyloctane-3-thione Chemical compound CC(C)C(=S)[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO YNAGLKOBLOKHEO-OOJXKGFFSA-N 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 7
- 102000003923 Protein Kinase C Human genes 0.000 description 7
- 108090000315 Protein Kinase C Proteins 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 108020004705 Codon Proteins 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 238000001994 activation Methods 0.000 description 6
- 239000012133 immunoprecipitate Substances 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 230000003211 malignant effect Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- BMGQWWVMWDBQGC-IIFHNQTCSA-N midostaurin Chemical compound CN([C@H]1[C@H]([C@]2(C)O[C@@H](N3C4=CC=CC=C4C4=C5C(=O)NCC5=C5C6=CC=CC=C6N2C5=C43)C1)OC)C(=O)C1=CC=CC=C1 BMGQWWVMWDBQGC-IIFHNQTCSA-N 0.000 description 5
- 230000019491 signal transduction Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- -1 Arg8 Chemical compound 0.000 description 4
- 102100029974 GTPase HRas Human genes 0.000 description 4
- 101000584633 Homo sapiens GTPase HRas Proteins 0.000 description 4
- 206010027476 Metastases Diseases 0.000 description 4
- 206010054107 Nodule Diseases 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 101150029662 E1 gene Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 description 3
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 230000002297 mitogenic effect Effects 0.000 description 3
- 102000027450 oncoproteins Human genes 0.000 description 3
- 108091008819 oncoproteins Proteins 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000006152 selective media Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 2
- 108700031308 Antennapedia Homeodomain Proteins 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- 101150005585 E3 gene Proteins 0.000 description 2
- 102000018898 GTPase-Activating Proteins Human genes 0.000 description 2
- 108091006094 GTPase-accelerating proteins Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 102000001788 Proto-Oncogene Proteins c-raf Human genes 0.000 description 2
- 108010029869 Proto-Oncogene Proteins c-raf Proteins 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 241000269368 Xenopus laevis Species 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000000749 co-immunoprecipitation Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 230000000667 effect on insulin Effects 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical group O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 238000000302 molecular modelling Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- IIFDPDVJAHQFSR-WHFBIAKZSA-N Asn-Glu Chemical compound NC(=O)C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O IIFDPDVJAHQFSR-WHFBIAKZSA-N 0.000 description 1
- JHFNSBBHKSZXKB-VKHMYHEASA-N Asp-Gly Chemical compound OC(=O)C[C@H](N)C(=O)NCC(O)=O JHFNSBBHKSZXKB-VKHMYHEASA-N 0.000 description 1
- YOZSEGPJAXTSFZ-ZETCQYMHSA-N Azatyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=N1 YOZSEGPJAXTSFZ-ZETCQYMHSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 101710101803 DNA-binding protein J Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 101710201734 E3 protein Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 102000010911 Enzyme Precursors Human genes 0.000 description 1
- 108010062466 Enzyme Precursors Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- XITLYYAIPBBHPX-ZKWXMUAHSA-N Gln-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CCC(N)=O XITLYYAIPBBHPX-ZKWXMUAHSA-N 0.000 description 1
- PABVKUJVLNMOJP-WHFBIAKZSA-N Glu-Cys Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(O)=O PABVKUJVLNMOJP-WHFBIAKZSA-N 0.000 description 1
- SXGAGTVDWKQYCX-BQBZGAKWSA-N Glu-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CCC(O)=O SXGAGTVDWKQYCX-BQBZGAKWSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- MDCTVRUPVLZSPG-BQBZGAKWSA-N His-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CNC=N1 MDCTVRUPVLZSPG-BQBZGAKWSA-N 0.000 description 1
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 1
- 101000950669 Homo sapiens Mitogen-activated protein kinase 9 Proteins 0.000 description 1
- WMDZARSFSMZOQO-DRZSPHRISA-N Ile-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 WMDZARSFSMZOQO-DRZSPHRISA-N 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- JPNRPAJITHRXRH-BQBZGAKWSA-N Lys-Asn Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CC(N)=O JPNRPAJITHRXRH-BQBZGAKWSA-N 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102100037809 Mitogen-activated protein kinase 9 Human genes 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- BEPSGCXDIVACBU-IUCAKERBSA-N Pro-His Chemical compound C([C@@H](C(=O)O)NC(=O)[C@H]1NCCC1)C1=CN=CN1 BEPSGCXDIVACBU-IUCAKERBSA-N 0.000 description 1
- 229940123924 Protein kinase C inhibitor Drugs 0.000 description 1
- 101710185720 Putative ethidium bromide resistance protein Proteins 0.000 description 1
- 108010057277 Rev peptide 2 Proteins 0.000 description 1
- 101100010928 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) tuf gene Proteins 0.000 description 1
- RZEQTVHJZCIUBT-WDSKDSINSA-N Ser-Arg Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N RZEQTVHJZCIUBT-WDSKDSINSA-N 0.000 description 1
- UJTZHGHXJKIAOS-WHFBIAKZSA-N Ser-Gln Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O UJTZHGHXJKIAOS-WHFBIAKZSA-N 0.000 description 1
- LZLREEUGSYITMX-JQWIXIFHSA-N Ser-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CO)N)C(O)=O)=CNC2=C1 LZLREEUGSYITMX-JQWIXIFHSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 101150001810 TEAD1 gene Proteins 0.000 description 1
- 101150074253 TEF1 gene Proteins 0.000 description 1
- DSGIVWSDDRDJIO-ZXXMMSQZSA-N Thr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O DSGIVWSDDRDJIO-ZXXMMSQZSA-N 0.000 description 1
- 102100029898 Transcriptional enhancer factor TEF-1 Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- ZSXJENBJGRHKIG-UWVGGRQHSA-N Tyr-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 ZSXJENBJGRHKIG-UWVGGRQHSA-N 0.000 description 1
- JAQGKXUEKGKTKX-HOTGVXAUSA-N Tyr-Tyr Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=C(O)C=C1 JAQGKXUEKGKTKX-HOTGVXAUSA-N 0.000 description 1
- JKHXYJKMNSSFFL-IUCAKERBSA-N Val-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(O)=O)CCCCN JKHXYJKMNSSFFL-IUCAKERBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 208000006336 acinar cell carcinoma Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002038 chemiluminescence detection Methods 0.000 description 1
- 108091006116 chimeric peptides Proteins 0.000 description 1
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 108010079547 glutamylmethionine Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003881 protein kinase C inhibitor Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000000580 secretagogue effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical class C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 108010073969 valyllysine Proteins 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- 235000021247 β-casein Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/82—Translation products from oncogenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/10—Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10032—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10041—Use of virus, viral particle or viral elements as a vector
- C12N2710/10043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y306/00—Hydrolases acting on acid anhydrides (3.6)
- C12Y306/05—Hydrolases acting on acid anhydrides (3.6) acting on GTP; involved in cellular and subcellular movement (3.6.5)
- C12Y306/05002—Small monomeric GTPase (3.6.5.2)
Definitions
- the present invention was funded in part by NIH Grant RO1 CA 42500; the government may have certain rights in the invention.
- Oncogenic ras-p21 protein induces malignant transformation of mammalian cell lines such as NIH 3T3 cells (1) and has been implicated as a major causative factor in a high proportion of human solid tissue tumors (2).
- NIH 3T3 cells mammalian cell lines
- p21 induces oocyte maturation (3).
- Insulin induces oocyte maturation and requires activation of normal cellular ras-p21 (4).
- agents that strongly block Val 12-p21-induced oocyte maturation have virtually no effect on insulin-induced maturation (5).
- these agents are specific peptides, identified from molecular modeling studies, that correspond to effector domains from both ras-p21 itself, such as the 35-47, 96-110 and 115-126 sequences (5) and from some of its target proteins such as the ras-binding domain of raf (residues 97-110) (6-8) and the SOS guanine nucleotide exchange protein (residues 994-1004) (9,10).
- peptide domains were identified as those that change conformation in response to the presence of single oncogenic amino acid substitutions at positions 12 or 61 or multiple substitutions at positions 10, 12 and 59 when the computed average structures for these proteins either alone or in complex with target proteins were superimposed on that for the wild-type protein.
- oncogenic ras-p21 selectively indicates that the oncogenic protein induces mitogenesis by pathways that may overlap with, but are also distinct from, pathways utilized by the wild-type protein.
- oncogenic but not insulin-activated wild-type ras-p21 interacts with the transcriptional activating protein, jun and its kinase, jun kinase (JNK) (11,12), and requires the presence of protein kinase C (PKC) (13).
- the peptide whose sequence corresponds to p21 residues 35-47 encompasses a domain of the protein implicated in its interacting with multiple targets including raf p74 protein, GTPase activating protein (GAP) and the guanine nucleotide exchange protein, SOS (reviewed in ref. 5).
- GAP GTPase activating protein
- SOS guanine nucleotide exchange protein
- This peptide strongly inhibits c-raf-induced oocyte maturation but has no effect on oocyte maturation induced by an oncogenic mutant raf lacking the ras binding domain (RBD) in its amino terminal regulatory domain (14).
- Both PNC-2 and 7 appear to act on different steps on the oncogenic ras-p21 signal transduction pathway. For example, PNC-2 but not PNC-7 interferes with Val 12-p21-JNK interaction (11,12) while PNC-7 but not PNC-2 blocks signal transduction through c-raf (15).
- pancreatic cancer is a nearly always fatal disease with a median survival time of only 80-90 days for a patient diagnosed with the disease.
- Pancreatic cancer is one of the more lethal forms of cancer in numbers of patients killed in the U.S. Less than 4% of patients are alive 5 years from the time of diagnosis.
- the present invention provides peptides and pharmaceutical compositions comprising such peptides which when administered to pancreatic cancer cells, not only inhibit oncogenic Val 12-p21 but actually cause cancerous cells to phenotypically revert to non-cancerous cells.
- the present invention is therefore useful in treating various types of cancers which express Val 12-p21 protein and/or other oncogenic proteins. Treatment of ras-induced tumors converts malignant masses into benign ones, allowing for the halting of metastatic disease.
- the present invention provides peptides comprising at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO:1), or an analog or derivative thereof, wherein said peptide, analog, or derivative thereof comprises a membrane-penetrating leader sequence attached thereto.
- a peptide has the sequence set forth in SEQ ID NO:1.
- the present invention also provides peptides comprising at least about ten contiguous amino acids of the amino acid sequence: TIEDSYRKQVVID (SEQ ID NO:2) or an analog or derivative thereof wherein said peptide, analog, or derivative thereof comprises a membrane-penetrating leader sequence attached thereto.
- a peptide has the sequence as set forth in SEQ ID NO:2.
- peptides of the present invention are useful in treating cancer.
- a peptide, analog or derivative thereof as provided herein has the membrane-penetrating leader sequence located at the carboxy terminal end.
- the leader sequence comprises predominantly positively charged amino acid residues.
- leader sequences for practicing the present invention include but are not limited to penetratin, Arg 8, TAT of HIV1, D-TAT, R-TAT, SV40-NLS, nucleoplasmin-NLS, HIV REV, FHV coat, BMV GAG, HTLV-II (REX), CCMV GAG, P22N, Lambda N, Delta N, yeast PRP6, human U2AF, human C-FOS, human C-JUN, yeast GCN4, or p-vec.
- compositions comprising at least one of the subject peptides or analogs or derivatives thereof comprising a membrane-penetrating leader sequence admixed with a pharmaceutically acceptable carrier.
- the present invention also provides methods of treating a patient suffering from cancer.
- the method comprises administering to said patient a therapeutically effective amount of at least one subject peptide, analog or derivative thereof comprising a membrane penetrating leader sequence.
- a method of treating a patient suffering from cancer by administering to said patient a therapeutically effective amount of a subject pharmaceutical composition.
- the cancer to be treated is a ras-induced cancer.
- a replication incompetent Adenovirus (AdV) vector comprising a promoter sequence operably linked to a nucleotide sequence encoding a peptide, wherein the peptide comprises at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO: 1), or an analog or derivative thereof.
- a replication incompetent Adenovirus (AdV) vector comprising a promoter sequence operably linked to a nucleotide sequence encoding a peptide, wherein the peptide comprises at least about ten contiguous amino acids of the amino acid sequence: TIEDSYRKQVVID (SEQ ID NO:2), or an analog or derivative thereof is also provided.
- the nucleotide sequence further encodes a leader sequence attached to the sequence set forth in SEQ ID NO: 1, 2, or an analog or derivative thereof.
- the present invention also provides a method of treating a patient suffering from cancer by administering to the patient, a therapeutically effective amount of a subject AdV vector.
- a method of inducing phenotypic reversion of cancerous cells to non-cancerous cells in a subject, by administering to the subject, a therapeutically effective amount of a subject AdV vector is also provided.
- FIG. 1A is a photomicrograph of untreated ras-transformed pancreatic cancer (TUC-3) cells.
- FIG. 1B is a photomicrograph of TUC-3 cells treated with X13-leader peptide for two weeks.
- FIG. 1C is a photomicrograph of untreated pancreatic acinar (BMRPA1) cells at confluence.
- FIG. 1D is a photomicrograph of BMRPA1 cells treated with PNC-2-leader peptide, showing no change in morphology or cell viability.
- FIG. 2A is a photomicrograph showing the effects of 100 ⁇ g/ml of PNC-2-leader on TUC-3 cells after two weeks of treatment.
- FIG. 2B is a photomicrograph showing the effects of 100 ⁇ g/ml of PNC-2-leader on TUC-3 cells after one day of treatment. In the center of the figure, a focus of morphologically revertant cells is shown.
- FIG. 2C is a photomicrograph showing the effects of 100 ⁇ g/ml PNC-7-leader peptide on TUC-3 cells after two weeks of treatment.
- FIG. 3A is a photomicrograph taken one week after plating transfected (with PNC-2-expressing plasmid) viable TUC-3 cells in selective media. Foci of reversion can be observed (left and middle of figure). Remaining transformed cells can be seen on the right side of the figure.
- FIG. 3B is a photomicrograph showing that all transfected (with PNC-2-expressing plasmid) TUC-3 cells revert two weeks after transfection and selection of viable cells.
- FIG. 3C is a photomicrograph of TUC-3 cells transfected with PNC-7-expressing plasmid, two weeks after transfection, showing cell and nuclear enlargement. These cells grow sluggishly into stable monolayers.
- FIG. 4A is a photograph of gel blots showing co-immunoprecipitation of jun-N-terminal kinase (JNK) (lane 6) and MAP kinase (MAPK or ERK) with Ha-ras-p21, immunoprecipitated from oocytes that were induced to maturity by microinjection of oncogenic Val 12-Ha-ras-p21 and blotted.
- JNK jun-N-terminal kinase
- MAPK or ERK MAP kinase
- FIG. 4B is a photograph of gel blots showing co-immunoprecipitation of jun-N-terminal kinase (JNK) (lane 6) and MAP kinase (MAPK or ERK) with Ha-ras-p21, immunoprecipitated from oocytes that were induced to maturity with insulin, which activates wild-type rs-p21. Only raf was found to immunoprecipitate with Ha-ras in these oocytes.
- JNK jun-N-terminal kinase
- MAPK or ERK MAP kinase
- peptides designed from molecular modeling studies of the ras-p21 protein induce phenotype reversion of a pancreatic carcinoma cell line but have no effect on normal pancreatic acinar cell growth.
- the two peptides, designated PNC-2 and PNC-7 block oncogenic ras-induced oocyte maturation but do not block insulin-activated wild type ras-induced maturation.
- Val 12-p21 protein Since various cancers involve expression of Val 12-p21 protein, inhibition of this protein as well as phenotypic reversion of cancerous cells expressing this protein upon treatment of PNC-2 and/or PNC-7, represents a valuable cancer therapy.
- One out of every three solid tumors involves expression of Val 12-p21. For example, between 50-75% of colon cancers, greater than 90% of pancreatic cancers, one third of all non-small cell carcinomas of the lung, one fifth of gastric and bladder cancers, as well as many mesotheliomas involve expression of oncogenic ras-p21 protein.
- the peptides PNC-2, PNC-7, analogs and derivatives of such peptides, pharmaceutical preparations and methods of treatment using PNC-2, PNC-7 peptides, analogs, derivatives thereof and phamaceutical preparations based thereon are useful in treating a variety cancers.
- the cancers which are treated with the peptides pharmaceutical compositions and methods of the present invention are ras-induced cancers. Treatment of ras-induced tumors by the compositions of the present invention convert malignant masses into benign ones, allowing for the stopping of metastatic disease.
- a peptide comprising at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO:1) or an analog or derivative thereof.
- the peptide is designated PNC-2 and comprises the 15 amino acids as set forth in SEQ ID NO:1.
- a peptide comprising at least about ten contiguous amino acids of the amino acid sequence: TIEDSYRKQVVID (SEQ ID NO:2), or an analog or derivative thereof.
- the peptide is designated PNC-7 and comprises the 13 amino acids as set forth in SEQ ID NO:2.
- the peptides having the amino acid sequence set forth in SEQ ID NO:1 or SEQ ID NO:2, or an analog or derivative thereof are fused to a membrane-penetrating leader sequence.
- the leader sequence is preferably positioned at the carboxyl terminal end of the peptide, analog, or derivative thereof.
- the leader sequence comprises predominantly positively charged amino acid residues.
- leader sequences which may be used in accordance with the present invention include but are not limited to penetratin, Arg 8 , TAT of HIV1, D-TAT, R-TAT, SV40-NLS, nucleoplasmin-NLS, HIV REV (34-50), FHV coat (35-49), BMV GAG (7-25), HTLV-II REX (4-16), CCMV GAG (7-25), P22N (14-30), Lambda N (1-22), Delta N (12-29), yeast PRP6, human U2AF, human C-FOS (139-164), human C-JUN (252-279), yeast GCN4, and p-vec.
- the leader sequence is the penetratin sequence from antennapedia protein having the amino acid sequence KKWKMRRNQFWVKVQRG (SEQ ID NO:3).
- compositions comprising at least one of the subject peptides admixed with a pharmaceutically acceptable carrier are also provided.
- methods for treating neoplastic disease (cancer) in a subject i.e., inducing phenotypic reversion of cancerous cells to benign cells in a subject suffering from cancer, are provided.
- the method comprises administering to the subject, a therapeutically effective amount of a peptide comprising at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO: 1), or an analog or derivative thereof.
- the peptide or analog or derivative thereof is fused to a membrane-penetrating leader sequence and confers a normal phenotype on cancerous cells.
- the membrane-penetrating leader sequence is fused to the carboxy terminal end of the peptide, analog, or derivative thereof.
- the cancer is preferably a ras-induced cancer.
- the method comprises administering to the subject suffering from cancer, a therapeutically effective amount of a peptide having the sequence set forth in TIEDSYRKQVVID (SEQ ID NO:2), or an analog or derivative thereof.
- a peptide or analog or derivative thereof is fused to a membrane-penetrating leader sequence and confers a normal phenotype on cancerous cells.
- the membrane-penetrating leader sequence is fused to the carboxy terminal end of the peptide, analog, or derivative thereof.
- the cancer is preferably a ras-induced cancer.
- the method comprises administering to a subject suffering from cancer, a therapeutically effective amount of a mixture of peptides having the sequence set forth in SEQ ID NO: 1 and SEQ ID NO: 2, or analogs or derivatives thereof.
- the peptides or analogs or derivatives thereof are fused to a membrane-penetrating leader sequence and confer a normal phenotype on cancerous cells.
- the membrane-penetrating leader sequence is fused to the carboxy terminal end of the peptides, analogs, or derivatives thereof.
- the cancer is preferably a ras-induced cancer.
- Leader sequences which function to import the peptides of the invention into a cell may be derived from a variety of sources.
- the leader sequence comprises predominantly positively charged amino acid residues since a positively charged leader sequence stabilizes the alpha helix of a subject peptide.
- Examples of leader sequences which may be linked to the peptides of the present invention are described in Futaki, S. et al (2001) Arginine-Rich Peptides, J. Biol. Chem.
- leader sequences include but are not limited to the following membrane-penetrating leader sequences (numbering of the amino acid residues making up the leader sequence of the protein is indicated parenthetically immediately after the name of the protein in many cases): penetratin (KKWKMRRNQFWVKVQRG); (SEQ ID NO:3) (Arg) 8 or any poly-R from (R) 4 -(R) 16 ; HIV-1 TAT(47-60) (YGRKKRRQRRRPPQ); (SEQ ID NO:4) D-TAT (GRKKRRQRRRPPQ); (SEQ ID NO:5) R-TAT G(R) 9 PPQ; (SEQ ID NO:6) SV40-NLS (PKKKRKV); (SEQ ID NO:7) nucleoplasmin-NLS (KRPAAIKKAGQAKKKK); (SEQ ID NO:8) HIV REV (34-50)-(TRQARRNRRRRWRERQR); (SEQ ID NO:9) FHV (35-
- membrane penetrating leader sequences may also be used. Such sequences are widely available and are described e.g., in Scheller et al. (2000) Eur. J. Biochem. 267:6043-6049, and Elmquist et al., (2001) Exp. Cell Res. 269:237-244.
- the positively charged leader sequence of the penetratin leader sequence of antennapedia protein is used.
- This leader sequence has the following amino acid sequence: KKWKMRRNQFWVKVQRG (SEQ ID NO: 3).
- the leader sequence is attached to the carboxyl terminal end of a subject peptide to enable the synthetic peptide to effect phenotypic reversion of cancerous cells.
- Structurally related amino acid sequences may be substituted for the disclosed sequences set forth in SEQ ID NOs: 1 or 2 in practicing the present invention.
- Amino acid insertional derivatives of the peptides of the present invention include amino and/or carboxyl terminal fusions as well as intra-sequence insertions of single or multiple amino acids.
- Insertional amino acid sequence variants are those in which one or more amino acid residues are introduced into a predetermined site in a subject peptide although random insertion is also possible with suitable screening of the resulting product. Deletional variants may be made by removing one or more amino acids from the sequence of a subject peptide.
- Substitutional amino acid variants are those in which at least one residue in the sequence has been removed and a different residue inserted in its place. Typical substitutions are those made in accordance with the following Table 1: TABLE 1 Suitable residues for amino acid substitutions Original Residue Exemplary Substitutions Ala (A) Ser Arg (R) Lys Asn (N) Gln; His Asp (D) Glu Cys (C) Ser Gln (Q) Asn Glu (E) Asp Gly (G) Pro His (H) Asn; Gln Ile (I) Leu; Val Leu (L) Ile; Val Lys (K) Arg; Gln; Glu Met (M) Leu; Ile Phe (F) Met; Leu; Tyr Ser (S) Thr Thr (T) Ser Trp (W) Tyr Tyr (Y) Trp; Phe Val (V) Ile; Leu; Ser (S) Thr Thr (T) Ser Trp (W) Tyr Tyr (Y) Trp; Phe Val
- the amino acids are generally replaced by other amino acids having like properties such as hydrophobicity, hydrophilicity, electronegativety, bulky side chains and the like.
- the terms “derivative”, “analogue”, “fragment”, “portion” and “like molecule” refer to a subject peptide having the amino acid sequence as set forth in SEQ ID NOs:1 or 2, having an amino acid substitution, insertion, addition, or deletion, as long as said derivative, analogue, fragment, portion, or like molecule retains the ability to enter and effect phenotypic reversion of cancer cells, while having no effect on normal, non-cancerous cells.
- the synthetic peptides of the present invention may be synthesized by a number of known techniques.
- the peptides may be prepared using the solid-phase technique initially described by Merrifield (1963) in J. Am. Chem. Soc. 85:2149-2154.
- Other peptide synthesis techniques may be found in M. Bodanszky et al. Peptide Synthesis , John Wiley and Sons, 2d Ed., (1976) and other references readily available to those skilled in the art.
- a summary of polypeptide synthesis techniques may be found in J. Sturart and J. S. Young, Solid Phase Peptide Synthesis , Pierce Chemical Company, Rockford, Ill., (1984).
- Peptides may also be synthesized by solution methods as described in The Proteins , Vol. 1, 3d Ed., Neurath, H. et al., Eds., pp. 105-237, Academic Press, New York, N.Y. (1976). Appropriate protective groups for use in different peptide syntheses are described in the texts listed above as well as in J. F. W. McOmie, Protective Groups in Organic Chemistry , Plenum Press, New York, N.Y. (1973).
- the peptides of the present invention may also be prepared by chemical or enzymatic cleavage from larger portions of the ras-p21 protein or from the full-length ras-p21 protein.
- leader sequences for use in the synthetic peptides of the present invention may be prepared by chemical synthesis or enzymatic cleavage from larger portions or the full-length proteins from which such leader sequences are derived.
- the peptides of the present invention may also be prepared by recombinant DNA techniques. For most amino acids used to build proteins, more than one coding nucleotide triplet (codon) can code for a particular amino acid residue. This property of the genetic code is known as redundancy. Therefore, a number of different nucleotide sequences may code for a particular subject peptide.
- the present invention also contemplates use of a deoxyribonucleic acid (DNA) molecule that defines a gene coding for, i.e., capable of expressing a subject peptide or a chimeric peptide from which a peptide of the present invention may be enzymatically or chemically cleaved.
- DNA deoxyribonucleic acid
- the subject peptides may be used to induce phenotypic reversion of neoplastic or malignant cells, i.e., cancer cells in animals, preferentially humans.
- the synthetic peptides of the present invention are thus administered in an effective amount to convert malignant cells or masses into benign cells or masses in a subject animal or human. Reversion of cancerous cells or masses into benign cells or masses would have an additional benefit of halting metastasis and the spread of metastatic disease.
- the synthetic peptides of the present invention may be administered preferably to a human patient as a pharmaceutical composition containing a therapeutically effective dose of at least one synthetic peptide according to the present invention together with a pharmaceutical acceptable carrier.
- a pharmaceutical composition containing a therapeutically effective dose of at least one synthetic peptide according to the present invention together with a pharmaceutical acceptable carrier.
- therapeutically effective amount or “pharmaceutically effective amount” means the dose needed to produce in an individual, phenotypic reversion of neoplastic or malignant cells, i.e., cancer cells to benign or non-cancerous cells.
- compositions containing one or more of the synthetic peptides of the present invention are administered intravenously for the purpose of treating neoplastic or malignant disease such as cancer.
- neoplastic or malignant disease such as cancer.
- cancers which may be effectively treated using one or more the peptides of the present invention include but are not limited to: breast cancer, prostate cancer, lung cancer, cervical cancer, colon cancer, melanoma, pancreatic cancer and all solid tissue tumors (epithelial cell tumors) and cancers of the blood including but not limited to lymphomas and leukemias.
- the cancer to be treated in accordance with the present invention is a ras-induced cancer such as colon cancer, pancreatic cancer, non-small cell carcinoma of the lung, gastric cancer, bladder cancer and mesotheliomas.
- the cancer to be treated is pancreatic cancer.
- the synthetic peptides of the present invention may be by oral, intravenous, intranasal, suppository, intraperitoneal, intramuscular, intradermal or subcutaneous administration or by infusion or implantation.
- the synthetic peptides of the present invention may be combined with other ingredients, such as carriers and/or adjuvants.
- other ingredients such as carriers and/or adjuvants.
- the peptide compositions may also be impregnated into transdermal patches, or contained in subcutaneous inserts, preferably in a liquid or semi-liquid form which patch or insert time-releases therapeutically effective amounts of one or more of the subject synthetic peptides.
- the pharmaceutical forms suitable for injection include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the ultimate solution form in all cases must be sterile and fluid.
- Typical carriers include a solvent or dispersion medium containing, e.g., water buffered aqueous solutions, i.e., biocompatible buffers, ethanol, polyols such as glycerol, propylene glycol, polyethylene glycol, suitable mixtures thereof, surfactants or vegetable oils.
- Sterilization may be accomplished utilizing any art-recognized technique, including but not limited to filtration or addition of antibacterial or antifungal agents. Examples of such agents include paraben, chlorbutanol, phenol, sorbic acid or thimerosal. Isotonic agents such as sugars or sodium chloride may also be incorporated into the subject compositions.
- a “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic agents and the like. The use of such media and agents are well known in the art.
- sterile injectable solutions containing the subject synthetic peptides is accomplished by incorporating one or more of the subject synthetic peptides described hereinabove in the required amount in the appropriate solvent with one or more of the various ingredients enumerated above, as required, followed by sterilization, preferably filter sterilization.
- sterilization preferably filter sterilization.
- the above solutions are vacuum-dried or freeze-dried as necessary.
- Inert diluents and/or assimilable edible carriers and the like may be part of the pharmaceutical compositions when the peptides are administered orally.
- the pharmaceutical compositions may be in hard or soft shell gelatin capsules, be compressed into tablets, or may be in an elixir, suspension, syrup or the like.
- the subject synthetic peptides are thus compounded for convenient and effective administration in pharmaceutically effective amounts with a suitable pharmaceutically acceptable carrier in a therapeutically effective dosage.
- a pharmaceutically effective amount include peptide concentrations in the range from about at least about 25 ug/ml to at least about 300 ug/ml.
- a precise therapeutically effective amount of synthetic peptide to be used in the methods of the invention applied to humans cannot be stated due to variations in stage of neoplastic disease, tumor size and aggressiveness, the presence or extent of metastasis, etc.
- an individual's weight, gender, and overall health must be considered and will affect dosage.
- the synthetic peptides of the present invention be administered in an amount of at least about 10 mg per dose, more preferably in an amount up to about 1000 mg per dose. Since the peptide compositions of the present invention will eventually be cleared from the bloodstream, re-administration of the pharmaceutical compositions is indicated and preferred.
- the synthetic peptides of the present invention may be administered in a manner compatible with the dosage formulation and in such an amount as will be therapeutically effective.
- Systemic dosages depend on the age, weight, and condition of the patient and the administration route.
- An exemplary suitable dose for the administration to adult humans ranges from about 0.1 to about 20 mg per kilogram of body weight. Preferably, the dose is from about 0.1 to about 10 mg per kilogram of body weight.
- a method of treating neoplastic disease comprises administering to a subject in need of such treatment, a therapeutically effective amount of a synthetic peptide hereinbefore described, including analogs and derivatives thereof.
- a therapeutically effective amount of a synthetic peptide hereinbefore described including analogs and derivatives thereof.
- an effective amount of a peptide comprising at least about ten contiguous amino acids as set forth in SEQ ID NO: 1 or an analog or derivative thereof, fused on its carboxy terminal end to a leader sequence may be administered to a subject.
- An effective amount of a peptide having the amino acid sequence as set forth in SEQ ID NO:2 or an analog or derivative thereof, fused on its carboxy terminal end to a leader sequence may also be administered to a subject.
- a mixture of synthetic peptides may be administered.
- mixtures of two or more peptides or analogs or derivatives hereinbefore described may be administered to a subject.
- expression vehicles comprising replication incompetent Adenovirus (AdV) and having a promoter sequence operably linked to a coding sequence for a subject peptide, e.g., nucleotide sequences encoding those peptides described above i.e., SEQ ID NO: 1, SEQ ID NO: 2, or analogs or derivatives thereof as described fully above.
- AdV replication incompetent Adenovirus
- Table 2 shows the different combinations of codons which may be used to encode the amino acid sequence set forth in SEQ ID NO: 1.
- Table 3 shows the different combinations of codons which may be used to encode the amino acid sequence set forth in SEQ ID NO: 2.
- the amino acid sequence of SEQ ID NO: 1 I is shown in the top line of Table 2 in bold.
- the amino acid sequence of SEQ ID NO: 2 is shown in the top line of Table 3 in bold.
- nucleotide sequences encoding an analog or derivative of the amino acid sequences set forth in SEQ ID NOs: 1 or 2 can refer to a table of the Genetic Code to select appropriate codons.
- Ad vectors A number of different classes of Ad vectors exist, and may be used in the methods of the present invention. Such Ad vectors are described in the literature and are readily available. See refs. 26 and 27.
- an Ad vector may be used wherein the E1 and/or E3 genes have been removed, allowing the introduction of up to about 6.5 kb of transgene under the control of a heterologous promoter. See ref. 28.
- the defective E1 viruses may be propagated in an E1-complementing cell line, such as 293A cells, which cells provided the E1 gene in trans.
- an Ad vector may be used which in addition to lacking the E1 and E3 genes, also lack the E2 genes. See e.g., refs. 29 and 30.
- helper-dependent (HD) or gutted vectors deleted of most or all Ad coding sequences may be used in accordance with the present invention.
- Such vectors have great potential as gene transfer vectors for gene therapy since long term expression of therapeutic genes have been observed in mice as well as monkeys.
- the production of these gutted vectors in tissue culture requires a complementing helper virus to provide the proteins required for growth and assembly of the gutted vector in trans. See refs. 31-33.
- the disclosures of these papers and all references cited herein, are incorporated by reference as if fully set forth.
- a host anti-Ad immune response targeting the vector infected cells is considered desirable.
- a gutted Ad vector may not be as preferred as some of the earlier generation vectors which elicit a stronger immune response in the host.
- An Ad vector may be based on a two-plasmid system, an entry plasmid and a destination vector made from E1 and E3 gene deleted adenoviral genome that contains a promoter operably linked to a nucleotide sequence encoding one of the peptides described above (SEQ ID NOs: 1 or 2) as well as analogs or derivatives thereof.
- the two-plasmid system is thoroughly described in refs. 28, 34, and 35.
- the E1 and E3 gene deletions prevent the virus from replicating in cells that do not express E1 and E3 proteins.
- the entry plasmid contains the gene encoding a subject peptide which plasmid is cloned into the AdV via a lambda recombination reaction.
- the replication incompetent vector may be propagated in 293A cells, which are bioengineered human embryonic kidney cells transformed by AdV genomic DNA (Wang et al., 2000). This cell line supplements the deficient genes required for viral replication.
- the replication incompetent AdV vectors of the present invention can be constructed using standard recombinant DNA methods. Standard techniques for the construction of vectors are well-known to those of ordinary skill in the art and can be found in references such as Sambrook, Fritsch and Maniatis, 1989, or any of a number of laboratory manuals on recombinant DNA technology that are widely available. A variety of strategies are available for ligating fragments of DNA, the choice of which depends on the nature of the termini of the DNA fragments and can be readily determined by the skilled artisan. There are a number of different promoters which may be operably linked to the nucleotide sequences encoding a subject peptide.
- the promoter should function in the cells of a subject undergoing viral therapy with a subject AdV vector.
- promoters There are a number of widely available promoters which may be used in the AdV vectors of the present invention. Examples of such promoters include, but are not limited to: CMV, SV40, RSV, LTR, beta-actin, EF-1 alpha, Gal-E1b, UbC, beta-Casein, EM-7, EF, TEF1, CMV-2 and Bsd.
- the promoter is CMV.
- the recombinant vectors may then be subsequently rebuilt into intact viruses using standard methods such as that described in ref. 36, which is incorporated by reference herein as if fully set forth.
- Other references which describe rebuilding recombinant vectors into intact viruses include ref. 37, also incorporated by reference herein as if fully set forth.
- a subject AdV vector may be used to treat patients suffering from different types of cancer.
- Therapy of neoplastic disease may be accomplished by administering to a patient suffering from such disease a composition comprising the adenovirus vectors of the present invention.
- a human patient or nonhuman mammal suffering from a carcinoma may be treated by administering an effective antineoplastic dosage of a subject vector.
- the subject AdV vectors comprising a promoter operably linked to a nucleotide encoding a subject peptide are useful in treating a number of different cancers including but not limited to breast cancer, prostate cancer, lung cancer, cervical cancer, colon cancer, melanoma, pancreatic cancer, all solid tissue tumors (epithelial cell tumors) and cancers of the blood including but not limited to lymphomas and leukemias.
- the cancer to be treated is pancreatic cancer.
- Suspensions of infectious adenovirus particles may be applied to neoplastic tissue by various routes, including intravenous, intraperitoneal, intramuscular, subdermal, and topical.
- Other routes include inhalation as a mist (e.g., in treating lung cancer) or direct application such as by swabbing a tumor site, e.g., cervical carcinoma, or during surgery if necessary.
- An adenovirus suspension may also be administered by infusion, e.g., into the peritoneal cavity for treating ovarian cancer.
- Other suitable routes include direct injection into a tumor mass, such as a breast tumor, via enema (colon cancer) or catheter in the case of bladder cancer.
- the actual dosage may vary from patient to patient based on the age, weight, type and progression of cancer, location of tumor(s), presence of metastases, and overall condition of the patient. It can generally be said, however, that an adenovirus suspension containing about 10 3 to about 10 15 or more virion particles per ml may be administered. Re-administration of the AdV vector suspension may be performed as necessary.
- the AdV vectors of the present invention may be admixed in a sterile composition containing a pharmacologically effective dosage of one or more subject AdV vectors.
- the composition will comprise about 10 3 to about 10 15 or more AdV particles in an aqueous suspension.
- the sterile composition is usually an aqueous solution such as e.g., water, buffered water, 0.4% saline, 0.3% glycine and the like.
- Such compositions may contain pharmaceutically acceptable auxiliary substances e.g., to mimic physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate, etc.
- the compositions may also comprise excipients that enhance infection of cells by the subject AdV vectors.
- Peptides Three peptides, attached to the penetratin leader sequence, KKWKMRRNQFWVKVQRG, designated as “leader,” on their carboxyl terminal ends, were synthesized by solid phase methods: the two ras-p21 peptides corresponding to p21 residues 35-47 (TIEDSYRKQVVID) and 96-110 (YREQIKRVKDSDVP), denoted as PNC-7 and PNC-2, respectively; and the negative control X13 sequence (from mammalian cytochrome P450) (MPFSTGKRIMLGE). With the penetratin sequence attached to their carboxyl terminal ends, each of these peptides is denoted as PNC-7-leader, PNC-2-leader and X13-leader, respectively. All peptides were purified to >95 percent purity.
- Plasmids Construction of the plasmids that express the Ha-ras Val 12-p21 peptide sequence 96-110 (PNC2) and the control X13 peptide from mammalian cytochrome p450 has been described (21).
- the nucleotide sequences for PNC-2 and X13 peptides are given in ref. 21.
- the nucleotide sequences, including the 5′ sticky end, used to encode the PNC-7 peptide were 5′-T CGA GCC ACC ATG GGG ACC GAG GAT TCT TAC AGA AAA CAA GTG GTT ATA GAT TAA C and 3′-CGG TGG TAC CCC TGG TAT CTC CTA AGA ATG TCT TTT GTT CAC CAA TAT CTA ATT GGG CC.
- oligonucleotides were then incorporated into the pOPRSVI/MCS vector from the Lac switch II isopropylthioglucose (IPTG)-inducible mammalian expression system from Stratagene (LaJolla, Calif.) by cutting this vector with Kpn1 and Not1 and then ligating the oligomers into the plasmid with T4 ligase overnight at 4° C.
- the vectors containing the cloned oligonucleotides were transfected into DH5a competent cells (Gibco-BRL, Grand Island, N.Y.) and spread on LBamp plates for overnight incubation. Colonies from each plate were selected and grown at 37° C.
- DNA was prepared by the Qiagen (Valencia, Calif.) miniprep procedure, cut with Kpn1/Not1, and run on 2 percent agarose/TAE to estimate the size of the inserts.
- Clones with the correct size DNA inserts were regrown in 500 ml LBamp overnight at 37° C., and plasmids were then purified by the Qiagen maxiprep method. An aliquot of each positive DNA was sequenced using T3 or T7 primers.
- BMRPA1.430 BMRPA1 cells
- a pancreatic acinar carcinoma obtained by transfection of BMRPA1 cells with a plasmid containing an activated human K-ras oncogene [single base mutation at codon 12, valine substitution for the wild type glycine in the ras protein (K-ras val12 ); a kind gift of Dr. M. Perucho (CIBR, La Jolla, Calif.)] and a neomycin resistance gene.
- BMRPA1 cells have an epithelial cell phenotype, form acinar structures in culture, have no c-ki-ras nor p53 mutations, are unable to grow in anchorage-independent conditions and do not form tumors in Nu/Nu mice (17). In addition, they phenotypically maintain differentiated cell functions such as continued enzyme production and activation of zymogen secretion by secretagogue.
- ras-transformed BMRPA1 or TUC-3 cells selected after transfection for their basis resistance to G418 and the overexpression of K-ras val12 , no longer display an epithelial cell phenotype and acinar cell functions; they grow significantly faster than BMRPA1 cells, have a transformed spindle cell phenotype and form colonies under anchorage-independent conditions in vitro and tumors in vivo in nude mice.
- Peptide Incubation Approximately 300,000 cells (either BMRPA1 or TUC-3) were plated in each of six wells and were allowed to adhere overnight. In one set of experiments, the initial media consisted of DMEM with 10% fetal bovine serum that contained no peptide. In another set of experiments, the initial media contained peptide. In the first set, media containing peptide was added after 24 hours; in both sets, after the first 24 hours, the media was changed every 24 hours and always contained peptide at a particular concentration. Cells were observed daily for three weeks for changes in morphology and growth characteristics. Peptides were present at concentrations of 1, 10, 50, 100 and 100 ug/ml.
- Treated cells were then plated in selective medium containing 100 ug/ml G418 and 200 ug/ml of ampicillin together with 1 mM isopropylthioglucose (IPTG). The cells were washed and the medium changed every 24 hours. Viable cells were observed for morphology and growth characteristics over a two-week period.
- IPTG isopropylthioglucose
- FIGS. 1A and 1C show the morphology of untreated TUC-3 pancreatic carcinoma cells and their normal counterpart BMRPA1 pancreatic acinar cells, respectively.
- the former are not-contact-inhibited and do not form monolayers but are “heaped up” on one another with considerable pleomorphism between cells and indistinct cell boundaries. The latter form contact-inhibited monolayers with well-defined cell boundaries.
- Panel B in FIG. 1 shows that incubation of the X13-leader control peptide with TUC-3 cells for two weeks has no effect on their transformed morphologies. As expected, incubation of this control peptide with BMRPA1 cells has no effect (not shown). Incubation of BMRPA1 cells with PNC2-leader peptide likewise has no effect on the morphology of these cells (Panel D in FIG. 1 ).
- FIG. 2A Effects of PNC-2-Leader and PNC-7-Leader on TUC-3 Cells.
- the cells appear very similar to BMRPA1 cells ( FIG. 1C ); the cells grow into contact-inhibited monolayers and show distinct cell boundaries. This effect was achieved at concentrations as low as 1 ug/ml. At this low concentration, complete phenotypic reversion was achieved after two weeks. After one day of treatment, foci of acinar cellular differentiation appear; an example of a focus of revertant cells is shown in FIG. 2B .
- TUC-3 cells with PNC-7-leader peptide at concentrations of 100 and 200 ug/ml likewise resulted in phenotypic reversion of the cells as shown in FIG. 2C for cells growing into confluence.
- PNC-2-leader peptide complete reversion after two weeks of incubation of TUC-3 cells with PNC-7-leader was achieved only at concentrations $ 100 ug/ml.
- TUC-3 cells with PNC-7 plasmid exhibited the phenotype shown in Panel C of FIG. 3 .
- These cells which are seen to be enlarged with enlarged nuclei but have distinct cell boundaries, grew only sluggishly to confluence, and strongly resemble viable revertant cells that resulted from the treatment of TUC-3 cells with the anti-protein kinase C inhibitor, CGP 41 251 (16). These cells fail to grow in soft agar (16).
- Morphologically Revertant Cells Do Not Form Tumors in Nude Mice.
- 5 ⁇ 10 6 cells treated for two weeks with 100 ug/ml PNC-2-leader peptide were explanted subcutaneously into each of five nude mice while the same number of untreated TUC-3 cells were concomitantly similarly explanted.
- the results, shown in Table 4, indicate that morphologically revertant cells fail to form tumors up to two months after reversion while untreated cells form tumors rapidly (within 1 week).
- PNC-2 and PNC-7 peptides block mitogenic signaling by oncogenic ras-p21 in oocytes but have little effect on signaling by insulin-activated wild-type cellular p21 (5). This finding suggested to us that growth of mammalian cells transformed by oncogenic ras-p21 can be selectively blocked by these peptides without affecting normal growth processes.
- Both PNC-2 and PNC-7 peptides induce 100 percent phenotypic reversion of ras-transformed pancreatic (TUC-3) cancer cells and have no apparent effects on the growth of the normal counterpart BMRPA1 cell line.
- This effect is specific since neither the X13-leader control peptide nor the plasmid encoding it has any effect on TUC-3 cell proliferation. That the PNC-2 and 7 sequences and not the leader sequence, are responsible for this effect is supported by the absence of any effect on TUC-3 cells of the X13-leader peptide and by the finding that the plasmids encoding PNC-2 and PNC-7 without the leader sequence induces the same observed phenotypic reversion.
- both peptides activate rapid expression of other proteins that interfere with oncogenic ras-induced cell proliferation. This type of effect has been observed in human pancreatic carcinoma cells induced to revert by the agent azatyrosine that is known to induce expression of the ras recision gene (rrg) (22,23) and which also selectively blocks oncogenic ras-p21-induced oocyte maturation (13).
- rrg ras recision gene
- each peptide by blocking signal transduction unique to the oncogenic ras-p21-induced pathway, allows other inhibitory processes continuously to deactivate critical elements in this pathway.
- PNC-2 and PNC-7 peptides contrasts with that of another oncogenic-ras-p21-specific inhibitor, the staurosporine derivative, CGP 41 251, that selectively inhibits protein kinase C (PKC)(24).
- PKC protein kinase C
- This agent blocks oncogenic ras-p21-induced oocyte maturation but has much less effect on insulin-activated wild-type ras-p21-induced maturation (13).
- PNC-2- and 7-leader peptides this agent induces both necrosis and phenotypic reversion of TUC-3 cells (16) and is cytotoxic to BMRPA1 cells, although surviving cells grow rapidly into stable monolayers (16). Cytotoxicity of CGP 41 251 may be due to its blocking critical PKC-dependent cell processes that may not be involved in cell proliferation.
- PNC-2 synergizes with CGP 41 251 in TUC-3 cells in that it significantly lowers its IC 50 for induction of cytotoxicity to a level that is mot toxic to BMRPA1 cells (16). This finding suggests the possibility that PNC-2, which blocks ras-p21 induced activation of JNK (5), inhibits the mutual PKC-JNK activation cycle thereby removing an important activation process, resulting in facilitation of inhibition by CGP 41 251.
- TUC-3 cells PNC-2-Treated TUC-3 0 0.0 0.0 7 4.8 ⁇ 1.8 0.0 14 11.7 ⁇ 2.3 0.0 21 14.8 ⁇ 3.6 c 0.0 28 — 0.0 42 — 0.0 56 — 0.0 a
- An amount of 5 ⁇ 10 6 TUC-3 cells was injected into the posterior cervical fat pad of each of 5 nude mice, and the same number of TUC-3 cells treated for 2 weeks with PNC-2-leader peptide was injected into the posterior cervical fat pad of another 5 nude mice.
- b Expressed as the means ⁇ SD for the five mice in each group. c Multiple nodules and tumor metastasis with ascites occurred in all five mice at this time. Further observations were therefore discontinued.
- PNC-2 and PNC-7 Block the Interaction of JNK and MAP Kinase with Val 12-ras p21 Inside the Cell
- Val 12-p21 was injected into oocytes (100 ug/ml, 50 nl per oocyte) either alone or together with inhibitory p21 peptide (residues 96-110 shown in this figure).
- Mature oocytes (non-matured oocytes were used with inhibitory p21 96-110 peptide since it strongly inhibits maturation) were collected after 24 hours (about 50% maturation, approximately 100 oocytes) and subjected to lysis in buffer consisting of 0.35 M LiCl, 50 mM HEPES, pH 7.6, 1 mM EGTA, 1 mM dithiothreitol (DDT), 2 mM MgCl, 50 mM NPP, 1 mM sodium vanadate, and an inhibitor ‘cocktail’ consisting of 1 ug/ml each of the protease inhibitors: pepstatin, leupeptin and aprotinin; and the phosphatase inhibitors: 1 mM sodium orthovanadate and 5 mM sodium fluoride).
- buffer consisting of 0.35 M LiCl, 50 mM HEPES, pH 7.6, 1 mM EGTA, 1 mM dithiothreitol
- the lysate was centrifuged for 15 min at 17000 ⁇ g at 4° C., and the supernatant was either used directly.
- the lysates were then subjected to immunoprecipitation using an anti-Ha-ras antibody (CalBiochem).
- cell lysate was first pre-cleared by incubation with 50 ul of protein A beads for 1 hr at room temperature, followed by centrifugation.
- Anti-Ha-ras antibody was added to the lysate such that 0.1 ug antibody was added per 250 ug of pre-cleared lysate protein.
- Immunoprecipitates were subjected to SDS-PAGE as described above in the preceding paragraph and blotted with anti-Ha-ras (1:2000 with 0.25% BSA), anti-raf (CalBiochem, San Diego, Calif.), diluted 1:2000 with 0.25% BSA, anti-JNK polyclonal antibody (1:2000), anti-MEK (CalBiochem) and anti-MAPK, diluted 1:2000 with 0.25% BSA.
- FIG. 4A shows the results of injected Val 12-p21 forming a complex with raf, MEK, JNK and MAPK (ERK).
- Oocytes that matured after being injected with Val 12-Ha-ras-p21 were lysed and immunoprecipitated with anti-Ha-ras antibody. The immunoprecipitate was blotted with anti-raf (lane 2), anti-MEK (lane 4), anti-JNK (lane 6) and anti-MAPK (lane 8).
- Oocytes were also injected with Val 12-p21 and ras-p21 inhibitory peptide 96-110, labeled as PNC-2, lysed and subjected to immunoprecipitation with anti-Ha-ras.
- FIG. 4A shows blots for raf (A), MEK (B), JNK(C) and MAPK (D).
- the first lane for each of these four sets presents the results for the blots of whole cell lysate to demonstrate the presence of each protein.
- the second lane in each set of blots shows the results of blotting for each protein in the anti-Ha-ras-p21 immunoprecipitate. As can be seen in this figure, only raf co-precipitates with endogenous Ha-ras-p21 in the oocytes.
- ras-p21 forms a large complex with vital mitogenic signal transducing proteins and induces activation of raf-MEK-MAP kinase (MAPK or ERK) and JNK-jun pathways while insulin-activated wild-type p21 (at least the Ha-ras form) forms a complex only with raf.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Oncology (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention provides peptides (including analogs and derivatives thereof) corresponding to residues 96-110 and 35-47 of ras-p21, which peptides have attached thereto a membrane-penetrating leader sequence. The subject peptides, analogs and derivatives thereof are useful in treatment of cancers and have been shown to induce phenotypic reversion of pancreatic cancer cells to non-cancerous cells. Pharmaceutical compositions comprising one or more subject peptides are also provided by the present invention. The present invention further provides replication incompetent Adenovirus (AdV) vectors comprising a promoter sequence and a nucleotide sequence encoding a subject peptide. Methods of treating cancer by administering one or more subject peptides, pharmaceutical compositions, and/or AdV vectors are also provided.
Description
- This application claims the benefit of U.S. Provisional Application Ser. No. 60/575,131, filed May 28, 2004, and U.S. Provisional Application Ser. No. 60/575,846, filed Jun. 1, 2004, both of which are incorporated by reference herein.
- The present invention was funded in part by NIH Grant RO1 CA 42500; the government may have certain rights in the invention.
- Oncogenic ras-p21 protein, but not its wild-type counterpart protein, induces malignant transformation of mammalian cell lines such as NIH 3T3 cells (1) and has been implicated as a major causative factor in a high proportion of human solid tissue tumors (2). In Xenopus laevis oocytes, microinjection of oncogenic (containing Val in place of Gly 12), but not wild-type, p21 induces oocyte maturation (3). Insulin induces oocyte maturation and requires activation of normal cellular ras-p21 (4).
- Several agents that strongly block Val 12-p21-induced oocyte maturation have virtually no effect on insulin-induced maturation (5). Among these agents are specific peptides, identified from molecular modeling studies, that correspond to effector domains from both ras-p21 itself, such as the 35-47, 96-110 and 115-126 sequences (5) and from some of its target proteins such as the ras-binding domain of raf (residues 97-110) (6-8) and the SOS guanine nucleotide exchange protein (residues 994-1004) (9,10). These peptide domains were identified as those that change conformation in response to the presence of single oncogenic amino acid substitutions at positions 12 or 61 or multiple substitutions at positions 10, 12 and 59 when the computed average structures for these proteins either alone or in complex with target proteins were superimposed on that for the wild-type protein.
- The finding that these peptides (in addition to other agents) block oncogenic ras-p21 selectively indicates that the oncogenic protein induces mitogenesis by pathways that may overlap with, but are also distinct from, pathways utilized by the wild-type protein. In studies designed to identify pathway differences, it was found that, in oocytes, oncogenic but not insulin-activated wild-type ras-p21 interacts with the transcriptional activating protein, jun and its kinase, jun kinase (JNK) (11,12), and requires the presence of protein kinase C (PKC) (13). In these studies, it was determined that the peptide whose sequence corresponds to p21 residues 96-110, called PNC-2, blocks the interaction of Val 12-p21 with JNK (11,12) in a dose-response curve that superimposes on that for its inhibition of Val 12-p21-induced oocyte maturation (5).
- Additionally, the peptide whose sequence corresponds to p21 residues 35-47, called PNC-7, encompasses a domain of the protein implicated in its interacting with multiple targets including raf p74 protein, GTPase activating protein (GAP) and the guanine nucleotide exchange protein, SOS (reviewed in ref. 5). This peptide strongly inhibits c-raf-induced oocyte maturation but has no effect on oocyte maturation induced by an oncogenic mutant raf lacking the ras binding domain (RBD) in its amino terminal regulatory domain (14). Both PNC-2 and 7 appear to act on different steps on the oncogenic ras-p21 signal transduction pathway. For example, PNC-2 but not PNC-7 interferes with Val 12-p21-JNK interaction (11,12) while PNC-7 but not PNC-2 blocks signal transduction through c-raf (15).
- Since various cancers involve expression of Val 12-p21 protein, as well as other oncogenic proteins, it would be useful to be able to inhibit expression of such proteins. For example, pancreatic cancer is a nearly always fatal disease with a median survival time of only 80-90 days for a patient diagnosed with the disease. Pancreatic cancer is one of the more lethal forms of cancer in numbers of patients killed in the U.S. Less than 4% of patients are alive 5 years from the time of diagnosis. The present invention provides peptides and pharmaceutical compositions comprising such peptides which when administered to pancreatic cancer cells, not only inhibit oncogenic Val 12-p21 but actually cause cancerous cells to phenotypically revert to non-cancerous cells. The present invention is therefore useful in treating various types of cancers which express Val 12-p21 protein and/or other oncogenic proteins. Treatment of ras-induced tumors converts malignant masses into benign ones, allowing for the halting of metastatic disease.
- The present invention provides peptides comprising at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO:1), or an analog or derivative thereof, wherein said peptide, analog, or derivative thereof comprises a membrane-penetrating leader sequence attached thereto. Preferably, a peptide has the sequence set forth in SEQ ID NO:1.
- The present invention also provides peptides comprising at least about ten contiguous amino acids of the amino acid sequence: TIEDSYRKQVVID (SEQ ID NO:2) or an analog or derivative thereof wherein said peptide, analog, or derivative thereof comprises a membrane-penetrating leader sequence attached thereto. Preferably, a peptide has the sequence as set forth in SEQ ID NO:2.
- The peptides of the present invention, including analogs and derivatives thereof, are useful in treating cancer. Preferably, a peptide, analog or derivative thereof as provided herein has the membrane-penetrating leader sequence located at the carboxy terminal end. In another preferred embodiment, the leader sequence comprises predominantly positively charged amino acid residues. Examples of leader sequences for practicing the present invention include but are not limited to penetratin,
Arg 8, TAT of HIV1, D-TAT, R-TAT, SV40-NLS, nucleoplasmin-NLS, HIV REV, FHV coat, BMV GAG, HTLV-II (REX), CCMV GAG, P22N, Lambda N, Delta N, yeast PRP6, human U2AF, human C-FOS, human C-JUN, yeast GCN4, or p-vec. - Also provided by the present invention are pharmaceutical compositions comprising at least one of the subject peptides or analogs or derivatives thereof comprising a membrane-penetrating leader sequence admixed with a pharmaceutically acceptable carrier.
- The present invention also provides methods of treating a patient suffering from cancer. The method comprises administering to said patient a therapeutically effective amount of at least one subject peptide, analog or derivative thereof comprising a membrane penetrating leader sequence. In another embodiment of the invention, there is provided a method of treating a patient suffering from cancer by administering to said patient a therapeutically effective amount of a subject pharmaceutical composition. Preferably, the cancer to be treated is a ras-induced cancer.
- In still another embodiment of the invention, there is provided a replication incompetent Adenovirus (AdV) vector comprising a promoter sequence operably linked to a nucleotide sequence encoding a peptide, wherein the peptide comprises at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO: 1), or an analog or derivative thereof. A replication incompetent Adenovirus (AdV) vector comprising a promoter sequence operably linked to a nucleotide sequence encoding a peptide, wherein the peptide comprises at least about ten contiguous amino acids of the amino acid sequence: TIEDSYRKQVVID (SEQ ID NO:2), or an analog or derivative thereof is also provided. Preferably, the nucleotide sequence further encodes a leader sequence attached to the sequence set forth in SEQ ID NO: 1, 2, or an analog or derivative thereof.
- The present invention also provides a method of treating a patient suffering from cancer by administering to the patient, a therapeutically effective amount of a subject AdV vector. A method of inducing phenotypic reversion of cancerous cells to non-cancerous cells in a subject, by administering to the subject, a therapeutically effective amount of a subject AdV vector is also provided.
-
FIG. 1A is a photomicrograph of untreated ras-transformed pancreatic cancer (TUC-3) cells. -
FIG. 1B is a photomicrograph of TUC-3 cells treated with X13-leader peptide for two weeks. -
FIG. 1C is a photomicrograph of untreated pancreatic acinar (BMRPA1) cells at confluence. -
FIG. 1D is a photomicrograph of BMRPA1 cells treated with PNC-2-leader peptide, showing no change in morphology or cell viability. -
FIG. 2A . is a photomicrograph showing the effects of 100 μg/ml of PNC-2-leader on TUC-3 cells after two weeks of treatment. -
FIG. 2B is a photomicrograph showing the effects of 100 μg/ml of PNC-2-leader on TUC-3 cells after one day of treatment. In the center of the figure, a focus of morphologically revertant cells is shown. -
FIG. 2C is a photomicrograph showing the effects of 100 μg/ml PNC-7-leader peptide on TUC-3 cells after two weeks of treatment. -
FIG. 3A is a photomicrograph taken one week after plating transfected (with PNC-2-expressing plasmid) viable TUC-3 cells in selective media. Foci of reversion can be observed (left and middle of figure). Remaining transformed cells can be seen on the right side of the figure. -
FIG. 3B is a photomicrograph showing that all transfected (with PNC-2-expressing plasmid) TUC-3 cells revert two weeks after transfection and selection of viable cells. -
FIG. 3C is a photomicrograph of TUC-3 cells transfected with PNC-7-expressing plasmid, two weeks after transfection, showing cell and nuclear enlargement. These cells grow sluggishly into stable monolayers. -
FIG. 4A is a photograph of gel blots showing co-immunoprecipitation of jun-N-terminal kinase (JNK) (lane 6) and MAP kinase (MAPK or ERK) with Ha-ras-p21, immunoprecipitated from oocytes that were induced to maturity by microinjection of oncogenic Val 12-Ha-ras-p21 and blotted. -
FIG. 4B is a photograph of gel blots showing co-immunoprecipitation of jun-N-terminal kinase (JNK) (lane 6) and MAP kinase (MAPK or ERK) with Ha-ras-p21, immunoprecipitated from oocytes that were induced to maturity with insulin, which activates wild-type rs-p21. Only raf was found to immunoprecipitate with Ha-ras in these oocytes. - In accordance with the present invention, it has been surprisingly discovered that peptides designed from molecular modeling studies of the ras-p21 protein induce phenotype reversion of a pancreatic carcinoma cell line but have no effect on normal pancreatic acinar cell growth. The two peptides, designated PNC-2 and PNC-7, block oncogenic ras-induced oocyte maturation but do not block insulin-activated wild type ras-induced maturation.
- Since various cancers involve expression of Val 12-p21 protein, inhibition of this protein as well as phenotypic reversion of cancerous cells expressing this protein upon treatment of PNC-2 and/or PNC-7, represents a valuable cancer therapy. One out of every three solid tumors involves expression of Val 12-p21. For example, between 50-75% of colon cancers, greater than 90% of pancreatic cancers, one third of all non-small cell carcinomas of the lung, one fifth of gastric and bladder cancers, as well as many mesotheliomas involve expression of oncogenic ras-p21 protein.
- In accordance with the present invention, the peptides PNC-2, PNC-7, analogs and derivatives of such peptides, pharmaceutical preparations and methods of treatment using PNC-2, PNC-7 peptides, analogs, derivatives thereof and phamaceutical preparations based thereon, are useful in treating a variety cancers. Preferably, the cancers which are treated with the peptides pharmaceutical compositions and methods of the present invention are ras-induced cancers. Treatment of ras-induced tumors by the compositions of the present invention convert malignant masses into benign ones, allowing for the stopping of metastatic disease.
- In one aspect of the invention, there is provided a peptide comprising at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO:1) or an analog or derivative thereof. In a preferred embodiment of the invention, the peptide is designated PNC-2 and comprises the 15 amino acids as set forth in SEQ ID NO:1.
- In another aspect of the invention, there is provided a peptide comprising at least about ten contiguous amino acids of the amino acid sequence: TIEDSYRKQVVID (SEQ ID NO:2), or an analog or derivative thereof. In a preferred embodiment of the invention, the peptide is designated PNC-7 and comprises the 13 amino acids as set forth in SEQ ID NO:2.
- Preferably, the peptides having the amino acid sequence set forth in SEQ ID NO:1 or SEQ ID NO:2, or an analog or derivative thereof, are fused to a membrane-penetrating leader sequence. In order to be transported across a cell membrane and effect reversion of cancerous cells to normal phenotype, the leader sequence is preferably positioned at the carboxyl terminal end of the peptide, analog, or derivative thereof. Preferably, the leader sequence comprises predominantly positively charged amino acid residues. Examples of leader sequences which may be used in accordance with the present invention include but are not limited to penetratin, Arg8, TAT of HIV1, D-TAT, R-TAT, SV40-NLS, nucleoplasmin-NLS, HIV REV (34-50), FHV coat (35-49), BMV GAG (7-25), HTLV-II REX (4-16), CCMV GAG (7-25), P22N (14-30), Lambda N (1-22), Delta N (12-29), yeast PRP6, human U2AF, human C-FOS (139-164), human C-JUN (252-279), yeast GCN4, and p-vec. Preferably, the leader sequence is the penetratin sequence from antennapedia protein having the amino acid sequence KKWKMRRNQFWVKVQRG (SEQ ID NO:3).
- Pharmaceutical compositions comprising at least one of the subject peptides admixed with a pharmaceutically acceptable carrier are also provided. In addition, methods for treating neoplastic disease (cancer) in a subject i.e., inducing phenotypic reversion of cancerous cells to benign cells in a subject suffering from cancer, are provided. In one embodiment, the method comprises administering to the subject, a therapeutically effective amount of a peptide comprising at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO: 1), or an analog or derivative thereof. Preferably, the peptide or analog or derivative thereof is fused to a membrane-penetrating leader sequence and confers a normal phenotype on cancerous cells. Even more preferably, the membrane-penetrating leader sequence is fused to the carboxy terminal end of the peptide, analog, or derivative thereof. The cancer is preferably a ras-induced cancer.
- In another embodiment, the method comprises administering to the subject suffering from cancer, a therapeutically effective amount of a peptide having the sequence set forth in TIEDSYRKQVVID (SEQ ID NO:2), or an analog or derivative thereof. Preferably, the peptide or analog or derivative thereof is fused to a membrane-penetrating leader sequence and confers a normal phenotype on cancerous cells. Even more preferably, the membrane-penetrating leader sequence is fused to the carboxy terminal end of the peptide, analog, or derivative thereof. The cancer is preferably a ras-induced cancer.
- In still another embodiment of the invention, the method comprises administering to a subject suffering from cancer, a therapeutically effective amount of a mixture of peptides having the sequence set forth in SEQ ID NO: 1 and SEQ ID NO: 2, or analogs or derivatives thereof. Preferably, the peptides or analogs or derivatives thereof are fused to a membrane-penetrating leader sequence and confer a normal phenotype on cancerous cells. Even more preferably, the membrane-penetrating leader sequence is fused to the carboxy terminal end of the peptides, analogs, or derivatives thereof. The cancer is preferably a ras-induced cancer.
- Leader sequences which function to import the peptides of the invention into a cell may be derived from a variety of sources. Preferably, the leader sequence comprises predominantly positively charged amino acid residues since a positively charged leader sequence stabilizes the alpha helix of a subject peptide. Examples of leader sequences which may be linked to the peptides of the present invention are described in Futaki, S. et al (2001) Arginine-Rich Peptides, J. Biol. Chem. 276,:5836-5840, and include but are not limited to the following membrane-penetrating leader sequences (numbering of the amino acid residues making up the leader sequence of the protein is indicated parenthetically immediately after the name of the protein in many cases):
penetratin (KKWKMRRNQFWVKVQRG); (SEQ ID NO:3) (Arg)8 or any poly-R from (R)4-(R)16; HIV-1 TAT(47-60) (YGRKKRRQRRRPPQ); (SEQ ID NO:4) D-TAT (GRKKRRQRRRPPQ); (SEQ ID NO:5) R-TAT G(R)9 PPQ; (SEQ ID NO:6) SV40-NLS (PKKKRKV); (SEQ ID NO:7) nucleoplasmin-NLS (KRPAAIKKAGQAKKKK); (SEQ ID NO:8) HIV REV (34-50)-(TRQARRNRRRRWRERQR); (SEQ ID NO:9) FHV (35-49) coat-(RRRRNRTRRNRRRVR); (SEQ ID NO:10) BMV GAG (7-25)-(KMTRAQRRAAARRNRWTAR); (SEQ ID NO:11) HTLV-II REX 4-16-(TRRQRTRRARRNR); (SEQ ID NO:12) CCMV GAG (7-25)-(KLTRAQRRAAARKNKRNTR); (SEQ ID NO:13) P22 N (14-30) (NAKTRRHERRRKLAIER); (SEQ ID NO:14) LAMBDA N (1-22) (MDAQTRRRERRAEKQAQWKAAN); (SEQ ID NO:15) Phi N (12-29) (TAKTRYKARRAELIAERR); (SEQ ID NO:16) YEAST PRP6 (129-124) (TRRNKRNRIQEQLNIRK); (SEQ ID NO:17) HUMAN U2AF (SQMTRQARRLYV); (SEQ ID NO:18) HUMAN C-FOS (139-164) KRRIRRERNKMAAAKSRNRRRELTDT; (SEQ ID NO:19) HUMAN C-JUN (252-279) (RIKAERKRMRNRIAASKSRKRKLERIAR); (SEQ ID NO:20) YEAST GCN4 (KRARNTEAARRSRARKLQRMKQ); (SEQ ID NO:21) KLALKLALKALKAALKLA; (SEQ ID NO:22) p-vec LLIILRRRIRKQAKAHSK. (SEQ ID NO:23) - Other membrane penetrating leader sequences may also be used. Such sequences are widely available and are described e.g., in Scheller et al. (2000) Eur. J. Biochem. 267:6043-6049, and Elmquist et al., (2001) Exp. Cell Res. 269:237-244.
- Preferably, the positively charged leader sequence of the penetratin leader sequence of antennapedia protein is used. This leader sequence has the following amino acid sequence: KKWKMRRNQFWVKVQRG (SEQ ID NO: 3). Preferably, the leader sequence is attached to the carboxyl terminal end of a subject peptide to enable the synthetic peptide to effect phenotypic reversion of cancerous cells.
- Structurally related amino acid sequences may be substituted for the disclosed sequences set forth in SEQ ID NOs: 1 or 2 in practicing the present invention. Amino acid insertional derivatives of the peptides of the present invention include amino and/or carboxyl terminal fusions as well as intra-sequence insertions of single or multiple amino acids. Insertional amino acid sequence variants are those in which one or more amino acid residues are introduced into a predetermined site in a subject peptide although random insertion is also possible with suitable screening of the resulting product. Deletional variants may be made by removing one or more amino acids from the sequence of a subject peptide. Substitutional amino acid variants are those in which at least one residue in the sequence has been removed and a different residue inserted in its place. Typical substitutions are those made in accordance with the following Table 1:
TABLE 1 Suitable residues for amino acid substitutions Original Residue Exemplary Substitutions Ala (A) Ser Arg (R) Lys Asn (N) Gln; His Asp (D) Glu Cys (C) Ser Gln (Q) Asn Glu (E) Asp Gly (G) Pro His (H) Asn; Gln Ile (I) Leu; Val Leu (L) Ile; Val Lys (K) Arg; Gln; Glu Met (M) Leu; Ile Phe (F) Met; Leu; Tyr Ser (S) Thr Thr (T) Ser Trp (W) Tyr Tyr (Y) Trp; Phe Val (V) Ile; Leu - When the synthetic peptide is derivatised by amino acid substitution, the amino acids are generally replaced by other amino acids having like properties such as hydrophobicity, hydrophilicity, electronegativety, bulky side chains and the like. As used herein, the terms “derivative”, “analogue”, “fragment”, “portion” and “like molecule” refer to a subject peptide having the amino acid sequence as set forth in SEQ ID NOs:1 or 2, having an amino acid substitution, insertion, addition, or deletion, as long as said derivative, analogue, fragment, portion, or like molecule retains the ability to enter and effect phenotypic reversion of cancer cells, while having no effect on normal, non-cancerous cells.
- The synthetic peptides of the present invention may be synthesized by a number of known techniques. For example, the peptides may be prepared using the solid-phase technique initially described by Merrifield (1963) in J. Am. Chem. Soc. 85:2149-2154. Other peptide synthesis techniques may be found in M. Bodanszky et al. Peptide Synthesis, John Wiley and Sons, 2d Ed., (1976) and other references readily available to those skilled in the art. A summary of polypeptide synthesis techniques may be found in J. Sturart and J. S. Young, Solid Phase Peptide Synthesis, Pierce Chemical Company, Rockford, Ill., (1984). Peptides may also be synthesized by solution methods as described in The Proteins, Vol. 1, 3d Ed., Neurath, H. et al., Eds., pp. 105-237, Academic Press, New York, N.Y. (1976). Appropriate protective groups for use in different peptide syntheses are described in the texts listed above as well as in J. F. W. McOmie, Protective Groups in Organic Chemistry, Plenum Press, New York, N.Y. (1973). The peptides of the present invention may also be prepared by chemical or enzymatic cleavage from larger portions of the ras-p21 protein or from the full-length ras-p21 protein. Likewise, leader sequences for use in the synthetic peptides of the present invention may be prepared by chemical synthesis or enzymatic cleavage from larger portions or the full-length proteins from which such leader sequences are derived.
- Additionally, the peptides of the present invention may also be prepared by recombinant DNA techniques. For most amino acids used to build proteins, more than one coding nucleotide triplet (codon) can code for a particular amino acid residue. This property of the genetic code is known as redundancy. Therefore, a number of different nucleotide sequences may code for a particular subject peptide. The present invention also contemplates use of a deoxyribonucleic acid (DNA) molecule that defines a gene coding for, i.e., capable of expressing a subject peptide or a chimeric peptide from which a peptide of the present invention may be enzymatically or chemically cleaved.
- Consistent with the observed properties of the peptides of the invention, the subject peptides may be used to induce phenotypic reversion of neoplastic or malignant cells, i.e., cancer cells in animals, preferentially humans. The synthetic peptides of the present invention are thus administered in an effective amount to convert malignant cells or masses into benign cells or masses in a subject animal or human. Reversion of cancerous cells or masses into benign cells or masses would have an additional benefit of halting metastasis and the spread of metastatic disease.
- The synthetic peptides of the present invention may be administered preferably to a human patient as a pharmaceutical composition containing a therapeutically effective dose of at least one synthetic peptide according to the present invention together with a pharmaceutical acceptable carrier. The term “therapeutically effective amount” or “pharmaceutically effective amount” means the dose needed to produce in an individual, phenotypic reversion of neoplastic or malignant cells, i.e., cancer cells to benign or non-cancerous cells.
- Preferably, compositions containing one or more of the synthetic peptides of the present invention are administered intravenously for the purpose of treating neoplastic or malignant disease such as cancer. Examples of different cancers which may be effectively treated using one or more the peptides of the present invention include but are not limited to: breast cancer, prostate cancer, lung cancer, cervical cancer, colon cancer, melanoma, pancreatic cancer and all solid tissue tumors (epithelial cell tumors) and cancers of the blood including but not limited to lymphomas and leukemias. Preferably, the cancer to be treated in accordance with the present invention is a ras-induced cancer such as colon cancer, pancreatic cancer, non-small cell carcinoma of the lung, gastric cancer, bladder cancer and mesotheliomas. Most preferably the cancer to be treated is pancreatic cancer.
- Administration of the synthetic peptides of the present invention may be by oral, intravenous, intranasal, suppository, intraperitoneal, intramuscular, intradermal or subcutaneous administration or by infusion or implantation. When administered in such manner, the synthetic peptides of the present invention may be combined with other ingredients, such as carriers and/or adjuvants. There are no limitations on the nature of the other ingredients, except that they must be pharmaceutically acceptable, efficacious for their intended administration, cannot degrade the activity of the active ingredients of the compositions, and cannot impede importation of a subject peptide into a cell. The peptide compositions may also be impregnated into transdermal patches, or contained in subcutaneous inserts, preferably in a liquid or semi-liquid form which patch or insert time-releases therapeutically effective amounts of one or more of the subject synthetic peptides.
- The pharmaceutical forms suitable for injection include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The ultimate solution form in all cases must be sterile and fluid. Typical carriers include a solvent or dispersion medium containing, e.g., water buffered aqueous solutions, i.e., biocompatible buffers, ethanol, polyols such as glycerol, propylene glycol, polyethylene glycol, suitable mixtures thereof, surfactants or vegetable oils. Sterilization may be accomplished utilizing any art-recognized technique, including but not limited to filtration or addition of antibacterial or antifungal agents. Examples of such agents include paraben, chlorbutanol, phenol, sorbic acid or thimerosal. Isotonic agents such as sugars or sodium chloride may also be incorporated into the subject compositions.
- As used herein, a “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic agents and the like. The use of such media and agents are well known in the art.
- Production of sterile injectable solutions containing the subject synthetic peptides is accomplished by incorporating one or more of the subject synthetic peptides described hereinabove in the required amount in the appropriate solvent with one or more of the various ingredients enumerated above, as required, followed by sterilization, preferably filter sterilization. In order to obtain a sterile powder, the above solutions are vacuum-dried or freeze-dried as necessary.
- Inert diluents and/or assimilable edible carriers and the like may be part of the pharmaceutical compositions when the peptides are administered orally. The pharmaceutical compositions may be in hard or soft shell gelatin capsules, be compressed into tablets, or may be in an elixir, suspension, syrup or the like.
- The subject synthetic peptides are thus compounded for convenient and effective administration in pharmaceutically effective amounts with a suitable pharmaceutically acceptable carrier in a therapeutically effective dosage. Examples of a pharmaceutically effective amount include peptide concentrations in the range from about at least about 25 ug/ml to at least about 300 ug/ml.
- A precise therapeutically effective amount of synthetic peptide to be used in the methods of the invention applied to humans cannot be stated due to variations in stage of neoplastic disease, tumor size and aggressiveness, the presence or extent of metastasis, etc. In addition, an individual's weight, gender, and overall health must be considered and will affect dosage. It can be generally stated, however, that the synthetic peptides of the present invention be administered in an amount of at least about 10 mg per dose, more preferably in an amount up to about 1000 mg per dose. Since the peptide compositions of the present invention will eventually be cleared from the bloodstream, re-administration of the pharmaceutical compositions is indicated and preferred.
- The synthetic peptides of the present invention may be administered in a manner compatible with the dosage formulation and in such an amount as will be therapeutically effective. Systemic dosages depend on the age, weight, and condition of the patient and the administration route. An exemplary suitable dose for the administration to adult humans ranges from about 0.1 to about 20 mg per kilogram of body weight. Preferably, the dose is from about 0.1 to about 10 mg per kilogram of body weight.
- In accordance with the present invention, there is also provided a method of treating neoplastic disease. The method comprises administering to a subject in need of such treatment, a therapeutically effective amount of a synthetic peptide hereinbefore described, including analogs and derivatives thereof. Thus for example, in one embodiment, an effective amount of a peptide comprising at least about ten contiguous amino acids as set forth in SEQ ID NO: 1 or an analog or derivative thereof, fused on its carboxy terminal end to a leader sequence may be administered to a subject. An effective amount of a peptide having the amino acid sequence as set forth in SEQ ID NO:2 or an analog or derivative thereof, fused on its carboxy terminal end to a leader sequence may also be administered to a subject. In accordance with a method of treatment, a mixture of synthetic peptides may be administered. Thus, for example, in addition to administering one of the peptides, or analogs or derivatives thereof hereinbefore described in an effective amount, mixtures of two or more peptides or analogs or derivatives hereinbefore described may be administered to a subject.
- In another aspect of the present invention, there are provided expression vehicles comprising replication incompetent Adenovirus (AdV) and having a promoter sequence operably linked to a coding sequence for a subject peptide, e.g., nucleotide sequences encoding those peptides described above i.e., SEQ ID NO: 1, SEQ ID NO: 2, or analogs or derivatives thereof as described fully above. As described above, more than one triplet (codon) can code for a particular amino acid residue. Table 2 shows the different combinations of codons which may be used to encode the amino acid sequence set forth in SEQ ID NO: 1. Table 3 shows the different combinations of codons which may be used to encode the amino acid sequence set forth in SEQ ID NO: 2. The amino acid sequence of SEQ ID NO: 1 I is shown in the top line of Table 2 in bold. The amino acid sequence of SEQ ID NO: 2 is shown in the top line of Table 3 in bold.
TABLE 2 Y R E Q I K R V K D S D D V P TAT AGA GAA CAA ATT AAG CGT GTT AAG GAT TCT GAT GAT GTT CCU TAC AGG GAG CAG ATC AAA CGC GTC AAA GAC TCC GAC GAC GTC CCC CGT ATA CGA GTA TCA GTA CCA CGC CGG TCG CCG CGA AGA AGT CGG AGG AGC -
TABLE 3 T I E D S Y R K Q V V I D ACT ATT GAA GAT TCT TAT CGT AAG CAA GTT GTT ATT GAT ACC ATC GAG GAC TCC TAC CGC AAA CAG GTC GTC ATC GAC ACA ATA TCA CGA GTA GTA ATA ACG TCG CGG AGT AGA AGC AGG - With respect to using nucleotide sequences encoding an analog or derivative of the amino acid sequences set forth in SEQ ID NOs: 1 or 2, one skilled in the art can refer to a table of the Genetic Code to select appropriate codons.
- A number of different classes of Ad vectors exist, and may be used in the methods of the present invention. Such Ad vectors are described in the literature and are readily available. See refs. 26 and 27. For example, in accordance with the present invention, an Ad vector may be used wherein the E1 and/or E3 genes have been removed, allowing the introduction of up to about 6.5 kb of transgene under the control of a heterologous promoter. See ref. 28. The defective E1 viruses may be propagated in an E1-complementing cell line, such as 293A cells, which cells provided the E1 gene in trans.
- Alternatively, an Ad vector may be used which in addition to lacking the E1 and E3 genes, also lack the E2 genes. See e.g., refs. 29 and 30.
- In addition, helper-dependent (HD) or gutted vectors deleted of most or all Ad coding sequences may be used in accordance with the present invention. Such vectors have great potential as gene transfer vectors for gene therapy since long term expression of therapeutic genes have been observed in mice as well as monkeys. The production of these gutted vectors in tissue culture requires a complementing helper virus to provide the proteins required for growth and assembly of the gutted vector in trans. See refs. 31-33. The disclosures of these papers and all references cited herein, are incorporated by reference as if fully set forth.
- As discussed above, in the present application directed to viral therapy of neoplastic disease, e.g., cancer, where the goal of the therapy is clearance of the target tissue, a host anti-Ad immune response targeting the vector infected cells is considered desirable. Thus, a gutted Ad vector may not be as preferred as some of the earlier generation vectors which elicit a stronger immune response in the host.
- An Ad vector may be based on a two-plasmid system, an entry plasmid and a destination vector made from E1 and E3 gene deleted adenoviral genome that contains a promoter operably linked to a nucleotide sequence encoding one of the peptides described above (SEQ ID NOs: 1 or 2) as well as analogs or derivatives thereof. The two-plasmid system is thoroughly described in refs. 28, 34, and 35. The E1 and E3 gene deletions prevent the virus from replicating in cells that do not express E1 and E3 proteins.
- For example, the entry plasmid contains the gene encoding a subject peptide which plasmid is cloned into the AdV via a lambda recombination reaction. The replication incompetent vector may be propagated in 293A cells, which are bioengineered human embryonic kidney cells transformed by AdV genomic DNA (Wang et al., 2000). This cell line supplements the deficient genes required for viral replication.
- The replication incompetent AdV vectors of the present invention can be constructed using standard recombinant DNA methods. Standard techniques for the construction of vectors are well-known to those of ordinary skill in the art and can be found in references such as Sambrook, Fritsch and Maniatis, 1989, or any of a number of laboratory manuals on recombinant DNA technology that are widely available. A variety of strategies are available for ligating fragments of DNA, the choice of which depends on the nature of the termini of the DNA fragments and can be readily determined by the skilled artisan. There are a number of different promoters which may be operably linked to the nucleotide sequences encoding a subject peptide. The promoter should function in the cells of a subject undergoing viral therapy with a subject AdV vector. There are a number of widely available promoters which may be used in the AdV vectors of the present invention. Examples of such promoters include, but are not limited to: CMV, SV40, RSV, LTR, beta-actin, EF-1 alpha, Gal-E1b, UbC, beta-Casein, EM-7, EF, TEF1, CMV-2 and Bsd. In a preferred embodiment, the promoter is CMV.
- The recombinant vectors may then be subsequently rebuilt into intact viruses using standard methods such as that described in ref. 36, which is incorporated by reference herein as if fully set forth. Other references which describe rebuilding recombinant vectors into intact viruses include ref. 37, also incorporated by reference herein as if fully set forth.
- Once a subject AdV vector is constructed, it may be used to treat patients suffering from different types of cancer. Therapy of neoplastic disease (cancer) may be accomplished by administering to a patient suffering from such disease a composition comprising the adenovirus vectors of the present invention. A human patient or nonhuman mammal suffering from a carcinoma may be treated by administering an effective antineoplastic dosage of a subject vector. The subject AdV vectors comprising a promoter operably linked to a nucleotide encoding a subject peptide are useful in treating a number of different cancers including but not limited to breast cancer, prostate cancer, lung cancer, cervical cancer, colon cancer, melanoma, pancreatic cancer, all solid tissue tumors (epithelial cell tumors) and cancers of the blood including but not limited to lymphomas and leukemias. In a preferred embodiment, the cancer to be treated is pancreatic cancer.
- Suspensions of infectious adenovirus particles may be applied to neoplastic tissue by various routes, including intravenous, intraperitoneal, intramuscular, subdermal, and topical. Other routes include inhalation as a mist (e.g., in treating lung cancer) or direct application such as by swabbing a tumor site, e.g., cervical carcinoma, or during surgery if necessary. An adenovirus suspension may also be administered by infusion, e.g., into the peritoneal cavity for treating ovarian cancer. Other suitable routes include direct injection into a tumor mass, such as a breast tumor, via enema (colon cancer) or catheter in the case of bladder cancer.
- The actual dosage may vary from patient to patient based on the age, weight, type and progression of cancer, location of tumor(s), presence of metastases, and overall condition of the patient. It can generally be said, however, that an adenovirus suspension containing about 103 to about 1015 or more virion particles per ml may be administered. Re-administration of the AdV vector suspension may be performed as necessary.
- The AdV vectors of the present invention may be admixed in a sterile composition containing a pharmacologically effective dosage of one or more subject AdV vectors. Generally speaking, the composition will comprise about 103 to about 1015 or more AdV particles in an aqueous suspension. The sterile composition is usually an aqueous solution such as e.g., water, buffered water, 0.4% saline, 0.3% glycine and the like. Such compositions may contain pharmaceutically acceptable auxiliary substances e.g., to mimic physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate, etc. The compositions may also comprise excipients that enhance infection of cells by the subject AdV vectors.
- The following examples further illustrate the invention, and are not meant in any way to limit the scope thereof.
- Peptides. Three peptides, attached to the penetratin leader sequence, KKWKMRRNQFWVKVQRG, designated as “leader,” on their carboxyl terminal ends, were synthesized by solid phase methods: the two ras-p21 peptides corresponding to p21 residues 35-47 (TIEDSYRKQVVID) and 96-110 (YREQIKRVKDSDVP), denoted as PNC-7 and PNC-2, respectively; and the negative control X13 sequence (from mammalian cytochrome P450) (MPFSTGKRIMLGE). With the penetratin sequence attached to their carboxyl terminal ends, each of these peptides is denoted as PNC-7-leader, PNC-2-leader and X13-leader, respectively. All peptides were purified to >95 percent purity.
- Plasmids. Construction of the plasmids that express the Ha-ras Val 12-p21 peptide sequence 96-110 (PNC2) and the control X13 peptide from mammalian cytochrome p450 has been described (21). The nucleotide sequences for PNC-2 and X13 peptides are given in ref. 21. The nucleotide sequences, including the 5′ sticky end, used to encode the PNC-7 peptide were 5′-T CGA GCC ACC ATG GGG ACC GAG GAT TCT TAC AGA AAA CAA GTG GTT ATA GAT TAA C and 3′-CGG TGG TAC CCC TGG TAT CTC CTA AGA ATG TCT TTT GTT CAC CAA TAT CTA ATT GGG CC. Briefly, all of the oligonucleotides (plus and minus strands) encoding each sequence (PNC-2, PNC-7 and X13) and including a Not1(5′) and Kpn1(3′) restriction site were synthesized by solid phase methods; sequential degradation of each oligonucleotide confirmed its sequence. These oligonucleotides were then incorporated into the pOPRSVI/MCS vector from the Lac switch II isopropylthioglucose (IPTG)-inducible mammalian expression system from Stratagene (LaJolla, Calif.) by cutting this vector with Kpn1 and Not1 and then ligating the oligomers into the plasmid with T4 ligase overnight at 4° C. The vectors containing the cloned oligonucleotides were transfected into DH5a competent cells (Gibco-BRL, Grand Island, N.Y.) and spread on LBamp plates for overnight incubation. Colonies from each plate were selected and grown at 37° C. in 5 ml of LBamp liquid media. DNA was prepared by the Qiagen (Valencia, Calif.) miniprep procedure, cut with Kpn1/Not1, and run on 2 percent agarose/TAE to estimate the size of the inserts. Clones with the correct size DNA inserts were regrown in 500 ml LBamp overnight at 37° C., and plasmids were then purified by the Qiagen maxiprep method. An aliquot of each positive DNA was sequenced using T3 or T7 primers.
- We note that, in our former paper describing these plasmids, an error occurred in the 5′ nucleotide sequence encoding PNC-2. This sequence should have read:
- Upper
5′-CGCCGCCATGGGCTACAGGGAGCAGATCAAGAGGGTGAAGGACAGCG ACGACGTGCCCTA - In our original paper the highlighted C was inadvertently omitted.
- Cells. As described in several prior publications (16,17,20), we have developed two cell lines, one a normal contact-inhibited line of rat pancreatic acinar cells, called BMRPA1.430 (BMRPA1) cells and the other a pancreatic acinar carcinoma obtained by transfection of BMRPA1 cells with a plasmid containing an activated human K-ras oncogene [single base mutation at codon 12, valine substitution for the wild type glycine in the ras protein (K-rasval12); a kind gift of Dr. M. Perucho (CIBR, La Jolla, Calif.)] and a neomycin resistance gene. BMRPA1 cells have an epithelial cell phenotype, form acinar structures in culture, have no c-ki-ras nor p53 mutations, are unable to grow in anchorage-independent conditions and do not form tumors in Nu/Nu mice (17). In addition, they phenotypically maintain differentiated cell functions such as continued enzyme production and activation of zymogen secretion by secretagogue. On the other hand, ras-transformed BMRPA1 or TUC-3 cells, selected after transfection for their basis resistance to G418 and the overexpression of K-rasval12, no longer display an epithelial cell phenotype and acinar cell functions; they grow significantly faster than BMRPA1 cells, have a transformed spindle cell phenotype and form colonies under anchorage-independent conditions in vitro and tumors in vivo in nude mice.
- Peptide Incubation Experiments. Approximately 300,000 cells (either BMRPA1 or TUC-3) were plated in each of six wells and were allowed to adhere overnight. In one set of experiments, the initial media consisted of DMEM with 10% fetal bovine serum that contained no peptide. In another set of experiments, the initial media contained peptide. In the first set, media containing peptide was added after 24 hours; in both sets, after the first 24 hours, the media was changed every 24 hours and always contained peptide at a particular concentration. Cells were observed daily for three weeks for changes in morphology and growth characteristics. Peptides were present at concentrations of 1, 10, 50, 100 and 100 ug/ml.
- Transfection Experiments. Approximately 300,000 TUC-3 cells were plated overnight in a six-well dish and were allowed to adhere overnight. To three wells, 5.5 ug of either PNC-2 or PNC-7 plasmid were added and, to the other three wells, 5.6 ug of X13 plasmid were added. To each of these wells, Superfect transfection agent (Qiagen) was added, using the Qiagen protocol, to enhance transfection efficiencies. We found that a 1:2 ratio of plasmid DNA to Superfect reagent gave the highest transfection efficiencies when compared with 1:5 and 1:10 ratios. Treated cells were then plated in selective medium containing 100 ug/ml G418 and 200 ug/ml of ampicillin together with 1 mM isopropylthioglucose (IPTG). The cells were washed and the medium changed every 24 hours. Viable cells were observed for morphology and growth characteristics over a two-week period.
- Explantation of Cells into Nude Mice. To evaluate cells that appeared to be morphologically revertant to the normal phenotype, approximately 5×106 morphologically revertant TUC-3 cells treated for two weeks with 100 ug/ml of PNC-2 were injected subcutaneously into the posterior cervical fatpad of each of five Nu/Nu mice. Similarly, 5×106 untreated TUC-3 cells were explanted into another five Nu/Nu mice. Daily observations, over a 120 day period, were made on both sets of mice to determine if tumor nodules appeared at the site of injection.
- Effects of Peptides on TUC-3 and BMRPA1 Cells.
FIGS. 1A and 1C show the morphology of untreated TUC-3 pancreatic carcinoma cells and their normal counterpart BMRPA1 pancreatic acinar cells, respectively. The former are not-contact-inhibited and do not form monolayers but are “heaped up” on one another with considerable pleomorphism between cells and indistinct cell boundaries. The latter form contact-inhibited monolayers with well-defined cell boundaries. Panel B inFIG. 1 shows that incubation of the X13-leader control peptide with TUC-3 cells for two weeks has no effect on their transformed morphologies. As expected, incubation of this control peptide with BMRPA1 cells has no effect (not shown). Incubation of BMRPA1 cells with PNC2-leader peptide likewise has no effect on the morphology of these cells (Panel D in FIG. 1). - Effects of PNC-2-Leader and PNC-7-Leader on TUC-3 Cells. Treatment of TUC-3 cells with PNC-2-Leader (100 ug/ml) for 1 week results in a change in cell morphology as shown in
FIG. 2A . As can be seen in this figure, the cells appear very similar to BMRPA1 cells (FIG. 1C ); the cells grow into contact-inhibited monolayers and show distinct cell boundaries. This effect was achieved at concentrations as low as 1 ug/ml. At this low concentration, complete phenotypic reversion was achieved after two weeks. After one day of treatment, foci of acinar cellular differentiation appear; an example of a focus of revertant cells is shown inFIG. 2B . - Treatment of TUC-3 cells with PNC-7-leader peptide at concentrations of 100 and 200 ug/ml likewise resulted in phenotypic reversion of the cells as shown in
FIG. 2C for cells growing into confluence. In contrast to the results obtained with PNC-2-leader peptide, complete reversion after two weeks of incubation of TUC-3 cells with PNC-7-leader was achieved only at concentrations $ 100 ug/ml. - Transfection of TUC-3 cells with Inducible Plasmids Encoding PNC-2 and X13 Peptides. Since both PNC-2- and 7-leader peptides induce phenotypic reversion while X13-leader control peptide does not, we conclude that induction of reversion is specific to the two ras-p21 peptides and that the leader sequence, besides enabling membrane penetration, does not contribute to the induction of phenotypic reversion. To test the latter conclusion further, i.e. that PNC-2 and PNC-7 peptides alone, without the leader sequence, can induce phenotypic reversion, we prepared plasmids encoding these and the negative control X13 sequences and transfected them into TUC-3 cells. In a previous publication, we described the preparation of these plasmids which simultaneously confer G418 and ampicillin resistance under the lac promoter (21). We co-microinjected these plasmids with Val 12-p21 protein into Xenopus laevis oocytes and found that oocytes injected with either PNC-2 or PNC-7 but not X13 plasmid, in the presence of isopropylthioglucose (IPTG), did not undergo maturation (21). When we transfected each of these plasmids into TUC-3 cells growing in the selective medium, viable cells expressing X13 peptide continued to grow in the presence of IPTG and exhibited the transformed morphology shown in Panel A in
FIG. 1 . - On the other hand, during a period of two weeks post-transfection with PNC-2 plasmid, all viable TUC-3 cells became progressively differentiated as shown in panels A (after 1 week) and B (after 2 weeks) of
FIG. 3 . As can be seen in panel A ofFIG. 3 , after one week, many cells adopted the untransformed phenotype (center and left of panel A) while some cells exhibited the transformed phenotype (right side of figure). At the end of two weeks, all cells exhibited the morphology shown in panel B ofFIG. 3 . As can be seen in this figure, the cells have distinct cell boundaries and exhibit the same morphology as untransformed BMRPA1 cells in growth phase. These cells eventually grew into contact-inhibited monolayers with a morphology that was the same as shown inFIG. 1 , panel C. - Transfection of TUC-3 cells with PNC-7 plasmid exhibited the phenotype shown in Panel C of
FIG. 3 . These cells, which are seen to be enlarged with enlarged nuclei but have distinct cell boundaries, grew only sluggishly to confluence, and strongly resemble viable revertant cells that resulted from the treatment of TUC-3 cells with the anti-protein kinase C inhibitor, CGP 41 251 (16). These cells fail to grow in soft agar (16). - Morphologically Revertant Cells Do Not Form Tumors in Nude Mice. To test whether morphologically revertant cells were functionally revertant, 5×106 cells treated for two weeks with 100 ug/ml PNC-2-leader peptide were explanted subcutaneously into each of five nude mice while the same number of untreated TUC-3 cells were concomitantly similarly explanted. The results, shown in Table 4, indicate that morphologically revertant cells fail to form tumors up to two months after reversion while untreated cells form tumors rapidly (within 1 week). At three weeks, all of the nude mice injected with untreated TUC-3 cells were found to have large primary nodules and multiple other nodules and metastatic cancer, with ascites and other sites. Similar results (not shown) to those obtained with PNC-2-leader peptide-treated TUC-3 cells were obtained for morphologically revertant cells resulting from TUC-3 cells treated with PNC-7-leader peptide.
- Both PNC-2 and PNC-7 peptides block mitogenic signaling by oncogenic ras-p21 in oocytes but have little effect on signaling by insulin-activated wild-type cellular p21 (5). This finding suggested to us that growth of mammalian cells transformed by oncogenic ras-p21 can be selectively blocked by these peptides without affecting normal growth processes.
- Both PNC-2 and PNC-7 peptides induce 100 percent phenotypic reversion of ras-transformed pancreatic (TUC-3) cancer cells and have no apparent effects on the growth of the normal counterpart BMRPA1 cell line. This effect is specific since neither the X13-leader control peptide nor the plasmid encoding it has any effect on TUC-3 cell proliferation. That the PNC-2 and 7 sequences and not the leader sequence, are responsible for this effect is supported by the absence of any effect on TUC-3 cells of the X13-leader peptide and by the finding that the plasmids encoding PNC-2 and PNC-7 without the leader sequence induces the same observed phenotypic reversion.
- A surprising finding is that the phenotypic reversion induced by both peptides occurs over a prolonged period of time (120 days), as revealed by the absence of any tumor growth of these cells when explanted into nude mice. Since the half-lives of these peptides is expected to be much shorter than two months, their effects are not likely to be caused by their continuing presence. Significantly, the prolonged reversion effect appears to be independent of the site of action of these peptides since PNC-2 blocks oncogenic ras-p21-JNK interactions (5,11,12) while PNC-7 blocks oncogenic ras-p21-raf interactions (14,15).
- It is possible that both peptides activate rapid expression of other proteins that interfere with oncogenic ras-induced cell proliferation. This type of effect has been observed in human pancreatic carcinoma cells induced to revert by the agent azatyrosine that is known to induce expression of the ras recision gene (rrg) (22,23) and which also selectively blocks oncogenic ras-p21-induced oocyte maturation (13). Another possibility is that each peptide, by blocking signal transduction unique to the oncogenic ras-p21-induced pathway, allows other inhibitory processes continuously to deactivate critical elements in this pathway.
- The activity of both PNC-2 and PNC-7 peptides contrasts with that of another oncogenic-ras-p21-specific inhibitor, the staurosporine derivative, CGP 41 251, that selectively inhibits protein kinase C (PKC)(24). This agent blocks oncogenic ras-p21-induced oocyte maturation but has much less effect on insulin-activated wild-type ras-p21-induced maturation (13). In contrast to the results with PNC-2- and 7-leader peptides, this agent induces both necrosis and phenotypic reversion of TUC-3 cells (16) and is cytotoxic to BMRPA1 cells, although surviving cells grow rapidly into stable monolayers (16). Cytotoxicity of CGP 41 251 may be due to its blocking critical PKC-dependent cell processes that may not be involved in cell proliferation.
- In prior studies, it had been found that PKC and JNK require each others presence on the oncogenic ras-p21 signal transduction pathway (25). In addition, PNC-2 synergizes with CGP 41 251 in TUC-3 cells in that it significantly lowers its IC50 for induction of cytotoxicity to a level that is mot toxic to BMRPA1 cells (16). This finding suggests the possibility that PNC-2, which blocks ras-p21 induced activation of JNK (5), inhibits the mutual PKC-JNK activation cycle thereby removing an important activation process, resulting in facilitation of inhibition by CGP 41 251.
- Evidently PNC-2 and PNC-7 exert a more selective effect that is specific to the oncogenic ras-p21 pathway, hence the lack of cytotoxicity of these peptides. This finding indicates that these peptides are useful in the treatment of ras-induced human tumors.
TABLE 4 Growth of TUC-3 Cells and Morphologically Reverted TUC-3 Cells Treated with PNC-2 Peptide Explanted into Nude Mice.a Tumor Nodule Size (mm)b Time (days) TUC-3 Cells PNC-2-Treated TUC-3 0 0.0 0.0 7 4.8 ± 1.8 0.0 14 11.7 ± 2.3 0.0 21 14.8 ± 3.6c 0.0 28 — 0.0 42 — 0.0 56 — 0.0
aAn amount of 5 × 106 TUC-3 cells was injected into the posterior cervical fat pad of each of 5 nude mice, and the same number of TUC-3 cells treated for 2 weeks with PNC-2-leader peptide was injected into the posterior cervical fat pad of another 5 nude mice.
bExpressed as the means ± SD for the five mice in each group.
cMultiple nodules and tumor metastasis with ascites occurred in all five mice at this time. Further observations were therefore discontinued.
- In these experiments, the Ha-ras form of Val 12-p21 was injected into oocytes (100 ug/ml, 50 nl per oocyte) either alone or together with inhibitory p21 peptide (residues 96-110 shown in this figure). Mature oocytes (non-matured oocytes were used with inhibitory p21 96-110 peptide since it strongly inhibits maturation) were collected after 24 hours (about 50% maturation, approximately 100 oocytes) and subjected to lysis in buffer consisting of 0.35 M LiCl, 50 mM HEPES, pH 7.6, 1 mM EGTA, 1 mM dithiothreitol (DDT), 2 mM MgCl, 50 mM NPP, 1 mM sodium vanadate, and an inhibitor ‘cocktail’ consisting of 1 ug/ml each of the protease inhibitors: pepstatin, leupeptin and aprotinin; and the phosphatase inhibitors: 1 mM sodium orthovanadate and 5 mM sodium fluoride). The lysate was centrifuged for 15 min at 17000×g at 4° C., and the supernatant was either used directly. The lysates were then subjected to immunoprecipitation using an anti-Ha-ras antibody (CalBiochem). In this procedure, cell lysate was first pre-cleared by incubation with 50 ul of protein A beads for 1 hr at room temperature, followed by centrifugation. Anti-Ha-ras antibody was added to the lysate such that 0.1 ug antibody was added per 250 ug of pre-cleared lysate protein. A volume of 25 ul protein A agarose beads (Sigma) was then added to the incubation mixture, and the resulting mixture was incubated overnight at 4° C., after which the mixture was centrifuged, and the immunoprecipitate was washed three times with 0.5 ml of kinase buffer as described above. Immunoprecipitates were subjected to SDS-PAGE as described above in the preceding paragraph and blotted with anti-Ha-ras (1:2000 with 0.25% BSA), anti-raf (CalBiochem, San Diego, Calif.), diluted 1:2000 with 0.25% BSA, anti-JNK polyclonal antibody (1:2000), anti-MEK (CalBiochem) and anti-MAPK, diluted 1:2000 with 0.25% BSA. All incubations were performed as described in the preceding paragraph, i.e., for 12 hr at 4° C., after which the membranes were washed three times with Tris-buffered saline with Triton (TBS-T) and incubated with anti-rabbit secondary antibody (Pierce, Rockford, Ill.) at 1:20000 dilution. Detection was accomplished using the ECL chemiluminescence detection kit (Pierce). An identical set of experiments was performed with oocytes incubated for 24 h with 10 ug/ml insulin (Sigma, St. Louis, Mo.).
-
FIG. 4A shows the results of injected Val 12-p21 forming a complex with raf, MEK, JNK and MAPK (ERK). Oocytes that matured after being injected with Val 12-Ha-ras-p21 were lysed and immunoprecipitated with anti-Ha-ras antibody. The immunoprecipitate was blotted with anti-raf (lane 2), anti-MEK (lane 4), anti-JNK (lane 6) and anti-MAPK (lane 8). Oocytes were also injected with Val 12-p21 and ras-p21 inhibitory peptide 96-110, labeled as PNC-2, lysed and subjected to immunoprecipitation with anti-Ha-ras. These immunoprecipitates were then blotted with anti-raf (lane 1), anti-MEK (lane 3), anti-JNK (lane 5) and anti-MAPK (lane 7). As can be seen in this figure, raf, MEK, JNK and MAPK all co-precipitate withy Ha-Val 12-ras-p21. On the other hand, in the presence of the two inhibitory peptides, none of these proteins precipitated with Val 2-ras-p21 although there is still some binding to raf. - The same experiment, the results of which are shown in
FIG. 4A was performed on oocytes that were induced to mature with insulin.FIG. 4B shows blots for raf (A), MEK (B), JNK(C) and MAPK (D). The first lane for each of these four sets presents the results for the blots of whole cell lysate to demonstrate the presence of each protein. The second lane in each set of blots shows the results of blotting for each protein in the anti-Ha-ras-p21 immunoprecipitate. As can be seen in this figure, only raf co-precipitates with endogenous Ha-ras-p21 in the oocytes. Thus oncogenic, but not activated wild-type, ras-p21 forms a large complex with vital mitogenic signal transducing proteins and induces activation of raf-MEK-MAP kinase (MAPK or ERK) and JNK-jun pathways while insulin-activated wild-type p21 (at least the Ha-ras form) forms a complex only with raf. -
- 1. Barbacid, M. (1987) ras Genes. Ann. Rev. Biochem. 56, 779-827.
- 2. Pincus, M. R., Brandt-Rauf, P. W., Koslosky, W. and Appruzzese, W. (2001) Cell Biology and Early Tumor Detection (Chapter 64) in Henry, J. B., Ed., Clinical Diagnosis and Management by Laboratory Methods, Nineteenth Edition, W.B. Saunders, Philadelphia, 1344-1354.
- 3. Birchmeier, C., Broek, D., and Wigler, M. (1985) ras proteins can induce meiosis in Xenopus oocytes. Cell 43, 615-621.
- 4. Deshpande, A. K. and Kung, H.-F. (1987) Insulin induction of Xenopus laevis oocyte maturation is inhibited by monoclonal antibody against p21 ras proteins. Mol. Cell. Biol. 1, 1285-1288.
- 5. Pincus, M. R., Brandt-Rauf, P. W., Michl, J. and Friedman, F. K. (2000) ras-p21-Induced Cell Transformation: Unique Signal Transduction Pathways And Implications for the Design of New Chemotherapeutic Agents. Cancer Invest. 18, 39-50.
- 6. Chen, J. M., Monaco, R., Manolatos, S., Brandt-Rauf, P. W., Friedman, F. K., and Pincus, M. R. (1997) Molecular Dynamics on Complexes of ras-p21 and its Inhibitor Protein, rap-1A, Bound to the ras-Binding Domain of the raf-p74 Protein. Identification of Effector Domains in the raf Protein. J. Protein Chem. 16, 631-635.
- 7. Chung, D., Amar, S., Glozman, A., Chen, J. M., Friedman, F. K., Robinson, R., Monaco, R., Brandt-Rauf, P. W., Yamaizumi, Z. and Pincus, M. R. (1997) Inhibition of Oncogenic and Activated Wild-Type ras-p21 Protein-Induced Oocyte Maturation by Peptides from the ras Binding Domain of the raf-p74 Protein, Identified from Molecular Dynamics Calculations. J. Protein Chem. 16, 619-629.
- 8. Chen, J. M., Rijwani, K., Friedman, F. K., Hyde, M. J. and Pincus, M. R. (2000) Identification, Using Molecular Dynamics, of an Effector Domain of the ras-Binding Domain of the raf-p74 Protein That Is Uniquely Involved in Oncogenic ras-p21 Signaling. J. Protein Chem. 7, 543-549.
- 9. Chen, J. M., Friedman, F. K., Hyde, M. J., Monaco, R. and Pincus, M. R. (2000) Molecular Dynamics Analysis of the Structures of ras-Guanine Nucleotide Exchange Protein (SOS) Bound to Wild-Type and Oncogenic-ras-p21. Identification of Effector Domains of SOS. J. Protein Chem. 18, 867-874.
- 10. Chie, L., Chen, J. M., Friedman, F. K., Chung, D. L., Amar, S. Michl, J., Yamaizumi, Z. and Pincus, M. R. (2000) Inhibition of Oncogenic and Activated Wild-Type ras-p21 Protein-Induced Peptides from the Guanine-Nucleotide Exchange Protein, SOS, Identified from Molecular Dynamics Calculations. Selective Inhibition of Oncogenic ras-p21. J Protein Chem. 18, 875-879.
- 11. Adler, V., Pincus, M. R., Brandt-Rauf, P. W. and Pincus, M. R. (1995) Complexes of ras-p21 with jun-N-Kinase and c-jun Proteins. Proc. Natl. Acad. Sci. USA 92, 10585-10589.
- 12. Adler, V., Pincus, M. R., Polatskaya, A., Montano, X., Friedman, F. K. and Ronai, Z. (1996) Activation of c-jun NH2 Kinase by UV Irradiation Is Dependent on p21ras J. Biol. Chem. 211, 23304-23309.
- 13. Chung, D. L., Joran, A., Friedman, F. K., Robinson, R. R., Brandt-Rauf, P. W., Weinstein, I. B., Ronai, Z. A., Baskin, L., Dykes, D. C., Murphy, R. B., Nishimura, S. Yamaizumi, Z., and Pincus, M. R. (1992) Evidence that Oocyte Maturation Induced by an Oncogenic ras p21 Protein and Insulin Is Mediated by Overlapping Yet Distinct Mechanisms. Exp. Cell Res. 203, 329-335.
- 14. Chie, L., Friedman, F. K., Kung, H.-F., Lim, M. C. M., Chung, D. L. and Pincus, M. R. (2002) Identification of the Site of Inhibition of Mitogenic Signaling by Oncogenic ras-p21 by a ras Effector Peptide. J. Protein Chem., in press.
- 15. Chie, L., Chen, J. M., Friedman, F. K., Chung, D. L., Amar, S. Michl, J., Yamaizumi, Z., Brandt-Rauf, P. W. and Pincus, M. R. (2000) Identification of the Site of Inhibition of Oncogenic ras-p21-Induced Signal Transduction by a Peptide from a ras Effector Domain. J Protein Chem. 18, 881-884.
- 16. Way, D., Smith, S., Sivendran, S., Kanovsky, M., Brandt-Rauf, P. W., Chung, D. L., Michl, J. and Pincus, M. R. (2002) A Protein Kinase C Inhibitor Induces Phenotypic Reversion of ras-Transformed Pancreatic Cancer Cells and Cooperatively Blocks Tumor Cell Proliferation with an Anti-ras Peptide. Cancer Chemother. Pharmacol., in press.
- 17. Bao, L. Y., Thelmo, W. L., Somnay, S., Madahar, C. and Michl, J. (1994) Characterization of an Acinar Cell Line, BMRPA.430, Derived from Adult Rat Pancreas. FASEB J. 8, 64A.
- 18. Almoguerra, C., Shibata, D., Forrester, K., Martin, J., Amheim, M. and Perucho, M. (1988) Most human carcinomas of the endocrine pancreas contain mutant c-K-ras genes. Cell 53, 813-815.
- 19. Derossi, D., Chassaing, G., Prochiantz, A. (1998) Trojan Peptides: The Penetratin System for Intracellular Delivery. Trends Cell Biol. 8, 84-87.
- 20. Kanovsky, M., Raffo, A., Drew, L., Rosal, R., Do, T., Friedman, F. K., Rubinstein, P., Visser, I., Robinson, R., Brandt-Rauf, P. W., Michl, J., Fine, R. L. and Pincus, M. R. (2001) Peptides from the Amino Terminal mdm-2 Binding Domain of p53, Designed from Conformational Analysis, Are Selectively Cytotoxic to Transformed Cells. Proc. Natl. Acad. Sci. USA 98, 12438-12443.
- 21. Kovac, C., Chie, L., Morin, J., Friedman, F. K., Robinson, R., Chung, D. L., Kanovsky. M., Flom, J., Brandt-Rauf, P. W., Yamaizumi, Z., Michl, J. and Pincus, M. R. (2000) Plasmid Expression of a Peptide that Selectively Blocks Oncogenic ras-p21-Induced Oocyte Maturation. Cancer Chemother. Pharmacol. 45, 441-449.
- 22. Shindo-Okada, N., Makabe, O., Nagahara, H., and Nishimura, S. (1989) Permanent conversion of mouse and human cells transformed by activated ras or raf genes to apparently normal cells by treatment with the antibiotic azatyrosine. Mol. Carcin. 2, 159-167.
- 23. Contente, S., Kenyon, K., Rimoldi, D. and Friedman, R. M. (1990) Expression of gene rrg is associated with reversion of NIH 3T3 transformed by LTR-c-H-ras. Science 249, 796-798.
- 24. Meyer, T., Regenass, U., Fabbro, D. Alteri, E., Rosel, J., Muller, M., Caravatti, G., and Matter, A. (1989) A derivative of staurosporine (CPG 41 251) shows selectivity for protein kinase C inhibition and in vivo anti-tumor activity. Int. J. Cancer 43, 851-856.
- 25. Chung, D., Villafania, A., Anwar, K., Amar, S., Rijwani, K., Kung, H.-F., Adler, V. Ronai, Z. Brandt-Rauf, P. W., Yamaizumi, Z. and Pincus, M. R. (1998) Mutual Dependence of jun-N-Terminal Kinase and Protein Kinase C on the Oncogenic ras-p21 Protein-Induced Mitogenic Signaling Pathway. Med. Sci. Res. 26, 147-150.
- 26. Bramson, J. L., Graham, F. L. and Gauldie, J.; Curr. Opin. Biotechnol. 1995, 6: 590-595: The use of adenoviral vectors for gene therapy and gene transfer in vivo.
- 27. Hitt, M. M., Addison, C. L. and Graham, F. L.; Adv. Pharmacol. 1996, 40: 137-206: Human adenovirus vectors for gene transfer into mammalian cells.
- 28. Graham F L, Smiley, J., Russel, W. C., and Narin, R. (1977). Characteristics of a Human Cell Line Trasnform3ed by DNA from
Human Adenovirus Type 5. J. Gen. virol. 36, 59-74. - 29. Lusky, Christ et al., 1998 “In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted” J. Virol. 72(3):2022-3.
- 30. O'Neal, Zhou et al., 1998 “Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing alpha1-antitrypsin after systemic delivery” Human Gene Therapy 9(11):1597-98.
- 31. Chen, Mack et al., 1997 “Persistance in muscle of an adenoviral vector that lacks all viral genes” Proc. Natl. Acad. Sci. USA 94(4):1414-1419.
- 32. Morral, N., R. J. Parks, et al. (1998) “High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha 1-antritrypsin with negligible toxicity.” Human Gene Therapy 9(18):2709-2716.
- 33. Morral, O'Neal et al., 1999 “Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons.” Proc. Natl. Acad. Sci. USA 96(22):12816-12821.
- 34. Kozarsky, K F and Wilson J M (1993) Gene Therapy: Adenovirus Vectros. Curr. Opin. Genet. Dev. 3, 499-503.
- 35. Krougliak V, and Graham F L (1995). Development of Cell Lines Capable of Complementing E1, E4, and Protein IX
Defective Adenovirus Type 5 Mutants. Hum. Gene Ther. 6, 1575-1586. - 36. Stow, N. D., 1981, “Cloning a DNA fragment from the left-hand terminus of the
adenovirus type 2 genome and its use in site-directed mutagenesis” J. Virol. 37:171-180. - 37. Crouzet J, L. Naudin et al., 1997, “Recombinational construction in Escherichia coli of infectious adenoviral genomes” Proc. Natl. Acad. Sci. USA 94(4):1414-1419.
Claims (26)
1. A peptide comprising at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO:1), or an analog or derivative thereof, wherein said peptide, analog, or derivative thereof comprises a membrane-penetrating leader sequence attached thereto.
2. A peptide comprising at least about ten contiguous amino acids of the amino acid sequence: TIEDSYRKQVVID (SEQ ID NO:2) or an analog or derivative thereof wherein said peptide, analog, or derivative thereof comprises a membrane-penetrating leader sequence attached thereto.
3. The peptide, analog or derivative thereof of claim 1 or 2 wherein the membrane-penetrating leader sequence is located at the carboxy terminal end of the peptide, analog, or derivative thereof.
4. The peptide, analog or derivative thereof according to claim 1 or 2 wherein the leader sequence comprises predominantly positively charged amino acid residues.
5. The peptide, analog or derivative thereof according to claim 1 or 2 wherein the leader sequence is at least one of penetratin, Arg 8, TAT of HIV1, D-TAT, R-TAT, SV40-NLS, nucleoplasmin-NLS, HIV REV, FHV coat, BMV GAG, HTLV-II (REX), CCMV GAG, P22N, Lambda N, Delta N, yeast PRP6, human U2AF, human C-FOS, human C-JUN, yeast GCN4, or p-vec.
6. The peptide, analogue, or derivative thereof of claim 5 wherein the penetratin leader sequence has the amino acid sequence: KKWKMRRNQFWVKVQRG (SEQ ID NO:3).
7. A pharmaceutical composition comprising at least one of the peptides or analogs or derivatives thereof comprising a membrane-penetrating leader sequence according to claim 1 or 2 admixed with a pharmaceutically acceptable carrier.
8. A pharmaceutical composition comprising at least one of the peptides, analogs, or derivatives thereof comprising a membrane-penetrating leader sequence according to claim 3 admixed with a pharmaceutically acceptable carrier.
9. A pharmaceutical composition comprising at least one of the peptides, analogs, or derivatives thereof comprising a membrane-penetrating leader sequence according to claim 5 admixed with a pharmaceutically acceptable carrier
10. A method of treating a patient suffering from cancer, said method comprising administering to said patient a therapeutically effective amount of at least one peptide, analog or derivative thereof comprising a membrane penetrating leader sequence according to claim 1 or 2 .
11. A method of treating a patient suffering from cancer, said method comprising administering to said patient a therapeutically effective amount of at least one peptide, analog, or derivative thereof comprising a membrane penetrating leader sequence according to claim 3 .
12. A method of treating a patient suffering from cancer, said method comprising administering to said patient a therapeutically effective amount of at least one peptide, analog, or derivative thereof comprising a membrane penetrating leader sequence according to claim 4 .
13. A method of treating a patient suffering from cancer, said method comprising administering to said patient a therapeutically effective amount of the pharmaceutical composition of claim 7 .
14. A method of treating a patient suffering from cancer, said method comprising administering to said patient a therapeutically effective amount of the pharmaceutical composition of claim 8 .
15. The method of claim 10 wherein the treatment results in phenotypic reversion of cancerous cells into non-cancerous cells.
16. The method of claim 11 wherein the treatment results in phenotypic reversion of cancerous cells into non-cancerous cells.
17. The method of claim 12 wherein the treatment results in phenotypic reversion of cancerous cells into non-cancerous cells.
18. The method of claim 13 wherein the treatment results in phenotypic reversion of cancerous cells into non-cancerous cells.
19. The method of claim 14 wherein the treatment results in phenotypic reversion of cancerous cells into non-cancerous cells.
20. A replication incompetent Adenovirus (AdV) vector comprising a promoter sequence operably linked to a nucleotide sequence encoding a peptide, wherein the peptide comprises at least about ten contiguous amino acids of the amino acid sequence: YREQIKRVKDSDDVP (SEQ ID NO: 1), or an analog or derivative thereof.
21. A replication incompetent Adenovirus (AdV) vector comprising a promoter sequence operably linked to a nucleotide sequence encoding a peptide, wherein the peptide comprises at least about ten contiguous amino acids of the amino acid sequence: TIEDSYRKQVVID (SEQ ID NO: 2), or an analog or derivative thereof.
22. A method of treating a patient suffering from cancer, said method comprising administering to the patient, a therapeutically effective amount of the AdV vector of claim 20 or 21 .
23. A method of inducing phenotypic reversion of cancerous cells to non-cancerous cells in a subject, said method comprising administering to the subject, a therapeutically effective amount of the AdV vector of claim 20 or 21 .
24. The method of claim 23 wherein the cancerous cells are colon cancer cells, pancreatic cancer cells, non-small cell carcinoma of the lung, gastric cancer cells, bladder cancer cells or mesothelioma cells.
25. The method of claim 10 wherein the cancer is a ras-induced cancer.
26. The method of claim 25 wherein the ras-induced cancer is colon cancer, pancreatic cancer, non-small cell carcinoma of the lung, gastric cancer, bladder cancer or mesothelioma.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/142,051 US20060105956A1 (en) | 2004-05-28 | 2005-05-31 | Phenotypic reversion of pancreatic carcinoma cells |
US11/825,242 US20080153754A1 (en) | 2004-05-28 | 2007-07-05 | Phenotypic reversion of pancreatic carcinoma cells |
US12/488,209 US20090286861A1 (en) | 2004-05-28 | 2009-06-19 | Phenotypic reversion of pancreatic carcinoma cells |
US13/677,876 US9115213B2 (en) | 2004-05-28 | 2012-11-15 | Phenotypic reversion of pancreatic carcinoma cells |
US14/809,666 US20170065684A9 (en) | 2004-05-28 | 2015-07-27 | Phenotypic reversion of pancreatic carcinoma cells |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US57513104P | 2004-05-28 | 2004-05-28 | |
US57584604P | 2004-06-01 | 2004-06-01 | |
US11/142,051 US20060105956A1 (en) | 2004-05-28 | 2005-05-31 | Phenotypic reversion of pancreatic carcinoma cells |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/825,242 Continuation US20080153754A1 (en) | 2004-05-28 | 2007-07-05 | Phenotypic reversion of pancreatic carcinoma cells |
US12/488,209 Continuation US20090286861A1 (en) | 2004-05-28 | 2009-06-19 | Phenotypic reversion of pancreatic carcinoma cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060105956A1 true US20060105956A1 (en) | 2006-05-18 |
Family
ID=36387173
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/142,051 Abandoned US20060105956A1 (en) | 2004-05-28 | 2005-05-31 | Phenotypic reversion of pancreatic carcinoma cells |
US11/825,242 Abandoned US20080153754A1 (en) | 2004-05-28 | 2007-07-05 | Phenotypic reversion of pancreatic carcinoma cells |
US12/488,209 Abandoned US20090286861A1 (en) | 2004-05-28 | 2009-06-19 | Phenotypic reversion of pancreatic carcinoma cells |
US13/677,876 Active 2025-12-10 US9115213B2 (en) | 2004-05-28 | 2012-11-15 | Phenotypic reversion of pancreatic carcinoma cells |
US14/809,666 Abandoned US20170065684A9 (en) | 2004-05-28 | 2015-07-27 | Phenotypic reversion of pancreatic carcinoma cells |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/825,242 Abandoned US20080153754A1 (en) | 2004-05-28 | 2007-07-05 | Phenotypic reversion of pancreatic carcinoma cells |
US12/488,209 Abandoned US20090286861A1 (en) | 2004-05-28 | 2009-06-19 | Phenotypic reversion of pancreatic carcinoma cells |
US13/677,876 Active 2025-12-10 US9115213B2 (en) | 2004-05-28 | 2012-11-15 | Phenotypic reversion of pancreatic carcinoma cells |
US14/809,666 Abandoned US20170065684A9 (en) | 2004-05-28 | 2015-07-27 | Phenotypic reversion of pancreatic carcinoma cells |
Country Status (1)
Country | Link |
---|---|
US (5) | US20060105956A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100144636A1 (en) * | 2008-12-08 | 2010-06-10 | The Research Foundation Of State University Of New York | Peptides derived from ras-p21 and uses therefor |
US20110183915A1 (en) * | 2007-11-26 | 2011-07-28 | Pincus Matthew R | Small Molecule Cancer Treatments that cause Necrosis in Cancer Cells but do not Affect Normal Cells |
CN103405784A (en) * | 2013-08-15 | 2013-11-27 | 山西大学 | Use of c-Fos gene in preparation of anti-cancer drugs |
US12239720B2 (en) | 2018-04-06 | 2025-03-04 | Oncolyze, Inc. | Compositions for use in lysis of selective cancer cells |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT2723493T (en) * | 2011-06-24 | 2017-07-20 | Dow Agrosciences Llc | COMPOSITION HERBICIDE SINÉRGICA CONTAINING PENOXSULAM AND PENDIMETALIN |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060258841A1 (en) * | 2003-01-17 | 2006-11-16 | Josef Michl | Pancreatic cancer associated antigen, antibody thereto, and diagnostic and treatment methods |
-
2005
- 2005-05-31 US US11/142,051 patent/US20060105956A1/en not_active Abandoned
-
2007
- 2007-07-05 US US11/825,242 patent/US20080153754A1/en not_active Abandoned
-
2009
- 2009-06-19 US US12/488,209 patent/US20090286861A1/en not_active Abandoned
-
2012
- 2012-11-15 US US13/677,876 patent/US9115213B2/en active Active
-
2015
- 2015-07-27 US US14/809,666 patent/US20170065684A9/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060258841A1 (en) * | 2003-01-17 | 2006-11-16 | Josef Michl | Pancreatic cancer associated antigen, antibody thereto, and diagnostic and treatment methods |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110183915A1 (en) * | 2007-11-26 | 2011-07-28 | Pincus Matthew R | Small Molecule Cancer Treatments that cause Necrosis in Cancer Cells but do not Affect Normal Cells |
US9539327B2 (en) | 2007-11-26 | 2017-01-10 | The Research Foundation For The State University Of New York | Small molecule cancer treatments that cause necrosis in cancer cells but do not affect normal cells |
US20100144636A1 (en) * | 2008-12-08 | 2010-06-10 | The Research Foundation Of State University Of New York | Peptides derived from ras-p21 and uses therefor |
CN103405784A (en) * | 2013-08-15 | 2013-11-27 | 山西大学 | Use of c-Fos gene in preparation of anti-cancer drugs |
CN103405784B (en) * | 2013-08-15 | 2014-10-22 | 山西大学 | Use of c-Fos gene in preparation of anti-cancer drugs |
US12239720B2 (en) | 2018-04-06 | 2025-03-04 | Oncolyze, Inc. | Compositions for use in lysis of selective cancer cells |
Also Published As
Publication number | Publication date |
---|---|
US20170065684A9 (en) | 2017-03-09 |
US9115213B2 (en) | 2015-08-25 |
US20130065953A1 (en) | 2013-03-14 |
US20150320841A1 (en) | 2015-11-12 |
US20080153754A1 (en) | 2008-06-26 |
US20090286861A1 (en) | 2009-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Snyder et al. | Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids invivo | |
US7122520B2 (en) | Methods of modulating appetite using agouti-related transcript polypeptides | |
US20150320841A1 (en) | Phenotypic reversion of pancreatic carcinoma cells | |
Matsui et al. | Protein therapy: in vivo protein transduction by polyarginine (11R) PTD and subcellular targeting delivery | |
PT954588E (en) | Ob fusion protein compositions and methods | |
US7745405B2 (en) | Peptides selectively lethal to malignant and transformed mammalian cells | |
CZ20003433A3 (en) | Therapeutic applications of mature FLINT (mFLINT) polypeptides or OPG3, a member of the TNF receptor superfamily | |
JP3612020B2 (en) | Human ribonuclease A with reduced ribonuclease inhibitor affinity | |
CN107629114B (en) | Polypeptide, derivative thereof and application thereof in preparation of anti-pulmonary fibrosis drugs | |
CA2401545C (en) | Mutated cyclin g1 protein | |
CA2477878C (en) | Peptides selectively lethal to malignant and transformed mammalian cells | |
US20020077291A1 (en) | Method of treatment of tumors using transforming growth factor-alpha | |
KR20020032553A (en) | Methods and compositions useful for modulation of angiogenesis using protein kinase Raf and Ras | |
AU2001234025A1 (en) | Mutated cyclin G1 protein | |
CA2405347A1 (en) | Medicament comprising nk4 gene or recombinant nk4 protein | |
US6825033B2 (en) | Mutated cyclin G1 protein | |
US5847083A (en) | Modified p53 constructs which enhance DNA binding | |
US7883888B2 (en) | Peptides selectively lethal to malignant and transformed mammalian cells | |
DE60030850T2 (en) | METHOD FOR THE TREATMENT OF TUMORS BY ANTIANGIOGENIC SUBSTANCES | |
AU2005202730B2 (en) | Mutated cyclin G1 protein | |
WO2011057118A1 (en) | Anti-apoptotic agents and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YOR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PINCUS, MATTHEW R.;MICHL, JOSEF;REEL/FRAME:018526/0385;SIGNING DATES FROM 20061016 TO 20061031 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:STATE UNIVERSITY OF NEW YORK;REEL/FRAME:021033/0265 Effective date: 20060623 |