US20060095140A1 - Prosthetic annular coupling socket adaptor with adjustable clamp - Google Patents
Prosthetic annular coupling socket adaptor with adjustable clamp Download PDFInfo
- Publication number
- US20060095140A1 US20060095140A1 US11/302,753 US30275305A US2006095140A1 US 20060095140 A1 US20060095140 A1 US 20060095140A1 US 30275305 A US30275305 A US 30275305A US 2006095140 A1 US2006095140 A1 US 2006095140A1
- Authority
- US
- United States
- Prior art keywords
- prosthetic
- pylon
- coupling
- component
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 80
- 238000010168 coupling process Methods 0.000 title claims abstract description 80
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 80
- 238000003780 insertion Methods 0.000 claims abstract description 18
- 230000037431 insertion Effects 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims 2
- 239000010935 stainless steel Substances 0.000 claims 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 210000003414 extremity Anatomy 0.000 description 18
- 238000005259 measurement Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 210000000629 knee joint Anatomy 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 210000003423 ankle Anatomy 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 210000002683 foot Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/76—Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30224—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30359—Pyramidally- or frustopyramidally-shaped protrusion and recess
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30433—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels, rivets or washers e.g. connecting screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30492—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking pin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30495—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30507—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30795—Blind bores, e.g. of circular cross-section
- A61F2002/30817—Intersecting or overlapping blind bores
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2002/5016—Prostheses not implantable in the body adjustable
- A61F2002/5018—Prostheses not implantable in the body adjustable for adjusting angular orientation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2002/5016—Prostheses not implantable in the body adjustable
- A61F2002/502—Prostheses not implantable in the body adjustable for adjusting length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0041—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels or rivets, e.g. connecting screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0069—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00047—Aluminium or Al-based alloys
Definitions
- the present invention relates to prosthetic devices, and more particularly, to prosthetic couplings having annular coupling socket adapters (aka, “pyramid receivers”) with adjustable height tube clamps.
- an example of an above-knee (“AK”) prosthetic limb 2 for a patient may include a prosthetic limb socket 4 for receiving the wearer's residual limb, a knee joint assembly 6 , a first pylon 8 coupled between the prosthetic limb socket 4 and the knee joint assembly 6 , interconnection components 10 for coupling the first pylon 8 to the prosthetic limb socket 4 , interconnection components 12 for coupling the first pylon 8 to the knee joint assembly 6 , an ankle/foot assembly 14 , and a second pylon 16 coupled between the knee joint assembly 6 and the ankle/foot assembly 14 .
- AK above-knee
- the interconnection components 10 may consist of a locking or suction assembly 18 (such as, for example, a Shuttle Lock component commercially available from Prosthetic Design, Inc.) positioned within a distal end of the prosthetic limb socket 4 , the conventional pyramidal link-plate 20 , and a pyramid receiver 22 for coupling the first pylon 8 to the distal boss 24 of the pyramidal link-plate 20 .
- the interconnection components 12 may consist of the conventional pyramidal link-plate 20 mounted to the knee joint assembly 6 and another pyramid receiver 22 for coupling the first pylon 8 to the distal boss 24 of the pyramidal link-plate 20 .
- the plurality of set screws 26 are tightened, thus securely mounting the pyramidal link-plate 20 to the pyramid receiver 22 .
- a prior art prosthetic pyramid receiver 22 includes a pyramid receiver portion 30 and a diametrically restrictable tube portion 32 .
- the tube portion 32 includes a ring-clamp 34 , a screw 36 and a washer 38 .
- the pyramid receiver portion 30 has a concave upper mouth 33 adapted to mate with the domed structure 40 of a pyramid 42 .
- Angled holes 44 extend from the exterior surface and continue inward, thereafter extending into the interior channel of the pyramid receiver portion 30 . These holes 44 are adapted to receive set screws 46 for throughput.
- the pyramid 42 When tightened to engage the surfaces 48 of the frustropyramidal boss 50 , the pyramid 42 is pulled toward the pyramid receiver portion 30 until the domed structure 40 of the pyramid 42 engages the concave upper mouth 33 of the pyramid receiver portion 30 . Thereafter, further movement between the domed structure 40 of the pyramid 42 and the concave upper portion 33 of the pyramid receiver portion 30 is minimal (collectively the elements). Further tightening of the set screws 46 increases the amount of force required axially to move the elements in relation to one another, eventually “locking” the elements together for all intents and purposes.
- a pylon in particular, is capable of being ground down or cut so as to shorten the length of the pylon to accord proper fitting. Problems sometimes arise when the pylon is ground down or cut, thereby shortening its length beyond that which is required. This necessitates the procurement of a completely new pylon. Alternatively, if the original pylon is too short, the current state of the art provides no alternative for the prosthetist other than procuring another pylon having a greater length.
- a pyramid receiver and associated tube clamp that provides axial height adjustability with respect to pylon length.
- a prosthetist may simply exchange different height spacers or bushings to be placed within the tube of the tube clamp, between an axial shoulder in the tube and the end of the pylon, to adjust the height of the pyramid receiver with respect to the pylon.
- a height-adjustable prosthetic coupling has an annular coupling adapter (pyramid receiver) on one end and a diametrically restrictable tube (tube clamp) on the opposing end, which allows for height (axial) adjustment between the coupling and a prosthetic pylon.
- the diametrically restrictable tube has an internal depth which accommodates the insertion of a portion of the pylon.
- Conventional pyramid-receiver tube clamps have a diametrically restrictable tube of a minimal length sufficient to provide enough surface area to securely lock the tube clamp onto the pylon. One reason for minimizing this length is to reduce the material costs for such components.
- the first exemplary embodiment of the present invention provides a diametrically restrictable tube having an internal depth which can accommodate more than the minimum length of the pylon necessary for properly securing the pylon to the coupling. In other words, the interior height of the tube is greater than prior art tubes.
- the prosthetist “frees up” the diametrically restrictable tube so as to enable movement between the internal surface of the tube and the exterior surface of the pylon. Once the desired overall length is reached, the prosthetist restricts the diametrically restrictable tube and prevents noticeable movement between the pylon and tube; both in the vertical, and in the rotational/axial direction.
- the present invention provides for human errors in measuring and provides adjustability to meet the patient's needs and may not require the procurement of a plurality of pylons of varied lengths.
- the elements of the first exemplary embodiment may be combined with bushings (or spacers) that fill any potential axial void that may be present in the first exemplary embodiment between the shoulder of the coupling extending radially into the channel of the tube and the longitudinal end-surface of the pylon; resulting in a second exemplary embodiment.
- the second exemplary embodiment provides a plurality of variable-height axial bushings that are insertable into the tube of the coupling before the pylon is inserted. One or more of these bushings may be inserted to fill any potential void between the coupling and the longitudinal surface of the pylon.
- the adjustment of the prosthetic components may be made easier for the prosthetist because the weight of the tube clamp and associated prosthetic components may be pressed onto the pylon without the fear of hampering the measurements surrounding the proper depth of the pylon.
- an adjustable prosthetic coupling comprising: (a) a unitary coupling adapter comprising a pylon receiving end having an inner ring for captively engaging a prosthetic pylon therein, and a prosthetic component interface end for engaging and securing a prosthetic component thereto; and (b) an outer ring circumscribing the inner ring, where the pylon receiving end accommodates varying depths of insertion of the prosthetic pylon beyond the minimum required for secured fitting, thereby enabling height adjustability.
- An adjustable prosthetic coupling comprising: (a) a pylon receiving portion having a means for selectively securing a prosthetic pylon therein; and (b) a pyramid receiving portion including a means for selectively securing a prosthetic pyramid thereto, where the means for selectively securing the prosthetic pylon therein includes a plurality of height adjustments between the prosthetic pyramid and the prosthetic pylon, and wherein the means for selectively securing the prosthetic pylon therein enables day-to-day use
- It is a third aspect of the present invention to provide a method for custom fitting prosthetic devices comprising the steps of: (a) providing a unitary prosthetic coupling device adapted to couple a prosthetic pylon to a second prosthetic limb component, the coupling device having a cylindrical sheath extending from a cavity adapted to receive at least a portion of the second prosthetic limb component therein, the cylindrical sheath adapted to interface with a prosthetic pylon, the cylindrical sheath accommodating various depths of pylon insertion to provide height adjustability with the second prosthetic limb component, the coupling device further being designed for day-to-day use; and (b) mounting the second prosthetic limb component to the prosthetic coupling device and mounting the prosthetic pylon to an interior surface of the cylindrical sheath so as to provide a secure coupling between the prosthetic pylon and the second prosthetic limb component enabling day-to-day use.
- FIG. 1 is a perspective view of a prior art prosthetic limb assembly
- FIG. 2 is a perspective view of a prior art pyramid receiver
- FIG. 3 is a perspective view of a first exemplary embodiment of the present invention.
- FIG. 4 is an exploded view of the first exemplary embodiment of the present invention.
- FIG. 5 is a frontal view of the first exemplary embodiment of the present invention.
- FIG. 6 is a left side view of the first exemplary embodiment of the present invention.
- FIG. 7 is an overhead view of the first exemplary embodiment of the present invention.
- FIG. 8 is a cross sectional view of the first exemplary embodiment of the present invention along lines 6 - 6 of FIG. 7 .
- FIG. 9 is an underneath view of an alternate exemplary embodiment of the present invention having two integrated tube clamps.
- prosthetic limb couplings for mounting a first prosthetic component to a second pylon component, that include height-adjustable tube clamps for mating with pylon components.
- the various orientational or positional terms used to describe the elements of the inventions are therefore used according to this frame of reference.
- the preferred embodiments may also be used in combination with one or more prosthetic components to function as a complete prosthetic assembly. In such a case, the orientational or positional terms may be different.
- a pylon will have two opposing longitudinal surfaces; one being characterized as proximal, while the other is characterized as distal. Yet, the pylon may be rotated in space, thereafter transforming the proximal end into the distal end and vice versa without departing from the scope and spirit of the present invention.
- a first exemplary embodiment of the present invention 52 provides a prosthetic coupling 52 having a titanium pyramid receiver 54 on the proximal end, and a titanium tube 56 on the distal end with an aluminum ring clamp 58 mounted thereto.
- the pyramid receiver 54 has a proximal opening with a mouth 60 having a conical interior surface 61 that is machined or molded to mate with a “male” prosthetic limb component such as, for example, a conventional prosthetic pyramid 62 .
- the pyramid receiver 54 also includes at least two diametrically opposed holes 64 angled distally in relation to an imaginary planar surface parallel to the proximal end of the pyramid receiver 54 . Each angled hole 64 may be machined or molded to house a single set screw 66 ; the set screws may be 5/16-18 socket head set screws.
- the pyramid 42 includes a frustropyramidal, four-sided boss 50 projecting from a domed shaped, or spherically convex base 40 (hereafter domed portion).
- the pyramid 42 is secured to another prosthetic component with four screws (a standard industry design). These four screws attach the pyramid 42 firmly to a prosthetic component (not shown) and provide structural support at the proximal end for connection between the prosthetic pyramid 42 and the prosthetic pyramid receiver 54 .
- Mounting the pyramid 42 to the pyramid receiver 54 begins by placing the frustropyramidal boss 50 within the concave mouth 60 of the pyramid receiver proximal opening so as to enable the set screws 66 to engage the faces 48 of the frustropyramidal boss 50 .
- the domed portion 40 of the pyramid 42 is being moved closer to the concave mouth 60 of the pyramid receiver 54 .
- the exterior surface of the domed portion 40 abuts the conical interior surface 62 of the pyramid receiver 54 and a friction fit results.
- the tube 56 includes two discontinuities in the form of channels 78 extending therethrough and upward from a distal end thereof, which separate at least two circumferential portions of the tube 56 from one another.
- the channels 78 terminate with the formation of a stress riser 80 to dissipate stress and inhibit the formation or a stress crack at the point of termination.
- These channels 78 are in part what provides the flexibility of the tube 56 to conform to a plurality of internal diameters, thereby supplemented by the adjustable aluminum ring clamp 58 which provides the restrictive force.
- the exterior of the tube 56 includes a lip or shoulder 82 extending radially from the tube 56 that is adapted to abut the proximal surface of the ring-clamp 58 . Extending distally from the lip 82 , the outer circumferential surface of the tube 56 is recessed to mate with the inner diameter of the ring clamp 58 .
- the restrictable aspect of the ring clamp 58 includes a radial projection 84 that takes on a pyramidal shape which exhibits an apex in exterior diameter at the axial center of the clamp and diminishes proportionally in the vertical and radial directions accordingly, thus providing an outer surface 86 which slopes in the axial as well as distal and proximal directions.
- a break 88 effectively bisects the radial projection of the ring clamp 58 , providing complimentary, mirror image planar surfaces 90 parallel to the TKA line.
- Perpendicular to the break 88 of the ring clamp 58 is a hole 92 which extends through the pyramid shaped radial projection 94 of the ring clamp 58 .
- the hole 92 extends through the complimentary parallel planar surfaces 90 created by the break 88 .
- This hole 92 may be machined or molded so as to accept a threaded device such as a screw 94 ; the screw may be a #10-32 socket head cap screw.
- the screw 94 facilitates the restrictive force necessary to bring the parallel surfaces 90 of the ring clamp 58 closer together than compared to equilibrium without the screw 94 , such that the internal diameter of the tube 56 at the distal end becomes variable; generally smaller in diameter when restrictive force is applied.
- the adjustable aluminum ring clamp 58 be mounted on the distal end of the hollow titanium tube 56 .
- One example of how this might be accomplished is by way of a retention pin 96 that is friction fit within a hole 98 radially bored through the ring clamp 58 and the tube 56 .
- the retention pin 96 is in place, free rotation and axial separation of the ring clamp 58 from the tube 56 is inhibited.
- An inner concavity 100 of the tube 56 provides a “female” interface between the coupling 52 and a second prosthetic component such as, for example, a graphite pylon.
- the interior surface of the tube 56 which makes contact with the exterior surface of the pylon (not shown) may be smooth or of non-uniform texture and include a taper approximating its distal end to effectively provide a maximum axial depth for insertion of the pylon.
- the maximum axial depth is one-half inch longer than the minimum depth necessary to provide sufficient surface area to achieve secure locking (as required by the ISO 10328 torque test) between the coupling 52 and the pylon. This additional one-half inch depth of the tube 56 provides height adjustability for the component as will be discussed further below.
- the pylon is generally a cylindrical shaft having a uniform circular cross section.
- the pylon has two longitudinal end surfaces which make up the respective distal and proximal ends of the pylon.
- Assembly of the pylon into the tube 56 of the coupling 52 begins by inserting the proximal end of the pylon into the tube 56 until the pylon abuts the shoulder 102 inside of the tube 56 .
- the exposed portion of the pylon immediately adjacent to the ring-clamp is marked.
- the pylon may then be withdrawn from the tube 56 up to one-half inch by sliding the coupling 52 away from the pylon; all the while providing at least the minimum pylon insertion depth.
- This minimal pylon insertion depth being the depth at which enough of the exterior surface of the pylon is in potential contact with enough of the interior surface of the tube 56 such that a resulting friction fit between the two elements will disallow substantial rotational and/or vertical movement between the two during day-to-day use of the prosthetic limb by the patient.
- the ring clamp 58 is restricted by use of the screw 94 .
- An application of Loctite® may be applied before tightening the screw to help maintain the proper restrictive force.
- the prosthetist may simply measure down from the proximal longitudinal surface of the pylon and mark the exterior surface of the pylon corresponding to the minimum insertion depth. Thereafter, the prosthetist may make vertical adjustments of the pylon so long as the marked exterior surface of the pylon is inserted into the tube 56 .
- the prosthetist may adjust the pylon length after the initial fitting of the patient's prosthetic components.
- the prosthetist begins by loosening the ring clamp 58 around the tube 56 , thus enabling vertical and/or rotational movement between the coupling 52 and the pylon.
- the prosthetist simply pulls a portion of the pylon out from the tube 56 , up to one-half inch until the proper measurements are met if the distance is too short; conversely, the prosthetist simply pushes a portion of the pylon into the tube 56 , up to one-half inch until the proper measurements are met if the distance is too great; all the while keeping the minimum amount of exterior pylon surface in potential contact with the minimum amount of interior surface of the tube 56 such that a friction fit between the two elements will be maintained with proper tightening of the ring clamp 58 .
- the prosthetist is adjusting the length between the distal end of the pylon and the proximal end of the coupling 52 , it will be recognized by one of ordinary skill in the art that other concerns may be addressed by the prosthetist such as alignment retention of the prosthetic components attached to either the distal end of the pylon, or the proximal end of the coupling 52 . Finally, the prosthetist tightens the ring clamp 58 by torquing the screw 94 to the setting recommended by the manufacturer and the adjustment is complete.
- adjustability to a greater length may require: the procurement of another pylon having a longer length; adjusting the prosthetic component mounted to the distal end of the pylon; or, exchanging a coupling 52 having a greater tube 56 height.
- one-half inch extension of the tube of the tube clamp provided in the first exemplary embodiment is not limiting, and it is within the scope of the invention to provide extensions having longer or shorter lengths as desired.
- the ring clamp 58 may be of the same or a similar material or of an alloy comprising one or more of the materials of the tube 56 and/or pyramid receiver 54 .
- Materials suitable for use in the fabrication of the tube 56 , the pyramid receiver 54 , and the ring-clamp include elemental metals, alloys of elemental metals, composites, and any other similar materials. It is preferred that the material chosen for the tube 56 inhibits any permanent deformation attributable to the ring clamp 58 .
- the clamp is separate from the manufacture of the tube 56 .
- bushings or spacers having incremental axial height and uniform circular cross section.
- these bushings may be inserted into the tube 56 whenever the measurements taken by the prosthetist indicate that the proximal end of the pylon will not abut the shoulder 102 within the tube 56 .
- the prosthetist begins by making a measurement of the overall length desired as measured from the distal end of the pylon to the proximal end of the coupling 52 .
- the prosthetist marks or measures how much of the pylon will be inserted into the tube 56 for proper fitting.
- the prosthetist simply chooses a bushing having a height to make up the difference. It will be understood by those of ordinary skill in the art that the bushings do not act to provide a friction fit between the pylon and the tube 56 , but simply occupy a space or void that would normally be vacant. It is also within the scope of the invention that all or some of the spacers have equal height and are designed to be stackable upon one another.
- Another exemplary embodiment of the present invention provides a plurality of couplings 52 having incremental tube heights.
- This “set” of tube clamps being interchangeable, provides a prosthetist flexibility regarding adjustments to the length between the proximal end of the coupling and the distal end of the pylon (overall length). As characterized above, this flexibility in tube height does not negate the requirement of a minimum pylon insertion depth for proper friction fitting.
- the set of couplings may be manufactured with any tube height for pylon insertion, so long as the set as a whole provides incremental adjustment of the overall length at least ranging one-half inch.
- FIG. 9 Still another exemplary embodiment of the present invention is shown in FIG. 9 .
- This exemplary embodiment provides two integrated clamps 104 , 106 as part of the tube portion of the coupling.
- Each clamp includes a set screw 108 , 110 that provides the restrictive force necessary to diminish the gaps 112 in the coupling conform the tube portion around a pylon thereby providing a friction fit sufficient to enable day-to-day use of the coupling by a patient.
- Adjustability typically requires that the prior art tube clamp be loosened by the prosthetist enabling vertical and/or rotational movement between the pylon and tube clamp, so that measurement can be made to adjust the length/height of the pylon.
- the pylon is not adjusted.
- a prosthetist would remove the pylon and replace the coupling with another coupling having a different pylon insertion depth so as to provide the proper overall length for the patient.
- the pylon is thereafter inserted into the tube 56 until the proximal longitudinal end of the pylon abuts the shoulder on the inside of the tube.
- bushings may be used in lieu of, or in addition to, the next or greater incremental sized coupling in the set.
- adjustability starts with the prosthetist simply pulling a portion of the pylon out from the tube until the proper measurements are established if the current distance has been determined as being too short. All the while keeping the minimum amount of exterior pylon surface in potential contact with the minimum amount of interior surface (not shown) of the tube such that a friction fit between the two elements will be maintained with proper tightening of the screw.
- the prosthetist is adjusting the length between the distal end of the pylon and the proximal end of the coupling, it will be recognized by one of ordinary skill in the art that other concerns may additionally be addressed such as alignment retention of the prosthetic components attached to either the distal end of the pylon, or the proximal end of the coupling.
- the pylon is removed from the tube. A bushing is inserted into the tube to accord the proper distance.
- the pylon is inserted into the tube to abut the bushing which abuts the shoulder in the tube.
- the prosthetist tightens the clamp by tightening the screw to the proper torque setting recommended by the manufacturer and the adjustment is complete.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
A method for custom fitting prosthetic devices, comprising the steps of: (a) providing a unitary prosthetic coupling device adapted to couple a prosthetic pylon to a second prosthetic limb component, the coupling device having a cylindrical sheath extending from a cavity adapted to receive at least a portion of the second prosthetic limb component therein, the cylindrical sheath adapted to interface with a prosthetic pylon, the cylindrical sheath accommodating various depths of pylon insertion to provide height adjustability with the second prosthetic limb component, the coupling device further being designed for day-to-day use; and (b) mounting the second prosthetic limb component to the prosthetic coupling device and mounting the prosthetic pylon to an interior surface of the cylindrical sheath so as to provide a secure coupling between the prosthetic pylon and the second prosthetic limb component enabling day-to-day use.
Description
- This application is a continuation of U.S. Nonprovisional patent application Ser. No. 10/377,289, entitled “PROSTHETIC ANNULAR COUPLING SOCKET ADAPTOR WITH ADJUSTABLE CLAMP,” filed on Feb. 28, 2003, now U.S. Pat. No. ______, which claimed the benefit of U.S. Provisional Patent Application Ser. No. 60/361,427, entitled, “PROSTHETIC ANNULAR COUPLING SOCKET ADAPTOR WITH ADJUSTABLE CLAMP”, filed on Feb. 28, 2002, the disclosures of which are incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates to prosthetic devices, and more particularly, to prosthetic couplings having annular coupling socket adapters (aka, “pyramid receivers”) with adjustable height tube clamps.
- 2. Description of the Related Art
- As shown in
FIG. 1 , an example of an above-knee (“AK”)prosthetic limb 2 for a patient may include aprosthetic limb socket 4 for receiving the wearer's residual limb, aknee joint assembly 6, afirst pylon 8 coupled between theprosthetic limb socket 4 and theknee joint assembly 6,interconnection components 10 for coupling thefirst pylon 8 to theprosthetic limb socket 4,interconnection components 12 for coupling thefirst pylon 8 to theknee joint assembly 6, an ankle/foot assembly 14, and asecond pylon 16 coupled between theknee joint assembly 6 and the ankle/foot assembly 14. Theinterconnection components 10 may consist of a locking or suction assembly 18 (such as, for example, a Shuttle Lock component commercially available from Prosthetic Design, Inc.) positioned within a distal end of theprosthetic limb socket 4, the conventional pyramidal link-plate 20, and apyramid receiver 22 for coupling thefirst pylon 8 to thedistal boss 24 of the pyramidal link-plate 20. Likewise, theinterconnection components 12 may consist of the conventional pyramidal link-plate 20 mounted to theknee joint assembly 6 and anotherpyramid receiver 22 for coupling thefirst pylon 8 to thedistal boss 24 of the pyramidal link-plate 20. The plurality of setscrews 26 are tightened, thus securely mounting the pyramidal link-plate 20 to thepyramid receiver 22. - As shown in
FIG. 2 , a prior artprosthetic pyramid receiver 22 includes apyramid receiver portion 30 and a diametricallyrestrictable tube portion 32. Thetube portion 32 includes a ring-clamp 34, ascrew 36 and awasher 38. Thepyramid receiver portion 30 has a concaveupper mouth 33 adapted to mate with thedomed structure 40 of apyramid 42.Angled holes 44 extend from the exterior surface and continue inward, thereafter extending into the interior channel of thepyramid receiver portion 30. Theseholes 44 are adapted to receive setscrews 46 for throughput. When tightened to engage thesurfaces 48 of thefrustropyramidal boss 50, thepyramid 42 is pulled toward thepyramid receiver portion 30 until thedomed structure 40 of thepyramid 42 engages the concaveupper mouth 33 of thepyramid receiver portion 30. Thereafter, further movement between thedomed structure 40 of thepyramid 42 and the concaveupper portion 33 of thepyramid receiver portion 30 is minimal (collectively the elements). Further tightening of theset screws 46 increases the amount of force required axially to move the elements in relation to one another, eventually “locking” the elements together for all intents and purposes. - In fitting prosthetic limbs to patients, it is often necessary for the prosthetist to modify the lengths and/or orientations of various prosthetic limb components with respect to each other during initial fitting, or after the patient has worn the prosthetic limb for a period of time. The prosthetist attempts to maintain the alignment of the prosthetic components along the TKA line; a line parallel to the trochanter, knee and ankle. A pylon, in particular, is capable of being ground down or cut so as to shorten the length of the pylon to accord proper fitting. Problems sometimes arise when the pylon is ground down or cut, thereby shortening its length beyond that which is required. This necessitates the procurement of a completely new pylon. Alternatively, if the original pylon is too short, the current state of the art provides no alternative for the prosthetist other than procuring another pylon having a greater length.
- Accordingly, there is a need for a pyramid receiver and associated tube clamp that provides axial height adjustability with respect to pylon length. Alternatively, there is a need for a system in which a prosthetist may simply exchange different height spacers or bushings to be placed within the tube of the tube clamp, between an axial shoulder in the tube and the end of the pylon, to adjust the height of the pyramid receiver with respect to the pylon.
- In a first exemplary embodiment of the present invention, a height-adjustable prosthetic coupling is provided that has an annular coupling adapter (pyramid receiver) on one end and a diametrically restrictable tube (tube clamp) on the opposing end, which allows for height (axial) adjustment between the coupling and a prosthetic pylon. The diametrically restrictable tube has an internal depth which accommodates the insertion of a portion of the pylon. Conventional pyramid-receiver tube clamps have a diametrically restrictable tube of a minimal length sufficient to provide enough surface area to securely lock the tube clamp onto the pylon. One reason for minimizing this length is to reduce the material costs for such components. The first exemplary embodiment of the present invention, on the other hand, provides a diametrically restrictable tube having an internal depth which can accommodate more than the minimum length of the pylon necessary for properly securing the pylon to the coupling. In other words, the interior height of the tube is greater than prior art tubes. When the patient requires the overall length between the tube clamp and pylon to be adjusted, the prosthetist “frees up” the diametrically restrictable tube so as to enable movement between the internal surface of the tube and the exterior surface of the pylon. Once the desired overall length is reached, the prosthetist restricts the diametrically restrictable tube and prevents noticeable movement between the pylon and tube; both in the vertical, and in the rotational/axial direction. Thus, the present invention provides for human errors in measuring and provides adjustability to meet the patient's needs and may not require the procurement of a plurality of pylons of varied lengths.
- Likewise, the elements of the first exemplary embodiment may be combined with bushings (or spacers) that fill any potential axial void that may be present in the first exemplary embodiment between the shoulder of the coupling extending radially into the channel of the tube and the longitudinal end-surface of the pylon; resulting in a second exemplary embodiment. The second exemplary embodiment provides a plurality of variable-height axial bushings that are insertable into the tube of the coupling before the pylon is inserted. One or more of these bushings may be inserted to fill any potential void between the coupling and the longitudinal surface of the pylon. Thus, the adjustment of the prosthetic components may be made easier for the prosthetist because the weight of the tube clamp and associated prosthetic components may be pressed onto the pylon without the fear of hampering the measurements surrounding the proper depth of the pylon.
- It is a first aspect of the present invention to provide an adjustable prosthetic coupling comprising: (a) a unitary coupling adapter comprising a pylon receiving end having an inner ring for captively engaging a prosthetic pylon therein, and a prosthetic component interface end for engaging and securing a prosthetic component thereto; and (b) an outer ring circumscribing the inner ring, where the pylon receiving end accommodates varying depths of insertion of the prosthetic pylon beyond the minimum required for secured fitting, thereby enabling height adjustability.
- It is a second aspect of the present invention to provide An adjustable prosthetic coupling comprising: (a) a pylon receiving portion having a means for selectively securing a prosthetic pylon therein; and (b) a pyramid receiving portion including a means for selectively securing a prosthetic pyramid thereto, where the means for selectively securing the prosthetic pylon therein includes a plurality of height adjustments between the prosthetic pyramid and the prosthetic pylon, and wherein the means for selectively securing the prosthetic pylon therein enables day-to-day use
- It is a third aspect of the present invention to provide a method for custom fitting prosthetic devices, comprising the steps of: (a) providing a unitary prosthetic coupling device adapted to couple a prosthetic pylon to a second prosthetic limb component, the coupling device having a cylindrical sheath extending from a cavity adapted to receive at least a portion of the second prosthetic limb component therein, the cylindrical sheath adapted to interface with a prosthetic pylon, the cylindrical sheath accommodating various depths of pylon insertion to provide height adjustability with the second prosthetic limb component, the coupling device further being designed for day-to-day use; and (b) mounting the second prosthetic limb component to the prosthetic coupling device and mounting the prosthetic pylon to an interior surface of the cylindrical sheath so as to provide a secure coupling between the prosthetic pylon and the second prosthetic limb component enabling day-to-day use.
-
FIG. 1 is a perspective view of a prior art prosthetic limb assembly; -
FIG. 2 is a perspective view of a prior art pyramid receiver; -
FIG. 3 is a perspective view of a first exemplary embodiment of the present invention; -
FIG. 4 is an exploded view of the first exemplary embodiment of the present invention; -
FIG. 5 is a frontal view of the first exemplary embodiment of the present invention; -
FIG. 6 is a left side view of the first exemplary embodiment of the present invention; -
FIG. 7 is an overhead view of the first exemplary embodiment of the present invention; and -
FIG. 8 is a cross sectional view of the first exemplary embodiment of the present invention along lines 6-6 ofFIG. 7 . -
FIG. 9 is an underneath view of an alternate exemplary embodiment of the present invention having two integrated tube clamps. - The exemplary embodiments of the present invention are described and illustrated below as prosthetic limb couplings, for mounting a first prosthetic component to a second pylon component, that include height-adjustable tube clamps for mating with pylon components. The various orientational or positional terms used to describe the elements of the inventions are therefore used according to this frame of reference. Of course, it will be apparent to those of ordinary skill in the art that the preferred embodiments may also be used in combination with one or more prosthetic components to function as a complete prosthetic assembly. In such a case, the orientational or positional terms may be different. However, for clarity and precision, only a single orientational or positional reference will be utilized; and, therefore it will be understood that the positional and orientational terms used to describe the elements of the exemplary embodiments of the present invention are only used to describe the elements in relation to one another. For example, a pylon will have two opposing longitudinal surfaces; one being characterized as proximal, while the other is characterized as distal. Yet, the pylon may be rotated in space, thereafter transforming the proximal end into the distal end and vice versa without departing from the scope and spirit of the present invention.
- As shown in
FIGS. 3-8 , a first exemplary embodiment of thepresent invention 52 provides aprosthetic coupling 52 having atitanium pyramid receiver 54 on the proximal end, and atitanium tube 56 on the distal end with analuminum ring clamp 58 mounted thereto. Thepyramid receiver 54 has a proximal opening with amouth 60 having a conical interior surface 61 that is machined or molded to mate with a “male” prosthetic limb component such as, for example, a conventionalprosthetic pyramid 62. Thepyramid receiver 54 also includes at least two diametricallyopposed holes 64 angled distally in relation to an imaginary planar surface parallel to the proximal end of thepyramid receiver 54. Eachangled hole 64 may be machined or molded to house asingle set screw 66; the set screws may be 5/16-18 socket head set screws. - Referencing
FIG. 2 , thepyramid 42 includes a frustropyramidal, four-sided boss 50 projecting from a domed shaped, or spherically convex base 40 (hereafter domed portion). Thepyramid 42 is secured to another prosthetic component with four screws (a standard industry design). These four screws attach thepyramid 42 firmly to a prosthetic component (not shown) and provide structural support at the proximal end for connection between theprosthetic pyramid 42 and theprosthetic pyramid receiver 54. - Mounting the
pyramid 42 to thepyramid receiver 54 begins by placing thefrustropyramidal boss 50 within theconcave mouth 60 of the pyramid receiver proximal opening so as to enable theset screws 66 to engage thefaces 48 of thefrustropyramidal boss 50. Concurrently, as theset screws 66 are engaging thefaces 48 of thefrustropyramidal boss 50, thedomed portion 40 of thepyramid 42 is being moved closer to theconcave mouth 60 of thepyramid receiver 54. As thepyramid 42 comes in close proximity to the pyramid receiver's 54 interiorconical surface 62, the exterior surface of thedomed portion 40 abuts the conicalinterior surface 62 of thepyramid receiver 54 and a friction fit results. The tighter theset screws 66 push against thefaces 48 of thefrustropyramidal boss 50, the relatively better the friction fit. In other words, the higher the force theset screws 66 exert against thefaces 48 of thefrustropyramidal boss 50, thus pushing thepyramid 42 against thepyramid receiver 54, the greater the amount of force required to unseat the pyramidal receiver's 54 interiorconical surface 62 from thedomed portion 40 of thepyramid 42. This results in relatively no movement between the two elements in either the vertical or rotational direction when theset screws 66 are sufficiently tightened. - As shown in
FIG. 4 , thetube 56 includes two discontinuities in the form ofchannels 78 extending therethrough and upward from a distal end thereof, which separate at least two circumferential portions of thetube 56 from one another. Thechannels 78 terminate with the formation of astress riser 80 to dissipate stress and inhibit the formation or a stress crack at the point of termination. Thesechannels 78 are in part what provides the flexibility of thetube 56 to conform to a plurality of internal diameters, thereby supplemented by the adjustablealuminum ring clamp 58 which provides the restrictive force. The exterior of thetube 56 includes a lip orshoulder 82 extending radially from thetube 56 that is adapted to abut the proximal surface of the ring-clamp 58. Extending distally from thelip 82, the outer circumferential surface of thetube 56 is recessed to mate with the inner diameter of thering clamp 58. - The restrictable aspect of the
ring clamp 58 includes a radial projection 84 that takes on a pyramidal shape which exhibits an apex in exterior diameter at the axial center of the clamp and diminishes proportionally in the vertical and radial directions accordingly, thus providing anouter surface 86 which slopes in the axial as well as distal and proximal directions. Abreak 88 effectively bisects the radial projection of thering clamp 58, providing complimentary, mirror imageplanar surfaces 90 parallel to the TKA line. Perpendicular to thebreak 88 of thering clamp 58 is ahole 92 which extends through the pyramid shapedradial projection 94 of thering clamp 58. Thehole 92 extends through the complimentary parallelplanar surfaces 90 created by thebreak 88. Thishole 92 may be machined or molded so as to accept a threaded device such as ascrew 94; the screw may be a #10-32 socket head cap screw. Thescrew 94 facilitates the restrictive force necessary to bring theparallel surfaces 90 of thering clamp 58 closer together than compared to equilibrium without thescrew 94, such that the internal diameter of thetube 56 at the distal end becomes variable; generally smaller in diameter when restrictive force is applied. - It is preferred, but not necessary, that the adjustable
aluminum ring clamp 58 be mounted on the distal end of thehollow titanium tube 56. One example of how this might be accomplished is by way of aretention pin 96 that is friction fit within ahole 98 radially bored through thering clamp 58 and thetube 56. When theretention pin 96 is in place, free rotation and axial separation of thering clamp 58 from thetube 56 is inhibited. In any such mounting technique, it is preferred, but not necessary, to align thebreak 88 with at least onechannel 78. - An
inner concavity 100 of thetube 56 provides a “female” interface between thecoupling 52 and a second prosthetic component such as, for example, a graphite pylon. The interior surface of thetube 56 which makes contact with the exterior surface of the pylon (not shown) may be smooth or of non-uniform texture and include a taper approximating its distal end to effectively provide a maximum axial depth for insertion of the pylon. In this exemplary embodiment, the maximum axial depth is one-half inch longer than the minimum depth necessary to provide sufficient surface area to achieve secure locking (as required by the ISO 10328 torque test) between thecoupling 52 and the pylon. This additional one-half inch depth of thetube 56 provides height adjustability for the component as will be discussed further below. - The pylon is generally a cylindrical shaft having a uniform circular cross section. The pylon has two longitudinal end surfaces which make up the respective distal and proximal ends of the pylon. Assembly of the pylon into the
tube 56 of thecoupling 52 begins by inserting the proximal end of the pylon into thetube 56 until the pylon abuts theshoulder 102 inside of thetube 56. Using a paint marker, the exposed portion of the pylon immediately adjacent to the ring-clamp is marked. The pylon may then be withdrawn from thetube 56 up to one-half inch by sliding thecoupling 52 away from the pylon; all the while providing at least the minimum pylon insertion depth. This minimal pylon insertion depth being the depth at which enough of the exterior surface of the pylon is in potential contact with enough of the interior surface of thetube 56 such that a resulting friction fit between the two elements will disallow substantial rotational and/or vertical movement between the two during day-to-day use of the prosthetic limb by the patient. Thereafter, thering clamp 58 is restricted by use of thescrew 94. An application of Loctite® may be applied before tightening the screw to help maintain the proper restrictive force. - Alternatively, to adjust the pylon to coupling 52 distance, the prosthetist may simply measure down from the proximal longitudinal surface of the pylon and mark the exterior surface of the pylon corresponding to the minimum insertion depth. Thereafter, the prosthetist may make vertical adjustments of the pylon so long as the marked exterior surface of the pylon is inserted into the
tube 56. - Additionally, the prosthetist may adjust the pylon length after the initial fitting of the patient's prosthetic components. In this case, the prosthetist begins by loosening the
ring clamp 58 around thetube 56, thus enabling vertical and/or rotational movement between thecoupling 52 and the pylon. Next, the prosthetist simply pulls a portion of the pylon out from thetube 56, up to one-half inch until the proper measurements are met if the distance is too short; conversely, the prosthetist simply pushes a portion of the pylon into thetube 56, up to one-half inch until the proper measurements are met if the distance is too great; all the while keeping the minimum amount of exterior pylon surface in potential contact with the minimum amount of interior surface of thetube 56 such that a friction fit between the two elements will be maintained with proper tightening of thering clamp 58. While the prosthetist is adjusting the length between the distal end of the pylon and the proximal end of thecoupling 52, it will be recognized by one of ordinary skill in the art that other concerns may be addressed by the prosthetist such as alignment retention of the prosthetic components attached to either the distal end of the pylon, or the proximal end of thecoupling 52. Finally, the prosthetist tightens thering clamp 58 by torquing thescrew 94 to the setting recommended by the manufacturer and the adjustment is complete. - As a caveat to the aforementioned procedure for adjustability, it will also be recognized by one of ordinary skill in the art that if the amount of the pylon inserted into the tube is the minimum amount necessary for a proper friction fit, adjustability to a greater length may require: the procurement of another pylon having a longer length; adjusting the prosthetic component mounted to the distal end of the pylon; or, exchanging a
coupling 52 having agreater tube 56 height. - It will be apparent to those of ordinary skill that the one-half inch extension of the tube of the tube clamp provided in the first exemplary embodiment is not limiting, and it is within the scope of the invention to provide extensions having longer or shorter lengths as desired.
- The
ring clamp 58 may be of the same or a similar material or of an alloy comprising one or more of the materials of thetube 56 and/orpyramid receiver 54. Materials suitable for use in the fabrication of thetube 56, thepyramid receiver 54, and the ring-clamp include elemental metals, alloys of elemental metals, composites, and any other similar materials. It is preferred that the material chosen for thetube 56 inhibits any permanent deformation attributable to thering clamp 58. - It is likewise within the scope and spirit of the invention to provide grooves on the outer circumferential surface of the
tube 56 that mate with corresponding grooves in thering clamp 58 to align the ring-clamp 98 to the proper exterior surface of thetube 56, thus maintaining the ring clamp's 58 axial position around thetube 56 when thering clamp 58 is not sufficiently tightened. - In the first
exemplary embodiment 52, the clamp is separate from the manufacture of thetube 56. However, it is within the scope and spirit of the present invention to provide atitanium ring clamp 58 incorporated into thetube 56 and/orpyramid receiver 54. - It is also within the scope and spirit of the present invention to provide a set of bushings or spacers having incremental axial height and uniform circular cross section. In this embodiment, these bushings may be inserted into the
tube 56 whenever the measurements taken by the prosthetist indicate that the proximal end of the pylon will not abut theshoulder 102 within thetube 56. The prosthetist begins by making a measurement of the overall length desired as measured from the distal end of the pylon to the proximal end of thecoupling 52. Next, the prosthetist marks or measures how much of the pylon will be inserted into thetube 56 for proper fitting. If this measurement is less than the height of thetube 56 available for pylon insertion, the prosthetist simply chooses a bushing having a height to make up the difference. It will be understood by those of ordinary skill in the art that the bushings do not act to provide a friction fit between the pylon and thetube 56, but simply occupy a space or void that would normally be vacant. It is also within the scope of the invention that all or some of the spacers have equal height and are designed to be stackable upon one another. - Another exemplary embodiment of the present invention provides a plurality of
couplings 52 having incremental tube heights. This “set” of tube clamps, being interchangeable, provides a prosthetist flexibility regarding adjustments to the length between the proximal end of the coupling and the distal end of the pylon (overall length). As characterized above, this flexibility in tube height does not negate the requirement of a minimum pylon insertion depth for proper friction fitting. The set of couplings may be manufactured with any tube height for pylon insertion, so long as the set as a whole provides incremental adjustment of the overall length at least ranging one-half inch. - Still another exemplary embodiment of the present invention is shown in
FIG. 9 . This exemplary embodiment provides twointegrated clamps set screw gaps 112 in the coupling conform the tube portion around a pylon thereby providing a friction fit sufficient to enable day-to-day use of the coupling by a patient. It is also within the scope of the invention to provide a set of couplings embodying such a dual clamp configuration that may be manufactured with any tube height for pylon insertion, so long as the set as a whole provides incremental adjustment of the overall length at least ranging one-half inch. - Adjustability typically requires that the prior art tube clamp be loosened by the prosthetist enabling vertical and/or rotational movement between the pylon and tube clamp, so that measurement can be made to adjust the length/height of the pylon. However, using a set of couplings having incremental pylon insertion depths, the pylon is not adjusted. A prosthetist would remove the pylon and replace the coupling with another coupling having a different pylon insertion depth so as to provide the proper overall length for the patient. The pylon is thereafter inserted into the
tube 56 until the proximal longitudinal end of the pylon abuts the shoulder on the inside of the tube. If applicable, other prosthetic components are reattached, all the while cognizant of proper alignment before final attachment and tightening of the screw. Generally, it is envisioned that this set be used without using the bushings as described above. However, it is within the scope and spirit of the present invention to also utilize the bushings if found advantageous by the prosthetist. - If the prosthetist utilizes the set, bushings may be used in lieu of, or in addition to, the next or greater incremental sized coupling in the set. Here, adjustability starts with the prosthetist simply pulling a portion of the pylon out from the tube until the proper measurements are established if the current distance has been determined as being too short. All the while keeping the minimum amount of exterior pylon surface in potential contact with the minimum amount of interior surface (not shown) of the tube such that a friction fit between the two elements will be maintained with proper tightening of the screw. While the prosthetist is adjusting the length between the distal end of the pylon and the proximal end of the coupling, it will be recognized by one of ordinary skill in the art that other concerns may additionally be addressed such as alignment retention of the prosthetic components attached to either the distal end of the pylon, or the proximal end of the coupling. Once the proper distance is determined and/or marked, the pylon is removed from the tube. A bushing is inserted into the tube to accord the proper distance. Next, the pylon is inserted into the tube to abut the bushing which abuts the shoulder in the tube. Finally, the prosthetist tightens the clamp by tightening the screw to the proper torque setting recommended by the manufacturer and the adjustment is complete. As a caveat to the aforementioned procedure for adjustability, it will also be recognized by one of ordinary skill in the art that if the amount of the pylon inserted into the tube is the minimum amount necessary for a proper friction fit, adjustability to a greater length will not be possible without the procurement of another pylon having a longer length, or adjusting the prosthetic component attached to the distal end of the pylon, or switching couplings where the second coupling has a longer height tube. In addition, should the prosthetist desire to exchange couplings and utilize bushings, the procedure is analogous with that enunciated above, but begins with removal of the old coupling and insertion of a new coupling from the set.
- Following from the above description and invention summaries, it should be apparent to those of ordinary skill in the art that, while the methods and apparatuses herein described constitute exemplary embodiments of the present invention, it is to be understood that the inventions contained herein are not limited to these precise embodiments and that changes may be made to them without departing from the scope of the inventions as defined by the claims. Additionally, it is to be understood that the invention is defined by the claims and it not intended that any limitations or elements describing the exemplary embodiments set forth herein are to be incorporated into the meanings of the claims unless such limitations or elements are explicitly listed in the claims. Likewise, it is to be understood that it is not necessary to meet any or all of the identified advantages or objects of the invention disclosed herein in order to fall within the scope of any claims, since the invention is defined by the claims and since inherent and/or unforeseen advantages of the present invention may exist even though they may not have been explicitly discussed herein.
Claims (20)
1. An adjustable prosthetic coupling comprising:
a unitary coupling adapter comprising:
a pylon receiving end having an inner ring for captively engaging a prosthetic pylon therein, and
a prosthetic component interface end for engaging and securing a prosthetic component thereto; and
an outer ring circumscribing the inner ring;
wherein the pylon receiving end accommodates varying depths of insertion of the prosthetic pylon beyond the minimum required for secured fitting, thereby enabling height adjustability.
2. The adjustable prosthetic coupling of claim 1 , wherein the inner ring includes at least two segments being constrictable.
3. The adjustable prosthetic component of claim 2 , wherein the outer ring facilitates restriction by forcing the at least two segments toward one another to operatively adjust the inner ring diameter.
4. The prosthetic coupling of claim 2 , wherein the axial depth of the inner ring does not exceed 2.5 inches.
5. The adjustable prosthetic component of claim 2 , wherein the prosthetic component interface end includes at least one concavity adapted to accommodate a convex portion of the prosthetic component mounted thereto.
6. The adjustable prosthetic component of claim 5 , wherein the prosthetic component interface end includes a prosthetic pyramid having a frustropyramidal boss.
7. The prosthetic coupling of claim 2 , wherein:
the pylon receiving end is manufactured, at least in part, from a metal; and
the outer ring is manufactured, at least in part, from a metal.
8. The prosthetic coupling of claim 7 , wherein:
the metal for the pylon receiving end includes at least one of stainless steel and titanium; and
the metal for the outer ring includes at least one of stainless steel, aluminum and titanium.
9. The adjustable prosthetic component of claim 2 , wherein the outer ring is a ring clamp.
10. The adjustable prosthetic component of claim 9 , wherein the ring clamp is integrated into the pylon receiving end.
11. The adjustable prosthetic component of claim 9 , wherein the ring clamp includes at least one screw for securing the prosthetic pylon within the pylon receiving end.
12. The prosthetic coupling of claim 9 , wherein the ring clamp is mounted to the inner ring so as to inhibit unrestricted rotation of the ring clamp about the inner ring.
13. An adjustable prosthetic coupling comprising:
a pylon receiving portion having a means for selectively securing a prosthetic pylon therein; and
a pyramid receiving portion including a means for selectively securing a prosthetic pyramid thereto;
wherein the means for selectively securing the prosthetic pylon therein includes a plurality of height adjustments between the prosthetic pyramid and the prosthetic pylon, and wherein the means for selectively securing the prosthetic pylon therein enables day-to-day use.
14. A method for custom fitting prosthetic devices, comprising the steps of:
providing a unitary prosthetic coupling device adapted to couple a prosthetic pylon to a second prosthetic limb component, the coupling device having a cylindrical sheath extending from a cavity adapted to receive at least a portion of the second prosthetic limb component therein, the cylindrical sheath adapted to interface with a prosthetic pylon, the cylindrical sheath accommodating various depths of pylon insertion to provide height adjustability with the second prosthetic limb component, the coupling device further being designed for day-to-day use; and
mounting the second prosthetic limb component to the prosthetic coupling device and mounting the prosthetic pylon to an interior surface of the cylindrical sheath so as to provide a secure coupling between the prosthetic pylon and the second prosthetic limb component enabling day-to-day use.
15. The method of claim 14 , further comprising the step of adjusting the height between the second prosthetic limb component and the prosthetic pylon for a proper fit.
16. The method of claim 15 , wherein the adjusting step includes the steps of:
releasing a restrictive force associated with the prosthetic coupling so as to enable vertical movement relative to an interior surface of the prosthetic coupling and the exterior surface of the prosthetic pylon;
moving the prosthetic pylon relative to the prosthetic coupling such that a proper distance is achieved between a proximal end of the prosthetic coupling and a distal end of the prosthetic pylon; and
engaging the restrictive force associated with the prosthetic coupling to inhibit vertical movement relative to the interior surface of the prosthetic coupling and the exterior surface of the prosthetic pylon.
17. The method of claim 14 , wherein the secure coupling is accomplished, at least in part, by a clamp manipulating a restrictive force about the prosthetic pylon.
18. The method of claim 17 , wherein the clamp is a ring clamp that includes a screw torqued to approximately around 7.0 ft.lbs to facilitate the secure coupling.
19. The method of claim 14 , wherein the day-to-day use includes time periods extending beyond initial fitting or adjustment.
20. The method of claim 14 , wherein the concavity enables prosthetic pylon insertion approximately between 1.375 and 1.875 inches.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/302,753 US20060095140A1 (en) | 2002-02-28 | 2005-12-14 | Prosthetic annular coupling socket adaptor with adjustable clamp |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36142702P | 2002-02-28 | 2002-02-28 | |
US10/377,289 US6994732B2 (en) | 2002-02-28 | 2003-02-28 | Prosthetic annular coupling socket adaptor with adjustable clamp |
US11/302,753 US20060095140A1 (en) | 2002-02-28 | 2005-12-14 | Prosthetic annular coupling socket adaptor with adjustable clamp |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/377,289 Continuation US6994732B2 (en) | 2002-02-28 | 2003-02-28 | Prosthetic annular coupling socket adaptor with adjustable clamp |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060095140A1 true US20060095140A1 (en) | 2006-05-04 |
Family
ID=29553262
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/377,289 Expired - Fee Related US6994732B2 (en) | 2002-02-28 | 2003-02-28 | Prosthetic annular coupling socket adaptor with adjustable clamp |
US11/302,753 Abandoned US20060095140A1 (en) | 2002-02-28 | 2005-12-14 | Prosthetic annular coupling socket adaptor with adjustable clamp |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/377,289 Expired - Fee Related US6994732B2 (en) | 2002-02-28 | 2003-02-28 | Prosthetic annular coupling socket adaptor with adjustable clamp |
Country Status (1)
Country | Link |
---|---|
US (2) | US6994732B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110112657A1 (en) * | 2009-11-12 | 2011-05-12 | Haun Dennis G | Pyramid receptacle for coupling a prosthetic limb to a socket |
WO2012119017A1 (en) * | 2011-03-02 | 2012-09-07 | Kinetic Revolutions Llc | Adjustable pylon for prosthetic limb |
US20180078757A1 (en) * | 2016-09-20 | 2018-03-22 | Robert Madeira | System and methods for percutaneous mechanical and/or neural interface |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006021064B4 (en) * | 2006-05-03 | 2010-09-02 | Otto Bock Healthcare Gmbh | Method for determining the installation height of a prosthesis |
US20090082869A1 (en) * | 2007-09-14 | 2009-03-26 | Slemker Tracy C | Double ended pyramid adapter |
US8656918B1 (en) | 2008-03-04 | 2014-02-25 | Randall D. Alley | Method, system, and tool for affixing compression stabilized prosthetic socket interface |
US8323353B1 (en) | 2008-03-04 | 2012-12-04 | Randall D. Alley | Method for use of a compression stabilized prosthetic socket interface |
US9198778B2 (en) * | 2009-07-17 | 2015-12-01 | Medex International, Inc. | Rotatable prosthetic adapter |
US8646733B2 (en) * | 2010-07-21 | 2014-02-11 | Vladimir Radzinsky | Universal tube clamp |
US9265626B1 (en) * | 2011-05-31 | 2016-02-23 | össur hf | Height-adjustable threaded shock absorbing module and associated coupling member |
DE102011112830B3 (en) * | 2011-09-12 | 2013-02-21 | Medi Gmbh & Co. Kg | Prosthetic tube adapter |
US9283093B2 (en) | 2012-10-31 | 2016-03-15 | Randall D. Alley | Adaptable socket system, method, and kit |
US20150202059A1 (en) * | 2014-01-23 | 2015-07-23 | Vladimir Radzinsky | Clamps for prosthetic limbs and methods of making clamps for prosthetic limbs |
CA2975199C (en) | 2015-02-11 | 2023-10-10 | Randall Alley | Skeletal stabilization liner system |
EP3355837B1 (en) | 2015-10-01 | 2023-08-30 | University of Pittsburgh- Of the Commonwealth System of Higher Education | Alignment angle sensor systems for limb prostheses |
US10568750B2 (en) * | 2017-11-20 | 2020-02-25 | Kenneth B. Spencer | Non-snag prosthetic foot and leg |
BR112022023362A2 (en) * | 2020-06-05 | 2023-03-21 | Chesterton A W Co | SINGLE POINT ACTUATING LOW PROFILE LOCKING RING FOR A MECHANICAL SEAL |
WO2024097336A1 (en) * | 2022-11-05 | 2024-05-10 | International Prosthetics, Inc. | Connector for osseointegration prosthesis and implant system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3956775A (en) * | 1975-02-18 | 1976-05-18 | Moore Robert R | Rotator for prosthetic ankle joint |
US5108455A (en) * | 1988-10-21 | 1992-04-28 | Telikicherla Madan M | Lower limb prosthesis having removable rigid amputation stump dressing |
US5201775A (en) * | 1990-04-20 | 1993-04-13 | Ohio Willow Wood Company | Adjustable lower limb prosthesis |
US5571211A (en) * | 1994-05-30 | 1996-11-05 | Otto Bock Orthopadische Industrie Besitz-und Verwaltungs-Kommanditgesells chaft | Tubular adapter for a prosthetic limb |
US6334876B1 (en) * | 1998-05-05 | 2002-01-01 | Dale Perkins | Safety suction valve |
US6458163B1 (en) * | 2000-07-11 | 2002-10-01 | Prosthetic Design, Inc. | Coupling-socket adapter assembly for a prosthetic limb |
US20020147500A1 (en) * | 2001-04-09 | 2002-10-10 | Wilkinson Kerry E. | Prosthetic apparatus with elastomeric shock absorber element |
-
2003
- 2003-02-28 US US10/377,289 patent/US6994732B2/en not_active Expired - Fee Related
-
2005
- 2005-12-14 US US11/302,753 patent/US20060095140A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3956775A (en) * | 1975-02-18 | 1976-05-18 | Moore Robert R | Rotator for prosthetic ankle joint |
US5108455A (en) * | 1988-10-21 | 1992-04-28 | Telikicherla Madan M | Lower limb prosthesis having removable rigid amputation stump dressing |
US5201775A (en) * | 1990-04-20 | 1993-04-13 | Ohio Willow Wood Company | Adjustable lower limb prosthesis |
US5571211A (en) * | 1994-05-30 | 1996-11-05 | Otto Bock Orthopadische Industrie Besitz-und Verwaltungs-Kommanditgesells chaft | Tubular adapter for a prosthetic limb |
US6334876B1 (en) * | 1998-05-05 | 2002-01-01 | Dale Perkins | Safety suction valve |
US6458163B1 (en) * | 2000-07-11 | 2002-10-01 | Prosthetic Design, Inc. | Coupling-socket adapter assembly for a prosthetic limb |
US20020147500A1 (en) * | 2001-04-09 | 2002-10-10 | Wilkinson Kerry E. | Prosthetic apparatus with elastomeric shock absorber element |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110112657A1 (en) * | 2009-11-12 | 2011-05-12 | Haun Dennis G | Pyramid receptacle for coupling a prosthetic limb to a socket |
US8252066B2 (en) * | 2009-11-12 | 2012-08-28 | Haun Dennis G | Pyramid receptacle for coupling a prosthetic limb to a socket |
WO2012119017A1 (en) * | 2011-03-02 | 2012-09-07 | Kinetic Revolutions Llc | Adjustable pylon for prosthetic limb |
US20180078757A1 (en) * | 2016-09-20 | 2018-03-22 | Robert Madeira | System and methods for percutaneous mechanical and/or neural interface |
US10675456B2 (en) * | 2016-09-20 | 2020-06-09 | Robert Madeira | System and methods for percutaneous mechanical and/or neural interface |
US11406816B2 (en) * | 2016-09-20 | 2022-08-09 | Robert Madeira | System and methods for percutaneous mechanical and/or neural interface |
Also Published As
Publication number | Publication date |
---|---|
US20030220701A1 (en) | 2003-11-27 |
US6994732B2 (en) | 2006-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6994732B2 (en) | Prosthetic annular coupling socket adaptor with adjustable clamp | |
US6440171B1 (en) | Double D key locking prosthesis | |
US6299648B1 (en) | Locking hip prosthesis | |
US11679006B2 (en) | Systems for shoulder prostheses | |
US9993358B2 (en) | Rotatable prosthetic adapter | |
US6231618B1 (en) | Prosthetic limb including an adjustable pyramidal link plate assembly | |
US7479163B2 (en) | Knee disarticulation/low-profile prosthetic knee-joint assembly including adjustable distal coupling | |
EP1550420B1 (en) | Joint prosthesis with adjustable head | |
US5653765A (en) | Modular prosthesis | |
EP2298246B1 (en) | Joint prosthesis with positionable head | |
US20030074078A1 (en) | Split sleeve modular joint | |
EP2638881B1 (en) | Joint implant trial components | |
US6432110B1 (en) | Modular trial instrument with interlock mechanism | |
US6783549B1 (en) | Modular humeral head resurfacing system | |
US8608805B2 (en) | Insert and shell of a joint ball receptacle | |
US20070162140A1 (en) | Method and apparatus for reconstructing a joint | |
US20040199259A1 (en) | Femoral prosthesis | |
JPH08243117A (en) | Mounting device of artificial organ | |
US6716250B2 (en) | Modular femoral prosthesis | |
WO1998034557A1 (en) | Method and apparatus for aligning a prosthetic element | |
JPH10509065A (en) | Modular joint prosthesis | |
EP2124840B1 (en) | Assembly for use in implantation of a joint component | |
JP2008515527A (en) | Prosthetic structure and method of making the prosthetic structure | |
CN113286561A (en) | Dental implant | |
US20050271462A1 (en) | Device for angularly coupling prosthetic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |