US20060094857A1 - Enzymatic synthesis of polymers - Google Patents
Enzymatic synthesis of polymers Download PDFInfo
- Publication number
- US20060094857A1 US20060094857A1 US11/252,819 US25281905A US2006094857A1 US 20060094857 A1 US20060094857 A1 US 20060094857A1 US 25281905 A US25281905 A US 25281905A US 2006094857 A1 US2006094857 A1 US 2006094857A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- composition
- drug
- integral
- independently
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 101
- 238000003786 synthesis reaction Methods 0.000 title abstract description 13
- 230000015572 biosynthetic process Effects 0.000 title abstract description 12
- 230000002255 enzymatic effect Effects 0.000 title abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000000178 monomer Substances 0.000 claims description 47
- 239000000203 mixture Substances 0.000 claims description 32
- 125000003118 aryl group Chemical group 0.000 claims description 19
- -1 5-hydroxyphenylene, 5-aminophenylene, 5-decanyloxyphenylene Chemical group 0.000 claims description 17
- 239000003814 drug Substances 0.000 claims description 17
- 229940079593 drug Drugs 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 108090001060 Lipase Proteins 0.000 claims description 12
- 102000004882 Lipase Human genes 0.000 claims description 12
- 239000004367 Lipase Substances 0.000 claims description 12
- 235000019421 lipase Nutrition 0.000 claims description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 12
- 125000003545 alkoxy group Chemical group 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 125000002947 alkylene group Chemical group 0.000 claims description 8
- 239000004365 Protease Substances 0.000 claims description 7
- 238000012377 drug delivery Methods 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 7
- 239000011541 reaction mixture Substances 0.000 claims description 7
- 108090000371 Esterases Proteins 0.000 claims description 6
- 108091005804 Peptidases Proteins 0.000 claims description 6
- 125000000732 arylene group Chemical group 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000003963 antioxidant agent Substances 0.000 claims description 5
- 239000000599 controlled substance Substances 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 claims description 3
- 230000001093 anti-cancer Effects 0.000 claims description 3
- 235000013361 beverage Nutrition 0.000 claims description 3
- 230000003115 biocidal effect Effects 0.000 claims description 3
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 claims description 3
- 229940127093 camptothecin Drugs 0.000 claims description 3
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 claims description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 3
- 229960005420 etoposide Drugs 0.000 claims description 3
- 125000001188 haloalkyl group Chemical group 0.000 claims description 3
- 125000001475 halogen functional group Chemical group 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 125000004442 acylamino group Chemical group 0.000 claims description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 2
- 125000000446 sulfanediyl group Chemical group *S* 0.000 claims description 2
- 230000003078 antioxidant effect Effects 0.000 claims 2
- 239000003443 antiviral agent Substances 0.000 claims 2
- 239000011159 matrix material Substances 0.000 claims 2
- 229920000728 polyester Polymers 0.000 abstract description 25
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 24
- 229920001223 polyethylene glycol Polymers 0.000 description 23
- 239000002202 Polyethylene glycol Substances 0.000 description 22
- 102000004190 Enzymes Human genes 0.000 description 19
- 108090000790 Enzymes Proteins 0.000 description 19
- 229940088598 enzyme Drugs 0.000 description 19
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 18
- 238000006116 polymerization reaction Methods 0.000 description 15
- 0 *COC[Si](C)(C)O[Si](C)(C)O[Si](C)(C)COC*C(=O)BC(*)=O Chemical compound *COC[Si](C)(C)O[Si](C)(C)O[Si](C)(C)COC*C(=O)BC(*)=O 0.000 description 13
- DOSDTCPDBPRFHQ-UHFFFAOYSA-N dimethyl 5-hydroxybenzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC(O)=CC(C(=O)OC)=C1 DOSDTCPDBPRFHQ-UHFFFAOYSA-N 0.000 description 13
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 11
- 238000005160 1H NMR spectroscopy Methods 0.000 description 11
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 10
- 230000035484 reaction time Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- VUYXVWGKCKTUMF-UHFFFAOYSA-N tetratriacontaethylene glycol monomethyl ether Chemical compound COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO VUYXVWGKCKTUMF-UHFFFAOYSA-N 0.000 description 9
- 108010084311 Novozyme 435 Proteins 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229920002535 Polyethylene Glycol 1500 Polymers 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 125000004104 aryloxy group Chemical group 0.000 description 5
- ASIDMJNTHJYVQJ-UHFFFAOYSA-N bromo-dodecanol Chemical compound OCCCCCCCCCCCCBr ASIDMJNTHJYVQJ-UHFFFAOYSA-N 0.000 description 5
- 238000007334 copolymerization reaction Methods 0.000 description 5
- MYMSJFSOOQERIO-UHFFFAOYSA-N 1-bromodecane Chemical compound CCCCCCCCCCBr MYMSJFSOOQERIO-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 150000002009 diols Chemical class 0.000 description 4
- 150000002148 esters Chemical group 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005809 transesterification reaction Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000006872 enzymatic polymerization reaction Methods 0.000 description 3
- 238000006911 enzymatic reaction Methods 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108010031797 Candida antarctica lipase B Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 2
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- FITDFDHTTCXHJW-UHFFFAOYSA-N CC.COC(=O)C1=CC(C)=CC(C(=O)OC)=C1.COCC(=O)C1=CC(C)=CC(C(=O)OCCOCCOCCO)=C1.OCCOCCO Chemical compound CC.COC(=O)C1=CC(C)=CC(C(=O)OC)=C1.COCC(=O)C1=CC(C)=CC(C(=O)OCCOCCOCCO)=C1.OCCOCCO FITDFDHTTCXHJW-UHFFFAOYSA-N 0.000 description 1
- XJSUPUZDWCMYFI-UHFFFAOYSA-N COC(=O)C1=CC(O)=CC(C(=O)OC)=C1.COCCOCCC[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CCCOCCOC(=O)C1=CC(C(C)=O)=CC(O)=C1.C[Si](C)(CCCOCCO)O[Si](C)(C)O[Si](C)(C)CCCOCCO Chemical compound COC(=O)C1=CC(O)=CC(C(=O)OC)=C1.COCCOCCC[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CCCOCCOC(=O)C1=CC(C(C)=O)=CC(O)=C1.C[Si](C)(CCCOCCO)O[Si](C)(C)O[Si](C)(C)CCCOCCO XJSUPUZDWCMYFI-UHFFFAOYSA-N 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 101710098556 Lipase A Proteins 0.000 description 1
- 101710098554 Lipase B Proteins 0.000 description 1
- 101710099648 Lysosomal acid lipase/cholesteryl ester hydrolase Proteins 0.000 description 1
- 102100026001 Lysosomal acid lipase/cholesteryl ester hydrolase Human genes 0.000 description 1
- 241001661345 Moesziomyces antarcticus Species 0.000 description 1
- UXPIWHPHEGRYLB-UHFFFAOYSA-N NC(c1cc(C(N)=O)cc(N)c1)=O Chemical compound NC(c1cc(C(N)=O)cc(N)c1)=O UXPIWHPHEGRYLB-UHFFFAOYSA-N 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 1
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 1
- 229920002596 Polyethylene Glycol 900 Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 239000008162 cooking oil Substances 0.000 description 1
- 238000005100 correlation spectroscopy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical compound [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- ZGSIAHIBHSEKPB-UHFFFAOYSA-N dodecan-4-ol Chemical compound CCCCCCCCC(O)CCC ZGSIAHIBHSEKPB-UHFFFAOYSA-N 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000002451 electron ionisation mass spectrometry Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001370 static light scattering Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920006029 tetra-polymer Polymers 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P9/00—Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen
Definitions
- This invention relates to polymers and their synthesis, and more particularly to silicon-based polymers and polyesters, as well as enzymatic synthesis of these polymers.
- Polymers such as polyorganosilicones and polyesters, can be found in every corner of today's society due to their excellent mechanical and chemical properties.
- Polyorganosilicones including polysilanes and polycarbosiloxanes, have interesting properties such as photo-conductivity and luminescence, and possess high thermal stability at the same time. See, e.g., Chojnowski et al., Polymer Preprints, 42, 227 (2001); Interrante et al., Polymer Preprints, 42, 225 (2001); Zhong et al., Langmuir, 16, 10369 (2000); and Bruma et al., J. Macromol. Sci. Polymer Reviews, C41, 1 (2001).
- Polyesters because of their degradability, can be used in biomedical applications such as sustained-release drug delivery. See, e.g., Kopecek et al., J. Biomed. Mater. Res. Symp., 1, 43 (1971).
- the invention is based, in part, on the discovery that certain enzymes can be used to catalyze the polymerization of polyorganosilicone or alkylene glycol-based polyester under mild and environmentally friendly reaction conditions.
- this invention relates to new enzymatic methods of synthesizing a polymer.
- Each of the methods includes the steps of mixing monomers, adding an enzyme, e.g., a lipase, esterase, or protease, to the monomer mixture to form a reaction mixture, and reacting the reaction mixture for a time and under polymerizing conditions suitable to obtain a polyorganosilicone polymer or an alkylene glycol-based polyester polymer.
- an enzyme e.g., a lipase, esterase, or protease
- the term “monomer” refers to a molecule that can undergo a polymerization process, e.g., through condensation polymerization or addition polymerization.
- the monomers that can be used to practice the methods of this invention include linear monomers (i.e., non-cyclic, including graft monomers) or cyclic monomers, oligomers, macromers, and mixtures thereof.
- Each of the monomers, oligomers, and macromers can be monofunctional, bifunctional, trifunctional, or multifunctional.
- suitable monomers include, but are not limited to, diacids and diols, diacids and diamines, anhydrides and diols, and anhydrides and diamines.
- alkylene glycol refers to a moiety consisting of an alkylene sub-moiety (e.g., ethylene, butylene, and hexylene) and a second sub-moiety that is either oxygen, sulfur, or amino.
- Embodiments of the methods include those in which the polymer is a multi-component polyester (e.g., terpolymer or tetrapolymer) wherein at least three components are aliphatic, aromatic, or cyclic monomers, or combinations thereof; those in which the monomers are diacids and diols; those in which the polymers are polyorganosilicones; and those in which the polymers are polyesters.
- polyesters refers to those polymers containing at least one silicone (i.e., siloxane) moiety (e.g., dimethylsiloxane).
- polyester refers to those polymers containing at least one ester linkage.
- polyorganosilicones that can be made by the new methods include those of formula (I):
- each of R, R′, and R′′, independently, is a hydrogen, hydroxy, amino, alkyl, alkoxy, aryl, or aryloxy;
- each x, independently, is an integral of 1 to 10;
- y is an integral of 1 to 1,000;
- n is an integral of 1 to 10,000;
- each of A and B, independently, is a linear or cyclic alkyl, aryl, or alkoxy.
- alkyl refers to C 1-12 straight-chain or C 3-12 branched hydrocarbons, e.g., methyl, isobutyl, and hexyl;
- alkoxy refers to alkyl connected to a main chain or backbone through an oxygen atom (i.e., —O-alkyl);
- aryl refers to aromatic rings such as phenyl, pyridinyl, thienyl, thiazolyl, and furyl, optionally substituted with one or more groups such as halo (e.g., fluro), haloalkyl (e.g., trichloromethyl), amino, or alkyl (e.g., t-butyl); and, like “alkoxy,” the term “aryloxy” refers to aryl groups that are attached to a main chain or backbone through an oxygen atom (i.e., —O-aryl).
- the new polyorganosilicones described herein can be prepared, e.g., by an enzymatic polymerization reaction, e.g., between a silicone monomer containing end hydroxy or amino groups, and another monomer such as a diacid or diester; or between a silicone monomer containing end carboxy or ester groups, and another monomer such as a diamines.
- an enzymatic polymerization reaction e.g., between a silicone monomer containing end hydroxy or amino groups, and another monomer such as a diacid or diester; or between a silicone monomer containing end carboxy or ester groups, and another monomer such as a diamines.
- polyesters that can be made by the new methods also include those of formula (II):
- each of R and R′ independently, is a hydrogen, hydroxy, amino, alkoxy, aryl, or aryloxy
- each x independently, is an integral of 1 to 10
- n is an integral of 1 to 10,000
- each T independently, is alkyl or aryl
- each of A and B independently, is a linear or cyclic alkyl, aryl, or alkoxy.
- each of R and R′ independently, is a hydrogen, hydroxy, amino, alkoxy, aryl, or aryloxy
- each x independently, is an integral of 1 to 10
- n is an integral of 1 to 10,000
- each T independently, is alkyl or aryl
- each of A and B independently, is oxygen, sulfur, amino, or a linear or cyclic alkyl.
- each of R and R′ independently, is a hydrogen, hydroxy, amino, alkoxy, aryl, or aryloxy
- each of x and y independently, is an integral of 1 to 10
- n is an integral of 1 to 10,000
- each T independently, is alkylene or arylene
- each of A and B independently, is oxygen, sulfur, amino, alkyl, or aryl.
- polyorganosilicones described herein include those in which T is alkylene (e.g., ethylene); those in which A is oxygen or amino; those in which x is 2-6; those in which B is oxygen or amino; and those in which each of R and R′, independently, is hydroxy or amino.
- T is alkylene (e.g., ethylene); those in which A is oxygen or amino; those in which x is 2-6; those in which B is oxygen or amino; and those in which each of R and R′, independently, is hydroxy or amino.
- compositions, structures, or devices containing one or more of the new polyorganosilicones and methods of preventing fire by using as a fire-retardant one or more of the new polyorganosilicones.
- the invention also relates to methods of incorporating a third monomer into a preformed polymer by using one of the enzymes described herein (e.g., lipase), wherein the monomer can be a linear or cyclic alkyl monomer or an aryl monomer; and methods of transesterification between two polyesters, also by using one of the enzymes described herein (e.g., lipase).
- the method of transesterification between two polyesters includes mixing the two polyesters, adding an enzyme, such as a lipase, esterase, or protease, to the polyester mixture, and reacting the two polyesters under conditions and for a time sufficient to obtain the desired polymers.
- the invention provides several advantages. First, it reduces or eliminates the use of chemical solvents and therefore significantly reduces environmental pollution caused by conventional chemical synthesis of polymers. Second, because of the chemical selectivity of enzymatic synthesis, the amount of reactants (i.e., monomers), which are required to complete a polymerization reaction and to achieve a desired amount of a polymer product, can be precisely controlled to the right stoichiometry. In other words, no excess reactants are needed, which results in lower production costs and is industrially significant. Third, because of the involvement of an enzyme, which requires that the surrounding environment be mild, the polymers that can be prepared by the enzymatic synthesis of this invention are generally biocompatible. As a result, these polymers can be used in a number of biomedical applications such as carriers for controlled drug delivery, tissue engineering, bio-implants, and scaffolds.
- FIG. 1 is a reaction scheme used in the Examples.
- FIG. 2 is a graph showing the effect of reaction time on polymer yield.
- FIG. 3 is a graph showing the effect of reaction time on the conversion rate of monomers in synthesizing polyorganosilicones.
- the present invention provides new polyorganosilicones and enzymatic methods of synthesizing polymers such as polyorganosilicones and polyesters.
- the new polyorganosilicones, and the polyorganosilicones and polyesters that can be prepared by the new methods described herein, include those of formulae (I) to (IV) below: in which each of R, R′, R′′, x, y, n, T, A, and B are defined above in the Summary.
- polymers can be further modified by methods known in the art.
- the carbonyl groups can be converted to thiocarbonyl (i.e., —(C ⁇ S)—), and the T, when it is aryl, can be substituted or further substituted with substituents such as halo, hydroxy, haloalkyl, thio, carboxy, alkoxycarbonyl, acylamino, and aryl.
- substituents such as halo, hydroxy, haloalkyl, thio, carboxy, alkoxycarbonyl, acylamino, and aryl.
- the enzymes that can be used in the methods of this invention include those that can catalyze the reactions that result in polymer products.
- a lipase can be used in a polycondensation reaction that results in polymers such as polyesters (e.g., when B is oxygen in formula (II)) and polyamides (e.g., when B is amino in formula (I)).
- esterases and proteases can also be used for polymerization.
- the enzymes can be either free in water or in liquid reactants, or immobilized, e.g., with agar gel, so that they can be recycled for repeated uses.
- the enzymes can be used either fresh after being isolated from culture or after being stored for an extended period of time so long as they remain active.
- Suitable monomers that can be used in the new enzymatic synthesis methods include those that can undergo the new polymerization process, e.g., diacids, anhydrides, caprolatams, diols, diamines, and molecules that include polymerizable functionalities such as hydroxy, ester, thiol, thioester, and amino groups.
- the flask can then be placed in an oil or water bath maintained at a predetermined temperature and the monomer mixture be stirred for a period of time.
- By-products can be removed by nitrogen flushing, azeotropic distillation, or vacuum.
- the enzyme can then separated, e.g., by using water, and the product can then be purified by known methods.
- the enzymatic synthesis of this invention can be conducted in mild conditions that are acceptable to enzymes. For instance, the reactions can be conducted at a temperature between 10° C. to 120° C. (e.g., 25° C. to 100 or 115° C., e.g., at 50, 60, 70, 80, 90, 100, or 110° C.).
- the enzymatic synthesis can also be conducted in an organic solvent-free environment, e.g., in an aqueous solution or in a solvent-free condition.
- Schemes 1, 2, and 3 are self-explanatory examples of enzymatic polymerization reactions that can be used to prepare the new polyorganosilicones.
- the definition of each of the variables is the same as that in Formula (I).
- R can be, e.g., OH or NH 2 ;
- R′ can be, e.g., COOH or COO-alkyl;
- A can be, e.g., O or NH;
- B can be, e.g., alkylene; and
- n can be, e.g., 30-120.
- Schemes 4 to 6 are self-explanatory examples of enzymatic polymerization reactions that can be used to prepare the polyesters described herein.
- the definitions of R, R′, A, B, x, and n in Schemes 4 to 6 are the same as those in formulae (II), (III), and (IV).
- each of A and B can be O or NH;
- each R can be OH or NH 2 ;
- each R′ can be OH, H, O-alkyl, or O-aryl;
- T can be aryl or alkylene.
- Scheme 7 is a self-explanatory reaction that can be used to prepare a polyester terpolymer (i.e., a polyester having three types of monomer component).
- a polyester terpolymer i.e., a polyester having three types of monomer component.
- the definitions of R, R′, A, B, and x are the same as those set forth above in formula (II), (III), or (IV).
- each of R and R′ can be OH or NH 2 ; each of A and B can be O or NH; and x can be 4-50.
- Lipases e.g., Candida antarctica lipase, lipase A, and lipase B
- other enzymes such as esterases and proteases (e.g., papain and chymotrypsin)
- esterases and proteases e.g., papain and chymotrypsin
- the molecular weights of the polyethylene glycol units can affect the polymerization behavior.
- the polymer molecular weight increases under reduced pressure and at higher temperatures.
- the synthesized polymers can be easily functionalized, e.g., with alkyl groups of varying chain lengths carrying a polar functionality at the end of the chain.
- the new enzymatic reaction system affords a variety of biodegradable amphiphilic polymers via non-toxic, enzymatic catalysis under mild reaction conditions without organic solvents. Therefore, it is environmentally benign and provides an example of “Green Polymer Chemistry.”
- the polymers obtained by the new methods can be characterized by known methods.
- the molecular weight and molecular weight distributions can be determined by gel permeation chromatography (GPC), matrix assisted laser desorption ionization (MALDI), and static or dynamic light scattering.
- the physical and thermal properties of the polymer products can be evaluated by thermal gravemetric analysis (TGA), differential scanning calorimetry (DSC), or surface tensiometer;
- the chemical structures of the polymers can be determined by, e.g., NMR ( 1 H, 13 C NMR, 1 H- 1 H correlation, or 1 H- 13 C correlation), IR, UV, Gas Chromatography-Electron Impact Mass Spectroscopy (GC-EIMS), EIMS, or Liquid Chromatography Mass Spectroscopy (LCMS).
- linkages such as ester and amide linkages in the polymers described herein makes these polymers good candidates for biomedical applications.
- they can be used as biodegradable matrices for tissue engineering.
- hydrophilic groups such as ethylene oxide (i.e., when x is 2, and A and B are both oxygen) and hydrophobic groups such as carbonyl groups and siloxane groups
- the polyorganosilicones and polyesters are generally amphiphilic.
- the polymers can fold into specific conformations such as micelles.
- drugs e.g., camptothecin, etoposide, and other anticancer, antibiotic, antiviral, and related drug molecules in aqueous media.
- the drugs can be released in a controlled manner when the polymers are exposed to specific conditions, e.g., when the solution temperature or pH values are changed.
- drugs can be chemically bonded to these polymers, which further sustains the release of drugs.
- Conjugate moieties can be attached to the polymers, e.g., to improve selectivity of drug delivery or of drug encapsulation.
- the polyorganosilicones are in general chemically and thermally stable. Thus, they can be used in compositions and structures such as packaging materials, fire-retardants, and thermal insulators. In addition, polymers with free phenolic groups can be used as antioxidant agents in food materials, cooking oil, and beverages.
- the polymers are good candidates for opto-electronic applications such as polyelectrolytes in photovoltaic devices as well as in biosensor applications.
- Dimethyl 5-hydroxyisophthalate (1, 1.0 mmol, 0.21 g) and polyethylene glycol (PEG) (1.0 mmol, M.W. 600 (0.6 g)(2a), 900 (0.9 g)(2b), and 1500 (1.5 g)(2c) and 300 (0.3 g)(2d)) were placed in a round-bottom flask (25 ml capacity).
- PEG polyethylene glycol
- NOVOZYME-435® immobilized Candida antarctica lipase B
- the reaction flask was then placed in a constant temperature oil bath maintained at 90° C. under vacuum.
- the structures of the polymers were characterized using NMR spectroscopy (Bruker 500 MHz); and the molecular weights of the polymer products were determined by Gel Permeation Chromatography (GPC). The number average molecular weight of the polymers 3a-3c was found to be between 18000-23000 Da. The NMR results are indicated below.
- This polymer was obtained by heating dimethyl 5-hydroxyisophthalate (1 mmol, 0.21 g) with PEG 600 (1 mmol, 0.6 g) in presence of Novozyme-435 (0.8 g) at 90° C. in solvent free condition for 48 hours under vacuum. It was obtained as a viscous oil after freeze-drying in 90% yield.
- This polymer was obtained by condensing dimethyl 5-hydroxyisophthalate (1 mmol, 0.21 g) with PEG 900 (1 mmol, 0.9 g) in presence of Novozyme-435 (1.1 g) at 90° C. in solvent free condition for 48 hours under vacuum. It was obtained as a waxy solid after freeze-drying in 93% yield.
- This polymer was obtained by heating dimethyl 5-hydroxyisophthalate (1 mmol, 0.21 g) with PEG 1500 (1 mmol, 1.5 g) in the presence of Novozyme-435 (1.7 g) at 90° C. in solvent free condition for 48 hours under vacuum. It was obtained as a white solid after freeze-drying in 90% yield.
- the polymers 3a-3c were functionalized by coupling them with bromodecane (4) and 12-bromododecanol (5) using anhydrous potassium carbonate and acetone as shown in FIG. 1 .
- a general method to carry out this coupling reaction is as follows.
- Copolymerization was carried out for different time periods to find the optimum conditions with PEG-1500 (2c) and dimethyl 5-hydroxyisophthalate (1).
- PEG-1500 (2c) and dimethyl 5-hydroxyisophthalate (1) equimolar proportions of 1 and 2c were added along with the enzyme (10% w.r.t. the monomers) and the reaction was allowed to proceed at different time intervals, i.e., 2, 4, 12, 20, and 48 hours at 90° C. and under bulk conditions.
- FIG. 2 shows a plot of the copolymer yield and number average molecular weight (Mn) versus reaction time in the copolymerization of dimethyl-5-hydroxyisophthalate (1) and PEG-1500 (2c) using lipase (Novozyme-435) as the catalyst in bulk.
- Mn number average molecular weight
- the copolymer yield and Mn increased rapidly to 22% and 37000, respectively. Further increase in copolymer yield with increased reaction time occurred gradually.
- the copolymer yield and Mn were 93% and 23000, respectively.
- the Mn increased for reaction times up to 12 hours and then decreased by 37% from 12 hours to 48 hours. However, after 48 hours, the conversion of monomers was almost quantitative.
- the molecular weight distribution (Mw/Mn) increased up to 12 hours and then decreased with reaction time (i.e., 2.7 and 1.8 after 12 hours and 48 hours, respectively).
- Copolymerization was carried out at different temperatures to find the optimum conditions with PEG-1500 (2c) and dimethyl 5-hydroxyisophthalate (1).
- the same polymerization reaction as in Example 3 was carried out at different temperatures, i.e., 40, 60, 70, 80, and 90° C., and allowed to proceed for 48 hours in each case.
- the polymer products were isolated and molecular weights determined.
- the number average molecular weights of the polymers obtained in the temperature range 40° to 80° C. ranged between 12,000 and 15,000 Da, but at 90° C., the molecular weight changed dramatically to 23,000 Da.
- the copolymer isolated yield also increased with the increase in temperature and was nearly quantitative at 90° C.
- the structure of the polymer formed was analyzed from its detailed spectral studies, i.e. 1 H NMR, 13 C NMR and 1 H- 1 H correlation spectra. Comparison of the 1 H NMR spectrum of the monomer and the polymer showed the appearance of a new signal at ⁇ 4.30 and disappearance of the signal at ⁇ 3.6 in the polymer spectra (spectra not shown). This indicates a transesterification between the CH 2 OH of the silicon diol and the dimethyl ester. The signal at ⁇ 4.30 in the polymer was assigned to the methylene protons of the CH 2 OCO moiety. The transesterification reaction between the silicon diol and the dimethyl ester was also confirmed from the 13 C NMR spectrum of the product polymer, which showed a signal at ⁇ 165.0 for the carbonyl carbon of the newly formed ester moiety.
- Example 5 The polymerization of Example 5 was carried out for different time periods to study the reaction kinetics. The percent conversion of monomers to copolymers was determined by 1H NMR spectroscopy. FIG. 3 shows the effect of reaction time period on the conversion of the monomer to the polyorganosilicone. It was observed that with the increase in reaction time, the conversion of monomers to the polyorganosilicone increased. After 8 hours, all the monomers were converted to polymers.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Polyesters Or Polycarbonates (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
- This application is a continuation application of and claims priority from U.S. application Ser. No. 10/688,582, filed Oct. 17, 2003, which claims priority from Provisional Patent Application No. 60/419,478, filed on Oct. 18, 2002. The contents of both applications are incorporated herein by reference in their entirety.
- This invention relates to polymers and their synthesis, and more particularly to silicon-based polymers and polyesters, as well as enzymatic synthesis of these polymers.
- Polymers, such as polyorganosilicones and polyesters, can be found in every corner of today's society due to their excellent mechanical and chemical properties. Polyorganosilicones, including polysilanes and polycarbosiloxanes, have interesting properties such as photo-conductivity and luminescence, and possess high thermal stability at the same time. See, e.g., Chojnowski et al., Polymer Preprints, 42, 227 (2001); Interrante et al., Polymer Preprints, 42, 225 (2001); Zhong et al., Langmuir, 16, 10369 (2000); and Bruma et al., J. Macromol. Sci. Polymer Reviews, C41, 1 (2001). Polyesters, on the other hand, because of their degradability, can be used in biomedical applications such as sustained-release drug delivery. See, e.g., Kopecek et al., J. Biomed. Mater. Res. Symp., 1, 43 (1971).
- These polymers have been traditionally prepared by chemical synthesis, which normally consumes large quantities of solvents and starting materials, which, in turn, can damage the environment. Environment-friendly synthetic methods for making such polymers are therefore highly desirable.
- The invention is based, in part, on the discovery that certain enzymes can be used to catalyze the polymerization of polyorganosilicone or alkylene glycol-based polyester under mild and environmentally friendly reaction conditions.
- In one aspect, this invention relates to new enzymatic methods of synthesizing a polymer. Each of the methods includes the steps of mixing monomers, adding an enzyme, e.g., a lipase, esterase, or protease, to the monomer mixture to form a reaction mixture, and reacting the reaction mixture for a time and under polymerizing conditions suitable to obtain a polyorganosilicone polymer or an alkylene glycol-based polyester polymer.
- The term “monomer” refers to a molecule that can undergo a polymerization process, e.g., through condensation polymerization or addition polymerization. Specifically, the monomers that can be used to practice the methods of this invention include linear monomers (i.e., non-cyclic, including graft monomers) or cyclic monomers, oligomers, macromers, and mixtures thereof. Each of the monomers, oligomers, and macromers can be monofunctional, bifunctional, trifunctional, or multifunctional. Examples of suitable monomers include, but are not limited to, diacids and diols, diacids and diamines, anhydrides and diols, and anhydrides and diamines.
- The term “alkylene glycol” refers to a moiety consisting of an alkylene sub-moiety (e.g., ethylene, butylene, and hexylene) and a second sub-moiety that is either oxygen, sulfur, or amino.
- Embodiments of the methods include those in which the polymer is a multi-component polyester (e.g., terpolymer or tetrapolymer) wherein at least three components are aliphatic, aromatic, or cyclic monomers, or combinations thereof; those in which the monomers are diacids and diols; those in which the polymers are polyorganosilicones; and those in which the polymers are polyesters. The term “polyorganosilicones” refers to those polymers containing at least one silicone (i.e., siloxane) moiety (e.g., dimethylsiloxane). The term “polyesters” refers to those polymers containing at least one ester linkage.
- Examples of polyorganosilicones that can be made by the new methods include those of formula (I):
In this formula, each of R, R′, and R″, independently, is a hydrogen, hydroxy, amino, alkyl, alkoxy, aryl, or aryloxy; each x, independently, is an integral of 1 to 10; y is an integral of 1 to 1,000; n is an integral of 1 to 10,000; and each of A and B, independently, is a linear or cyclic alkyl, aryl, or alkoxy. - As used herein, the term “alkyl” refers to C1-12 straight-chain or C3-12 branched hydrocarbons, e.g., methyl, isobutyl, and hexyl; the term “alkoxy” refers to alkyl connected to a main chain or backbone through an oxygen atom (i.e., —O-alkyl); the term “aryl” refers to aromatic rings such as phenyl, pyridinyl, thienyl, thiazolyl, and furyl, optionally substituted with one or more groups such as halo (e.g., fluro), haloalkyl (e.g., trichloromethyl), amino, or alkyl (e.g., t-butyl); and, like “alkoxy,” the term “aryloxy” refers to aryl groups that are attached to a main chain or backbone through an oxygen atom (i.e., —O-aryl).
- The new polyorganosilicones described herein can be prepared, e.g., by an enzymatic polymerization reaction, e.g., between a silicone monomer containing end hydroxy or amino groups, and another monomer such as a diacid or diester; or between a silicone monomer containing end carboxy or ester groups, and another monomer such as a diamines.
- Examples of polyesters that can be made by the new methods also include those of formula (II):
In this formula, each of R and R′, independently, is a hydrogen, hydroxy, amino, alkoxy, aryl, or aryloxy; each x, independently, is an integral of 1 to 10; n is an integral of 1 to 10,000; each T, independently, is alkyl or aryl; and each of A and B, independently, is a linear or cyclic alkyl, aryl, or alkoxy. - Additional examples of polyesters that can be made by the new methods include those of formula (III):
In this formula, each of R and R′, independently, is a hydrogen, hydroxy, amino, alkoxy, aryl, or aryloxy; each x, independently, is an integral of 1 to 10; n is an integral of 1 to 10,000; each T, independently, is alkyl or aryl; and each of A and B, independently, is oxygen, sulfur, amino, or a linear or cyclic alkyl. - Further examples of polyesters that can be made by the new methods include those of formula (IV):
In this formula, each of R and R′, independently, is a hydrogen, hydroxy, amino, alkoxy, aryl, or aryloxy; each of x and y, independently, is an integral of 1 to 10; n is an integral of 1 to 10,000; each T, independently, is alkylene or arylene; and each of A and B, independently, is oxygen, sulfur, amino, alkyl, or aryl. - Another aspect of this invention relates to the polyorganosilicones described herein. Specific examples of these polyorganosilicones include those in which T is alkylene (e.g., ethylene); those in which A is oxygen or amino; those in which x is 2-6; those in which B is oxygen or amino; and those in which each of R and R′, independently, is hydroxy or amino.
- Other aspects of the invention include compositions, structures, or devices containing one or more of the new polyorganosilicones, and methods of preventing fire by using as a fire-retardant one or more of the new polyorganosilicones.
- The invention also relates to methods of incorporating a third monomer into a preformed polymer by using one of the enzymes described herein (e.g., lipase), wherein the monomer can be a linear or cyclic alkyl monomer or an aryl monomer; and methods of transesterification between two polyesters, also by using one of the enzymes described herein (e.g., lipase). In particular, the method of transesterification between two polyesters includes mixing the two polyesters, adding an enzyme, such as a lipase, esterase, or protease, to the polyester mixture, and reacting the two polyesters under conditions and for a time sufficient to obtain the desired polymers.
- The invention provides several advantages. First, it reduces or eliminates the use of chemical solvents and therefore significantly reduces environmental pollution caused by conventional chemical synthesis of polymers. Second, because of the chemical selectivity of enzymatic synthesis, the amount of reactants (i.e., monomers), which are required to complete a polymerization reaction and to achieve a desired amount of a polymer product, can be precisely controlled to the right stoichiometry. In other words, no excess reactants are needed, which results in lower production costs and is industrially significant. Third, because of the involvement of an enzyme, which requires that the surrounding environment be mild, the polymers that can be prepared by the enzymatic synthesis of this invention are generally biocompatible. As a result, these polymers can be used in a number of biomedical applications such as carriers for controlled drug delivery, tissue engineering, bio-implants, and scaffolds.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skilled in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- The details of several embodiments of the invention are set forth in the accompanying description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
-
FIG. 1 is a reaction scheme used in the Examples. -
FIG. 2 is a graph showing the effect of reaction time on polymer yield. -
FIG. 3 is a graph showing the effect of reaction time on the conversion rate of monomers in synthesizing polyorganosilicones. - The present invention provides new polyorganosilicones and enzymatic methods of synthesizing polymers such as polyorganosilicones and polyesters. The new polyorganosilicones, and the polyorganosilicones and polyesters that can be prepared by the new methods described herein, include those of formulae (I) to (IV) below:
in which each of R, R′, R″, x, y, n, T, A, and B are defined above in the Summary. - These polymers can be further modified by methods known in the art. For example, the carbonyl groups can be converted to thiocarbonyl (i.e., —(C═S)—), and the T, when it is aryl, can be substituted or further substituted with substituents such as halo, hydroxy, haloalkyl, thio, carboxy, alkoxycarbonyl, acylamino, and aryl. Accordingly, the modified polymers thus obtained, as well as the modification methods, are also within the scope of this invention.
- Enzymatic Synthesis of Polymers
- The enzymes that can be used in the methods of this invention include those that can catalyze the reactions that result in polymer products. For instance, a lipase can be used in a polycondensation reaction that results in polymers such as polyesters (e.g., when B is oxygen in formula (II)) and polyamides (e.g., when B is amino in formula (I)). Similarly, esterases and proteases can also be used for polymerization. The enzymes can be either free in water or in liquid reactants, or immobilized, e.g., with agar gel, so that they can be recycled for repeated uses. The enzymes can be used either fresh after being isolated from culture or after being stored for an extended period of time so long as they remain active.
- Suitable monomers that can be used in the new enzymatic synthesis methods include those that can undergo the new polymerization process, e.g., diacids, anhydrides, caprolatams, diols, diamines, and molecules that include polymerizable functionalities such as hydroxy, ester, thiol, thioester, and amino groups.
- To carry out the new methods, one can first mix monomers described herein and an enzyme suitable for the desired type of polymerization in a suitable container or vessel, e.g., in a round bottom flask. The flask can then be placed in an oil or water bath maintained at a predetermined temperature and the monomer mixture be stirred for a period of time. By-products can be removed by nitrogen flushing, azeotropic distillation, or vacuum. The enzyme can then separated, e.g., by using water, and the product can then be purified by known methods.
- The enzymatic synthesis of this invention can be conducted in mild conditions that are acceptable to enzymes. For instance, the reactions can be conducted at a temperature between 10° C. to 120° C. (e.g., 25° C. to 100 or 115° C., e.g., at 50, 60, 70, 80, 90, 100, or 110° C.). The enzymatic synthesis can also be conducted in an organic solvent-free environment, e.g., in an aqueous solution or in a solvent-free condition.
-
Schemes -
Schemes 4 to 6 are self-explanatory examples of enzymatic polymerization reactions that can be used to prepare the polyesters described herein. The definitions of R, R′, A, B, x, and n inSchemes 4 to 6 are the same as those in formulae (II), (III), and (IV). For instance, each of A and B can be O or NH; each R can be OH or NH2; each R′ can be OH, H, O-alkyl, or O-aryl; and T can be aryl or alkylene. -
Scheme 7 is a self-explanatory reaction that can be used to prepare a polyester terpolymer (i.e., a polyester having three types of monomer component). The definitions of R, R′, A, B, and x are the same as those set forth above in formula (II), (III), or (IV). For instance, each of R and R′ can be OH or NH2; each of A and B can be O or NH; and x can be 4-50. - Lipases (e.g., Candida antarctica lipase, lipase A, and lipase B), and other enzymes such as esterases and proteases (e.g., papain and chymotrypsin), efficiently catalyze the polycondensation of various monomers as described herein, such as dimethyl 5-hydroxyisophthalate and polyethylene glycols, in a solvent-free system. As described in the examples below, the molecular weights of the polyethylene glycol units can affect the polymerization behavior. In addition, the polymer molecular weight increases under reduced pressure and at higher temperatures. The synthesized polymers can be easily functionalized, e.g., with alkyl groups of varying chain lengths carrying a polar functionality at the end of the chain. The new enzymatic reaction system affords a variety of biodegradable amphiphilic polymers via non-toxic, enzymatic catalysis under mild reaction conditions without organic solvents. Therefore, it is environmentally benign and provides an example of “Green Polymer Chemistry.”
- Characterization of Polymers
- The polymers obtained by the new methods can be characterized by known methods. For instance, the molecular weight and molecular weight distributions can be determined by gel permeation chromatography (GPC), matrix assisted laser desorption ionization (MALDI), and static or dynamic light scattering. Whereas the physical and thermal properties of the polymer products can be evaluated by thermal gravemetric analysis (TGA), differential scanning calorimetry (DSC), or surface tensiometer; the chemical structures of the polymers can be determined by, e.g., NMR (1H, 13C NMR, 1H-1H correlation, or 1H-13C correlation), IR, UV, Gas Chromatography-Electron Impact Mass Spectroscopy (GC-EIMS), EIMS, or Liquid Chromatography Mass Spectroscopy (LCMS).
- Applications of the Polymers
- The presence of linkages such as ester and amide linkages in the polymers described herein makes these polymers good candidates for biomedical applications. For example, they can be used as biodegradable matrices for tissue engineering. Because of the inclusion of hydrophilic groups such as ethylene oxide (i.e., when x is 2, and A and B are both oxygen) and hydrophobic groups such as carbonyl groups and siloxane groups, the polyorganosilicones and polyesters are generally amphiphilic. In aqueous solutions, the polymers can fold into specific conformations such as micelles. Thus, they can be used to trap molecules such as drugs, e.g., camptothecin, etoposide, and other anticancer, antibiotic, antiviral, and related drug molecules in aqueous media. The drugs can be released in a controlled manner when the polymers are exposed to specific conditions, e.g., when the solution temperature or pH values are changed. Alternatively, drugs can be chemically bonded to these polymers, which further sustains the release of drugs. Conjugate moieties can be attached to the polymers, e.g., to improve selectivity of drug delivery or of drug encapsulation.
- The polyorganosilicones are in general chemically and thermally stable. Thus, they can be used in compositions and structures such as packaging materials, fire-retardants, and thermal insulators. In addition, polymers with free phenolic groups can be used as antioxidant agents in food materials, cooking oil, and beverages.
- Upon modification with conjugated polymers, the polymers are good candidates for opto-electronic applications such as polyelectrolytes in photovoltaic devices as well as in biosensor applications.
- The invention is further described in the following examples, which are only illustrative and do not in any way limit the scope of the invention described in the claims.
- Dimethyl 5-hydroxyisophthalate (1, 1.0 mmol, 0.21 g) and polyethylene glycol (PEG) (1.0 mmol, M.W. 600 (0.6 g)(2a), 900 (0.9 g)(2b), and 1500 (1.5 g)(2c) and 300 (0.3 g)(2d)) were placed in a round-bottom flask (25 ml capacity). To this mixture was added NOVOZYME-435® (immobilized Candida antarctica lipase B), obtained from Novozymes, Denmark (10% by weight w.r.t. monomers, 0.80-1.7 g). The reaction flask was then placed in a constant temperature oil bath maintained at 90° C. under vacuum.
- The reaction, as shown in
Scheme 8 below (and inFIG. 1 ), was allowed to proceed for 48 hours, after which the mixture was quenched by adding chloroform and filtering off the enzyme under vacuum. The organic solvent was then evaporated under vacuum and the residue was dialyzed using a membrane with a molecular weight cutoff of 6000. After the completion of dialysis, theproduct polymers 3a-3d (as described in further detail below) were freeze-dried. - In the polymerization without enzyme (control experiment), the monomers were recovered unchanged. Furthermore, no polymer formation was observed by using the deactivated Candida antarctica lipase B. These data imply that the present polymerizations proceeded through lipase catalysis.
- The polymerization of 1 with PEG-300 (2d) under the same reaction conditions resulted in hardly any conversion to the copolymer (3d), probably because this PEG is of low molecular weight and its amount taken (in molar ratio to 1) is much less than that in the cases of 2a-2c.
- The structures of the polymers were characterized using NMR spectroscopy (Bruker 500 MHz); and the molecular weights of the polymer products were determined by Gel Permeation Chromatography (GPC). The number average molecular weight of the
polymers 3a-3c was found to be between 18000-23000 Da. The NMR results are indicated below. - This polymer was obtained by heating dimethyl 5-hydroxyisophthalate (1 mmol, 0.21 g) with PEG 600 (1 mmol, 0.6 g) in presence of Novozyme-435 (0.8 g) at 90° C. in solvent free condition for 48 hours under vacuum. It was obtained as a viscous oil after freeze-drying in 90% yield.
- 1H NMR Data (CDCl3): δ 3.64-3.68 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β), 3.82 (t, 2H, C-8H), 3.93 (s, 3H, —COOCH3), 4.48 (t, 2H, C-7H), 7.71 (m, 2H, C-4H and C-6H) and 8.21 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 52.74 (—OCH3 end group), 62.07 (C-α), 64.74 (C-β, 69.44 (C-8), 70.93 (repeating PEG units' carbons), 72.90 (C-7), 121.43 (C-4 and C-6), 122.53 (C-2), 131.18 (C-1 and C-3), 157.57 (C-5) and 166.11 (—COOMe).
- This polymer was obtained by condensing dimethyl 5-hydroxyisophthalate (1 mmol, 0.21 g) with PEG 900 (1 mmol, 0.9 g) in presence of Novozyme-435 (1.1 g) at 90° C. in solvent free condition for 48 hours under vacuum. It was obtained as a waxy solid after freeze-drying in 93% yield.
- 1H NMR Data (CDCl3): δ 3.63-3.81 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β), 3.82 (t, 2H, C-8H), 3.92 (s, 3H, —COOCH3), 4.46 (t, 2H, C-7H), 7.69 (d, 2H, C-4H and C-6H) and 8.73 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 52.73 (—OCH3 end group), 62.07 (C-α), 64.72 (C-β), 69.43 (C-8), 70.90 (repeating PEG units' carbons), 72.89 (C-7), 121.43 (C-4 and C-6), 122.51 (C-2), 131.99 (C-1 and C-3), 157.56 (C-5) and 166.38 (—COOMe).
- This polymer was obtained by heating dimethyl 5-hydroxyisophthalate (1 mmol, 0.21 g) with PEG 1500 (1 mmol, 1.5 g) in the presence of Novozyme-435 (1.7 g) at 90° C. in solvent free condition for 48 hours under vacuum. It was obtained as a white solid after freeze-drying in 90% yield.
- 1H NMR Data (CDCl3): δ 3.6-3.79 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β), 3.86 (t, 2H, C-8H), 3.96 (s, 3H, —COOCH3 end group), 4.51 (t, 2H, C-7H), 7.75 (s, 2H, C-4H and C-6H) and 8.24 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 52.69 (—OCH3 end group), 62.02 (C-α), 64.70 (C-β), 69.43 (C-8), 70.90 (repeating PEG units' carbons), 72.91 (C-7), 121.48 (C-4 and C-6), 122.38 (C-2), 131.95 (C-1 and C-3), 157.62 (C-5) and 166.07 (—COOMe).
- The
polymers 3a-3c were functionalized by coupling them with bromodecane (4) and 12-bromododecanol (5) using anhydrous potassium carbonate and acetone as shown inFIG. 1 . A general method to carry out this coupling reaction is as follows. - Equimolar quantities of 3a-3c (0.8, 1.1 and 1.7 g), from Example 1, and
bromodecane 4 or 12-bromododecanol 5 (0.22 or 0.26 g) were dissolved in dry acetone (10 ml). To the resultant solution was added an equimolar amount of anhydrous potassium carbonate (0.13 g). The reaction mixture was refluxed at 60° C. and the progress of the reaction was monitored by TLC using ethyl acetate in petroleum ether (30%). After completion, potassium carbonate was removed by filtration and the solvent was removed under vacuum to give theproducts 6a-6c and 7a-7c from 4 and 5, respectively (as shown inFIG. 1 and as described in further detail below). - The structures of the functionalized polymers were established by 1H, 13C NMR spectra and also by their 1H-1H correlation spectrum (COSY). The results are described below.
- 1H NMR Data (CDCl3): δ0.86-0.92 (bs, 3H C-20H), 1.27-1.38 (m, C-13H to C-19H), 1.75-1.85 (m, 2H, C-12H), 3.65-3.67 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β), 3.76 (t, 2H, C-8H), 3.95 (s,3H, —COOCH3 end group), 4.06 (t, 2H, C-11H), 4.51 (t, 2H, C-7H), 7.75 (m, 2H, C-4H and C-6H) and 8.36 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 14.52 (C-20), 23.05-32.26 (C-12 to C-19), 52.79 (—OCH3 end group), 61.76 (C-α), 64.81 (C-β), 69.46 (C-8 and C-11), 70.38-70.95 (repeating PEG units' carbons), 72.87 (C-7), 120.04 (C-4 and C-6), 123.32 (C-2), 131.99 (C-1 and C-3), 159.53 (C-5) and 166.07 (—COOMe).
- 1H NMR Data (CDCl3): δ 0.75-0.87 (bs, 3H, C-20H), 1.25-1.36 (m, C-13H to C-19H), 1.77-1.83 (m, 2H, C-12H), 3.66-3.69 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β), 3.82 (bs, 2H, C-8H), 3.96 (s,3H,—COOMe end group), 4.03-4.06 (t, 2H, C-11H), 4.51 (t, 2H, C-7H), 7.77 (m, 2H, C-4H and C-6H) and 8.30 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 14.50 (C-20), 23.03-32.24 (C-12 to C-19), 52.77 (—OCH3 end group), 61.86 (C-α), 64.80 (C-β), 69.45 (C-8 and C-11), 70.46-70.87 (repeating PEG units' carbons), 72.86 (C-7), 120.26 (C-4 and C-6), 123.16 (C-2), 131.98 (C-1 and C-3), 159.53 (C-5) and 166.06 (—COOMe).
- 1H NMR Data (CDCl3): δ0.90 (t, 3H C-20H), 1.31 (m, C-13H to C-19H), 1.81 (m, 2H, C-12H), 3.66-3.69 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β carbons), 3.87 (t, 2H, C-8H), 3.96 (s, 3H, —COOCH3 end group), 4.10 (t, 2H, C-11H), 4.51 (t, 2H, C-7H), 7.77 (m, 2H, C-4H and C-6H) and 8.30 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 14.54 (C-20), 23.06-32.26 (C-12 to C-19), 52.80 (—OCH3 end group), 61.89 (C-α), 64.76 (C-β), 69.22 (C-8 and C-11), 70.52-70.91 (repeating PEG units' carbons), 72.87 (C-7), 120.26 (C-4 and C-6), 123.34 (C-2), 131.99 (C-1 and C-3), 159.53 (C-5) and 166.08 (—COOMe).
- 1H NMR Data (CDCl3): δ 1.31 (bs, C-13H to C-20H), 1.54-1.57 (m, 2H, C-21H), 1.82 (m, 2H, C-12H), 3.31-3.43 (t, 2H, C-22H), 3.60-3.67 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β carbons), 3.86 (t, 2H, C-8H), 3.95 (s, 3H, —COOCH3 end group), 4.05 (t, 2H, C-11H), 4.51 (t, 2H, C-7H), 7.76 (bs, 2H, C-4H and C-6H) and 8.28 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 26.16-33.15 (C-12 to C-21), 52.80 (—OCH3 end group), 61.82 (C-α), 63.23 (C-22), 64.83 (C-β), 69.49 (C-8 and C-11), 70.45-70.96 (repeating PEG units' carbons), 72.94 (C-7), 120.26 (C-4 and C-6), 123.34 (C-2), 132.02 (C-1 and C-3), 159.57 (C-5) and 166.07 (—COOMe).
- 1H NMR Data (CDCl3): δ 1.29 (bs, C-13H to C-20H), 1.43-1.49 (m, 2H, C-21H), 1.78-1.85 (m, 2H, C-12H), 3.37-3.47 (t, 2H, C-22H), 3.60-3.68 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β carbons), 3.86 (t, 2H, C-8H), 3.94 (s, 3H, —COOCH3 end group), 4.05 (t, 2H, C-11H), 4.51 (t, 2H, C-7H), 7.76 (m, 2H, C-4H and C-6H) and 8.21 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 26.16-33.20 (C-12 to C-21), 52.83 (—OCH3 end group), 61.82 (C-α), 63.38 (C-22), 64.84 (C-β), 69.00 (C-8 and C-11), 70.93 (repeating PEG units' carbons), 72.90 (C-7), 120.34 (C-4 and C-6), 123.38 (C-2), 132.02 (C-1 and C-3), 159.54 (C-5) and 166.12 (—COOMe).
- 1H NMR Data (CDCl3): δ 1.31 (bs, C-13H to C-20H), 1.54-1.57 (m, 2H, C-21H), 1.82 (bs, 2H, C-12H), 3.43 (t, 2H, C-22H), 3.67-3.74 (brs, methylene PEG protons on C-9 and C-10 carbons of the repeating units and on C-α and C-β carbons), 3.86 (t, 2H, C-8H), 3.95 (s, 3H, —COOCH3 end group), 4.05 (t, 2H, C-11H), 4.51 (t, 2H, C-7H), 7.76 (bs, 2H, C-4H and C-6H) and 8.28 (s,1H, C-2H).
- 13C NMR Data (CDCl3): δ 26.15-33.18 (C-12 to C-21), 52.82 (—OCH3 end group), 61.82 (C-α), 63.36 (C-22), 64.83 (C-β), 69.49 (C-8 and C-11), 70.90 (repeating PEG units' carbons), 72.89 (C-7), 120.33 (C-4 and C-6), 123.37 (C-2), 132.01 (C-1 and C-3), 159.52 (C-5) and 166.07 (—COOMe).
- Effects of reaction time were investigated in the copolymerization of dimethyl 5-hydroxyisophthalate and PEG-1500 using Novozyme-435 as a catalyst.
- Copolymerization was carried out for different time periods to find the optimum conditions with PEG-1500 (2c) and dimethyl 5-hydroxyisophthalate (1). In a typical experiment, equimolar proportions of 1 and 2c were added along with the enzyme (10% w.r.t. the monomers) and the reaction was allowed to proceed at different time intervals, i.e., 2, 4, 12, 20, and 48 hours at 90° C. and under bulk conditions.
-
FIG. 2 shows a plot of the copolymer yield and number average molecular weight (Mn) versus reaction time in the copolymerization of dimethyl-5-hydroxyisophthalate (1) and PEG-1500 (2c) using lipase (Novozyme-435) as the catalyst in bulk. In the first 12 hours, the copolymer yield and Mn increased rapidly to 22% and 37000, respectively. Further increase in copolymer yield with increased reaction time occurred gradually. By 48 hours, the copolymer yield and Mn were 93% and 23000, respectively. The Mn increased for reaction times up to 12 hours and then decreased by 37% from 12 hours to 48 hours. However, after 48 hours, the conversion of monomers was almost quantitative. The molecular weight distribution (Mw/Mn) increased up to 12 hours and then decreased with reaction time (i.e., 2.7 and 1.8 after 12 hours and 48 hours, respectively). - Such decreases in molecular weight and molecular weight distributions at extended reaction times are contrary to what is known in thermal polymerization reactions. This indicates that the enzyme started cleaving the big chains and showed selectivity towards the length of the polymer. The results of the kinetic study are also shown in
FIG. 2 . - Effects of reaction temperature were investigated in the copolymerization of dimethyl 5-hydroxyisophthalate and PEG-1500 using Novozyme-435 as a catalyst.
- Copolymerization was carried out at different temperatures to find the optimum conditions with PEG-1500 (2c) and dimethyl 5-hydroxyisophthalate (1). To determine the effect of temperature on the rate of polymerization, the same polymerization reaction as in Example 3 was carried out at different temperatures, i.e., 40, 60, 70, 80, and 90° C., and allowed to proceed for 48 hours in each case. After the usual work-up, the polymer products were isolated and molecular weights determined. The number average molecular weights of the polymers obtained in the
temperature range 40° to 80° C. ranged between 12,000 and 15,000 Da, but at 90° C., the molecular weight changed dramatically to 23,000 Da. Interestingly, the copolymer isolated yield also increased with the increase in temperature and was nearly quantitative at 90° C. - Table 1 below shows the results.
TABLE 1 Isolated Molecular Weight S. No. Temperature Yield (%) (Mn) 1. 40° C. 37.4 12 000 2. 60° C. 43.7 13000 3. 70° C. 46.7 12000 4. 80° C. 65.5 15000 5. 90° C. 93.5 23000 - Dimethyl 5-hydroxyisophthalate (0.210 g, molecular weight 1000, 1.0 mmol) and carbinol (i.e., hydroxyl) terminated polydimethylsiloxane (0.100 g, molecular weight 900-1000, 1.0 mmol) monomers, both from Gelest, Inc., were mixed in a round-bottom flask under nitrogen. To this mixture was added 10% by weight (with respect to the weight of the monomers) NOVOZYME-435®. The resulting mixture was used in a reaction shown below in
Scheme 9 at 90° C. for a predetermined time, vacuum was applied, and aliquots of the mixture were taken at different time periods until the reaction was completed. After completion, an organic solvent was added and the enzyme was filtered off to quench the reaction. The organic solvent was then removed under reduced pressure to obtain a polyorganosilicone. - The structure of the polymer formed was analyzed from its detailed spectral studies, i.e. 1H NMR, 13C NMR and 1H-1H correlation spectra. Comparison of the 1H NMR spectrum of the monomer and the polymer showed the appearance of a new signal at δ4.30 and disappearance of the signal at δ3.6 in the polymer spectra (spectra not shown). This indicates a transesterification between the CH2OH of the silicon diol and the dimethyl ester. The signal at δ4.30 in the polymer was assigned to the methylene protons of the CH2OCO moiety. The transesterification reaction between the silicon diol and the dimethyl ester was also confirmed from the 13C NMR spectrum of the product polymer, which showed a signal at δ165.0 for the carbonyl carbon of the newly formed ester moiety.
- The polymerization of Example 5 was carried out for different time periods to study the reaction kinetics. The percent conversion of monomers to copolymers was determined by 1H NMR spectroscopy.
FIG. 3 shows the effect of reaction time period on the conversion of the monomer to the polyorganosilicone. It was observed that with the increase in reaction time, the conversion of monomers to the polyorganosilicone increased. After 8 hours, all the monomers were converted to polymers. - It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Claims (33)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/252,819 US20060094857A1 (en) | 2002-10-18 | 2005-10-18 | Enzymatic synthesis of polymers |
US12/774,215 US20100310647A1 (en) | 2002-10-18 | 2010-05-05 | Enzymatic Synthesis of Polymers |
US13/114,647 US20120100583A1 (en) | 2002-10-18 | 2011-05-24 | Enzymatic Synthesis of Polymers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41947802P | 2002-10-18 | 2002-10-18 | |
US10/688,582 US6962963B2 (en) | 2002-10-18 | 2003-10-17 | Enzymatic synthesis of polymers |
US11/252,819 US20060094857A1 (en) | 2002-10-18 | 2005-10-18 | Enzymatic synthesis of polymers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/688,582 Continuation US6962963B2 (en) | 2002-10-18 | 2003-10-17 | Enzymatic synthesis of polymers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/774,215 Continuation US20100310647A1 (en) | 2002-10-18 | 2010-05-05 | Enzymatic Synthesis of Polymers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060094857A1 true US20060094857A1 (en) | 2006-05-04 |
Family
ID=32775784
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/688,582 Expired - Fee Related US6962963B2 (en) | 2002-10-18 | 2003-10-17 | Enzymatic synthesis of polymers |
US11/252,819 Abandoned US20060094857A1 (en) | 2002-10-18 | 2005-10-18 | Enzymatic synthesis of polymers |
US12/774,215 Abandoned US20100310647A1 (en) | 2002-10-18 | 2010-05-05 | Enzymatic Synthesis of Polymers |
US13/114,647 Abandoned US20120100583A1 (en) | 2002-10-18 | 2011-05-24 | Enzymatic Synthesis of Polymers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/688,582 Expired - Fee Related US6962963B2 (en) | 2002-10-18 | 2003-10-17 | Enzymatic synthesis of polymers |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/774,215 Abandoned US20100310647A1 (en) | 2002-10-18 | 2010-05-05 | Enzymatic Synthesis of Polymers |
US13/114,647 Abandoned US20120100583A1 (en) | 2002-10-18 | 2011-05-24 | Enzymatic Synthesis of Polymers |
Country Status (1)
Country | Link |
---|---|
US (4) | US6962963B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060269479A1 (en) * | 2005-04-19 | 2006-11-30 | Colton Clark K | Amphiphilic polymers and methods of use thereof |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003008164A2 (en) * | 2001-07-19 | 2003-01-30 | Huntsman International Llc | Release agent for lignocellulosic composites |
JP4595437B2 (en) * | 2004-08-12 | 2010-12-08 | 富士ゼロックス株式会社 | Flame retardant biodegradable material and method for producing the same, flame retardant biodegradable polymer composition, molded article and method for disposal thereof |
US20090099267A1 (en) * | 2005-05-27 | 2009-04-16 | University Of Massachusetts | Polymers, compositions and methods of making the same |
US20090280429A1 (en) * | 2008-05-08 | 2009-11-12 | Xerox Corporation | Polyester synthesis |
US20100055750A1 (en) * | 2008-09-03 | 2010-03-04 | Xerox Corporation | Polyester synthesis |
US11484627B2 (en) | 2010-10-20 | 2022-11-01 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US10525169B2 (en) | 2010-10-20 | 2020-01-07 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US11291483B2 (en) | 2010-10-20 | 2022-04-05 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants |
US11207109B2 (en) | 2010-10-20 | 2021-12-28 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US10525168B2 (en) | 2010-10-20 | 2020-01-07 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
EP2629780A4 (en) | 2010-10-20 | 2014-10-01 | 206 Ortho Inc | Implantable polymer for bone and vascular lesions |
US11058796B2 (en) | 2010-10-20 | 2021-07-13 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US9320601B2 (en) | 2011-10-20 | 2016-04-26 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants |
JP2016525379A (en) | 2013-05-23 | 2016-08-25 | 206 オーソ,インコーポレーテッド | Methods and apparatus for treating fractures and / or for reinforcing and / or augmenting bone, including the provision and use of composite implants |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316581B1 (en) * | 2001-02-09 | 2001-11-13 | Richard A. Gross | Bioresorbable copolymers |
US20020099164A1 (en) * | 2000-09-15 | 2002-07-25 | Watterson Arthur C. | Novel amphiphilic polymeric materials |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8823386D0 (en) * | 1988-10-05 | 1988-11-09 | Ici Plc | Thermal transfer printing |
GB9225054D0 (en) * | 1992-11-30 | 1993-01-20 | Baxenden Chem | Enzymatic synthesis |
DE19850507C1 (en) * | 1998-11-03 | 2000-05-04 | Goldschmidt Ag Th | Process for the preparation of acrylic acid esters and / or methacrylic acid esters of hydroxy-functional siloxanes and / or polyoxyalkylene-modified siloxanes and their use |
WO2000035993A1 (en) * | 1998-12-18 | 2000-06-22 | The Regents Of The University Of California | Methods, compositions, and biomimetic catalysts for in vitro synthesis of silica, polysilsequioxane, polysiloxane, and polymetallo-oxanes |
US6486295B1 (en) * | 2000-01-24 | 2002-11-26 | Richard A. Gross | Lipase-catalyzed transesterifications to regulate copolymer structure |
US6677427B1 (en) * | 2000-06-13 | 2004-01-13 | Hercules Incorporated | Enzyme-catalyzed polyamides and compositions and processes of preparing and using the same |
DE10046039A1 (en) * | 2000-09-18 | 2002-03-28 | Basf Ag | Polycondensation of organic silicon compounds |
-
2003
- 2003-10-17 US US10/688,582 patent/US6962963B2/en not_active Expired - Fee Related
-
2005
- 2005-10-18 US US11/252,819 patent/US20060094857A1/en not_active Abandoned
-
2010
- 2010-05-05 US US12/774,215 patent/US20100310647A1/en not_active Abandoned
-
2011
- 2011-05-24 US US13/114,647 patent/US20120100583A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020099164A1 (en) * | 2000-09-15 | 2002-07-25 | Watterson Arthur C. | Novel amphiphilic polymeric materials |
US6521736B2 (en) * | 2000-09-15 | 2003-02-18 | University Of Massachusetts | Amphiphilic polymeric materials |
US6316581B1 (en) * | 2001-02-09 | 2001-11-13 | Richard A. Gross | Bioresorbable copolymers |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060269479A1 (en) * | 2005-04-19 | 2006-11-30 | Colton Clark K | Amphiphilic polymers and methods of use thereof |
US8349991B2 (en) * | 2005-04-19 | 2013-01-08 | Massachusetts Institute Of Technology | Amphiphilic polymers and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
US6962963B2 (en) | 2005-11-08 |
US20040152176A1 (en) | 2004-08-05 |
US20120100583A1 (en) | 2012-04-26 |
US20100310647A1 (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120100583A1 (en) | Enzymatic Synthesis of Polymers | |
US5994478A (en) | Hydroxy-terminated polyhydroxyalkanoates | |
US6248862B1 (en) | Hydroxy-terminated polyhydroxyalkanoates | |
EP1130042B1 (en) | Polyhydroxyalkanoate containing 3-hydroxybenzoylalkanoic acid as monomer unit, and method for producing the same | |
EP1188782B1 (en) | Polyhydroxyalkanoate and manufacturing method thereof | |
Uyama et al. | Lipase-catalyzed synthesis of aliphatic polyesters by polycondensation of dicarboxylic acids and glycols in solvent-free system | |
Matsumura et al. | Lipase‐catalyzed polymerization of diethyl carbonate and diol to aliphatic poly (alkylene carbonate) | |
KR100543993B1 (en) | Method for controlling molecular weight of polyhydroxyalkanoate comprising units containing residues of phenyl structure, thienyl structure or cyclohexyl structure in the side chain of the molecule | |
Bassanini et al. | Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers | |
WO2004044213A1 (en) | Novel polyhydroxy alkanoate copolymer including within molecule unit having vinyl group or carboxyl group in side chain, and producing method therefor | |
Kumar et al. | Biocatalytic “Green” Synthesis of peg-based aromatic polyesters: Optimization of the substrate and reaction conditions | |
US6486295B1 (en) | Lipase-catalyzed transesterifications to regulate copolymer structure | |
Feng et al. | Lipase‐Catalyzed Ring‐Opening Polymerization of 3 (S)‐sec‐Butylmorpholine‐2, 5‐dione | |
US9885070B2 (en) | Process of preparing functionalized polymers via enzymatic catalysis | |
JP2018109103A (en) | Block copolymer, resin composition containing the same, and method for producing block copolymer | |
Jun et al. | Enzymatic ring-opening copolymerization of trimethylene carbonate and ethylene ethyl phosphate | |
JP2008519607A (en) | Enzymatic formation of macrocyclic amide oligomers | |
CA2698904C (en) | Process of preparing functionalized polymers via enzymatic catalysis | |
JP2000080160A (en) | Production of poly(alkylene carbonate) by enzymatic process | |
Bisht et al. | Synthesis of functional polycarbonates from renewable resources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MASSACHUSETTS, UNIVERSITY OF, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, RAJESH;WATTERSON, ARTHUR C.;PARMAR, VIRINDER SINGH;AND OTHERS;REEL/FRAME:017260/0351;SIGNING DATES FROM 20040323 TO 20040326 |
|
AS | Assignment |
Owner name: ARMY, UNITED STATES AMERICA AS REPRESENTED BY THE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMUELSON, LYNNE ANN;REEL/FRAME:017270/0385 Effective date: 20021120 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |