US20060084653A1 - Beta-sheet mimetics and composition and methods relating thereto - Google Patents
Beta-sheet mimetics and composition and methods relating thereto Download PDFInfo
- Publication number
- US20060084653A1 US20060084653A1 US11/295,833 US29583305A US2006084653A1 US 20060084653 A1 US20060084653 A1 US 20060084653A1 US 29583305 A US29583305 A US 29583305A US 2006084653 A1 US2006084653 A1 US 2006084653A1
- Authority
- US
- United States
- Prior art keywords
- aryl
- het
- alkyl
- compound according
- arylalkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 53
- 239000000203 mixture Substances 0.000 title claims description 38
- 150000001875 compounds Chemical class 0.000 claims abstract description 111
- 108060005989 Tryptase Proteins 0.000 claims abstract description 26
- 102000001400 Tryptase Human genes 0.000 claims abstract description 26
- 150000003839 salts Chemical class 0.000 claims abstract description 13
- -1 heterocyclealkyl Chemical group 0.000 claims description 55
- 125000000217 alkyl group Chemical group 0.000 claims description 34
- 125000000623 heterocyclic group Chemical group 0.000 claims description 29
- 125000003118 aryl group Chemical group 0.000 claims description 27
- 239000001257 hydrogen Substances 0.000 claims description 25
- 229910052739 hydrogen Inorganic materials 0.000 claims description 25
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 23
- 125000001424 substituent group Chemical group 0.000 claims description 19
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- 125000003342 alkenyl group Chemical group 0.000 claims description 11
- 125000000304 alkynyl group Chemical group 0.000 claims description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 125000001072 heteroaryl group Chemical group 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 7
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 125000005842 heteroatom Chemical group 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 208000035475 disorder Diseases 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 206010054048 Postoperative ileus Diseases 0.000 claims description 5
- 208000006673 asthma Diseases 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 125000004446 heteroarylalkyl group Chemical group 0.000 claims description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 125000004104 aryloxy group Chemical group 0.000 claims description 4
- 125000004429 atom Chemical group 0.000 claims description 4
- 239000004305 biphenyl Substances 0.000 claims description 4
- 235000010290 biphenyl Nutrition 0.000 claims description 4
- 208000027866 inflammatory disease Diseases 0.000 claims description 4
- 125000006187 phenyl benzyl group Chemical group 0.000 claims description 4
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 4
- 208000011231 Crohn disease Diseases 0.000 claims description 3
- 206010020751 Hypersensitivity Diseases 0.000 claims description 3
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 3
- 208000029523 Interstitial Lung disease Diseases 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 3
- 208000026935 allergic disease Diseases 0.000 claims description 3
- 230000007815 allergy Effects 0.000 claims description 3
- 208000005069 pulmonary fibrosis Diseases 0.000 claims description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 3
- 201000001320 Atherosclerosis Diseases 0.000 claims description 2
- 206010009900 Colitis ulcerative Diseases 0.000 claims description 2
- 206010012438 Dermatitis atopic Diseases 0.000 claims description 2
- 206010019668 Hepatic fibrosis Diseases 0.000 claims description 2
- 201000004681 Psoriasis Diseases 0.000 claims description 2
- 206010039710 Scleroderma Diseases 0.000 claims description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 201000008937 atopic dermatitis Diseases 0.000 claims description 2
- 230000001684 chronic effect Effects 0.000 claims description 2
- 208000019425 cirrhosis of liver Diseases 0.000 claims description 2
- 208000006454 hepatitis Diseases 0.000 claims description 2
- 231100000283 hepatitis Toxicity 0.000 claims description 2
- 206010022000 influenza Diseases 0.000 claims description 2
- 201000008383 nephritis Diseases 0.000 claims description 2
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 4
- 241000124008 Mammalia Species 0.000 claims 3
- 208000037884 allergic airway inflammation Diseases 0.000 claims 1
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 6
- 239000003814 drug Substances 0.000 abstract description 5
- 229940124597 therapeutic agent Drugs 0.000 abstract description 4
- 239000005557 antagonist Substances 0.000 abstract 1
- 239000000032 diagnostic agent Substances 0.000 abstract 1
- 229940039227 diagnostic agent Drugs 0.000 abstract 1
- DGAGEFUEKIORSQ-UHFFFAOYSA-N CCC1=CC=C(CN)C=C1 Chemical compound CCC1=CC=C(CN)C=C1 DGAGEFUEKIORSQ-UHFFFAOYSA-N 0.000 description 102
- 0 [2*]C1(C(=O)[Y])CCC([3*])(C[5*])*2C(=O)BC(=O)C21.[4*]C Chemical compound [2*]C1(C(=O)[Y])CCC([3*])(C[5*])*2C(=O)BC(=O)C21.[4*]C 0.000 description 76
- ZMXDDKWLCZADIW-UHFFFAOYSA-N Vilsmeier-Haack reagent Natural products CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 64
- 239000000243 solution Substances 0.000 description 60
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 57
- 238000003786 synthesis reaction Methods 0.000 description 49
- ZMXIYERNXPIYFR-UHFFFAOYSA-N CCC1=CC=CC2=C1C=CC=C2 Chemical compound CCC1=CC=CC2=C1C=CC=C2 ZMXIYERNXPIYFR-UHFFFAOYSA-N 0.000 description 47
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 46
- 230000015572 biosynthetic process Effects 0.000 description 44
- 239000011347 resin Substances 0.000 description 43
- 229920005989 resin Polymers 0.000 description 43
- 239000007787 solid Substances 0.000 description 41
- 150000001413 amino acids Chemical group 0.000 description 35
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 31
- 229910001868 water Inorganic materials 0.000 description 31
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- 108090000765 processed proteins & peptides Proteins 0.000 description 30
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 27
- NYZHAHHOBPMFSC-UHFFFAOYSA-N CCC1CCC(CN)CC1 Chemical compound CCC1CCC(CN)CC1 NYZHAHHOBPMFSC-UHFFFAOYSA-N 0.000 description 24
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 24
- 239000000047 product Substances 0.000 description 24
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 20
- 235000019439 ethyl acetate Nutrition 0.000 description 20
- 238000005160 1H NMR spectroscopy Methods 0.000 description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 17
- 229940024606 amino acid Drugs 0.000 description 17
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 16
- OOCLEFCNJHOZDX-UHFFFAOYSA-N CCC1=CC=CC(NC(=N)N)=C1 Chemical compound CCC1=CC=CC(NC(=N)N)=C1 OOCLEFCNJHOZDX-UHFFFAOYSA-N 0.000 description 16
- 239000012267 brine Substances 0.000 description 16
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 102000004196 processed proteins & peptides Human genes 0.000 description 15
- ZKJZCKUMPVMGDC-UHFFFAOYSA-N CC(=O)CCCNC(=O)CC1=CC=C(N)C=C1 Chemical compound CC(=O)CCCNC(=O)CC1=CC=C(N)C=C1 ZKJZCKUMPVMGDC-UHFFFAOYSA-N 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 230000008878 coupling Effects 0.000 description 13
- 238000005859 coupling reaction Methods 0.000 description 13
- 239000000284 extract Substances 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 13
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 12
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 12
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 238000005698 Diels-Alder reaction Methods 0.000 description 11
- 239000003112 inhibitor Substances 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 11
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 10
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical group [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- PUJDIJCNWFYVJX-UHFFFAOYSA-N benzyl carbamate Chemical compound NC(=O)OCC1=CC=CC=C1 PUJDIJCNWFYVJX-UHFFFAOYSA-N 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 10
- 230000008020 evaporation Effects 0.000 description 10
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 10
- 125000005647 linker group Chemical group 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 239000007790 solid phase Substances 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- FZMLKENAMKEQOI-UHFFFAOYSA-N CCC1=CC=C(C(=N)N)C=C1 Chemical compound CCC1=CC=C(C(=N)N)C=C1 FZMLKENAMKEQOI-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 9
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 9
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 8
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N CCc1ccccc1 Chemical compound CCc1ccccc1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 8
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical group [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 8
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 8
- 229960000583 acetic acid Drugs 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 239000012362 glacial acetic acid Substances 0.000 description 8
- 125000006239 protecting group Chemical group 0.000 description 8
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- OKHILJWKJWMSEP-UHFFFAOYSA-N CCCS(=O)(=O)C1=CC=CC=C1 Chemical compound CCCS(=O)(=O)C1=CC=CC=C1 OKHILJWKJWMSEP-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 210000003630 histaminocyte Anatomy 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 239000003875 Wang resin Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 238000010532 solid phase synthesis reaction Methods 0.000 description 6
- PEZNEXFPRSOYPL-UHFFFAOYSA-N (bis(trifluoroacetoxy)iodo)benzene Chemical compound FC(F)(F)C(=O)OI(OC(=O)C(F)(F)F)C1=CC=CC=C1 PEZNEXFPRSOYPL-UHFFFAOYSA-N 0.000 description 5
- XZZVOYIWCPTSKY-UHFFFAOYSA-N 9h-fluoren-9-ylmethyl n-[(4-carbamimidoylphenyl)methyl]carbamate Chemical compound C1=CC(C(=N)N)=CC=C1CNC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 XZZVOYIWCPTSKY-UHFFFAOYSA-N 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- 102000032628 PAR-2 Receptor Human genes 0.000 description 5
- 108010070503 PAR-2 Receptor Proteins 0.000 description 5
- NERFNHBZJXXFGY-UHFFFAOYSA-N [4-[(4-methylphenyl)methoxy]phenyl]methanol Chemical compound C1=CC(C)=CC=C1COC1=CC=C(CO)C=C1 NERFNHBZJXXFGY-UHFFFAOYSA-N 0.000 description 5
- XLMGOOYNHHJHIG-UHFFFAOYSA-N benzyl n-[(4-carbamoylphenyl)methyl]carbamate Chemical compound C1=CC(C(=O)N)=CC=C1CNC(=O)OCC1=CC=CC=C1 XLMGOOYNHHJHIG-UHFFFAOYSA-N 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 230000003278 mimic effect Effects 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 238000000524 positive electrospray ionisation mass spectrometry Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- NUANLVJLUYWSER-UHFFFAOYSA-N tert-butyl n-[[4-(aminomethyl)phenyl]methyl]carbamate Chemical compound CC(C)(C)OC(=O)NCC1=CC=C(CN)C=C1 NUANLVJLUYWSER-UHFFFAOYSA-N 0.000 description 5
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- UAFHRUBCOQPFFM-UHFFFAOYSA-N 1-(aminomethyl)cyclohexane-1-carboxylic acid Chemical compound NCC1(C(O)=O)CCCCC1 UAFHRUBCOQPFFM-UHFFFAOYSA-N 0.000 description 4
- FPBLHCDRZBKZTI-UHFFFAOYSA-N 4-(naphthalen-1-ylmethyl)-1,2,4-triazolidine-3,5-dione Chemical compound O=C1NNC(=O)N1CC1=CC=CC2=CC=CC=C12 FPBLHCDRZBKZTI-UHFFFAOYSA-N 0.000 description 4
- WDPZRHXDZBKJQJ-UHFFFAOYSA-N 4-[4-(9h-fluoren-9-ylmethoxycarbonylamino)phenyl]butanoic acid Chemical compound C1=CC(CCCC(=O)O)=CC=C1NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 WDPZRHXDZBKJQJ-UHFFFAOYSA-N 0.000 description 4
- SUDRBOIMBHDEED-UHFFFAOYSA-N 4-[[4-[[(2-methylpropan-2-yl)oxycarbonylamino]methyl]phenyl]methylamino]-4-oxobutanoic acid Chemical compound CC(C)(C)OC(=O)NCC1=CC=C(CNC(=O)CCC(O)=O)C=C1 SUDRBOIMBHDEED-UHFFFAOYSA-N 0.000 description 4
- VRKAQOQIELXSEP-UHFFFAOYSA-N CC(=O)CCC(=O)NCC1=CC=C(CN)C=C1 Chemical compound CC(=O)CCC(=O)NCC1=CC=C(CN)C=C1 VRKAQOQIELXSEP-UHFFFAOYSA-N 0.000 description 4
- PTKFKAGPDUXXGQ-UHFFFAOYSA-N CC(=O)CCCCNC(=O)CC1=CC=C(O)C=C1 Chemical compound CC(=O)CCCCNC(=O)CC1=CC=C(O)C=C1 PTKFKAGPDUXXGQ-UHFFFAOYSA-N 0.000 description 4
- QYMDHBJUKSOIME-UHFFFAOYSA-N CC(=O)CCCNC(=O)C1=CC=C(CN)C=C1 Chemical compound CC(=O)CCCNC(=O)C1=CC=C(CN)C=C1 QYMDHBJUKSOIME-UHFFFAOYSA-N 0.000 description 4
- PJCUFWHTQIDYLW-UHFFFAOYSA-N CC(=O)CCCNC(=O)CC1=CC=C(O)C=C1 Chemical compound CC(=O)CCCNC(=O)CC1=CC=C(O)C=C1 PJCUFWHTQIDYLW-UHFFFAOYSA-N 0.000 description 4
- OXCKCFJIKRGXMM-UHFFFAOYSA-N CCC1=CN=C(C)C=N1 Chemical compound CCC1=CN=C(C)C=N1 OXCKCFJIKRGXMM-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N DMSO Substances CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- 229910013596 LiOH—H2O Inorganic materials 0.000 description 4
- 239000007832 Na2SO4 Substances 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 150000001371 alpha-amino acids Chemical class 0.000 description 4
- 235000008206 alpha-amino acids Nutrition 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 238000010511 deprotection reaction Methods 0.000 description 4
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 4
- 238000000105 evaporative light scattering detection Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 4
- 238000010647 peptide synthesis reaction Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 239000012265 solid product Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 4
- FWPIDFUJEMBDLS-UHFFFAOYSA-L tin(II) chloride dihydrate Chemical compound O.O.Cl[Sn]Cl FWPIDFUJEMBDLS-UHFFFAOYSA-L 0.000 description 4
- UDATXMIGEVPXTR-UHFFFAOYSA-N 1,2,4-triazolidine-3,5-dione Chemical compound O=C1NNC(=O)N1 UDATXMIGEVPXTR-UHFFFAOYSA-N 0.000 description 3
- WCFJUSRQHZPVKY-UHFFFAOYSA-N 3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)NCCC(O)=O WCFJUSRQHZPVKY-UHFFFAOYSA-N 0.000 description 3
- HRZZVSLPKXTEDX-UHFFFAOYSA-N CC(=O)CCCCCNC(=O)CC1=CC=C(N)C=C1 Chemical compound CC(=O)CCCCCNC(=O)CC1=CC=C(N)C=C1 HRZZVSLPKXTEDX-UHFFFAOYSA-N 0.000 description 3
- CIQPMESPVSNDPO-UHFFFAOYSA-N CC(=O)CCCCNC(=O)C1=CC=C(CN)C=C1 Chemical compound CC(=O)CCCCNC(=O)C1=CC=C(CN)C=C1 CIQPMESPVSNDPO-UHFFFAOYSA-N 0.000 description 3
- CKAXWAUQNRSRBK-UHFFFAOYSA-N CC(=O)CCNC(=O)C1=CC=C(CN)C=C1 Chemical compound CC(=O)CCNC(=O)C1=CC=C(CN)C=C1 CKAXWAUQNRSRBK-UHFFFAOYSA-N 0.000 description 3
- USLJWUPXYQVPBQ-UHFFFAOYSA-N CC(=O)CCNC(=O)CC1=CC=C(N)C=C1 Chemical compound CC(=O)CCNC(=O)CC1=CC=C(N)C=C1 USLJWUPXYQVPBQ-UHFFFAOYSA-N 0.000 description 3
- MQMPKPSBKJPUSC-UHFFFAOYSA-N CC(=O)CNC(=O)CC1=CC=C(N)C=C1 Chemical compound CC(=O)CNC(=O)CC1=CC=C(N)C=C1 MQMPKPSBKJPUSC-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000012230 colorless oil Substances 0.000 description 3
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 description 3
- 150000001993 dienes Chemical group 0.000 description 3
- QKRFMYQFBSFCCU-LQPGMRSMSA-N ethyl (2e,4e)-7-[(2-methylpropan-2-yl)oxycarbonylamino]hepta-2,4-dienoate Chemical compound CCOC(=O)\C=C\C=C\CCNC(=O)OC(C)(C)C QKRFMYQFBSFCCU-LQPGMRSMSA-N 0.000 description 3
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 125000001841 imino group Chemical group [H]N=* 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 239000012047 saturated solution Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- IXLWFVRWCBNVEL-CDJQDVQCSA-N tert-butyl 4-[(1e,3e)-5-ethoxy-5-oxopenta-1,3-dienyl]piperidine-1-carboxylate Chemical compound CCOC(=O)\C=C\C=C\C1CCN(C(=O)OC(C)(C)C)CC1 IXLWFVRWCBNVEL-CDJQDVQCSA-N 0.000 description 3
- ALECSTTUFIAHRJ-UHFFFAOYSA-N tert-butyl 4-[methoxy(methyl)carbamoyl]piperidine-4-carboxylate Chemical compound CON(C)C(=O)C1(C(=O)OC(C)(C)C)CCNCC1 ALECSTTUFIAHRJ-UHFFFAOYSA-N 0.000 description 3
- JYUQEWCJWDGCRX-UHFFFAOYSA-N tert-butyl 4-formylpiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(C=O)CC1 JYUQEWCJWDGCRX-UHFFFAOYSA-N 0.000 description 3
- 239000002750 tryptase inhibitor Substances 0.000 description 3
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- SNFLEVANWBDBQY-VIKAGGQVSA-N (2e,4e)-5-[1-(9h-fluoren-9-ylmethoxycarbonyl)piperidin-4-yl]penta-2,4-dienoic acid Chemical compound C1CC(/C=C/C=C/C(=O)O)CCN1C(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 SNFLEVANWBDBQY-VIKAGGQVSA-N 0.000 description 2
- OFAOBAHWWIXAJZ-YDFGWWAZSA-N (2e,4e)-5-[1-[(2-methylpropan-2-yl)oxycarbonyl]piperidin-4-yl]penta-2,4-dienoic acid Chemical compound CC(C)(C)OC(=O)N1CCC(\C=C\C=C\C(O)=O)CC1 OFAOBAHWWIXAJZ-YDFGWWAZSA-N 0.000 description 2
- ZHMAKDIHABPRQE-ZPUQHVIOSA-N (2e,4e)-5-piperidin-4-ylpenta-2,4-dienoic acid Chemical compound OC(=O)\C=C\C=C\C1CCNCC1 ZHMAKDIHABPRQE-ZPUQHVIOSA-N 0.000 description 2
- FUZWYWHKHQYWGA-SPSBKUJHSA-N (2e,4e)-7-(9h-fluoren-9-ylmethoxycarbonylamino)hepta-2,4-dienoic acid Chemical compound C1=CC=C2C(COC(=O)NCC/C=C/C=C/C(=O)O)C3=CC=CC=C3C2=C1 FUZWYWHKHQYWGA-SPSBKUJHSA-N 0.000 description 2
- BVAUMRCGVHUWOZ-ZETCQYMHSA-N (2s)-2-(cyclohexylazaniumyl)propanoate Chemical compound OC(=O)[C@H](C)NC1CCCCC1 BVAUMRCGVHUWOZ-ZETCQYMHSA-N 0.000 description 2
- WAMWSIDTKSNDCU-ZETCQYMHSA-N (2s)-2-azaniumyl-2-cyclohexylacetate Chemical compound OC(=O)[C@@H](N)C1CCCCC1 WAMWSIDTKSNDCU-ZETCQYMHSA-N 0.000 description 2
- NYPYHUZRZVSYKL-UHFFFAOYSA-N -3,5-Diiodotyrosine Natural products OC(=O)C(N)CC1=CC(I)=C(O)C(I)=C1 NYPYHUZRZVSYKL-UHFFFAOYSA-N 0.000 description 2
- JWOHBPPVVDQMKB-UHFFFAOYSA-N 1-[(2-methylpropan-2-yl)oxycarbonyl]piperidine-4-carboxylic acid Chemical compound CC(C)(C)OC(=O)N1CCC(C(O)=O)CC1 JWOHBPPVVDQMKB-UHFFFAOYSA-N 0.000 description 2
- ZXYKUPPWJMOKGE-UHFFFAOYSA-N 2-[4-[(2-methylpropan-2-yl)oxycarbonylamino]phenyl]acetic acid Chemical compound CC(C)(C)OC(=O)NC1=CC=C(CC(O)=O)C=C1 ZXYKUPPWJMOKGE-UHFFFAOYSA-N 0.000 description 2
- NYPYHUZRZVSYKL-ZETCQYMHSA-N 3,5-diiodo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC(I)=C(O)C(I)=C1 NYPYHUZRZVSYKL-ZETCQYMHSA-N 0.000 description 2
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 2
- VCKPUUFAIGNJHC-UHFFFAOYSA-N 3-hydroxykynurenine Chemical compound OC(=O)C(N)CC(=O)C1=CC=CC(O)=C1N VCKPUUFAIGNJHC-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- TYMIFYJJOPYXBG-UHFFFAOYSA-N 9h-fluoren-9-ylmethyl piperidine-1-carboxylate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1COC(=O)N1CCCCC1 TYMIFYJJOPYXBG-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 206010003211 Arteriosclerosis coronary artery Diseases 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 206010006482 Bronchospasm Diseases 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- GVDIWFKLDWNIDD-BJILWQEISA-N C/C=C/C=C1CCN(C)CC1.CC1CCN(C)CC1 Chemical compound C/C=C/C=C1CCN(C)CC1.CC1CCN(C)CC1 GVDIWFKLDWNIDD-BJILWQEISA-N 0.000 description 2
- ZUWQTEZRZZNBOM-UHFFFAOYSA-N CC(=O)C(CCCCN)NC(=O)C1=CC=C(CN)C=C1 Chemical compound CC(=O)C(CCCCN)NC(=O)C1=CC=C(CN)C=C1 ZUWQTEZRZZNBOM-UHFFFAOYSA-N 0.000 description 2
- UHHUWKHSVABPPC-UHFFFAOYSA-N CC(=O)C(CCCCN)NC(=O)CC1=CC=C(N)C=C1 Chemical compound CC(=O)C(CCCCN)NC(=O)CC1=CC=C(N)C=C1 UHHUWKHSVABPPC-UHFFFAOYSA-N 0.000 description 2
- MQALWJQFBVXBPH-UHFFFAOYSA-N CC(=O)C1=CC=C(CNC(=O)C2=CC=C(CN)C=C2)C=C1 Chemical compound CC(=O)C1=CC=C(CNC(=O)C2=CC=C(CN)C=C2)C=C1 MQALWJQFBVXBPH-UHFFFAOYSA-N 0.000 description 2
- UBBCHZMBFRVGSJ-UHFFFAOYSA-N CC(=O)C1=CC=C(CNC(=O)CC2=CC=C(N)C=C2)C=C1 Chemical compound CC(=O)C1=CC=C(CNC(=O)CC2=CC=C(N)C=C2)C=C1 UBBCHZMBFRVGSJ-UHFFFAOYSA-N 0.000 description 2
- XRJHYKSQFVKNFV-UHFFFAOYSA-N CC(=O)C1CCC(CNC(=O)C2=CC=C(CN)C=C2)CC1 Chemical compound CC(=O)C1CCC(CNC(=O)C2=CC=C(CN)C=C2)CC1 XRJHYKSQFVKNFV-UHFFFAOYSA-N 0.000 description 2
- ANCKWLPUFJKRIV-UHFFFAOYSA-N CC(=O)C1CCC(CNC(=O)CC2=CC=C(N)C=C2)CC1 Chemical compound CC(=O)C1CCC(CNC(=O)CC2=CC=C(N)C=C2)CC1 ANCKWLPUFJKRIV-UHFFFAOYSA-N 0.000 description 2
- YLVRQXLHDHWETQ-UHFFFAOYSA-N CC(=O)C1CCN(C(=O)C2=CC=C(CN)C=C2)CC1 Chemical compound CC(=O)C1CCN(C(=O)C2=CC=C(CN)C=C2)CC1 YLVRQXLHDHWETQ-UHFFFAOYSA-N 0.000 description 2
- ZYAFNAYMKNFLLQ-UHFFFAOYSA-N CC(=O)C1CCN(C(=O)CC2=CC=C(N)C=C2)CC1 Chemical compound CC(=O)C1CCN(C(=O)CC2=CC=C(N)C=C2)CC1 ZYAFNAYMKNFLLQ-UHFFFAOYSA-N 0.000 description 2
- DCGDTEAQBZFZIT-UHFFFAOYSA-N CC(=O)CCCC1=CC=C(N)C=C1 Chemical compound CC(=O)CCCC1=CC=C(N)C=C1 DCGDTEAQBZFZIT-UHFFFAOYSA-N 0.000 description 2
- UGPWCGJZDHMNAC-UHFFFAOYSA-N CC(=O)CCNC(=O)CCCC1=CC=C(N)C=C1 Chemical compound CC(=O)CCNC(=O)CCCC1=CC=C(N)C=C1 UGPWCGJZDHMNAC-UHFFFAOYSA-N 0.000 description 2
- UBAQMDHMIYZWBV-UHFFFAOYSA-N CC(=O)CNC(=O)C1=CC=C(CN)C=C1 Chemical compound CC(=O)CNC(=O)C1=CC=C(CN)C=C1 UBAQMDHMIYZWBV-UHFFFAOYSA-N 0.000 description 2
- VLFUDSSFTULEIR-UHFFFAOYSA-N CC(=O)CNC(=O)CCCC1=CC=C(N)C=C1 Chemical compound CC(=O)CNC(=O)CCCC1=CC=C(N)C=C1 VLFUDSSFTULEIR-UHFFFAOYSA-N 0.000 description 2
- DVGXNZCGGKPUTD-UHFFFAOYSA-N CC(O)C1CCCN(C)C1.CC(O)C1CCCN(C)C1.CC(O)C1CCN(C)CC1.CC(O)C1CCN(C)CC1.CC1=CC=C(C(C)O)C(C)=N1.CC1=CC=C(C(C)O)C=N1 Chemical compound CC(O)C1CCCN(C)C1.CC(O)C1CCCN(C)C1.CC(O)C1CCN(C)CC1.CC(O)C1CCN(C)CC1.CC1=CC=C(C(C)O)C(C)=N1.CC1=CC=C(C(C)O)C=N1 DVGXNZCGGKPUTD-UHFFFAOYSA-N 0.000 description 2
- PXHHIBMOFPCBJQ-UHFFFAOYSA-N CC1CCCN1C Chemical compound CC1CCCN1C PXHHIBMOFPCBJQ-UHFFFAOYSA-N 0.000 description 2
- CZMDHFAEDWGZAF-UHFFFAOYSA-N CCC1=CC(NC(=O)C2=CC=C(CN)C=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)C2=CC=C(CN)C=C2)=CC=C1 CZMDHFAEDWGZAF-UHFFFAOYSA-N 0.000 description 2
- QVUDCOWXRDIZNH-UHFFFAOYSA-N CCC1=CC(NS(=O)(=O)C2=CC=C(C#N)C=C2)=CC=C1 Chemical compound CCC1=CC(NS(=O)(=O)C2=CC=C(C#N)C=C2)=CC=C1 QVUDCOWXRDIZNH-UHFFFAOYSA-N 0.000 description 2
- IAFPSQWYZWASPI-UHFFFAOYSA-N CCC1=CC(NS(=O)(=O)C2=CC=C(OC)C=C2)=CC=C1 Chemical compound CCC1=CC(NS(=O)(=O)C2=CC=C(OC)C=C2)=CC=C1 IAFPSQWYZWASPI-UHFFFAOYSA-N 0.000 description 2
- ZRFJYAZQMFCUIX-UHFFFAOYSA-N CCC1=CC=CC(Br)=C1 Chemical compound CCC1=CC=CC(Br)=C1 ZRFJYAZQMFCUIX-UHFFFAOYSA-N 0.000 description 2
- QWQNIUNLYIGVEN-UHFFFAOYSA-N CCC1CCCN(C)C1.CCC1CCN(C)CC1 Chemical compound CCC1CCCN(C)C1.CCC1CCN(C)CC1 QWQNIUNLYIGVEN-UHFFFAOYSA-N 0.000 description 2
- FGUDPQXLRNFVNH-UHFFFAOYSA-N CCCCC(=O)NCC1=CC=C(N)C=C1 Chemical compound CCCCC(=O)NCC1=CC=C(N)C=C1 FGUDPQXLRNFVNH-UHFFFAOYSA-N 0.000 description 2
- PBRRELTWFVXAJH-UHFFFAOYSA-N CCCCCC(=O)NCC1=CC=C(C(=N)N)C=C1 Chemical compound CCCCCC(=O)NCC1=CC=C(C(=N)N)C=C1 PBRRELTWFVXAJH-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 229910010084 LiAlH4 Inorganic materials 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium on carbon Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- ASNFTDCKZKHJSW-REOHCLBHSA-N Quisqualic acid Chemical compound OC(=O)[C@@H](N)CN1OC(=O)NC1=O ASNFTDCKZKHJSW-REOHCLBHSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 2
- WEVYAHXRMPXWCK-UHFFFAOYSA-N acetonitrile Substances CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 2
- 230000000172 allergic effect Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 239000012867 bioactive agent Substances 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000004600 colonic motility Effects 0.000 description 2
- 229940124301 concurrent medication Drugs 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- MGHPNCMVUAKAIE-UHFFFAOYSA-N diphenylmethanamine Chemical compound C=1C=CC=CC=1C(N)C1=CC=CC=C1 MGHPNCMVUAKAIE-UHFFFAOYSA-N 0.000 description 2
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 2
- LKGVVQTVNFFWAT-WEVVVXLNSA-N ethyl (e)-2-diethoxyphosphorylbut-2-enoate Chemical compound CCOC(=O)C(=C/C)\P(=O)(OCC)OCC LKGVVQTVNFFWAT-WEVVVXLNSA-N 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 2
- 229960002591 hydroxyproline Drugs 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 235000014705 isoleucine Nutrition 0.000 description 2
- SRJOCJYGOFTFLH-UHFFFAOYSA-N isonipecotic acid Chemical compound OC(=O)C1CCNCC1 SRJOCJYGOFTFLH-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- YGPSJZOEDVAXAB-UHFFFAOYSA-N kynurenine Chemical compound OC(=O)C(N)CC(=O)C1=CC=CC=C1N YGPSJZOEDVAXAB-UHFFFAOYSA-N 0.000 description 2
- 235000005772 leucine Nutrition 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- GTCAXTIRRLKXRU-UHFFFAOYSA-N methyl carbamate Chemical compound COC(N)=O GTCAXTIRRLKXRU-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- SHDMMLFAFLZUEV-UHFFFAOYSA-N n-methyl-1,1-diphenylmethanamine Chemical compound C=1C=CC=CC=1C(NC)C1=CC=CC=C1 SHDMMLFAFLZUEV-UHFFFAOYSA-N 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 235000008729 phenylalanine Nutrition 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 2
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 108010052605 prostromelysin Proteins 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 125000003507 tetrahydrothiofenyl group Chemical group 0.000 description 2
- 125000004632 tetrahydrothiopyranyl group Chemical group S1C(CCCC1)* 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 108010036927 trypsin-like serine protease Proteins 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 235000014393 valine Nutrition 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- IZQODKKJJRLEGA-VIFPVBQESA-N (2r)-2-(2-pyridin-4-ylethylamino)-3-sulfanylpropanoic acid Chemical compound OC(=O)[C@H](CS)NCCC1=CC=NC=C1 IZQODKKJJRLEGA-VIFPVBQESA-N 0.000 description 1
- IRJCBFDCFXCWGO-SCSAIBSYSA-N (2r)-2-azaniumyl-2-(3-oxo-1,2-oxazol-5-yl)acetate Chemical compound [O-]C(=O)[C@H]([NH3+])C1=CC(=O)NO1 IRJCBFDCFXCWGO-SCSAIBSYSA-N 0.000 description 1
- MSJVZYZBQGBEQX-BYPYZUCNSA-N (2s)-2-(ethenylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC=C MSJVZYZBQGBEQX-BYPYZUCNSA-N 0.000 description 1
- WTKYBFQVZPCGAO-LURJTMIESA-N (2s)-2-(pyridin-3-ylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC1=CC=CN=C1 WTKYBFQVZPCGAO-LURJTMIESA-N 0.000 description 1
- SAAQPSNNIOGFSQ-LURJTMIESA-N (2s)-2-(pyridin-4-ylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC1=CC=NC=C1 SAAQPSNNIOGFSQ-LURJTMIESA-N 0.000 description 1
- MRTPISKDZDHEQI-YFKPBYRVSA-N (2s)-2-(tert-butylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC(C)(C)C MRTPISKDZDHEQI-YFKPBYRVSA-N 0.000 description 1
- WRQSUCJAKAMYMQ-YFKPBYRVSA-N (2s)-2-(thiophen-3-ylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC=1C=CSC=1 WRQSUCJAKAMYMQ-YFKPBYRVSA-N 0.000 description 1
- IJWCGVPEDDQUDE-YGJAXBLXSA-N (2s)-2-[[(1s)-2-[[(2s)-5-amino-1,5-dioxo-1-[[(2s)-1-oxopropan-2-yl]amino]pentan-2-yl]amino]-1-[(6s)-2-amino-1,4,5,6-tetrahydropyrimidin-6-yl]-2-oxoethyl]carbamoylamino]-4-methylpentanoic acid Chemical compound O=C[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)N[C@@H](CC(C)C)C(O)=O)[C@@H]1CCN=C(N)N1 IJWCGVPEDDQUDE-YGJAXBLXSA-N 0.000 description 1
- NPDBDJFLKKQMCM-SCSAIBSYSA-N (2s)-2-amino-3,3-dimethylbutanoic acid Chemical compound CC(C)(C)[C@H](N)C(O)=O NPDBDJFLKKQMCM-SCSAIBSYSA-N 0.000 description 1
- FVNKWWBXNSNIAR-BYPYZUCNSA-N (2s)-2-amino-3-(2-sulfanylidene-1,3-dihydroimidazol-4-yl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CNC(=S)N1 FVNKWWBXNSNIAR-BYPYZUCNSA-N 0.000 description 1
- POGSZHUEECCEAP-ZETCQYMHSA-N (2s)-2-amino-3-(3-amino-4-hydroxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(N)=C1 POGSZHUEECCEAP-ZETCQYMHSA-N 0.000 description 1
- NSEFEMVEUDJWIH-LURJTMIESA-N (2s)-2-amino-3-(4-hydroxy-3-phosphonophenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(P(O)(O)=O)=C1 NSEFEMVEUDJWIH-LURJTMIESA-N 0.000 description 1
- VXGXODOSTOUUBH-LURJTMIESA-N (2s)-2-amino-3-(4-hydroxy-3-sulfophenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(S(O)(=O)=O)=C1 VXGXODOSTOUUBH-LURJTMIESA-N 0.000 description 1
- NXANGIZFHQQBCC-VIFPVBQESA-N (2s)-2-amino-3-(6-hydroxy-1h-indol-3-yl)propanoic acid Chemical compound OC1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 NXANGIZFHQQBCC-VIFPVBQESA-N 0.000 description 1
- RXZQHZDTHUUJQJ-LURJTMIESA-N (2s)-2-amino-3-(furan-2-yl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CO1 RXZQHZDTHUUJQJ-LURJTMIESA-N 0.000 description 1
- BURBNIPKSRJAIQ-QMMMGPOBSA-N (2s)-2-amino-3-[3-(trifluoromethyl)phenyl]propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC(C(F)(F)F)=C1 BURBNIPKSRJAIQ-QMMMGPOBSA-N 0.000 description 1
- CRFFPDBJLGAGQL-QMMMGPOBSA-N (2s)-2-amino-3-[4-(trifluoromethyl)phenyl]propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(C(F)(F)F)C=C1 CRFFPDBJLGAGQL-QMMMGPOBSA-N 0.000 description 1
- PXFXXRSFSGRBRT-BYPYZUCNSA-N (2s)-2-azaniumyl-3-(1,3-thiazol-2-yl)propanoate Chemical compound OC(=O)[C@@H](N)CC1=NC=CS1 PXFXXRSFSGRBRT-BYPYZUCNSA-N 0.000 description 1
- VWTFNYVAFGYEKI-QMMMGPOBSA-N (2s)-2-azaniumyl-3-(3,4-dimethoxyphenyl)propanoate Chemical compound COC1=CC=C(C[C@H](N)C(O)=O)C=C1OC VWTFNYVAFGYEKI-QMMMGPOBSA-N 0.000 description 1
- LOVUSASSMLUWRR-REOHCLBHSA-N (2s)-2-hydrazinylpropanoic acid Chemical compound NN[C@@H](C)C(O)=O LOVUSASSMLUWRR-REOHCLBHSA-N 0.000 description 1
- WPVINHLVHHPBMK-ULQDDVLXSA-N (2s)-n-[(2s)-5-(diaminomethylideneamino)-1-(4-nitroanilino)-1-oxopentan-2-yl]-1-[(2s)-5-oxopyrrolidine-2-carbonyl]pyrrolidine-2-carboxamide Chemical compound C([C@H]1C(=O)N[C@@H](CCCN=C(N)N)C(=O)NC=2C=CC(=CC=2)[N+]([O-])=O)CCN1C(=O)[C@@H]1CCC(=O)N1 WPVINHLVHHPBMK-ULQDDVLXSA-N 0.000 description 1
- ITYVCUQVLKIGEY-LWMBPPNESA-N (2s,3s)-2-azaniumyl-4,4,4-trifluoro-3-hydroxybutanoate Chemical compound [O-]C(=O)[C@@H]([NH3+])[C@H](O)C(F)(F)F ITYVCUQVLKIGEY-LWMBPPNESA-N 0.000 description 1
- NXLNNXIXOYSCMB-UHFFFAOYSA-N (4-nitrophenyl) carbonochloridate Chemical compound [O-][N+](=O)C1=CC=C(OC(Cl)=O)C=C1 NXLNNXIXOYSCMB-UHFFFAOYSA-N 0.000 description 1
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- JFLSOKIMYBSASW-UHFFFAOYSA-N 1-chloro-2-[chloro(diphenyl)methyl]benzene Chemical compound ClC1=CC=CC=C1C(Cl)(C=1C=CC=CC=1)C1=CC=CC=C1 JFLSOKIMYBSASW-UHFFFAOYSA-N 0.000 description 1
- JZUMPNUYDJBTNO-UHFFFAOYSA-N 1-hydroxybenzotriazole;hydrate Chemical compound O.C1=CC=C2N(O)N=NC2=C1.C1=CC=C2N(O)N=NC2=C1 JZUMPNUYDJBTNO-UHFFFAOYSA-N 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006069 2,3-dimethyl-2-butenyl group Chemical group 0.000 description 1
- HXVNBWAKAOHACI-UHFFFAOYSA-N 2,4-dimethyl-3-pentanone Chemical group CC(C)C(=O)C(C)C HXVNBWAKAOHACI-UHFFFAOYSA-N 0.000 description 1
- OMGHIGVFLOPEHJ-UHFFFAOYSA-N 2,5-dihydro-1h-pyrrol-1-ium-2-carboxylate Chemical compound OC(=O)C1NCC=C1 OMGHIGVFLOPEHJ-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- XZEJDCSYAVLLLY-UHFFFAOYSA-N 2-[4-(hydroxymethyl)phenoxy]butanoic acid Chemical compound CCC(C(O)=O)OC1=CC=C(CO)C=C1 XZEJDCSYAVLLLY-UHFFFAOYSA-N 0.000 description 1
- VKUYLANQOAKALN-UHFFFAOYSA-N 2-[benzyl-(4-methoxyphenyl)sulfonylamino]-n-hydroxy-4-methylpentanamide Chemical compound C1=CC(OC)=CC=C1S(=O)(=O)N(C(CC(C)C)C(=O)NO)CC1=CC=CC=C1 VKUYLANQOAKALN-UHFFFAOYSA-N 0.000 description 1
- UBXUDSPYIGPGGP-UHFFFAOYSA-N 2-azaniumyl-2-phenylbutanoate Chemical compound CCC(N)(C(O)=O)C1=CC=CC=C1 UBXUDSPYIGPGGP-UHFFFAOYSA-N 0.000 description 1
- OFYAYGJCPXRNBL-UHFFFAOYSA-N 2-azaniumyl-3-naphthalen-1-ylpropanoate Chemical compound C1=CC=C2C(CC(N)C(O)=O)=CC=CC2=C1 OFYAYGJCPXRNBL-UHFFFAOYSA-N 0.000 description 1
- WTOFYLAWDLQMBZ-UHFFFAOYSA-N 2-azaniumyl-3-thiophen-2-ylpropanoate Chemical compound OC(=O)C(N)CC1=CC=CS1 WTOFYLAWDLQMBZ-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000006029 2-methyl-2-butenyl group Chemical group 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- COESHZUDRKCEPA-ZETCQYMHSA-N 3,5-dibromo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC(Br)=C(O)C(Br)=C1 COESHZUDRKCEPA-ZETCQYMHSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- AZXBADPWXOWMKQ-UHFFFAOYSA-N 3-Carboxy-tyrosin Natural products OC(=O)C(N)CC1=CC=C(O)C(C(O)=O)=C1 AZXBADPWXOWMKQ-UHFFFAOYSA-N 0.000 description 1
- PFDUUKDQEHURQC-UHFFFAOYSA-N 3-Methoxytyrosine Chemical compound COC1=CC(CC(N)C(O)=O)=CC=C1O PFDUUKDQEHURQC-UHFFFAOYSA-N 0.000 description 1
- BXRLWGXPSRYJDZ-UHFFFAOYSA-N 3-cyanoalanine Chemical compound OC(=O)C(N)CC#N BXRLWGXPSRYJDZ-UHFFFAOYSA-N 0.000 description 1
- RRRCPCOJPQLWEP-UHFFFAOYSA-N 3-hydroxytriazolo[4,5-b]pyridine Chemical compound C1=CN=C2N(O)N=NC2=C1.C1=CN=C2N(O)N=NC2=C1 RRRCPCOJPQLWEP-UHFFFAOYSA-N 0.000 description 1
- 125000006027 3-methyl-1-butenyl group Chemical group 0.000 description 1
- FBTSQILOGYXGMD-LURJTMIESA-N 3-nitro-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C([N+]([O-])=O)=C1 FBTSQILOGYXGMD-LURJTMIESA-N 0.000 description 1
- RBHLFWNKEWLHBP-UHFFFAOYSA-N 4-(4-aminophenyl)butanoic acid Chemical compound NC1=CC=C(CCCC(O)=O)C=C1 RBHLFWNKEWLHBP-UHFFFAOYSA-N 0.000 description 1
- CMUHFUGDYMFHEI-QMMMGPOBSA-N 4-amino-L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N)C=C1 CMUHFUGDYMFHEI-QMMMGPOBSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- AZXBADPWXOWMKQ-ZETCQYMHSA-N 5-[(2s)-2-amino-2-carboxyethyl]-2-hydroxybenzoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(C(O)=O)=C1 AZXBADPWXOWMKQ-ZETCQYMHSA-N 0.000 description 1
- ROHPMAMDFFHGCD-VIFPVBQESA-N 5-hydroxytryptophan Chemical compound C1=CC(O)=C[C]2C(C[C@H](N)C(O)=O)=CN=C21 ROHPMAMDFFHGCD-VIFPVBQESA-N 0.000 description 1
- 229940000681 5-hydroxytryptophan Drugs 0.000 description 1
- QSHLMQDRPXXYEE-UHFFFAOYSA-N 6-Hydroxytryptophan Natural products C1=CC(O)=C2C(CC(N)C(O)=O)=CNC2=C1 QSHLMQDRPXXYEE-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 208000009079 Bronchial Spasm Diseases 0.000 description 1
- 208000014181 Bronchial disease Diseases 0.000 description 1
- ADBZSIXYRYTQBU-APTKNWHNSA-N C.CCOC(=O)/C=C/C=C/C1CCCCC1.CCOC(=O)/C=C/CC=O.[H]C(=O)C1CCCCC1 Chemical compound C.CCOC(=O)/C=C/C=C/C1CCCCC1.CCOC(=O)/C=C/CC=O.[H]C(=O)C1CCCCC1 ADBZSIXYRYTQBU-APTKNWHNSA-N 0.000 description 1
- UWGLKCWBDHRDDI-YNPCEASUSA-N C.CCOC(=O)/C=C/C=C/CCNC(=O)OC(C)(C)C.CCOC(=O)/C=C/CC=O.[H]C(=O)CCNC(=O)OC(C)(C)C Chemical compound C.CCOC(=O)/C=C/C=C/CCNC(=O)OC(C)(C)C.CCOC(=O)/C=C/CC=O.[H]C(=O)CCNC(=O)OC(C)(C)C UWGLKCWBDHRDDI-YNPCEASUSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N CC Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- SEAVASTWYSPPDZ-ZUVMSYQZSA-N CC(=O)/C=C/C=C/CNC(=O)C1=CC=C(CN)C=C1 Chemical compound CC(=O)/C=C/C=C/CNC(=O)C1=CC=C(CN)C=C1 SEAVASTWYSPPDZ-ZUVMSYQZSA-N 0.000 description 1
- NEJWZSSJPUPDMR-ZUVMSYQZSA-N CC(=O)/C=C/C=C/CNC(=O)CC1=CC=C(N)C=C1 Chemical compound CC(=O)/C=C/C=C/CNC(=O)CC1=CC=C(N)C=C1 NEJWZSSJPUPDMR-ZUVMSYQZSA-N 0.000 description 1
- BUUJXEHDPSYDTE-NSCUHMNNSA-N CC(=O)/C=C/C=C1CCN(C(=O)C2=CC=C(CN)C=C2)CC1 Chemical compound CC(=O)/C=C/C=C1CCN(C(=O)C2=CC=C(CN)C=C2)CC1 BUUJXEHDPSYDTE-NSCUHMNNSA-N 0.000 description 1
- KIOFIHZOCCUXFO-UDJLOATDSA-N CC(=O)/C=C/C=C\CCNC(=O)CCCC1=CC=C(N)C=C1 Chemical compound CC(=O)/C=C/C=C\CCNC(=O)CCCC1=CC=C(N)C=C1 KIOFIHZOCCUXFO-UDJLOATDSA-N 0.000 description 1
- IRAFOFSZZUHJDD-UHFFFAOYSA-N CC(=O)C(N)CCCNC(=O)C1=CC=C(CN)C=C1 Chemical compound CC(=O)C(N)CCCNC(=O)C1=CC=C(CN)C=C1 IRAFOFSZZUHJDD-UHFFFAOYSA-N 0.000 description 1
- IAINSXJUXXOKJV-UHFFFAOYSA-N CC(=O)C(N)CCCNC(=O)CC1=CC=C(N)C=C1 Chemical compound CC(=O)C(N)CCCNC(=O)CC1=CC=C(N)C=C1 IAINSXJUXXOKJV-UHFFFAOYSA-N 0.000 description 1
- JOOXCMJARBKPKM-UHFFFAOYSA-N CC(=O)CCC(=O)O Chemical compound CC(=O)CCC(=O)O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 description 1
- XROQZQHURJEGKL-UHFFFAOYSA-N CC(=O)CCCCCNC(=O)C1=CC=C(CN)C=C1 Chemical compound CC(=O)CCCCCNC(=O)C1=CC=C(CN)C=C1 XROQZQHURJEGKL-UHFFFAOYSA-N 0.000 description 1
- PUSZTYXARIPNFE-UHFFFAOYSA-N CC(=O)CCCCCNC(=O)CCCC1=CC=C(N)C=C1 Chemical compound CC(=O)CCCCCNC(=O)CCCC1=CC=C(N)C=C1 PUSZTYXARIPNFE-UHFFFAOYSA-N 0.000 description 1
- USIRJEIMXSOOFD-UHFFFAOYSA-N CC(=O)CCCCNC(=O)C1=CC=C(S(N)(=O)=O)C=C1 Chemical compound CC(=O)CCCCNC(=O)C1=CC=C(S(N)(=O)=O)C=C1 USIRJEIMXSOOFD-UHFFFAOYSA-N 0.000 description 1
- UJVSUWKYQKWMHQ-UHFFFAOYSA-N CC(=O)CCCCNC(=O)CC1=CC=C(N)C=C1 Chemical compound CC(=O)CCCCNC(=O)CC1=CC=C(N)C=C1 UJVSUWKYQKWMHQ-UHFFFAOYSA-N 0.000 description 1
- OJZPQNGEXKDZDX-UHFFFAOYSA-N CC(=O)CCCCNC(=O)CCCC1=CC=C(N)C=C1 Chemical compound CC(=O)CCCCNC(=O)CCCC1=CC=C(N)C=C1 OJZPQNGEXKDZDX-UHFFFAOYSA-N 0.000 description 1
- UXFVSDOBBAGVOH-UHFFFAOYSA-N CC(=O)CCCNC(=O)C1=CC=C(S(N)(=O)=O)C=C1 Chemical compound CC(=O)CCCNC(=O)C1=CC=C(S(N)(=O)=O)C=C1 UXFVSDOBBAGVOH-UHFFFAOYSA-N 0.000 description 1
- SVRATWDTSSCUBK-UHFFFAOYSA-N CC(=O)CCCNC(=O)CC1=CC=C(NC(C)=O)C=C1 Chemical compound CC(=O)CCCNC(=O)CC1=CC=C(NC(C)=O)C=C1 SVRATWDTSSCUBK-UHFFFAOYSA-N 0.000 description 1
- JJLTXZUCWRROLH-UHFFFAOYSA-N CC(=O)CCCNC(=O)CCCC1=CC=C(N)C=C1 Chemical compound CC(=O)CCCNC(=O)CCCC1=CC=C(N)C=C1 JJLTXZUCWRROLH-UHFFFAOYSA-N 0.000 description 1
- BEMQTMJXUIWMKN-UHFFFAOYSA-N CC(=O)CCNC(=O)C1=CC=C(S(N)(=O)=O)C=C1 Chemical compound CC(=O)CCNC(=O)C1=CC=C(S(N)(=O)=O)C=C1 BEMQTMJXUIWMKN-UHFFFAOYSA-N 0.000 description 1
- PVIPZYJTMDEULG-UHFFFAOYSA-N CC(=O)NCC1=CC=C(CNC(=O)C2C=CC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(NC(C)=O)C=C4)CC3)N3C(=O)N(CC4=CC=CC5=C4C=CC=C5)C(=O)N23)C=C1 Chemical compound CC(=O)NCC1=CC=C(CNC(=O)C2C=CC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(NC(C)=O)C=C4)CC3)N3C(=O)N(CC4=CC=CC5=C4C=CC=C5)C(=O)N23)C=C1 PVIPZYJTMDEULG-UHFFFAOYSA-N 0.000 description 1
- BOQWJCCSKOILLP-MRXNPFEDSA-N CC(=O)[C@H](N)CCCCNC(=O)CCCC1=CC=C(N)C=C1 Chemical compound CC(=O)[C@H](N)CCCCNC(=O)CCCC1=CC=C(N)C=C1 BOQWJCCSKOILLP-MRXNPFEDSA-N 0.000 description 1
- AQJVILNOPBPMEO-UHFFFAOYSA-N CC(C)(C)OC(=O)NC(=N)C1=CC=C(CN)C=C1 Chemical compound CC(C)(C)OC(=O)NC(=N)C1=CC=C(CN)C=C1 AQJVILNOPBPMEO-UHFFFAOYSA-N 0.000 description 1
- RFXYCETWPCCWFT-UHFFFAOYSA-N CC(C)(C)OC(=O)NC(=N)C1=CC=C(CNC(=O)OCC2=CC=CC=C2)C=C1 Chemical compound CC(C)(C)OC(=O)NC(=N)C1=CC=C(CNC(=O)OCC2=CC=CC=C2)C=C1 RFXYCETWPCCWFT-UHFFFAOYSA-N 0.000 description 1
- UCADQCPSZOARJV-UHFFFAOYSA-N CC(C)(C)OC(=O)NC(=N)C1=CC=C(CNC(=O)OCC2C3=C(C=CC=C3)C3=C2C=CC=C3)C=C1 Chemical compound CC(C)(C)OC(=O)NC(=N)C1=CC=C(CNC(=O)OCC2C3=C(C=CC=C3)C3=C2C=CC=C3)C=C1 UCADQCPSZOARJV-UHFFFAOYSA-N 0.000 description 1
- ZQJXVKAAYBRNOW-IVYNQNBSSA-M CC(C)(C)OC(=O)NCC/C=C/C=C/C(=O)O.CCOC(=O)/C=C/C=C/CCNC(=O)OC(C)(C)C.[Li]O Chemical compound CC(C)(C)OC(=O)NCC/C=C/C=C/C(=O)O.CCOC(=O)/C=C/C=C/CCNC(=O)OC(C)(C)C.[Li]O ZQJXVKAAYBRNOW-IVYNQNBSSA-M 0.000 description 1
- MXVHBUUPWATWME-AICQVLTGSA-N CC(C)(C)OC(=O)NCC/C=C/C=C/C(=O)O.O=C(O)/C=C/C=C/CCNC(=O)OCC1C2=C(C=CC=C2)C2=C1C=CC=C2 Chemical compound CC(C)(C)OC(=O)NCC/C=C/C=C/C(=O)O.O=C(O)/C=C/C=C/CCNC(=O)OCC1C2=C(C=CC=C2)C2=C1C=CC=C2 MXVHBUUPWATWME-AICQVLTGSA-N 0.000 description 1
- VOGBAJVQCUWQSD-UHFFFAOYSA-N CC(C)(C)OC(=O)NCCC(=O)O.CON(C)C(=O)CCNC(=O)OC(C)(C)C Chemical compound CC(C)(C)OC(=O)NCCC(=O)O.CON(C)C(=O)CCNC(=O)OC(C)(C)C VOGBAJVQCUWQSD-UHFFFAOYSA-N 0.000 description 1
- SFDSZSRXXGFFEH-UHFFFAOYSA-N CC(C)(C)OC(NCCC(N(C)OC)=O)=O Chemical compound CC(C)(C)OC(NCCC(N(C)OC)=O)=O SFDSZSRXXGFFEH-UHFFFAOYSA-N 0.000 description 1
- NMQPIBPZSLMCFI-UHFFFAOYSA-N CC1=CC=C(CC(N)=O)C=C1 Chemical compound CC1=CC=C(CC(N)=O)C=C1 NMQPIBPZSLMCFI-UHFFFAOYSA-N 0.000 description 1
- HQWKFPZCXKUOEX-UHFFFAOYSA-N CC1CCCN1C.CO Chemical compound CC1CCCN1C.CO HQWKFPZCXKUOEX-UHFFFAOYSA-N 0.000 description 1
- SMWZLURIVGDUAU-UHFFFAOYSA-N CCC1=CC(F)=CC=C1F Chemical compound CCC1=CC(F)=CC=C1F SMWZLURIVGDUAU-UHFFFAOYSA-N 0.000 description 1
- AMKPQMFZCBTTAT-UHFFFAOYSA-N CCC1=CC(N)=CC=C1 Chemical compound CCC1=CC(N)=CC=C1 AMKPQMFZCBTTAT-UHFFFAOYSA-N 0.000 description 1
- CNOAEKYRSMRFHU-UHFFFAOYSA-N CCC1=CC(NC(=O)C2=C(Cl)C=C(Cl)C=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)C2=C(Cl)C=C(Cl)C=C2)=CC=C1 CNOAEKYRSMRFHU-UHFFFAOYSA-N 0.000 description 1
- QMKFWDIRCWBIOJ-UHFFFAOYSA-N CCC1=CC(NC(=O)C2=C(F)C=CC([N+](=O)[O-])=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)C2=C(F)C=CC([N+](=O)[O-])=C2)=CC=C1 QMKFWDIRCWBIOJ-UHFFFAOYSA-N 0.000 description 1
- LLMIZHTVXGLYHE-UHFFFAOYSA-N CCC1=CC(NC(=O)C2=CC(C#N)=CC=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)C2=CC(C#N)=CC=C2)=CC=C1 LLMIZHTVXGLYHE-UHFFFAOYSA-N 0.000 description 1
- WERIWUTURWDTES-UHFFFAOYSA-N CCC1=CC(NC(=O)CC2=CC=C(C(F)(F)F)C=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)CC2=CC=C(C(F)(F)F)C=C2)=CC=C1 WERIWUTURWDTES-UHFFFAOYSA-N 0.000 description 1
- ZDJWMJYQCZWOJC-UHFFFAOYSA-O CCC1=CC(NC(=O)CC2=CC=C(C[NH+]3NN([O-])C4=C3C=CC=C4)C=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)CC2=CC=C(C[NH+]3NN([O-])C4=C3C=CC=C4)C=C2)=CC=C1 ZDJWMJYQCZWOJC-UHFFFAOYSA-O 0.000 description 1
- DLWNGGMQANZXDU-UHFFFAOYSA-N CCC1=CC(NC(=O)CC2=CC=C(Cl)C(Cl)=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)CC2=CC=C(Cl)C(Cl)=C2)=CC=C1 DLWNGGMQANZXDU-UHFFFAOYSA-N 0.000 description 1
- HESSTJLSOIWRAD-UHFFFAOYSA-N CCC1=CC(NC(=O)CC2=CC=C(N)C=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)CC2=CC=C(N)C=C2)=CC=C1 HESSTJLSOIWRAD-UHFFFAOYSA-N 0.000 description 1
- OPIURCDZGGDRTI-UHFFFAOYSA-N CCC1=CC(NC(=O)CC2=CC=CC(F)=C2)=CC=C1 Chemical compound CCC1=CC(NC(=O)CC2=CC=CC(F)=C2)=CC=C1 OPIURCDZGGDRTI-UHFFFAOYSA-N 0.000 description 1
- WXINBRPGHLYARM-UHFFFAOYSA-N CCC1=CC(NC(=O)CSC2=NC=CC=N2)=CC=C1 Chemical compound CCC1=CC(NC(=O)CSC2=NC=CC=N2)=CC=C1 WXINBRPGHLYARM-UHFFFAOYSA-N 0.000 description 1
- IDPSSAPSZVPVDX-UHFFFAOYSA-M CCC1=CC(NS(=O)(=O)C2=C(C(=O)[O-])C=CC=C2)=CC=C1 Chemical compound CCC1=CC(NS(=O)(=O)C2=C(C(=O)[O-])C=CC=C2)=CC=C1 IDPSSAPSZVPVDX-UHFFFAOYSA-M 0.000 description 1
- UQHDVXQUWFUVRS-UHFFFAOYSA-N CCC1=CC(NS(=O)(=O)C2=C([N+](=O)[O-])C=C([N+](=O)[O-])C=C2)=CC=C1 Chemical compound CCC1=CC(NS(=O)(=O)C2=C([N+](=O)[O-])C=C([N+](=O)[O-])C=C2)=CC=C1 UQHDVXQUWFUVRS-UHFFFAOYSA-N 0.000 description 1
- QRRJDRYXRMQTNF-UHFFFAOYSA-N CCC1=CC(NS(=O)(=O)C2=CC=C(C)C=C2)=CC=C1 Chemical compound CCC1=CC(NS(=O)(=O)C2=CC=C(C)C=C2)=CC=C1 QRRJDRYXRMQTNF-UHFFFAOYSA-N 0.000 description 1
- ZLXMKGOKKUUMRS-UHFFFAOYSA-N CCC1=CC(NS(=O)(=O)C2=CC=C(I)C=C2)=CC=C1 Chemical compound CCC1=CC(NS(=O)(=O)C2=CC=C(I)C=C2)=CC=C1 ZLXMKGOKKUUMRS-UHFFFAOYSA-N 0.000 description 1
- AYXZXNFRXHORNF-UHFFFAOYSA-N CCC1=CC=C(CNC(C)=O)C=C1 Chemical compound CCC1=CC=C(CNC(C)=O)C=C1 AYXZXNFRXHORNF-UHFFFAOYSA-N 0.000 description 1
- DLMYHUARHITGIJ-UHFFFAOYSA-N CCC1=CC=CC=C1C1=CC=CC=C1 Chemical compound CCC1=CC=CC=C1C1=CC=CC=C1 DLMYHUARHITGIJ-UHFFFAOYSA-N 0.000 description 1
- IKQCKANHUYSABG-UHFFFAOYSA-N CCC1CCC(N)CC1 Chemical compound CCC1CCC(N)CC1 IKQCKANHUYSABG-UHFFFAOYSA-N 0.000 description 1
- JICFUZUDIBEOSV-UHFFFAOYSA-N CCCC(=O)NCC1=CC=C(C(=N)N)C=C1 Chemical compound CCCC(=O)NCC1=CC=C(C(=N)N)C=C1 JICFUZUDIBEOSV-UHFFFAOYSA-N 0.000 description 1
- AOLOVPRVWXNVRZ-UHFFFAOYSA-N CCCC(=O)NCC1=CC=C(Cl)C=C1 Chemical compound CCCC(=O)NCC1=CC=C(Cl)C=C1 AOLOVPRVWXNVRZ-UHFFFAOYSA-N 0.000 description 1
- DFXJGVKIIXQUHU-UHFFFAOYSA-N CCCC(=O)NCC1=CC=C(N)C=C1 Chemical compound CCCC(=O)NCC1=CC=C(N)C=C1 DFXJGVKIIXQUHU-UHFFFAOYSA-N 0.000 description 1
- LBIPINFMNYIYTI-UHFFFAOYSA-N CCCC(=O)NCC1=CC=CC(CN)=C1 Chemical compound CCCC(=O)NCC1=CC=CC(CN)=C1 LBIPINFMNYIYTI-UHFFFAOYSA-N 0.000 description 1
- UPOOGZJJSZBNNX-UHFFFAOYSA-N CCCC(=O)NCC1=CC=CC(N)=C1 Chemical compound CCCC(=O)NCC1=CC=CC(N)=C1 UPOOGZJJSZBNNX-UHFFFAOYSA-N 0.000 description 1
- GQINGVFITOTQOL-UHFFFAOYSA-N CCCC(=O)NCC1=CC=CS1 Chemical compound CCCC(=O)NCC1=CC=CS1 GQINGVFITOTQOL-UHFFFAOYSA-N 0.000 description 1
- IUVFOURDGIMRNM-UHFFFAOYSA-N CCCC(=O)NCC1CCN(C(=N)N)CC1 Chemical compound CCCC(=O)NCC1CCN(C(=N)N)CC1 IUVFOURDGIMRNM-UHFFFAOYSA-N 0.000 description 1
- BYWHIHLCXGVJFY-UHFFFAOYSA-N CCCC(=O)NCC1CCNCC1 Chemical compound CCCC(=O)NCC1CCNCC1 BYWHIHLCXGVJFY-UHFFFAOYSA-N 0.000 description 1
- XNLMDDXRVYTBGW-UHFFFAOYSA-N CCCC(=O)NCCC1=CC=C(O)C(O)=C1 Chemical compound CCCC(=O)NCCC1=CC=C(O)C(O)=C1 XNLMDDXRVYTBGW-UHFFFAOYSA-N 0.000 description 1
- RIIXOQOYTKSGEP-UHFFFAOYSA-N CCCC(=O)NCCC1=CC=C(OC)C=C1 Chemical compound CCCC(=O)NCCC1=CC=C(OC)C=C1 RIIXOQOYTKSGEP-UHFFFAOYSA-N 0.000 description 1
- LPZDIVMHRIJJMT-UHFFFAOYSA-N CCCC(=O)NCCNC1=CC=CC=C1 Chemical compound CCCC(=O)NCCNC1=CC=CC=C1 LPZDIVMHRIJJMT-UHFFFAOYSA-N 0.000 description 1
- RBTLWMKJLGFVHU-UHFFFAOYSA-N CCCCC(=O)NCC1=CC=C(OC)C=C1 Chemical compound CCCCC(=O)NCC1=CC=C(OC)C=C1 RBTLWMKJLGFVHU-UHFFFAOYSA-N 0.000 description 1
- LFUDYQCTHDQDTM-UHFFFAOYSA-N CCCCC(=O)NCC1=CC=CC(CN)=C1 Chemical compound CCCCC(=O)NCC1=CC=CC(CN)=C1 LFUDYQCTHDQDTM-UHFFFAOYSA-N 0.000 description 1
- GVGBLTKWTCBMPU-UHFFFAOYSA-N CCCCC(=O)NCC1=CC=CC(N)=C1 Chemical compound CCCCC(=O)NCC1=CC=CC(N)=C1 GVGBLTKWTCBMPU-UHFFFAOYSA-N 0.000 description 1
- GEMYNKHMUWBIPY-UHFFFAOYSA-N CCCCC(=O)NCC1CCNCC1 Chemical compound CCCCC(=O)NCC1CCNCC1 GEMYNKHMUWBIPY-UHFFFAOYSA-N 0.000 description 1
- WVIIQJJHSXXHAN-UHFFFAOYSA-N CCCCC(=O)NCCC1=CC=C(OC)C(OC)=C1 Chemical compound CCCCC(=O)NCCC1=CC=C(OC)C(OC)=C1 WVIIQJJHSXXHAN-UHFFFAOYSA-N 0.000 description 1
- XLILVNFXYHQTQT-UHFFFAOYSA-N CCCCC(=O)NCCNC1=CC=CC=C1 Chemical compound CCCCC(=O)NCCNC1=CC=CC=C1 XLILVNFXYHQTQT-UHFFFAOYSA-N 0.000 description 1
- IWGLWPQOHGLWDU-UHFFFAOYSA-N CCCCCC(=O)NCC1=CC(C(F)(F)F)=C(F)C=C1 Chemical compound CCCCCC(=O)NCC1=CC(C(F)(F)F)=C(F)C=C1 IWGLWPQOHGLWDU-UHFFFAOYSA-N 0.000 description 1
- QSSUBZPJJQJHGI-UHFFFAOYSA-N CCCCCC(=O)NCC1=CC=C(F)C(F)=C1 Chemical compound CCCCCC(=O)NCC1=CC=C(F)C(F)=C1 QSSUBZPJJQJHGI-UHFFFAOYSA-N 0.000 description 1
- ONLWDMDNEQPWEF-UHFFFAOYSA-N CCCCCC(=O)NCC1=CC=CC(CN)=C1 Chemical compound CCCCCC(=O)NCC1=CC=CC(CN)=C1 ONLWDMDNEQPWEF-UHFFFAOYSA-N 0.000 description 1
- MHJREEUCQBHJCI-UHFFFAOYSA-N CCCCCC(=O)NCC1=CC=CC(N)=C1 Chemical compound CCCCCC(=O)NCC1=CC=CC(N)=C1 MHJREEUCQBHJCI-UHFFFAOYSA-N 0.000 description 1
- MJPMGQAXNXKJFW-UHFFFAOYSA-N CCCCCC(=O)NCC1=CC=CS1 Chemical compound CCCCCC(=O)NCC1=CC=CS1 MJPMGQAXNXKJFW-UHFFFAOYSA-N 0.000 description 1
- BATSYTBHLSTQHN-UHFFFAOYSA-N CCCCCC(=O)NCC1CCNCC1 Chemical compound CCCCCC(=O)NCC1CCNCC1 BATSYTBHLSTQHN-UHFFFAOYSA-N 0.000 description 1
- IKFGFNVOFTZWCS-UHFFFAOYSA-N CCCCCC(=O)NCCNC1=CC=CC=C1 Chemical compound CCCCCC(=O)NCCNC1=CC=CC=C1 IKFGFNVOFTZWCS-UHFFFAOYSA-N 0.000 description 1
- DGFTWBUZRHAHTH-UHFFFAOYSA-N CCCCCC1=CC=C(N)C=C1 Chemical compound CCCCCC1=CC=C(N)C=C1 DGFTWBUZRHAHTH-UHFFFAOYSA-N 0.000 description 1
- OZGYYODCIULSLM-UHFFFAOYSA-N CCCCCNC(=O)C1=CC=C(CN)C=C1 Chemical compound CCCCCNC(=O)C1=CC=C(CN)C=C1 OZGYYODCIULSLM-UHFFFAOYSA-N 0.000 description 1
- WTWRDKAYKVEOHP-CDLYGTGVSA-N CCCCNC(=O)[C@]1(O)C[C@@H](O)[C@@H](O)[C@H](O)C1 Chemical compound CCCCNC(=O)[C@]1(O)C[C@@H](O)[C@@H](O)[C@H](O)C1 WTWRDKAYKVEOHP-CDLYGTGVSA-N 0.000 description 1
- SNTRUXBLVFXPGT-PMQOXKJQSA-M CCOC(=O)/C=C/C=C/C1CCCCC1.O=C(O)/C=C/C=C/C1CCCCC1.[Li]O Chemical compound CCOC(=O)/C=C/C=C/C1CCCCC1.O=C(O)/C=C/C=C/C1CCCCC1.[Li]O SNTRUXBLVFXPGT-PMQOXKJQSA-M 0.000 description 1
- HXDOZKJGKXYMEW-UHFFFAOYSA-N CCc1ccc(O)cc1 Chemical compound CCc1ccc(O)cc1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 1
- YUQQOJLRHMEZIT-UHFFFAOYSA-N COC(=O)NN.NCC1=C2C=CC=CC2=CC=C1.O=C1NNC(=O)N1CC1=C2C=CC=CC2=CC=C1 Chemical compound COC(=O)NN.NCC1=C2C=CC=CC2=CC=C1.O=C1NNC(=O)N1CC1=C2C=CC=CC2=CC=C1 YUQQOJLRHMEZIT-UHFFFAOYSA-N 0.000 description 1
- RPFZHBGBQRZERK-UHFFFAOYSA-N CON(C)C(=O)C1CCCCC1.O=C(O)C1CCCCC1 Chemical compound CON(C)C(=O)C1CCCCC1.O=C(O)C1CCCCC1 RPFZHBGBQRZERK-UHFFFAOYSA-N 0.000 description 1
- VIIGIUGEBXIROE-UHFFFAOYSA-N CON(C)C(=O)C1CCCCC1.[H]C(=O)C1CCCCC1 Chemical compound CON(C)C(=O)C1CCCCC1.[H]C(=O)C1CCCCC1 VIIGIUGEBXIROE-UHFFFAOYSA-N 0.000 description 1
- IDRQCWHDAOSMHW-UHFFFAOYSA-M CON(C)C(=O)CCNC(=O)OC(C)(C)C.O=S(=O)(O)O[K].[H]C(=O)CCNC(=O)OC(C)(C)C Chemical compound CON(C)C(=O)CCNC(=O)OC(C)(C)C.O=S(=O)(O)O[K].[H]C(=O)CCNC(=O)OC(C)(C)C IDRQCWHDAOSMHW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000921896 Charybdis <crab> Species 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 102000003858 Chymases Human genes 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- PAFZNILMFXTMIY-UHFFFAOYSA-N Cyclohexylamine Natural products NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 1
- LJCWONGJFPCTTL-SSDOTTSWSA-N D-4-hydroxyphenylglycine Chemical compound [O-]C(=O)[C@H]([NH3+])C1=CC=C(O)C=C1 LJCWONGJFPCTTL-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- NXANGIZFHQQBCC-UHFFFAOYSA-N DL-6-Hydroxy-tryptophan Natural products OC1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 NXANGIZFHQQBCC-UHFFFAOYSA-N 0.000 description 1
- ASNFTDCKZKHJSW-UHFFFAOYSA-N DL-Quisqualic acid Natural products OC(=O)C(N)CN1OC(=O)NC1=O ASNFTDCKZKHJSW-UHFFFAOYSA-N 0.000 description 1
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 1
- IJWCGVPEDDQUDE-UHFFFAOYSA-N Elastatinal Natural products O=CC(C)NC(=O)C(CCC(N)=O)NC(=O)C(NC(=O)NC(CC(C)C)C(O)=O)C1CCN=C(N)N1 IJWCGVPEDDQUDE-UHFFFAOYSA-N 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- VHLZDSUANXBJHW-QWRGUYRKSA-N Gln-Phe Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 VHLZDSUANXBJHW-QWRGUYRKSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- IRJCBFDCFXCWGO-UHFFFAOYSA-N Ibotenic acid Natural products OC(=O)C(N)C1=CC(=O)NO1 IRJCBFDCFXCWGO-UHFFFAOYSA-N 0.000 description 1
- 102000009438 IgE Receptors Human genes 0.000 description 1
- 108010073816 IgE Receptors Proteins 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- QUOGESRFPZDMMT-UHFFFAOYSA-N L-Homoarginine Natural products OC(=O)C(N)CCCCNC(N)=N QUOGESRFPZDMMT-UHFFFAOYSA-N 0.000 description 1
- LOOZZTFGSTZNRX-VIFPVBQESA-N L-Homotyrosine Chemical compound OC(=O)[C@@H](N)CCC1=CC=C(O)C=C1 LOOZZTFGSTZNRX-VIFPVBQESA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- AGPKZVBTJJNPAG-UHNVWZDZSA-N L-allo-Isoleucine Chemical compound CC[C@@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-UHNVWZDZSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- QUOGESRFPZDMMT-YFKPBYRVSA-N L-homoarginine Chemical compound OC(=O)[C@@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-YFKPBYRVSA-N 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical class OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- JTTHKOPSMAVJFE-VIFPVBQESA-N L-homophenylalanine Chemical compound OC(=O)[C@@H](N)CCC1=CC=CC=C1 JTTHKOPSMAVJFE-VIFPVBQESA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- UCUNFLYVYCGDHP-BYPYZUCNSA-N L-methionine sulfone Chemical compound CS(=O)(=O)CC[C@H](N)C(O)=O UCUNFLYVYCGDHP-BYPYZUCNSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- DGYHPLMPMRKMPD-UHFFFAOYSA-N L-propargyl glycine Natural products OC(=O)C(N)CC#C DGYHPLMPMRKMPD-UHFFFAOYSA-N 0.000 description 1
- DZLNHFMRPBPULJ-VKHMYHEASA-N L-thioproline Chemical compound OC(=O)[C@@H]1CSCN1 DZLNHFMRPBPULJ-VKHMYHEASA-N 0.000 description 1
- KKCIOUWDFWQUBT-AWEZNQCLSA-N L-thyronine Chemical compound C1=CC(C[C@H](N)C(O)=O)=CC=C1OC1=CC=C(O)C=C1 KKCIOUWDFWQUBT-AWEZNQCLSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 1
- 108010016113 Matrix Metalloproteinase 1 Proteins 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 229940121849 Mitotic inhibitor Drugs 0.000 description 1
- PXOMTIABFNUPGY-UHFFFAOYSA-N NC(=S)C1=CC=C(CNC(=O)OCC2=CC=CC=C2)C=C1 Chemical compound NC(=S)C1=CC=C(CNC(=O)OCC2=CC=CC=C2)C=C1 PXOMTIABFNUPGY-UHFFFAOYSA-N 0.000 description 1
- UMDLUXCQZDQLOP-UHFFFAOYSA-N NCC1=CC=C(CNC(=O)C2=CCC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(N)C=C4)CC3)N3C(=O)N(CC4=CC=CC5=C4C=CC=C5)C(=O)N23)C=C1 Chemical compound NCC1=CC=C(CNC(=O)C2=CCC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(N)C=C4)CC3)N3C(=O)N(CC4=CC=CC5=C4C=CC=C5)C(=O)N23)C=C1 UMDLUXCQZDQLOP-UHFFFAOYSA-N 0.000 description 1
- ZIGJENUIEISAQC-UHFFFAOYSA-N NCC1=CC=C(CNC(=O)C2C=CC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(N)C=C4)CC3)N3C(=O)N(CC4=C5C=CC=CC5=CC=C4)C(=O)N23)C=C1.NCC1=CC=C(CNC(=O)C2CCC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(N)C=C4)CC3)N3C(=O)N(CC4=C5C=CC=CC5=CC=C4)C(=O)N23)C=C1 Chemical compound NCC1=CC=C(CNC(=O)C2C=CC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(N)C=C4)CC3)N3C(=O)N(CC4=C5C=CC=CC5=CC=C4)C(=O)N23)C=C1.NCC1=CC=C(CNC(=O)C2CCC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(N)C=C4)CC3)N3C(=O)N(CC4=C5C=CC=CC5=CC=C4)C(=O)N23)C=C1 ZIGJENUIEISAQC-UHFFFAOYSA-N 0.000 description 1
- NLOQJUMFADVDAI-UHFFFAOYSA-N NCC1=CC=C(CNC(=O)C2C=CC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(N)C=C4)CC3)N3C(=O)N(CC4=CC=CC5=C4C=CC=C5)C(=O)N23)C=C1 Chemical compound NCC1=CC=C(CNC(=O)C2C=CC(C3CCN(C(=O)CCCNC(=O)CC4=CC=C(N)C=C4)CC3)N3C(=O)N(CC4=CC=CC5=C4C=CC=C5)C(=O)N23)C=C1 NLOQJUMFADVDAI-UHFFFAOYSA-N 0.000 description 1
- XGZAOCLTMHZFPA-UHFFFAOYSA-N NCC1CCC(C(=O)O)CC1.O=C(NCC1CCC(C(=O)O)CC1)OCC1C2=C(C=CC=C2)C2=C1C=CC=C2 Chemical compound NCC1CCC(C(=O)O)CC1.O=C(NCC1CCC(C(=O)O)CC1)OCC1C2=C(C=CC=C2)C2=C1C=CC=C2 XGZAOCLTMHZFPA-UHFFFAOYSA-N 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- QWHYEFZPTSTTSR-UHFFFAOYSA-N O=C(NCC1=CC=C(C(=O)O)C=C1)OCC1=CC=CC=C1 Chemical compound O=C(NCC1=CC=C(C(=O)O)C=C1)OCC1=CC=CC=C1 QWHYEFZPTSTTSR-UHFFFAOYSA-N 0.000 description 1
- KKHVTWBKYUPJRO-QLSNBLFXSA-N O=C(O)/C=C/C=C/C1CCCCC1.O=C(O)/C=C/C=C/C1CCNCC1 Chemical compound O=C(O)/C=C/C=C/C1CCCCC1.O=C(O)/C=C/C=C/C1CCNCC1 KKHVTWBKYUPJRO-QLSNBLFXSA-N 0.000 description 1
- KPCIGHYDPVDKKG-XVBQHFRQSA-N O=C(O)/C=C/C=C/C1CCN(C(=O)OCC2C3=C(C=CC=C3)C3=C2C=CC=C3)CC1.O=C(O)/C=C/C=C/C1CCNCC1 Chemical compound O=C(O)/C=C/C=C/C1CCN(C(=O)OCC2C3=C(C=CC=C3)C3=C2C=CC=C3)CC1.O=C(O)/C=C/C=C/C1CCNCC1 KPCIGHYDPVDKKG-XVBQHFRQSA-N 0.000 description 1
- LNWJJNOSRUFOFN-UHFFFAOYSA-N O=C(O)C1CCCCC1.O=C(O)C1CCNCC1 Chemical compound O=C(O)C1CCCCC1.O=C(O)C1CCNCC1 LNWJJNOSRUFOFN-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 101000909992 Papio hamadryas Chymase Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ONPXCLZMBSJLSP-CSMHCCOUSA-N Pro-Hyp Chemical compound C1[C@H](O)C[C@@H](C(O)=O)N1C(=O)[C@H]1NCCC1 ONPXCLZMBSJLSP-CSMHCCOUSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 102100030416 Stromelysin-1 Human genes 0.000 description 1
- 101710108790 Stromelysin-1 Proteins 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 1
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 1
- IBMVDIAISHOESV-UHFFFAOYSA-N [4-(aminomethyl)-3,4-dimethylcyclohexa-1,5-dien-1-yl]methanamine Chemical group CC1C=C(CN)C=CC1(C)CN IBMVDIAISHOESV-UHFFFAOYSA-N 0.000 description 1
- UEENODUURMLLTP-UHFFFAOYSA-N [H]N1CCC(C2C=CC(C(C)=O)N3C(=O)N(C)C(=O)N23)CC1 Chemical compound [H]N1CCC(C2C=CC(C(C)=O)N3C(=O)N(C)C(=O)N23)CC1 UEENODUURMLLTP-UHFFFAOYSA-N 0.000 description 1
- 238000012084 abdominal surgery Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- RAFKCLFWELPONH-UHFFFAOYSA-N acetonitrile;dichloromethane Chemical compound CC#N.ClCCl RAFKCLFWELPONH-UHFFFAOYSA-N 0.000 description 1
- YBCVMFKXIKNREZ-UHFFFAOYSA-N acoh acetic acid Chemical compound CC(O)=O.CC(O)=O YBCVMFKXIKNREZ-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000008369 airway response Effects 0.000 description 1
- 125000005248 alkyl aryloxy group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical compound CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- QCTBMLYLENLHLA-UHFFFAOYSA-N aminomethylbenzoic acid Chemical compound NCC1=CC=C(C(O)=O)C=C1 QCTBMLYLENLHLA-UHFFFAOYSA-N 0.000 description 1
- 229960003375 aminomethylbenzoic acid Drugs 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 238000011861 anti-inflammatory therapy Methods 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940019748 antifibrinolytic proteinase inhibitors Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 125000005604 azodicarboxylate group Chemical group 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- WXBLLCUINBKULX-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1.OC(=O)C1=CC=CC=C1 WXBLLCUINBKULX-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- RROBIDXNTUAHFW-UHFFFAOYSA-N benzotriazol-1-yloxy-tris(dimethylamino)phosphanium Chemical compound C1=CC=C2N(O[P+](N(C)C)(N(C)C)N(C)C)N=NC2=C1 RROBIDXNTUAHFW-UHFFFAOYSA-N 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- MJSHDCCLFGOEIK-UHFFFAOYSA-N benzyl (2,5-dioxopyrrolidin-1-yl) carbonate Chemical compound O=C1CCC(=O)N1OC(=O)OCC1=CC=CC=C1 MJSHDCCLFGOEIK-UHFFFAOYSA-N 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- WTOFYLAWDLQMBZ-LURJTMIESA-N beta(2-thienyl)alanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CS1 WTOFYLAWDLQMBZ-LURJTMIESA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 150000001576 beta-amino acids Chemical class 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000007885 bronchoconstriction Effects 0.000 description 1
- 230000003182 bronchodilatating effect Effects 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007816 calorimetric assay Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000112 colonic effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 208000026758 coronary atherosclerosis Diseases 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- AVKNGPAMCBSNSO-UHFFFAOYSA-N cyclohexylmethanamine Chemical compound NCC1CCCCC1 AVKNGPAMCBSNSO-UHFFFAOYSA-N 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 150000001944 cysteine derivatives Chemical class 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- MQYQOVYIJOLTNX-UHFFFAOYSA-N dichloromethane;n,n-dimethylformamide Chemical compound ClCCl.CN(C)C=O MQYQOVYIJOLTNX-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- CETRZFQIITUQQL-UHFFFAOYSA-N dmso dimethylsulfoxide Chemical compound CS(C)=O.CS(C)=O CETRZFQIITUQQL-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 108010039262 elastatinal Proteins 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- OLAMWIPURJGSKE-UHFFFAOYSA-N et2o diethylether Chemical compound CCOCC.CCOCC OLAMWIPURJGSKE-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000005469 ethylenyl group Chemical group 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 125000005343 heterocyclic alkyl group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 125000006289 hydroxybenzyl group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000008991 intestinal motility Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- CFHGBZLNZZVTAY-UHFFFAOYSA-N lawesson's reagent Chemical compound C1=CC(OC)=CC=C1P1(=S)SP(=S)(C=2C=CC(OC)=CC=2)S1 CFHGBZLNZZVTAY-UHFFFAOYSA-N 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N methanesulfonic acid Substances CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- WFJRIDQGVSJLLH-UHFFFAOYSA-N methyl n-aminocarbamate Chemical compound COC(=O)NN WFJRIDQGVSJLLH-UHFFFAOYSA-N 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 239000002062 molecular scaffold Substances 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- WOOWBQQQJXZGIE-UHFFFAOYSA-N n-ethyl-n-propan-2-ylpropan-2-amine Chemical compound CCN(C(C)C)C(C)C.CCN(C(C)C)C(C)C WOOWBQQQJXZGIE-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- NVSYANRBXPURRQ-UHFFFAOYSA-N naphthalen-1-ylmethanamine Chemical compound C1=CC=C2C(CN)=CC=CC2=C1 NVSYANRBXPURRQ-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- LDCYZAJDBXYCGN-UHFFFAOYSA-N oxitriptan Natural products C1=C(O)C=C2C(CC(N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-UHFFFAOYSA-N 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- CKFBFQHBUCDOHL-UHFFFAOYSA-N phenoxy(phenyl)methanol Chemical compound C=1C=CC=CC=1C(O)OC1=CC=CC=C1 CKFBFQHBUCDOHL-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical class [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- USRGIUJOYOXOQJ-GBXIJSLDSA-N phosphothreonine Chemical compound OP(=O)(O)O[C@H](C)[C@H](N)C(O)=O USRGIUJOYOXOQJ-GBXIJSLDSA-N 0.000 description 1
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 230000007180 physiological regulation Effects 0.000 description 1
- HXEACLLIILLPRG-UHFFFAOYSA-N pipecolic acid Chemical compound OC(=O)C1CCCCN1 HXEACLLIILLPRG-UHFFFAOYSA-N 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920002721 polycyanoacrylate Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108010029690 procollagenase Proteins 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- VVWRJUBEIPHGQF-MDZDMXLPSA-N propan-2-yl (ne)-n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)\N=N\C(=O)OC(C)C VVWRJUBEIPHGQF-MDZDMXLPSA-N 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 125000005470 propylenyl group Chemical group 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 230000020341 sensory perception of pain Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 150000003354 serine derivatives Chemical class 0.000 description 1
- 229920000260 silastic Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- GMRIOAVKKGNMMV-UHFFFAOYSA-N tetrabutylazanium;azide Chemical compound [N-]=[N+]=[N-].CCCC[N+](CCCC)(CCCC)CCCC GMRIOAVKKGNMMV-UHFFFAOYSA-N 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000004853 tetrahydropyridinyl group Chemical group N1(CCCC=C1)* 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Substances C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003587 threonine derivatives Chemical class 0.000 description 1
- 230000007838 tissue remodeling Effects 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 230000001810 trypsinlike Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- JPZXHKDZASGCLU-LBPRGKRZSA-N β-(2-naphthyl)-alanine Chemical compound C1=CC=CC2=CC(C[C@H](N)C(O)=O)=CC=C21 JPZXHKDZASGCLU-LBPRGKRZSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
Definitions
- the present invention relates generally to ⁇ -sheet mimetics, including inhibitors of tryptase in treating inflammation and several other disorders as well as to a chemical library of ⁇ -sheet mimetics.
- the ⁇ -sheet conformation (also referred to as a ⁇ -strand conformation) is a secondary structure present in many polypeptides.
- the ⁇ -sheet conformation is nearly fully extended, with axial distances between adjacent amino acids of approximately 3.5 ⁇ .
- the ⁇ -sheet is stabilized by hydrogen bonds between NH and CO groups in different polypeptides sheets. Additionally, the dipoles of the peptide bonds alternate along the sheets, which imparts intrinsic stability to the ⁇ -sheet.
- the adjacent sheets in the ⁇ -sheet can run in the same direction (i.e., a parallel ⁇ -sheet) or in opposite directions (i.e., an antiparallel ⁇ -sheet). Although the two forms differ slightly in dihedral angles, both are sterically favorable.
- the extended conformation of the ⁇ -sheet conformation results in the amino acid side chains protruding on alternating faces of the ⁇ -sheet.
- ⁇ -sheets in peptides and proteins is well established (e.g., Richardson, Nature 268:495-499, 1977; Halverson et al., J. Am. Chem Soc. 113:6701-6704, 1991; Zhang, J. Biol. Chem. 266:15591-15596, 1991; Madden et al., Nature 353:321-325, 1991).
- the ⁇ -sheet is important in a number of biological protein-protein recognition events, including interactions between proteases and their substrates.
- Inhibitors that mimic the ⁇ -sheet structure of biologically active proteins or peptides would have utility in the treatment of a wide variety of conditions.
- trypsin-like serine proteases form a large and highly selective family of enzymes involved in hemostasis/coagulation (Davie, E. W. and K. Fujikawa, “Basic mechanisms in blood coagulation,” Ann. Rev. 799-829, 1975) and complement activation (Muller-Eberhard, H. J., “Complement,” Ann. Rev. Biochem. 44:697-724, 1975).
- Tryptase a trypsin-like serine protease found exclusively in mast cells, has attracted much interest due to its potential role as a mediator of inflammation.
- tryptase is released along with other mediators of inflammation in response to binding of an inhaled antigen to cell-surface IgE receptors (Ishizaka and Ishizaka, Prog. Allergy 34:188-235, 1984).
- Tryptase has also been shown to cleave vasoactive intestinal peptide in vitro (Caughey et al., J. Pharmacol. Exp. Ther. 244:133-137, 1988; Tam and Caughey, Am. J. Respir. Cell Mol. Biol.
- tryptase may play a role in atheromatous rupture (release of the thrombus), the final event of coronary atherosclerosis (Kaartinen et al., Circulation 90:1669-1678, 1994).
- Tryptase cleaves fibrinogen but is not inactivated in the presence of endogenous proteinase inhibitors (Schwartz et al., J. Immunol. 135:2762-2767, 1985; Ren et al., J. Immunol. 159:3540-3548, 1997), and may function as a local anticoagulant. It has been demonstrated to be a potent mitogen for fibroblasts and may be involved in pulmonary fibrosis and interstitial lung disease (Ruoss et al., J. Clin. Invest. 88:493-499, 1991).
- Tryptase may also be responsible for the activation of PAR-2 (proteinase activated receptor-2) on endothelial cells and keratinocytes (Molino et al., J. Biol. Chem. 272:4043-4049, 1997).
- PAR-2 proteinase activated receptor-2
- Mast cells are pro-inflammatory cells that are normally present in the wall of the intestine. Manipulation of intestine and intestinal inflammation are accompanied by influx and degranulation of mast cells in the wall of the intestine.
- Mast cell tryptase and chymase are proteases that account for 25% of the total protein of mast cells (Schwartz et al., J. Immunol. 138:2611-2615, 1987). They are released from mast cell upon degranulation within the wall of the colon.
- a method of treating or preventing post-operative ileus was discovered based on the observation that PAR-2 is expressed in colonic muscle cells, and that activation of PAR-2 inhibits colonic motility. Since the PAR-2 receptor is activated, at least in part, by tryptase, inhibition of tryptase could be an effective method of treating post-operative ileus (U.S. Pat. Nos. 5,958,407 and 5,888,529).
- Inhibitors of tryptase may be useful for preventing or treating asthma, pulmonary fibrosis and interstitial pneumonia, nephritis, hepatic fibrosis, hepatitis, hepatic cirrhosis, scleroderma, psoriasis, atopic dermatitis, chronic rheumatoid arthritis, influenza, Crohn's disease, ulcerative colitis, inflammatory bowel disease, nasal allergy, and atherosclerosis.
- inhibitors of tryptase for use in treating inflammatory diseases, central nervous system disorders, as well as several other disorders.
- inhibitors of tryptase for use in the treatment or prevention of various mammalian disease states, for example asthma, cough, chronic obstructive pulmonary disease (COPD), bronchospasm, emesis, neurodegenerative disease, ocular disease, inflammatory diseases such as arthritis, central nervous system conditions such as anxiety, migraine and epilepsy, nociception, psychosis, and various gastrointestinal disorders such as Crohn's disease.
- COPD chronic obstructive pulmonary disease
- COPD chronic obstructive pulmonary disease
- emesis emesis
- neurodegenerative disease ocular disease
- inflammatory diseases such as arthritis
- central nervous system conditions such as anxiety, migraine and epilepsy, nociception, psychosis, and various gastrointestinal disorders such as Crohn's disease.
- the present invention fulfills these needs and provides further related advantages.
- the present invention is directed to conformationally constrained compounds, which mimic the secondary structure of ⁇ -strand regions of biologically active peptides and proteins. It is also directed towards use of these compounds for the prevention and treatment of inflammatory and several other disorders.
- the compounds of the present invention have the following general structure (I): and pharmaceutically acceptable salts and stereoisomers thereof, wherein A, A′, B, X, Y, R 2 , R 3 , R 4 and R 5 are as defined below.
- the present invention is also directed to libraries containing compounds of structure (I), as well as methods for synthesizing such libraries and methods for screening the same to identify biologically active compounds.
- compositions containing a compound of this invention in combination with a pharmaceutically acceptable carrier are disclosed.
- Methods of use for treating cell-adhesion-mediated disease with the compounds of this invention and compositions comprising them are also disclosed.
- methods of use for treatment and prevention of inflammatory disorders, as well as several other disorders with the compounds of this invention and compositions comprising them are also disclosed.
- the present invention is directed to ⁇ -strand mimetics and chemical libraries containing ⁇ -strand mimetics.
- the ⁇ -strand mimetics of the present invention are useful as bioactive agents, including (but not limited to) use as diagnostic, prophylactic and/or therapeutic agents, especially as anti-inflammatory agents, for central nervous system disorders, and as well as several other disorders.
- the ⁇ -strand mimetic libraries of this invention are useful in the identification of such bioactive agents.
- the libraries may contain from tens to hundreds to thousands (or greater) of individual ⁇ -strand mimetics (also referred to herein as “members”).
- a ⁇ -strand mimetic having the following structure (I): or a pharmaceutically acceptable salt or stereoisomer thereof,
- a and A′ are the same or different and independently N or CH;
- B is —C(R 1 )(NHZ)-, —N(Z)- or —C(R 1 )(Z)-;
- X is a substituted or unsubstituted divalent heterocycle
- Y and Z represent the remainder of the molecule
- R 1 , R 2 , R 3 , R 4 and R 5 are the same or different and independently an amino acid side chain moiety or an amino acid side chain derivative
- any two adjacent CH groups (i.e., CH—CH) or adjacent NH and CH groups (i.e., NH—CH) of the fused bicyclo compound optionally form a double bond (i.e., C ⁇ C or N ⁇ C, respectively).
- an “amino acid side chain moiety” refers to any amino acid side chain moiety present in naturally occurring alpha-amino acids and other “non-protein” amino acids commonly utilized by those in the peptide chemistry arts when preparing synthetic analogues of naturally occurring peptides, including D and L forms.
- the “non-protein” amino acids refer to unnatural alpha-amino acids, beta-amino acids and gamma-amino acids commonly utilized by those in the peptide chemistry arts when preparing synthetic analogues of naturally occurring peptides, including D and L forms.
- An “amino acid side chain moiety” as used herein, including (but not limited to) the naturally occurring amino acid side chain moieties are identified in Table 1 below.
- amino acid side chain moieties of this invention include (but are not limited to) the side chain moieties of 3,5-dibromotyrosine, 3,5-diiodotyrosine, hydroxylysine, ⁇ -carboxyglutamate, phosphotyrosine, phosphothreonine and phosphoserine.
- glycosylated amino acid side chains may also be used in the practice of this invention, including (but not limited to) glycosylated threonine, serine, glutamine and asparagine.
- amino acid side chain derivative represents modifications and/or variations to amino acid side chain moieties, including hydroxyl (—OH).
- amino acid side chain moieties of alanine, valine, leucine, isoleucine and phenylalanine may generally be classified as alkyl, aryl, or arylalkyl moieties, optionally substituted with one or more substituents as defined below.
- amino acid side chain moieties of histidine, tryptophan, proline and hydroxyproline may generally be classified as heterocyclic or heterocyclicalkyl moieties, optionally substituted with one or more substituents as defined below.
- representative amino acid side chain derivatives include substituted or unsubstituted alkyl, aryl, arylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl moieties.
- Amino acid side chain derivatives also include, but are not limited to, the amino acid side chains of hydroxylysine, homoserine, homotyrosine, homophenylalanine, citrulline, kynurenine, 4-aminophenylalanine, 3-(2-naphthyl)-alanine, 3-(1-naphthyl) alanine, methionine sulfone, t-butyl-alanine, t-butylglycine, 4-hydroxyphenylglycine, aminoalanine, phenylglycine, vinylalanine, prop argyl-glycine, 1,2,4-triazolo-3-alanine, 4,4,4-trifluoro-threonine, thyronine, 6-hydroxytryptophan, 5-hydro-xytryptophan, 3-hydroxykynurenine, 3-aminotyrosine, trifuoromethyl-alanine, 2-thienylalan
- amino acid side chain derivatives may be substituted with a methyl group at the alpha, beta or gamma positions, a halogen at any aromatic residue on the amino side chain, or an appropriate protective group at the O, N, or S atoms of the side chain moities.
- Appropriate protective groups are disclosed in “Protective Groups In Organic Synthesis,” T. W. Greene and P. G. M. Wuts, J. Wiley & Sons, NY, MY, 1991.
- alkyl is a straight chain or branched, cyclic or noncyclic, saturated or unsaturated alkyl containing from 1 to 12 carbon atoms (also referred to herein as “C 1-12 alkyl”). Similarly, a “lower alkyl” is as defined above, but contains from 1 to 4 carbon atoms (also referred to herein as a “C 1-4 alkyl”).
- Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like.
- Representative saturated cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
- Unsaturated alkyls contain at least one double or triple bond between adjacent carbon atoms (referred to as an “alkenyl” or “alkynyl,” respectively).
- Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like; while representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1 butynyl, and the like.
- Representative unsaturated cyclic alkyls include cyclopentenyl and cyclohexenyl, and the like.
- Alkyls include “alkoxy” as defined below.
- Alkoxy is an alkyl having at least one alkyl hydrogen atom replaced with an oxygen atom, such as methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, isopropoxy, sec-butoxy and the like. “Lower alkoxy” has same meaning, but utilizing lower alkyl in place of alkyl.
- Aminoalkyl is a straight chain or branched, cyclic or noncyclic, saturated or unsaturated alkyl containing from 1 to 12 carbon atoms with at least one alkyl hydrogen atom or carbon atom replaced with —NH 2 or —NH—, respectively (also referred to herein as “C 1-12 aminoalkyl”).
- Aryl is an aromatic carbocyclic moiety contain from 6 to 12 carbon atoms (also referred to herein as a “C 6-12 aryl”), such as phenyl and naphthyl. Aryls include aryloxy, as defined below.
- Aryloxy is an aryl having at least one aryl hydrogen atom replaced with an oxygen atom, such as phenoxy and the like
- Arylalkyl is an alkyl having at least one alkyl hydrogen atom replaced with an aryl moiety, such as benzyl, —(CH 2 ) 2 phenyl, —(CH 2 ) 3 phenyl, —CH(phenyl) 2 , and the like.
- Arylalkyls include arylalkoxy as defined below.
- Arylalkoxy is an arylalkyl having at least one alkyl hydrogen replaced with an oxygen atom, such as benzoxy and the like.
- Alkylaryloxy is an arylalkyl having at least one aryl hydrogen replaced with and oxygen atom, such as hydroxy benzyl and the like.
- Heterocycle means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated, or aromatic, and which contains from 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring.
- the heterocycle may be attached via any heteroatom or carbon atom.
- Heterocycles include heteroaryls as defined below.
- heterocycles also include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, aziridinyl, azetidinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl and the like.
- divalent heterocycle means a heterocylce moiety covalently bonded to both an R 5 moiety and the carbon atom of the fused bicyclic ring system of structure (I).
- Heterocyclealkyl means an alkyl having at least one alkyl hydrogen atom replaced with a heterocycle moiety, such as —CH 2 (heterocycle), —(CH 2 ) 2 (heterocycle) and the like.
- Heteroaryl means an aromatic heterocycle ring of 5- to 10 members and having at least one heteroatom selected from nitrogen, oxygen and sulfur, and containing at least 1 carbon atom, including both mono- and bicyclic ring systems.
- Representative heteroaryls are pyridyl, furyl, benzofuranyl, thiophenyl, benzothiophenyl, quinolinyl, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl, quinazolinyl and the like.
- Heteroarylalkyl means an alkyl having at least one alkyl hydrogen atom replaced with a heteroaryl moiety, such as —CH 2 pyridinyl, —CH 2 pyrimidinyl, and the like.
- substituted means any of the above groups—that is, alkyl, aryl, arylalkyl, heterocycle, divalent heterocycle, heterocyclealkyl, heteroaryl or heteroarylalkyl—wherein at least one hydrogen atom is replaced with a substituent.
- ⁇ O oxo substituent
- a “substituent” in this regard is halogen (such as F, Cl, Br and I), oxo, hydroxy, haloalkyl (such as trifluoromethyl), —R, —OR, —C( ⁇ O)R, —C( ⁇ O)OR, —C( ⁇ O)NRR, —NRR, —NRC( ⁇ O)R, —NRC( ⁇ O)OR, —NRC( ⁇ O)NRR, —OC( ⁇ O)R, —OC( ⁇ O)OR, —OC( ⁇ O)NRR, —SH, —SR, —SOR, —SO 2 R, —NRSO 2 R, —Si(R) 3 , or —OP(OR) 3 , wherein each occurrence of R is the same or different and independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle
- a “peptide” means at least two naturally or unnaturally occurring alpha-amino acids joined via a peptide bond. Depending upon the number of amino acids joined via peptide bonds, the resulting peptide may also be referred to as a “polypeptide” or “protein.” Similarly, a “peptide derivative” means a peptide which has been covalently modified and/or which contains amino acids other than alpha-amino acids.
- Representative peptide derivatives include peptides which are N-alkylated, N-acylated or N-sulfonylated at the amino termini, with, for example, methyl, benzyl, acetyl, benzoyl, methanesulfonyl, phenylsulfonyl, allyloxycarbonyl, t-butyloxycarbonyl, benzyloxycarbonyl, or fluorenyloxycarbonyl moieties; peptides in which the carboxy termini are esterified (methyl, ethyl, benzyl) or reduced to a hydroxy or aldehyde; peptides which are N-alkylated at peptide bonds with, for example, methyl or 2-hydroxy-4-methoxybenzyl; and peptides which incorporate beta- or gamma-amino acids such as beta-alanine or gamma-aminobutyric acid.
- a “linker” is any covalent bridging moiety that facilitates linkage of a compound of structure (I), through the respective R 1 , R 2 , R 3 and/or R 4 moiety, to another moiety, agent, compound, solid support, molecule, amino acid, peptide or protein.
- the compounds of this invention may be linked to one or more known compounds, such as biotin, for use in diagnostic or screening assays.
- one (or more) of R 1 , R 2 , R 3 or R 4 may be a linker joining the compound of structure (I) to a solid support (such as a support used in solid phase peptide synthesis). Examples of such linkers include p-alkoxybenzyl alcohol, phenylacetamidomethyl, and 2-chlorotrityl chloride.
- a “solid support” means any composition of matter to which another compound is attached directly or attached through a linker, and that is insoluble in at least one solvent in which the attached compound is soluble.
- a “solid support” may be a composition of matter with similar solubility characteristics to the attached compound, but which may be readily precipitated from solution and filtered off as a solid.
- Representative examples include polystyrene, polyethylene glycol, polystyrene grafted with polyethylene glycol, polyacrylamide, polyamide-polyethylene glycol copolymer, controlled-pore glass, and silica.
- the phrase “remainder of the molecule” means any moiety, agent, compound, solid support, molecule, linker, amino acid, peptide or protein covalently attached to the ⁇ -strand mimetic at Y and Z positions, including amino acid side chain moieties, amino acid side chain derivatives and peptide derivatives, as defined above. Accordingly, in an alternative depiction of structure (I), the corresponding Y and Z moieties may be left undefined, as represented by the following structures (I′), (I′′) and (I′′′) wherein represents the remainder of the molecule and A, A′, R 1 , R 2 , R 3 , R 4 and R 5 are as defined above.
- the compounds of this invention have the following structure (II): or pharmaceutically acceptable salts and stereoisomers thereof, wherein A, A′, X, Y, Z, R 2 , R 3 , R 4 and R 5 are as defined above.
- the compounds of this invention have the following structure (III): or pharmaceutically acceptable salts and stereoisomers thereof, wherein A, A′, X, Y, Z, R 2 , R 3 and R 5 are as defined above.
- R 2 and R 3 are hydrogen, and the compounds of this invention have the following structure (IV): or pharmaceutically acceptable salts and stereoisomers thereof, wherein A, A′, X, Y, Z, R 4 and R 5 are as defined above.
- a and A′ are both N, and the compounds of this invention have the following structure (V): or pharmaceutically acceptable salts and stereoisomers thereof, wherein X, Y, Z, R 4 and R 5 are as defined above.
- R 4 is hydrogen
- the compounds of this invention have the following structure (VI): or pharmaceutically acceptable salts and stereoisomers thereof, wherein X, Y, Z and R 5 are as defined above.
- X is a nitrogen containing divalent heterocycle
- the compounds of this invention have the following structure (VII): or pharmaceutically acceptable salts and stereoisomers thereof, wherein Y, Z, R 5 and “substituent” are as defined above and m is 1, 2, 3 or 4, and wherein R 5 , taken together with the substitutent, may optionally form a substituted or unsubstituted heterocycle.
- the compounds of this invention have the following structure (VIII): or pharmaceutically acceptable salts and stereoisomers thereof, wherein Y, Z, m and R 5 are as defined above.
- m is 2 and the compounds of this invention have the following structure (IX): or pharmaceutically acceptable salts and stereoisomers thereof, wherein Y, Z and R 5 are as defined above.
- Y and Z are each an amino acid side chain moiety or an amino acid side chain derivative.
- Y is —NHR 6
- the compounds of this invention have the following structure (X): or pharmaceutically acceptable salts and stereoisomers thereof,
- alkyl, phenyl, benzyl, phenethyl, 1-napthylmethyl, 2-napthylmethyl, phenylbenzyl, biphenyl, aminoalkyl, aryl, arylalky and Het are optionally and independently substituted with but not limited to one or more substituents independently selected from R,;
- R d and R d′ are the same or different and independently selected from
- alkyl, alkenyl, alkynyl, aryl, arylalkyl, aryloxy and Het are optionally and independently substituted with but not limited to one or more substituents independently selected from R s ;
- R e and R e′ are the same or different and independently selected from
- alkyl, alkenyl, alkynyl, aryl, arylalkyl and Het are optionally and independently substituted with but not limited to one or more substituents independently selected from R s ;
- R f is selected from
- alkyl, alkenyl, alkynyl, aryl, arylalkyl and Het are optionally and independently substituted with but not limited to one or more substituents independently selected from R s ;
- R 7a is alkyl or aminoalkyl optionally and independently substituted with but not limited to one or more substituents independently selected from R s ;
- R 7b is aryl, arylalkyl or Het optionally and independently substituted with but not limited to one or more substituents independently selected from R s ;
- R 7c is phenyl, benzyl or phenethyl optionally and independently substituted with but not limited to one or more substituents independently selected from R s ;
- R d and R d′ taken together with the atoms to which they are attached form a mono- or bi-cyclic heterocyclic ring of 3 to 7 members each containing 0-3 additional heteroatoms each independently selected from nitrogen, oxygen and sulfur;
- R e and R e′ taken together with the atoms to which they are attached form a mono- or bi-cyclic heterocyclic ring of 3 to 7 members each containing 0-3 additional heteroatoms each independently selected from nitrogen, oxygen and sulfur;
- k is an integer from 1 to 2;
- l is an integer from 1 to 10;
- n is a number from 0 to 4.
- n is a number from 0 to 4.
- o is an integer from 1 to 4.
- p is an integer from 1 to 2;
- Het is heterocycle, heterocyclealkyl, heteroaryl or heteroarylalkyl.
- a solid line designation for attachment of the various R groups to a carbon atom on the fused bicyclic ring indicates that these R groups may lie either above or below the plane of the page. If a ⁇ -strand mimetic of this invention is intended to mimic a ⁇ -strand of naturally occurring amino acids (i.e., “L-amino acids”), the R groups would generally lie below the plane of the page (i.e., “ R”) in structure (I). However, if the ⁇ -strand mimetic of this invention is intended to mimic a ⁇ -strand containing one or more D-amino acids, then the corresponding R group or groups would lie above the plane of the page (i.e., “ R”) in structure (I).
- L-amino acids naturally occurring amino acids
- the compound of this invention has the following conformation (XV):
- the compound of this invention has the following conformation (XVI):
- the compounds of the present invention may generally be prepared by sequential coupling of the individual component pieces, either stepwise in solution or by solid phase synthesis, as commonly practiced in solid phase peptide synthesis.
- the compounds may be synthesized on a solid support (such as polystyrene utilizing 4-hydroxymethylphenoxybutyrate as a linker) by known techniques (see, e.g., John M. Stewart and Janis D. Young, Solid Phase Peptide Synthesis, 1984, Pierce Chemical Comp., Rockford, Ill.; Atherton, E., Shepard, R. C. Solid Phase Peptide Synthesis: A Practical Approach; IRL: Oxford, 1989) or on a silyl-linked resin by alcohol attachment (Randolph et al., J. Am.
- a combination of both solution and solid phase synthesis techniques may be utilized to synthesize the compounds of this invention.
- a solid support may be utilized to synthesize a linear peptide sequence up to the point that the compound of this invention is added to the sequence.
- a suitable compound that has been previously synthesized by solution synthesis techniques may then be added as the next “amino acid” to the solid phase synthesis (i.e., the compound, which has at least two reactive sites, may be utilized as the next residue to be added to the linear peptide).
- additional amino acids may then be added to complete the peptide bound to the solid support.
- the linear N-terminus and C-terminus protected peptide sequences may be synthesized on a solid support, removed from the support, and then coupled to the compound in solution using known solution coupling techniques.
- the above disclosed synthesis may be carried out by parallel synthesis using a 48- or 96-well plate format wherein each well contains a fritted outlet for draining solvents and reagents ( A Practical Guide to Combinatorial Chemistry Czarnik and DeWitt, Eds., American Chemical Society, Washington, DC, 1997). Robbins (Sunnyvale, Calif.), Charybdis (Carlsbad, Calif.) and Bohdan (Chicago, Ill.) presently offer suitable equipment for this technique.
- the libraries of the present invention may be screened for bioactivity by a variety of techniques and methods.
- the screening assay may be performed by (1) contacting a library with a biological target of interest, such as a receptor, and allowing binding to occur between the mimetics of the library and the target, and (2) detecting the binding event by an appropriate assay, such as by the calorimetric assay disclosed by Lam et al. ( Nature 354:82-84, 1991) or Griminski et al. ( Biotechnology 12:1008-1011, 1994).
- the library members are in solution and the target is immobilized on a solid phase.
- the library may be immobilized on a solid phase and may be probed by contacting it with the target in solution.
- the present invention encompasses pharmaceutical compositions prepared for storage or administration, which comprise a therapeutically effective amount of a compound of the present invention in a pharmaceutically acceptable carrier or diluent.
- Treatment with inhibitors of cell adhesion is indicated for the treatment and prevention of a variety of inflammatory conditions, particularly rheumatoid arthritis, inflammatory bowel disease and asthma. Those experienced in this field are readily aware of the circumstances requiring anti-inflammatory therapy.
- the “therapeutically effective amount” of a compound of the present invention will depend on the route of administration, the type of warm-blooded animal being treated, and the physical characteristics of the specific animal under consideration. These factors and their relationship to determining this amount are well known to skilled practitioners in the medical arts. This amount and the method of administration can be tailored to achieve optimal efficacy, but will depend on such factors as weight, diet, concurrent medication and other factors that, as noted, those skilled in the medical arts will recognize. Typically, dosages will be between about 0.01 mg/kg and 100 mg/kg body weight, preferably between about 0.01 and 10 mg/kg, body weight.
- “Pharmaceutically acceptable carriers” for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remingtons Pharmaceutical Sciences, Mack Publishing Co. (Gennaro Ed. 1985).
- sterile saline and phosphate-buffered saline at physiological pH may be used.
- Preservatives, stabilizers, dyes and even flavoring agents may be provided in the pharmaceutical composition.
- sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid may be added as preservatives.
- antioxidants and suspending agents may be used.
- the compounds of this invention may be administered by inhalation, and thus may be delivered in the form of an aerosol spray from pressurized packs or nebulizers.
- the compounds may also be delivered as powders, which may be formulated, and the powder composition may be inhaled with the aid of an insufflation powder inhaler device.
- a preferred delivery system for inhalation is the metered dose inhalation aerosol, which may be formulated as a suspension or solution of a compound of the invention in suitable propellants, such as fluorocarbons or hydrocarbons.
- Another preferred delivery system is the dry powder inhalation aerosol, which may be formulated as a dry powder of a compound of this invention with or without additional excipients.
- the compounds of the invention can be administered in the form of a depot injection or implant preparation, which may be formulated in such a manner as to permit a sustained release of the active ingredient.
- the active ingredient can be compressed into pellets or small cylinders and implanted subcutaneously or intramuscularly as depot injections or implants.
- Implants may employ inert materials such as biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers manufactured by the Dow-Corning Corporation.
- the compounds of the invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
- Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.
- the compounds of this invention may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled.
- the tryptase inhibitors may also be coupled with soluble polymers as targetable drug carriers.
- Such polymers can include polyvinlypyrrolidone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl-aspartarhide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues.
- tryptase inhibitors may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels.
- biodegradable polymers useful in achieving controlled release of a drug
- a drug for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels.
- compositions of this invention may be used in the form of a pharmaceutical preparation, for example, in solid, semisolid or liquid form, which contains one or more of the compounds of the present invention, as an active ingredient, in admixture with an organic or inorganic carrier or excipient suitable for external, enteral or parenteral applications.
- the active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use.
- the carriers which can be used are water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea and other carriers suitable for use in manufacturing preparations, in solid, semisolid, or liquid form, and, in addition, auxiliary, stabilizing, thickening and coloring agents and perfumes may be used.
- the active object compounds is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the process or condition of the disease.
- the compounds of this invention may be administered orally, topically, parenterally, by inhalation spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles.
- parenteral includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques.
- a compound of the present invention may be presented together with another therapeutic agent as a combined preparation for simultaneous, separate, or sequential use for the relief of emesis.
- Such combined preparations may be, for example, in the form of a twin pack.
- a preferred combination comprises a compound of the present invention with a chemotherapeutic agent such as an alkylating agent, antimetabolite, mitotic inhibitor, or cytotoxic antibiotic, as described above.
- a chemotherapeutic agent such as an alkylating agent, antimetabolite, mitotic inhibitor, or cytotoxic antibiotic, as described above.
- the currently available dosage forms of the known therapeutic agents for use in such combinations will be suitable.
- an appropriate dosage level will generally be about 0.001 to 50 mg per kg of patient body weight per day, which may be administered in single or multiple doses.
- the dosage level will be about 0.01 to about 25 mg/kg per day; more preferably about 0.05 to about 10 mg/kg per day.
- the dose and method of administration can be tailored to achieve optimal efficacy but will depend on such factors as weight, diet, concurrent medication and other factors, which those skilled in the medical arts will recognize.
- injectable pharmaceutical compositions can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.
- LCMS analyses were performed on a system consisting of mass Spectrometer Micromass-Platform LCZ system and an HPLC Hewlett Packard (series 1100) equipped with Gilson 215 liquid handler as an autosampler with the following detectors: DAD 210-350 mm, ELSD (evaporative light scattering detector) and MS (ESI ⁇ ).
- Chromatographic conditions Solvent systems; A-water (0.1% TFA), B-acetonitrile (0.1% TFA); gradients (5-95% over 3 min) at a flow rate of 0.9 mL/min.
- Chromatographic peaks were determined by ELSD and DAD detectors and the corresponding mass spectra obtained in both positive and negative ion modes by averaging mass spectra over a 0.1 minute time-window around the top of the chromatographic peak. Chromatographic purity was established by ELSD.
- Preparative and Semi-prep HPLC were employed for sample purification and the purity determined by Analytical HPLC (method B) column 5 uM 4.6 ⁇ 50 mm, A-water (0.1% TFA), B-acetonitrile (0.1% TFA); gradients 5-90% B in 15 min, flow rate of 1.5 ml/min.
- Reactions were carried out in, but not limited to, the following: plastic disposable syringes of the approprate size, each fitted with a polypropylene flit to retain the resin, 1-10 ml reaction vessel compatible with Symphony Automated Peptide Synthesizer (Protein Technologies), ACT 90 Synthesizer (Advanced ChemTech), Robbins block, or IRORI system.
- the desired inhibitor was then cleaved from the resin in concert with the Boc-protecting group on treatment with 95% TFA/H 2 O for 90 minutes. After this time, the supernatant was collected and combined with washes (2 ⁇ 1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired crude adduct (TFA salt).
- the general synthetic procedure is the same as given above (Method A1) except that after the Diels-Alder reaction the nitro group on the resin-bound 0 2 N—C-Urazole (e) was reduced to the aniline employing the following conditions.
- Stannous chloride dihydrate treatment (21 equiv, 2N solution in DMF) for 3 h at room temperature gave the intermediate aniline.
- the resulting aniline was acylated with aryl acid (R 3 CO 2 H) (10 equiv) in the presence of DIEA (21 equiv), PyBOP and HOBt (10 equiv each) in DMF at room temperature overnight.
- the desired product was then cleaved from the resin in concert with the t-boc protecting group on treatment with 95% TFA/H 2 O for 90 minutes. The supernatant was collected and combined with washes (2 ⁇ 1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired crude adduct (TFA salt).
- the resin is treated with (10-15 equiv) of a 2M solution of the appropriate diamine in DMF at room temperature for 15 h after which, the resin was filtered and washed repeatedly with DMF until the wash became colorless. Additional washings carried out with DCM and Et 2 O (5 ⁇ each) provided the clean amine-resin. After drying, the loading was determined by measuring the UV absorbance on a small portion via Fmoc protection and cleavage protocol.
- the amine-bound resin was coupled to Fmoc-protected diene acid (3 equiv) in the presence of BOP (3 equiv), HOBT (3 equiv) and DIEA (4.5 equiv) in DMF for 3 h at which time a negative Kaiser test was obtained. Then Fmoc group was cleaved with 25% (v/v) piperidine/DMF for 10 minutes giving a positive chloranil test. Treatment of the newly unmasked amine functionality with 3 equiv of the appropriate acid linker in the presence of BOP (3 equiv), HOBT (3 equiv) and DIEA (4.5 equiv) in DMF gave a negative chloranil test within 5 h of reaction time.
- the Diels-Alder chemistry was carried out by reacting the diene-resin with 3 equiv each of the appropriate urazole and [bis(trifluoroacetoxy)iodo]benzene in DMF for 3.5 h at room temperature, yielding the bicyclic compound after the usual washings.
- the dried resin was reswollen in DCM and drained.
- the product was then cleaved from the resin by treatment with 95% (v/v) TFA/H 2 O at room temperature for 1.5 h.
- the supernatant was collected and combined with washes and evaporated in a speed vac.
- the residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired product.
- the dried resin was preswollen in DCM and drained.
- the product was then cleaved from the resin by treatment with 4N HCl in dioxane at room temperature for 3 h.
- the supernatant was collected and combined with washes (acetonitrile-H 2 O, 1:1, 4 ⁇ 5 mL) and evaporated.
- the residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired product.
- the Fmoc aminomethylcyclohexyl carboxylic acid (2) was taken up in 1L of dichloromethane. Oxalyl chloride (39 mL, 450 mmol) was added, followed by DMF (10 drops) and the mixture was stirred for 1 h. The mixture was concentrated under vacuum and the residue was dissolved in 1L of toluene, and a solution of sodium azide (18.4 g, 280 mmol) in 30 mL of water was added along with 3.4 g (12 mmol) of tetrabutylammonium azide.
- Boc- ⁇ -alanine (12) 1.0 g, 5.28 mmol
- DCM DCM
- N,N-carbonyldiimidazole 856 mg, 5.81 mmol
- Diisopropylethylamine 1.0 mL, 5.81 mmol
- Weinreb amine 567 mg, 5.81 mmol
- the solution was diluted with DCM (100 mL), washed with 5% citric acid (30 mL) and brine (30 mL), dried (MgSO 4 ) and concentrated to obtain a colorless oil (13) (1.21 g, 99%).
- Methyl hydrazinocarboxylate (14.3 g, 159.0 mmol) was dissolved in THF (500 mL) under argon. 1,1-carbonyldiimidazole (25.8 g, 159.0 mmol) was added and the mixture stirred for 15 min at room temperature. 1-Aminomethylnaphthalene (25.0 g, 159.0 mmol) was added and the mixture stirred overnight. The reaction was evaporated to dryness. DCM (200 mL) was added and the solution cooled at ⁇ 20° C. for 2 h, to this was added 100 mL of Et 2 O.
- Resin bound 1,4-bis(aminomethyl)-benzene 500 mg, 0.35 mmol, 0.69 mmol/g loading
- Fmoc-piperidine dienoic acid 3.0 equiv
- BOP 3 equiv
- HOBT 3 equiv
- DMF N,N-dimethylformamide
- the crude adduct (31) was treated with a saturated solution of NaHCO 3 (5 mL) and stirred at room temperature for 20 minutes. The mixture was concentrated to dryness resulting in a white powder. The solid was re-suspended in dry methanol (10 mL), centrifuged at 3000 rpm, filtered and concentrated. The resulting oily residue was stirred with excess acetic anhydride in DCM for 12 h and concentrated. Purification by HPLC afforded the desired bis-acetylated compound (32) in a 1:1 isomeric ratio in quantitative yield. MS (ESI+) m/z 841.20 (M+H + ).
- Resin bound 1,4-bis(aminomethyl)-benzene 200 mg, 0.14 mmol, 0.69 mmol/g loading
- Fmoc-piperidine dienoic acid 3.0 equiv
- BOP 3 equiv
- HOBT 3 equiv
- DMF N,N-dimethylformamide
- Tryptase inhibition assay was performed at room temperature in 96-well microplates using a Bio-Rad Model 3550 (Bio-Rad Laboratories, Inc., Cambridge, Mass.), SpectroMax (Molecular Devices, Model 250, Sunnyvale, Calif.) or Fluoroskan Ascent fluorescence (Labsystems, Inc., Helsinki, Finland) plate reader. Either 1 mM solutions of test compounds in water or 10 mM solutions of test compounds in DMSO served as the stock solutions for each inhibition assay.
- the release of pNA from the chromogenic substrate S-2366, L-pyroGlu-Pro-Arg-pNA (Km 242 ⁇ M) (diaPharma, West Chester, Ohio) was monitored at 405 nm.
- the reaction progress curves were recorded by reading the plates, typically 80 times with 24 s intervals.
- the general format of the assays are as follows: 100 ⁇ l of an inhibitor solution and 50 ⁇ l of enzyme solution were placed in a microplate well, incubated at room temperature for 30 min, and then 100 ⁇ l of substrate solution was added to initiate the reaction.
- the compounds of this invention have an inhibition value of greater than 70% at 400 ⁇ M and/or less than Ki of 300 ⁇ M in this assay.
- preferred compounds of this invention are compounds 1, 3, 6, 13, 14, 16, 20, 22, 27, 39-42, 44, 52, 57, 58, 60, 61, 64, 79, 82, 87, 123, 127, 132 and 134. As such, the compounds of this invention effectively inhibit tryptase and are effective in the treatment of inflammatory related diseases.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Urology & Nephrology (AREA)
- Pain & Pain Management (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Immunology (AREA)
- Vascular Medicine (AREA)
- Rheumatology (AREA)
- Dermatology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Compounds having the following structure:
including pharmaceutically acceptable salts and stereoisomers thereof, wherein A, A′, B, X, Y, R2, R3, R4 and R5 are as defined herein. Such compounds have utility over a wide range of applications, including use as diagnostic and therapeutic agents. In particular, compounds of this invention, and pharmaceutical compositions containing such compounds, are tryptase antagonists.
including pharmaceutically acceptable salts and stereoisomers thereof, wherein A, A′, B, X, Y, R2, R3, R4 and R5 are as defined herein. Such compounds have utility over a wide range of applications, including use as diagnostic and therapeutic agents. In particular, compounds of this invention, and pharmaceutical compositions containing such compounds, are tryptase antagonists.
Description
- This application is a divisional of U.S. patent application Ser. No. 10/367,575, filed on Feb. 14, 2003; which claims the benefit of U.S. Provisional Patent Application No. 60/357,261, filed Feb. 14, 2002, where this provisional application is incorporated herein by reference in its entirety.
- 1. Field of the Invention
- The present invention relates generally to β-sheet mimetics, including inhibitors of tryptase in treating inflammation and several other disorders as well as to a chemical library of β-sheet mimetics.
- 2. Description of the Related Art
- The β-sheet conformation (also referred to as a β-strand conformation) is a secondary structure present in many polypeptides. The β-sheet conformation is nearly fully extended, with axial distances between adjacent amino acids of approximately 3.5 Å. The β-sheet is stabilized by hydrogen bonds between NH and CO groups in different polypeptides sheets. Additionally, the dipoles of the peptide bonds alternate along the sheets, which imparts intrinsic stability to the β-sheet. The adjacent sheets in the β-sheet can run in the same direction (i.e., a parallel β-sheet) or in opposite directions (i.e., an antiparallel β-sheet). Although the two forms differ slightly in dihedral angles, both are sterically favorable. The extended conformation of the β-sheet conformation results in the amino acid side chains protruding on alternating faces of the β-sheet.
- The importance of β-sheets in peptides and proteins is well established (e.g., Richardson, Nature 268:495-499, 1977; Halverson et al., J. Am. Chem Soc. 113:6701-6704, 1991; Zhang, J. Biol. Chem. 266:15591-15596, 1991; Madden et al., Nature 353:321-325, 1991). The β-sheet is important in a number of biological protein-protein recognition events, including interactions between proteases and their substrates.
- Inhibitors that mimic the β-sheet structure of biologically active proteins or peptides would have utility in the treatment of a wide variety of conditions. For example, trypsin-like serine proteases form a large and highly selective family of enzymes involved in hemostasis/coagulation (Davie, E. W. and K. Fujikawa, “Basic mechanisms in blood coagulation,” Ann. Rev. 799-829, 1975) and complement activation (Muller-Eberhard, H. J., “Complement,” Ann. Rev. Biochem. 44:697-724, 1975). Sequencing of these proteases has shown the presence of a homologous trypsin-like core with amino acid insertions that modify specificity and which are generally responsible for interactions with other macromolecular components (Magnusson et al., “Proteolysis and Physiological Regulation,” Miami Winter Symposia 11:203-239, 1976).
- Tryptase, a trypsin-like serine protease found exclusively in mast cells, has attracted much interest due to its potential role as a mediator of inflammation. For example, in the lung, tryptase is released along with other mediators of inflammation in response to binding of an inhaled antigen to cell-surface IgE receptors (Ishizaka and Ishizaka, Prog. Allergy 34:188-235, 1984). Tryptase has also been shown to cleave vasoactive intestinal peptide in vitro (Caughey et al., J. Pharmacol. Exp. Ther. 244:133-137, 1988; Tam and Caughey, Am. J. Respir. Cell Mol. Biol. 3:27-32, 1990). These results suggest that tryptase may increase bronchoconstriction via proteolysis of bronchodilating peptides in asthma patients. Consistent with this hypothesis is the recent finding that synthetic tryptase inhibitors blocked airway responses in allergic sheep (Clark et al., Am. J. Respir. Crit. Care Med. 152:2076-2083, 1995).
- Tryptase activates extracellular matrix-degrading proteins prostromelysin (pro-MMβ-3) and procollagenase (pro-MMP-1) via MMP-3, suggesting a role for the enzyme in tissue remodeling and inflammation (Gruber et al., J. Clin. Invest. 84:8154-8158, 1989) and, therefore, possibly in rheumatoid arthritis. Additionally, prostromelysin, when activated, has been shown to degrade the extracellular matrix around atherosclerotic plaques. Since abnormally high levels of tryptase-containing mast cells have been found in coronary atheromas, tryptase may play a role in atheromatous rupture (release of the thrombus), the final event of coronary atherosclerosis (Kaartinen et al., Circulation 90:1669-1678, 1994).
- Other activities of tryptase include the following. Tryptase cleaves fibrinogen but is not inactivated in the presence of endogenous proteinase inhibitors (Schwartz et al., J. Immunol. 135:2762-2767, 1985; Ren et al., J. Immunol. 159:3540-3548, 1997), and may function as a local anticoagulant. It has been demonstrated to be a potent mitogen for fibroblasts and may be involved in pulmonary fibrosis and interstitial lung disease (Ruoss et al., J. Clin. Invest. 88:493-499, 1991). Tryptase may also be responsible for the activation of PAR-2 (proteinase activated receptor-2) on endothelial cells and keratinocytes (Molino et al., J. Biol. Chem. 272:4043-4049, 1997).
- Inhibition of intestinal motility, especially colonic motility, is a major complication of abdominal surgery. The condition, termed post-operative ileus, delays the normal resumption of food intake after surgery and often leads to prolonged hospitalization. Mast cells are pro-inflammatory cells that are normally present in the wall of the intestine. Manipulation of intestine and intestinal inflammation are accompanied by influx and degranulation of mast cells in the wall of the intestine. Mast cell tryptase and chymase are proteases that account for 25% of the total protein of mast cells (Schwartz et al., J. Immunol. 138:2611-2615, 1987). They are released from mast cell upon degranulation within the wall of the colon. A method of treating or preventing post-operative ileus was discovered based on the observation that PAR-2 is expressed in colonic muscle cells, and that activation of PAR-2 inhibits colonic motility. Since the PAR-2 receptor is activated, at least in part, by tryptase, inhibition of tryptase could be an effective method of treating post-operative ileus (U.S. Pat. Nos. 5,958,407 and 5,888,529).
- Given the central role of mast cells in allergic and inflammatory responses, inhibition of tryptase may result in significant therapeutic effects. Inhibitors of tryptase may be useful for preventing or treating asthma, pulmonary fibrosis and interstitial pneumonia, nephritis, hepatic fibrosis, hepatitis, hepatic cirrhosis, scleroderma, psoriasis, atopic dermatitis, chronic rheumatoid arthritis, influenza, Crohn's disease, ulcerative colitis, inflammatory bowel disease, nasal allergy, and atherosclerosis.
- While significant advances have been made in the synthesis and identification of conformationally constrained, 0-sheet mimetics (U.S. Pat. Nos 6,245,764, 6,117,896 and 6,020,331 and published PCT WO00/11005 and WO99/41276), there is still a need in the art for small molecules that mimic the secondary structure of peptides. There is also a need in the art for libraries containing such members, particularly those small templates capable of supporting a high diversity of substituents. In addition, there is a need in the art for techniques for synthesizing these libraries and screening the library members against biological targets to identify bioactive library members. Further, there is a need in the art for small, orally available inhibitors of tryptase, for use in treating inflammatory diseases, central nervous system disorders, as well as several other disorders. In particular, there is a need for inhibitors of tryptase for use in the treatment or prevention of various mammalian disease states, for example asthma, cough, chronic obstructive pulmonary disease (COPD), bronchospasm, emesis, neurodegenerative disease, ocular disease, inflammatory diseases such as arthritis, central nervous system conditions such as anxiety, migraine and epilepsy, nociception, psychosis, and various gastrointestinal disorders such as Crohn's disease.
- The present invention fulfills these needs and provides further related advantages.
- In brief, the present invention is directed to conformationally constrained compounds, which mimic the secondary structure of β-strand regions of biologically active peptides and proteins. It is also directed towards use of these compounds for the prevention and treatment of inflammatory and several other disorders. The compounds of the present invention have the following general structure (I):
and pharmaceutically acceptable salts and stereoisomers thereof, wherein A, A′, B, X, Y, R2, R3, R4 and R5 are as defined below. - The present invention is also directed to libraries containing compounds of structure (I), as well as methods for synthesizing such libraries and methods for screening the same to identify biologically active compounds. In addition, compositions containing a compound of this invention in combination with a pharmaceutically acceptable carrier are disclosed. Methods of use for treating cell-adhesion-mediated disease with the compounds of this invention and compositions comprising them are also disclosed. Further, methods of use for treatment and prevention of inflammatory disorders, as well as several other disorders with the compounds of this invention and compositions comprising them are also disclosed.
- These and other aspects of this invention will be apparent upon reference to the following detailed description. To this end, various references are set forth herein which describe in more detail certain procedures, compounds and/or compositions, and are incorporated by reference in their entirety.
- The present invention is directed to β-strand mimetics and chemical libraries containing β-strand mimetics. The β-strand mimetics of the present invention are useful as bioactive agents, including (but not limited to) use as diagnostic, prophylactic and/or therapeutic agents, especially as anti-inflammatory agents, for central nervous system disorders, and as well as several other disorders. The β-strand mimetic libraries of this invention are useful in the identification of such bioactive agents. In the practice of the present invention, the libraries may contain from tens to hundreds to thousands (or greater) of individual β-strand mimetics (also referred to herein as “members”).
-
- wherein
- A and A′ are the same or different and independently N or CH;
- B is —C(R1)(NHZ)-, —N(Z)- or —C(R1)(Z)-;
- X is a substituted or unsubstituted divalent heterocycle;
- Y and Z represent the remainder of the molecule;
- R1, R2, R3, R4 and R5 are the same or different and independently an amino acid side chain moiety or an amino acid side chain derivative; and
- any two adjacent CH groups (i.e., CH—CH) or adjacent NH and CH groups (i.e., NH—CH) of the fused bicyclo compound optionally form a double bond (i.e., C═C or N═C, respectively).
- As used herein, an “amino acid side chain moiety” refers to any amino acid side chain moiety present in naturally occurring alpha-amino acids and other “non-protein” amino acids commonly utilized by those in the peptide chemistry arts when preparing synthetic analogues of naturally occurring peptides, including D and L forms. The “non-protein” amino acids refer to unnatural alpha-amino acids, beta-amino acids and gamma-amino acids commonly utilized by those in the peptide chemistry arts when preparing synthetic analogues of naturally occurring peptides, including D and L forms. An “amino acid side chain moiety” as used herein, including (but not limited to) the naturally occurring amino acid side chain moieties are identified in Table 1 below. Other naturally occurring amino acid side chain moieties of this invention include (but are not limited to) the side chain moieties of 3,5-dibromotyrosine, 3,5-diiodotyrosine, hydroxylysine, γ-carboxyglutamate, phosphotyrosine, phosphothreonine and phosphoserine. In addition, glycosylated amino acid side chains may also be used in the practice of this invention, including (but not limited to) glycosylated threonine, serine, glutamine and asparagine.
TABLE 1 AMINO ACID SIDE CHAIN MOIETIES Amino Acid Side Chain Moiety Amino Acid —H Glycine —CH3 Alanine —CH(CH3)2 Valine —CH2CH(CH3)2 Leucine —CH(CH3)CH2CH3 Isoleucine —(CH2)4NH2 Lysine —(CH2)3NHC(NH2)NH2 Arginine Histidine —CH2COOH Aspartic acid —CH2CH2COOH Glutamic acid —CH2CONH2 Asparagine —CH2CH2CONH2 Glutamine Phenylalanine Tyrosine Tryptophan —CH2SH Cysteine —CH2CH2SCH3 Methionine —CH2OH Serine —CH(OH)CH3 Threonine Proline Hydroxyproline - In addition, as used herein, an “amino acid side chain derivative” represents modifications and/or variations to amino acid side chain moieties, including hydroxyl (—OH). For example, the amino acid side chain moieties of alanine, valine, leucine, isoleucine and phenylalanine may generally be classified as alkyl, aryl, or arylalkyl moieties, optionally substituted with one or more substituents as defined below. Similarly, the amino acid side chain moieties of histidine, tryptophan, proline and hydroxyproline may generally be classified as heterocyclic or heterocyclicalkyl moieties, optionally substituted with one or more substituents as defined below. Accordingly, representative amino acid side chain derivatives include substituted or unsubstituted alkyl, aryl, arylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl moieties.
- Amino acid side chain derivatives also include, but are not limited to, the amino acid side chains of hydroxylysine, homoserine, homotyrosine, homophenylalanine, citrulline, kynurenine, 4-aminophenylalanine, 3-(2-naphthyl)-alanine, 3-(1-naphthyl) alanine, methionine sulfone, t-butyl-alanine, t-butylglycine, 4-hydroxyphenylglycine, aminoalanine, phenylglycine, vinylalanine, prop argyl-glycine, 1,2,4-triazolo-3-alanine, 4,4,4-trifluoro-threonine, thyronine, 6-hydroxytryptophan, 5-hydro-xytryptophan, 3-hydroxykynurenine, 3-aminotyrosine, trifuoromethyl-alanine, 2-thienylalanine, (2-(4-pyridyl)ethyl)cysteine, 3,4-dimethoxy-phenylalanine, 3,5-bistrifluoro-phenylalanine,3-(2-thiazolyl)-alanine, ibotenic acid, 1-amino-lcyclopentane-carboxylic acid, 1-amino-lcyclohexanecarboxylic acid, quisqualic acid, 3-trifluoromethylphenylalanine, 4-trifluoromethylphenylalanine, cyclohexylalanine, cyclohexylglycine, thiohistidine, 3-methoxytyrosine, elastatinal, norleucine, norvaline, alloisoleucine, homoarginine, thioproline, dehydroproline, hydroxy-proline, isonipectotic acid, homoproline, cyclohexylglycine, α-amino-n-butyric acid, cyclohexylalanine, aminophenylbutyric acid, phenylalanines substituted at the ortho, meta, or para position of the phenyl moiety with one or two of lower alkyl, lower alkoxy, halogen or nitro group, or substituted with a methylenedioxy group; β-2- and 3-thienylalanine, β-2- and 3-furanylalanine, β-2-, 3- and 4-pyridylalanine, β-(benzothienyl-2- and 3-yl)alanine, β-(1 and 2-naphthyl)alanine, O-alkylated derivatives of serine, threonine or tyrosine, S-alkylated cysteine, S-alkylated homocysteine, O-sulfate, O-phosphate and O-carboxylate esters of tyrosine, 3-sulfo-tyrosine, 3-carboxy-tyrosine, 3-phospho-tyrosine, 4-methane sulfonic acid ester of tyrosine, 4-methane phosphonic acid ester of tyrosine, 3,5-diiodotyrosine, 3-nitro-tyrosine, ε-alkyl lysine and δ-alkyl omithine, and the like. Any of these “amino acid side chain derivatives” may be substituted with a methyl group at the alpha, beta or gamma positions, a halogen at any aromatic residue on the amino side chain, or an appropriate protective group at the O, N, or S atoms of the side chain moities. Appropriate protective groups are disclosed in “Protective Groups In Organic Synthesis,” T. W. Greene and P. G. M. Wuts, J. Wiley & Sons, NY, MY, 1991.
- As used herein, “alkyl” is a straight chain or branched, cyclic or noncyclic, saturated or unsaturated alkyl containing from 1 to 12 carbon atoms (also referred to herein as “C1-12alkyl”). Similarly, a “lower alkyl” is as defined above, but contains from 1 to 4 carbon atoms (also referred to herein as a “C1-4alkyl”). Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like. Representative saturated cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. Unsaturated alkyls contain at least one double or triple bond between adjacent carbon atoms (referred to as an “alkenyl” or “alkynyl,” respectively). Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like; while representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1 butynyl, and the like. Representative unsaturated cyclic alkyls include cyclopentenyl and cyclohexenyl, and the like. Alkyls include “alkoxy” as defined below.
- “Alkoxy” is an alkyl having at least one alkyl hydrogen atom replaced with an oxygen atom, such as methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, isopropoxy, sec-butoxy and the like. “Lower alkoxy” has same meaning, but utilizing lower alkyl in place of alkyl.
- “Aminoalkyl” is a straight chain or branched, cyclic or noncyclic, saturated or unsaturated alkyl containing from 1 to 12 carbon atoms with at least one alkyl hydrogen atom or carbon atom replaced with —NH2 or —NH—, respectively (also referred to herein as “C1-12aminoalkyl”).
- “Aryl” is an aromatic carbocyclic moiety contain from 6 to 12 carbon atoms (also referred to herein as a “C6-12aryl”), such as phenyl and naphthyl. Aryls include aryloxy, as defined below.
- “Aryloxy” is an aryl having at least one aryl hydrogen atom replaced with an oxygen atom, such as phenoxy and the like
- “Arylalkyl” is an alkyl having at least one alkyl hydrogen atom replaced with an aryl moiety, such as benzyl, —(CH2)2phenyl, —(CH2)3phenyl, —CH(phenyl)2, and the like. Arylalkyls include arylalkoxy as defined below.
- “Arylalkoxy” is an arylalkyl having at least one alkyl hydrogen replaced with an oxygen atom, such as benzoxy and the like. “Alkylaryloxy” is an arylalkyl having at least one aryl hydrogen replaced with and oxygen atom, such as hydroxy benzyl and the like.
- “Heterocycle” means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated, or aromatic, and which contains from 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring. The heterocycle may be attached via any heteroatom or carbon atom. Heterocycles include heteroaryls as defined below. Thus, in addition to the heteroaryls listed below, heterocycles also include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, aziridinyl, azetidinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl and the like.
- In the context of X of structure (I) above, “divalent heterocycle” means a heterocylce moiety covalently bonded to both an R5 moiety and the carbon atom of the fused bicyclic ring system of structure (I).
- “Heterocyclealkyl” means an alkyl having at least one alkyl hydrogen atom replaced with a heterocycle moiety, such as —CH2(heterocycle), —(CH2)2(heterocycle) and the like.
- “Heteroaryl” means an aromatic heterocycle ring of 5- to 10 members and having at least one heteroatom selected from nitrogen, oxygen and sulfur, and containing at least 1 carbon atom, including both mono- and bicyclic ring systems. Representative heteroaryls are pyridyl, furyl, benzofuranyl, thiophenyl, benzothiophenyl, quinolinyl, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl, quinazolinyl and the like.
- “Heteroarylalkyl” means an alkyl having at least one alkyl hydrogen atom replaced with a heteroaryl moiety, such as —CH2pyridinyl, —CH2pyrimidinyl, and the like.
- The term “substituted” as used herein means any of the above groups—that is, alkyl, aryl, arylalkyl, heterocycle, divalent heterocycle, heterocyclealkyl, heteroaryl or heteroarylalkyl—wherein at least one hydrogen atom is replaced with a substituent. In the case of an oxo substituent (“═O”), two hydrogen atoms are replaced. A “substituent” in this regard is halogen (such as F, Cl, Br and I), oxo, hydroxy, haloalkyl (such as trifluoromethyl), —R, —OR, —C(═O)R, —C(═O)OR, —C(═O)NRR, —NRR, —NRC(═O)R, —NRC(═O)OR, —NRC(═O)NRR, —OC(═O)R, —OC(═O)OR, —OC(═O)NRR, —SH, —SR, —SOR, —SO2R, —NRSO2R, —Si(R)3, or —OP(OR)3, wherein each occurrence of R is the same or different and independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl or substituted heterocyclealkyl, or wherein any two R groups attached to the same nitrogen atom, taken together with the nitrogen atom to which they are attached, form a heterocycle or a substituted heterocycle.
- A “peptide” means at least two naturally or unnaturally occurring alpha-amino acids joined via a peptide bond. Depending upon the number of amino acids joined via peptide bonds, the resulting peptide may also be referred to as a “polypeptide” or “protein.” Similarly, a “peptide derivative” means a peptide which has been covalently modified and/or which contains amino acids other than alpha-amino acids. Representative peptide derivatives include peptides which are N-alkylated, N-acylated or N-sulfonylated at the amino termini, with, for example, methyl, benzyl, acetyl, benzoyl, methanesulfonyl, phenylsulfonyl, allyloxycarbonyl, t-butyloxycarbonyl, benzyloxycarbonyl, or fluorenyloxycarbonyl moieties; peptides in which the carboxy termini are esterified (methyl, ethyl, benzyl) or reduced to a hydroxy or aldehyde; peptides which are N-alkylated at peptide bonds with, for example, methyl or 2-hydroxy-4-methoxybenzyl; and peptides which incorporate beta- or gamma-amino acids such as beta-alanine or gamma-aminobutyric acid.
- A “linker” is any covalent bridging moiety that facilitates linkage of a compound of structure (I), through the respective R1, R2, R3 and/or R4 moiety, to another moiety, agent, compound, solid support, molecule, amino acid, peptide or protein. For example, the compounds of this invention may be linked to one or more known compounds, such as biotin, for use in diagnostic or screening assays. Furthermore, one (or more) of R1, R2, R3 or R4 may be a linker joining the compound of structure (I) to a solid support (such as a support used in solid phase peptide synthesis). Examples of such linkers include p-alkoxybenzyl alcohol, phenylacetamidomethyl, and 2-chlorotrityl chloride.
- A “solid support” means any composition of matter to which another compound is attached directly or attached through a linker, and that is insoluble in at least one solvent in which the attached compound is soluble. Alternatively, a “solid support” may be a composition of matter with similar solubility characteristics to the attached compound, but which may be readily precipitated from solution and filtered off as a solid. Representative examples include polystyrene, polyethylene glycol, polystyrene grafted with polyethylene glycol, polyacrylamide, polyamide-polyethylene glycol copolymer, controlled-pore glass, and silica.
- The phrase “remainder of the molecule” means any moiety, agent, compound, solid support, molecule, linker, amino acid, peptide or protein covalently attached to the β-strand mimetic at Y and Z positions, including amino acid side chain moieties, amino acid side chain derivatives and peptide derivatives, as defined above. Accordingly, in an alternative depiction of structure (I), the corresponding Y and Z moieties may be left undefined, as represented by the following structures (I′), (I″) and (I′″)
wherein represents the remainder of the molecule and A, A′, R1, R2, R3, R4 and R5 are as defined above. -
-
-
-
-
- In still a further embodiment of structure (VI), X is a nitrogen containing divalent heterocycle, and the compounds of this invention have the following structure (VII):
or pharmaceutically acceptable salts and stereoisomers thereof, wherein Y, Z, R5 and “substituent” are as defined above and m is 1, 2, 3 or 4, and wherein R5, taken together with the substitutent, may optionally form a substituted or unsubstituted heterocycle. -
- In still a further embodiment of structure (VIII), m is 2 and the compounds of this invention have the following structure (IX):
or pharmaceutically acceptable salts and stereoisomers thereof, wherein Y, Z and R5 are as defined above. In a more specific embodiment of structure (IX), Y and Z are each an amino acid side chain moiety or an amino acid side chain derivative. -
- wherein
- Z is
-
- 1) alkyl,
- 2) alkoxy,
- 3) phenyl,
- 4) benzyl,
- 5) phenethyl,
- 6) 1-napthylmethyl,
- 7) 2-napthylmethyl,
- 8) phenylbenzyl,
- 9) biphenyl,
- 10) aminoalkyl,
- 11) aryl,
- 12) arylalkyl,
- 13) Het,
- 14) a group selected from R7d,
- 15) —(CH2)o—N(RdRd′),
- 16) —(CH2)m-aryl-NHRt
- 17) —(CH2)m-aryl-NRdRd′,
- 18) —(CH2)o—CO2Re,
- 19) —(CH2)o—C(═O)—NReRe′,
- 20) —(CH2)o—O—Rf,
- 21) —(CH2)o—SO2-aryl,
- 22) —(CH2)o-Het, or
- 23) hydrogen,
- wherein alkyl, phenyl, benzyl, phenethyl, 1-napthylmethyl, 2-napthylmethyl, phenylbenzyl, biphenyl, aminoalkyl, aryl, arylalky and Het are optionally and independently substituted with but not limited to one or more substituents independently selected from R,;
- Rd and Rd′ are the same or different and independently selected from
-
- 1) hydrogen,
- 2) —C(═O)-alkyl,
- 3) —C(═O)-alkenyl,
- 4) —C(═O)-alkynyl,
- 5) —C(═O)-aryl,
- 6) —C(═O)-arylalkyl,
- 7) —C(═O)-Het,
- 8) a group selected from R5,
- 9) —C(═O)-alkyl-NH2,
- 10) —C(═O)(CH2)m-aryl-(CH2)n—NH2,
- 11) —C(═O)(CH2)m-aryl-(CH2)n-Het,
- 12) —C(═O)(CH2)m-1,4 cyclohexyl-(CH2)n—NH2,
- 13) —C(═O)(CH2)m-aryl-OH,
- 14) —C(═O)(CH2)m-aryl-SO2—NH2,
- 15) —C(═O)(CH2)n-aryl-(CH2)n—NHC(═O)-alkyl,
- 16) —C(═O)(CH2)m-Het,
- 17) —C(═O)(CH2)m—S-Het,
- 18) —SO2-aryl,
- 19) —SO2-aryloxy, and
- 20) —SO2-arylalkyl,
- wherein alkyl, alkenyl, alkynyl, aryl, arylalkyl, aryloxy and Het are optionally and independently substituted with but not limited to one or more substituents independently selected from Rs;
- Re and Re′ are the same or different and independently selected from
-
- 1) hydrogen,
- 2) alkyl,
- 3) alkenyl,
- 4) alkynyl,
- 5) aryl,
- 6) arylalkyl,
- 7) Het,
- 8) -alkylaryl,
- 9) —(CH2)o-aryl-(CH2)m—NH2,
- 10) —(CH2)o—NH-aryl,
- 11) —(CH2)o-1,4 cyclohexyl-(CH2)m—NH2,
- 12) —(CH2)o-aryloxy,
- 13) —(CH2)o-aryl-NH2,
- wherein alkyl, alkenyl, alkynyl, aryl, arylalkyl and Het are optionally and independently substituted with but not limited to one or more substituents independently selected from Rs;
- Rf is selected from
-
- 1) hydrogen,
- 2) alkyl,
- 3) alkenyl,
- 4) alkynyl,
- 5) aryl,
- 6) arylalkyl,
- 7) Het,
- 8) alkylaryl,
- 9) —C(═O)-alkyl,
- 10) —C(═O)-aryl,
- 11) —C(═O)-arylalkyl,
- 12) —C(═O)-Het,
- 13) —C(═O)-alkylaryl,
- 14) —C(═O)—NH-alkyl,
- 15) —C(═O)—NH-aryl,
- 16) —C(═O)—NH-arylalkyl,
- 17) —C(═O)—NH-Het, and
- 18) —C(═O)—NH-alkylaryl,
- wherein alkyl, alkenyl, alkynyl, aryl, arylalkyl and Het are optionally and independently substituted with but not limited to one or more substituents independently selected from Rs;
- Rs is
-
- 1) halogen,
- 2) hydrogen,
- 3) lower alkyl
- 4) —CN,
- 5) —CF3,
- 6) —C(═O)ORe,
- 7) —C(═O)Re,
- 8) —C(═NH)—NH2,
- 9) —C(═NRd)(NRdRd′),
- 10) —NRdRd′,
- 11) —NReC(═O)Re,
- 12) —NReC(═O)ORe,
- 13) —NReC(═O)NReRe′,
- 14) —NH—C(═NH)NH2,
- 15) —NO2,
- 16) —OCF3,
- 17) —OH,
- 18) —OR,
- 19) —OC(═O)Re,
- 20) —OC(═O)NReRe′,
- 21) —SRe,
- 22) —S(O)kRe,
- 23) —S(O)2ORe,
- 24) —S(O)kNReRe′, or
- 25) a group selected from R5;
- Rt is
-
- 1) hydrogen,
- 2) —C(═NH)—NH2, or
- 3) a group selected from R5;
- R5is
-
- 1) —C(═O)O—R7,
- 2) —C(═O)NH—R7,
- 3) —S(O2)—R7,
- 4) —C(═O)—R7, or
- 5) hydrogen,
- wherein
-
- R7 is R7a, R7b, R7c or R7d;
- R7a is alkyl or aminoalkyl optionally and independently substituted with but not limited to one or more substituents independently selected from Rs;
- R7b is aryl, arylalkyl or Het optionally and independently substituted with but not limited to one or more substituents independently selected from Rs;
- R7c is phenyl, benzyl or phenethyl optionally and independently substituted with but not limited to one or more substituents independently selected from Rs;
- R7d is
-
- 1) —(CH2)l—NRdRd′,
- 2) —(CH2)l—CO2Re,
- 3) —(CH2)m-aryl-(CH2)n—NRdRd′,
- 4) —CH(NRdRd′)—(CH2)o—NRdRd′,
- 5) —(CH2)m-1,4 cyclohexyl-(CH2)n—NRdRd′,
- 6) —(CH═CH)k—(CH2)p—NRdRd′,
- R6is
-
- 1) —(CH2)l—NHRt,
- 2) —(CH2)l-Het-NHRt,
- 3) —(CH2)o-aryl-(CH2)n—Rt,
- 4) —(CH2)o-aryl-(CH2)n—NHRt,
- 5) —(CH2)o-cyclohexyl-(CH2)m—NHRt,
- 6) —(CH═CH)k—(CH2)p—NHRt,
- Rd and Rd′ taken together with the atoms to which they are attached form a mono- or bi-cyclic heterocyclic ring of 3 to 7 members each containing 0-3 additional heteroatoms each independently selected from nitrogen, oxygen and sulfur;
- Re and Re′ taken together with the atoms to which they are attached form a mono- or bi-cyclic heterocyclic ring of 3 to 7 members each containing 0-3 additional heteroatoms each independently selected from nitrogen, oxygen and sulfur;
- k is an integer from 1 to 2;
- l is an integer from 1 to 10;
- m is a number from 0 to 4;
- n is a number from 0 to 4;
- o is an integer from 1 to 4;
- p is an integer from 1 to 2; and
- Het is heterocycle, heterocyclealkyl, heteroaryl or heteroarylalkyl.
- In structure (I) above, a solid line designation for attachment of the various R groups to a carbon atom on the fused bicyclic ring indicates that these R groups may lie either above or below the plane of the page. If a β-strand mimetic of this invention is intended to mimic a β-strand of naturally occurring amino acids (i.e., “L-amino acids”), the R groups would generally lie below the plane of the page (i.e., “R”) in structure (I). However, if the β-strand mimetic of this invention is intended to mimic a β-strand containing one or more D-amino acids, then the corresponding R group or groups would lie above the plane of the page (i.e., “R”) in structure (I).
-
-
-
-
-
-
- The compounds of the present invention may generally be prepared by sequential coupling of the individual component pieces, either stepwise in solution or by solid phase synthesis, as commonly practiced in solid phase peptide synthesis. To this end, the compounds may be synthesized on a solid support (such as polystyrene utilizing 4-hydroxymethylphenoxybutyrate as a linker) by known techniques (see, e.g., John M. Stewart and Janis D. Young, Solid Phase Peptide Synthesis, 1984, Pierce Chemical Comp., Rockford, Ill.; Atherton, E., Shepard, R. C. Solid Phase Peptide Synthesis: A Practical Approach; IRL: Oxford, 1989) or on a silyl-linked resin by alcohol attachment (Randolph et al., J. Am. Chem. Soc. 117:5712-14, 1995). The utility and ease of synthesis of the present invention is further exemplified by the applicability of a wide variety of commercially available resins. To this end, a core of either polystyrene or ArgoGel (polyethyleneglycol grafted polystyrene; Argonaut, San Carlos, Calif.) utilizing aminomethyl polystyrene, benzhydrylamine (BHA) methylbenzhydrylamine (MBHA) (Matsueda et al., Peptides 2:45, 1981), phenoxybenzylalcohol (Wang resin) (Wang J. Am. Chem. Soc. 95:1328, 1973), 2-clorotrytyl (Barlos et al., Tetrahedron Lett. 30:3943, 1989, ibid 30:3947, 1989), and PAL (Albericio et al., J. Org. Chem. 55:3730 1990) resins and other resins could be used in the synthesis of the present invention.
- In addition, a combination of both solution and solid phase synthesis techniques may be utilized to synthesize the compounds of this invention. For example, a solid support may be utilized to synthesize a linear peptide sequence up to the point that the compound of this invention is added to the sequence. A suitable compound that has been previously synthesized by solution synthesis techniques may then be added as the next “amino acid” to the solid phase synthesis (i.e., the compound, which has at least two reactive sites, may be utilized as the next residue to be added to the linear peptide). Upon incorporation of the compound into the sequence, additional amino acids may then be added to complete the peptide bound to the solid support. Alternatively, the linear N-terminus and C-terminus protected peptide sequences may be synthesized on a solid support, removed from the support, and then coupled to the compound in solution using known solution coupling techniques.
- In another aspect of this invention, methods for constructing libraries are disclosed. Traditional combinatorial chemistry (e.g., The Combinatorial Index Bunin, Academic Press, New York, 1998; Gallop et al., J. Med. Chem. 37:1233-1251, 1994) and parallel synthesis techniques permit a vast number of compounds to be rapidly prepared by the sequential combination of reagents to a basic molecular scaffold. For example, the above-disclosed synthesis may be carried out using the directed sorting technique of Nicolaou and coworkers. (Nicolaou et al., Angew. Chem. Int'l. Ed. 34:2289-2291, 1995). Presently, equipment for this technique is commercially available from IRORI (La Jolla, Calif.). Alternatively, the above disclosed synthesis may be carried out by parallel synthesis using a 48- or 96-well plate format wherein each well contains a fritted outlet for draining solvents and reagents (A Practical Guide to Combinatorial Chemistry Czarnik and DeWitt, Eds., American Chemical Society, Washington, DC, 1997). Robbins (Sunnyvale, Calif.), Charybdis (Carlsbad, Calif.) and Bohdan (Chicago, Ill.) presently offer suitable equipment for this technique.
- In a further aspect of this invention, methods for screening libraries for bioactivity and isolating bioactive library members are disclosed. The libraries of the present invention may be screened for bioactivity by a variety of techniques and methods. Generally, the screening assay may be performed by (1) contacting a library with a biological target of interest, such as a receptor, and allowing binding to occur between the mimetics of the library and the target, and (2) detecting the binding event by an appropriate assay, such as by the calorimetric assay disclosed by Lam et al. (Nature 354:82-84, 1991) or Griminski et al. (Biotechnology 12:1008-1011, 1994). In a preferred embodiment, the library members are in solution and the target is immobilized on a solid phase. Alternatively, the library may be immobilized on a solid phase and may be probed by contacting it with the target in solution.
- In another aspect, the present invention encompasses pharmaceutical compositions prepared for storage or administration, which comprise a therapeutically effective amount of a compound of the present invention in a pharmaceutically acceptable carrier or diluent. Therapy with inhibitors of cell adhesion is indicated for the treatment and prevention of a variety of inflammatory conditions, particularly rheumatoid arthritis, inflammatory bowel disease and asthma. Those experienced in this field are readily aware of the circumstances requiring anti-inflammatory therapy.
- The “therapeutically effective amount” of a compound of the present invention will depend on the route of administration, the type of warm-blooded animal being treated, and the physical characteristics of the specific animal under consideration. These factors and their relationship to determining this amount are well known to skilled practitioners in the medical arts. This amount and the method of administration can be tailored to achieve optimal efficacy, but will depend on such factors as weight, diet, concurrent medication and other factors that, as noted, those skilled in the medical arts will recognize. Typically, dosages will be between about 0.01 mg/kg and 100 mg/kg body weight, preferably between about 0.01 and 10 mg/kg, body weight.
- “Pharmaceutically acceptable carriers” for therapeutic use, including diluents, are well known in the pharmaceutical art, and are described, for example, in Remingtons Pharmaceutical Sciences, Mack Publishing Co. (Gennaro Ed. 1985). For example, sterile saline and phosphate-buffered saline at physiological pH may be used. Preservatives, stabilizers, dyes and even flavoring agents may be provided in the pharmaceutical composition. For example, sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid may be added as preservatives. In addition, antioxidants and suspending agents may be used.
- The compounds of this invention may be administered by inhalation, and thus may be delivered in the form of an aerosol spray from pressurized packs or nebulizers. The compounds may also be delivered as powders, which may be formulated, and the powder composition may be inhaled with the aid of an insufflation powder inhaler device. A preferred delivery system for inhalation is the metered dose inhalation aerosol, which may be formulated as a suspension or solution of a compound of the invention in suitable propellants, such as fluorocarbons or hydrocarbons. Another preferred delivery system is the dry powder inhalation aerosol, which may be formulated as a dry powder of a compound of this invention with or without additional excipients.
- The compounds of the invention can be administered in the form of a depot injection or implant preparation, which may be formulated in such a manner as to permit a sustained release of the active ingredient. The active ingredient can be compressed into pellets or small cylinders and implanted subcutaneously or intramuscularly as depot injections or implants. Implants may employ inert materials such as biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers manufactured by the Dow-Corning Corporation.
- The compounds of the invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.
- The compounds of this invention may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled. The tryptase inhibitors may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinlypyrrolidone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl-aspartarhide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the tryptase inhibitors may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels.
- The pharmaceutical compositions of this invention may be used in the form of a pharmaceutical preparation, for example, in solid, semisolid or liquid form, which contains one or more of the compounds of the present invention, as an active ingredient, in admixture with an organic or inorganic carrier or excipient suitable for external, enteral or parenteral applications. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use. The carriers which can be used are water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea and other carriers suitable for use in manufacturing preparations, in solid, semisolid, or liquid form, and, in addition, auxiliary, stabilizing, thickening and coloring agents and perfumes may be used. The active object compounds is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the process or condition of the disease.
- For the treatment of the clinical conditions and diseases noted above, the compounds of this invention may be administered orally, topically, parenterally, by inhalation spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. The term parenteral, as used herein, includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques.
- For the treatment of certain conditions it may be desirable to employ a compound of the present invention in conjunction with another pharmacologically active agent. For example, a compound of the present invention may be presented together with another therapeutic agent as a combined preparation for simultaneous, separate, or sequential use for the relief of emesis. Such combined preparations may be, for example, in the form of a twin pack. A preferred combination comprises a compound of the present invention with a chemotherapeutic agent such as an alkylating agent, antimetabolite, mitotic inhibitor, or cytotoxic antibiotic, as described above. In general, the currently available dosage forms of the known therapeutic agents for use in such combinations will be suitable.
- In the treatment of a condition associated with tryptase, an appropriate dosage level will generally be about 0.001 to 50 mg per kg of patient body weight per day, which may be administered in single or multiple doses. Preferably, the dosage level will be about 0.01 to about 25 mg/kg per day; more preferably about 0.05 to about 10 mg/kg per day. The dose and method of administration can be tailored to achieve optimal efficacy but will depend on such factors as weight, diet, concurrent medication and other factors, which those skilled in the medical arts will recognize. When administration is to be parenteral, such as intravenous on a daily basis, injectable pharmaceutical compositions can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.
- The following examples are provided for purposes of illustration, not limitation. These examples illustrate the syntheses of β-strand mimetics of this invention. Specifically, the preparation of β-strand mimetics was carried out on solid phase. The solid phase syntheses of these β-strand mimetics demonstrate that libraries containing such members may be readily prepared.
TABLE 2 ABBREVIATIONS USED IN EXAMPLES Reagents: AcOH acetic acid Ac2O acetic anhydride BOP benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate DIAD diisoproppyl azodicarboxylate DIC diisopropyl carbonyl diimide DIEA N,N-diisopropylethylamine HATU O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate HOAt 1-hydroxy-7-azabenzotriazole HOBt 1-hydroxybenzotriazole hydrate MCPBA meta-chloroperoxybenzoic acid PyBOP benzotriazol-1-yloxy-tris(pyrrolidino)phosphonium hexafluorophosphate TFA trifluoroacetic acid TPP triphenylphosphine Solvents: CAN acetonitrile DCM dichloromethane DMF dimethylformamide DMSO dimethylsulfoxide Et2O diethyl ether MeOH methanol THF tetrahydrofuran Protecting Groups: All allyl Alloc allyloxy carbonyl Fmoc 9-fluorenylmethoxy carbonyl tButyl tertiary-Butyl Trt triphenylmethyl Others: RT room temperature equiv equivalent g gram h hour min minute - The following examples are provided for purposes of illustration, not limitation. These examples illustrate the syntheses of β-strand mimetics of this invention.
- Materials and Methods
- Chemical Syntheses: Reagents, starting materials and solvents were purchased from Aldrich, Maybridge, Advanced ChemTech, ICI, Fluka Lancaster or any other source of fine chemicals where applicable. Wang polystyrene resin (loading 1.0 mmol OH/g) was purchased from Advanced ChemTech.
- Analytical: 1H NMR spectra were recorded at 500 MHz on a Varian Unity 500 Spectrometer and are referenced to the residual protons from CDCl3 or CD3OD signal (δ 7.26 ppm and δ 3.31 ppm respectively). Compound QC analyses were performed by applying the following conditions: LCMS (method A) and purification by HPLC (method B). LCMS analyses (method A) were performed on a system consisting of mass Spectrometer Micromass-Platform LCZ system and an HPLC Hewlett Packard (series 1100) equipped with Gilson 215 liquid handler as an autosampler with the following detectors: DAD 210-350 mm, ELSD (evaporative light scattering detector) and MS (ESI ±).
- Chromatographic conditions: Solvent systems; A-water (0.1% TFA), B-acetonitrile (0.1% TFA); gradients (5-95% over 3 min) at a flow rate of 0.9 mL/min. Column: Zorbax C18 column (2.1×30 mm). Chromatographic peaks were determined by ELSD and DAD detectors and the corresponding mass spectra obtained in both positive and negative ion modes by averaging mass spectra over a 0.1 minute time-window around the top of the chromatographic peak. Chromatographic purity was established by ELSD. Preparative and Semi-prep HPLC—were employed for sample purification and the purity determined by Analytical HPLC (method B) column 5 uM 4.6×50 mm, A-water (0.1% TFA), B-acetonitrile (0.1% TFA); gradients 5-90% B in 15 min, flow rate of 1.5 ml/min.
- These examples illustrate the synthesis of representative compounds of this invention. Specifically, the preparation of compounds was carried out in solid phase. The solid phase syntheses of these compounds demonstrate that libraries containing such members may be readily prepared. Structures of representative compounds are given in Tables 3 and 4.
- Reactions were carried out in, but not limited to, the following: plastic disposable syringes of the approprate size, each fitted with a polypropylene flit to retain the resin, 1-10 ml reaction vessel compatible with Symphony Automated Peptide Synthesizer (Protein Technologies), ACT 90 Synthesizer (Advanced ChemTech), Robbins block, or IRORI system.
- General Reaction Scheme:
-
- In the above General Reaction Scheme, the following reaction sequence was well suited for the solid-phase synthesis. Thus, when the resin-bound amine, prepared by reacting H2N-A-NH2 with the commercially available Wang resin (1.0 mmol/g), was coupled to the requisite Fmoc-diene acid (a) (3.0 equiv) in the presence of BOP (3 equiv), HOBT (3 equiv) in DMF at room temperature for 4 h, the corresponding polymer-bound Fmoc-diene (b) was generated. Deprotection of the Fmoc with 25% piperidine/DMF followed by coupling with Fmoc-acid linker (FmocHN—B—CO2H) employing the above conditions provided the intermediate Fmoc-diene-linker. Final Fmoc removal and subsequent coupling with Boc-protected aromatic amino acids or an equivalent thereof (R1—CO2H), completes the chain length and sets the stage for the penultimate Diels-Alder reaction step. Exposing this extended diene unit to the appropriate urazole (3 equiv) in the presence of [bis(trifluoroacetoxy)iodo]benzene (3 equiv) for 3 h at room temperature efficiently yielded the resin-bound compound inhibitor. The desired inhibitor was then cleaved from the resin in concert with the Boc-protecting group on treatment with 95% TFA/H2O for 90 minutes. After this time, the supernatant was collected and combined with washes (2×1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired crude adduct (TFA salt).
-
- In the above General Reaction Scheme, the following reaction sequence was well suited for the solid-phase synthesis. Thus, when the resin-bound amine, prepared by reacting H2N-A-NH2 with the commercially available Wang resin (1.0 mmol/g), was coupled to the requisite Fmoc-diene acid (a) (3.0 equiv) in the presence of BOP (3 equiv), HOBT (3 equiv) in DMF at room temperature for 4 h, the corresponding polymer-bound Fmoc-diene (b) was generated. Exposing this Fmoc-piperinine-diene unit to the Diels-Alder reaction conditions with the appropriate urazole (3 equiv) in the presence of [bis(trifluoroacetoxy)iodo]benzene (3 equiv) for 3 h at room temperature, efficiently yielded the resin-bound bicyclic compound (c). Deprotection of the Fmoc with 25% piperidine/DMF followed by coupling with Fmoc-acid linker (FmocHN—B—CO2H) employing the above coupling conditions provided the intermediate Fmoc-diene-linker. Final Fmoc removal and subsequent coupling with Boc-protected aromatic amino acids or an equivalent thereof (R1—CO2H), completes the chain length and sets the stage for the cleavage step. The desired inhibitor was then cleaved from the resin in concert with the Boc-protecting group on treatment with 95% TFA/H2O for 90 minutes. After this time, the supernatant was collected and combined with washes (2×1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired crude adduct (TFA salt).
-
- The general synthetic procedure is the same as given above (Method A1) except that after the Diels-Alder reaction the nitro group on the resin-bound 02N—C-Urazole (e) was reduced to the aniline employing the following conditions. Stannous chloride dihydrate treatment (21 equiv, 2N solution in DMF) for 3 h at room temperature gave the intermediate aniline. The resulting aniline was acylated with aryl acid (R3CO2H) (10 equiv) in the presence of DIEA (21 equiv), PyBOP and HOBt (10 equiv each) in DMF at room temperature overnight. The desired product was then cleaved from the resin in concert with the t-boc protecting group on treatment with 95% TFA/H2O for 90 minutes. The supernatant was collected and combined with washes (2×1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired crude adduct (TFA salt).
-
- The general synthetic procedure is the same as given above (Method A1) except that, after the Diels-Alder reaction, the nitro group on the resin-bound 02N—C-Urazole (e) was reduced to the aniline, employing the following conditions. Stannous chloride dihydrate (21 equiv, 2N solution in DMF) for 3 h at room temperature gave the intermediate aniline. The resulting aniline was reacted with sulfonyl chloride (R4SO2Cl) (2.5 equiv) in the presence of pyridine (4 equiv) in DMF at room temperature overnight. The desired product was then cleaved from the resin in concert with the Boc-protecting group on treatment with 95 % TFA/H2O for 90 minutes. The supernatant was collected and combined with washes (2×1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired crude adduct (TFA salt).
-
- The general synthetic procedure is the same as given above (Method A1) except that, after the Diels-Alder reaction, the free acid (e) was reacted with amine (H2N—R6) (4 equiv) in the presence of DIEA (5 equiv), PyBOP and HOBt (4 equiv each) in DMF at room temperature overnight. The desired product was then cleaved from the resin in concert with the t-boc protecting group on treatment with 95% TFA/H2O for 90 minutes. The supernatant was collected and combined with washes (2×1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired crude adduct (TFA salt).
-
- The general synthetic procedure is the same as given above (Method A1) except that, after the Diels-Alder reaction, the free amine (e) was reacted with acid (R7—CO2H) (4 equiv) in the presence of DIEA (5 equiv), PyBOP and HOBt (4 equiv each) in DMF at room temperature overnight. The desired product was then cleaved from the resin in concert with the Boc-protecting group on treatment with 95% TFA/H2O for 90 minutes. The supernatant was collected and combined with washes (2×1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired crude adduct (TFA salt).
- Activation of the Hydroxy Resin
- Commercially available 4-hydroxymethylphenoxy resin (Wang-Resin) purchased from Advanced ChemTech was first activated with 4-nitrophenylchloroformate (5 equiv) and pyridine (4 equiv) in DCM for about an hour at −20° C., then allowed to reach room temperature and stirred overnight. The resin was filtered, washed (5× each) with DMF, DCM and Et2O and left to dry.
- Coupling of the Activated Hydroxy-Resin with Diamines
- The resin is treated with (10-15 equiv) of a 2M solution of the appropriate diamine in DMF at room temperature for 15 h after which, the resin was filtered and washed repeatedly with DMF until the wash became colorless. Additional washings carried out with DCM and Et2O (5× each) provided the clean amine-resin. After drying, the loading was determined by measuring the UV absorbance on a small portion via Fmoc protection and cleavage protocol.
- General Diene Extension via Coupling to the Amine on Resin
- The amine-bound resin was coupled to Fmoc-protected diene acid (3 equiv) in the presence of BOP (3 equiv), HOBT (3 equiv) and DIEA (4.5 equiv) in DMF for 3 h at which time a negative Kaiser test was obtained. Then Fmoc group was cleaved with 25% (v/v) piperidine/DMF for 10 minutes giving a positive chloranil test. Treatment of the newly unmasked amine functionality with 3 equiv of the appropriate acid linker in the presence of BOP (3 equiv), HOBT (3 equiv) and DIEA (4.5 equiv) in DMF gave a negative chloranil test within 5 h of reaction time. Removal of the Fmoc group from the linker, as described above, was confirmed by a positive Kaiser analysis. The chain was capped by reacting the freed amino group with Boc-amino acid derivative (3 equiv) employing the above coupling conditions and washing cycles.
- General Diels-Alder Reaction Procedure
- With the desired chain length assembled, the Diels-Alder chemistry was carried out by reacting the diene-resin with 3 equiv each of the appropriate urazole and [bis(trifluoroacetoxy)iodo]benzene in DMF for 3.5 h at room temperature, yielding the bicyclic compound after the usual washings.
- Method F:
- The dried resin was reswollen in DCM and drained. The product was then cleaved from the resin by treatment with 95% (v/v) TFA/H2O at room temperature for 1.5 h. The supernatant was collected and combined with washes and evaporated in a speed vac. The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired product.
- Method G:
- The dried resin was preswollen in DCM and drained. The product was then cleaved from the resin by treatment with 4N HCl in dioxane at room temperature for 3 h. The supernatant was collected and combined with washes (acetonitrile-H2O, 1:1, 4×5 mL) and evaporated. The residue obtained after evaporation of the solution was redissolved in either glacial acetic acid or 50:50 acetonitrile-water, frozen and lyophilized to provide the desired product.
-
- Aminomethylcyclohexane carboxylic acid (1) (20 g, 127 mmol) and sodium carbonate (13.6 g, 128 mmol) were dissolved in 600 mL of water, then a solution of FmocOSu (40 g, 118 mmol) was added over a period of 30 min with stirring. The mixture was stirred overnight, during which a large amount of white precipitate formed. The mixture was acidified to pH=3 with 1N HCl, then diluted with 2L of ethyl acetate. The organic layer was separated, washed with 5% aqueous citric acid, water and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and cooled in a freezer overnight. The solid was filtered off, then the filtrate was concentrated to ca. 1L and cooled overnight. The solid was filtered and combined with the previously collected solid (2) then dried in a desiccator.
- The Fmoc aminomethylcyclohexyl carboxylic acid (2) was taken up in 1L of dichloromethane. Oxalyl chloride (39 mL, 450 mmol) was added, followed by DMF (10 drops) and the mixture was stirred for 1 h. The mixture was concentrated under vacuum and the residue was dissolved in 1L of toluene, and a solution of sodium azide (18.4 g, 280 mmol) in 30 mL of water was added along with 3.4 g (12 mmol) of tetrabutylammonium azide. Due to low solubility, an additional 2L of toluene was added, and the mixture was stirred vigorously until the IR spectrum of an aliquot showed a peak for the acyl azide (2120 cm−1). The mixture was filtered, and the solid set aside (unreacted acid chloride). The filtrate was extracted with 5% aqueous citric acid (2×200 mL) and brine (200 mL) then the toluene solution was dried over anhydrous sodium sulfate and filtered. The solution was heated to reflux until the IR spectrum of an aliquot of the solution showed an isocyanate peak (2230 cm−1) and loss of the acyl azide peak. The solution was evaporated to give 31 g of solid. The solid was dissolved in dichloromethane (800 mL) and stirred with Wang resin (57 g, 54 mmol) and 4N HCl in dioxane (1.5 mL) was added. The mixture was stirred overnight then filtered. The resin (3) was washed with DMF (3×800 mL), dichloromethane (3×800 mL) and diethyl ether (3×800 mL) then dried in a vacuum desiccator.
-
- Aminomethyl benzoic acid (6.0 g, 39.7 mmol) and Na2CO3 (8.41 g, 79.4 mmol) were dissolved in H20 (40 mL). To this mixture was added a solution Cbz-Osu (10.4 g, 41.7 mmol) in THF (40 mL). The resulting solution was stirred at room temperature overnight, then concentrated. The residue was acidified with 2N HCl to pH=2, which led to a solid precipitate. The product was collected by filtration and dried in vacuum overnight to give 9.6 g, 85% of a white solid (4).
-
- To the above solid (4) (2.0 g, 7.0 mmol) in DCM (20 mL) was added oxalyl chloride (2.0 mL) at room temperature and then DMF (40 μL) was added slowly to the solution. After the reaction mixture was stirred for 2 h, the solution was concentrated. The residue was redissolved in DCM (10 mL) and treated with 28% aqueous ammonia solution (20 mL) at 0° C. and stirred for 1 h at this temperature. The solid product formed was collected by filtration, washed with water and dried in vacuum overnight to provide a white solid (5) (1.95 g, 98%).
-
- To the amide (5) (2.0 g, 7.0 mmol) in THF (20 mL) was added Lawesson's reagent (1.42 g, 3.5 mmol). The mixture was heated at reflux for 3 h and concentrated to dryness before a slow addition of DCM (10 mL). After stirring for 2 h, the yellow solid produced was collected by filtration, washed with cold DCM and dried under vacuum to afford 1.68 g, 80% of the desired product (6).
-
- A suspension of the thioamide (6) (1.0 g, 3.3 mmol) in DCM/CH3Cl mixture (4/1, 10 mL) was heated at reflux for 3 h until completely dissolved. The solution was concentrated to give a thick oil. The oil was dissolved in MeOH (5.0 mL) and added to a solution of ammonium formate (0.8 g, 10.0 mmol) in MeOH (10 mL) and stirred at room temperature overnight. This led to the formation of a white solid that was filtered and washed with cold MeOH. The solid was dissolved in THF/water (5:1, 20 mL) and TEA (1.4 mL, 10.0 mmol) was added. The mixture was stirred for 30 min at 0° C., then treated with a solution of Boc2O (0.8 g, 3.4 mmol) in THF (2.0 mL). After stirring for 24 h, the product was extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with brine, dried with magnesium sulfate and concentrated. The residue was slurried with ether for 1 h, then filtered to provide an off-white solid product, benzyl 4-[[tert-butoxycarbonyl)amino](imino)methyl]benzylcarbamate (7) (1.1 g, 88%). 1H NMR (300 MHz, CDCl3) δ 7.79 (d, J=8.3 Hz, 2H), 7.33 (m, 7H), 5.19 (bs, 1H), 5.16 (s, 2H), 4.42 (d, J=6.0 Hz, 2H), 1.56 (s, 9H).
-
- Benzyl 4-[[tert-butoxycarbonyl)amino](imino)methyl]benzylcarbamate (7) (2.5 g, 6.5 mmol) in 80 mL of methanol was stirred with 1.3 g of Pd—C (5 wt % Degussa type E101 NO/W, 50% H20) under hydrogen atmosphere for 1.5 h. The catalyst was removed by filtration and the solvent evaporated in vacuo yielding 1.51 g (93%) of the free amine (8). 1H NMR (500 MHz, CDCl3) δ 7.79 (br s, 2H), 7.36 (br s, 2H), 3.92 (br s, 2H), 1.54 (s, 9H); MS (ES+) m/z 250.44 (M+H+).
-
- To the Boc-amidine (8) (4.71 g, 18.9 mmol) in THF (100 mL) was added 15 mL saturated NaHCO3 solution, then followed by (6.4 g, 19 mmol) of Fmoc-Osu. The mixture was stirred at room temperature overnight. Ethyl acetate/water (1:1, 50 mL) was added and the layers separated. The aqueous layer was further extracted with ethyl acetate (3×100 mL). The combined organic layers were washed with brine, dried over MgSO4 and evaporated in vacuo. Purification by column chromatography on silica gel with DCM/MeOH (95:5) yielded (6.72 g, 76%) of the product (9). 1H NMR (500 MHz, CDCl3) δ 7.83 (d, J=8.0 Hz, 2H), 7.76 (d, J=7.5 Hz, 2H), 7.59 (d, J=7.0 Hz, 2H), 7.40 (t, J=7.5 Hz, 3H), 7.31 (t, J=7.5 Hz, 3H), 4.44 (d, J=7.0 Hz, 2H), 4.38 (d, J=6.0 Hz, 2H), 4.22 (t, J=6.0 Hz, 1H), 1.57 (s, 9H); MS (ES+) m/z 472.45 (M+H+).
-
- To Fmoc-Boc-amidine (9) (6.72 g, 14.2 mmol) was added 4N HCl in Dioxane (50 mL). After stirring at room temperature for 2 h, the solvent was removed in vacuo to give the HCl salt (10) that was used as is in the next step. MS (ES+) m/z 372.41 (M+H+).
-
- For loading onto the resin, 14.2 mmol of the crude free amidine (10) was premixed with DIEA (6.2 mL, 35 mmol) in 40 mL of DMF and added to (4.2 g, 7.1 mmol) of p-nitrophenyl Wang resin in DMF. The mixture was shaken for 5.5 h, and the resin filtered and washed with DCM, MeOH, DMF, MeOH and Ether (2× each) to yield 5.8 g of resin (11) (loading=0.71 mmol/g).
-
- To a solution of Boc-β-alanine (12) (1.0 g, 5.28 mmol) in DCM (30 mL) was added N,N-carbonyldiimidazole (856 mg, 5.81 mmol), followed by stirring at room temperature for 30 min. Diisopropylethylamine (1.0 mL, 5.81 mmol) and Weinreb amine (567 mg, 5.81 mmol) were added and the mixture stirred overnight. The solution was diluted with DCM (100 mL), washed with 5% citric acid (30 mL) and brine (30 mL), dried (MgSO4) and concentrated to obtain a colorless oil (13) (1.21 g, 99%). 1H NMR (400 MHz, CDCL3) δ 5.22 (br s, 1H), 3.68 (s, 3H), 3.41 (m, 2H), 3.18 (s, 3H), 2.63 (m, 2H), 1.42 (s, 9H); MS (ESI+) m/z 133.29 (M+H+-boc).
-
- To a stirred solution of the above Weinreb amide (13) (930 mg, 4.01 mmol) in THF (20 mL) at −10° C., was added LiAlH4 (2.1 ml, 2.1 mmol, 1M in ether). After the starting material was consumed completely (10-20 min), a saturated solution of KHSO4 in H2O (30 mL) was added slowly. The mixture was diluted with ether, stirred for 15 minutes and extracted with EtOAc (3×50 mL). The combined organic extracts were washed with saturated NaHCO3 (50 mL), brine (50 mL), dried (MgSO4), and concentrated to give an oil (14) (670 mg, 97%). 1H NMR (400 MHz, CDCL3) δ 9.80 (s, 1H), 4.89 (br s, 1H), 3.41 (m, 2H), 2.70 (m, 2H), 1.42 (s, 9H); MS (ESI+) m/z 118.31 (M+H+-isobutylene).
-
- A mixture of the above aldehyde (14) (400 mg, 2.31 mmol), triethyl trans-4-phosphono-2-butenoate (760 mg, 2.77 mmol), LiOH—H2O (116 mg, 2.77 mmol) and 4A molecular sieve (1.2 g) in THF (20 mL) was heated at reflux 1.5 hours. The molecular sieve was filtered through a short pad of Celite and washed with EtOAc (100 mL) and the filtrate concentrated to give sticky brown oil. The oily residue was diluted with 5% citric acid and extracted thrice with 100 mL of EtOAc. The combined extracts were washed with NaHCO3, brine, then dried over Na2SO4 and concentrated. Purification by flash chromatography (EtOAc: Hexanes=1:5) gave a colorless oil (15) (315 mg, 50%) of the desired compound. 1H NMR (400 MHz, CDCL3) δ 7.24 (dd, J=15.2, 10.8 Hz, 1H), 6.22 (dd, J=15.2, 10.8 Hz, 1H), 6.04 (quintet, J=7.2 Hz, 1H), 5.81 (d, J=15.2 Hz, 1H), 4.55 (br s, 1H), 4.19 (q, J=7.0 Hz, 2H), 3.23 (m, 2H), 2.36 (m, 2H), 1.43 (s, 9H), 1.29 (t, J=7.0 Hz, 3H); MS (ESI+) m/z 170.29 (M+H+-boc).
-
- To a solution of the above ethyl ester (15) (140 mg, 0.52 mmol) in absolute EtOH (4 mL) was added LiOH—H2O (0.75 mL, 1.5 mmol, 2N solution in water). The reaction was heated at 50° C. for 1 h, then concentrated to remove excess EtOH. After acidification with 5% citric acid (20 mL), the product was extracted with EtOAc (2×50 mL). The combined organic extracts were washed with brine (30 mL), dried (MgSO4) and concentrated to give a white solid (16) (110 mg, 88%). 1H NMR (400 MHz, CDCL3) δ 7.31 (dd, J=15.2, 10.8 Hz, 1H), 6.25 (dd, J=15.2, 10.8 Hz, 1H), 6.11 (quintet, J=7.2 Hz, 1H), 5.81 (d, J=15.2 Hz, 1H), 4.58 (br s, 1H), 3.24 (m, 2H), 2.37 (m, 2H), 1.44 (s, 9H); MS (ESI−) m/z 240.11 (M−H+).
-
- To the above Boc-compound (16) (1.50 g, 6.2 mmol) in DCM (10 mL) was added 5 mL of TFA. The mixture was stirred at room temperature for 1 h and concentrated to give a yellow solid. The above solid was taken up in sat NaHCO3 (50 mL)/THF (50 mL). To this was added Fmoc-Osu (2.14 g, 6.3 mmol) at room temperature. The suspension became clear within 30 min. After stirring at room temperature overnight, the solution was concentrated to remove organic solvent, and the resulting white suspension was acidified with 1 N HCl (50 mL) and extracted with EtOAc (3×100 mL). The combined organic extracts were dried (MgSO4) and concentrated to give a white solid (17) (2.2 g, 98%). MS (ES+) m/z 386.19 (M+Na+).
-
- A solution of isonipecotic acid (18) (2.6 g, 20 mmol) in 1,4-dioxane/H2O (3:2, 100 mL) was treated with NaHCO3 (8.4 g, 100 mmol, 20 mL H2O), followed by t-Boc2O (4.8 g, 22 mmol) at room temperature. After stirring for 3 h, the solution was acidified with 1 N HCl (50 mL), extracted with EtOAc (3×100 mL). The combined organic extracts were washed with saturated solution of NaHCO3 (50 mL), brine (50 mL), dried over MgSO4 and concentrated to give a white solid (19) (4.16 g, 91%). 1H NMR (500 MHz, CDCl3) δ 4.02 (br s, 2H), 2.86 (t, J=12.0 Hz, 2H), 2.50 (tt, J=11.0, 4.0 Hz, 1H), 1.91 (dd, J=13.0, 2.5 Hz, 2H), 1.65 (m, 2H), 1.46 (s, 9H), MS (ESI−) m/z 228.65 (M−H−).
-
- To a stirring suspension of t-Boc-isonipecotic acid (19) (2.34 g, 10.2 mmol) and the Weinreb amine (1.5 g, 15 mmol) in DMF (50 mL), was added triethylamine (2.8 mL, 20 mmol) at room temperature. After stirring for 10 min, HOBt (1.62 g, 12 mmol) was added, followed by EDCI (2.3 g, 12 mmol). The resulting solution was stirred overnight and concentrated. The residue was taken up in 1 N HCl (100 mL) and extracted with EtOAc (3×100 mL). The combined organic extracts were washed with sat NaHCO3 (50 mL), brine (50 mL), dried (MgSO4) and concentrated to obtain a colorless oil (20) (2.79 g, >100%). 1H NMR (500 MHz, CDCL3) δ 4.14 (m, 2H), 3.71 (s, 3H), 3.19 (s, 3H), 2.78 (m, 3H), 1.68 (m, 4H), 1.46 (s, 9H); MS (ESI+) m/z 217.72 (M+H+-isobutylene).
-
- To a stirred solution of the above Weinreb amide (20) (2.70 g, 10 mmol) in THF (100 mL) at −10° C. was added LiAlH4 (460 mg, 12 mmol). After the starting material was consumed completely (10-20 min), a solution of KHSO4 (2.8 g) in H2O (100 mL) was added slowly, then followed by 1 N HCl (50 mL). The mixture was stirred for 15 minutes and extracted with EtOAc (3×100 mL). The combined organic extracts were washed with sat NaHCO3 (50 mL), brine (50 mL), dried (MgSO4), and concentrated to give an oil (21) (2.14 g, 100%). 1H NMR (500 MHz, CDCL3) δ 9.66 (s, 1H), 3.98 (br d, J=11.5 Hz, 2H), 2.93 (m, 2H), 2.41 (m, 1H), 1.90 (m, 2H), 1.55 (m, 2H), 1.46 (s, 9H); MS (ESI+) m/z 158.67 (M+H+-isobutylene).
-
- A mixture of the above aldehyde (21) (2.10 g, 10 mmol), triethyl trans-4-phosphono-2-butenoate (3.0 g, 12 mmol), LiOH—H2O (510 mg, 12 mmol) and 4A molecular sieve (5 g) in THF (100 mL) was heated at reflux 1.5 hours. The molecular sieve was filtered through a short pad of Celite and washed with EtOAc (100 mL) and the filtrate concentrated to give sticky brown oil. The oily residue was diluted with 5% citric acid and extracted thrice with 100 mL of EtOAc. The combined extracts were washed with NaHCO3, brine, then dried over Na2SO4 and concentrated. Purification by flash chromatography (EtOAc: Hexanes=1:5) gave a white solid (22) (2.95 g, 95%) of the desired compound. 1H NMR (500 MHz, CDCL3) δ 7.24 (dd, J=15.5, 10.5 Hz, 1H), 6.16 (dd, J=15.5, 10.5 Hz, 1H), 6.04 (dd, J=15.5, 7.0 Hz, 1H), 5.82 (d, J=15.5 Hz, 1H), 4.20 (q, J=7.0 Hz, 2H), 4.10 (m, 2H), 2.75 (m, 2H), 2.25 (m, 1H), 1.71 (m, 2H), 1.46 (s, 9H), 1.34 (m, 2H), 1.29 (t, J=7.0 Hz, 3H); MS (ESI+) m/z 210.75 (M+H+-boc).
-
- A solution of the above ethyl ester (22) (2.60 g, 8.4 mmol) in absolute EtOH (30 mL) was added LiOH—H2O (720 mg, 17 mmol, in 10 mL of water). The reaction was heated to 50° C. for 1 h, then concentrated to remove excess EtOH. After acidification with 5% citric acid (50 mL), the product was extracted with EtOAc (2×100 mL). The combined organic extracts were washed with brine (100 mL), dried (MgSO4) and concentrated to give a white solid (23) (2.32 g, 98%). 1H NMR (500 MHz, CDCL3) δ 7.31 (dd, J=15.5, 11.0 Hz, 1H), 6.18 (dd, J=15.5, 11.0 Hz, 1H), 6.08 (dd, J=15.5, 7.0 Hz, 1H), 5.80 (d, J=15.5 Hz, 1H), 4.10 (m, 2H), 2.75 (m, 2H), 2.25 (m, 1H), 1.70 (m, 2H), 1.44 (s, 9H), 1.33 (m, 2H); MS (ESI−) m/z 280.74 (M−H+).
-
- To the above Boc-compound (23) (2.50 g, 8.4 mmol) in DCM (20 mL) was added 10 mL of TFA. The mixture was stirred at room temperature for 1 h and concentrated to give a yellow solid (24). 1H NMR (500 MHz, CD3OD) δ 7.25 (dd, J=15.5, 11.0 Hz, 1H), 6.34 (dd, J=15.5, 11.0 Hz, 1H), 6.12 (dd, J=15.5, 7.0 Hz, 1H), 5.87 (d, J=15.5 Hz, 1H), 3.41 (m, 2H), 3.04 (dd, J=12.5, 2.5 Hz, 2H), 2.50 (m, 1H), 2.00 (m, 2H), 1.62 (m, 2H); MS (ESI−) m/z 182.73 (M−H+).
-
- The above solid (24) was taken up in saturated NaHCO3 (50 mL)/THF (50 mL). To this was added Fmoc-Osu (3.0 g, 9.0 mmol) at room temperature. The suspension became clear within 30 min. After stirring at room temperature overnight, the solution was concentrated to remove organic solvent, the resulting white suspension was acidified with 1 N HCl (50 mL) and extracted with EtOAc (3×100 mL). The combined organic extracts were dried (MgSO4) and concentrated to give a white solid (25) (3.63 g, >100%). 1H NMR (500 MHz, CDCL3) δ 7.77 (d, J=7.5 Hz, 2H), 7.58 (d, J=8.0 Hz, 2H), 7.40 (t, J=7.5 Hz, 2H), 7.34 (dd, J=15.0, 11.0 Hz, 1H), 7.32 (t, J=7.5 Hz, 2H), 6.21 (dd J=15.0, 11.0 Hz, 1H), 6.09 (dd, J=15.0, 7.0 Hz, 1H), 5.85 (d, J=15.5 Hz, 1H), 4.45 (br s, 2H), 4.18 (m, 3H), 2.83 (br s, 2H), 2.31 (m, 1H), 1.72 (m, 2H), 1.26 (m, 2H); MS (ES+) m/z 404.81 (M+H+).
-
- To a suspension of 4-(4-aminophenyl)butyric acid (3.0 g, 16.7 mmol) in 30 mL of saturated NaHCO3 was added Fmoc-Osu and 20 mL of THF. The mixture was stirred at room temperature overnight. After dilution with 1 N HCl, the product was extracted with ethyl acetate (3×100 mL). The combined extracts were washed with dilute HCl, brine, dried (Na2SO4) and concentrated to give a white solid 6.6 g (26) (98%). 1H NMR (500 MHz, CD3OD) δ 7.80 (m, 2H), 7.70 (m, 2H), 7.39 (m, 3H), 7.32 (m, 4H), 7.90 (m, 2H), 4.46 (m, 2H), 4.27 (t, J=7.0 Hz, 1H), 2.60 (t, J=8.0 Hz, 2H), 2.28 (t, J=7.0 Hz, 2H), 1.87 (m, 2H); MS (ESI+) m/z 424.19 (M+Na+).
-
- A solution of t-Boc2O (1.6 g, 7.34 mmol) in DCM (30 mL) was added dropwise over 45 minutes to a stirring solution of 1,4-bis(aminomethyl)xylene (2.0 g, 14.7 mmol) and TEA (5 mL, 36.7 mmol) in 50 mL of DCM. After stirring for 4 h, the reaction was diluted with water and extracted thrice with 75 mL each of DCM. The combined extracts were washed with water, 5% citric acid, brine, dried (Na2SO4) and concentrated, to give a white solid 0.73 g (27) (42%). 1H NMR (500 MHz, CD3OD) δ 7.26 (m, 5H), 4.83 (br s, 1H), 4.29 (m, 2H), 3.85 (s, 2H), 1.46 (s, 9H); MS (AP+) m/z 237.4 (M+H+).
-
- A mixture of the above compound (27) (2.0 g, 8.5 mmol) and succinic anhydride (0.85 g, 8.5 mmol) in DCM (50 mL) were stirred at 36° C. for several hours. The product was diluted with 5% citric acid and extracted with DCM (3×50 mL). The combined extracts were washed with brine and dried over MgSO4 to give 2.1 g (28) (72%) of the desired compound. MS (ESI−) m/z 335.23 (M−H+).
-
- Methyl hydrazinocarboxylate (14.3 g, 159.0 mmol) was dissolved in THF (500 mL) under argon. 1,1-carbonyldiimidazole (25.8 g, 159.0 mmol) was added and the mixture stirred for 15 min at room temperature. 1-Aminomethylnaphthalene (25.0 g, 159.0 mmol) was added and the mixture stirred overnight. The reaction was evaporated to dryness. DCM (200 mL) was added and the solution cooled at −20° C. for 2 h, to this was added 100 mL of Et2O. The product was collected by filtration, washed with Et2O (2×150 mL) and dried to give 30.2 g (69%) of the product as an off-white solid. The crude product was heated at reflux for 6 h with K2CO3 (30.5 g, 220.6 mmol) in 400 mL of MeOH, then concentrated to dryness. The residue was redissolved in water (250 mL) and washed with 300 mL of ethyl acetate. The aqueous layer was acidified with conc. HCl (pH=1-2), which led to product precipitation. After filtration, the product was washed with water (2×200 mL) and vacuum-dried overnight to give 17.1 g (64%) of an off-white solid (30). 1H NMR (500 MHz, DMSOD6) δ 10.27 (s, 2H), 8.27 (d, J=8.5 Hz, 1H), 7.95 (d, J=8.5 Hz, 1H), 7.86 (d, J=8.5 Hz, 1H), 7.55 (m, 2H), 7.46 (t, J=(d, J=8.0 Hz, 1H), 7.32 (d, J=7.0 Hz, 1H), 5.00 (s, 2H); MS (ESI+) m/z 242.22 (M+H+).
-
- Resin bound 1,4-bis(aminomethyl)-benzene (500 mg, 0.35 mmol, 0.69 mmol/g loading) was coupled to the Fmoc-piperidine dienoic acid (3.0 equiv) in the presence of BOP (3 equiv), HOBT (3 equiv) in N,N-dimethylformamide (DMF, 8 mL) at room temperature for 4 h to give the corresponding polymer-bound Fmoc-diene. Kaiser test was negative. Deprotection of the Fmoc with 25% piperidine/DMF (positive chloranil), followed by coupling with Fmoc-4-aminobutyric acid (3 equiv), employing the above conditions and reagent equivalents, provided the intermediate Fmoc-butyric acid diene amide. Final Fmoc removal and subsequent coupling with 2-[4-[(tert-butoxycarbonyl)amino]phenyl]acetic acid (3 equiv) under the above conditions and reagent equivalents completed the chain length and set the stage for the penultimate Diels-Alder reaction step. Exposing this extended dienyl unit to 4-(1-Naphthylmethyl)-1,2,4-triazolidine-3,5-dione (3 equiv) in the presence of [bis(trifluoroacetoxy)iodo]benzene (3 equiv) for 3 h at room temperature efficiently yielded the resin-bound compound inhibitor. The desired product was cleaved from the resin in concert with the t-boc protecting group on treatment with 95% TFA/H2O for 90 minutes. The supernatant was collected and combined with washes (2×1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in TFA (250 μL) and triturated with Et2O. After centrifugation (3000 rpm), the solid product was collected, dried and use as is in the following step. MS (ESI+) m/z 757.50 (M+H+).
-
- The crude adduct (31) was treated with a saturated solution of NaHCO3 (5 mL) and stirred at room temperature for 20 minutes. The mixture was concentrated to dryness resulting in a white powder. The solid was re-suspended in dry methanol (10 mL), centrifuged at 3000 rpm, filtered and concentrated. The resulting oily residue was stirred with excess acetic anhydride in DCM for 12 h and concentrated. Purification by HPLC afforded the desired bis-acetylated compound (32) in a 1:1 isomeric ratio in quantitative yield. MS (ESI+) m/z 841.20 (M+H+).
-
- A solution of 31 (150 mg) in MeOH (5 mL) was subjected to catalytic hydrogenation with 10% Pd/C for 2 h. After removal of the catalyst by filtration, the solvent was evaporated and the desired product purified by HPLC (33). MS (ESI+) m/z 759.70 (M+H+).
-
- Resin bound 1,4-bis(aminomethyl)-benzene (200 mg, 0.14 mmol, 0.69 mmol/g loading) was coupled to the Fmoc-piperidine dienoic acid (3.0 equiv) in the presence of BOP (3 equiv), HOBT (3 equiv) in N,N-dimethylformamide (DMF, 8 mL) at room temperature for 4 h to give the corresponding polymer-bound Fmoc-diene. Kaiser test was negative. Deprotection of the Fmoc with 25% piperidine/DMF (positive chloranil), followed by coupling with Fmoc-4-aminobutyric acid (3 equiv), employing the above conditions and reagent equivalents, provided the intermediate Fmoc-butyric acid diene amide. Final Fmoc removal and subsequent coupling with 2-[4-[(tert-butoxycarbonyl)amino]phenyl]acetic acid (3 equiv) under the above conditions and reagent equivalents completed the chain length and set the stage for the Diels-Alder reaction step. Exposing this extended dienyl unit to 4-(1-Naphthylmethyl)-1,2,4-triazolidine-3,5-dione (3 equiv) in the presence of [bis(trifluoroacetoxy)iodo]benzene (3 equiv) for 3 h at room temperature efficiently yielded the resin-bound bicyclic compound. Following the Diels-Alder reaction, the resin-bound β-strand mimetic was treated with DBU (3 equiv) in DCM for 2 h at room temperature. The desired product was cleaved from the resin in concert with the t-boc protecting group on treatment with 95% TFA/H2O for 90 minutes. The supernatant was collected and combined with washes (2×1 mL 95% aq TFA). The residue obtained after evaporation of the solution was redissolved in TFA (250 μL) and triturated with Et2O. After centrifugation (3000 rpm), the solid product was collected and dried (34). MS (ESI+) m/z 757.50 (M+H+) and tR 12.78(B) min.
-
TABLE 3 REPRESENTATIVE COMPOUNDS Z R6 (point of attachment R5 (point of attachment at Cpd # at X1) (point of attachment at X3) X5) [M + H]+ RT Method 1 757.5 18.07(B) A2 2 764.5 10.41(B) A1 3 811.9 22.43(B) A2 4 757.5 12.47(B) A1 5 757.7 12.78(B) A1 6 757.9 6.54(B) A2 7 729.9 0.92(A) A1 8 743.9 1.12(A) A1 9 783.5 19.74(B) A2 10 812.0 1.12(A) A1 11 806.0 1.12(A) A1 12 729.9 0.95(A) A1 13 743.9 0.95(A) A1 14 783.5 19.87(B) A2 15 806.0 1.38(A) A1 16 736.9 0.59(A) A1 17 750.9 0.60(A) A1 18 819.0 0.92(A) A1 19 812.9 0.73(A) A1 20 736.9 0.67(A) A1 21 750.9 0.69(A) A1 22 764.9 0.62(A) A1 23 819.0 0.80(A) A1 24 812.9 0.96(A) A1 25 631.0 1.17(A) A1 26 693.0 0.87(A) A1 27 707.6 8.60(B) A2 28 786.7 0.88(A) A1 29 814.8 0.93(A) A1 30 771.9 1.10(A) A1 31 700.4 1.22(A) A2 32 757.4 1.14(A) A2 33 771.4 1.16(A) A2 34 785.4 1.14(A) A2 35 799.4 1.40(A) A2 36 813.4 1.38(A) A2 37 823.4 1.19(A) A2 38 828.5 0.96(A) A2 39 742.8 1.10(A) A2 40 756.3 1.10(A) A2 41 713.3 1.10(A) A2 42 771.9 0.92(A) A1 43 771.9 0.95(A) A1 44 785.0 0.92(A) A1 45 786.0 1.80(A) A1 46 801.0 0.78(A) A1 47 801.0 .82(A) A1 48 786.9 .77(A) A1 49 786.9 0.92(A) A1 50 786.9 0.84(A) A1 51 786.9 0.81(A) A1 52 781.9 0.93(A) A1 53 781.9 0.97(A) A1 54 822.0 0.96(A) A1 55 822.0 1.00(A) A1 56 783.7 18.00(B) A2 57 764.7 6.57(B) A2 58 659.6 12.48(B) A2 59 785.8 7.50(B) A2 60 798.8 7.63(B) A2 61 770.8 18.48(B) A2 62 784.9 15.5(B) A2 63 770.9 19.27(B) A2 64 777.9 11.16(B) A2 65 821.5 18.00(B) A2 66 693.8 1.25(A) A2 67 724.5 7.00(B) A2 68 723.9 1.38(A) A2 69 765.5 21.61(B) A2 70 836.0 1.25(A) A2 71 708.8 1.03(A) A2 72 707.8 1.25(A) A2 73 758.9 1.13(A) A2 74 738.6 33.00(B) A2 75 737.9 12.2(B) A2 76 800.6 10.00(B) A2 77 850.0 1.00(A) A2 78 722.9 1.07(A) A2 79 721.9 8.01(B) A2 80 772.9 1.45(A) A2 81 841.4 32.00(B) A2 82 757.4 5.80(B) A2 83 707.3 12.19(B) A2 84 764.4 17.44(B) A2 85 759.4 17.77(B) A2 86 790.2 24.82(B) A1 87 790.2 16.13(B) C -
TABLE 4 REPRESENTATIVE COMPOUNDS Z R6 Cpd # (point of attachment at X1) (point of attachment at X5) [M + H]+ RT Method 88 617.3 0.68(A) E 89 630.2 0.65(A) E 90 510.3 1.56(A) C 91 675.3 1.04(A) C 92 680.1 10.01(B) C 93 734.1 9.00(B) C 94 669.3 0.92(A) C 95 658.3 0.85(A) C 96 674.3 0.88(A) C 97 643.3 0.56(A) B 98 643.3 0.55(A) B 99 775.4 9.50(B) B 100 639.2 11.8(B) B 101 696.2 0.92(A) B 102 696.7 0.91(A) B 103 682.2 9.95(B) B 104 646.2 0.81(A) B 105 677.2 9.75(B) B 106 662.2 25.95(B) B 107 770.1 8.83(B) C 108 637.2 13.62(B) B 109 504.2 1.52(B) A2 110 546.6 16.09(B) A2 111 572.3 1.04(A) D 112 610.4 0.74(A) D 113 600.3 0.82(A) D 114 610.4 0.89(A) D 115 654.4 0.78(A) D 116 595.4 0.14(A) D 117 609.4 1.14(A) D 118 630.4 0.93(A) D 119 636.4 0.14(A) D 120 600.3 0.78(A) D 121 623.4 0.68(A) D 122 609.4 0.19(A) D 123 602.3 0.18(A) D 124 575.3 1.08(A) D 125 567.3 1.29(A) D 126 589.3 0.92(A) D 127 589.3 0.14(A) D 128 575.3 1.89(A) D 129 589.3 1.06(A) D 130 581.4 0.14(A) D 131 589.3 0.14(A) D 132 630.3 0.47(A) D 133 595.4 0.14(A) D 134 617.4 0.14(A) D 135 603.3 0.50(A) D 136 598.3 0.53(A) D 137 595.4 0.13(A) D 138 666.3 0.92(A) D - Tryptase inhibition assay was performed at room temperature in 96-well microplates using a Bio-Rad Model 3550 (Bio-Rad Laboratories, Inc., Cambridge, Mass.), SpectroMax (Molecular Devices, Model 250, Sunnyvale, Calif.) or Fluoroskan Ascent fluorescence (Labsystems, Inc., Helsinki, Finland) plate reader. Either 1 mM solutions of test compounds in water or 10 mM solutions of test compounds in DMSO served as the stock solutions for each inhibition assay. For this assay, the release of pNA from the chromogenic substrate S-2366, L-pyroGlu-Pro-Arg-pNA (Km=242 μM) (diaPharma, West Chester, Ohio) was monitored at 405 nm. The reaction progress curves were recorded by reading the plates, typically 80 times with 24 s intervals. The general format of the assays are as follows: 100 μl of an inhibitor solution and 50 μl of enzyme solution were placed in a microplate well, incubated at room temperature for 30 min, and then 100 μl of substrate solution was added to initiate the reaction. In the tryptase assay, 0.2 nM human lung tryptase (Elastin Products Company, Inc., Owensville, Mo.) and 200 μM S-2366 were used in Tris buffer, pH 8.0. Initial rates were determined by unweighted nonlinear least-squares fitting to a first-order reaction in either GraFit (Erithacus Software Ltd., London, UK) or GraphPad Prism (GraphPad Software, Inc., San Diego, Calif.). The determined initial velocities were then nonlinear least-squares fitted against the concentrations of a tested compound using either GraFit or GraphPad Prism to obtain Ki.
- Preferably, the compounds of this invention have an inhibition value of greater than 70% at 400 ηM and/or less than Ki of 300 ηM in this assay. To this end, preferred compounds of this invention are compounds 1, 3, 6, 13, 14, 16, 20, 22, 27, 39-42, 44, 52, 57, 58, 60, 61, 64, 79, 82, 87, 123, 127, 132 and 134. As such, the compounds of this invention effectively inhibit tryptase and are effective in the treatment of inflammatory related diseases.
- From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims (27)
1. A compound having the structure:
or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein
A and A′ are the same or different and independently N or CH;
B is —C(R1)(NHZ)-, —N(Z)- or —C(R)(Z)-;
X is a substituted or unsubstituted divalent heterocycle;
Y and Z represent the remainder of the molecule;
R1, R2, R3, R4 and R5 are the same or different and independently an amino acid side chain moiety or an amino acid side chain derivative; and
any two adjacent CH groups or adjacent NH and CH groups of the fused bicyclo compound optionally form a double bond.
2. The compound according to claim 1 wherein B is —C(R1)(NHZ)-.
3. The compound according to claim 1 wherein A is CH.
4. The compound according to claim 1 wherein A′ is CH.
5. The compound according to claim 1 wherein B is —C(R1)(Z)-.
6. The compound according to claim 5 wherein A is CH.
7. The compound according to claim 5 wherein A′ is CH.
8. The compound according to claim 1 wherein B is —N(Z)-.
9. The compound according to claim 8 wherein A is CH.
10. The compound according to claim 8 wherein A′ is CH.
11. The compound according to claim 8 wherein R2 is hydrogen.
12. The compound according to claim 11 wherein R3 is hydrogen.
14. The compound according to claim 1 wherein Y and Z are the same or different and independently an amino acid side chain moiety or an amino acid side chain derivative.
15. The compound according to claim 1 wherein Y and Z are the same or different and independently a substituted or unsubstituted alkyl, aryl, arylalkyl, heterocycle, heterocyclealkyl, heteroaryl or heteroarylalkyl.
16. The compound according to claim 13 wherein
Y is —NHR6;
R6 is
1) —(CH2)l—NHRt,
2) —(CH2)l-Het-NHRt,
3) —(CH2)o-aryl-(CH2)n—Rt,
4) —(CH2)o-aryl-(CH2)n—NHRt,
5) —(CH2)o-cyclohexyl-(CH2)m—NHRt,
6) —(CH═CH)k—(CH2)p—NHRt,
Rt is
1) hydrogen,
2) —C(═NH)—NH2, or
3) a group selected from: —C(═O)O—R7, —C(═O)NH—R7, —S(O2)—R7, —C(═O)—R7, and hydrogen,
wherein
R7 is R7a, R7b, R7c or R7d;
R7a is alkyl or aminoalkyl optionally and independently substituted with one or more substituents independently selected from Rs;
R7b is aryl, arylalkyl or Het optionally and independently substituted with one or more substituents independently selected from Rs;
R7c is phenyl, benzyl or phenethyl optionally and independently substituted with one or more substituents independently selected from Rs;
R7d is
1) —(CH2)l—NRdRd′,
2) —(CH2)l—CO2Re,
3) —(CH2)m-aryl-(CH2)n—NRdRd′,
4) —(CH(NRdRd′)—(CH2)o—NRdRd′,
5) —(CH2)m-1,4cyclohexyl-(CH2)n—NRdRd′,
6) —(CH═CH)k—(CH2)p—NRdRd′,
Rd and Rd′ are the same or different and independently selected from
1) hydrogen,
2) —C(═O)-alkyl,
3) —C(═O)-alkenyl,
4) —C(═O)-alkynyl,
5) —C(═O)-aryl,
6) —C(═O)-arylalkyl,
7) —C(═O)-Het,
8) a group selected from: —C(═O)O—R7, —C(═O)NH—R7, —S(O2)—R7, —C(═O)—R7, and hydrogen,
9) —C(═O)-alkyl-NH2,
10) —C(═O)(CH2)m-aryl-(CH2)n—NH2,
11) —C(═O)(CH2)m-aryl-(CH2)n-Het,
12) —C(═O)(CH2)m-1,4 cyclohexyl-(CH2)n—NH2,
13) —C(═O)(CH2)m-aryl-OH,
14) —C(═O)(CH2)m-aryl-SO2—NH2,
15) —C(═O)(CH2)m-aryl-(CH2)n—NHC(═O)-alkyl,
16) —C(═O)(CH2)m-Het,
17) —C(═O)(CH2)m—S-Het,
18) —SO2-aryl,
19) —SO2-aryloxy, and
20) —SO2-arylalkyl,
wherein alkyl, alkenyl, alkynyl, aryl, arylalkyl, aryloxy and Het are optionally and independently substituted with one or more substituents independently selected from Rs;
Re and Re′ are the same or different and independently selected from
1) hydrogen,
2) alkyl,
3) alkenyl,
4) alkynyl,
5) aryl,
6) arylalkyl,
7) Het,
8) -alkylaryl,
9) —(CH2)o-aryl-(CH2)m—NH2,
10) —(CH2)o—NH-aryl,
11) —(CH2)o-1,4cyclohexyl-(CH2)m—NH2,
12) —(CH2)o-aryloxy,
13) —(CH2)o-aryl-NH2,
wherein alkyl, alkenyl, alkynyl, aryl, arylalkyl and Het are optionally and independently substituted with one or more substituents independently selected from Rs;
Rs is
1) halogen,
2) hydrogen,
3) lower alkyl
4) —CN,
5) —CF3,
6) —C(═O)ORe,
7) —C(═O)Re,
8) —C(═NH)—NH2,
9) —C(═NRd)(NRdRd′),
10) —NRdRd′,
11) —NReC(═O)Re,
12) —NReC(═O)ORe,
13) —NReC(═O)NReRe′,
14) —NH—C(═NH)NH2,
15) —NO2,
16) —OCF3,
17) —OH,
18) —ORe,
19) —OC(═O)Re,
20) —OC(═O)NReRe′,
21) —SRe,
22) —S(O)kRe,
23) —S(O)2ORe,
24) —S(O)kNReRe′, or
25) a group selected from: —C(═O)O—R7, —C(═O)NH—R7, —S(O2)—R7, —C(═O)—R7, and hydrogen;
Rd and Rd′ taken together with the atoms to which they are attached form a mono- or bi-cyclic heterocyclic ring of 3 to 7 members each containing 0-3 additional heteroatoms each independently selected from nitrogen, oxygen and sulfur;
Re and Re′ taken together with the atoms to which they are attached form a mono- or bi-cyclic heterocyclic ring of 3 to 7 members each containing 0-3 additional heteroatoms each independently selected from nitrogen, oxygen and sulfur;
k is an integer from 1 to 2;
l is an integer from 1 to 10;
m is a number from 0 to 4;
n is a number from 0 to 4;
o is an integer from 1 to 4;
p is an integer from 1 to 2; and
Het is heterocycle, heterocyclealkyl, heteroaryl or heteroarylalkyl.
17. The compound of claim 16 ,
wherein
Z is
1) hydrogen,
2) alkyl,
3) alkoxy,
4) phenyl,
5) benzyl,
6) phenethyl,
7) 1-napthylmethyl,
8) 2-napthylmethyl,
9) phenylbenzyl,
10) biphenyl,
11) aminoalkyl,
12) aryl,
13) arylalkyl,
14) Het,
b 15) a group selected from R7d,
16) —(CH2)o—N(RdRd′),
17) —(CH2)m-aryl-NHRt
18) —(CH2)m-aryl-NRdRd′,
19) —(CH2)o—CO2Re,
20) —(CH2)o—C(═O)—NReRe′,
21) —(CH2)o—O—Rf,
22) —(CH2)o—SO2-aryl, or
23) —(CH2)o-Het,
wherein alkyl, phenyl, benzyl, phenethyl, 1-napthylmethyl, 2-napthylmethyl, phenylbenzyl, biphenyl, aminoalkyl, aryl, arylalky and Het are optionally and independently substituted with one or more substituents independently selected from Rs;
Rf is selected from
1) hydrogen,
2) alkyl,
3) alkenyl,
4) alkynyl,
5) aryl,
6) arylalkyl,
7) Het,
8) alkylaryl,
9) —C(═O)-alkyl,
10) —C(═O)-aryl,
11) —C(═O)-arylalkyl,
12) —C(═O)-Het,
13) —C(═O)-alkylaryl,
14) —C(═O)—NH-alkyl,
15) —C(═O)—NH-aryl,
16) —C(═O)—NH-arylalkyl,
17) —C(═O)—NH-Het, and
18) —C(═O)—NH-alkylaryl.
21. A composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
22. A library of compounds comprising a plurality of library members, wherein at least one library member is a compound of claim 1 .
23. A method for treating an inflammatory disorder comprising administering to a warm-blooded animal in need thereof an effective amount of the composition of claim 21 .
24. The method of claim 23 wherein the disorder is allergic airway inflammation.
25. A method of treating a condition in a mammal, the treatment of which is effected or facilitated by a decrease in tryptase activation, comprising administering to a mammal in need thereof an effective amount of the composition of claim 21 .
26. The method of claim 25 wherein the condition is asthma, pulmonary fibrosis, interstitial pneumonia, nephritis, hepatic fibrosis, hepatitis, hepatic cirrhosis, scleroderma, psoriasis, atopic dermatitis, chronic rheumatoid arthritis, influenza, Crohn's disease, ulcerative colitis, inflammatory bowel disease, nasal allergy, atherosclerosis or post-operative ileus, comprising administering to a mammal in need of such treatment an amount of the composition effective in treating such condition.
27. The method of claim 26 wherein the condition is post-operative ileus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/295,833 US20060084653A1 (en) | 2002-02-14 | 2005-12-06 | Beta-sheet mimetics and composition and methods relating thereto |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35726102P | 2002-02-14 | 2002-02-14 | |
US10/367,575 US7053214B2 (en) | 2002-02-14 | 2003-02-14 | β-sheet mimetics and composition and methods relating thereto |
US11/295,833 US20060084653A1 (en) | 2002-02-14 | 2005-12-06 | Beta-sheet mimetics and composition and methods relating thereto |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/367,575 Division US7053214B2 (en) | 2002-02-14 | 2003-02-14 | β-sheet mimetics and composition and methods relating thereto |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060084653A1 true US20060084653A1 (en) | 2006-04-20 |
Family
ID=27734741
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/367,575 Expired - Fee Related US7053214B2 (en) | 2002-02-14 | 2003-02-14 | β-sheet mimetics and composition and methods relating thereto |
US11/295,833 Abandoned US20060084653A1 (en) | 2002-02-14 | 2005-12-06 | Beta-sheet mimetics and composition and methods relating thereto |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/367,575 Expired - Fee Related US7053214B2 (en) | 2002-02-14 | 2003-02-14 | β-sheet mimetics and composition and methods relating thereto |
Country Status (7)
Country | Link |
---|---|
US (2) | US7053214B2 (en) |
EP (1) | EP1482941A4 (en) |
JP (1) | JP2005526722A (en) |
CN (1) | CN1642550A (en) |
AU (1) | AU2003219809A1 (en) |
CA (1) | CA2476113A1 (en) |
WO (1) | WO2003068237A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6117896A (en) * | 1997-02-10 | 2000-09-12 | Molecumetics Ltd. | Methods for regulating transcription factors |
US6479297B1 (en) * | 2000-08-31 | 2002-11-12 | Micron Technology, Inc. | Sensor devices, methods and systems for detecting gas phase materials |
JP2006514646A (en) * | 2002-12-13 | 2006-05-11 | スミスクライン ビーチャム コーポレーション | Cyclohexyl compounds as CCR5 antagonists |
CA2733247C (en) * | 2008-08-14 | 2018-04-03 | Beta Pharma Canada Inc. | Heterocyclic amide derivatives as ep4 receptor antagonists |
DE102010025663A1 (en) * | 2010-06-30 | 2012-01-05 | Karl-Heinz Glüsenkamp | Novel beta-aminoaldehyde derivatives, processes for their preparation and their chemical use as reactive intermediates |
CN106543088B (en) * | 2016-10-25 | 2019-03-29 | 西华大学 | SIRT2 protein inhibitor and application thereof in pharmacy |
CN115894447B (en) * | 2021-09-22 | 2024-10-01 | 成都先导药物开发股份有限公司 | METTL3 inhibitors and uses thereof |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4307094A (en) * | 1979-07-23 | 1981-12-22 | Hoffmann-La Roche Inc. | Triazolopyridazine derivatives |
US4479937A (en) * | 1983-02-24 | 1984-10-30 | Zeria Shinyaku Kogyo Kabushiki Kaisha | Process of treating inflammation with human urinary thiol protease inhibitor |
US4704359A (en) * | 1984-04-14 | 1987-11-03 | Suntory Limited | Protease and process for production and use thereof |
US4767871A (en) * | 1985-04-30 | 1988-08-30 | Eli Lilly And Company | Pyrazolidinium ylides |
US4885023A (en) * | 1986-12-24 | 1989-12-05 | Kumiai Chemical Industry Co., Ltd. | Thiadiazabicyclononane derivatives and herbicidal compositions |
US5049181A (en) * | 1988-11-25 | 1991-09-17 | Ciba-Geigy Corporation | Novel herbicidally active n-phenyl-azoles |
US5180418A (en) * | 1990-07-23 | 1993-01-19 | Ciba-Geigy Corporation | Herbicidally active thiadiazabicyclononanes and nonenes |
US5552400A (en) * | 1994-06-08 | 1996-09-03 | Sterling Winthrop Inc. | Fused-bicyclic lactams as interleukin-1β converting enzyme inhibitors |
US5756466A (en) * | 1994-06-17 | 1998-05-26 | Vertex Pharmaceuticals, Inc. | Inhibitors of interleukin-1β converting enzyme |
US6020331A (en) * | 1995-03-24 | 2000-02-01 | Molecumetics, Ltd. | β-sheet mimetics and use thereof as protease inhibitors |
US6034066A (en) * | 1995-07-17 | 2000-03-07 | Peptide Therapeutics Limited | Cysteine protease inhibitors for use in treatment of IGE mediated allergic diseases |
US6117896A (en) * | 1997-02-10 | 2000-09-12 | Molecumetics Ltd. | Methods for regulating transcription factors |
US6245764B1 (en) * | 1995-03-24 | 2001-06-12 | Molecumetics Ltd. | β-sheet mimetics and use thereof as inhibitors of biologically active peptides or proteins |
US6699869B1 (en) * | 1995-03-24 | 2004-03-02 | Myriad Genetics Inc. | β-sheet mimetics and use thereof as inhibitors of biologically active peptides or proteins |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE228812C (en) | ||||
CA593525A (en) | 1960-03-01 | La Grone Clarke Robert | 1,6,8-triazabicyclo(4,3,0)-3-nonene-7,9-diones | |
AU1787783A (en) | 1982-09-02 | 1984-03-08 | Nippon Kayaku Kabushiki Kaisha | Nitrogen containing heterocyclic |
JPS59172491A (en) | 1983-03-18 | 1984-09-29 | Sumitomo Chem Co Ltd | 4-Phenylurazole derivative, its production method and herbicide containing it as an active ingredient |
JPH01121290A (en) | 1987-10-31 | 1989-05-12 | Kumiai Chem Ind Co Ltd | Tetrahydrotriazopyridazin-3-thioxo-1(2H)-one derivatives and herbicides |
DE3813884A1 (en) | 1988-04-20 | 1989-11-16 | Schering Ag | Substituted 1-oxo-3-thioxo-2,3,5,8-tetrahydro-1H-[1,2,4]-triazolo[1,2- alpha ]pyridazine s, processes for their preparation, and their use as herbicides |
ATE164593T1 (en) | 1992-02-14 | 1998-04-15 | Merrell Pharma Inc | AMINOACETYLMERCAPTOACETYLAMIDE DERIVATIVES WITH ENKEPHALINASE AND ACE INHIBITORY EFFECTS |
CA2133963C (en) | 1992-05-15 | 1998-07-07 | Gary A. Flynn | Novel mercaptoacetylamido pyridazo[1,2]pyridazine, pyrazolo[1,2]pyridazine, pyridazo[1,2-a][1,2]diazepine and pyrazolo[1,2-a][1,2]diazepine derivatives useful as inhibitors of enkephalinase and ace |
RU2124503C1 (en) | 1992-05-18 | 1999-01-10 | И.Р.Сквибб энд Санз, Инк. | Heterocyclic nitrogen-containing derivatives of carboxylic acid, method of their synthesis, pharmaceutical composition |
US5635502A (en) | 1992-10-30 | 1997-06-03 | Merrell Pharmaceuticals Inc. | Mercaptoacetylamide bicyclic lactam derivatives useful as inhibitors of enkephalinase and ACE |
US5716929A (en) | 1994-06-17 | 1998-02-10 | Vertex Pharmaceuticals, Inc. | Inhibitors of interleukin-1β converting enzyme |
NZ297360A (en) | 1994-12-22 | 2000-03-27 | Iaf Biochem Int | 5-oxo-5H-thiazolo[3,2-a]pyridine, 5-oxo-2-thia-4a,7-diaza-naphthalene, 4-oxo-octahydro-pyrrolo[1,2-a]pyrazine or 6-oxo-octahydro-pyrido-[2,1-c][1,4]thiazine derivatives and medicaments |
US5877313A (en) | 1995-05-17 | 1999-03-02 | Bristol-Myers Squibb | Benzo-fused azepinone and piperidinone compounds useful in the inhibition of ACE and NEP |
ATE230414T1 (en) * | 1998-02-12 | 2003-01-15 | Molecumetics Ltd | BETA SHEET MIMETICS AND METHOD OF USE THEREOF |
-
2003
- 2003-02-14 CN CNA038064715A patent/CN1642550A/en active Pending
- 2003-02-14 CA CA002476113A patent/CA2476113A1/en not_active Abandoned
- 2003-02-14 US US10/367,575 patent/US7053214B2/en not_active Expired - Fee Related
- 2003-02-14 AU AU2003219809A patent/AU2003219809A1/en not_active Abandoned
- 2003-02-14 WO PCT/US2003/004993 patent/WO2003068237A1/en active Application Filing
- 2003-02-14 EP EP03716084A patent/EP1482941A4/en not_active Withdrawn
- 2003-02-14 JP JP2003567419A patent/JP2005526722A/en active Pending
-
2005
- 2005-12-06 US US11/295,833 patent/US20060084653A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4307094A (en) * | 1979-07-23 | 1981-12-22 | Hoffmann-La Roche Inc. | Triazolopyridazine derivatives |
US4479937A (en) * | 1983-02-24 | 1984-10-30 | Zeria Shinyaku Kogyo Kabushiki Kaisha | Process of treating inflammation with human urinary thiol protease inhibitor |
US4704359A (en) * | 1984-04-14 | 1987-11-03 | Suntory Limited | Protease and process for production and use thereof |
US4767871A (en) * | 1985-04-30 | 1988-08-30 | Eli Lilly And Company | Pyrazolidinium ylides |
US4885023A (en) * | 1986-12-24 | 1989-12-05 | Kumiai Chemical Industry Co., Ltd. | Thiadiazabicyclononane derivatives and herbicidal compositions |
US5049181A (en) * | 1988-11-25 | 1991-09-17 | Ciba-Geigy Corporation | Novel herbicidally active n-phenyl-azoles |
US5180418A (en) * | 1990-07-23 | 1993-01-19 | Ciba-Geigy Corporation | Herbicidally active thiadiazabicyclononanes and nonenes |
US5552400A (en) * | 1994-06-08 | 1996-09-03 | Sterling Winthrop Inc. | Fused-bicyclic lactams as interleukin-1β converting enzyme inhibitors |
US5756466A (en) * | 1994-06-17 | 1998-05-26 | Vertex Pharmaceuticals, Inc. | Inhibitors of interleukin-1β converting enzyme |
US6020331A (en) * | 1995-03-24 | 2000-02-01 | Molecumetics, Ltd. | β-sheet mimetics and use thereof as protease inhibitors |
US6245764B1 (en) * | 1995-03-24 | 2001-06-12 | Molecumetics Ltd. | β-sheet mimetics and use thereof as inhibitors of biologically active peptides or proteins |
US6586426B1 (en) * | 1995-03-24 | 2003-07-01 | Molecumetics Ltd. | β-sheet mimetics and use thereof as protease inhibitors |
US6699869B1 (en) * | 1995-03-24 | 2004-03-02 | Myriad Genetics Inc. | β-sheet mimetics and use thereof as inhibitors of biologically active peptides or proteins |
US6034066A (en) * | 1995-07-17 | 2000-03-07 | Peptide Therapeutics Limited | Cysteine protease inhibitors for use in treatment of IGE mediated allergic diseases |
US6117896A (en) * | 1997-02-10 | 2000-09-12 | Molecumetics Ltd. | Methods for regulating transcription factors |
US6372744B1 (en) * | 1997-02-10 | 2002-04-16 | Molecumetics Ltd. | β-sheet mimetics and methods relating to the use thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2003068237A1 (en) | 2003-08-21 |
EP1482941A1 (en) | 2004-12-08 |
AU2003219809A1 (en) | 2003-09-04 |
EP1482941A4 (en) | 2006-04-12 |
US7053214B2 (en) | 2006-05-30 |
JP2005526722A (en) | 2005-09-08 |
CN1642550A (en) | 2005-07-20 |
US20040014763A1 (en) | 2004-01-22 |
CA2476113A1 (en) | 2003-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6440955B1 (en) | Reverse-turn mimetics and methods relating thereto | |
US6548500B2 (en) | Reverse-turn mimetics and methods relating thereto | |
US7345040B2 (en) | Reverse-turn mimetics and compositions and methods relating thereto | |
US7407952B2 (en) | Reverse-turn mimetics and compositions and methods related thereto | |
AU2010321240A1 (en) | Template-fixed peptidomimetics with CCR10 antagonistic activty | |
US7053214B2 (en) | β-sheet mimetics and composition and methods relating thereto | |
US20190153620A1 (en) | Libraries of diverse macrocyclic compounds and methods of making and using the same | |
US7008941B2 (en) | Reverse-turn mimetics and methods relating thereto | |
CA2477943A1 (en) | Heterocyclic amides with alpha-4 integrin antagonist activity | |
US7662960B2 (en) | Beta-strand mimetics and method relating thereto | |
US7405212B2 (en) | Helix mimetics and composition and methods related thereto | |
AU2003218401B2 (en) | Immunosuppressant compounds, methods and uses related thereto | |
US20100035823A1 (en) | Ligands of sh3 domains | |
EP1646633B1 (en) | Beta-strand mimetics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |