US20060079829A1 - Biopsy localization method and device - Google Patents
Biopsy localization method and device Download PDFInfo
- Publication number
- US20060079829A1 US20060079829A1 US11/283,235 US28323505A US2006079829A1 US 20060079829 A1 US20060079829 A1 US 20060079829A1 US 28323505 A US28323505 A US 28323505A US 2006079829 A1 US2006079829 A1 US 2006079829A1
- Authority
- US
- United States
- Prior art keywords
- biopsy
- bioabsorbable
- bioabsorbable element
- site
- marker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- NFJPEKRRHIYYES-UHFFFAOYSA-N C=C1CCCC1 Chemical compound C=C1CCCC1 NFJPEKRRHIYYES-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3468—Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3904—Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
- A61B2090/3908—Soft tissue, e.g. breast tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3962—Markers, e.g. radio-opaque or breast lesions markers palpable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3987—Applicators for implanting markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/502—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
Definitions
- Biopsy Localization and Hemostasis Device Application No. 60/092,734, filed Jul. 14, 1998; Device and Method of Biopsy Localization and Hemostasis, Application No. 60/114,863, filed Jan. 6, 1999; and Device and Method of Biopsy Localization, Hemostasis & Cancer Therapy, Application No. 60/117,421, filed Jan. 27, 1999.
- FIG. 1 diagrams the current treatment algorithm for non-palpable breast lesions.
- Biopsies can be done in a number of different ways for non-palpable lesions, including surgical excisional biopsies and stereotactic and ultrasound guided needle breast biopsies.
- image directed biopsy the radiologist or other physician takes a small sample of the irregular tissue for laboratory analysis. If the biopsy proves to be malignant, additional surgery (typically a lumpectomy or a mastectomy) is required. The patient then returns to the radiologist a day or two later where the biopsy site (the site of the lesion) is relocated by method called needle localization, a preoperative localization in preparation for the surgery.
- Locating the previously biopsied area after surgical excision type of biopsy is usually not a problem because of the deformity caused by the surgery.
- help in relocating the biopsy site is usually needed.
- One procedure to permit the biopsy site to be relocated by the radiologist during preoperative localization is to leave some of the suspicious calcifications; this has its drawbacks.
- a small metallic surgical clip such as those made by Biopsys.
- the metallic clip can be deployed through the biopsy needle, and is left at the biopsy site at the time of the original biopsy.
- the radiologist typically inserts a barbed or hooked wire, such as the Hawkins, Kopans, Homer, Sadowski, and other needles, back into the patient's breast and positions the tip of the wire at the biopsy site using mammography to document the placement.
- the patient is then taken to the operating room with the needle apparatus sticking out of the patient's breast.
- the clip provides a good indication of the biopsy site to the radiologist during preoperative localization, the clip remains permanently within the 80% of patients with benign diagnoses.
- the clip is necessarily attached to a single position at the periphery of the biopsy site, rather than the center of the biopsy site, its location may provide a misleading indication of the location of diseased tissue during any subsequent medical intervention.
- the soft nature of breast tissue permits the tip of the barbed or hooked needle to be relatively easily dislodged from the biopsy site.
- the clip is also relatively expensive.
- Another localization method involves the use of laser light from the tip of a optical fiber connected to a laser.
- a pair of hooks at the tip of the optical fiber secures the tip at the biopsy site; the glow indicates the position of the tip through several centimeters of breast tissue.
- This procedure suffers from some of the same problems associated with the use of barbed or hooked wires.
- Another preoperative localization procedure injects medical-grade powdered carbon suspension from the lesion to the skin surface. This procedure also has certain problems, including the creation of discontinuities along the carbon trail.
- the present invention is directed to a biopsy localization method and device which uses a locatable bioabsorbable element left at the biopsy site so that if testing of the biopsy sample indicates a need to do so, the biopsy site can be relocated by finding the bioabsorbable element.
- This eliminates the need to use of metallic clips during biopsies and often eliminates the need for a return to the radiologist for preoperative needle localization.
- the bioabsorbable element can be used as a therapeutic tool for treatment of the diseased lesion and for hemostasis.
- a biopsy localization device made according to the invention includes a bioabsorbable element delivered in a pre-delivery state to a soft tissue biopsy site of a patient by an element delivery device.
- the bioabsorbable element may be palpably harder than the surrounding soft tissue at the biopsy site when in the post-delivery state.
- One preferred material used as the bioabsorbable element is a dehydrated collagen plug. This type of plug may swell and is palpable for subsequent location by the surgeon. The collagen plug may not swell at all. In some situations, such as with small breasted women or where the biopsy site is close to the surface, a non-swellable bioabsorbable material, such as a round pellet of PGA, can be used instead of a swellable bioabsorbable material.
- the bioabsorbable material can also be made so that it is absorbed quickly to produce a local tissue inflammation; such a localized inflammation can be used to locate the biopsy site instead of location by palpation.
- a length of bioabsorbable suture material, a collagen filament, or other bioabsorbable material extending from the biopsy site out through the skin can be used.
- the surgeon can follow the bioabsorbable suture material to the biopsy site in a manner similar to that used with Hawkins needles.
- the bioabsorbable material may need to be located by the radiologist, by for example, ultrasound or mammography. In any event the bioabsorbable material will typically be absorbed within about a month of placement.
- the invention thus eliminates the use of metal clips during biopsies and usually eliminates the need for return to the radiologist for preoperative localization.
- the device may also be useful in marking the site of surgical excisional biopsies.
- surgeons frequently have difficulty in determining the precise relationship of the previously excised tissue to the surgical wound. Therefore, more tissue is removed than might have been removed had the exact location of the previous lesion been more definite.
- a bioabsorbable element may be inserted into the biopsy site during a surgical excisional biopsy before the wound is closed to mark the site for potential wide excision should the biopsy reveal cancer.
- a bioabsorbable element may be placed at the biopsy site using a delivery device by partially or completely closing the wound and then depositing the bioabsorbable element through the delivery device and removing the delivery device through the closed incision.
- the presence of the palpable marker within the previous excisional biopsy site would allow the surgeon to more easily and confidently remove tissue around this site, and preserve more normal breast tissue.
- the palpable marker may be inserted into the suspicious area of the breast under mammographic or ultrasonic guidance immediately prior to the surgical excisional biopsy. This would provide a palpable locator for the surgeon as described above. In this instance, the marker would only need to be palpable, and not necessarily bioresorbable, since the intent would be to remove it in all cases.
- the bioabsorbable element may comprise a therapeutic agent; the therapeutic agent may comprise at least a chosen one of a chemotherapeutic agent, a radiation agent and a gene therapy agent. Since the bioabsorbability can be varied from a day or two to a year or more, the material may be used to treat the diseased tissue and not just locate it. Some current therapies include radiation, chemotherapy, gene therapy as well as other technologies and therapies. Because the bioabsorbability can be easily varied, a medium can be place into the bioabsorbable element and be externally excited or triggered in those cases where the biopsy results are malignant.
- the bioabsorbability concept can be used for future implantation of a therapeutic agent.
- the bioabsorbable element is a dehydrated collagen
- this material could be used as a reservoir for, for example, delivery of materials that effect chemotherapy, brachytherapy, etc.
- the physician may inject, for example, a radiation pellet, a chemotherapeutic agent or a gene therapeutic agent into or adjacent to the bioabsorbable element for direct treatment of the diseased tissue.
- the change in the bioabsorbable element can be via one of several ways, such as hydration or desiccation, change in temperature, electrical stimulation, magnetic stimulation, chemical or physical reaction with another material, additives, enzymatic reactions, ionization, electrical charges, absorption, as well as other means.
- the invention may employ one or more of these techniques or measures or others, to change the consistency, hardness and or size of the bioabsorbable element between its deployed and non-deployed states.
- the visual detectability of the bioabsorbable element may be aided by the use of a coloring agent, such as methylene blue or some other dye.
- the radiographic detectability of the element may be enhanced by a radiopaque marker.
- ultrasonic detectability may be enhance by special treatment of the bioresorbable element.
- the bioresorbable element may have margins which are roughened so as to prevent migration within the tissues. Filaments extending from the margins of the bioresorbable element may be utilized also to stabilize the position of the device within the cavity.
- the filaments may or may not be composed of the same material as the bioresorbable element.
- hemostasis helps to lessen the bleeding and swelling within and about the biopsy site. This can be accomplished by physical or chemical means. That is, the device may swell so that it essential fills the biopsy cavity or the device may have a chemical reaction with blood or blood products to cause effective blood clotting, or both. Other methods for causing local hemostasis are also possible with the invention.
- FIG. 1 is a flow diagram of a conventional treatment algorithm for nonpalpable breast lesions
- FIG. 2 is a flow diagram of a treatment algorithm according to the present invention.
- FIG. 3 is a simplified view illustrating a biopsy needle assembly obtaining a tissue sample of an abnormality at a target site
- FIG. 4 illustrates the main housing and sheath of the needle biopsy assembly left in place after the tissue sample has been removed leaving a biopsied open region at the target site;
- FIG. 5 illustrates the barrel of the delivery device of FIG. 4 inserted into the main housing of the biopsy needle assembly and the plunger depressed injecting the bioabsorbable element into the biopsied open region, thus effectively filling the biopsied open region at the target site;
- FIG. 6 illustrates the location of the bioabsorbable element of FIG. 5 with the surgeon using his or her fingers
- FIG. 7 illustrates a bioabsorbable thread extending from the bioabsorbable element of FIG. 5 up through the patient's skin, the thread being delivered to the bioabsorbable element using the delivery device of FIGS. 4 and 5 .
- FIG. 2 illustrates a treatment algorithm 2 according to the present invention.
- a tumor or other abnormality may be detected as at 6 .
- the typical response will often include additional magnification mammograms or a follow-up mammogram scheduled for some time in the future, such as six months. This is indicated at 8 .
- an image guided needle biopsy by a breast radiologist is typically conducted as at 10 .
- Image guided needle biopsies can be done in a number of ways. Presently, stereotactic (x-ray) and ultrasound guided needle biopsies are commonly used, primarily because of their accuracy, speed and minimal trauma to the patient.
- Stereotactic needle biopsies typically use a stereotactic table, such as made by Fisher or Lorad, which provides mammography (x-ray) guidance to a biopsy needle assembly. Ultrasound guided biopsies can be conducted with any one of a number of commercially available instruments.
- An exemplary biopsy needle assembly 14 illustrated in FIG. 3 , includes a biopsy needle 13 passing through a sheath 20 extending from a hollow main housing 22 . The tip 12 of biopsy needle 13 of biopsy needle assembly 14 is automatically inserted to the abnormality 16 at the target site 18 . Biopsy needle 13 has a laterally directed side opening 24 adjacent to tip 12 used to capture a tissue sample of abnormality 16 .
- Bioabsorbable element 34 is, in this preferred embodiment, a plug of dehydrated collagen, such as that sold by several companies such as Davol, Datascope, Integra Life Sciences, Collagen Matrix, Vascular Solutions, et al.
- Bioabsorbable element 34 may swell on contact with an aqueous liquid within biopsied open region 26 and substantially fills the biopsied open region as suggested in FIG. 5 .
- bioabsorbable element 34 is transformed from its pre-delivery state within barrel 30 to its post-delivery state at region 26 and in the process swells and becomes somewhat softer in its post-delivery state than in its pre-delivery state.
- bioabsorbable element 34 is palpably harder, preferably at least about 1.5 times harder, than the surrounding soft tissue, typically breast tissue 36 . This permits bioabsorbable element 34 at the target site 18 to be relocated by palpation of the patient by the physician, see FIG. 6 , to find the bioabsorbable element 6 and as discussed in more detail below.
- a bioabsorbable element could be made of materials other than collagen and could be in a form other than a solid, relatively hard plug in its pre-delivery state.
- bioabsorbable element 34 in its pre-delivery state within barrel 30 could be in a liquid or otherwise flowable form; after being deposited at open region 26 at target site 18 , the bioabsorbable element could change to become palpably harder than the surrounding tissue 36 to permit subsequent relocation of target site 18 by palpation.
- transformation of bioabsorbable element 34 is by contact with an aqueous liquid.
- transformation of the bioabsorbable element which can be in terms of, for example, hardness, texture, shape, size, or a combination thereof, can be due to other factors, such as application of thermal energy, radiation, magnetic energy, etc.
- the biopsy sample is sent to pathology for evaluation at 36 . If the pathology report, which is available a day or two after the biopsy, is benign, the patient is so informed and the bioabsorbable element simply is absorbed by the patient within, for example, a month as at 38 . If the pathology report is positive, so that cancer is found, the biopsied open region 26 at the target site 18 is located by the surgeon by palpation as suggested by FIG. 6 . After finding the target site by palpation, which eliminates the need for preoperative localization by the radiologist, appropriate medical treatment, such as excisional surgery, can be performed.
- bioabsorbable delivery device 32 could be used to place bioabsorbable element 34 at the site of the incisional biopsy. After removal of delivery device 32 , the incision would be closed, the biopsy sample would be sent to pathology and the patient would go home with the procedure preceding as discussed above, starting with item 36 .
- bioabsorbable element 34 also act as a hemostatic agent to stop bleeding at site 18 by virtue of physical means, by filling or substantially filling open region 26 , as well as chemical means through the chemical interaction, such as coagulation, with blood components.
- bioabsorbable element 34 could be covered by a non-hemostatic degradable outer layer so that hemostasis or other action is delayed until the outer layer has been eroded. In some situations, it may be necessary or at least desirable to shield the bioabsorbable element from the blood or other body fluids until after the bioabsorbable element is in place at target site 18 .
- bioabsorbable element may be changed from its pre-delivery state to its post-delivery state in a variety of manners including hydration, changing the temperature, electrical stimulation, magnetic stimulation, chemical reaction with a stimulating agent, physically interaction with an activating member (such as a knife blade which could be used to slice open a capsule containing the bioabsorbable element), by ionizing the bioabsorbable element, or by absorption or adsorption of a fluid by the bioabsorbable element.
- an activating member such as a knife blade which could be used to slice open a capsule containing the bioabsorbable element
- the invention may also be used to medically treat the patient. That is, the bioabsorbable element-could include a therapeutic element which would be activated only if the pathology report indicated the need for the medical treatment.
- a therapeutic element which would be activated only if the pathology report indicated the need for the medical treatment.
- Various ways of activating an agent in a bioabsorbable element could be used, such as injecting a radiation-emitting element at the vicinity of the target site, externally irradiating the target site, providing a triggering substance to the target site, manual pressure, photodynamic therapy, sclerosing chemistry, vibrational therapy, ultrasound, and the like.
- the bioabsorbable element could be made so that it includes no such activating agent; rather, medical treatment could be provided by, for example, delivery of a chemotherapy agent, a radiation emitting element, thermal energy, electrical energy, vibrational energy, gene therapy, vector therapy, anti-angiogenesis therapy.
- medical treatment could be provided by, for example, delivery of a chemotherapy agent, a radiation emitting element, thermal energy, electrical energy, vibrational energy, gene therapy, vector therapy, anti-angiogenesis therapy.
- the bioabsorbable element may contain a radiopaque marker or may have properties to aid in detecting it by ultrasound, in addition to being palpable.
- bioabsorbable element 34 in its post-delivery state have a hardness of at least about one and a half times that of breast tissue so that it is palpably harder than the surrounding tissue.
- bioabsorbable element 34 in one embodiment, swells from its pre-delivery state to its post-delivery state so to fill or at least substantially fills open region 26 .
- bioabsorbable element 34 swells about 50 to 1500%, and more preferably about 100 to 300%, from the pre-delivery state to the post delivery state, typically when placed in contact with an aqueous liquid. It is preferred that the bioabsorbable element has a longest dimension of at least about 0.5 cm in its post-delivery state to aid its location by palpation.
- the bioabsorbable element is preferably made of collagen in one embodiment, the bioabsorbable element can include, for example, one or more of the following materials; polyactic and polyglycolic acids, polyorthoesters, resorbable silicones and urethanes, lipids, polysaccharides, starches, ceramics, polyamino acids, proteins, hydrogels and other gels, gelatins, polymers, cellulose, elastin, and the like.
- bioabsorbable filament 44 extending from bioabsorbable element 34 through the patient's skin 46 as shown in FIG. 7 . This can be accomplished by delivering bioabsorbable filament 44 through sheath 20 as bioabsorbable element 34 is injected into region 26 at target site 18 . In some situations it may not be possible or desirable to use bioabsorbable element 34 ; in those situations it may be useful to provide for only bioabsorbable filament 44 extending from target site 18 to above the patient's skin 46 .
- bioabsorbable element delivery device 32 be guided through a portion of needle assembly 14 , that is sheath 20 and main housing 22 , in some situations it may be useful to cover sheath 20 with an outer sheath which would be left in place after the biopsy sample has been removed and the entire biopsy needle assembly 14 has been removed. The sheath left in place would then be used to guide barrel 30 of delivery device 32 to target site 18 .
- delivery device 32 could take a number of different forms such as a syringe containing fluid or paste that is injected through a needle or through the housing 22 and sheath 20 or through an outer sheath.
- other delivery devices could be employed for delivery of bioresorbable element 34 .
- the invention has applicability toward the correction of a defect that is caused by breast tissue removal for biopsy or diseased tissue removal. Collagen is often placed in the body where it is eventually replaced by human autogenous tissue. Hence, the invention could be used for the repair of tissue that has been damaged due to tissue removal.
- the delivery device described heretofore could be used for installing a material (synthetic or mammalian) into the cavity for such a cosmetic or reconstructive repair.
- the material would typically be an effectively non-bioabsorable material, such as a silicon gel-filled capsule or bag.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Materials For Medical Uses (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Surgical Instruments (AREA)
- Radiation-Therapy Devices (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Eye Examination Apparatus (AREA)
- Prostheses (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
A biopsy localization device made according to the invention includes an intracorporeal delivery cannula and at least one marker disposed within an inner lumen of the delivery cannula. The marker includes an expandable fibrous body with at least one radiographically detectable marker element. The expandable fibrous body may also be bioabsorbable. Methods of use of the device are also described.
Description
- This application is a continuation of U.S. application Ser. No. 10/839,226, filed May 4, 2004, which is a continuation of U.S. application Ser. No. 10/027,157, filed Dec. 20, 2001, now issued as U.S. Pat. No. 6,730,042, which is a continuation of U.S. application Ser. No. 09/900,801, filed Jul. 6, 2001, now issued as U.S. Pat. No. 6,699,205, which is a continuation of U.S. application Ser. No. 09/366,360, filed Jun. 18, 1999, now issued as U.S. Pat. No. 6,270,464, which application claims the benefit of the following provisional patent applications: Biopsy Localization Device, Application No. 60/090,243, filed Jun. 22, 1998; Biopsy Localization and Hemostasis Device, Application No. 60/092,734, filed Jul. 14, 1998; Device and Method of Biopsy Localization and Hemostasis, Application No. 60/114,863, filed Jan. 6, 1999; and Device and Method of Biopsy Localization, Hemostasis & Cancer Therapy, Application No. 60/117,421, filed Jan. 27, 1999.
- In the U.S. alone approximately one million women will have breast biopsies because of irregular mammograms and palpable abnormalities. See
FIG. 1 which diagrams the current treatment algorithm for non-palpable breast lesions. Biopsies can be done in a number of different ways for non-palpable lesions, including surgical excisional biopsies and stereotactic and ultrasound guided needle breast biopsies. In the case of image directed biopsy, the radiologist or other physician takes a small sample of the irregular tissue for laboratory analysis. If the biopsy proves to be malignant, additional surgery (typically a lumpectomy or a mastectomy) is required. The patient then returns to the radiologist a day or two later where the biopsy site (the site of the lesion) is relocated by method called needle localization, a preoperative localization in preparation for the surgery. - Locating the previously biopsied area after surgical excision type of biopsy is usually not a problem because of the deformity caused by the surgery. However, if the biopsy had been done with an image directed needle technique, as is common, help in relocating the biopsy site is usually needed. One procedure to permit the biopsy site to be relocated by the radiologist during preoperative localization is to leave some of the suspicious calcifications; this has its drawbacks.
- Another way to help the radiologist relocate the biopsy site involves the use of a small metallic surgical clip, such as those made by Biopsys. The metallic clip can be deployed through the biopsy needle, and is left at the biopsy site at the time of the original biopsy. With the metallic clip as a guide, the radiologist typically inserts a barbed or hooked wire, such as the Hawkins, Kopans, Homer, Sadowski, and other needles, back into the patient's breast and positions the tip of the wire at the biopsy site using mammography to document the placement. The patient is then taken to the operating room with the needle apparatus sticking out of the patient's breast. While the clip provides a good indication of the biopsy site to the radiologist during preoperative localization, the clip remains permanently within the 80% of patients with benign diagnoses. Also, because the clip is necessarily attached to a single position at the periphery of the biopsy site, rather than the center of the biopsy site, its location may provide a misleading indication of the location of diseased tissue during any subsequent medical intervention. In addition, the soft nature of breast tissue permits the tip of the barbed or hooked needle to be relatively easily dislodged from the biopsy site. The clip is also relatively expensive.
- Another localization method involves the use of laser light from the tip of a optical fiber connected to a laser. A pair of hooks at the tip of the optical fiber secures the tip at the biopsy site; the glow indicates the position of the tip through several centimeters of breast tissue. This procedure suffers from some of the same problems associated with the use of barbed or hooked wires. Another preoperative localization procedure injects medical-grade powdered carbon suspension from the lesion to the skin surface. This procedure also has certain problems, including the creation of discontinuities along the carbon trail.
- The present invention is directed to a biopsy localization method and device which uses a locatable bioabsorbable element left at the biopsy site so that if testing of the biopsy sample indicates a need to do so, the biopsy site can be relocated by finding the bioabsorbable element. This eliminates the need to use of metallic clips during biopsies and often eliminates the need for a return to the radiologist for preoperative needle localization. In addition, the bioabsorbable element can be used as a therapeutic tool for treatment of the diseased lesion and for hemostasis.
- A biopsy localization device made according to the invention includes a bioabsorbable element delivered in a pre-delivery state to a soft tissue biopsy site of a patient by an element delivery device. The bioabsorbable element may be palpably harder than the surrounding soft tissue at the biopsy site when in the post-delivery state.
- One preferred material used as the bioabsorbable element is a dehydrated collagen plug. This type of plug may swell and is palpable for subsequent location by the surgeon. The collagen plug may not swell at all. In some situations, such as with small breasted women or where the biopsy site is close to the surface, a non-swellable bioabsorbable material, such as a round pellet of PGA, can be used instead of a swellable bioabsorbable material. The bioabsorbable material can also be made so that it is absorbed quickly to produce a local tissue inflammation; such a localized inflammation can be used to locate the biopsy site instead of location by palpation. Instead of leaving, for example, a collagen plug, a PGA pellet or a bioabsorbable suture material at the biopsy site for location by palpation or inflammation, a length of bioabsorbable suture material, a collagen filament, or other bioabsorbable material extending from the biopsy site out through the skin can be used. In this case the surgeon can follow the bioabsorbable suture material to the biopsy site in a manner similar to that used with Hawkins needles. In other cases, such as in the case of a deeply located lesion or large breast, the bioabsorbable material may need to be located by the radiologist, by for example, ultrasound or mammography. In any event the bioabsorbable material will typically be absorbed within about a month of placement. The invention thus eliminates the use of metal clips during biopsies and usually eliminates the need for return to the radiologist for preoperative localization.
- While the primary use of the device is intended to localize the site of needle biopsies for possible future surgical excision, the device may also be useful in marking the site of surgical excisional biopsies. For example, during a wide surgical excision for cancer diagnosed by a recent surgical excisional biopsy, surgeons frequently have difficulty in determining the precise relationship of the previously excised tissue to the surgical wound. Therefore, more tissue is removed than might have been removed had the exact location of the previous lesion been more definite. With the present invention, a bioabsorbable element may be inserted into the biopsy site during a surgical excisional biopsy before the wound is closed to mark the site for potential wide excision should the biopsy reveal cancer. Alternatively, a bioabsorbable element may be placed at the biopsy site using a delivery device by partially or completely closing the wound and then depositing the bioabsorbable element through the delivery device and removing the delivery device through the closed incision. The presence of the palpable marker within the previous excisional biopsy site would allow the surgeon to more easily and confidently remove tissue around this site, and preserve more normal breast tissue.
- Another use of the device is to primarily localize a non-palpable lesion prior to surgical excisional biopsy. Instead of using the needle/wire apparatus which has a tendency to migrate and become dislodged with traction, the palpable marker may be inserted into the suspicious area of the breast under mammographic or ultrasonic guidance immediately prior to the surgical excisional biopsy. This would provide a palpable locator for the surgeon as described above. In this instance, the marker would only need to be palpable, and not necessarily bioresorbable, since the intent would be to remove it in all cases.
- In addition to permitting the biopsy site to be located by subsequent palpation or other means, the invention also can provide hemostasis and therapeutic benefits. The bioabsorbable element may comprise a therapeutic agent; the therapeutic agent may comprise at least a chosen one of a chemotherapeutic agent, a radiation agent and a gene therapy agent. Since the bioabsorbability can be varied from a day or two to a year or more, the material may be used to treat the diseased tissue and not just locate it. Some current therapies include radiation, chemotherapy, gene therapy as well as other technologies and therapies. Because the bioabsorbability can be easily varied, a medium can be place into the bioabsorbable element and be externally excited or triggered in those cases where the biopsy results are malignant. Further, the bioabsorbability concept can be used for future implantation of a therapeutic agent. For example, if the bioabsorbable element is a dehydrated collagen, this material could be used as a reservoir for, for example, delivery of materials that effect chemotherapy, brachytherapy, etc. Once the laboratory results are received and show the biopsy is malignant and therapy is required, by surgical excision or otherwise, the physician may inject, for example, a radiation pellet, a chemotherapeutic agent or a gene therapeutic agent into or adjacent to the bioabsorbable element for direct treatment of the diseased tissue.
- The change in the bioabsorbable element can be via one of several ways, such as hydration or desiccation, change in temperature, electrical stimulation, magnetic stimulation, chemical or physical reaction with another material, additives, enzymatic reactions, ionization, electrical charges, absorption, as well as other means. The invention may employ one or more of these techniques or measures or others, to change the consistency, hardness and or size of the bioabsorbable element between its deployed and non-deployed states. The visual detectability of the bioabsorbable element may be aided by the use of a coloring agent, such as methylene blue or some other dye. The radiographic detectability of the element may be enhanced by a radiopaque marker. As well, ultrasonic detectability may be enhance by special treatment of the bioresorbable element.
- The bioresorbable element may have margins which are roughened so as to prevent migration within the tissues. Filaments extending from the margins of the bioresorbable element may be utilized also to stabilize the position of the device within the cavity. The filaments may or may not be composed of the same material as the bioresorbable element.
- The provision of hemostasis helps to lessen the bleeding and swelling within and about the biopsy site. This can be accomplished by physical or chemical means. That is, the device may swell so that it essential fills the biopsy cavity or the device may have a chemical reaction with blood or blood products to cause effective blood clotting, or both. Other methods for causing local hemostasis are also possible with the invention.
- Other features and advantages of the invention will appear from the following description in which the preferred embodiments and methods have been set forth in detail in conjunction with the accompany drawings.
-
FIG. 1 is a flow diagram of a conventional treatment algorithm for nonpalpable breast lesions; -
FIG. 2 is a flow diagram of a treatment algorithm according to the present invention; -
FIG. 3 is a simplified view illustrating a biopsy needle assembly obtaining a tissue sample of an abnormality at a target site; -
FIG. 4 illustrates the main housing and sheath of the needle biopsy assembly left in place after the tissue sample has been removed leaving a biopsied open region at the target site; -
FIG. 5 illustrates the barrel of the delivery device ofFIG. 4 inserted into the main housing of the biopsy needle assembly and the plunger depressed injecting the bioabsorbable element into the biopsied open region, thus effectively filling the biopsied open region at the target site; -
FIG. 6 illustrates the location of the bioabsorbable element ofFIG. 5 with the surgeon using his or her fingers; and -
FIG. 7 illustrates a bioabsorbable thread extending from the bioabsorbable element ofFIG. 5 up through the patient's skin, the thread being delivered to the bioabsorbable element using the delivery device ofFIGS. 4 and 5 . -
FIG. 2 illustrates atreatment algorithm 2 according to the present invention. As a result of aroutine mammography 4, a tumor or other abnormality may be detected as at 6. The typical response will often include additional magnification mammograms or a follow-up mammogram scheduled for some time in the future, such as six months. This is indicated at 8. If the tumor is not palpable, see 9, an image guided needle biopsy by a breast radiologist is typically conducted as at 10. Image guided needle biopsies can be done in a number of ways. Presently, stereotactic (x-ray) and ultrasound guided needle biopsies are commonly used, primarily because of their accuracy, speed and minimal trauma to the patient. Stereotactic needle biopsies typically use a stereotactic table, such as made by Fisher or Lorad, which provides mammography (x-ray) guidance to a biopsy needle assembly. Ultrasound guided biopsies can be conducted with any one of a number of commercially available instruments. An exemplarybiopsy needle assembly 14, illustrated inFIG. 3 , includes abiopsy needle 13 passing through asheath 20 extending from a hollowmain housing 22. Thetip 12 ofbiopsy needle 13 ofbiopsy needle assembly 14 is automatically inserted to theabnormality 16 at thetarget site 18.Biopsy needle 13 has a laterally directed side opening 24 adjacent to tip 12 used to capture a tissue sample ofabnormality 16. Once the tissue samples have been obtained, the removed tissue creates a biopsiedopen region 26 attarget site 18. SeeFIG. 4 . Following the removal ofbiopsy needle 13 fromsheath 20 andmain housing 22, thebarrel 30 of a bioabsorbableelement delivery device 32 is inserted throughmain housing 22 and intosheath 20.Barrel 30 contains abioabsorbable element 34, seeFIG. 5 Bioabsorbable element 34 is, in this preferred embodiment, a plug of dehydrated collagen, such as that sold by several companies such as Davol, Datascope, Integra Life Sciences, Collagen Matrix, Vascular Solutions, et al.Bioabsorbable element 34 may swell on contact with an aqueous liquid within biopsiedopen region 26 and substantially fills the biopsied open region as suggested inFIG. 5 . In this preferred embodiment,bioabsorbable element 34 is transformed from its pre-delivery state withinbarrel 30 to its post-delivery state atregion 26 and in the process swells and becomes somewhat softer in its post-delivery state than in its pre-delivery state. However, in its post-delivery state,bioabsorbable element 34 is palpably harder, preferably at least about 1.5 times harder, than the surrounding soft tissue, typicallybreast tissue 36. This permitsbioabsorbable element 34 at thetarget site 18 to be relocated by palpation of the patient by the physician, seeFIG. 6 , to find thebioabsorbable element 6 and as discussed in more detail below. - A bioabsorbable element could be made of materials other than collagen and could be in a form other than a solid, relatively hard plug in its pre-delivery state. For example,
bioabsorbable element 34 in its pre-delivery state withinbarrel 30 could be in a liquid or otherwise flowable form; after being deposited atopen region 26 attarget site 18, the bioabsorbable element could change to become palpably harder than the surroundingtissue 36 to permit subsequent relocation oftarget site 18 by palpation. In some situations, it may be desired thatbioabsorbable element 34 not change its size or hardness between its pre-delivery state and its post-delivery state, such as being palpably harder than the surroundingtissue 36 in both states. In a preferred embodiment, transformation ofbioabsorbable element 34 is by contact with an aqueous liquid. - However, transformation of the bioabsorbable element, which can be in terms of, for example, hardness, texture, shape, size, or a combination thereof, can be due to other factors, such as application of thermal energy, radiation, magnetic energy, etc.
- Returning again to
FIG. 2 , it is seen that after insertion ofbioabsorbable element 34, the biopsy sample is sent to pathology for evaluation at 36. If the pathology report, which is available a day or two after the biopsy, is benign, the patient is so informed and the bioabsorbable element simply is absorbed by the patient within, for example, a month as at 38. If the pathology report is positive, so that cancer is found, the biopsiedopen region 26 at thetarget site 18 is located by the surgeon by palpation as suggested byFIG. 6 . After finding the target site by palpation, which eliminates the need for preoperative localization by the radiologist, appropriate medical treatment, such as excisional surgery, can be performed. - If the tumor is palpable, the surgeon may choose to make a direct incisional biopsy as at 48. According to the present invention,
bioabsorbable delivery device 32 could be used to placebioabsorbable element 34 at the site of the incisional biopsy. After removal ofdelivery device 32, the incision would be closed, the biopsy sample would be sent to pathology and the patient would go home with the procedure preceding as discussed above, starting withitem 36. - It may be preferred that
bioabsorbable element 34 also act as a hemostatic agent to stop bleeding atsite 18 by virtue of physical means, by filling or substantially fillingopen region 26, as well as chemical means through the chemical interaction, such as coagulation, with blood components. In addition,bioabsorbable element 34 could be covered by a non-hemostatic degradable outer layer so that hemostasis or other action is delayed until the outer layer has been eroded. In some situations, it may be necessary or at least desirable to shield the bioabsorbable element from the blood or other body fluids until after the bioabsorbable element is in place attarget site 18. This could be accomplished by, for example, physically isolating the bioabsorbable element from body fluids by using a removable physical barrier during delivery of the bioabsorbable element. Alternatively, a bioabsorbable coating or layer, as described above, may be used. The bioabsorbable element may be changed from its pre-delivery state to its post-delivery state in a variety of manners including hydration, changing the temperature, electrical stimulation, magnetic stimulation, chemical reaction with a stimulating agent, physically interaction with an activating member (such as a knife blade which could be used to slice open a capsule containing the bioabsorbable element), by ionizing the bioabsorbable element, or by absorption or adsorption of a fluid by the bioabsorbable element. - The invention may also be used to medically treat the patient. That is, the bioabsorbable element-could include a therapeutic element which would be activated only if the pathology report indicated the need for the medical treatment. Various ways of activating an agent in a bioabsorbable element could be used, such as injecting a radiation-emitting element at the vicinity of the target site, externally irradiating the target site, providing a triggering substance to the target site, manual pressure, photodynamic therapy, sclerosing chemistry, vibrational therapy, ultrasound, and the like. Alternatively, the bioabsorbable element could be made so that it includes no such activating agent; rather, medical treatment could be provided by, for example, delivery of a chemotherapy agent, a radiation emitting element, thermal energy, electrical energy, vibrational energy, gene therapy, vector therapy, anti-angiogenesis therapy. To facilitate the delivery, the bioabsorbable element may contain a radiopaque marker or may have properties to aid in detecting it by ultrasound, in addition to being palpable.
- An important use for the invention is in the treatment of breast cancer. In one embodiment, it is desirable that
bioabsorbable element 34 in its post-delivery state have a hardness of at least about one and a half times that of breast tissue so that it is palpably harder than the surrounding tissue. Also, it is desired thatbioabsorbable element 34, in one embodiment, swells from its pre-delivery state to its post-delivery state so to fill or at least substantially fillsopen region 26. To achieve this it is preferred thatbioabsorbable element 34 swells about 50 to 1500%, and more preferably about 100 to 300%, from the pre-delivery state to the post delivery state, typically when placed in contact with an aqueous liquid. It is preferred that the bioabsorbable element has a longest dimension of at least about 0.5 cm in its post-delivery state to aid its location by palpation. - While the bioabsorbable element is preferably made of collagen in one embodiment, the bioabsorbable element can include, for example, one or more of the following materials; polyactic and polyglycolic acids, polyorthoesters, resorbable silicones and urethanes, lipids, polysaccharides, starches, ceramics, polyamino acids, proteins, hydrogels and other gels, gelatins, polymers, cellulose, elastin, and the like.
- In some situations it may be desired to use a
bioabsorbable filament 44 extending frombioabsorbable element 34 through the patient's skin 46 as shown inFIG. 7 . This can be accomplished by deliveringbioabsorbable filament 44 throughsheath 20 asbioabsorbable element 34 is injected intoregion 26 attarget site 18. In some situations it may not be possible or desirable to usebioabsorbable element 34; in those situations it may be useful to provide for onlybioabsorbable filament 44 extending fromtarget site 18 to above the patient's skin 46. - While it is presently preferred that bioabsorbable
element delivery device 32 be guided through a portion ofneedle assembly 14, that issheath 20 andmain housing 22, in some situations it may be useful to coversheath 20 with an outer sheath which would be left in place after the biopsy sample has been removed and the entirebiopsy needle assembly 14 has been removed. The sheath left in place would then be used to guidebarrel 30 ofdelivery device 32 to targetsite 18. Of course,delivery device 32 could take a number of different forms such as a syringe containing fluid or paste that is injected through a needle or through thehousing 22 andsheath 20 or through an outer sheath. Alternatively, other delivery devices could be employed for delivery ofbioresorbable element 34. - The invention has applicability toward the correction of a defect that is caused by breast tissue removal for biopsy or diseased tissue removal. Collagen is often placed in the body where it is eventually replaced by human autogenous tissue. Hence, the invention could be used for the repair of tissue that has been damaged due to tissue removal. The delivery device described heretofore could be used for installing a material (synthetic or mammalian) into the cavity for such a cosmetic or reconstructive repair. The material would typically be an effectively non-bioabsorable material, such as a silicon gel-filled capsule or bag.
- Modification and variation can be made to the disclosed embodiments without departing from the subject of the invention as defined in the following claims.
- Any and all patents, patent applications, and printed publications referred to above are incorporated by reference.
Claims (2)
1. An intracorporeal marker delivery device for a tissue site, comprising:
an intracorporeal delivery cannula which has a tissue penetrating distal tip, an inner lumen and a discharge opening in communication with the inner lumen; and
at least one marker disposed within the inner lumen of the delivery cannula which includes an expandable bioabsorbable fibrous body with at least one radiographically detectable marker element.
2. A method of marking to a desired intracorporeal location within a patient, comprising:
(a) providing a delivery cannula having an inner lumen and a discharge opening in a distal portion thereof;
(b) providing at least one marker which includes an expandable bioabsorbable fibrous body with at least one radiographically detectable marker element and which is slidably disposed within the inner lumen of the delivery cannula;
(c) inserting the delivery cannula with the at least one marker into a patient;
(d) advancing the delivery cannula within the patient until the distal portion of the cannula is disposed within a desired intracorporeal location; and
(e) discharging the at least one marker from an opening in a distal portion of the cannula into the desired intracorporeal location.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/283,235 US20060079829A1 (en) | 1998-06-22 | 2005-11-18 | Biopsy localization method and device |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9024398P | 1998-06-22 | 1998-06-22 | |
US9273498P | 1998-07-14 | 1998-07-14 | |
US11486399P | 1999-01-06 | 1999-01-06 | |
US11742199P | 1999-01-27 | 1999-01-27 | |
US09/336,360 US6270464B1 (en) | 1998-06-22 | 1999-06-18 | Biopsy localization method and device |
US9900801A | 2001-07-06 | 2001-07-06 | |
US10/027,157 US6730042B2 (en) | 1998-06-22 | 2001-12-20 | Biopsy localization method and device |
US10/839,226 US20040204660A1 (en) | 1998-06-22 | 2004-05-04 | Biopsy localization method and device |
US11/283,235 US20060079829A1 (en) | 1998-06-22 | 2005-11-18 | Biopsy localization method and device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/839,226 Continuation US20040204660A1 (en) | 1998-06-22 | 2004-05-04 | Biopsy localization method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060079829A1 true US20060079829A1 (en) | 2006-04-13 |
Family
ID=27536563
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/336,360 Expired - Lifetime US6270464B1 (en) | 1997-11-12 | 1999-06-18 | Biopsy localization method and device |
US09/900,801 Expired - Lifetime US6699205B2 (en) | 1998-06-22 | 2001-07-06 | Biopsy localization method and device |
US10/027,157 Expired - Lifetime US6730042B2 (en) | 1998-06-22 | 2001-12-20 | Biopsy localization method and device |
US10/839,226 Abandoned US20040204660A1 (en) | 1998-06-22 | 2004-05-04 | Biopsy localization method and device |
US10/839,112 Expired - Fee Related US8292822B2 (en) | 1998-06-22 | 2004-05-04 | Biopsy localization method and device |
US10/943,433 Expired - Fee Related US10010380B2 (en) | 1998-06-22 | 2004-09-16 | Biopsy localization method and device |
US10/943,434 Abandoned US20050045192A1 (en) | 1998-06-22 | 2004-09-16 | Biopsy localization method and device |
US11/283,235 Abandoned US20060079829A1 (en) | 1998-06-22 | 2005-11-18 | Biopsy localization method and device |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/336,360 Expired - Lifetime US6270464B1 (en) | 1997-11-12 | 1999-06-18 | Biopsy localization method and device |
US09/900,801 Expired - Lifetime US6699205B2 (en) | 1998-06-22 | 2001-07-06 | Biopsy localization method and device |
US10/027,157 Expired - Lifetime US6730042B2 (en) | 1998-06-22 | 2001-12-20 | Biopsy localization method and device |
US10/839,226 Abandoned US20040204660A1 (en) | 1998-06-22 | 2004-05-04 | Biopsy localization method and device |
US10/839,112 Expired - Fee Related US8292822B2 (en) | 1998-06-22 | 2004-05-04 | Biopsy localization method and device |
US10/943,433 Expired - Fee Related US10010380B2 (en) | 1998-06-22 | 2004-09-16 | Biopsy localization method and device |
US10/943,434 Abandoned US20050045192A1 (en) | 1998-06-22 | 2004-09-16 | Biopsy localization method and device |
Country Status (6)
Country | Link |
---|---|
US (8) | US6270464B1 (en) |
EP (2) | EP2258258B1 (en) |
JP (1) | JP4472176B2 (en) |
AT (1) | ATE483416T1 (en) |
DE (1) | DE69942833D1 (en) |
WO (1) | WO1999066834A1 (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040249278A1 (en) * | 2003-06-04 | 2004-12-09 | Krause William R. | Biopsy and delivery device |
US20090030309A1 (en) * | 2007-07-26 | 2009-01-29 | Senorx, Inc. | Deployment of polysaccharide markers |
US20090216150A1 (en) * | 2008-02-25 | 2009-08-27 | Lee Reichel | Method and Apparatus For Inserting Biopsy Site Marker In Marker Body |
US20090216181A1 (en) * | 2008-02-25 | 2009-08-27 | Speeg Trevor W V | Biopsy Site Marker Deployment Instrument |
WO2009134340A1 (en) * | 2008-04-28 | 2009-11-05 | Corbitt John D Jr | System for utilizing an implant for targeting external beam radiation |
US20100082102A1 (en) * | 2008-09-23 | 2010-04-01 | Senorx, Inc. | Porous bioabsorbable implant |
US20100256778A1 (en) * | 2003-08-11 | 2010-10-07 | Wilson-Cook Medical Inc. | Surgical Implant |
US20110237943A1 (en) * | 2003-05-23 | 2011-09-29 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
US8157862B2 (en) | 1997-10-10 | 2012-04-17 | Senorx, Inc. | Tissue marking implant |
US20120116267A1 (en) * | 2010-11-05 | 2012-05-10 | Kimball Cory G | User feedback through end effector of surgical instrument |
US8177792B2 (en) | 2002-06-17 | 2012-05-15 | Senorx, Inc. | Plugged tip delivery tube for marker placement |
US8219182B2 (en) | 1999-02-02 | 2012-07-10 | Senorx, Inc. | Cavity-filling biopsy site markers |
US8224424B2 (en) | 1999-02-02 | 2012-07-17 | Senorx, Inc. | Tissue site markers for in vivo imaging |
US8311610B2 (en) | 2008-01-31 | 2012-11-13 | C. R. Bard, Inc. | Biopsy tissue marker |
US8361082B2 (en) | 1999-02-02 | 2013-01-29 | Senorx, Inc. | Marker delivery device with releasable plug |
US8401622B2 (en) | 2006-12-18 | 2013-03-19 | C. R. Bard, Inc. | Biopsy marker with in situ-generated imaging properties |
US8437834B2 (en) | 2006-10-23 | 2013-05-07 | C. R. Bard, Inc. | Breast marker |
US8447386B2 (en) | 2003-05-23 | 2013-05-21 | Senorx, Inc. | Marker or filler forming fluid |
US8486028B2 (en) | 2005-10-07 | 2013-07-16 | Bard Peripheral Vascular, Inc. | Tissue marking apparatus having drug-eluting tissue marker |
US8498693B2 (en) | 1999-02-02 | 2013-07-30 | Senorx, Inc. | Intracorporeal marker and marker delivery device |
US8579931B2 (en) | 1999-06-17 | 2013-11-12 | Bard Peripheral Vascular, Inc. | Apparatus for the percutaneous marking of a lesion |
US8634899B2 (en) | 2003-11-17 | 2014-01-21 | Bard Peripheral Vascular, Inc. | Multi mode imaging marker |
US8668737B2 (en) | 1997-10-10 | 2014-03-11 | Senorx, Inc. | Tissue marking implant |
US8670818B2 (en) | 2008-12-30 | 2014-03-11 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
US8718745B2 (en) | 2000-11-20 | 2014-05-06 | Senorx, Inc. | Tissue site markers for in vivo imaging |
USD715442S1 (en) | 2013-09-24 | 2014-10-14 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD715942S1 (en) | 2013-09-24 | 2014-10-21 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716450S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716451S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
US9000720B2 (en) | 2010-11-05 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Medical device packaging with charging interface |
US8998939B2 (en) | 2010-11-05 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument with modular end effector |
US9011471B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument with pivoting coupling to modular shaft and end effector |
US9011427B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument safety glasses |
US9017849B2 (en) | 2010-11-05 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Power source management for medical device |
US9017851B2 (en) | 2010-11-05 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Sterile housing for non-sterile medical device component |
US9039720B2 (en) | 2010-11-05 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with ratcheting rotatable shaft |
US9089338B2 (en) | 2010-11-05 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Medical device packaging with window for insertion of reusable component |
US9161803B2 (en) | 2010-11-05 | 2015-10-20 | Ethicon Endo-Surgery, Inc. | Motor driven electrosurgical device with mechanical and electrical feedback |
US9247986B2 (en) | 2010-11-05 | 2016-02-02 | Ethicon Endo-Surgery, Llc | Surgical instrument with ultrasonic transducer having integral switches |
US9375255B2 (en) | 2010-11-05 | 2016-06-28 | Ethicon Endo-Surgery, Llc | Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector |
US9381058B2 (en) | 2010-11-05 | 2016-07-05 | Ethicon Endo-Surgery, Llc | Recharge system for medical devices |
US9421062B2 (en) | 2010-11-05 | 2016-08-23 | Ethicon Endo-Surgery, Llc | Surgical instrument shaft with resiliently biased coupling to handpiece |
US9579077B2 (en) | 2006-12-12 | 2017-02-28 | C.R. Bard, Inc. | Multiple imaging mode tissue marker |
US9597143B2 (en) | 2010-11-05 | 2017-03-21 | Ethicon Endo-Surgery, Llc | Sterile medical instrument charging device |
US9649150B2 (en) | 2010-11-05 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Selective activation of electronic components in medical device |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US9782215B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Endo-Surgery, Llc | Surgical instrument with ultrasonic transducer having integral switches |
US9820824B2 (en) | 1999-02-02 | 2017-11-21 | Senorx, Inc. | Deployment of polysaccharide markers for treating a site within a patent |
US9848956B2 (en) | 2002-11-18 | 2017-12-26 | Bard Peripheral Vascular, Inc. | Self-contained, self-piercing, side-expelling marking apparatus |
US10085792B2 (en) | 2010-11-05 | 2018-10-02 | Ethicon Llc | Surgical instrument with motorized attachment feature |
US10136938B2 (en) | 2014-10-29 | 2018-11-27 | Ethicon Llc | Electrosurgical instrument with sensor |
US10342635B2 (en) | 2005-04-20 | 2019-07-09 | Bard Peripheral Vascular, Inc. | Marking device with retractable cannula |
US10537380B2 (en) | 2010-11-05 | 2020-01-21 | Ethicon Llc | Surgical instrument with charging station and wireless communication |
US10595957B2 (en) | 2015-06-04 | 2020-03-24 | Endomagnetics Ltd | Marker materials and forms for magnetic marker localization (MML) |
US10660695B2 (en) | 2010-11-05 | 2020-05-26 | Ethicon Llc | Sterile medical instrument charging device |
US10881448B2 (en) | 2010-11-05 | 2021-01-05 | Ethicon Llc | Cam driven coupling between ultrasonic transducer and waveguide in surgical instrument |
US10959769B2 (en) | 2010-11-05 | 2021-03-30 | Ethicon Llc | Surgical instrument with slip ring assembly to power ultrasonic transducer |
US10973563B2 (en) | 2010-11-05 | 2021-04-13 | Ethicon Llc | Surgical instrument with charging devices |
US11571273B2 (en) | 2015-11-11 | 2023-02-07 | Devicor Medical Products, Inc. | Marker delivery device and method of deploying a marker |
Families Citing this family (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69534233T2 (en) | 1994-09-16 | 2005-10-27 | Ethicon Endo-Surgery, Inc., Cincinnati | DEVICES FOR DETERMINING AND MARKING TISSUE |
US6071300A (en) | 1995-09-15 | 2000-06-06 | Sub-Q Inc. | Apparatus and method for percutaneous sealing of blood vessel punctures |
US6162192A (en) | 1998-05-01 | 2000-12-19 | Sub Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6183497B1 (en) | 1998-05-01 | 2001-02-06 | Sub-Q, Inc. | Absorbable sponge with contrasting agent |
US6270464B1 (en) | 1998-06-22 | 2001-08-07 | Artemis Medical, Inc. | Biopsy localization method and device |
US6347241B2 (en) | 1999-02-02 | 2002-02-12 | Senorx, Inc. | Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it |
US6161034A (en) * | 1999-02-02 | 2000-12-12 | Senorx, Inc. | Methods and chemical preparations for time-limited marking of biopsy sites |
US6315753B1 (en) | 1998-05-01 | 2001-11-13 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US20010045575A1 (en) | 1998-05-01 | 2001-11-29 | Mark Ashby | Device and method for facilitating hemostasis of a biopsy tract |
US20020058882A1 (en) * | 1998-06-22 | 2002-05-16 | Artemis Medical, Incorporated | Biopsy localization method and device |
US6036698A (en) | 1998-10-30 | 2000-03-14 | Vivant Medical, Inc. | Expandable ring percutaneous tissue removal device |
US9669113B1 (en) | 1998-12-24 | 2017-06-06 | Devicor Medical Products, Inc. | Device and method for safe location and marking of a biopsy cavity |
US6356782B1 (en) | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6371904B1 (en) | 1998-12-24 | 2002-04-16 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US20080039819A1 (en) * | 2006-08-04 | 2008-02-14 | Senorx, Inc. | Marker formed of starch or other suitable polysaccharide |
US6306132B1 (en) | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US6984219B2 (en) | 1999-09-23 | 2006-01-10 | Mark Ashby | Depth and puncture control for blood vessel hemostasis system |
US6722371B1 (en) | 2000-02-18 | 2004-04-20 | Thomas J. Fogarty | Device for accurately marking tissue |
EP1259155B1 (en) | 2000-02-18 | 2010-12-08 | Fogarty, Thomas J. | Improved device for accurately marking tissue |
US6564806B1 (en) | 2000-02-18 | 2003-05-20 | Thomas J. Fogarty | Device for accurately marking tissue |
US6540735B1 (en) | 2000-05-12 | 2003-04-01 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US7201725B1 (en) | 2000-09-25 | 2007-04-10 | Sub-Q, Inc. | Device and method for determining a depth of an incision |
US6544185B2 (en) | 2000-10-23 | 2003-04-08 | Valentino Montegrande | Ultrasound imaging marker and method of use |
WO2002087636A1 (en) | 2001-03-12 | 2002-11-07 | Sub-Q, Inc. | Methods for sterilizing cross-linked gelatin compositions |
US8187625B2 (en) | 2001-03-12 | 2012-05-29 | Boston Scientific Scimed, Inc. | Cross-linked gelatin composition comprising a wetting agent |
US6863680B2 (en) | 2001-11-08 | 2005-03-08 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7008440B2 (en) | 2001-11-08 | 2006-03-07 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7029489B1 (en) | 2001-05-18 | 2006-04-18 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site |
WO2003002168A1 (en) * | 2001-06-29 | 2003-01-09 | Cook Biotech Incorporated | Porous sponge matrix medical devices and methods |
AU2002326781A1 (en) * | 2001-08-29 | 2003-03-18 | Artemis Medical, Inc. | Undamaged tissue collection assembly and method |
US6878147B2 (en) | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
US7192436B2 (en) | 2001-11-08 | 2007-03-20 | Sub-Q, Inc. | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7037322B1 (en) | 2001-11-08 | 2006-05-02 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture with a staging tube |
US7025748B2 (en) | 2001-11-08 | 2006-04-11 | Boston Scientific Scimed, Inc. | Sheath based blood vessel puncture locator and depth indicator |
US7037323B2 (en) | 2001-11-08 | 2006-05-02 | Sub-Q, Inc. | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US6654629B2 (en) | 2002-01-23 | 2003-11-25 | Valentino Montegrande | Implantable biomarker and method of use |
EP1494611A2 (en) | 2002-03-11 | 2005-01-12 | John L. Wardle | Surgical coils and methods of deploying |
US6752767B2 (en) | 2002-04-16 | 2004-06-22 | Vivant Medical, Inc. | Localization element with energized tip |
US7197363B2 (en) | 2002-04-16 | 2007-03-27 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
US7329414B2 (en) * | 2002-05-03 | 2008-02-12 | Biopsy Sciences, Llc | Biodegradable polymer for marking tissue and sealing tracts |
US7158660B2 (en) * | 2002-05-08 | 2007-01-02 | Gee Jr James W | Method and apparatus for detecting structures of interest |
US7455680B1 (en) | 2002-11-04 | 2008-11-25 | Boston Scientific Scimed, Inc. | Apparatus and method for inhibiting blood loss |
US8709038B2 (en) * | 2002-12-20 | 2014-04-29 | Boston Scientific Scimed, Inc. | Puncture hole sealing device |
US20040122349A1 (en) * | 2002-12-20 | 2004-06-24 | Lafontaine Daniel M. | Closure device with textured surface |
US6912050B2 (en) * | 2003-02-03 | 2005-06-28 | Hach Company | Phase shift measurement for luminescent light |
US20050119562A1 (en) * | 2003-05-23 | 2005-06-02 | Senorx, Inc. | Fibrous marker formed of synthetic polymer strands |
US7783336B2 (en) | 2003-06-06 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | Subcutaneous biopsy cavity marker device |
US7942897B2 (en) * | 2003-07-10 | 2011-05-17 | Boston Scientific Scimed, Inc. | System for closing an opening in a body cavity |
US7311703B2 (en) | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
US20050033157A1 (en) * | 2003-07-25 | 2005-02-10 | Klein Dean A. | Multi-modality marking material and method |
US7744852B2 (en) | 2003-07-25 | 2010-06-29 | Rubicor Medical, Llc | Methods and systems for marking post biopsy cavity sites |
US7537788B2 (en) * | 2003-07-25 | 2009-05-26 | Rubicor Medical, Inc. | Post-biopsy cavity treatment implants and methods |
US20050020899A1 (en) * | 2003-07-25 | 2005-01-27 | Rubicor Medical, Inc. | Post-biopsy cavity treatmetn implants and methods |
US7001341B2 (en) * | 2003-08-13 | 2006-02-21 | Scimed Life Systems, Inc. | Marking biopsy sites |
US8172770B2 (en) * | 2005-09-28 | 2012-05-08 | Suros Surgical Systems, Inc. | System and method for minimally invasive disease therapy |
US7815561B2 (en) * | 2003-09-25 | 2010-10-19 | Xoft, Inc. | Brachytherapy applicator |
US20050234336A1 (en) * | 2004-03-26 | 2005-10-20 | Beckman Andrew T | Apparatus and method for marking tissue |
US8442623B2 (en) * | 2004-10-13 | 2013-05-14 | Suros Surgical Systems, Inc. | Site marker visible under multiple modalities |
US8280486B2 (en) * | 2004-10-13 | 2012-10-02 | Suros Surgical Systems, Inc. | Site marker visable under multiple modalities |
US8419656B2 (en) * | 2004-11-22 | 2013-04-16 | Bard Peripheral Vascular, Inc. | Post decompression marker introducer system |
US7731705B2 (en) | 2005-01-10 | 2010-06-08 | Wardle John L | Eluting coils and methods of deploying and retrieving |
US20060235298A1 (en) * | 2005-03-31 | 2006-10-19 | Robert Kotmel | Internal biopsy marking |
US7702378B2 (en) * | 2005-11-17 | 2010-04-20 | Breast-Med, Inc. | Tissue marker for multimodality radiographic imaging |
US11241296B2 (en) | 2005-11-17 | 2022-02-08 | Breast-Med, Inc. | Imaging fiducial markers and methods |
US8673398B2 (en) * | 2006-02-23 | 2014-03-18 | Meadwestvaco Corporation | Method for treating a substrate |
US20080294039A1 (en) * | 2006-08-04 | 2008-11-27 | Senorx, Inc. | Assembly with hemostatic and radiographically detectable pellets |
CN100408170C (en) * | 2006-08-16 | 2008-08-06 | 哈尔滨工业大学 | Process for preparing CuO/gamma-Al2O3 used as catalyst for catalytic oxidation process by inducing ClO2 with microwave |
US8068921B2 (en) | 2006-09-29 | 2011-11-29 | Vivant Medical, Inc. | Microwave antenna assembly and method of using the same |
EP2197548B1 (en) * | 2007-09-19 | 2012-11-14 | Walter A. Roberts | Direct visualization robotic intra-operative radiation therapy applicator device |
US9622813B2 (en) | 2007-11-01 | 2017-04-18 | Covidien Lp | Method for volume determination and geometric reconstruction |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US9782565B2 (en) | 2008-10-01 | 2017-10-10 | Covidien Lp | Endoscopic ultrasound-guided biliary access system |
US11298113B2 (en) | 2008-10-01 | 2022-04-12 | Covidien Lp | Device for needle biopsy with integrated needle protection |
US8968210B2 (en) | 2008-10-01 | 2015-03-03 | Covidien LLP | Device for needle biopsy with integrated needle protection |
US9332973B2 (en) | 2008-10-01 | 2016-05-10 | Covidien Lp | Needle biopsy device with exchangeable needle and integrated needle protection |
US9186128B2 (en) | 2008-10-01 | 2015-11-17 | Covidien Lp | Needle biopsy device |
US10820825B2 (en) | 2008-10-22 | 2020-11-03 | Cornell University | Method and device for evaluation of local tissue's biological or biomechanical character |
US9014787B2 (en) | 2009-06-01 | 2015-04-21 | Focal Therapeutics, Inc. | Bioabsorbable target for diagnostic or therapeutic procedure |
US8323249B2 (en) | 2009-08-14 | 2012-12-04 | The Regents Of The University Of Michigan | Integrated vascular delivery system |
US10634741B2 (en) | 2009-12-04 | 2020-04-28 | Endomagnetics Ltd. | Magnetic probe apparatus |
US9427186B2 (en) * | 2009-12-04 | 2016-08-30 | Endomagnetics Ltd. | Magnetic probe apparatus |
US8771230B2 (en) | 2010-05-19 | 2014-07-08 | Tangent Medical Technologies, Llc | Integrated vascular delivery system |
US8814833B2 (en) * | 2010-05-19 | 2014-08-26 | Tangent Medical Technologies Llc | Safety needle system operable with a medical device |
US20110301456A1 (en) * | 2010-06-07 | 2011-12-08 | Malignext Targeting Technologies, Inc. | Tissue Marking for Lesion Removal |
US20190060028A1 (en) * | 2010-12-16 | 2019-02-28 | Devicor Medical Products, Inc. | Method for identifying a site for surgical removal under magnetic guidance |
US9414816B2 (en) * | 2011-06-23 | 2016-08-16 | Devicor Medical Products, Inc. | Introducer for biopsy device |
US20130046200A1 (en) * | 2011-08-18 | 2013-02-21 | Marshall Ephraim Stauber | Instrument For Concurrent Injection Of Anesthesia And Removal Of Specimens From A Body |
US20130289389A1 (en) | 2012-04-26 | 2013-10-31 | Focal Therapeutics | Surgical implant for marking soft tissue |
JP6189946B2 (en) | 2012-06-22 | 2017-08-30 | ライカ ビオズュステムス ヌスロッホ ゲーエムベーハー | Biopsy tissue sample transport device and method of use thereof |
ES2832554T3 (en) | 2012-06-22 | 2021-06-10 | Leica Biosystems Nussloch Gmbh | Container for tissue samples |
CA2904779C (en) | 2013-03-11 | 2019-04-09 | Endomagnetics Ltd. | Hypoosmotic solutions for lymph node detection |
US9239314B2 (en) | 2013-03-13 | 2016-01-19 | Endomagnetics Ltd. | Magnetic detector |
US9234877B2 (en) | 2013-03-13 | 2016-01-12 | Endomagnetics Ltd. | Magnetic detector |
US9179999B2 (en) | 2013-06-06 | 2015-11-10 | Med-Genesis, Llc | Apparatus and method for installing a stent |
CN105473098B (en) * | 2013-08-15 | 2019-03-26 | 直观外科手术操作公司 | System and method for medical procedure confirmation |
AU2015214400B2 (en) | 2014-02-04 | 2019-10-03 | Icu Medical, Inc. | Self-priming systems and methods |
US10683119B2 (en) | 2014-05-23 | 2020-06-16 | Merit Medical Systems, Inc. | Marker element, device for making a marker element, and method for making a marker element |
ES2933054T3 (en) | 2014-07-25 | 2023-01-31 | Hologic Inc | Implantable devices and techniques for oncoplastic surgery |
US11227427B2 (en) | 2014-08-11 | 2022-01-18 | Covidien Lp | Treatment procedure planning system and method |
US9795455B2 (en) | 2014-08-22 | 2017-10-24 | Breast-Med, Inc. | Tissue marker for multimodality radiographic imaging |
JP6641378B2 (en) * | 2015-02-10 | 2020-02-05 | テレフレックス イノベーションズ エス.アー.エール.エル. | Closure device for sealing a percutaneous opening in a vessel |
US10646208B2 (en) * | 2015-05-06 | 2020-05-12 | Devicor Medical Products, Inc. | Marker delivery device for use with MRI breast biopsy system |
KR20180040670A (en) | 2015-08-13 | 2018-04-20 | 코비디엔 아게 | Electrosurgical generator and method |
US10335124B1 (en) | 2016-02-29 | 2019-07-02 | Devicor Medical Products, Inc. | Marker delivery device with adaptor for biopsy site marking and method of use thereof |
US20160206296A1 (en) * | 2016-03-25 | 2016-07-21 | Hamid Ehsani-Nia | Biopsy Syringe Device |
US10070938B2 (en) * | 2016-05-20 | 2018-09-11 | David LeBeau | Stabilization device and method for surgical localization wire |
US11058780B2 (en) * | 2016-05-20 | 2021-07-13 | Technical University Of Denmark | Palpable marker composition |
US10610841B1 (en) | 2016-06-30 | 2020-04-07 | Devicor Medical Products, Inc. | Marker having enhanced ultrasound visibility and method of manufacturing the same |
US11219502B2 (en) | 2017-09-11 | 2022-01-11 | Medtronic Advanced Energy, Llc | Transformative shape-memory polymer tissue cavity marker devices, systems and deployment methods |
US11090132B2 (en) | 2017-09-15 | 2021-08-17 | Devicor Medical Products, Inc. | Method for manufacturing marker with aerated hydrogel |
KR20240042243A (en) | 2017-09-26 | 2024-04-01 | 데비코어 메디컬 프로덕츠, 인코포레이티드 | Biopsy site marker with microsphere coating |
US11324567B2 (en) | 2018-02-01 | 2022-05-10 | Medtronic Advanced Energy, Llc | Expandable tissue cavity marker devices, systems and deployment methods |
EP4193932B1 (en) | 2018-12-10 | 2024-07-10 | Devicor Medical Products, Inc. | Biopsy system with end deploy needle |
EP3876849B1 (en) | 2018-12-17 | 2025-04-02 | Devicor Medical Products, Inc. | Apparatus for delivering biopsy cavity marker |
JP2022519814A (en) | 2019-02-15 | 2022-03-25 | デビコー・メディカル・プロダクツ・インコーポレイテッド | Marker delivery device with sterility guide |
WO2020243386A1 (en) | 2019-05-30 | 2020-12-03 | Devicor Medical Products, Inc. | Shape memory marker deployment device |
PL3946134T3 (en) | 2019-05-30 | 2024-05-13 | Devicor Medical Products, Inc. | Apparatus for direct marking |
EP4278985B1 (en) | 2019-05-30 | 2024-12-11 | Devicor Medical Products, Inc. | Biopsy site marker for limited migration |
JP7393848B2 (en) * | 2019-12-19 | 2023-12-07 | バード・ペリフェラル・バスキュラー・インコーポレーテッド | Introducer cannula with pleural access liner for use in crossing pleural layers |
WO2021146367A2 (en) | 2020-01-15 | 2021-07-22 | Devicor Medical Products, Inc. | Marker delivery device with push rod having actuation features |
WO2021158685A1 (en) * | 2020-02-04 | 2021-08-12 | Oncosec Medical Incorporated | Hemostatic combination therapy with low voltage electroporation |
KR20220155306A (en) | 2020-03-17 | 2022-11-22 | 데비코어 메디컬 프로덕츠, 인코포레이티드 | Biopsy site markers with non-moving features |
EP4231957A1 (en) | 2020-12-02 | 2023-08-30 | Devicor Medical Products, Inc. | A marker delivery device configured to decouple plunger and push rod |
CN118973515A (en) | 2022-05-03 | 2024-11-15 | Devicor医疗产业收购公司 | Biopsy site marker with increased visualization and non-migratory characteristics |
CN119233800A (en) | 2022-06-23 | 2024-12-31 | Devicor医疗产业收购公司 | Biopsy site markers with expandable mesh |
WO2024039561A1 (en) | 2022-08-16 | 2024-02-22 | Devicor Medical Products, Inc. | Biopsy site marker having movable portions |
US20240058092A1 (en) | 2022-08-16 | 2024-02-22 | Devicor Medical Products, Inc. | Biopsy site marker having expandable portion |
US20240225779A9 (en) | 2022-10-21 | 2024-07-11 | Devicor Medical Products, Inc. | Fluid deployment mechanism for biopsy site marker |
WO2024086055A1 (en) | 2022-10-21 | 2024-04-25 | Devicor Medical Products, Inc. | Biopsy device with end deployment for marker delivery |
WO2024206458A1 (en) | 2023-03-28 | 2024-10-03 | Devicor Medical Products, Inc. | Biopsy site marker with light emission |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3818894A (en) * | 1971-01-22 | 1974-06-25 | Ceskoslovenska Akademie Ved | Laryngeal implant |
US4007732A (en) * | 1975-09-02 | 1977-02-15 | Robert Carl Kvavle | Method for location and removal of soft tissue in human biopsy operations |
US4197846A (en) * | 1974-10-09 | 1980-04-15 | Louis Bucalo | Method for structure for situating in a living body agents for treating the body |
US4248214A (en) * | 1979-05-22 | 1981-02-03 | Robert S. Kish | Illuminated urethral catheter |
US4320201A (en) * | 1979-10-27 | 1982-03-16 | Firma Carl Freudenberg | Method for making collagen sponge for medical and cosmetic uses |
US4331654A (en) * | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4592356A (en) * | 1984-09-28 | 1986-06-03 | Pedro Gutierrez | Localizing device |
US4638802A (en) * | 1984-09-21 | 1987-01-27 | Olympus Optical Co., Ltd. | High frequency instrument for incision and excision |
US4647480A (en) * | 1983-07-25 | 1987-03-03 | Amchem Products, Inc. | Use of additive in aqueous cure of autodeposited coatings |
US4650466A (en) * | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
US4655211A (en) * | 1984-08-09 | 1987-04-07 | Unitika Ltd. | Hemostatic agent |
US4744364A (en) * | 1987-02-17 | 1988-05-17 | Intravascular Surgical Instruments, Inc. | Device for sealing percutaneous puncture in a vessel |
US4799495A (en) * | 1987-03-20 | 1989-01-24 | National Standard Company | Localization needle assembly |
US4813422A (en) * | 1987-03-06 | 1989-03-21 | Healthcare Technological Resources, Inc. | Bowel control probe and method for controlling bowel incontinence |
US4817622A (en) * | 1986-07-22 | 1989-04-04 | Carl Pennypacker | Infrared imager for viewing subcutaneous location of vascular structures and method of use |
US4832686A (en) * | 1986-06-24 | 1989-05-23 | Anderson Mark E | Method for administering interleukin-2 |
US4838280A (en) * | 1988-05-26 | 1989-06-13 | Haaga John R | Hemostatic sheath for a biopsy needle and method of use |
US4907589A (en) * | 1988-04-29 | 1990-03-13 | Cosman Eric R | Automatic over-temperature control apparatus for a therapeutic heating device |
US4909250A (en) * | 1988-11-14 | 1990-03-20 | Smith Joseph R | Implant system for animal identification |
US4986279A (en) * | 1989-03-01 | 1991-01-22 | National-Standard Company | Localization needle assembly with reinforced needle assembly |
US5002548A (en) * | 1986-10-06 | 1991-03-26 | Bio Medic Data Systems, Inc. | Animal marker implanting system |
US5014713A (en) * | 1989-12-05 | 1991-05-14 | Tarris Enterprises, Inc. | Method and apparatus for measuring thickness of fat using infrared light |
US5018530A (en) * | 1989-06-15 | 1991-05-28 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5080655A (en) * | 1988-05-26 | 1992-01-14 | Haaga John R | Medical biopsy needle |
US5083570A (en) * | 1990-06-18 | 1992-01-28 | Mosby Richard A | Volumetric localization/biopsy/surgical device |
US5085629A (en) * | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
US5100423A (en) * | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5102415A (en) * | 1989-09-06 | 1992-04-07 | Guenther Rolf W | Apparatus for removing blood clots from arteries and veins |
US5108421A (en) * | 1990-10-01 | 1992-04-28 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5120802A (en) * | 1987-12-17 | 1992-06-09 | Allied-Signal Inc. | Polycarbonate-based block copolymers and devices |
US5183463A (en) * | 1989-02-03 | 1993-02-02 | Elie Debbas | Apparatus for locating a breast mass |
US5183464A (en) * | 1991-05-17 | 1993-02-02 | Interventional Thermodynamics, Inc. | Radially expandable dilator |
US5186922A (en) * | 1985-03-15 | 1993-02-16 | See/Shell Biotechnology, Inc. | Use of biodegradable microspheres labeled with imaging energy constrast materials |
US5192300A (en) * | 1990-10-01 | 1993-03-09 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5195540A (en) * | 1991-08-12 | 1993-03-23 | Samuel Shiber | Lesion marking process |
US5195988A (en) * | 1988-05-26 | 1993-03-23 | Haaga John R | Medical needle with removable sheath |
US5197482A (en) * | 1989-06-15 | 1993-03-30 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5204382A (en) * | 1992-02-28 | 1993-04-20 | Collagen Corporation | Injectable ceramic compositions and methods for their preparation and use |
US5207705A (en) * | 1988-12-08 | 1993-05-04 | Brigham And Women's Hospital | Prosthesis of foam polyurethane and collagen and uses thereof |
US5221269A (en) * | 1990-10-15 | 1993-06-22 | Cook Incorporated | Guide for localizing a nonpalpable breast lesion |
US5281408A (en) * | 1991-04-05 | 1994-01-25 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5282781A (en) * | 1990-10-25 | 1994-02-01 | Omnitron International Inc. | Source wire for localized radiation treatment of tumors |
US5282827A (en) * | 1991-11-08 | 1994-02-01 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US5388588A (en) * | 1993-05-04 | 1995-02-14 | Nabai; Hossein | Biopsy wound closure device and method |
US5394886A (en) * | 1993-09-20 | 1995-03-07 | Nabai; Hossein | Skin biopsy plug and method |
US5409004A (en) * | 1993-06-11 | 1995-04-25 | Cook Incorporated | Localization device with radiopaque markings |
US5411520A (en) * | 1991-11-08 | 1995-05-02 | Kensey Nash Corporation | Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use |
USRE34936E (en) * | 1986-10-06 | 1995-05-09 | Bio Medic Data Systems, Inc. | Animal marker implanting system |
US5415656A (en) * | 1993-09-28 | 1995-05-16 | American Medical Systems, Inc. | Electrosurgical apparatus |
US5417697A (en) * | 1993-07-07 | 1995-05-23 | Wilk; Peter J. | Polyp retrieval assembly with cauterization loop and suction web |
US5422730A (en) * | 1994-03-25 | 1995-06-06 | Barlow; Clyde H. | Automated optical detection of tissue perfusion by microspheres |
US5423321A (en) * | 1993-02-11 | 1995-06-13 | Fontenot; Mark G. | Detection of anatomic passages using infrared emitting catheter |
US5487392A (en) * | 1993-11-15 | 1996-01-30 | Haaga; John R. | Biopxy system with hemostatic insert |
US5494030A (en) * | 1993-08-12 | 1996-02-27 | Trustees Of Dartmouth College | Apparatus and methodology for determining oxygen in biological systems |
US5507813A (en) * | 1993-12-09 | 1996-04-16 | Osteotech, Inc. | Shaped materials derived from elongate bone particles |
US5514379A (en) * | 1992-08-07 | 1996-05-07 | The General Hospital Corporation | Hydrogel compositions and methods of use |
US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
US5517997A (en) * | 1994-09-15 | 1996-05-21 | Gabriel Medical, Inc. | Transillumination of body members for protection during body invasive procedures |
US5591204A (en) * | 1990-09-21 | 1997-01-07 | Datascope Investment Corp. | Device and method for sealing puncture wounds |
US5626611A (en) * | 1994-02-10 | 1997-05-06 | United States Surgical Corporation | Composite bioabsorbable materials and surgical articles made therefrom |
US5716407A (en) * | 1992-08-24 | 1998-02-10 | Lipomatrix, Incorporated | Method of rendering identifiable a living tissue implant using an electrical transponder marker |
US5716404A (en) * | 1994-12-16 | 1998-02-10 | Massachusetts Institute Of Technology | Breast tissue engineering |
US5735289A (en) * | 1996-08-08 | 1998-04-07 | Pfeffer; Herbert G. | Method and apparatus for organic specimen retrieval |
US5752974A (en) * | 1995-12-18 | 1998-05-19 | Collagen Corporation | Injectable or implantable biomaterials for filling or blocking lumens and voids of the body |
US5868708A (en) * | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US5869080A (en) * | 1995-05-30 | 1999-02-09 | Johnson & Johnson Medical, Inc. | Absorbable implant materials having controlled porosity |
US5873904A (en) * | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
US5902310A (en) * | 1996-08-12 | 1999-05-11 | Ethicon Endo-Surgery, Inc. | Apparatus and method for marking tissue |
US6015541A (en) * | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
US6027520A (en) * | 1997-05-08 | 2000-02-22 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6053876A (en) * | 1999-06-09 | 2000-04-25 | Fisher; John | Apparatus and method for marking non-palpable lesions |
US6056700A (en) * | 1998-10-13 | 2000-05-02 | Emx, Inc. | Biopsy marker assembly and method of use |
US6066325A (en) * | 1996-08-27 | 2000-05-23 | Fusion Medical Technologies, Inc. | Fragmented polymeric compositions and methods for their use |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6183497B1 (en) * | 1998-05-01 | 2001-02-06 | Sub-Q, Inc. | Absorbable sponge with contrasting agent |
US6214045B1 (en) * | 1997-10-10 | 2001-04-10 | John D. Corbitt, Jr. | Bioabsorbable breast implant |
US6228055B1 (en) * | 1994-09-16 | 2001-05-08 | Ethicon Endo-Surgery, Inc. | Devices for marking and defining particular locations in body tissue |
US6231834B1 (en) * | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
US6335028B1 (en) * | 1998-03-06 | 2002-01-01 | Biosphere Medical, Inc. | Implantable particles for urinary incontinence |
US20020007130A1 (en) * | 1998-03-03 | 2002-01-17 | Senorx, Inc. | Methods and apparatus for securing medical instruments to desired locations in a patients body |
US20020016555A1 (en) * | 1994-03-24 | 2002-02-07 | Ritchart Mark A. | Methods and devices for automated biopsy and collection of soft tissue |
US6347241B2 (en) * | 1999-02-02 | 2002-02-12 | Senorx, Inc. | Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it |
US20020019640A1 (en) * | 1997-07-24 | 2002-02-14 | Rex Medical | Breast surgery method and apparatus |
US20020026234A1 (en) * | 2000-04-07 | 2002-02-28 | Shu-Tung Li | Embolization device |
US6352682B2 (en) * | 1996-03-11 | 2002-03-05 | Focal, Inc. | Polymeric delivery of radionuclides and radiopharmaceuticals |
US6356782B1 (en) * | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6371904B1 (en) * | 1998-12-24 | 2002-04-16 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6699205B2 (en) * | 1998-06-22 | 2004-03-02 | Artemis Medical, Inc. | Biopsy localization method and device |
US20040049126A1 (en) * | 2001-09-10 | 2004-03-11 | Vivant Medical, Inc. | Biopsy marker delivery system |
US20040049269A1 (en) * | 1997-10-10 | 2004-03-11 | Corbitt John D. | Bioabsorbable breast implant |
US6774278B1 (en) * | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device |
US20050020916A1 (en) * | 2003-06-06 | 2005-01-27 | Macfarlane K. Angela | Subcutaneous biopsy cavity marker device |
US7049346B1 (en) * | 1996-08-20 | 2006-05-23 | Menlo Care Div Of Ethicon, Inc. | Swollen hydrogel for sphincter augmentation |
Family Cites Families (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US26201A (en) * | 1859-11-22 | Improvement in sewing-machines | ||
US2899362A (en) * | 1959-08-11 | Hemostatic sponges and method of | ||
DE935625C (en) | 1952-10-18 | 1955-11-24 | Guenther Bodendieck | Excision device |
US3001522A (en) | 1957-12-26 | 1961-09-26 | Silverman Irving | Biopsy device |
US3194239A (en) | 1963-01-16 | 1965-07-13 | Cornelius J P Sullivan | Suture provided with radiopaque free metal |
US3823212A (en) | 1968-11-27 | 1974-07-09 | Freudenberg C Fa | Process for the production of collagen fiber fabrics in the form of felt-like membranes or sponge-like layers |
US3976071A (en) | 1974-01-07 | 1976-08-24 | Dynatech Corporation | Methods of improving control of release rates and products useful in same |
US3996938A (en) | 1975-07-10 | 1976-12-14 | Clark Iii William T | Expanding mesh catheter |
US4034759A (en) * | 1975-08-27 | 1977-07-12 | Xomed, Inc. | Moisture-expandable prosthesis |
DE2821048C2 (en) | 1978-05-13 | 1980-07-17 | Willy Ruesch Gmbh & Co Kg, 7053 Kernen | Medical instrument |
US4230123A (en) | 1978-10-31 | 1980-10-28 | Hawkins Jr Irvin F | Needle sheath complex and process for decompression and biopsy |
FR2460657A1 (en) | 1979-07-12 | 1981-01-30 | Anvar | BIODEGRADABLE IMPLANT FOR USE AS A BONE PROSTHESIS PIECE |
US4331577A (en) | 1979-09-28 | 1982-05-25 | Union Carbide Corporation | Latex polymerization process |
US4298998A (en) | 1980-12-08 | 1981-11-10 | Naficy Sadeque S | Breast prosthesis with biologically absorbable outer container |
US4545367A (en) | 1982-07-16 | 1985-10-08 | Cordis Corporation | Detachable balloon catheter and method of use |
US4438253A (en) | 1982-11-12 | 1984-03-20 | American Cyanamid Company | Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same |
US4531933A (en) | 1982-12-07 | 1985-07-30 | C. R. Bard, Inc. | Helical ureteral stent |
US4541438A (en) | 1983-06-02 | 1985-09-17 | The Johns Hopkins University | Localization of cancerous tissue by monitoring infrared fluorescence emitted by intravenously injected porphyrin tumor-specific markers excited by long wavelength light |
CH661199A5 (en) | 1983-12-22 | 1987-07-15 | Sulzer Ag | MARKING IMPLANT. |
CA1295796C (en) | 1984-03-27 | 1992-02-18 | Conrad Whyne | Biodegradable matrix and methods for producing same |
US4611594A (en) | 1984-04-11 | 1986-09-16 | Northwestern University | Medical instrument for containment and removal of calculi |
US4608965A (en) | 1985-03-27 | 1986-09-02 | Anspach Jr William E | Endoscope retainer and tissue retracting device |
US4787391A (en) | 1985-06-17 | 1988-11-29 | Elefteriades John A | Anastomotic marking device and related method |
DE3522626A1 (en) | 1985-06-25 | 1987-01-08 | Merz & Co Gmbh & Co | SOLUBLE COLLAGEN SPONGE |
US4847049A (en) | 1985-12-18 | 1989-07-11 | Vitaphore Corporation | Method of forming chelated collagen having bactericidal properties |
US4693237A (en) | 1986-01-21 | 1987-09-15 | Hoffman Richard B | Radiopaque coded ring markers for use in identifying surgical grafts |
US4682606A (en) | 1986-02-03 | 1987-07-28 | Decaprio Vincent H | Localizing biopsy apparatus |
US4763642A (en) | 1986-04-07 | 1988-08-16 | Horowitz Bruce S | Intracavitational brachytherapy |
EP0255123A3 (en) | 1986-07-30 | 1988-04-20 | Sumitomo Pharmaceuticals Company, Limited | Solid preparation administering instrument |
US4774948A (en) | 1986-11-24 | 1988-10-04 | Markham Charles W | Marking and retraction needle having retrievable stylet |
US4852568A (en) | 1987-02-17 | 1989-08-01 | Kensey Nash Corporation | Method and apparatus for sealing an opening in tissue of a living being |
US4817600A (en) | 1987-05-22 | 1989-04-04 | Medi-Tech, Inc. | Implantable filter |
US4832055A (en) | 1988-07-08 | 1989-05-23 | Palestrant Aubrey M | Mechanically locking blood clot filter |
US5074840A (en) * | 1990-07-24 | 1991-12-24 | Inbae Yoon | Packing device and method of packing for endoscopic procedures |
US5258028A (en) | 1988-12-12 | 1993-11-02 | Ersek Robert A | Textured micro implants |
US4966583A (en) | 1989-02-03 | 1990-10-30 | Elie Debbas | Apparatus for locating a breast mass |
DE3913935A1 (en) | 1989-04-27 | 1990-10-31 | Wiedeck Joerg Guenter Dr Med | Catheter for removing stones from the ureter - consists of plastics tube with retractable mandrel |
USRE34056E (en) * | 1989-07-31 | 1992-09-08 | C.R. Bard, Inc. | Tissue sampling device |
US5158084A (en) | 1989-11-22 | 1992-10-27 | Board Of Regents, The University Of Texas System | Modified localization wire for excisional biopsy |
US5030201A (en) | 1989-11-24 | 1991-07-09 | Aubrey Palestrant | Expandable atherectomy catheter device |
US5469854A (en) | 1989-12-22 | 1995-11-28 | Imarx Pharmaceutical Corp. | Methods of preparing gas-filled liposomes |
US5334381A (en) | 1989-12-22 | 1994-08-02 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5236410A (en) | 1990-08-02 | 1993-08-17 | Ferrotherm International, Inc. | Tumor treatment method |
US5342283A (en) | 1990-08-13 | 1994-08-30 | Good Roger R | Endocurietherapy |
US5353804A (en) | 1990-09-18 | 1994-10-11 | Peb Biopsy Corporation | Method and device for percutaneous exisional breast biopsy |
US5148813A (en) | 1990-11-20 | 1992-09-22 | Bucalo Brian D | Biopsy instrument with tissue specimen retaining and retrieval device |
US5127916A (en) | 1991-01-22 | 1992-07-07 | Medical Device Technologies, Inc. | Localization needle assembly |
US5370901A (en) | 1991-02-15 | 1994-12-06 | Bracco International B.V. | Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients |
US5803901A (en) | 1991-05-29 | 1998-09-08 | Origin Medsystems, Inc. | Inflatable devices for separating layers of tissue and methods of using |
US5370134A (en) | 1991-05-29 | 1994-12-06 | Orgin Medsystems, Inc. | Method and apparatus for body structure manipulation and dissection |
CA2078530A1 (en) | 1991-09-23 | 1993-03-24 | Jay Erlebacher | Percutaneous arterial puncture seal device and insertion tool therefore |
FR2686499A1 (en) | 1992-01-28 | 1993-07-30 | Technomed Int Sa | APPARATUS FOR TREATING A TARGET, SUCH AS A DAMAGE WITHIN THE BODY OF A MAMMAL, PARTICULARLY A HUMAN BEING, USING A MARKING ELEMENT IMPLANTED IN OR IN THE VICINITY OF THE TARGET TO CONTROL THERAPY OF THE SAME TARGET. |
US5674468A (en) | 1992-03-06 | 1997-10-07 | Nycomed Imaging As | Contrast agents comprising gas-containing or gas-generating polymer microparticles or microballoons |
US5656297A (en) | 1992-03-12 | 1997-08-12 | Alkermes Controlled Therapeutics, Incorporated | Modulated release from biocompatible polymers |
WO1993019803A1 (en) | 1992-03-31 | 1993-10-14 | Boston Scientific Corporation | Medical wire |
FR2689400B1 (en) | 1992-04-03 | 1995-06-23 | Inoteb | BONE PROSTHESIS MATERIAL CONTAINING CALCIUM CARBONATE PARTICLES DISPERSED IN A BIORESORBABLE POLYMER MATRIX. |
JPH0616985A (en) * | 1992-04-22 | 1994-01-25 | Lexmark Internatl Inc | Jet ink that does not form solids |
US5326350A (en) * | 1992-05-11 | 1994-07-05 | Li Shu Tung | Soft tissue closure systems |
NL9200844A (en) | 1992-05-13 | 1993-12-01 | De Wijdeven Gijsbertus G P Van | DEVICE AND METHOD FOR INJECTING WITH A SOLID SUBSTANCE. |
US5792157A (en) | 1992-11-13 | 1998-08-11 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5334216A (en) | 1992-12-10 | 1994-08-02 | Howmedica Inc. | Hemostatic plug |
US5330483A (en) | 1992-12-18 | 1994-07-19 | Advanced Surgical Inc. | Specimen reduction device |
DK12293D0 (en) | 1993-02-02 | 1993-02-02 | Novo Nordisk As | HETEROCYCLIC COMPOUNDS AND THEIR PREPARATION AND USE |
US5431676A (en) | 1993-03-05 | 1995-07-11 | Innerdyne Medical, Inc. | Trocar system having expandable port |
US5576016A (en) | 1993-05-18 | 1996-11-19 | Pharmos Corporation | Solid fat nanoemulsions as drug delivery vehicles |
US5325857A (en) | 1993-07-09 | 1994-07-05 | Hossein Nabai | Skin biopsy device and method |
JPH09500551A (en) | 1993-07-12 | 1997-01-21 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Soft tissue augmentation device |
US5445128A (en) * | 1993-08-27 | 1995-08-29 | Detroit Diesel Corporation | Method for engine control |
US5676698A (en) | 1993-09-07 | 1997-10-14 | Datascope Investment Corp. | Soft tissue implant |
DE4330958A1 (en) | 1993-09-09 | 1995-03-16 | Schering Ag | Novel microparticles containing active compound, media containing these, their use for the ultrasonically controlled release of active compounds and process for the production thereof |
US5556410A (en) | 1993-09-27 | 1996-09-17 | M3 Systems, Inc. | Surgical needle with stress-relocation means |
FR2714284B1 (en) | 1993-12-23 | 1996-03-08 | Hubert Petitier | Prosthesis for the closure of ruptures of the cardiac walls, in particular interventricular septal ruptures. |
US5443515A (en) | 1994-01-26 | 1995-08-22 | Implex Corporation | Vertebral body prosthetic implant with slidably positionable stabilizing member |
DE4403789A1 (en) | 1994-02-03 | 1995-08-10 | Schering Ag | Means for visually marking body tissues |
US5526822A (en) | 1994-03-24 | 1996-06-18 | Biopsys Medical, Inc. | Method and apparatus for automated biopsy and collection of soft tissue |
US5454790A (en) | 1994-05-09 | 1995-10-03 | Innerdyne, Inc. | Method and apparatus for catheterization access |
US5794626A (en) | 1994-08-18 | 1998-08-18 | Kieturakis; Maciej J. | Excisional stereotactic apparatus |
US5643282A (en) | 1994-08-22 | 1997-07-01 | Kieturakis; Maciej J. | Surgical instrument and method for removing tissue from an endoscopic workspace |
US5647374A (en) | 1994-12-30 | 1997-07-15 | North American Scientific | Needle for imaging and sampling |
US5643246A (en) | 1995-02-24 | 1997-07-01 | Gel Sciences, Inc. | Electromagnetically triggered, responsive gel based drug delivery device |
US5795308A (en) | 1995-03-09 | 1998-08-18 | Russin; Lincoln D. | Apparatus for coaxial breast biopsy |
US5807276A (en) | 1995-03-09 | 1998-09-15 | Russin; Lincoln David | Biopsy device and method |
US5660185A (en) | 1995-04-13 | 1997-08-26 | Neovision Corporation | Image-guided biopsy apparatus with enhanced imaging and methods |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US5645566A (en) | 1995-09-15 | 1997-07-08 | Sub Q Inc. | Apparatus and method for percutaneous sealing of blood vessel punctures |
US6162192A (en) | 1998-05-01 | 2000-12-19 | Sub Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6071301A (en) * | 1998-05-01 | 2000-06-06 | Sub Q., Inc. | Device and method for facilitating hemostasis of a biopsy tract |
CA2187975C (en) | 1995-10-20 | 2001-05-01 | Lisa W. Heaton | Surgical apparatus and method for marking tissue location |
US6589502B1 (en) | 1995-11-27 | 2003-07-08 | International Brachytherapy S.A. | Radioisotope dispersed in a matrix for brachytherapy |
US5636255A (en) * | 1996-03-05 | 1997-06-03 | Queen's University At Kingston | Method and apparatus for CT image registration |
US5670161A (en) | 1996-05-28 | 1997-09-23 | Healy; Kevin E. | Biodegradable stent |
US5676146B1 (en) | 1996-09-13 | 2000-04-18 | Osteotech Inc | Surgical implant containing a resorbable radiopaque marker and method of locating such within a body |
WO1998030141A2 (en) | 1997-01-09 | 1998-07-16 | Cohesion Technologies, Inc. | Devices for tissue repair and methods for preparation and use thereof |
US5827324A (en) | 1997-03-06 | 1998-10-27 | Scimed Life Systems, Inc. | Distal protection device |
WO1998047430A1 (en) | 1997-04-23 | 1998-10-29 | Vascular Science Inc. | Medical plug |
US6271278B1 (en) | 1997-05-13 | 2001-08-07 | Purdue Research Foundation | Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties |
US5928260A (en) | 1997-07-10 | 1999-07-27 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
US6340367B1 (en) | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
US5980564A (en) | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
US5899935A (en) | 1997-08-04 | 1999-05-04 | Schneider (Usa) Inc. | Balloon expandable braided stent with restraint |
US5947836A (en) * | 1997-08-26 | 1999-09-07 | Callaway Golf Company | Integral molded grip and shaft |
US6309420B1 (en) * | 1997-10-14 | 2001-10-30 | Parallax Medical, Inc. | Enhanced visibility materials for implantation in hard tissue |
US6331166B1 (en) | 1998-03-03 | 2001-12-18 | Senorx, Inc. | Breast biopsy system and method |
US6261241B1 (en) | 1998-03-03 | 2001-07-17 | Senorx, Inc. | Electrosurgical biopsy device and method |
US6312429B1 (en) | 1998-09-01 | 2001-11-06 | Senorx, Inc. | Electrosurgical lesion location device |
US6161034A (en) | 1999-02-02 | 2000-12-12 | Senorx, Inc. | Methods and chemical preparations for time-limited marking of biopsy sites |
US6113629A (en) * | 1998-05-01 | 2000-09-05 | Micrus Corporation | Hydrogel for the therapeutic treatment of aneurysms |
US20020058882A1 (en) | 1998-06-22 | 2002-05-16 | Artemis Medical, Incorporated | Biopsy localization method and device |
US6086543A (en) | 1998-06-24 | 2000-07-11 | Rubicor Medical, Inc. | Fine needle and core biopsy devices and methods |
WO2000006243A2 (en) * | 1998-07-28 | 2000-02-10 | Innerdyne, Inc. | Absorbable brachytherapy and chemotherapy delivery devices and methods |
US6136014A (en) | 1998-09-01 | 2000-10-24 | Vivant Medical, Inc. | Percutaneous tissue removal device |
US6022362A (en) | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
EP1985320B1 (en) * | 1998-12-01 | 2017-06-21 | Cook Biotech, Inc. | A multi-formed collagenous biomaterial medical device |
US6376742B1 (en) * | 1999-02-17 | 2002-04-23 | Richard J. Zdrahala | In vivo tissue engineering with biodegradable polymers |
US6749554B1 (en) | 1999-02-25 | 2004-06-15 | Amersham Plc | Medical tools and devices with improved ultrasound visibility |
US6277083B1 (en) | 1999-12-27 | 2001-08-21 | Neothermia Corporation | Minimally invasive intact recovery of tissue |
AU2001277035A1 (en) | 2000-07-18 | 2002-01-30 | Senorx, Inc. | Apparatus and method for tissue capture |
AU2002213882A1 (en) | 2000-09-08 | 2002-03-22 | Biomerieux B.V.A. | Attenuated hiv strains and use thereof |
-
1999
- 1999-06-18 US US09/336,360 patent/US6270464B1/en not_active Expired - Lifetime
- 1999-06-21 DE DE69942833T patent/DE69942833D1/en not_active Expired - Lifetime
- 1999-06-21 WO PCT/US1999/013909 patent/WO1999066834A1/en active Application Filing
- 1999-06-21 EP EP10179734.8A patent/EP2258258B1/en not_active Expired - Lifetime
- 1999-06-21 JP JP2000555526A patent/JP4472176B2/en not_active Expired - Fee Related
- 1999-06-21 AT AT99935335T patent/ATE483416T1/en not_active IP Right Cessation
- 1999-06-21 EP EP99935335A patent/EP1096875B1/en not_active Expired - Lifetime
-
2001
- 2001-07-06 US US09/900,801 patent/US6699205B2/en not_active Expired - Lifetime
- 2001-12-20 US US10/027,157 patent/US6730042B2/en not_active Expired - Lifetime
-
2004
- 2004-05-04 US US10/839,226 patent/US20040204660A1/en not_active Abandoned
- 2004-05-04 US US10/839,112 patent/US8292822B2/en not_active Expired - Fee Related
- 2004-09-16 US US10/943,433 patent/US10010380B2/en not_active Expired - Fee Related
- 2004-09-16 US US10/943,434 patent/US20050045192A1/en not_active Abandoned
-
2005
- 2005-11-18 US US11/283,235 patent/US20060079829A1/en not_active Abandoned
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3818894A (en) * | 1971-01-22 | 1974-06-25 | Ceskoslovenska Akademie Ved | Laryngeal implant |
US4197846A (en) * | 1974-10-09 | 1980-04-15 | Louis Bucalo | Method for structure for situating in a living body agents for treating the body |
US4007732A (en) * | 1975-09-02 | 1977-02-15 | Robert Carl Kvavle | Method for location and removal of soft tissue in human biopsy operations |
US4248214A (en) * | 1979-05-22 | 1981-02-03 | Robert S. Kish | Illuminated urethral catheter |
US4320201A (en) * | 1979-10-27 | 1982-03-16 | Firma Carl Freudenberg | Method for making collagen sponge for medical and cosmetic uses |
US4331654A (en) * | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4647480A (en) * | 1983-07-25 | 1987-03-03 | Amchem Products, Inc. | Use of additive in aqueous cure of autodeposited coatings |
US4655211A (en) * | 1984-08-09 | 1987-04-07 | Unitika Ltd. | Hemostatic agent |
US4638802A (en) * | 1984-09-21 | 1987-01-27 | Olympus Optical Co., Ltd. | High frequency instrument for incision and excision |
US4592356A (en) * | 1984-09-28 | 1986-06-03 | Pedro Gutierrez | Localizing device |
US5186922A (en) * | 1985-03-15 | 1993-02-16 | See/Shell Biotechnology, Inc. | Use of biodegradable microspheres labeled with imaging energy constrast materials |
US4650466A (en) * | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
US4832686A (en) * | 1986-06-24 | 1989-05-23 | Anderson Mark E | Method for administering interleukin-2 |
US4817622A (en) * | 1986-07-22 | 1989-04-04 | Carl Pennypacker | Infrared imager for viewing subcutaneous location of vascular structures and method of use |
USRE34936E (en) * | 1986-10-06 | 1995-05-09 | Bio Medic Data Systems, Inc. | Animal marker implanting system |
US5002548A (en) * | 1986-10-06 | 1991-03-26 | Bio Medic Data Systems, Inc. | Animal marker implanting system |
US4744364A (en) * | 1987-02-17 | 1988-05-17 | Intravascular Surgical Instruments, Inc. | Device for sealing percutaneous puncture in a vessel |
US4813422A (en) * | 1987-03-06 | 1989-03-21 | Healthcare Technological Resources, Inc. | Bowel control probe and method for controlling bowel incontinence |
US4799495A (en) * | 1987-03-20 | 1989-01-24 | National Standard Company | Localization needle assembly |
US5120802A (en) * | 1987-12-17 | 1992-06-09 | Allied-Signal Inc. | Polycarbonate-based block copolymers and devices |
US4907589A (en) * | 1988-04-29 | 1990-03-13 | Cosman Eric R | Automatic over-temperature control apparatus for a therapeutic heating device |
US5080655A (en) * | 1988-05-26 | 1992-01-14 | Haaga John R | Medical biopsy needle |
US4838280A (en) * | 1988-05-26 | 1989-06-13 | Haaga John R | Hemostatic sheath for a biopsy needle and method of use |
US5195988A (en) * | 1988-05-26 | 1993-03-23 | Haaga John R | Medical needle with removable sheath |
US5085629A (en) * | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
US4909250A (en) * | 1988-11-14 | 1990-03-20 | Smith Joseph R | Implant system for animal identification |
US5207705A (en) * | 1988-12-08 | 1993-05-04 | Brigham And Women's Hospital | Prosthesis of foam polyurethane and collagen and uses thereof |
US5183463A (en) * | 1989-02-03 | 1993-02-02 | Elie Debbas | Apparatus for locating a breast mass |
US4986279A (en) * | 1989-03-01 | 1991-01-22 | National-Standard Company | Localization needle assembly with reinforced needle assembly |
US5018530A (en) * | 1989-06-15 | 1991-05-28 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5197482A (en) * | 1989-06-15 | 1993-03-30 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5102415A (en) * | 1989-09-06 | 1992-04-07 | Guenther Rolf W | Apparatus for removing blood clots from arteries and veins |
US5014713A (en) * | 1989-12-05 | 1991-05-14 | Tarris Enterprises, Inc. | Method and apparatus for measuring thickness of fat using infrared light |
US5083570A (en) * | 1990-06-18 | 1992-01-28 | Mosby Richard A | Volumetric localization/biopsy/surgical device |
US5100423A (en) * | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5591204A (en) * | 1990-09-21 | 1997-01-07 | Datascope Investment Corp. | Device and method for sealing puncture wounds |
US5192300A (en) * | 1990-10-01 | 1993-03-09 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5108421A (en) * | 1990-10-01 | 1992-04-28 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5716375A (en) * | 1990-10-01 | 1998-02-10 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5221269A (en) * | 1990-10-15 | 1993-06-22 | Cook Incorporated | Guide for localizing a nonpalpable breast lesion |
US5282781A (en) * | 1990-10-25 | 1994-02-01 | Omnitron International Inc. | Source wire for localized radiation treatment of tumors |
US5281408A (en) * | 1991-04-05 | 1994-01-25 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5183464A (en) * | 1991-05-17 | 1993-02-02 | Interventional Thermodynamics, Inc. | Radially expandable dilator |
US5195540A (en) * | 1991-08-12 | 1993-03-23 | Samuel Shiber | Lesion marking process |
US5282827A (en) * | 1991-11-08 | 1994-02-01 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US5411520A (en) * | 1991-11-08 | 1995-05-02 | Kensey Nash Corporation | Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use |
US5204382A (en) * | 1992-02-28 | 1993-04-20 | Collagen Corporation | Injectable ceramic compositions and methods for their preparation and use |
US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
US5514379A (en) * | 1992-08-07 | 1996-05-07 | The General Hospital Corporation | Hydrogel compositions and methods of use |
US5716407A (en) * | 1992-08-24 | 1998-02-10 | Lipomatrix, Incorporated | Method of rendering identifiable a living tissue implant using an electrical transponder marker |
US5423321A (en) * | 1993-02-11 | 1995-06-13 | Fontenot; Mark G. | Detection of anatomic passages using infrared emitting catheter |
US5479936A (en) * | 1993-05-04 | 1996-01-02 | Nabai; Hossein | Biopsy wound closure device and method |
US5483972A (en) * | 1993-05-04 | 1996-01-16 | Nabai; Hossein | Biopsy wound closure device |
US5388588A (en) * | 1993-05-04 | 1995-02-14 | Nabai; Hossein | Biopsy wound closure device and method |
US5409004A (en) * | 1993-06-11 | 1995-04-25 | Cook Incorporated | Localization device with radiopaque markings |
US5417697A (en) * | 1993-07-07 | 1995-05-23 | Wilk; Peter J. | Polyp retrieval assembly with cauterization loop and suction web |
US5494030A (en) * | 1993-08-12 | 1996-02-27 | Trustees Of Dartmouth College | Apparatus and methodology for determining oxygen in biological systems |
US5394886A (en) * | 1993-09-20 | 1995-03-07 | Nabai; Hossein | Skin biopsy plug and method |
US5415656A (en) * | 1993-09-28 | 1995-05-16 | American Medical Systems, Inc. | Electrosurgical apparatus |
US5487392A (en) * | 1993-11-15 | 1996-01-30 | Haaga; John R. | Biopxy system with hemostatic insert |
US5507813A (en) * | 1993-12-09 | 1996-04-16 | Osteotech, Inc. | Shaped materials derived from elongate bone particles |
US5626611A (en) * | 1994-02-10 | 1997-05-06 | United States Surgical Corporation | Composite bioabsorbable materials and surgical articles made therefrom |
US20020016555A1 (en) * | 1994-03-24 | 2002-02-07 | Ritchart Mark A. | Methods and devices for automated biopsy and collection of soft tissue |
US5422730A (en) * | 1994-03-25 | 1995-06-06 | Barlow; Clyde H. | Automated optical detection of tissue perfusion by microspheres |
US5517997A (en) * | 1994-09-15 | 1996-05-21 | Gabriel Medical, Inc. | Transillumination of body members for protection during body invasive procedures |
US20020026201A1 (en) * | 1994-09-16 | 2002-02-28 | Foerster Seth A. | Methods for defining and marking tissue |
US6228055B1 (en) * | 1994-09-16 | 2001-05-08 | Ethicon Endo-Surgery, Inc. | Devices for marking and defining particular locations in body tissue |
US5716404A (en) * | 1994-12-16 | 1998-02-10 | Massachusetts Institute Of Technology | Breast tissue engineering |
US5869080A (en) * | 1995-05-30 | 1999-02-09 | Johnson & Johnson Medical, Inc. | Absorbable implant materials having controlled porosity |
US5873904A (en) * | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
US6231834B1 (en) * | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
US6774278B1 (en) * | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device |
US5752974A (en) * | 1995-12-18 | 1998-05-19 | Collagen Corporation | Injectable or implantable biomaterials for filling or blocking lumens and voids of the body |
US6352682B2 (en) * | 1996-03-11 | 2002-03-05 | Focal, Inc. | Polymeric delivery of radionuclides and radiopharmaceuticals |
US5735289A (en) * | 1996-08-08 | 1998-04-07 | Pfeffer; Herbert G. | Method and apparatus for organic specimen retrieval |
US5902310A (en) * | 1996-08-12 | 1999-05-11 | Ethicon Endo-Surgery, Inc. | Apparatus and method for marking tissue |
US7049346B1 (en) * | 1996-08-20 | 2006-05-23 | Menlo Care Div Of Ethicon, Inc. | Swollen hydrogel for sphincter augmentation |
US6066325A (en) * | 1996-08-27 | 2000-05-23 | Fusion Medical Technologies, Inc. | Fragmented polymeric compositions and methods for their use |
US5868708A (en) * | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US6027520A (en) * | 1997-05-08 | 2000-02-22 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US20020019640A1 (en) * | 1997-07-24 | 2002-02-14 | Rex Medical | Breast surgery method and apparatus |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US20040049269A1 (en) * | 1997-10-10 | 2004-03-11 | Corbitt John D. | Bioabsorbable breast implant |
US6214045B1 (en) * | 1997-10-10 | 2001-04-10 | John D. Corbitt, Jr. | Bioabsorbable breast implant |
US6015541A (en) * | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
US20020007130A1 (en) * | 1998-03-03 | 2002-01-17 | Senorx, Inc. | Methods and apparatus for securing medical instruments to desired locations in a patients body |
US6335028B1 (en) * | 1998-03-06 | 2002-01-01 | Biosphere Medical, Inc. | Implantable particles for urinary incontinence |
US6183497B1 (en) * | 1998-05-01 | 2001-02-06 | Sub-Q, Inc. | Absorbable sponge with contrasting agent |
US6730042B2 (en) * | 1998-06-22 | 2004-05-04 | Artemis Medical, Inc. | Biopsy localization method and device |
US6699205B2 (en) * | 1998-06-22 | 2004-03-02 | Artemis Medical, Inc. | Biopsy localization method and device |
US6056700A (en) * | 1998-10-13 | 2000-05-02 | Emx, Inc. | Biopsy marker assembly and method of use |
US6371904B1 (en) * | 1998-12-24 | 2002-04-16 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US20020035324A1 (en) * | 1998-12-24 | 2002-03-21 | Sirimanne D. Laksen | Subcutaneous cavity marking device and method |
US6356782B1 (en) * | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6347241B2 (en) * | 1999-02-02 | 2002-02-12 | Senorx, Inc. | Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it |
US6053876A (en) * | 1999-06-09 | 2000-04-25 | Fisher; John | Apparatus and method for marking non-palpable lesions |
US20020026234A1 (en) * | 2000-04-07 | 2002-02-28 | Shu-Tung Li | Embolization device |
US20040049126A1 (en) * | 2001-09-10 | 2004-03-11 | Vivant Medical, Inc. | Biopsy marker delivery system |
US20050020916A1 (en) * | 2003-06-06 | 2005-01-27 | Macfarlane K. Angela | Subcutaneous biopsy cavity marker device |
Cited By (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8157862B2 (en) | 1997-10-10 | 2012-04-17 | Senorx, Inc. | Tissue marking implant |
US9480554B2 (en) | 1997-10-10 | 2016-11-01 | Senorx, Inc. | Tissue marking implant |
US10058416B2 (en) | 1997-10-10 | 2018-08-28 | Senorx, Inc. | Tissue marking implant |
US9039763B2 (en) | 1997-10-10 | 2015-05-26 | Senorx, Inc. | Tissue marking implant |
US8680498B2 (en) | 1997-10-10 | 2014-03-25 | Senorx, Inc. | Method of utilizing an implant in a human breast |
US8668737B2 (en) | 1997-10-10 | 2014-03-11 | Senorx, Inc. | Tissue marking implant |
US8541764B2 (en) | 1997-10-10 | 2013-09-24 | Senorx, Inc. | Method of utilizing an implant for targeting external beam radiation |
US8288745B2 (en) | 1997-10-10 | 2012-10-16 | Senorx, Inc. | Method of utilizing an implant for targeting external beam radiation |
US9044162B2 (en) | 1999-02-02 | 2015-06-02 | Senorx, Inc. | Marker delivery device with releasable plug |
US9861294B2 (en) | 1999-02-02 | 2018-01-09 | Senorx, Inc. | Marker delivery device with releasable plug |
US8965486B2 (en) | 1999-02-02 | 2015-02-24 | Senorx, Inc. | Cavity filling biopsy site markers |
US9649093B2 (en) | 1999-02-02 | 2017-05-16 | Senorx, Inc. | Cavity-filling biopsy site markers |
US10172674B2 (en) | 1999-02-02 | 2019-01-08 | Senorx, Inc. | Intracorporeal marker and marker delivery device |
US9149341B2 (en) | 1999-02-02 | 2015-10-06 | Senorx, Inc | Deployment of polysaccharide markers for treating a site within a patient |
US8626270B2 (en) | 1999-02-02 | 2014-01-07 | Senorx, Inc. | Cavity-filling biopsy site markers |
US8219182B2 (en) | 1999-02-02 | 2012-07-10 | Senorx, Inc. | Cavity-filling biopsy site markers |
US8224424B2 (en) | 1999-02-02 | 2012-07-17 | Senorx, Inc. | Tissue site markers for in vivo imaging |
US9237937B2 (en) | 1999-02-02 | 2016-01-19 | Senorx, Inc. | Cavity-filling biopsy site markers |
US9820824B2 (en) | 1999-02-02 | 2017-11-21 | Senorx, Inc. | Deployment of polysaccharide markers for treating a site within a patent |
US8498693B2 (en) | 1999-02-02 | 2013-07-30 | Senorx, Inc. | Intracorporeal marker and marker delivery device |
US8361082B2 (en) | 1999-02-02 | 2013-01-29 | Senorx, Inc. | Marker delivery device with releasable plug |
US8579931B2 (en) | 1999-06-17 | 2013-11-12 | Bard Peripheral Vascular, Inc. | Apparatus for the percutaneous marking of a lesion |
US10463446B2 (en) | 1999-06-17 | 2019-11-05 | Bard Peripheral Vascular, Inc. | Apparatus for the percutaneous marking of a lesion |
US9579159B2 (en) | 1999-06-17 | 2017-02-28 | Bard Peripheral Vascular, Inc. | Apparatus for the percutaneous marking of a lesion |
US8718745B2 (en) | 2000-11-20 | 2014-05-06 | Senorx, Inc. | Tissue site markers for in vivo imaging |
US8177792B2 (en) | 2002-06-17 | 2012-05-15 | Senorx, Inc. | Plugged tip delivery tube for marker placement |
US8784433B2 (en) | 2002-06-17 | 2014-07-22 | Senorx, Inc. | Plugged tip delivery tube for marker placement |
US10813716B2 (en) | 2002-11-18 | 2020-10-27 | Bard Peripheral Vascular, Inc. | Self-contained, self-piercing, side-expelling marking apparatus |
US9848956B2 (en) | 2002-11-18 | 2017-12-26 | Bard Peripheral Vascular, Inc. | Self-contained, self-piercing, side-expelling marking apparatus |
US10045832B2 (en) | 2003-05-23 | 2018-08-14 | Senorx, Inc. | Marker or filler forming fluid |
US20110237943A1 (en) * | 2003-05-23 | 2011-09-29 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
US8639315B2 (en) | 2003-05-23 | 2014-01-28 | Senorx, Inc. | Marker or filler forming fluid |
US8447386B2 (en) | 2003-05-23 | 2013-05-21 | Senorx, Inc. | Marker or filler forming fluid |
US9801688B2 (en) | 2003-05-23 | 2017-10-31 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
US10299881B2 (en) | 2003-05-23 | 2019-05-28 | Senorx, Inc. | Marker or filler forming fluid |
US8880154B2 (en) | 2003-05-23 | 2014-11-04 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
US8626269B2 (en) | 2003-05-23 | 2014-01-07 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
US7169114B2 (en) * | 2003-06-04 | 2007-01-30 | Krause William R | Biopsy and delivery device |
US20040249278A1 (en) * | 2003-06-04 | 2004-12-09 | Krause William R. | Biopsy and delivery device |
US8226730B2 (en) * | 2003-08-11 | 2012-07-24 | Cook Medical Technologies Llc | Surgical implant |
US20100256778A1 (en) * | 2003-08-11 | 2010-10-07 | Wilson-Cook Medical Inc. | Surgical Implant |
US8634899B2 (en) | 2003-11-17 | 2014-01-21 | Bard Peripheral Vascular, Inc. | Multi mode imaging marker |
US11278370B2 (en) | 2005-04-20 | 2022-03-22 | Bard Peripheral Vascular, Inc. | Marking device with retractable cannula |
US10342635B2 (en) | 2005-04-20 | 2019-07-09 | Bard Peripheral Vascular, Inc. | Marking device with retractable cannula |
US10357328B2 (en) | 2005-04-20 | 2019-07-23 | Bard Peripheral Vascular, Inc. and Bard Shannon Limited | Marking device with retractable cannula |
US8486028B2 (en) | 2005-10-07 | 2013-07-16 | Bard Peripheral Vascular, Inc. | Tissue marking apparatus having drug-eluting tissue marker |
US8437834B2 (en) | 2006-10-23 | 2013-05-07 | C. R. Bard, Inc. | Breast marker |
US11471244B2 (en) | 2006-12-12 | 2022-10-18 | C.R. Bard, Inc. | Multiple imaging mode tissue marker |
US10682200B2 (en) | 2006-12-12 | 2020-06-16 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
US9579077B2 (en) | 2006-12-12 | 2017-02-28 | C.R. Bard, Inc. | Multiple imaging mode tissue marker |
US9901415B2 (en) | 2006-12-12 | 2018-02-27 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
US8401622B2 (en) | 2006-12-18 | 2013-03-19 | C. R. Bard, Inc. | Biopsy marker with in situ-generated imaging properties |
US9042965B2 (en) | 2006-12-18 | 2015-05-26 | C. R. Bard, Inc. | Biopsy marker with in situ-generated imaging properties |
US20090030309A1 (en) * | 2007-07-26 | 2009-01-29 | Senorx, Inc. | Deployment of polysaccharide markers |
US20090216118A1 (en) * | 2007-07-26 | 2009-08-27 | Senorx, Inc. | Polysaccharide markers |
US8311610B2 (en) | 2008-01-31 | 2012-11-13 | C. R. Bard, Inc. | Biopsy tissue marker |
US20090216150A1 (en) * | 2008-02-25 | 2009-08-27 | Lee Reichel | Method and Apparatus For Inserting Biopsy Site Marker In Marker Body |
US20090216181A1 (en) * | 2008-02-25 | 2009-08-27 | Speeg Trevor W V | Biopsy Site Marker Deployment Instrument |
US8079964B2 (en) | 2008-02-25 | 2011-12-20 | Devicor Medical Products, Inc. | Method and apparatus for inserting biopsy site marker in marker body |
US8068895B2 (en) | 2008-02-25 | 2011-11-29 | Devicor Medical Products, Inc. | Biopsy site marker deployment instrument |
WO2009134340A1 (en) * | 2008-04-28 | 2009-11-05 | Corbitt John D Jr | System for utilizing an implant for targeting external beam radiation |
US20100082102A1 (en) * | 2008-09-23 | 2010-04-01 | Senorx, Inc. | Porous bioabsorbable implant |
US9327061B2 (en) | 2008-09-23 | 2016-05-03 | Senorx, Inc. | Porous bioabsorbable implant |
US11833275B2 (en) | 2008-09-23 | 2023-12-05 | Senorx, Inc. | Porous bioabsorbable implant |
US10786604B2 (en) | 2008-09-23 | 2020-09-29 | Senorx, Inc. | Porous bioabsorbable implant |
US8670818B2 (en) | 2008-12-30 | 2014-03-11 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
US11779431B2 (en) | 2008-12-30 | 2023-10-10 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
US10258428B2 (en) | 2008-12-30 | 2019-04-16 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
US9095346B2 (en) | 2010-11-05 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Medical device usage data processing |
US9011427B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument safety glasses |
US9510895B2 (en) | 2010-11-05 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular shaft and end effector |
US9421062B2 (en) | 2010-11-05 | 2016-08-23 | Ethicon Endo-Surgery, Llc | Surgical instrument shaft with resiliently biased coupling to handpiece |
US9597143B2 (en) | 2010-11-05 | 2017-03-21 | Ethicon Endo-Surgery, Llc | Sterile medical instrument charging device |
US9649150B2 (en) | 2010-11-05 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Selective activation of electronic components in medical device |
US9381058B2 (en) | 2010-11-05 | 2016-07-05 | Ethicon Endo-Surgery, Llc | Recharge system for medical devices |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US9782215B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Endo-Surgery, Llc | Surgical instrument with ultrasonic transducer having integral switches |
US9375255B2 (en) | 2010-11-05 | 2016-06-28 | Ethicon Endo-Surgery, Llc | Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector |
US9364279B2 (en) | 2010-11-05 | 2016-06-14 | Ethicon Endo-Surgery, Llc | User feedback through handpiece of surgical instrument |
US9308009B2 (en) | 2010-11-05 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular shaft and transducer |
US9247986B2 (en) | 2010-11-05 | 2016-02-02 | Ethicon Endo-Surgery, Llc | Surgical instrument with ultrasonic transducer having integral switches |
US9192428B2 (en) | 2010-11-05 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument with modular clamp pad |
US9161803B2 (en) | 2010-11-05 | 2015-10-20 | Ethicon Endo-Surgery, Inc. | Motor driven electrosurgical device with mechanical and electrical feedback |
US9089338B2 (en) | 2010-11-05 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Medical device packaging with window for insertion of reusable component |
US10085792B2 (en) | 2010-11-05 | 2018-10-02 | Ethicon Llc | Surgical instrument with motorized attachment feature |
US11925335B2 (en) | 2010-11-05 | 2024-03-12 | Cilag Gmbh International | Surgical instrument with slip ring assembly to power ultrasonic transducer |
US10143513B2 (en) | 2010-11-05 | 2018-12-04 | Ethicon Llc | Gear driven coupling between ultrasonic transducer and waveguide in surgical instrument |
US9072523B2 (en) | 2010-11-05 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Medical device with feature for sterile acceptance of non-sterile reusable component |
US9039720B2 (en) | 2010-11-05 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with ratcheting rotatable shaft |
US9017851B2 (en) | 2010-11-05 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Sterile housing for non-sterile medical device component |
US9017849B2 (en) | 2010-11-05 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Power source management for medical device |
US9526921B2 (en) * | 2010-11-05 | 2016-12-27 | Ethicon Endo-Surgery, Llc | User feedback through end effector of surgical instrument |
US10376304B2 (en) | 2010-11-05 | 2019-08-13 | Ethicon Llc | Surgical instrument with modular shaft and end effector |
US9011471B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument with pivoting coupling to modular shaft and end effector |
US10537380B2 (en) | 2010-11-05 | 2020-01-21 | Ethicon Llc | Surgical instrument with charging station and wireless communication |
US20120116267A1 (en) * | 2010-11-05 | 2012-05-10 | Kimball Cory G | User feedback through end effector of surgical instrument |
US10660695B2 (en) | 2010-11-05 | 2020-05-26 | Ethicon Llc | Sterile medical instrument charging device |
US8998939B2 (en) | 2010-11-05 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument with modular end effector |
US9000720B2 (en) | 2010-11-05 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Medical device packaging with charging interface |
US11744635B2 (en) | 2010-11-05 | 2023-09-05 | Cilag Gmbh International | Sterile medical instrument charging device |
US10881448B2 (en) | 2010-11-05 | 2021-01-05 | Ethicon Llc | Cam driven coupling between ultrasonic transducer and waveguide in surgical instrument |
US10945783B2 (en) | 2010-11-05 | 2021-03-16 | Ethicon Llc | Surgical instrument with modular shaft and end effector |
US10959769B2 (en) | 2010-11-05 | 2021-03-30 | Ethicon Llc | Surgical instrument with slip ring assembly to power ultrasonic transducer |
US10973563B2 (en) | 2010-11-05 | 2021-04-13 | Ethicon Llc | Surgical instrument with charging devices |
US11690605B2 (en) | 2010-11-05 | 2023-07-04 | Cilag Gmbh International | Surgical instrument with charging station and wireless communication |
US11389228B2 (en) | 2010-11-05 | 2022-07-19 | Cilag Gmbh International | Surgical instrument with sensor and powered control |
USD715942S1 (en) | 2013-09-24 | 2014-10-21 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716450S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716451S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD715442S1 (en) | 2013-09-24 | 2014-10-14 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
US10136938B2 (en) | 2014-10-29 | 2018-11-27 | Ethicon Llc | Electrosurgical instrument with sensor |
US11504207B2 (en) | 2015-06-04 | 2022-11-22 | Endomagnetics Ltd | Marker materials and forms for magnetic marker localization (MML) |
US10595957B2 (en) | 2015-06-04 | 2020-03-24 | Endomagnetics Ltd | Marker materials and forms for magnetic marker localization (MML) |
US12161513B2 (en) | 2015-06-04 | 2024-12-10 | Endomagnetics Ltd | Marker materials and forms for magnetic marker localization (MML) |
US11571273B2 (en) | 2015-11-11 | 2023-02-07 | Devicor Medical Products, Inc. | Marker delivery device and method of deploying a marker |
Also Published As
Publication number | Publication date |
---|---|
US10010380B2 (en) | 2018-07-03 |
WO1999066834A1 (en) | 1999-12-29 |
DE69942833D1 (en) | 2010-11-18 |
US20020058883A1 (en) | 2002-05-16 |
ATE483416T1 (en) | 2010-10-15 |
US6699205B2 (en) | 2004-03-02 |
US8292822B2 (en) | 2012-10-23 |
US6730042B2 (en) | 2004-05-04 |
US20050033195A1 (en) | 2005-02-10 |
EP2258258B1 (en) | 2014-08-13 |
US20050045192A1 (en) | 2005-03-03 |
EP2258258A2 (en) | 2010-12-08 |
JP2002518121A (en) | 2002-06-25 |
US6270464B1 (en) | 2001-08-07 |
EP2258258A3 (en) | 2013-04-17 |
EP1096875B1 (en) | 2010-10-06 |
EP1096875A1 (en) | 2001-05-09 |
US20040204660A1 (en) | 2004-10-14 |
US20010049481A1 (en) | 2001-12-06 |
EP1096875A4 (en) | 2005-12-21 |
US20040210160A1 (en) | 2004-10-21 |
JP4472176B2 (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6699205B2 (en) | Biopsy localization method and device | |
US20020058882A1 (en) | Biopsy localization method and device | |
US9801688B2 (en) | Fibrous marker and intracorporeal delivery thereof | |
CA2356890C (en) | Device and method for safe location and marking of a cavity and sentinel lymph nodes | |
US10299881B2 (en) | Marker or filler forming fluid | |
US20080294039A1 (en) | Assembly with hemostatic and radiographically detectable pellets | |
WO2001008578A1 (en) | Device and method for safe location and marking of a cavity and sentinel lymph nodes | |
US20090171198A1 (en) | Powdered marker | |
JP2003518974A (en) | Apparatus and method for accessing a biopsy location | |
ES2358879T3 (en) | BIOPSY LOCATION DEVICE. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, MA Free format text: SECURITY AGREEMENT;ASSIGNOR:ARTEMIS MEDICAL, INC.;REEL/FRAME:024672/0377 Effective date: 20100709 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |