US20060073124A1 - Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue - Google Patents
Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue Download PDFInfo
- Publication number
- US20060073124A1 US20060073124A1 US11/065,461 US6546105A US2006073124A1 US 20060073124 A1 US20060073124 A1 US 20060073124A1 US 6546105 A US6546105 A US 6546105A US 2006073124 A1 US2006073124 A1 US 2006073124A1
- Authority
- US
- United States
- Prior art keywords
- cells
- cell
- isolated
- population
- markers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000002894 multi-fate stem cell Anatomy 0.000 title claims abstract description 22
- 238000002955 isolation Methods 0.000 title abstract description 19
- 210000004027 cell Anatomy 0.000 claims abstract description 167
- 238000000034 method Methods 0.000 claims abstract description 39
- -1 CD49A Proteins 0.000 claims abstract description 15
- 102100032912 CD44 antigen Human genes 0.000 claims abstract description 13
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 claims abstract description 13
- 102100022749 Aminopeptidase N Human genes 0.000 claims abstract description 12
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 claims abstract description 12
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 claims abstract description 12
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 claims abstract description 12
- 102000003729 Neprilysin Human genes 0.000 claims abstract description 12
- 108090000028 Neprilysin Proteins 0.000 claims abstract description 12
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 claims abstract description 11
- 102100022002 CD59 glycoprotein Human genes 0.000 claims abstract description 11
- 102100025680 Complement decay-accelerating factor Human genes 0.000 claims abstract description 11
- 102100037241 Endoglin Human genes 0.000 claims abstract description 11
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 claims abstract description 11
- 101000897400 Homo sapiens CD59 glycoprotein Proteins 0.000 claims abstract description 11
- 101000856022 Homo sapiens Complement decay-accelerating factor Proteins 0.000 claims abstract description 11
- 101000881679 Homo sapiens Endoglin Proteins 0.000 claims abstract description 11
- 101000994365 Homo sapiens Integrin alpha-6 Proteins 0.000 claims abstract description 11
- 101001046677 Homo sapiens Integrin alpha-V Proteins 0.000 claims abstract description 11
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 claims abstract description 11
- 101001015006 Homo sapiens Integrin beta-4 Proteins 0.000 claims abstract description 11
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 claims abstract description 11
- 101000599858 Homo sapiens Intercellular adhesion molecule 2 Proteins 0.000 claims abstract description 11
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 claims abstract description 11
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 claims abstract description 11
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 claims abstract description 11
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims abstract description 11
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 claims abstract description 11
- 101000622304 Homo sapiens Vascular cell adhesion protein 1 Proteins 0.000 claims abstract description 11
- 102100032816 Integrin alpha-6 Human genes 0.000 claims abstract description 11
- 102100022337 Integrin alpha-V Human genes 0.000 claims abstract description 11
- 102100025304 Integrin beta-1 Human genes 0.000 claims abstract description 11
- 102100033000 Integrin beta-4 Human genes 0.000 claims abstract description 11
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 claims abstract description 11
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 claims abstract description 11
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 claims abstract description 11
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 claims abstract description 11
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 claims abstract description 11
- 102100040120 Prominin-1 Human genes 0.000 claims abstract description 11
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims abstract description 11
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 claims abstract description 11
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 claims abstract description 11
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 claims abstract description 10
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 claims abstract description 10
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 claims abstract description 10
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 claims abstract description 9
- 102100022338 Integrin alpha-M Human genes 0.000 claims abstract description 9
- 102100037904 CD9 antigen Human genes 0.000 claims abstract description 8
- 101000738354 Homo sapiens CD9 antigen Proteins 0.000 claims abstract description 8
- 210000001519 tissue Anatomy 0.000 claims description 34
- 238000012258 culturing Methods 0.000 claims description 16
- 210000004504 adult stem cell Anatomy 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 239000001963 growth medium Substances 0.000 claims description 10
- 238000000338 in vitro Methods 0.000 claims description 10
- 230000009870 specific binding Effects 0.000 claims description 10
- 210000000577 adipose tissue Anatomy 0.000 claims description 8
- 230000027455 binding Effects 0.000 claims description 8
- 239000006285 cell suspension Substances 0.000 claims description 7
- 210000002808 connective tissue Anatomy 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 210000002569 neuron Anatomy 0.000 claims description 6
- 230000006862 enzymatic digestion Effects 0.000 claims description 5
- 239000003550 marker Substances 0.000 claims description 5
- 239000008194 pharmaceutical composition Substances 0.000 claims description 5
- 238000011069 regeneration method Methods 0.000 claims description 5
- 239000003124 biologic agent Substances 0.000 claims description 4
- 239000002831 pharmacologic agent Substances 0.000 claims description 4
- 101001078158 Homo sapiens Integrin alpha-1 Proteins 0.000 claims description 3
- 102100025323 Integrin alpha-1 Human genes 0.000 claims description 3
- 210000001789 adipocyte Anatomy 0.000 claims description 3
- 210000001612 chondrocyte Anatomy 0.000 claims description 3
- 238000002560 therapeutic procedure Methods 0.000 claims description 3
- 210000001130 astrocyte Anatomy 0.000 claims description 2
- 210000004413 cardiac myocyte Anatomy 0.000 claims description 2
- 230000036755 cellular response Effects 0.000 claims description 2
- 210000004748 cultured cell Anatomy 0.000 claims description 2
- 210000002889 endothelial cell Anatomy 0.000 claims description 2
- 210000002919 epithelial cell Anatomy 0.000 claims description 2
- 210000003494 hepatocyte Anatomy 0.000 claims description 2
- 210000000107 myocyte Anatomy 0.000 claims description 2
- 210000004248 oligodendroglia Anatomy 0.000 claims description 2
- 210000004409 osteocyte Anatomy 0.000 claims description 2
- 230000017423 tissue regeneration Effects 0.000 claims 2
- 239000003937 drug carrier Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 4
- 210000000130 stem cell Anatomy 0.000 description 22
- 210000001185 bone marrow Anatomy 0.000 description 14
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 14
- 230000004069 differentiation Effects 0.000 description 13
- 239000002609 medium Substances 0.000 description 13
- 238000012512 characterization method Methods 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 8
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 7
- 239000012091 fetal bovine serum Substances 0.000 description 7
- 238000000684 flow cytometry Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 210000004872 soft tissue Anatomy 0.000 description 6
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 238000007443 liposuction Methods 0.000 description 5
- 230000002188 osteogenic effect Effects 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- 229930182816 L-glutamine Natural products 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 108010004729 Phycoerythrin Proteins 0.000 description 3
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 210000002805 bone matrix Anatomy 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 description 2
- DHCLVCXQIBBOPH-UHFFFAOYSA-N Glycerol 2-phosphate Chemical compound OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 108010036236 extracellular matrix receptor Proteins 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000003098 myoblast Anatomy 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 208000031295 Animal disease Diseases 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 102100024210 CD166 antigen Human genes 0.000 description 1
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 1
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 1
- 102000049320 CD36 Human genes 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102100023126 Cell surface glycoprotein MUC18 Human genes 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101000980840 Homo sapiens CD166 antigen Proteins 0.000 description 1
- 101000623903 Homo sapiens Cell surface glycoprotein MUC18 Proteins 0.000 description 1
- 101000622123 Homo sapiens E-selectin Proteins 0.000 description 1
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 1
- 101000994375 Homo sapiens Integrin alpha-4 Proteins 0.000 description 1
- 101000994369 Homo sapiens Integrin alpha-5 Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 1
- 101000599862 Homo sapiens Intercellular adhesion molecule 3 Proteins 0.000 description 1
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 1
- 101001054921 Homo sapiens Lymphatic vessel endothelial hyaluronic acid receptor 1 Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 101000622137 Homo sapiens P-selectin Proteins 0.000 description 1
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100025305 Integrin alpha-2 Human genes 0.000 description 1
- 102100032818 Integrin alpha-4 Human genes 0.000 description 1
- 102100032817 Integrin alpha-5 Human genes 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 102100032999 Integrin beta-3 Human genes 0.000 description 1
- 102100037871 Intercellular adhesion molecule 3 Human genes 0.000 description 1
- MIJPAVRNWPDMOR-ZAFYKAAXSA-N L-ascorbic acid 2-phosphate Chemical compound OC[C@H](O)[C@H]1OC(=O)C(OP(O)(O)=O)=C1O MIJPAVRNWPDMOR-ZAFYKAAXSA-N 0.000 description 1
- 102100033467 L-selectin Human genes 0.000 description 1
- 102100026849 Lymphatic vessel endothelial hyaluronic acid receptor 1 Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- 208000008636 Neoplastic Processes Diseases 0.000 description 1
- 108010032605 Nerve Growth Factor Receptors Proteins 0.000 description 1
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 1
- 102100023472 P-selectin Human genes 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102100033725 Tumor necrosis factor receptor superfamily member 16 Human genes 0.000 description 1
- 102100040403 Tumor necrosis factor receptor superfamily member 6 Human genes 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 210000003074 dental pulp Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 230000022379 skeletal muscle tissue development Effects 0.000 description 1
- 210000002356 skeleton Anatomy 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000001988 somatic stem cell Anatomy 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960000604 valproic acid Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0607—Non-embryonic pluripotent stem cells, e.g. MASC
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0619—Neurons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0654—Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0658—Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0667—Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/13—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
- C12N2506/1346—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
- C12N2506/1384—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from adipose-derived stem cells [ADSC], from adipose stromal stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
Definitions
- Stem cells show differential characteristics as they are able to sustain themselves and differentiate into one or more cell type. Although research into stem cells and their applications is still in its early stages, adult stem cells in bone marrow have been used in transplants for more than 30 years. Nevertheless, in recent years, stem cell technology has made large advances such that stem cells are currently considered as a promising source of tissue and organs, with an important therapeutic potential for repair and regeneration of tissues.
- stem cells are an alternative therapy for several human diseases, particularly those in which there is a loss of functional cells, including chondral, bone and muscular lesions, neurodegenerative diseases, immunologic rejection, heart disease and skin disorders (see U.S. Pat. Nos. 5,811,094, 5,958,767, 6,328,960, 6,379,953, 6,497,875).
- stem cells In addition to cell therapy applications, stem cells have potential applications in the research and development of new drugs.
- the study of mechanisms implicated in the proliferation and differentiation of stem cells is of great value in the process of searching for and characterizing new genes involved in a wide range of biological processes, including cell development and differentiation and neoplastic processes (Phillips et al., 2000; Ramalho-Santos et al., 2002; Ivanova et al., 2002).
- stem cell technology allows specialized cells to be generated and the development of cell models for human and animal diseases, in which the efficacy and toxicity of new active ingredients can be determined in the preclinical phase (see U.S. Pat. No. 6,294,346).
- An adult somatic stem cell is an undifferentiated cell which is found in a differentiated tissue and which has the capacity to proliferate and differentiate into one or more cell types.
- Adult stem cells are present in different adult tissues, their presence being extensively reported in bone marrow, blood, cornea, retina, brain, muscle, skeleton, dental pulp, gastrointestinal epithelium, liver and skin (Stem Cell Book, 2001). By their nature, autologous adult stem cells are incompatible and their use does not raise any ethical concerns.
- An adult stem cell should be able to give rise to fully differentiated cells with mature phenotypes which are integrated into the tissue where they are found and which are able to carry out the specialized functions of the given tissue.
- phenotype refers to observable characteristics of the cell; such as characteristic morphology, interactions with other cells and with the extracellular matrix, cell surface proteins (surface markers) and characteristic functions (Stem Cell Book, 2001).
- the ideal source of adult stem cells is one in which they can be obtained by an easy, non-invasive process and one that allows a sufficient number of cells to be isolated.
- a source should provide stem cells that can be easily isolated from a living subject without significant risks and discomfort and the source should allow a high yield to be obtained with minimal contamination from other cell types, without excessive cost of isolation and culture.
- multipotent stem cells can be obtained from skeletal muscle and other connective tissue of mammals (Young et al. 1993, Rogers et al. 1995). Multipotent cells have also been obtained from human lipoaspirated tissue (Zuk et al., 2001). Another example of multipotent cells isolated from adult connective tissue is the so-called Multipotent Adult Progenitor Cells (MAPC) obtained from bone marrow (Verfaillie et al., 2002).
- MPC Multipotent Adult Progenitor Cells
- phenotype characterization of stem cells comprises determination of markers such as cell surface receptors, among others; and the determination of their capacity for differentiation in in vitro cultures.
- markers such as cell surface receptors, among others; and the determination of their capacity for differentiation in in vitro cultures.
- Each cell type has a certain combination of surface markers, that is, it has a certain profile of expression that characterizes that particular cell type, distinguishing it from others.
- CD44 hyaluronic acid receptor
- a significant disadvantage in using adult stem cells resides in the fact that most of the current sources for obtaining stem cells are contaminated with other cell types, complicating the process of identification, isolation and characterization of the populations of stem cell with the objective of using them for therapeutic or other ends. Thus, there is an interest in obtaining a population of multipotent stem cells isolated in a substantially pure form.
- the characterization of a multipotent adult stem cell population from non-osteochondral mesenchymal tissue will allow a method for identification and isolation to be designed, as well as the identification of growth factors associated with self-regeneration. Moreover, there may be growth factors associated with the initial phases of differentiation, knowledge of which would allow more efficient in vivo and ex vivo differentiation, as well as for exercising control over the proliferation of stem cells.
- the present invention provides a multipotent adult stem cell population from non-osteochondral mesenchymal tissue, preferably from adipose tissue, isolated and characterized by means of immunophenotype markers present on the cell surface, showing their multipotent nature.
- the present invention provides a method for the identification and isolation of a population of multipotent stem cells from non-osteochondral mesenchymal tissue, dependent on a pattern of characteristic immunophenotype markers, allowing a composition of substantially homogeneous multipotent stem cell markers to be obtained.
- a first aspect of the invention relates to an isolated multipotent adult cell from non-osteochondral mesenchymal tissue, characterized in that it is positive for the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105 and in that it lacks expression of the following markers: CD11b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- a preferred aspect of the invention relates to an isolated multipotent adult cell from non-osteochondral mesenchymal tissue obtained by a method that comprises:
- said cell is characterized by being positive to the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105, and lacking expression of the following markers: CD11 b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- the non-osteochondral mesenchymal tissue is a connective tissue, preferably the adipose tissue.
- the cells of the present invention can be genetically modified.
- a second aspect of the invention relates to cell(s) that express(es) at least one characteristic of a specialized cell, derived from an isolated multipotent adult stem cell of the present invention in which said cell preferably expresses at least one characteristic of an epithelial or endothelial cell or of an adipocyte or a myocyte or a chondrocyte or an osteocyte or a neuron or an astrocyte or an oligodendrocyte or a hepatocyte or a cardiomyocyte or a pancreatic cell.
- a third aspect of the invention relates to an isolated population that comprises cells from non-osteochondral mesenchymal tissue characterized in that they are positive for the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105, and lack expression of the following markers: CD11b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- a fourth aspect of the present invention relates to a method for identifying a population of multipotent adult cells, in which said population consists of isolated cells of the present invention, which method comprises:
- a fifth aspect of the present invention relates to a method for isolating a population of multipotent adult cells of the present invention or of a cell object of the present invention, which method comprises:
- said method of isolation consists of making a negative selection, excluding those cells that bind to labelled compounds or which bind specifically to CD11b or CD14 or CD15 or CD16 or CD31 or CD34 or CD45 or CD49f or CD102 or CD104 or CD106 or CD133 and a subsequent positive selection of those cells that present binding to labelled compounds that bind specifically to CD9 or CD10 or CD13 or CD29 or CD44 or CD49a or CD51 or CD54 or CD55 or CD58 or CD59 or CD90 or CD105.
- a preferred aspect of the invention relates to a population of multipotent adult stem cells from non-osteochondral mesenchymal tissue obtained according to a method of isolation of the invention.
- a sixth aspect of the invention relates to a cell composition substantially homogeneous that comprises a cell or cell population object of the present invention. Additionally, said pharmaceutical composition may comprise a pharmaceutically acceptable vehicle or carrier or excipient.
- a preferred aspect of the present invention comprises a pharmaceutical composition object of the invention for therapeutic use.
- said pharmaceutical composition is used for the repair and regeneration of tissues.
- a seventh aspect of the invention relates to a method for evaluating in vitro or in vivo the cell response to biological or pharmacological agents, or to combinatorial libraries of said agents, which comprises:
- FIGS. 1 a - 1 d show histograms of fluorescence immunocytometry corresponding to the profile of surface markers obtained from cells isolated from liposuction samples of a healthy donor. The results show the evolution of the markers studied over time in the culture and in each case it is indicated to what time during the culture period the cells analyzed belong.
- FIG. 1 a shows the expression of markers on Day 0.
- FIG. 1 b shows the expression of markers on Day 7 of culturing.
- FIG. 1 c shows the expression of markers after 4 weeks of culturing and
- FIG. 1 d shows the expression of markers after 3 months of culturing.
- FIGS. 2 a - 2 d show the histograms of fluorescence immunocytometry corresponding to the profile of surface markers obtained from cells isolated from liposuction samples from a second healthy donor. The results show the evolution of the markers studied over time in the culture and in each case it is indicated to what time during the culture period the cells analyzed belong.
- FIG. 2 a shows the expression of markers on Day 0.
- FIG. 2 b shows the expression of markers on Day 7 of culturing.
- FIG. 2 c shows the expression of markers after 4 weeks of culturing and
- FIG. 2 d shows the expression of markers after 3 months of culturing.
- FIGS. 3 a - 3 d show the histograms of fluorescence immunocytometry corresponding to the profile of surface markers obtained from cells isolated from liposuction samples from a third healthy donor. The results show the evolution of the markers studied over time in the culture and in each case it is indicated at what time in the culture period the cells analyzed belong.
- FIG. 3 a shows the expression of markers on Day 0.
- FIG. 3 b shows the expression of markers on Day 8 of culturing.
- FIG. 3 c shows the expression of markers after 4 weeks of culturing and
- FIG. 3 d shows the expression of markers after 3 months of culturing.
- FIGS. 4 a - 4 d show microphotographs of cells incubated in osteogenic medium for 3 weeks.
- FIG. 4 a shows mesenchymal stem cells from human bone marrow (positive control).
- FIG. 4 b shows the cells incubated in osteogenic medium for the first week.
- FIG. 4 c shows the cells incubated in osteogenic medium for the second week.
- FIG. 4 d shows the cells incubated in osteogenic medium during the third week.
- a series of surface markers on the adult stem cells from subdermal adipose tissue was monitored by flow cytometry when newly isolated and during the development of the culture in vitro.
- a series of commonly used markers were used to identify stem cells, as well as to characterize differentiated cells, including but not limited to: integrins, hematopoietic markers, growth factor receptors and extracellular matrix receptors (see Example 1).
- the characterization of multipotent adult stem cells from non-osteochondral mesenchymal tissue by means of determining their immunophenotype profile allows us to define said population in terms of the presence or absence of a certain set of surface markers. These markers are epitopes that can be identified with specific antibodies, constituting a valuable tool that allows us to identify the population, as well as design a strategy for isolation or purification thereof.
- the cells of the present invention are characterized in that they are positive for the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105 and in that they lack expression of the following markers: CD11 b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- the cells of the invention were induced to differentiate in vitro into cells that express at least one characteristic of a specialized cell, with the objective of showing their multipotent nature.
- the methods that can be used to induce differentiation of stem cells of the present invention into different specific cell types are known by those skilled in the art and some of them are explained in detail in Examples 2, 3 and 4 below.
- the phenotype characterization of a cell population by surface markers can be performed either by individual staining of the cells (flow cytometry) or by making histological cuts of the population in situ, done in accordance with normal methods.
- the determination of the expression profile of surface markers by antibodies may be direct, using a labelled antibody or indirect, using a second labelled antibody against the primary specific antibody of the cell marker, thus achieving signal amplification.
- the presence or absence of binding to the antibody may be determined by different methods that include but are not limited to immunofluorescence microscopy and radiography.
- the differential expression of a series of surface markers on a cell population provides a method for identification and isolation of said population.
- the cell population comes into contact with a specific reagent, whether labelled or not, depending on whether the assay is performed by a direct or indirect detection method, respectively.
- the term “specific reagent” refers to a member of a specific binding pair.
- binding pairs of antigens and antibodies, pairs comprising MHC antigens and T-cell receptors, complementary nucleotide sequences, as well as pairs of peptide ligands and their receptor are included.
- the specific binding pairs include analogues, fragments and derivatives of the specific member of the binding pair.
- antibodies as reagents with affinity is of particular interest.
- the production of specific monoclonal antibodies will be evident to any ordinarily skilled person in the art.
- the antibodies are labelled.
- markers include but are not limited to: magnetic particles, biotin and fluorochromes that will allow identification or separation of that cell type to which the antibody has bound.
- the analysis of the cell population by flow cytometry allows different antibodies labelled with fluorochromes that emit at different wavelengths to be used in the same sample.
- the separation of the populations that present the phenotype of interest can be carried out with affinity separation techniques, which include magnetic separation (using magnetic particles coated with specific antibodies), affinity chromatography, cytotoxic agents bound to monoclonal antibodies or used along with monoclonal antibodies and panning with the antibody attached to a solid support, as well as by other techniques that are appropriate.
- affinity separation techniques include magnetic separation (using magnetic particles coated with specific antibodies), affinity chromatography, cytotoxic agents bound to monoclonal antibodies or used along with monoclonal antibodies and panning with the antibody attached to a solid support, as well as by other techniques that are appropriate.
- a more precise separation would be obtained by flow cytometry, a technique that allows the separation of cell populations according to the intensity of staining, along with other parameters such as cell size and cell complexity.
- the isolation of multipotent stem cells from soft tissue was performed by selecting those cells with a capacity for proliferation and differentiation, characterized in that they show adhesion to the plastic container of the cell culture. Then, the cells were characterized by monitoring by flow cytometry of the expression of a series of surface markers on the recently isolated cells and during the course of the culture development in vitro.
- the isolation of the multipotent stem cells was carried out from subdermal adipose tissue, obtained by liposuction from three health donors (donors 1, 2 and 3).
- the sample from the subdermal adipose tissue was washed with phosphate buffered saline solution (PBS).
- PBS phosphate buffered saline solution
- an enzymatic digestion was performed with type II collagenase in saline solution (5 mg/ml) at 37° for 30 minutes.
- the collagenase was deactivated by adding an equivalent volume of DMEM medium, with 10% fetal bovine serum.
- This cell suspension was centrifuged at 250 g for 10 minutes to obtain a cell deposit.
- NH 4 Cl was added at an end concentration of 0.16 M and the mixture was incubated for 10 minutes at room temperature to induce the lysis of the erythrocytes present.
- the suspension was centrifuged at 250-400 g and resuspended in DMEM-10% FBS with 1% ampicillin-streptomycin.
- the cells were plated, inoculating 20-30,000 cells per cm 2 .
- the cells were cultured for 20-24 hours at 37° C., under an atmosphere with 5% CO 2 . After 24 hours, the culture was washed with PBS to remove the cells and the remains of the tissue in suspension. The cells selected by adherence were cultured in DMEM+10% fetal bovine serum (FBS).
- FBS fetal bovine serum
- the stem cells isolated were characterized from one of the donors, in function of the presence/absence of a series of surface markers. To do this, the expression of the following surface markers was monitored by flow cytometry:
- Integrin CD11b, CD18, CD29, CD49a, CD49b, CD49d, CD49e, CD49f, CD51, CD61, CD104.
- Hematopoietic markers CD3, CD9, CD10, CD13, CD14, CD19, CD34, CD38, CD45, CD90, CD133.
- Extracellular matrix receptors CD15, CD31, CD44, CD50, CD54, CD62E, CD62L, CD62P, CD102, CD106, CD146, CD166
- the immunophenotype characterization of the cells were performed on recently isolated cells and also on day 7, after 4 weeks and after 3 months of culture, of the samples from the three healthy donors. Taking into account that the selection is performed by adherence to the plastic of the culture, cells from the cell fraction adhered after less than 24 hours in the culture since isolation are considered as recently isolated cells.
- the cells to be characterized were collected by means of gentle digestion with trypsin, washed with PBS and incubated for 30 minutes at 4° C. with fluorescein (FITC) or phycoerythrin (PE) labelled antibody markers against each one of the surface markers to be analyzed.
- the cell markers were washed and immediately analyzed using the Epics-XL cytometer (Coulter). As controls, cells stained with unspecific antibodies of the corresponding isotopes labelled with FITC or PE were used.
- FIGS. 1 a - 1 d , 2 a - 2 d and 3 a - 3 d show the histograms grouped by donor for a better visualization of the evolution of the markers studied during the culturing, indicating in each case to what time in the culture period the analyzed cells belong.
- the multipotent stem cell isolated from non-osteochondral mesenchymal tissue, of the present invention is characterized in being positive for CD9 ⁇ +>, CD10 ⁇ +>, CD13 ⁇ +>, CD29 ⁇ +>, CD44 ⁇ +>, CD49A ⁇ +>, CD51 ⁇ +>, CD54 ⁇ +>, CD55 ⁇ +>, CD58 ⁇ +>, CD59 ⁇ +>, CD90 ⁇ +> and CD105 ⁇ +>; and for lacking expression of CD11b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- characterized human cells were used. The cells were isolated from the three samples of lipoaspirate analyzed, each corresponding to a healthy donor. A sample of Mesenchymal Stem Cells (MSC) of human bone marrow was used as a the positive control.
- MSC Mesenchymal Stem Cells
- the cells isolated were seeded at a density of 10,000 cells/cm 2 onto 6-well plates (one plate per sample), and were incubated in standard culture medium (DMEM, 10% FBS, L-Glutamine 2 mM and antibiotic). After two days of culturing, the culture medium of one of the wells (control) is replaced with fresh medium, and the remaining wells by osteogenesis inducing medium, which contains the standard culture medium with the following added:
- the cells are cultured for 3 weeks under normal conditions, changing the medium every 2-3 days. After three weeks, the presence of mineralized deposits of calcium phosphate can be seen, which indicates the presence of osseus nodules. These nodules are detected by staining with Alizarin red (Standford et al., 1995). Specifically, the medium is eliminated, the cells are washed twice with PBS and fixed with 70% cold ethanol for 30 minutes at room temperature. The fixed wells are then washed with PBS and stained with Alizarin red (40 mM, pH 4.1) for 10 minutes at room temperature. The stained cells are washed with abundant water, and the precipitates of calcium phosphate, which appear strongly stained red, are examined under the microscope.
- Alizarin red Alizarin red
- FIGS. 4 a - 4 d show microphotographs of the osteoinduced cells stained with Alizarin red. Although the formation of calcium phosphate is quicker in the sample corresponding to MSC from bone marrow which acts as a positive control ( FIG. 4 a ), in the three samples from the adipose tissue, the formation of large quantities of bone matrix can be discerned, although with differing intensity in each of the samples. All wells in which osteogenesis was induced showed the same behavior and in the control wells (not submitted to osteogenic stimuli) the formation of bone matrix was not detected. No relationship was seen between the amount of bone matrix formed and the time that each sample was being cultured after isolation from the tissue (between 3 and 9 weeks).
- characterized human cells were isolated from the three liposuction samples each corresponding to a healthy donor, as well as a sample of Mesenchymal Stem Cells (MSC) of human bone marrow, which was used as the positive control.
- MSC Mesenchymal Stem Cells
- the cells isolated were seeded at a density of 10,000 cells/cm 2 into standard culture medium (DMEM, 10% FBS, L-Glutamine 2 mM and antibiotic). After two days of culturing, the culture medium of one of the wells (control) is replaced with fresh medium, and the remaining wells by myogenesis inducing medium (Wakitani et al., 1995), which contains the standard culture medium with the following added:
- the medium is replaced by standard culture medium, and the cells are cultured for 2-3 weeks, changing the medium every 2-3 days. After this time, the cells acquire an elongated phenotype, form fibrillar structures and some cell fusions can be seen.
- the cells obtained are fixed with paraformaldehyde (PFA) at 4% and incubated with an antibody against the heavy chain of myosin, which is the specific antigen for muscle.
- PFA paraformaldehyde
- characterized human cells were used. These cells were isolated from the three samples of lipoaspirate analyzed, each corresponding to a healthy donor, as well as a sample of Mesenchymal Stem Cells (MSC) from human bone marrow, which was used as the positive control.
- MSC Mesenchymal Stem Cells
- the cells isolated were seeded at low density into standard culture medium (DMEM, 10% FBS, L-Glutamine 2 mM and antibiotic), supplemented with 10 ng/ml bFGF and incubated for 24-36 hours to yield a large number of cells.
- DMEM standard culture medium
- FBS FBS
- L-Glutamine 2 mM antibiotic
- 10 ng/ml bFGF 10 ng/ml bFGF
- the cells acquire a rounded shape and very refringent, with prolongations with a similar appearance to axons and dendrites of nerve cells.
- the cells obtained are fixed with PFA at 4% and incubated with antibodies against neuron specific antigens NF-200 and TuJ1.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Developmental Biology & Embryology (AREA)
- Rheumatology (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Neurology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Neurosurgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Epidemiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- Virology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
Abstract
Description
- Stem cells show differential characteristics as they are able to sustain themselves and differentiate into one or more cell type. Although research into stem cells and their applications is still in its early stages, adult stem cells in bone marrow have been used in transplants for more than 30 years. Nevertheless, in recent years, stem cell technology has made large advances such that stem cells are currently considered as a promising source of tissue and organs, with an important therapeutic potential for repair and regeneration of tissues.
- The use of stem cells is an alternative therapy for several human diseases, particularly those in which there is a loss of functional cells, including chondral, bone and muscular lesions, neurodegenerative diseases, immunologic rejection, heart disease and skin disorders (see U.S. Pat. Nos. 5,811,094, 5,958,767, 6,328,960, 6,379,953, 6,497,875).
- In addition to cell therapy applications, stem cells have potential applications in the research and development of new drugs. On the one hand, the study of mechanisms implicated in the proliferation and differentiation of stem cells is of great value in the process of searching for and characterizing new genes involved in a wide range of biological processes, including cell development and differentiation and neoplastic processes (Phillips et al., 2000; Ramalho-Santos et al., 2002; Ivanova et al., 2002). On the other hand, stem cell technology allows specialized cells to be generated and the development of cell models for human and animal diseases, in which the efficacy and toxicity of new active ingredients can be determined in the preclinical phase (see U.S. Pat. No. 6,294,346).
- An adult somatic stem cell is an undifferentiated cell which is found in a differentiated tissue and which has the capacity to proliferate and differentiate into one or more cell types. Adult stem cells are present in different adult tissues, their presence being extensively reported in bone marrow, blood, cornea, retina, brain, muscle, skeleton, dental pulp, gastrointestinal epithelium, liver and skin (Stem Cell Book, 2001). By their nature, autologous adult stem cells are incompatible and their use does not raise any ethical concerns.
- An adult stem cell should be able to give rise to fully differentiated cells with mature phenotypes which are integrated into the tissue where they are found and which are able to carry out the specialized functions of the given tissue. The term phenotype refers to observable characteristics of the cell; such as characteristic morphology, interactions with other cells and with the extracellular matrix, cell surface proteins (surface markers) and characteristic functions (Stem Cell Book, 2001).
- Different populations have been described of adult stem cells able to contribute to the repair of different tissues. Among these populations, those of mesodermic origin are of particular interest because they offer the theoretical possibility of regenerating a large number of clinically very relevant connective tissues such as bone, cartilage, tendons, skeletal muscle, heart muscle, vascular endothelium, subdermal fat and bone marrow stroma. The first cell population of this type isolated was the so-called mesenchymal stem cells (MSC), which are found in bone marrow stroma (Friedenstein et al., 1976; Caplan et al., 1991; Pittenger et al., 1999). These cells have been extensively characterized and studies performed with these cells have shown that they can differentiate into different mesenchymal cell lines such as adipocytes (Beresford et al., 1992), chondrocytes (Johnstone et al., 1998), myoblasts (Wakitani et al., 1995) and osteoblasts (Haynesworth et al., 1992). Likewise, they also have the capacity to differentiate into neurons (Sanchez-Ramos et al., 2000).
- The ideal source of adult stem cells is one in which they can be obtained by an easy, non-invasive process and one that allows a sufficient number of cells to be isolated. In particular, a source should provide stem cells that can be easily isolated from a living subject without significant risks and discomfort and the source should allow a high yield to be obtained with minimal contamination from other cell types, without excessive cost of isolation and culture.
- The process of obtaining bone marrow is painful and the yield is very low, a substantial increase in the number of cells being necessary by ex vivo expansion, to obtain a clinically relevant amount. This step increases cost and makes the procedure time consuming, as well as increasing the risk of contamination and loss of material. For these reasons, it would be very desirable to be able to isolate multipotent cells from mesenchymal tissues other than bone marrow. In particular, given their surgical accessibility, it would be convenient to be able to isolate cells from non-osteochondral mesodermal tissues such as, but not limited to, skin, fat and muscle tissue. In the present invention, we refer to these non-osteochondral mesodermal tissues as “soft tissues”.
- The presence of different populations of multipotent stem cells in soft tissues derived from the embryonic mesoderm has been reported by several authors. For example, it has been reported that multipotent cells can be obtained from skeletal muscle and other connective tissue of mammals (Young et al. 1993, Rogers et al. 1995). Multipotent cells have also been obtained from human lipoaspirated tissue (Zuk et al., 2001). Another example of multipotent cells isolated from adult connective tissue is the so-called Multipotent Adult Progenitor Cells (MAPC) obtained from bone marrow (Verfaillie et al., 2002). In principle, all these isolated cell populations could be used in the repair and regeneration of connective tissue in a similar fashion to the MSC of bone marrow (Caplan et al., 2001). However, except for MAPC, none of these populations has been, until present, sufficiently characterized at the phenotype level. Therefore, although the presence of multipotent stem cells has been described in different connective tissues, in the current state of the art, it is not possible to identify and unequivocally distinguish between different multipotent cell types obtained from soft tissue, or to obtain a substantially pure population.
- Currently, phenotype characterization of stem cells comprises determination of markers such as cell surface receptors, among others; and the determination of their capacity for differentiation in in vitro cultures. Each cell type has a certain combination of surface markers, that is, it has a certain profile of expression that characterizes that particular cell type, distinguishing it from others.
- Different combinations of surface markers have been used for identifying and isolating substantially pure populations of hematopoietic stem cells from the bone marrow of mice, such as: [Linneg/low, Thy1.1 low, c-Kithigh, Sca-1+], [Lin−, Thy1.1 low, Sca-1+, rhodamine 123low] (Morrison, S. J. et al., 1995) or [Lin−, CD34−/int, c-Kit+, Sca-1+] (Osawa, M. et al., 1996). Likewise, similar combinations of markers have been used for enriching populations of human hematopoietic stem cells [Lin−, Thy1+, CD34+, CD38neg/low] (Morrison, S. J. et al., 1995).
- Currently, it is not known how many markers associated with compromised and differentiated cells are also present in the different mesenchymal stem cell populations. For example, a commonly used marker for enriching mesenchymal stem cells is CD44 (hyaluronic acid receptor). Nevertheless, CD44 is also present in different types of compromised and differentiated cell types. The uncertainty about which markers are associated with the stem cells to allow them to be distinguished from those cells that show a greater degree of differentiation, along with the low percentage of stem cells present in adult cells, has made it difficult to identify and purify populations of adult mesenchymal stem cells.
- A significant disadvantage in using adult stem cells resides in the fact that most of the current sources for obtaining stem cells are contaminated with other cell types, complicating the process of identification, isolation and characterization of the populations of stem cell with the objective of using them for therapeutic or other ends. Thus, there is an interest in obtaining a population of multipotent stem cells isolated in a substantially pure form.
- The characterization of a multipotent adult stem cell population from non-osteochondral mesenchymal tissue will allow a method for identification and isolation to be designed, as well as the identification of growth factors associated with self-regeneration. Moreover, there may be growth factors associated with the initial phases of differentiation, knowledge of which would allow more efficient in vivo and ex vivo differentiation, as well as for exercising control over the proliferation of stem cells.
- The present invention provides a multipotent adult stem cell population from non-osteochondral mesenchymal tissue, preferably from adipose tissue, isolated and characterized by means of immunophenotype markers present on the cell surface, showing their multipotent nature.
- Similarly, the present invention provides a method for the identification and isolation of a population of multipotent stem cells from non-osteochondral mesenchymal tissue, dependent on a pattern of characteristic immunophenotype markers, allowing a composition of substantially homogeneous multipotent stem cell markers to be obtained.
- A first aspect of the invention relates to an isolated multipotent adult cell from non-osteochondral mesenchymal tissue, characterized in that it is positive for the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105 and in that it lacks expression of the following markers: CD11b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- A preferred aspect of the invention relates to an isolated multipotent adult cell from non-osteochondral mesenchymal tissue obtained by a method that comprises:
- a. Collecting a non-osteochondral mesenchymal tissue;
- b. Obtaining a cell suspension by enzymatic digestion;
- c. Sedimentating the cells and resuspending the cells in an appropriate culture medium; and
- d. Culturing of the cells and elimination of those that show no adhesion.
- In which said cell is characterized by being positive to the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105, and lacking expression of the following markers: CD11 b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- In a most preferred aspect of the invention, the non-osteochondral mesenchymal tissue is a connective tissue, preferably the adipose tissue.
- In a still more preferred aspect of the invention, the cells of the present invention can be genetically modified.
- A second aspect of the invention relates to cell(s) that express(es) at least one characteristic of a specialized cell, derived from an isolated multipotent adult stem cell of the present invention in which said cell preferably expresses at least one characteristic of an epithelial or endothelial cell or of an adipocyte or a myocyte or a chondrocyte or an osteocyte or a neuron or an astrocyte or an oligodendrocyte or a hepatocyte or a cardiomyocyte or a pancreatic cell.
- A third aspect of the invention relates to an isolated population that comprises cells from non-osteochondral mesenchymal tissue characterized in that they are positive for the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105, and lack expression of the following markers: CD11b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- A fourth aspect of the present invention relates to a method for identifying a population of multipotent adult cells, in which said population consists of isolated cells of the present invention, which method comprises:
- 1) Incubating the cells with labelled specific binding compounds for one or more of the markers that characterize said population; preferably said specific binding compounds are antibodies; and
- 2) Detecting the presence or absence of binding to these specific binding compounds.
- A fifth aspect of the present invention relates to a method for isolating a population of multipotent adult cells of the present invention or of a cell object of the present invention, which method comprises:
- 1) Collecting non-osteochondral mesenchymal tissue;
- 2) Obtaining a cell suspension by enzymatic digestion;
- 3) Incubating said cell suspension with labelled compounds that bind specifically to one or more of the surface makers whose presence or absence characterizes said cells; and
- 4) Selecting those cells that have a profile of expression of markers characteristic of that of the cells object of the present invention.
- In a preferred aspect of the invention, said method of isolation consists of making a negative selection, excluding those cells that bind to labelled compounds or which bind specifically to CD11b or CD14 or CD15 or CD16 or CD31 or CD34 or CD45 or CD49f or CD102 or CD104 or CD106 or CD133 and a subsequent positive selection of those cells that present binding to labelled compounds that bind specifically to CD9 or CD10 or CD13 or CD29 or CD44 or CD49a or CD51 or CD54 or CD55 or CD58 or CD59 or CD90 or CD105.
- A preferred aspect of the invention relates to a population of multipotent adult stem cells from non-osteochondral mesenchymal tissue obtained according to a method of isolation of the invention.
- A sixth aspect of the invention relates to a cell composition substantially homogeneous that comprises a cell or cell population object of the present invention. Additionally, said pharmaceutical composition may comprise a pharmaceutically acceptable vehicle or carrier or excipient.
- A preferred aspect of the present invention comprises a pharmaceutical composition object of the invention for therapeutic use. In an additional aspect, said pharmaceutical composition is used for the repair and regeneration of tissues.
- A seventh aspect of the invention relates to a method for evaluating in vitro or in vivo the cell response to biological or pharmacological agents, or to combinatorial libraries of said agents, which comprises:
- 1) Isolating said cell population according to a method of the present invention from an individual or a statistically significant population thereof;
- 2) Optionally differentiating the cells isolated to a specific type of cell;
- 3) Expanding the cells being cultured;
- 4) Optionally differentiating the expanded cells to a specific type of cell;
- 5) Bringing the culture into contact with one or more biological agents or pharmacological agents or with a combinatorial library of said agents; and
- 6) Assessing the possible biological effects of said agents on the cultured cells.
-
FIGS. 1 a-1 d show histograms of fluorescence immunocytometry corresponding to the profile of surface markers obtained from cells isolated from liposuction samples of a healthy donor. The results show the evolution of the markers studied over time in the culture and in each case it is indicated to what time during the culture period the cells analyzed belong.FIG. 1 a shows the expression of markers on Day 0.FIG. 1 b shows the expression of markers on Day 7 of culturing.FIG. 1 c shows the expression of markers after 4 weeks of culturing andFIG. 1 d shows the expression of markers after 3 months of culturing. -
FIGS. 2 a-2 d show the histograms of fluorescence immunocytometry corresponding to the profile of surface markers obtained from cells isolated from liposuction samples from a second healthy donor. The results show the evolution of the markers studied over time in the culture and in each case it is indicated to what time during the culture period the cells analyzed belong.FIG. 2 a shows the expression of markers on Day 0.FIG. 2 b shows the expression of markers on Day 7 of culturing.FIG. 2 c shows the expression of markers after 4 weeks of culturing andFIG. 2 d shows the expression of markers after 3 months of culturing. -
FIGS. 3 a-3 d show the histograms of fluorescence immunocytometry corresponding to the profile of surface markers obtained from cells isolated from liposuction samples from a third healthy donor. The results show the evolution of the markers studied over time in the culture and in each case it is indicated at what time in the culture period the cells analyzed belong.FIG. 3 a shows the expression of markers on Day 0.FIG. 3 b shows the expression of markers on Day 8 of culturing.FIG. 3 c shows the expression of markers after 4 weeks of culturing andFIG. 3 d shows the expression of markers after 3 months of culturing. -
FIGS. 4 a-4 d show microphotographs of cells incubated in osteogenic medium for 3 weeks.FIG. 4 a shows mesenchymal stem cells from human bone marrow (positive control).FIG. 4 b shows the cells incubated in osteogenic medium for the first week.FIG. 4 c shows the cells incubated in osteogenic medium for the second week.FIG. 4 d shows the cells incubated in osteogenic medium during the third week. - With the objective of designing a method for identification and isolation that allows a defined population of multipotent stem cells to be obtained from a soft tissue, the phenotyping of the human mesenchymal cells obtained from subdermal adipose tissue was done and their evolution was studied during the expansion of the cells in vitro, as well as their capacity for differentiating into different cell lines.
- Firstly, expression of a series of surface markers on the adult stem cells from subdermal adipose tissue was monitored by flow cytometry when newly isolated and during the development of the culture in vitro. To do this, a series of commonly used markers were used to identify stem cells, as well as to characterize differentiated cells, including but not limited to: integrins, hematopoietic markers, growth factor receptors and extracellular matrix receptors (see Example 1).
- The characterization of multipotent adult stem cells from non-osteochondral mesenchymal tissue by means of determining their immunophenotype profile allows us to define said population in terms of the presence or absence of a certain set of surface markers. These markers are epitopes that can be identified with specific antibodies, constituting a valuable tool that allows us to identify the population, as well as design a strategy for isolation or purification thereof.
- The cells of the present invention are characterized in that they are positive for the following markers: CD9, CD10, CD13, CD29, CD44, CD49A, CD51, CD54, CD55, CD58, CD59, CD90 and CD105 and in that they lack expression of the following markers: CD11 b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- Once characterized, the cells of the invention were induced to differentiate in vitro into cells that express at least one characteristic of a specialized cell, with the objective of showing their multipotent nature. The methods that can be used to induce differentiation of stem cells of the present invention into different specific cell types are known by those skilled in the art and some of them are explained in detail in Examples 2, 3 and 4 below.
- The phenotype characterization of a cell population by surface markers can be performed either by individual staining of the cells (flow cytometry) or by making histological cuts of the population in situ, done in accordance with normal methods.
- The determination of the expression profile of surface markers by antibodies (immunophenotype characterization), may be direct, using a labelled antibody or indirect, using a second labelled antibody against the primary specific antibody of the cell marker, thus achieving signal amplification.
- On the other hand, the presence or absence of binding to the antibody may be determined by different methods that include but are not limited to immunofluorescence microscopy and radiography. Similarly, it is possible to carry out the monitoring of the levels of binding of the antibody by flow cytometry, a technique that allows the levels of fluorochrome to be correlated with the quantity of antigens present on the cell surface bound specifically to the labelled antibodies.
- The differential expression of a series of surface markers on a cell population provides a method for identification and isolation of said population.
- In the assay of identification and isolation, the cell population comes into contact with a specific reagent, whether labelled or not, depending on whether the assay is performed by a direct or indirect detection method, respectively. The term “specific reagent” refers to a member of a specific binding pair. As members of a specific binding pair, binding pairs of antigens and antibodies, pairs comprising MHC antigens and T-cell receptors, complementary nucleotide sequences, as well as pairs of peptide ligands and their receptor are included. The specific binding pairs include analogues, fragments and derivatives of the specific member of the binding pair.
- The use of antibodies as reagents with affinity is of particular interest. The production of specific monoclonal antibodies will be evident to any ordinarily skilled person in the art. In experiments of identification or separation of cell populations, the antibodies are labelled. To do this, markers are used that include but are not limited to: magnetic particles, biotin and fluorochromes that will allow identification or separation of that cell type to which the antibody has bound. Thus, for example, the analysis of the cell population by flow cytometry allows different antibodies labelled with fluorochromes that emit at different wavelengths to be used in the same sample. Thus, we can know the specific profile of the population for these surface markers, as well as carry out a separation for the set of markers used.
- The separation of the populations that present the phenotype of interest can be carried out with affinity separation techniques, which include magnetic separation (using magnetic particles coated with specific antibodies), affinity chromatography, cytotoxic agents bound to monoclonal antibodies or used along with monoclonal antibodies and panning with the antibody attached to a solid support, as well as by other techniques that are appropriate. A more precise separation would be obtained by flow cytometry, a technique that allows the separation of cell populations according to the intensity of staining, along with other parameters such as cell size and cell complexity.
- The following examples are presented to illustrate the invention, but they in no way limit it.
- The isolation of multipotent stem cells from soft tissue was performed by selecting those cells with a capacity for proliferation and differentiation, characterized in that they show adhesion to the plastic container of the cell culture. Then, the cells were characterized by monitoring by flow cytometry of the expression of a series of surface markers on the recently isolated cells and during the course of the culture development in vitro.
- The isolation of the multipotent stem cells was carried out from subdermal adipose tissue, obtained by liposuction from three health donors (
donors 1, 2 and 3). - First, the sample from the subdermal adipose tissue was washed with phosphate buffered saline solution (PBS). To achieve destruction of the extracellular matrix and the isolation of the cells, an enzymatic digestion was performed with type II collagenase in saline solution (5 mg/ml) at 37° for 30 minutes. The collagenase was deactivated by adding an equivalent volume of DMEM medium, with 10% fetal bovine serum. This cell suspension was centrifuged at 250 g for 10 minutes to obtain a cell deposit. NH4Cl was added at an end concentration of 0.16 M and the mixture was incubated for 10 minutes at room temperature to induce the lysis of the erythrocytes present. The suspension was centrifuged at 250-400 g and resuspended in DMEM-10% FBS with 1% ampicillin-streptomycin. Finally, the cells were plated, inoculating 20-30,000 cells per cm2.
- The cells were cultured for 20-24 hours at 37° C., under an atmosphere with 5% CO2. After 24 hours, the culture was washed with PBS to remove the cells and the remains of the tissue in suspension. The cells selected by adherence were cultured in DMEM+10% fetal bovine serum (FBS).
- After isolation, the stem cells isolated were characterized from one of the donors, in function of the presence/absence of a series of surface markers. To do this, the expression of the following surface markers was monitored by flow cytometry:
- Integrin: CD11b, CD18, CD29, CD49a, CD49b, CD49d, CD49e, CD49f, CD51, CD61, CD104.
- Hematopoietic markers: CD3, CD9, CD10, CD13, CD14, CD19, CD34, CD38, CD45, CD90, CD133.
- Growth factor receptors: CD105, NGFR
- Extracellular matrix receptors: CD15, CD31, CD44, CD50, CD54, CD62E, CD62L, CD62P, CD102, CD106, CD146, CD166
- Others: CD10, CD13, CD36, CD55, CD56, CD58, CD59, CD95, HLA-I, HLA-II, β2-microglobuline.
- The immunophenotype characterization of the cells were performed on recently isolated cells and also on day 7, after 4 weeks and after 3 months of culture, of the samples from the three healthy donors. Taking into account that the selection is performed by adherence to the plastic of the culture, cells from the cell fraction adhered after less than 24 hours in the culture since isolation are considered as recently isolated cells.
- The cells to be characterized were collected by means of gentle digestion with trypsin, washed with PBS and incubated for 30 minutes at 4° C. with fluorescein (FITC) or phycoerythrin (PE) labelled antibody markers against each one of the surface markers to be analyzed. The cell markers were washed and immediately analyzed using the Epics-XL cytometer (Coulter). As controls, cells stained with unspecific antibodies of the corresponding isotopes labelled with FITC or PE were used.
-
FIGS. 1 a-1 d, 2 a-2 d and 3 a-3 d show the histograms grouped by donor for a better visualization of the evolution of the markers studied during the culturing, indicating in each case to what time in the culture period the analyzed cells belong. - The analysis of surface markers at different times allowed their presence or absence to be determined, as well as their behavior during the culture process. The results obtained show that the cell populations isolated from the different healthy donors show a homogeneous behavior in their phenotype characterization.
- From the analysis of the profile of expression of surface markers (
FIGS. 1 a-1 d, 2 a-2 d and 3 a-3 d), 3 criteria were used to determine which markers define the cell population and allow it to be identified and differentiated with respect to other types of cell. These criteria are: - 1. Discard those markers that vary from one sample to the other or over time during culturing.
- 2. Verify that those that are positive are also positive at time zero (recently isolated cells).
- 3. Select them as a function of their biological relevance, discarding markers characteristic of specific cell types (for example, CD3 is a marker exclusive to lymphocytes).
- Applying these criteria, the multipotent stem cell isolated from non-osteochondral mesenchymal tissue, of the present invention, is characterized in being positive for CD9<+>, CD10<+>, CD13<+>, CD29<+>, CD44<+>, CD49A<+>, CD51<+>, CD54<+>, CD55<+>, CD58<+>, CD59<+>, CD90<+> and CD105<+>; and for lacking expression of CD11b, CD14, CD15, CD16, CD31, CD34, CD45, CD49f, CD102, CD104, CD106 and CD133.
- In the differentiation assay, characterized human cells were used. The cells were isolated from the three samples of lipoaspirate analyzed, each corresponding to a healthy donor. A sample of Mesenchymal Stem Cells (MSC) of human bone marrow was used as a the positive control.
- The cells isolated were seeded at a density of 10,000 cells/cm2 onto 6-well plates (one plate per sample), and were incubated in standard culture medium (DMEM, 10% FBS, L-Glutamine 2 mM and antibiotic). After two days of culturing, the culture medium of one of the wells (control) is replaced with fresh medium, and the remaining wells by osteogenesis inducing medium, which contains the standard culture medium with the following added:
-
- Dexamethasone 100 nM,
- Ascorbic acid 50 μM; and
- β-
Glycerophosphate 10 mM.
- The cells are cultured for 3 weeks under normal conditions, changing the medium every 2-3 days. After three weeks, the presence of mineralized deposits of calcium phosphate can be seen, which indicates the presence of osseus nodules. These nodules are detected by staining with Alizarin red (Standford et al., 1995). Specifically, the medium is eliminated, the cells are washed twice with PBS and fixed with 70% cold ethanol for 30 minutes at room temperature. The fixed wells are then washed with PBS and stained with Alizarin red (40 mM, pH 4.1) for 10 minutes at room temperature. The stained cells are washed with abundant water, and the precipitates of calcium phosphate, which appear strongly stained red, are examined under the microscope.
-
FIGS. 4 a-4 d show microphotographs of the osteoinduced cells stained with Alizarin red. Although the formation of calcium phosphate is quicker in the sample corresponding to MSC from bone marrow which acts as a positive control (FIG. 4 a), in the three samples from the adipose tissue, the formation of large quantities of bone matrix can be discerned, although with differing intensity in each of the samples. All wells in which osteogenesis was induced showed the same behavior and in the control wells (not submitted to osteogenic stimuli) the formation of bone matrix was not detected. No relationship was seen between the amount of bone matrix formed and the time that each sample was being cultured after isolation from the tissue (between 3 and 9 weeks). - In the differentiation assay, characterized human cells were isolated from the three liposuction samples each corresponding to a healthy donor, as well as a sample of Mesenchymal Stem Cells (MSC) of human bone marrow, which was used as the positive control.
- The cells isolated were seeded at a density of 10,000 cells/cm2 into standard culture medium (DMEM, 10% FBS, L-Glutamine 2 mM and antibiotic). After two days of culturing, the culture medium of one of the wells (control) is replaced with fresh medium, and the remaining wells by myogenesis inducing medium (Wakitani et al., 1995), which contains the standard culture medium with the following added:
-
- Ascorbate-2-phosphate 0.1 mM,
- Dexamethasone 0.01 μM,
- ITS+1 (Sigma-Aldrich), and
- 5-Azacytidine 3 μM.
- After 24 hours, the medium is replaced by standard culture medium, and the cells are cultured for 2-3 weeks, changing the medium every 2-3 days. After this time, the cells acquire an elongated phenotype, form fibrillar structures and some cell fusions can be seen. To detect the myoblast phenotype, the cells obtained are fixed with paraformaldehyde (PFA) at 4% and incubated with an antibody against the heavy chain of myosin, which is the specific antigen for muscle.
- In the differentiation assay, characterized human cells were used. These cells were isolated from the three samples of lipoaspirate analyzed, each corresponding to a healthy donor, as well as a sample of Mesenchymal Stem Cells (MSC) from human bone marrow, which was used as the positive control.
- The cells isolated were seeded at low density into standard culture medium (DMEM, 10% FBS, L-Glutamine 2 mM and antibiotic), supplemented with 10 ng/ml bFGF and incubated for 24-36 hours to yield a large number of cells. The wells are then washed and neuron-inducing medium is added (Black and Woodbury, 2001), the medium comprising:
-
- α MEM,
- BHA 200 μM,
- Penicillin/streptomycin,
- L-Glutamine 2 mM,
- Forskolin 10 μM,
- 2% DMSO,
-
Hydrocortisone 1 μM, - Insulin 5 μg/ml,
- ClK 25 mM, and
- Valproic acid 2 mM.
- A few hours after induction, a morphological change can be observed; the cells acquire a rounded shape and very refringent, with prolongations with a similar appearance to axons and dendrites of nerve cells. After 3 days, the cells obtained are fixed with PFA at 4% and incubated with antibodies against neuron specific antigens NF-200 and TuJ1.
-
- Osawa M., Hanada K., Hanada H. and Nakauchi H. (1996) Science 273, 242-245.
- Morrison S. J., Uchida N. and Weissman I. L. (1995) Annu. Rev. Cell Dev. Biol. 11, 35-71.
- Ivanova N. B., Dimos J. T., Schaniel C., Hackney J. A., Moore K. A., Lemischka* I. R. (2002) Science 298, 601-604.
- Phillips R L. (2000) Curr Top Microbiol Immunol. 251, 13-19.
- Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A. (2002) Science 298, 597-600.
- De Ugarte D A, Morizono K, Elbarbary, AAlfonso Z, Zuk P A, Zhu M, Dragoo J L, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick M H. (2003) Cells Tissues Organs 174 (3), 101-109.
- Friedenstein A J, Gorskaja J F, Kulagina N N, Exp Hematol. 1976 September; 4(5):267-74.
- Caplan A I J Orthop Res. 1991 September; 9(5):641-50
- Pittenger, M. F. et al. (1999) Science 284: 143-147
- Beresford J N, Bennett J H, Devlin C, Leboy P S, Owen M E, J Cell Sci. 1992 June; 102 (Pt 2):341-51
- Yoo J U, Johnstone B, Clin Orthop. 1998 October; (355 Suppl):S73-81
- Wakitani S. et al. (1995) Muscle Nerve 18: 1417-1426.
- Haynesworth S E, Goshima J, Goldberg V M, Caplan A I, Bone. 1992; 13(1):81-8.
- Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman T B, Saporta S, Janssen W, Patel N, Cooper D R, Sanberg P R, Exp Neurol. 2000 August; 164(2):247-56.
- Rogers J J, Young H E, Adkison L R, Lucas P A, Black A C Jr, Am Surg. 1995 March; 61 (3):231-6.
- Zuk, P. A. et al. (2001) Tissue Eng 7: 211-228.
- Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie C M, Exp Hematol. 2002 August; 30(8):896-904.
- Caplan A I, Bruder S P, Trends Mol Med. 2001 June; 7(6):259-64.
- Stanford, C. M. et al. (1995) J Biol Chem 270: 9420-9428.
Claims (20)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/167,061 US20060045872A1 (en) | 2004-08-25 | 2005-06-24 | Use of adipose tissue-derived stromal stem cells in treating fistula |
US13/457,053 US20120213750A1 (en) | 2004-08-25 | 2012-04-26 | Use of adipose tissue-derived stromal stem cells in treating fistula |
US14/017,152 US10548924B2 (en) | 2004-08-25 | 2013-09-03 | Use of adipose tissue-derived stromal stem cells in treating fistula |
US15/467,984 US10780132B2 (en) | 2004-08-25 | 2017-03-23 | Use of adipose tissue-derived stromal stem cells in treating fistula |
US16/722,872 US20200206274A1 (en) | 2004-08-25 | 2019-12-20 | Use of adipose tissue-derived stromal stem cells in treating fistula |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP200402355 | 2004-10-04 | ||
ES200402355A ES2313805B1 (en) | 2004-10-04 | 2004-10-04 | IDENTIFICATION AND ISOLATION OF MULTIPOTENT CELLS OF NON-OSTEOCONDRAL MESENQUIMAL FABRIC. |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/056,241 Continuation-In-Part US20060047312A1 (en) | 2004-08-25 | 2005-02-14 | Biomaterial for suturing |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/167,061 Continuation-In-Part US20060045872A1 (en) | 2004-08-25 | 2005-06-24 | Use of adipose tissue-derived stromal stem cells in treating fistula |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060073124A1 true US20060073124A1 (en) | 2006-04-06 |
Family
ID=35457282
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/065,461 Abandoned US20060073124A1 (en) | 2004-08-25 | 2005-02-25 | Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue |
US11/576,573 Abandoned US20070248580A1 (en) | 2004-10-04 | 2005-10-04 | Identification and Isolation of Multipotent Cells From Non-Osteochondral Mesenchymal Tissue |
US14/834,006 Active 2025-12-28 US10729726B2 (en) | 2004-10-04 | 2015-08-24 | Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/576,573 Abandoned US20070248580A1 (en) | 2004-10-04 | 2005-10-04 | Identification and Isolation of Multipotent Cells From Non-Osteochondral Mesenchymal Tissue |
US14/834,006 Active 2025-12-28 US10729726B2 (en) | 2004-10-04 | 2015-08-24 | Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue |
Country Status (17)
Country | Link |
---|---|
US (3) | US20060073124A1 (en) |
EP (5) | EP3165601A1 (en) |
JP (2) | JP2008515413A (en) |
KR (1) | KR20070085294A (en) |
CN (1) | CN101056974B (en) |
AU (1) | AU2005291353A1 (en) |
CA (1) | CA2583151C (en) |
CY (1) | CY1116198T1 (en) |
DK (1) | DK2292736T3 (en) |
ES (2) | ES2313805B1 (en) |
HU (1) | HUE025155T2 (en) |
IL (1) | IL182441A (en) |
PL (1) | PL2292736T3 (en) |
PT (1) | PT2292736E (en) |
SG (2) | SG192459A1 (en) |
SI (1) | SI2292736T1 (en) |
WO (1) | WO2006037649A1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060241376A1 (en) * | 2003-04-24 | 2006-10-26 | Koninklijke Philips Electronics N.V. | Non-invasive left ventricular volume determination |
WO2006136244A3 (en) * | 2005-06-24 | 2007-03-15 | Cellerix Sl | Use of adipose tissue-derived stromal stem cells in treating fistula |
US20080025953A1 (en) * | 2006-07-25 | 2008-01-31 | Kiminobu Sugaya | Vigor Enhancement of Animals Via Administration of Stem Cells |
KR100827660B1 (en) | 2006-10-25 | 2008-05-07 | 대한민국 (식품의약품안전청장) | Screening and Culture of Human Mesenchymal Stem Cells Expressing CD9 |
US20080175825A1 (en) * | 2006-11-03 | 2008-07-24 | Brian Hampson | Mixed cell populations for tissue repair and separation technique for cell processing |
US20090010896A1 (en) * | 2007-07-05 | 2009-01-08 | Centeno Christopher J | Methods and compositions for optimized expansion and implantation of mesenchymal stem cells |
US20090208464A1 (en) * | 2006-01-24 | 2009-08-20 | Centeno Christopher J | Mesenchymal stem cell isolation and transplantation method and system to be used in a clinical setting |
US20100168022A1 (en) * | 2008-12-11 | 2010-07-01 | Centeno Christopher J | Use of In-Vitro Culture to Design or Test Personalized Treatment Regimens |
US7807458B2 (en) | 2003-01-30 | 2010-10-05 | The United States Of America As Represented By The Secretary Of The Department Of Veterans Affairs | Multilineage-inducible cells and uses thereof |
US20110054929A1 (en) * | 2009-09-01 | 2011-03-03 | Cell Solutions Colorado Llc | Stem Cell Marketplace |
US20110052533A1 (en) * | 2008-03-14 | 2011-03-03 | Regenerative Sciences, Llc | Compositions and Methods for Cartilage Repair |
US20110200642A1 (en) * | 2007-12-19 | 2011-08-18 | Regenerative Sciences, Llc | Compositions and Methods to Promote Implantation and Engrafment of Stem Cells |
KR101109434B1 (en) * | 2003-06-30 | 2012-02-20 | 퀄컴 인코포레이티드 | Billing system with authenticated wireless device transaction event data |
US8834928B1 (en) | 2011-05-16 | 2014-09-16 | Musculoskeletal Transplant Foundation | Tissue-derived tissugenic implants, and methods of fabricating and using same |
US8883210B1 (en) | 2010-05-14 | 2014-11-11 | Musculoskeletal Transplant Foundation | Tissue-derived tissuegenic implants, and methods of fabricating and using same |
US9113950B2 (en) | 2009-11-04 | 2015-08-25 | Regenerative Sciences, Llc | Therapeutic delivery device |
US9133438B2 (en) | 2011-06-29 | 2015-09-15 | Biorestorative Therapies, Inc. | Brown fat cell compositions and methods |
US9352003B1 (en) | 2010-05-14 | 2016-05-31 | Musculoskeletal Transplant Foundation | Tissue-derived tissuegenic implants, and methods of fabricating and using same |
US10092600B2 (en) | 2013-07-30 | 2018-10-09 | Musculoskeletal Transplant Foundation | Method of preparing an adipose tissue derived matrix |
US10130736B1 (en) | 2010-05-14 | 2018-11-20 | Musculoskeletal Transplant Foundation | Tissue-derived tissuegenic implants, and methods of fabricating and using same |
US10167449B2 (en) | 2013-04-19 | 2019-01-01 | Biorestorative Therapies, Inc. | Human brown adipose derived stem cells and uses |
US10357518B2 (en) | 2016-03-14 | 2019-07-23 | Tigenix S.A.U. | Adipose tissue-derived stromal stem cells for use in treating refractory complex perianal fistulas in Crohn's disease |
US10531957B2 (en) | 2015-05-21 | 2020-01-14 | Musculoskeletal Transplant Foundation | Modified demineralized cortical bone fibers |
US10729726B2 (en) | 2004-10-04 | 2020-08-04 | Tigenix, S.A.U. | Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue |
US10912864B2 (en) | 2015-07-24 | 2021-02-09 | Musculoskeletal Transplant Foundation | Acellular soft tissue-derived matrices and methods for preparing same |
US11052175B2 (en) | 2015-08-19 | 2021-07-06 | Musculoskeletal Transplant Foundation | Cartilage-derived implants and methods of making and using same |
US11278573B2 (en) | 2008-12-05 | 2022-03-22 | Regenexx, LLC | Methods and compositions to facilitate repair of avascular tissue |
US12186344B2 (en) | 2005-09-23 | 2025-01-07 | Tigenix, S.A.U. | Cell populations having immunoregulatory activity, method for isolation and uses |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITRM20030376A1 (en) | 2003-07-31 | 2005-02-01 | Univ Roma | PROCEDURE FOR THE ISOLATION AND EXPANSION OF CARDIOC STAMIN CELLS FROM BIOPSIA. |
EP1809740B1 (en) * | 2004-11-08 | 2018-08-29 | The Johns Hopkins University | Cardiac stem cells |
US11660317B2 (en) | 2004-11-08 | 2023-05-30 | The Johns Hopkins University | Compositions comprising cardiosphere-derived cells for use in cell therapy |
WO2008058273A2 (en) * | 2006-11-09 | 2008-05-15 | The Johns Hopkins University | Dedifferentiation of adult mammalian cardiomyocytes into cardiac stem cells |
FR2918073B1 (en) * | 2007-06-27 | 2012-10-19 | Univ Paris Curie | CELLS FIXING TUMOR CELLS. |
AU2015268704B2 (en) * | 2008-08-04 | 2017-08-10 | Consejo Superior De Investigaciones Cientificas | Uses of mesenchymal stem cells |
GB0814249D0 (en) * | 2008-08-04 | 2008-09-10 | Cellerix Sa | Uses of mesenchymal stem cells |
JP5826629B2 (en) * | 2008-08-18 | 2015-12-02 | メゾブラスト,インコーポレーテッド | Monoclonal antibody STRO-4 |
JP5810435B2 (en) * | 2009-09-30 | 2015-11-11 | 国立大学法人 熊本大学 | Method for detecting endoderm cells, intestinal cells or pancreatic cells |
US9249392B2 (en) | 2010-04-30 | 2016-02-02 | Cedars-Sinai Medical Center | Methods and compositions for maintaining genomic stability in cultured stem cells |
US9845457B2 (en) | 2010-04-30 | 2017-12-19 | Cedars-Sinai Medical Center | Maintenance of genomic stability in cultured stem cells |
DK2634195T3 (en) * | 2012-03-01 | 2017-02-27 | Miltenyi Biotec Gmbh | Separation of living pristine neurons |
WO2013184527A1 (en) | 2012-06-05 | 2013-12-12 | Capricor, Inc. | Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy |
WO2014028493A2 (en) | 2012-08-13 | 2014-02-20 | Cedars-Sinai Medical Center | Exosomes and micro-ribonucleic acids for tissue regeneration |
BR102013033827B1 (en) * | 2013-12-27 | 2021-09-08 | Regenera - Medicina Veterinária Avançada Ltda. | MULTIPOTENT AND IMMUNOCOMPATIBLE CONCENTRATE OF STEM CELLS AND BIOPHARMACEUTICALS AND DOSAGE FORM THAT INCLUDE IT |
WO2016054591A1 (en) | 2014-10-03 | 2016-04-07 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy |
WO2017090509A1 (en) | 2015-11-24 | 2017-06-01 | ロート製薬株式会社 | Therapeutic agent for liver disease including adipose-tissue-derived stromal cells, and method for producing said therapeutic agent |
JP6714932B2 (en) * | 2015-12-01 | 2020-07-01 | 株式会社AdipoSeeds | Method for producing vertebrate adipose tissue-derived mesenchymal cell line |
EP3402543B1 (en) | 2016-01-11 | 2021-09-08 | Cedars-Sinai Medical Center | Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction |
WO2017210652A1 (en) | 2016-06-03 | 2017-12-07 | Cedars-Sinai Medical Center | Cdc-derived exosomes for treatment of ventricular tachyarrythmias |
CN116381219A (en) | 2016-08-26 | 2023-07-04 | 朱诺治疗学股份有限公司 | Method for counting particles present in a cellular composition |
EP3515459A4 (en) | 2016-09-20 | 2020-08-05 | Cedars-Sinai Medical Center | CARDIOSPHERIC CELLS AND THEIR EXTRACELLULAR VESICLES TO DELAY OR REVERSE THE AGING PROCESS AND AGE-RELATED DISEASES |
CA3059910A1 (en) | 2017-04-19 | 2018-10-25 | Cedars-Sinai Medical Center | Methods and compositions for treating skeletal muscular dystrophy |
EP3417888A1 (en) * | 2017-06-25 | 2018-12-26 | co.don AG | Method for producing transplantable cartilage tissue |
WO2019126068A1 (en) | 2017-12-20 | 2019-06-27 | Cedars-Sinai Medical Center | Engineered extracellular vesicles for enhanced tissue delivery |
US11622964B2 (en) | 2018-01-29 | 2023-04-11 | Institute Of Zoology, Chinese Academy Of Sciences | Method for destroying cellular mechanical homeostasis and promoting regeneration and repair of tissues and organs, and use thereof |
CN110090300A (en) * | 2018-01-29 | 2019-08-06 | 中国科学院动物研究所 | A kind of method and its application for the Regeneration and Repair promoting histoorgan |
EP3749344A4 (en) | 2018-02-05 | 2022-01-26 | Cedars-Sinai Medical Center | METHODS OF THERAPEUTIC USE OF EXOSOMES AND YRNA |
KR20200136409A (en) | 2018-02-28 | 2020-12-07 | 주노 쎄러퓨티크스 인코퍼레이티드 | Method for detecting particles present in cell composition |
WO2021015209A1 (en) * | 2019-07-22 | 2021-01-28 | 株式会社 資生堂 | Method for identifying dermal sheath cup cells |
ES2957507A1 (en) * | 2022-06-09 | 2024-01-19 | Fundacion Instituto De Investig Sanitaria Fundacion Jimenez Diaz | TREATMENT OF MEIBOMIAL GLAND DYSFUNCTION |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030082152A1 (en) * | 1999-03-10 | 2003-05-01 | Hedrick Marc H. | Adipose-derived stem cells and lattices |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5811094A (en) | 1990-11-16 | 1998-09-22 | Osiris Therapeutics, Inc. | Connective tissue regeneration using human mesenchymal stem cell preparations |
US6294346B1 (en) | 1991-07-08 | 2001-09-25 | Neurospheres Holdings, Ltd. | Use of multipotent neural stem cells and their progeny for the screening of drugs and other biological agents |
EP0953040A4 (en) | 1996-04-26 | 2001-12-12 | Univ Case Western Reserve | SKIN REGENERATION USING MESENCHYMAL STEM CELLS |
WO1999011287A1 (en) | 1997-09-04 | 1999-03-11 | Osiris Therapeutics, Inc. | Ligands that modulate differentiation of mesenchymal stem cells |
DK1066052T3 (en) | 1998-03-18 | 2006-06-12 | Osiris Therapeutics Inc | Mesenchymal stem cells for the prevention and treatment of immune responses in transplants |
US5958767A (en) | 1998-08-14 | 1999-09-28 | The Children's Medical Center Corp. | Engraftable human neural stem cells |
KR100968165B1 (en) | 1999-03-10 | 2010-07-06 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | Adipose-derived hepatocytes and lattice |
US20050153442A1 (en) * | 1999-03-10 | 2005-07-14 | Adam Katz | Adipose-derived stem cells and lattices |
US7670628B2 (en) * | 1999-07-07 | 2010-03-02 | Angioblast Systems, Inc. | Mesenchymal precursor cell |
AU2001238695B2 (en) * | 2000-02-26 | 2005-11-24 | Artecel Sciences, Inc. | Pleuripotent stem cells generated from adipose tissue-derived stromal cells and uses thereof |
DE60318706T2 (en) * | 2002-06-14 | 2009-04-30 | Cartela R & D Ab | MARKERS FOR STEM CELLS AND USE THEREOF |
EP1527161B1 (en) * | 2002-07-31 | 2015-10-28 | Yves Saint-Laurent Parfums | Stem cells derived from adipous tissue and differentiated cells derived from said cells |
ES2265199B1 (en) * | 2003-06-12 | 2008-02-01 | Cellerix, S.L. | MOTHER CELLS MULTIPOTENT ADULTS FROM DEDIFFERENTIATED DRIVERS AND ITS APPLICATIONS. |
WO2005035738A1 (en) * | 2003-10-07 | 2005-04-21 | Biomaster Inc. | Cell differentiation of adipose-derived precursor cells |
ATE493492T1 (en) * | 2003-11-04 | 2011-01-15 | Biomaster Inc | METHOD AND SYSTEM FOR PRODUCING STEM CELLS FROM ADIBLE TISSUE |
EP2298861B1 (en) | 2004-03-22 | 2017-09-13 | Mesoblast International Sàrl | Mesenchymal stem cells and uses therefor |
RU2252252C1 (en) * | 2004-04-09 | 2005-05-20 | Тепляшин Александр Сергеевич | Method for isolation of mesenchymal stem cells |
ES2313805B1 (en) | 2004-10-04 | 2009-12-23 | Cellerix, S.L. | IDENTIFICATION AND ISOLATION OF MULTIPOTENT CELLS OF NON-OSTEOCONDRAL MESENQUIMAL FABRIC. |
ES2264862B8 (en) | 2004-08-25 | 2017-01-20 | Cellerix, S.L. | BIOMATERIAL FOR SUTURE. |
GB0814249D0 (en) * | 2008-08-04 | 2008-09-10 | Cellerix Sa | Uses of mesenchymal stem cells |
-
2004
- 2004-10-04 ES ES200402355A patent/ES2313805B1/en not_active Expired - Fee Related
-
2005
- 2005-02-25 US US11/065,461 patent/US20060073124A1/en not_active Abandoned
- 2005-10-04 HU HUE10183073A patent/HUE025155T2/en unknown
- 2005-10-04 SG SG2013051040A patent/SG192459A1/en unknown
- 2005-10-04 AU AU2005291353A patent/AU2005291353A1/en not_active Abandoned
- 2005-10-04 SI SI200531957T patent/SI2292736T1/en unknown
- 2005-10-04 WO PCT/EP2005/010811 patent/WO2006037649A1/en active Application Filing
- 2005-10-04 DK DK10183073.5T patent/DK2292736T3/en active
- 2005-10-04 JP JP2007535099A patent/JP2008515413A/en not_active Withdrawn
- 2005-10-04 KR KR1020077010158A patent/KR20070085294A/en not_active Ceased
- 2005-10-04 EP EP16206687.2A patent/EP3165601A1/en not_active Withdrawn
- 2005-10-04 PT PT101830735T patent/PT2292736E/en unknown
- 2005-10-04 US US11/576,573 patent/US20070248580A1/en not_active Abandoned
- 2005-10-04 EP EP18152520.5A patent/EP3342857A1/en not_active Ceased
- 2005-10-04 ES ES10183073.5T patent/ES2535042T3/en active Active
- 2005-10-04 EP EP10183073.5A patent/EP2292736B1/en not_active Revoked
- 2005-10-04 EP EP05796904A patent/EP1812558A1/en not_active Withdrawn
- 2005-10-04 EP EP20140196588 patent/EP2862925A1/en not_active Withdrawn
- 2005-10-04 PL PL10183073T patent/PL2292736T3/en unknown
- 2005-10-04 CN CN200580039099.5A patent/CN101056974B/en active Active
- 2005-10-04 SG SG201000029-7A patent/SG158853A1/en unknown
- 2005-10-04 CA CA2583151A patent/CA2583151C/en active Active
-
2007
- 2007-04-10 IL IL182441A patent/IL182441A/en active IP Right Grant
-
2012
- 2012-08-24 JP JP2012185671A patent/JP5732011B2/en active Active
-
2015
- 2015-04-17 CY CY20151100356T patent/CY1116198T1/en unknown
- 2015-08-24 US US14/834,006 patent/US10729726B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030082152A1 (en) * | 1999-03-10 | 2003-05-01 | Hedrick Marc H. | Adipose-derived stem cells and lattices |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7807458B2 (en) | 2003-01-30 | 2010-10-05 | The United States Of America As Represented By The Secretary Of The Department Of Veterans Affairs | Multilineage-inducible cells and uses thereof |
US20060241376A1 (en) * | 2003-04-24 | 2006-10-26 | Koninklijke Philips Electronics N.V. | Non-invasive left ventricular volume determination |
KR101109434B1 (en) * | 2003-06-30 | 2012-02-20 | 퀄컴 인코포레이티드 | Billing system with authenticated wireless device transaction event data |
US10780132B2 (en) | 2004-08-25 | 2020-09-22 | Tigenix, S.A.U. | Use of adipose tissue-derived stromal stem cells in treating fistula |
US10548924B2 (en) | 2004-08-25 | 2020-02-04 | Tigenix, S.A.U. | Use of adipose tissue-derived stromal stem cells in treating fistula |
US10729726B2 (en) | 2004-10-04 | 2020-08-04 | Tigenix, S.A.U. | Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue |
US11660318B2 (en) | 2005-06-24 | 2023-05-30 | Takeda Pharmaceutical Company Limited | Use of adipose tissue-derived stromal stem cells in treating fistula |
US8999709B2 (en) | 2005-06-24 | 2015-04-07 | Tigenix, S.A.U. | Use of adipose tissue-derived stromal stem cells in treating fistula |
US20100098669A1 (en) * | 2005-06-24 | 2010-04-22 | Cellerix, S.L. | Use of adipose tissue-derived stromal stem cells in treating fistula |
EP2292737B1 (en) | 2005-06-24 | 2015-03-25 | Cellerix, S.L. | Use of adipose tissue-derived stromal stem cells in treating fistula |
US11672831B2 (en) | 2005-06-24 | 2023-06-13 | Takeda Pharmaceutical Company Limited | Use of adipose tissue-derived stromal stem cells in treating fistula |
EP2944688A1 (en) * | 2005-06-24 | 2015-11-18 | Cellerix, S.L. | Use of adipose tissue-derived stromal stem cells in treating fistula |
EP2292737A1 (en) * | 2005-06-24 | 2011-03-09 | Cellerix, S.L. | Use of adipose tissue-derived stromal stem cells in treating fistula |
US10758575B2 (en) | 2005-06-24 | 2020-09-01 | Tigenix, S.A.U. | Use of adipose tissue-derived stromal stem cells in treating fistula |
WO2006136244A3 (en) * | 2005-06-24 | 2007-03-15 | Cellerix Sl | Use of adipose tissue-derived stromal stem cells in treating fistula |
US12186344B2 (en) | 2005-09-23 | 2025-01-07 | Tigenix, S.A.U. | Cell populations having immunoregulatory activity, method for isolation and uses |
US20090208464A1 (en) * | 2006-01-24 | 2009-08-20 | Centeno Christopher J | Mesenchymal stem cell isolation and transplantation method and system to be used in a clinical setting |
US20080025953A1 (en) * | 2006-07-25 | 2008-01-31 | Kiminobu Sugaya | Vigor Enhancement of Animals Via Administration of Stem Cells |
KR100827660B1 (en) | 2006-10-25 | 2008-05-07 | 대한민국 (식품의약품안전청장) | Screening and Culture of Human Mesenchymal Stem Cells Expressing CD9 |
EP2314300A1 (en) * | 2006-11-03 | 2011-04-27 | Aastrom Biosciences, Inc. | Mixed cell populations for tissue repair and separation technique for cell processing |
US7871605B2 (en) | 2006-11-03 | 2011-01-18 | Aastrom Bioscience, Inc. | Mixed cell populations for tissue repair and separation technique for cell processing |
US20080175825A1 (en) * | 2006-11-03 | 2008-07-24 | Brian Hampson | Mixed cell populations for tissue repair and separation technique for cell processing |
US8158122B2 (en) | 2006-11-03 | 2012-04-17 | Aastrom Biosciences Inc. | Mixed cell populations for tissue repair and separation technique for cell processing |
EP2465514A1 (en) * | 2006-11-03 | 2012-06-20 | Aastrom Biosciences, Inc. | Mixed Cell Populations For Tissue Repair And Separation Technique For Cell Processing |
US8394631B2 (en) | 2006-11-03 | 2013-03-12 | Aastrom Biosciences, Inc. | Mixed cell populations for tissue repair and separation technique for cell processing |
US9415071B2 (en) | 2006-11-03 | 2016-08-16 | Vericel Corporation | Mixed cell populations for tissue repair and separation technique for cell processing |
WO2008054825A3 (en) * | 2006-11-03 | 2008-11-20 | Aastrom Biosciences Inc | Mixed cell populations for tissue repair and separation technique for cell processing |
US20110076294A1 (en) * | 2006-11-03 | 2011-03-31 | Aastrom Biosciences, Inc. | Mixed Cell Populations For Tissue Repair And Separation Technique For Cell Processing |
JP2010508818A (en) * | 2006-11-03 | 2010-03-25 | アストロム バイオサイエンシーズ, インコーポレイテッド | Mixed cell populations for tissue repair and isolation techniques for cell processing |
JP2015110652A (en) * | 2006-11-03 | 2015-06-18 | アストロム バイオサイエンシーズ, インコーポレイテッド | Mixed cell population for tissue repair and separation technique for cell processing |
EP2167648A1 (en) * | 2007-07-05 | 2010-03-31 | Regenerative Sciences, LLC | Methods and compositions for optimized expansion and implantation of mesenchymal stem cells |
US9095562B2 (en) | 2007-07-05 | 2015-08-04 | Regenerative Sciences, Inc. | Methods and compositions for optimized expansion and implantation of mesenchymal stem cells |
US20090010896A1 (en) * | 2007-07-05 | 2009-01-08 | Centeno Christopher J | Methods and compositions for optimized expansion and implantation of mesenchymal stem cells |
EP2167648A4 (en) * | 2007-07-05 | 2011-07-06 | Regenerative Sciences Llc | Methods and compositions for optimized expansion and implantation of mesenchymal stem cells |
US9700583B2 (en) | 2007-07-05 | 2017-07-11 | Regenerative Sciences, Llc | Methods and compositions for optimized expansion and implantation of mesenchymal stem cells |
US20110200642A1 (en) * | 2007-12-19 | 2011-08-18 | Regenerative Sciences, Llc | Compositions and Methods to Promote Implantation and Engrafment of Stem Cells |
US8871199B2 (en) | 2007-12-19 | 2014-10-28 | Regenerative Sciences, Llc | Compositions and methods to promote implantation and engrafment of stem cells |
US9168261B2 (en) | 2008-03-14 | 2015-10-27 | Regenerative Sciences, Llc | Compositions and methods for cartilage repair |
US10898497B2 (en) | 2008-03-14 | 2021-01-26 | Regenexx, LLC | Compositions and methods for cartilage repair |
US20110052533A1 (en) * | 2008-03-14 | 2011-03-03 | Regenerative Sciences, Llc | Compositions and Methods for Cartilage Repair |
US11278573B2 (en) | 2008-12-05 | 2022-03-22 | Regenexx, LLC | Methods and compositions to facilitate repair of avascular tissue |
US20100168022A1 (en) * | 2008-12-11 | 2010-07-01 | Centeno Christopher J | Use of In-Vitro Culture to Design or Test Personalized Treatment Regimens |
US20110054929A1 (en) * | 2009-09-01 | 2011-03-03 | Cell Solutions Colorado Llc | Stem Cell Marketplace |
US9113950B2 (en) | 2009-11-04 | 2015-08-25 | Regenerative Sciences, Llc | Therapeutic delivery device |
US10130736B1 (en) | 2010-05-14 | 2018-11-20 | Musculoskeletal Transplant Foundation | Tissue-derived tissuegenic implants, and methods of fabricating and using same |
US9352003B1 (en) | 2010-05-14 | 2016-05-31 | Musculoskeletal Transplant Foundation | Tissue-derived tissuegenic implants, and methods of fabricating and using same |
US11305035B2 (en) | 2010-05-14 | 2022-04-19 | Musculoskeletal Transplant Foundatiaon | Tissue-derived tissuegenic implants, and methods of fabricating and using same |
US8883210B1 (en) | 2010-05-14 | 2014-11-11 | Musculoskeletal Transplant Foundation | Tissue-derived tissuegenic implants, and methods of fabricating and using same |
US8834928B1 (en) | 2011-05-16 | 2014-09-16 | Musculoskeletal Transplant Foundation | Tissue-derived tissugenic implants, and methods of fabricating and using same |
US11851682B2 (en) | 2011-06-29 | 2023-12-26 | Biorestorative Therapies, Inc. | Brown fat cell compositions and methods |
US10597638B2 (en) | 2011-06-29 | 2020-03-24 | Biorestorative Therapies, Inc. | Brown fat cell compositions and methods |
US9133438B2 (en) | 2011-06-29 | 2015-09-15 | Biorestorative Therapies, Inc. | Brown fat cell compositions and methods |
US11066646B2 (en) | 2011-06-29 | 2021-07-20 | Biorestorative Therapies, Inc. | Brown fat cell compositions and methods |
US11667892B2 (en) | 2013-04-19 | 2023-06-06 | Biorestorative Therapies, Inc. | Human brown adipose derived stem cells and uses |
US10941383B2 (en) | 2013-04-19 | 2021-03-09 | Biorestorative Therapies, Inc. | Human brown adipose derived stem cells and uses |
US10167449B2 (en) | 2013-04-19 | 2019-01-01 | Biorestorative Therapies, Inc. | Human brown adipose derived stem cells and uses |
US10596201B2 (en) | 2013-07-30 | 2020-03-24 | Musculoskeletal Transplant Foundation | Delipidated, decellularized adipose tissue matrix |
US11191788B2 (en) | 2013-07-30 | 2021-12-07 | Musculoskeletal Transplant Foundation | Acellular soft tissue-derived matrices and methods for preparing same |
US10092600B2 (en) | 2013-07-30 | 2018-10-09 | Musculoskeletal Transplant Foundation | Method of preparing an adipose tissue derived matrix |
US11779610B2 (en) | 2013-07-30 | 2023-10-10 | Musculoskeletal Transplant Foundation | Acellular soft tissue-derived matrices and methods for using same |
US10531957B2 (en) | 2015-05-21 | 2020-01-14 | Musculoskeletal Transplant Foundation | Modified demineralized cortical bone fibers |
US11596517B2 (en) | 2015-05-21 | 2023-03-07 | Musculoskeletal Transplant Foundation | Modified demineralized cortical bone fibers |
US12295848B2 (en) | 2015-05-21 | 2025-05-13 | Musculoskeletal Transplant Foundation | Implants including modified demineralized cortical bone fibers and methods of making same |
US11524093B2 (en) | 2015-07-24 | 2022-12-13 | Musculoskeletal Transplant Foundation | Acellular soft tissue-derived matrices and methods for preparing same |
US10912864B2 (en) | 2015-07-24 | 2021-02-09 | Musculoskeletal Transplant Foundation | Acellular soft tissue-derived matrices and methods for preparing same |
US11052175B2 (en) | 2015-08-19 | 2021-07-06 | Musculoskeletal Transplant Foundation | Cartilage-derived implants and methods of making and using same |
US11806443B2 (en) | 2015-08-19 | 2023-11-07 | Musculoskeletal Transplant Foundation | Cartilage-derived implants and methods of making and using same |
US11938245B2 (en) | 2015-08-19 | 2024-03-26 | Musculoskeletal Transplant Foundation | Cartilage-derived implants and methods of making and using same |
US10357518B2 (en) | 2016-03-14 | 2019-07-23 | Tigenix S.A.U. | Adipose tissue-derived stromal stem cells for use in treating refractory complex perianal fistulas in Crohn's disease |
US11273182B2 (en) | 2016-03-14 | 2022-03-15 | Takeda Pharmaceutical Company Limited | Adipose tissue-derived stromal stem cells for use in treating refractory complex perianal fistulas in Crohn's disease |
US12213998B2 (en) | 2016-03-14 | 2025-02-04 | Takeda Pharmaceutical Company Limited | Adipose tissue-derived stromal stem cells for use in treating refractory complex perianal fistulas in Crohn's disease |
Also Published As
Publication number | Publication date |
---|---|
US10729726B2 (en) | 2020-08-04 |
EP3342857A1 (en) | 2018-07-04 |
EP2292736A3 (en) | 2011-06-15 |
CN101056974B (en) | 2015-11-25 |
IL182441A (en) | 2015-08-31 |
HUE025155T2 (en) | 2016-03-29 |
WO2006037649A1 (en) | 2006-04-13 |
SI2292736T1 (en) | 2015-05-29 |
JP2008515413A (en) | 2008-05-15 |
JP5732011B2 (en) | 2015-06-10 |
EP2862925A1 (en) | 2015-04-22 |
US20170296585A1 (en) | 2017-10-19 |
CY1116198T1 (en) | 2017-02-08 |
ES2313805A1 (en) | 2009-03-01 |
CN101056974A (en) | 2007-10-17 |
PL2292736T3 (en) | 2015-07-31 |
DK2292736T3 (en) | 2015-04-20 |
AU2005291353A1 (en) | 2006-04-13 |
US20070248580A1 (en) | 2007-10-25 |
EP2292736A2 (en) | 2011-03-09 |
PT2292736E (en) | 2015-04-29 |
SG192459A1 (en) | 2013-08-30 |
ES2535042T3 (en) | 2015-05-04 |
JP2013013411A (en) | 2013-01-24 |
CA2583151C (en) | 2015-09-15 |
EP1812558A1 (en) | 2007-08-01 |
IL182441A0 (en) | 2007-07-24 |
EP3165601A1 (en) | 2017-05-10 |
SG158853A1 (en) | 2010-02-26 |
ES2313805B1 (en) | 2009-12-23 |
CA2583151A1 (en) | 2006-04-13 |
KR20070085294A (en) | 2007-08-27 |
EP2292736B1 (en) | 2015-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060073124A1 (en) | Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue | |
US7915039B2 (en) | Method for obtaining mesenchymal stem cells | |
Lee et al. | Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis | |
Jackson et al. | Mesenchymal progenitor cells derived from traumatized human muscle | |
Braun et al. | Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells | |
de la Fuente et al. | Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells | |
US20020045260A1 (en) | Method of isolating mesenchymal stem cells | |
US20140341863A1 (en) | Adult mesenchymal stem cell (msc) compositions and methods for preparing the same | |
JP2005517441A (en) | Method for separating and culturing mesenchymal stem cells / progenitor cells derived from cord blood and method for inducing differentiation into mesenchymal tissue | |
KR100802011B1 (en) | Separation of Mesenchymal Stem Cells from Bone Marrow Using Layered Culture | |
Nicodemou et al. | Mesenchymal stromal/stem cell separation methods: concise review | |
Kadivar et al. | Multilineage differentiation activity by the human umbilical vein-derived mesenchymal stem cells | |
Croft et al. | Mesenchymal stem cells from the bone marrow stroma: basic biology and potential for cell therapy | |
AU2011253985B2 (en) | Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue | |
D'Arcy | Isolation and characterisation of novel stromal cell populations from human bone marrow | |
D'Arcy | Isolation and characterisation of novel stromal cell populations | |
Ciotec et al. | COMPARATIVE FLOW CYTOMETRIC ANALYSIS OF MESENCHYMAL STEM CELLS ISOLATED BY DIFFERENT METHODS FOR REGENERATIVE MEDICINE. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CELLERIX, SL, SPAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GARCIA CASTRO, ROSA ANA;GONZALEZ DE LA PENA, MANUEL A.;MIGUEL, GEMA FERNANDEZ;REEL/FRAME:016512/0857 Effective date: 20050615 Owner name: UNIVERSIDAD AUTONOMA DE MADRID, SPAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GARCIA ARRANZ, MARIANO;GARCIA-OLMO, DAMIAN;REEL/FRAME:016512/0799 Effective date: 20050622 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |