US20060073783A1 - Flow direction control mechanism - Google Patents
Flow direction control mechanism Download PDFInfo
- Publication number
- US20060073783A1 US20060073783A1 US11/272,734 US27273405A US2006073783A1 US 20060073783 A1 US20060073783 A1 US 20060073783A1 US 27273405 A US27273405 A US 27273405A US 2006073783 A1 US2006073783 A1 US 2006073783A1
- Authority
- US
- United States
- Prior art keywords
- flow direction
- direction control
- control mechanism
- rotatable means
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
- H05K7/2019—Fan safe systems, e.g. mechanical devices for non stop cooling
Definitions
- the present invention relates to flow direction control mechanisms, and more particularly, to a flow direction control mechanism installed in a passage of a system or a device for controlling the airflow direction and eliminating the occurrence of reverse flow or air turbulence.
- Modern electronic devices such as computers and mobile phones are developed with advancement of technology and have central process units (CPUs) thereof to be more efficient in arithmetic calculation, thereby producing more heat during operation of the electronic devices and making heat dissipation or temperature control more significantly concerned for the electronic devices.
- CPUs central process units
- it is critical to prevent electromigration effect that is induced by temperature rising above a threshold and causes a malfunction or breakdown of the electronic devices.
- heat dissipation plays an important role in system stability of CPUs in computers or other electronic devices; therefore, one main problem to be solved is to enhance heat dissipating efficiency in order to improve system performance.
- heat dissipating devices such as axial fans, centrifugal fans and other fans to direct airflow into a particular passage and to thereby dissipate the airflow together with heat generated from the electronic devices to the outside or atmosphere, so as to achieve heat dissipation and ventilation purposes.
- FIGS. 7A and 7B that respectively illustrate a side view of a conventional electronic device for heat dissipation or air conditioning
- a first fan 101 and a second fan 103 are mounted in a passage of the electronic device and used to exhaust air in the passage via air outlets 105 , 107 .
- first fan 101 and the second fan 103 both operate normally, they can direct air in the passage to be exhausted via the air outlets l 05 , 107 .
- a solution is to install a compensation mechanism for improving power of the heat dissipating mechanism; that is, if one of the fans fails to function properly, the compensation mechanism operates to elevate power of the other normally-functioning fans to maintain heat dissipating efficiency of the heat dissipating mechanism by means of forced convection for exhaust or convection of inner air in the electronic device.
- the compensation mechanism would increases fabrication costs and structural complexity; as it needs to take a period of time for the compensation mechanism to detect and react to malfunctioning of the fan, the electronic device may be broken down due to high temperature before an action or response is made by the compensation mechanism.
- the problem to be solved herein is to provide a flow direction control mechanism that can solve the foregoing drawbacks without significantly increasing fabrication costs.
- a primary objective of the present invention is to provide a flow direction control mechanism in a passage of an electronic device for controlling a flow direction of airflow.
- Another objective of the invention is to provide a flow direction control mechanism for controlling and preventing reverse airflow and for improving convection and heat dissipating efficiency in a passage of an electronic device.
- the present invention provides a flow direction control mechanism including a rotatable means mounted in a passage of an electronic device, wherein the rotatable means moves to an open position by means of a force generated from airflow flowing through the passage in operation of a heat dissipating device in the electronic device, and the rotatable means returns to a close position without requiring an external force.
- a restricting means or restrictor may be mounted close to the rotatable means for restricting movement of the rotatable means between the open position and the close position, so as to control a flowing direction of airflow in the passage and prevent reverse airflow to thereby improve convection and heat dissipating efficiency.
- the above flow direction control mechanism may be optionally and flexibly mounted at an air inlet or air outlet in the passage of the electronic device, and/or at positions near an air inlet or air outlet of a heat dissipation device in the electronic device. And, a plurality of the flow direction control mechanisms may be simultaneously mounted at suitable positions in the passage of the electronic device, so as to achieve desirable controlling effect on airflow in the passage.
- the rotatable means may be made of a light material such as Mylar, polyester, acrylic plastic, fiber glass, resin, metal, or polycarbonate, which can be driven by the force generated from airflow movement. Surfaces of the rotatable means may be declined to allow the rotatable means to easily open or move to the open position by means of the airflow-induced force and to close or return to the close position due to gravity.
- a light material such as Mylar, polyester, acrylic plastic, fiber glass, resin, metal, or polycarbonate
- the rotatable means installed in the passage may be adapted to move in a linear or rotational motion.
- a bias means may be further provided for the rotatable means; in the absence of the airflow-induced force, the bias means provides biasing effect to allow the rotatable means to return to the close position.
- size, number and shape of the rotatable means and restrictor may be flexibly designed according to the structure of the passage.
- a plurality of the flow direction control mechanisms may be integrated as a module type to be detachably mounted at suitable positions in the passage of the electronic device, so as to desirably achieve airflow control improvement without significantly increasing fabrication costs of the flow direction control mechanism.
- FIG. 1A is a side view of a flow direction control mechanism according to a first embodiment of the invention
- FIG. 1B is a side view of the flow direction control mechanism according to the first embodiment of the invention with a breakdown of one heat dissipating device;
- FIG. 2A is a side view of the flow direction control mechanism according to a second embodiment of the invention.
- FIG. 2B is a schematic diagram showing the flow direction control mechanism according to the second embodiment of the invention with a breakdown of one heat dissipating device;
- FIG. 2C is a magnified perspective view showing part of the flow direction control mechanism according to the second embodiment of the invention.
- FIG. 2D is a side view showing part of the flow direction control mechanism according to the second embodiment of the invention.
- FIG. 3A is a side view of the flow direction control mechanism according to a third embodiment t of the invention.
- FIG. 3B is a schematic diagram showing the flow direction control mechanism according to the third embodiment of the invention with a breakdown of one heat dissipating device;
- FIG. 4 is a perspective view showing arrangement of rotatable means according to a fourth embodiment of the invention.
- FIG. 5A is a perspective view of the flow direction control mechanism according to a fifth embodiment of the invention.
- FIG. 5B is a schematic view showing part of the flow direction control mechanism according to the fifth embodiment of the invention.
- FIG. 6A is a side view of the flow direction control mechanism according to a sixth embodiment of the invention.
- FIG. 6B is a schematic view of the flow direction control mechanism according to the sixth embodiment of the invention with a breakdown of one heat dissipating device;
- FIG. 6C is a schematic view showing part of the flow direction control mechanism according to the sixth embodiment of the invention.
- FIG. 7A is a side view of a conventional electronic device for heat dissipation and air conditioning.
- FIG. 7B (PRIOR ART) is a schematic view of a conventional electronic device for heat dissipation and air conditioning with a breakdown of one fan.
- FIGS. 1A and 1B illustrate a flow direction control mechanism according to a first embodiment of the invention.
- a pair of these flow direction control mechanisms 1 having rotatable means 1 a , 1 b are disposed at air inlets 5 , 6 of a passage of an electronic device and at inner positions with respect to heat dissipating devices 3 , 4 .
- the rotatable means 1 a , 1 b can be rotatably mounted to a top, side or bottom wall of the passage of the electronic device, and spaced apart from the heat dissipating devices 3 , 4 by a proper distance to avoid undesirably interference.
- the heat dissipating devices 3 , 4 are each mounted in the passage of the electronic device, and operate to produce airflow for directing air in the passage through air inlets 5 , 6 toward outside for exhaust.
- the heat dissipating devices 3 , 4 can be heat dissipating fans such as axial flow fans or centrifugal fans.
- the flow direction control mechanism 1 may be further provided with a positioner or a bias means to help securely hold the rotatable means at the open position or the close position and to eliminate noise generated from the rotatable means by shaking or striking during movement thereof.
- the rotatable means can be shaped as a thin plate and pivotally installed in the passage of the electronic device.
- the rotatable means is preferably made of a light and flexible material such as Mylar, polyester, acrylic-plastic, fiber glass, resin, metal, and polycarbonate, so as to allow airflow to easily pass across the rotatable means.
- FIGS. 2A to 2 D illustrate a flow direction control mechanism according to a second embodiment of the invention.
- a pair of these flow direction control mechanisms 11 are disposed at air outlets 15 , 16 of the passage of an electronic device and at outer positions with respect to heat dissipating devices 13 , 14 .
- the flow direction control mechanisms 11 are formed with rotatable means 11 a , 11 b and restrictors 11 c , 11 d , 11 e , 11 f , wherein the restrictors 11 c , 11 d , 11 e , 11 f are each a protrusion formed on an inner side wall of the passage.
- the rotatable means 11 a , 11 b of the second embodiment are structured and have the same functions as those in the first embodiment; therefore, no further description thereto is to be here repeated.
- the second embodiment only differs from the first embodiment in that the rotatable means 11 a , 11 b are located near the air outlets 15 , 16 of the passage and the restrictors 11 c , 11 d , 11 e , 11 f are provided.
- FIG. 2A when the heat dissipating devices 13 , 14 operate properly, airflow in the electronic device is directed through the air outlets 1 . 5 , 16 toward outside of the passage, and thus generates a pushing force to move the rotatable means 11 a , 11 b to an open position illustrated in FIG. 2C in which the rotatable means 11 a moves from a close position 12 a (indicated by dotted lines) to an open position 12 b (indicated by solid lines), with the restrictors 11 c , 11 e being provided for restricting movement of the rotatable means 11 a between the close position 12 a and the opening position 12 b.
- the rotatable means 11 b opens toward the air outlet 16 or moves from a close position to an open position by means of an outward pushing force generated from outward movement of the airflow in the passage, whereas the rotatable means 11 a keeps at the close position to prevent reverse airflow back to the passage.
- air in the passage is still smoothly directed by the heat dissipating device 14 through the air outlet 16 having the rotatable means 11 b open for exhaust, and also outside air is blocked by the closed rotatable means 11 a and fails to enter through the air outlet 15 into the passage, such that turbulence and reverse flow can be eliminated.
- the restrictors 11 d , 11 f are provided for restricting movement of the rotatable means 11 b between the close position and the opening position.
- the restrictors 11 c - f may be in the form of protrusions, frames, blocks, shafts, pins or other suitable structures to achieve the positionally restricting function.
- the restrictors 11 c - f can also be mounted to a bottom wall or top wall of the passage or to any other differently-shaped passage at positions where they can operate to restrict movement of the rotatable means 11 a , 11 b between the open position and close position.
- top walls of the air outlets 15 , 16 can serve as restrictors for restricting the moving range of the rotatable means 11 a , 11 b.
- FIGS. 3A and 3B illustrate a flow direction control mechanism according to a third embodiment of the invention.
- This flow direction control mechanism 7 has the structure similar to that of the first embodiment with the only difference in that the flow direction control mechanisms 7 are installed at outside position rather than inner positions (first embodiment) with respect to heat dissipating devices 9 , 10 .
- FIG. 4 illustrates a flow direction control mechanism according to a fourth embodiment of the invention.
- a pair of these flow direction control mechanisms 17 are disposed at air outlets of the passage of the electronic device, and formed with rotatable means 17 a . 17 b and restrictors 17 c , 17 d , each restrictor 17 c , 17 d being formed as a pair of shafts.
- the flow direction control mechanism 17 of the fourth embodiment differs from the above embodiments in that the rotatable means 17 a , 17 b are coaxially connected and mounted in the passage of the electronic device and spaced apart from a heat dissipating device (not shown) provided in the passage by a proper distance to avoid undesirable interference.
- the restrictors 17 c , 17 d , 17 e , 17 f are individually mounted on an inner side wall of the passage for restricting movement of the rotatable means 17 a , 17 b only between an open position and a close position.
- the restrictors 17 c , 17 d prevent the rotatable means 17 a , 17 b from coming into contact or colliding with each other;
- the restrictors 17 e , 17 f installed on the side wall of the passage prevent the rotatable means 17 a , 17 b from moving beyond the close position, such that the rotatable means 17 a , 17 b would not move toward or get into contact with the heat dissipating device in the passage.
- the restrictors 17 c , 17 d , 17 e , 17 f may be in the form of railings, leads, gates or other suitable structures to provide the positional restricting function.
- the rotatable means 17 a , 17 b may be integrally shaped as a single rotatable means that is centrally bent by a suitable angle and operates to move between an open position and an close position, wherein a biasing means, positioner or other equivalent elements may also be provided for positioning purposes.
- FIGS. 5A and 5B illustrate a flow direction control mechanism according to a fifth embodiment of the invention
- a pair of these flow direction control mechanisms 27 are installed in the passage of the electronic device, and provided with rotatable means 27 a , 27 e , a plurality of restrictors 28 a , 28 e , 28 c , 28 d , 28 b , 28 f , 28 g , 28 h and a plurality of predetermined positions 27 b , 27 c , 27 d , 27 f , 27 g , 27 h for disposing the rotatable means 27 a , 27 e.
- the flow direction control mechanism 27 of this embodiment differs the foregoing embodiments in that this flow direction control mechanism 27 is formed in a module type and can be detachably mounted to one or more suitable positions in the passage of the electronic device. As shown in the drawings, a plurality of predetermined positions 27 b , 27 c , 27 d , 27 f , 27 g , 27 h are provided for accommodating a plurality of rotatable means simultaneously and for easily renewing or replacing damaged rotatable means.
- the rotatable means may be integrally formed in the passage of the electronic device and properly spaced apart from the heat dissipating devices (not shown) to be mounted in the passage, and the number of rotatable means and restrictors can vary optionally to allow the rotatable means not to come into contact with the heat dissipating devices during movement between an open position and a close position.
- the rotatable means can be flexibly installed at any one or more of the predetermined positions 27 b , 27 c , 27 d , 27 f , 27 g , 27 h .
- the airflow amount is large or increases, more rotatable means are preferably utilized, or the rotatable means may be provided at positions relatively more distant to the heat dissipating devices; when the airflow amount is small or reduces, the number of rotatable means may be decreased, the rotatable means can be installed at positions relatively closer to the heat dissipating devices, or damaged rotatable means if any can be renewed.
- the rotatable means installed in the passage of the electronic device may be adapted to move in a linear, rotational or another type motion to the open position by means of a force generated from airflow flowing through the passage and return to the close position by means of a force or pressure difference.
- the restrictors are provided to restrict movement of the rotatable means only between the open position and the close position.
- the rotatable means may have elasticity and can be pivotally mounted in the passage of the electronic device.
- FIGS. 6A to 6 C illustrate a flow direction control mechanism according to a sixth embodiment of the invention.
- a pair of these flow direction control mechanisms 37 are pivotally installed at air outlets of the passage of the electronic device and formed with rotatable means 37 a , 37 b .
- This embodiment differs from the above second embodiment in that the flow direction control mechanisms 37 are situated at inner positions with respect to heat dissipating devices 39 , 41 , and the rotatable means 37 a , 37 b are installed on shafts, as shown in FIG. 6C .
- a plurality of positioners 37 e , 37 f may be further provided for firmly positioning the rotatable means 37 a , 37 b .
- the positioners 37 e , 37 f are used to securely hold the rotatable means 37 a , 37 b respectively at an open position or a close position, and to eliminate noise generated from the rotatable means 37 , 37 b by shaking or striking during movement thereof.
- the restrictors 11 c , 11 d , 11 e , 11 f may be mounted to an inner side wall of the passage of the electronic device, or a bias means or positioner may be provided on the inner side, bottom or top wall of the passage, so as to firmly hold the rotatable means at the open position or the close position, and to eliminate noise generated from the rotatable means by shaking or striking during movement thereof.
- the bias means provides biasing effect on the rotatable means for achieving positioning puxposes; the bias means may be any a suitable elastic element e.g. a leaf spring, coil spring or twist spring.
- the rotatable means may be rotatably mounted to the top or side wall of the passage of the electronic device or detachably installed on at least one suitable predetermined position in the passage.
- rotatable means and restrictors may all be designed and varied. according to the structure of the passage without being limited to the above mentioned embodiments.
- the invention utilizes a difference in force or pressure to move the rotatable means in position without requiring an external or extra driving mechanism, so as to control a flowing direction of airflow in the passage as not to affect exhaust of heat or hot air out of the passage.
- the flow direction control mechanism according to the invention may be optionally and flexibly mounted at an air inlet or air outlet in the passage of the electronic device, and/or at positions near an air inlet or air outlet of a heat dissipation device in the electronic device.
- a plurality of the flow direction control mechanisms may integrate as a module type to be detachably mounted at suitable positions in the passage of the electronic device, so as to achieve desirable controlling effect on airflow in the passage.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Air-Flow Control Members (AREA)
Abstract
A flow direction control mechanism is provided, which includes at least a rotatable means provided in a passage of an electronic system or apparatus. The rotatable means moves to an open position by means of a force generated from fluids flowing through the passage and returns to a close position in the absence of the force. Further, a restrictor is disposed adjacent to the rotatable means for restricting movement of the rotatable means between the open position and the close position.
Description
- The present invention relates to flow direction control mechanisms, and more particularly, to a flow direction control mechanism installed in a passage of a system or a device for controlling the airflow direction and eliminating the occurrence of reverse flow or air turbulence.
- OF THE INVENTION
- Modern electronic devices such as computers and mobile phones are developed with advancement of technology and have central process units (CPUs) thereof to be more efficient in arithmetic calculation, thereby producing more heat during operation of the electronic devices and making heat dissipation or temperature control more significantly concerned for the electronic devices. For example, it is critical to prevent electromigration effect that is induced by temperature rising above a threshold and causes a malfunction or breakdown of the electronic devices. Besides, heat dissipation plays an important role in system stability of CPUs in computers or other electronic devices; therefore, one main problem to be solved is to enhance heat dissipating efficiency in order to improve system performance.
- For solving ventilation, convection and heat dissipation problems in computers, electrical and mechanical apparatuses, power suppliers, air-conditioning devices and other industrial appliances, it is general to install heat dissipating devices such as axial fans, centrifugal fans and other fans to direct airflow into a particular passage and to thereby dissipate the airflow together with heat generated from the electronic devices to the outside or atmosphere, so as to achieve heat dissipation and ventilation purposes.
- As shown in
FIGS. 7A and 7B that respectively illustrate a side view of a conventional electronic device for heat dissipation or air conditioning, afirst fan 101 and asecond fan 103 are mounted in a passage of the electronic device and used to exhaust air in the passage viaair outlets - As shown in
FIG. 7A , when thefirst fan 101 and thesecond fan 103 both operate normally, they can direct air in the passage to be exhausted via theair outlets l 05, 107. - However, in the case of a breakdown of any one of the two fans, for example, the
second fan 103 failing to operate properly and only thefirst fan 101 functioning normally, air can freely pass through theair outlet 107 that is connected to thesecond fan 103, which may cause reverse airflow as indicated by dotted arrows inFIG. 7B . Besides the reverse airflow, it also seriously affects exhaust of inner air in the passage or even affects operation of thefirst fan 101, making heat dissipating efficiency of the electronic device undesirably reduced; this problem would be more sever in an electronic device with an advanced CPU that is in high demand of heat dissipation. - In response to the above heat dissipation problem induced by malfunctioning of a heat dissipating mechanism of the electronic device, a solution is to install a compensation mechanism for improving power of the heat dissipating mechanism; that is, if one of the fans fails to function properly, the compensation mechanism operates to elevate power of the other normally-functioning fans to maintain heat dissipating efficiency of the heat dissipating mechanism by means of forced convection for exhaust or convection of inner air in the electronic device.
- However, provision of the compensation mechanism would increases fabrication costs and structural complexity; as it needs to take a period of time for the compensation mechanism to detect and react to malfunctioning of the fan, the electronic device may be broken down due to high temperature before an action or response is made by the compensation mechanism.
- Moreover, as the fans are directly connected with air inlets or air outlets, reverse airflow occurs in a breakdown of the malfunctioning fan and also affects operation of other normally-functioning fans by which efficiency of convection or heat dissipation is significantly reduced, thus increasing load of the compensation mechanism and making the compensation mechanism easily damaged.
- Therefore, the problem to be solved herein is to provide a flow direction control mechanism that can solve the foregoing drawbacks without significantly increasing fabrication costs.
- A primary objective of the present invention is to provide a flow direction control mechanism in a passage of an electronic device for controlling a flow direction of airflow.
- Another objective of the invention is to provide a flow direction control mechanism for controlling and preventing reverse airflow and for improving convection and heat dissipating efficiency in a passage of an electronic device.
- In order to achieve the foregoing and other objectives, the present invention provides a flow direction control mechanism including a rotatable means mounted in a passage of an electronic device, wherein the rotatable means moves to an open position by means of a force generated from airflow flowing through the passage in operation of a heat dissipating device in the electronic device, and the rotatable means returns to a close position without requiring an external force. Further, a restricting means or restrictor may be mounted close to the rotatable means for restricting movement of the rotatable means between the open position and the close position, so as to control a flowing direction of airflow in the passage and prevent reverse airflow to thereby improve convection and heat dissipating efficiency.
- The above flow direction control mechanism may be optionally and flexibly mounted at an air inlet or air outlet in the passage of the electronic device, and/or at positions near an air inlet or air outlet of a heat dissipation device in the electronic device. And, a plurality of the flow direction control mechanisms may be simultaneously mounted at suitable positions in the passage of the electronic device, so as to achieve desirable controlling effect on airflow in the passage.
- The rotatable means may be made of a light material such as Mylar, polyester, acrylic plastic, fiber glass, resin, metal, or polycarbonate, which can be driven by the force generated from airflow movement. Surfaces of the rotatable means may be declined to allow the rotatable means to easily open or move to the open position by means of the airflow-induced force and to close or return to the close position due to gravity.
- The rotatable means installed in the passage may be adapted to move in a linear or rotational motion. And, a bias means may be further provided for the rotatable means; in the absence of the airflow-induced force, the bias means provides biasing effect to allow the rotatable means to return to the close position.
- Moreover, size, number and shape of the rotatable means and restrictor may be flexibly designed according to the structure of the passage. And, a plurality of the flow direction control mechanisms may be integrated as a module type to be detachably mounted at suitable positions in the passage of the electronic device, so as to desirably achieve airflow control improvement without significantly increasing fabrication costs of the flow direction control mechanism.
- The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
-
FIG. 1A is a side view of a flow direction control mechanism according to a first embodiment of the invention; -
FIG. 1B is a side view of the flow direction control mechanism according to the first embodiment of the invention with a breakdown of one heat dissipating device; -
FIG. 2A is a side view of the flow direction control mechanism according to a second embodiment of the invention; -
FIG. 2B is a schematic diagram showing the flow direction control mechanism according to the second embodiment of the invention with a breakdown of one heat dissipating device; -
FIG. 2C is a magnified perspective view showing part of the flow direction control mechanism according to the second embodiment of the invention; -
FIG. 2D is a side view showing part of the flow direction control mechanism according to the second embodiment of the invention; -
FIG. 3A is a side view of the flow direction control mechanism according to a third embodiment t of the invention; -
FIG. 3B is a schematic diagram showing the flow direction control mechanism according to the third embodiment of the invention with a breakdown of one heat dissipating device; -
FIG. 4 is a perspective view showing arrangement of rotatable means according to a fourth embodiment of the invention; -
FIG. 5A is a perspective view of the flow direction control mechanism according to a fifth embodiment of the invention; -
FIG. 5B is a schematic view showing part of the flow direction control mechanism according to the fifth embodiment of the invention; -
FIG. 6A is a side view of the flow direction control mechanism according to a sixth embodiment of the invention; -
FIG. 6B is a schematic view of the flow direction control mechanism according to the sixth embodiment of the invention with a breakdown of one heat dissipating device; -
FIG. 6C is a schematic view showing part of the flow direction control mechanism according to the sixth embodiment of the invention; -
FIG. 7A (PRIOR ART) is a side view of a conventional electronic device for heat dissipation and air conditioning; and -
FIG. 7B (PRIOR ART) is a schematic view of a conventional electronic device for heat dissipation and air conditioning with a breakdown of one fan. - The preferred embodiments of a flow direction control mechanism proposed in the present invention are described in detail as follows with reference to FIGS. I to 6.
-
FIGS. 1A and 1B illustrate a flow direction control mechanism according to a first embodiment of the invention. A pair of these flowdirection control mechanisms 1 having rotatable means 1 a, 1 b are disposed atair inlets 5, 6 of a passage of an electronic device and at inner positions with respect to heat dissipatingdevices - The rotatable means 1 a, 1 b can be rotatably mounted to a top, side or bottom wall of the passage of the electronic device, and spaced apart from the
heat dissipating devices - The
heat dissipating devices air inlets 5, 6 toward outside for exhaust. Theheat dissipating devices - As shown in
FIG. 1A , when theheat dissipating devices air inlets 5, 6, movement of the airflow generates a pushing force or pressure on the rotatable means 1 a, 1 b by which the rotatable means 1 a, 1 b open or move to an open position to thereby allow the airflow to pass through theair inlets 5, 6. In other words, the rotatable means are changed in position by virtue of force or pressure differences so as to control or impede a flow direction of the airflow. - As shown in
FIG. 1B , when theheat dissipating device 4 fails to function properly, no airflow is induced and enters theair inlet 6, and thus no force or pressure is applied to the rotatable means 1 b, thereby making the rotatable means 1 b return to a close position due to gravity. - Moreover, the flow
direction control mechanism 1 may be further provided with a positioner or a bias means to help securely hold the rotatable means at the open position or the close position and to eliminate noise generated from the rotatable means by shaking or striking during movement thereof. - Furthermore, the rotatable means can be shaped as a thin plate and pivotally installed in the passage of the electronic device. The rotatable means is preferably made of a light and flexible material such as Mylar, polyester, acrylic-plastic, fiber glass, resin, metal, and polycarbonate, so as to allow airflow to easily pass across the rotatable means.
-
FIGS. 2A to 2D illustrate a flow direction control mechanism according to a second embodiment of the invention. A pair of these flowdirection control mechanisms 11 are disposed atair outlets devices direction control mechanisms 11 are formed with rotatable means 11 a, 11 b andrestrictors restrictors air outlets restrictors - As shown in
FIG. 2A , when theheat dissipating devices FIG. 2C in which the rotatable means 11 a moves from aclose position 12 a (indicated by dotted lines) to anopen position 12 b (indicated by solid lines), with therestrictors close position 12 a and theopening position 12 b. - As shown in
FIG. 2B , when theheat dissipating device 13 fails to function properly, no airflow is induced and enters theair outlet 15, and thus no force or pressure is applied to the rotatable means 11 a, thereby making the rotatable means 11 a return to a close position due to gravity; that is, as shown inFIG. 2D , the rotatable means 11 a moves from theopen position 12 b to theclose position 12 a. - With the
heat dissipating device 14 operating normally, the rotatable means 11 b opens toward theair outlet 16 or moves from a close position to an open position by means of an outward pushing force generated from outward movement of the airflow in the passage, whereas the rotatable means 11 a keeps at the close position to prevent reverse airflow back to the passage. In this case, even with a breakdown of theheat dissipating device 13, air in the passage is still smoothly directed by theheat dissipating device 14 through theair outlet 16 having the rotatable means 11 b open for exhaust, and also outside air is blocked by the closed rotatable means 11 a and fails to enter through theair outlet 15 into the passage, such that turbulence and reverse flow can be eliminated. And, therestrictors - Moreover, the
restrictors 11 c-f may be in the form of protrusions, frames, blocks, shafts, pins or other suitable structures to achieve the positionally restricting function. And, besides the inner side wall of the passage shown inFIGS. 2A-2D , therestrictors 11 c-f can also be mounted to a bottom wall or top wall of the passage or to any other differently-shaped passage at positions where they can operate to restrict movement of the rotatable means 11 a, 11 b between the open position and close position. Alternatively, in this embodiment shown inFIGS. 2A-2D , top walls of theair outlets -
FIGS. 3A and 3B illustrate a flow direction control mechanism according to a third embodiment of the invention. This flowdirection control mechanism 7 has the structure similar to that of the first embodiment with the only difference in that the flowdirection control mechanisms 7 are installed at outside position rather than inner positions (first embodiment) with respect to heat dissipatingdevices -
FIG. 4 illustrates a flow direction control mechanism according to a fourth embodiment of the invention. A pair of these flow direction control mechanisms 17 are disposed at air outlets of the passage of the electronic device, and formed with rotatable means 17 a. 17 b andrestrictors - These rotatable means and restrictors have the same functions as those in the foregoing embodiments, and thus no further description thereto is to be here repeated only.
- As shown in
FIG. 4 , the flow direction control mechanism 17 of the fourth embodiment differs from the above embodiments in that the rotatable means 17 a, 17 b are coaxially connected and mounted in the passage of the electronic device and spaced apart from a heat dissipating device (not shown) provided in the passage by a proper distance to avoid undesirable interference. Therestrictors - In other words, when the rotatable means 17 a, 17 b each moves to the open position, the
restrictors restrictors - The
restrictors - Moreover, the rotatable means 17 a, 17 b may be integrally shaped as a single rotatable means that is centrally bent by a suitable angle and operates to move between an open position and an close position, wherein a biasing means, positioner or other equivalent elements may also be provided for positioning purposes.
-
FIGS. 5A and 5B illustrate a flow direction control mechanism according to a fifth embodiment of the invention, As shown inFIG. 5A , a pair of these flowdirection control mechanisms 27 are installed in the passage of the electronic device, and provided with rotatable means 27 a, 27 e, a plurality ofrestrictors predetermined positions - The flow
direction control mechanism 27 of this embodiment differs the foregoing embodiments in that this flowdirection control mechanism 27 is formed in a module type and can be detachably mounted to one or more suitable positions in the passage of the electronic device. As shown in the drawings, a plurality ofpredetermined positions - Alternatively, the rotatable means may be integrally formed in the passage of the electronic device and properly spaced apart from the heat dissipating devices (not shown) to be mounted in the passage, and the number of rotatable means and restrictors can vary optionally to allow the rotatable means not to come into contact with the heat dissipating devices during movement between an open position and a close position.
- Besides, in accordance with an amount of airflow, arrangement of the heat dissipating devices or other practical requirements, the rotatable means can be flexibly installed at any one or more of the
predetermined positions - The rotatable means installed in the passage of the electronic device may be adapted to move in a linear, rotational or another type motion to the open position by means of a force generated from airflow flowing through the passage and return to the close position by means of a force or pressure difference. And, the restrictors are provided to restrict movement of the rotatable means only between the open position and the close position.
- Moreover, besides detachable mounting shown in
FIGS. 5A and 5B , the rotatable means may have elasticity and can be pivotally mounted in the passage of the electronic device. -
FIGS. 6A to 6C illustrate a flow direction control mechanism according to a sixth embodiment of the invention. A pair of these flowdirection control mechanisms 37 are pivotally installed at air outlets of the passage of the electronic device and formed with rotatable means 37 a, 37 b. This embodiment differs from the above second embodiment in that the flowdirection control mechanisms 37 are situated at inner positions with respect to heat dissipatingdevices FIG. 6C . - As shown in
FIGS. 6A-6C , a plurality ofpositioners positioners - The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. For examples, in the flow direction control mechanism of the invention, as shown in
FIGS. 2A to 2D, therestrictors - The rotatable means may be rotatably mounted to the top or side wall of the passage of the electronic device or detachably installed on at least one suitable predetermined position in the passage.
- Further, size, number, shape, arrangement and assembly of the rotatable means and restrictors may all be designed and varied. according to the structure of the passage without being limited to the above mentioned embodiments.
- The invention utilizes a difference in force or pressure to move the rotatable means in position without requiring an external or extra driving mechanism, so as to control a flowing direction of airflow in the passage as not to affect exhaust of heat or hot air out of the passage.
- Moreover, the flow direction control mechanism according to the invention may be optionally and flexibly mounted at an air inlet or air outlet in the passage of the electronic device, and/or at positions near an air inlet or air outlet of a heat dissipation device in the electronic device. And, a plurality of the flow direction control mechanisms may integrate as a module type to be detachably mounted at suitable positions in the passage of the electronic device, so as to achieve desirable controlling effect on airflow in the passage.
- Therefore, the scope of the claims should be accorded the broadest interpretation so as to encompass all similar modifications and similar arrangements under the spirits and technologies of the invention.
Claims (17)
1-24. (canceled)
25. A flow direction control mechanism, comprising at least one rotatable means provided in a passage of an electronic device in which the rotatable means moves to an open position by means of a force generated from airflow flowing through the passage in operation of a heat dissipating device in the electronic device, and the rotatable means returns to a close position to prevent reverse flowing of the airflow into the passage with occurrence of a breakdown of the heat dissipating device,
wherein the rotatable means is rotatably mounted in a pivotal, coaxial or engaging manner or as a module in the passage of the electronic device.
26. A flow direction control mechanism, comprising:
a rotatable means mounted in a passage of an electronic device, wherein the rotatable means moves to an open position by means of a force generated from
airflow flowing through the passage in operation of a heat dissipating device in the
electronic device, and the rotatable means returns to a close position in the absence of
the force; and
a restricting means mounted close to the rotatable means for restricting
movement of the rotatable means between the open position and the close position.
27. The flow direction control mechanism of claim 26 , wherein the rotatable means is a thin plate pivotally mounted in the passage of the electronic device.
28. The flow direction control mechanism of claim 26 , further comprising a bias means mounted close to the rotatable means, allowing the rotatable means to return to the close position via biasing effect from the bias means,
29. The flow direction control mechanism of claim 26 , wherein the flow direction control mechanism is formed in a module type and capable of being detachably installed on at least one predetermined position in the passage of the electronic device.
30. The flow direction control mechanism of claim 26 , wherein the flow direction control mechanism is mounted in the passage near an air inlet or air outlet of the passage.
31. The flow direction control mechanism of claim 26 , wherein the flow direction control mechanism is mounted outside the heat dissipating device near an air inlet or air outlet of the heat dissipating device.
32. The flow direction control mechanism of claim 26 , wherein the rotatable means is made of alight material selected from the group consisting of Mylar, polyester, acrylic plastic, fiber glass, resin, metal, and polycarbonate.
33. The flow direction control mechanism of claim 26 , wherein the rotatable means is rotatably mounted in a pivotal, coaxial or engaging manner or as a module in the passage of the electronic device.
34. The flow direction control mechanism of claim 26 , wherein the restricting means is selected from the group consisting of a grid, guide, gate, protrusion, frame, block, shaft, and bolt, to be mounted an a side wall, bottom wall or top wall of the passage of the electronic device.
35. A flow direction control mechanism, comprising:
a rotatable means mounted in a passage of an electronic device, wherein the rotatable means moves to an open position by means of a force generated from
airflow flowing through the passage in operation of a heat dissipating device in the
electronic device, and the rotatable means returns to a close position without the
operation of the heat dissipating device; and
a restricting means mounted close to the rotatable means for restricting movement of the rotatable means between the open position and the close position.
36. The flow direction control mechanism of claim 35 , further comprising a bias means mounted close to the rotatable means, allowing the rotatable means to return to the close position via biasing effect from the bias means.
37. The flow direction control mechanism of claim 35 , wherein the flow direction control mechanism is formed in a module type and capable of being detachably
installed on at least one predetermined position in the passage of the electronic device.
38. The flow direction control mechanism of claim 35 , wherein the flow direction control mechanism is mounted in the passage near an air inlet or air outlet of the passage.
39. The flow direction control mechanism of claim 35 , wherein the flow direction control mechanism is mounted outside the heat dissipating device near an air inlet or air outlet of the heat dissipating device.
40. The flow direction control mechanism of claim 35 , wherein the rotatable means is made of alight material selected from the group consisting of Mylar, polyester, acrylic plastic, fiber glass, resin, metal, and polycarbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/272,734 US20060073783A1 (en) | 2002-05-29 | 2005-11-15 | Flow direction control mechanism |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091111402A TW535488B (en) | 2002-05-29 | 2002-05-29 | Flow direction control mechanism |
TW91111402 | 2002-05-29 | ||
US10/370,406 US6991533B2 (en) | 2002-05-29 | 2003-02-19 | Flow direction control mechanism |
US11/272,734 US20060073783A1 (en) | 2002-05-29 | 2005-11-15 | Flow direction control mechanism |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/370,406 Division US6991533B2 (en) | 2002-05-29 | 2003-02-19 | Flow direction control mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060073783A1 true US20060073783A1 (en) | 2006-04-06 |
Family
ID=29213318
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/370,406 Expired - Lifetime US6991533B2 (en) | 2002-05-29 | 2003-02-19 | Flow direction control mechanism |
US11/272,734 Abandoned US20060073783A1 (en) | 2002-05-29 | 2005-11-15 | Flow direction control mechanism |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/370,406 Expired - Lifetime US6991533B2 (en) | 2002-05-29 | 2003-02-19 | Flow direction control mechanism |
Country Status (3)
Country | Link |
---|---|
US (2) | US6991533B2 (en) |
JP (1) | JP2003347778A (en) |
TW (1) | TW535488B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080170363A1 (en) * | 2007-01-12 | 2008-07-17 | Hon Hai Precision Industry Co., Ltd. | Computer case |
US20090305625A1 (en) * | 2008-06-09 | 2009-12-10 | International Business Machines Corporation | System and method to route airflow through dynamically changing ducts |
US20090302124A1 (en) * | 2008-06-09 | 2009-12-10 | International Business Machines Corporation | System and method to route airflow using dynamically changing ducts |
US20090301693A1 (en) * | 2008-06-09 | 2009-12-10 | International Business Machines Corporation | System and method to redirect and/or reduce airflow using actuators |
US20100010678A1 (en) * | 2008-07-11 | 2010-01-14 | International Business Machines Corporation | System and method to control data center air handling systems |
US20100082178A1 (en) * | 2008-09-29 | 2010-04-01 | International Business Machines Corporation | System and method to dynamically change data center partitions |
US20100082309A1 (en) * | 2008-09-29 | 2010-04-01 | International Business Machines Corporation | System and method for dynamically modeling data center partitions |
US20110081851A1 (en) * | 2009-10-05 | 2011-04-07 | Franz John P | Flow control system and method |
US20110228475A1 (en) * | 2010-03-17 | 2011-09-22 | International Business Machines Corporation | Enclosure with concurrently maintainable field replaceable units |
US20120133255A1 (en) * | 2010-11-26 | 2012-05-31 | Fujitsu Limited | Apparatus on which fan can be mounted |
US20120156019A1 (en) * | 2010-12-17 | 2012-06-21 | Hon Hai Precision Industry Co., Ltd. | Fan module |
US20130004308A1 (en) * | 2011-06-30 | 2013-01-03 | Hon Hai Precision Industry Co., Ltd. | Fan assembly |
US20130017076A1 (en) * | 2011-07-14 | 2013-01-17 | Hon Hai Precision Industry Co., Ltd. | Fan assembly |
CN104423480A (en) * | 2013-08-28 | 2015-03-18 | 鸿富锦精密工业(深圳)有限公司 | Server cabinet and cooling system |
WO2017132460A1 (en) * | 2016-01-29 | 2017-08-03 | Western Digital Technologies Inc. | Backflow stopper with acoustic barrier |
US10523254B2 (en) * | 2017-07-20 | 2019-12-31 | Qualcomm Incorporated | Mixer S11 control via sum component termination |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005024831A1 (en) * | 2003-09-08 | 2005-03-17 | Xyratex Technology Limited | Temperature control device, disk drive unit test apparatus, and a method of testing or operating a plurality of disk drive units |
US7554803B2 (en) * | 2005-04-13 | 2009-06-30 | Dell Products L.P. | Method and apparatus for cooling an information handling system |
CA2510529C (en) * | 2005-06-20 | 2013-08-27 | Emerson Network Power, Energy Systems, North America, Inc. | Electromagnet-assisted ventilation cover for an electronic equipment enclosure |
TWM285189U (en) * | 2005-06-30 | 2006-01-01 | Delta Electronics Inc | Heat dissipation system and anti-backflow device |
US9047066B2 (en) * | 2005-09-30 | 2015-06-02 | Intel Corporation | Apparatus and method to efficiently cool a computing device |
CN200990050Y (en) * | 2006-12-22 | 2007-12-12 | 鸿富锦精密工业(深圳)有限公司 | Air inducer |
US7515411B2 (en) * | 2007-02-09 | 2009-04-07 | Lsi Corporation | Multi-fan airflow regulation for fan fail conditions |
US7800902B2 (en) * | 2007-06-04 | 2010-09-21 | Hewlett-Packard Development Company, L.P. | Air backflow prevention in an enclosure |
US20090034187A1 (en) * | 2007-07-31 | 2009-02-05 | Coles Henry C | Pressure-based fan speed adjustment |
US7688593B2 (en) * | 2007-10-15 | 2010-03-30 | Alcatel-Lucent Usa Inc. | Servo damper control of airflow within an electronics chassis |
DE102007061966B8 (en) * | 2007-12-21 | 2010-07-08 | Knürr AG | Arrangement for cooling electrical and electronic components and modular units in equipment cabinets |
US20090260795A1 (en) * | 2008-04-16 | 2009-10-22 | Perazzo Thomas M | Active door array for cooling system |
US7843685B2 (en) * | 2008-04-22 | 2010-11-30 | International Business Machines Corporation | Duct system for high power adapter cards |
US20100218920A1 (en) * | 2008-10-17 | 2010-09-02 | Emerson Network Power - Embedded Computing, Inc. | System And Method For Airflow Dividers For Use With Cooling Systems For An Equipment Enclosure |
TWI381130B (en) | 2009-05-25 | 2013-01-01 | Young Green Energy Co | Illuminating system |
US8373987B2 (en) * | 2009-12-17 | 2013-02-12 | Delta Electronics, Inc. | Air conditioning system of portable data center |
EP2339905B1 (en) * | 2009-12-22 | 2012-06-27 | ABB Oy | Power electronic apparatuses with cooling arrangements |
EP2339906B1 (en) * | 2009-12-22 | 2012-06-27 | ABB Oy | Power electronic apparatus with cooling arrangement |
JP5439267B2 (en) * | 2010-04-26 | 2014-03-12 | 株式会社日立製作所 | Wind pressure shutter and cooling fan system |
DE102010021019B9 (en) * | 2010-05-05 | 2012-07-26 | Fujitsu Technology Solutions Intellectual Property Gmbh | Housing cabinet for holding a plurality of plug-in components and rack housing with the housing cabinet and an exhaust unit |
KR101005909B1 (en) * | 2010-08-13 | 2011-01-06 | 주식회사 코스콤 | Wind direction controller for cooling air control in data center |
TW201212800A (en) * | 2010-09-03 | 2012-03-16 | Hon Hai Prec Ind Co Ltd | Heat dissipating device and electronic device having the same |
TWI420024B (en) * | 2010-12-13 | 2013-12-21 | 泰達電子公司 | Backflow prevention device and fan assembly |
TW201228579A (en) * | 2010-12-27 | 2012-07-01 | Hon Hai Prec Ind Co Ltd | Electronic device and heat dissipation device thereof |
CN102541222A (en) * | 2010-12-31 | 2012-07-04 | 鸿富锦精密工业(深圳)有限公司 | Rack-mounted server system |
DE102011004424B4 (en) * | 2011-02-18 | 2012-12-06 | Schneider Electric Sachsenwerk Gmbh | Electrical switchgear, in particular air-insulated medium-voltage switchgear |
CN102902327A (en) * | 2011-07-28 | 2013-01-30 | 鸿富锦精密工业(深圳)有限公司 | Air guide board |
JP5684685B2 (en) * | 2011-09-29 | 2015-03-18 | 株式会社日立製作所 | Electronic equipment cooling system |
US20130109290A1 (en) * | 2011-10-27 | 2013-05-02 | Raytheon Company | Forced airflow control device and method of operation |
CN103163990B (en) * | 2011-12-16 | 2016-07-06 | 国家电网公司 | Cabinet-type server system |
CN103186207A (en) * | 2011-12-28 | 2013-07-03 | 鸿富锦精密工业(深圳)有限公司 | Radiation system and control method applied to same |
TW201328572A (en) * | 2011-12-28 | 2013-07-01 | Hon Hai Prec Ind Co Ltd | Air shielding assembly and heat dissipating system with the air shielding assembly |
TW201334675A (en) * | 2012-02-09 | 2013-08-16 | Hon Hai Prec Ind Co Ltd | Wind guiding structure for portable electronic device |
WO2013140461A2 (en) * | 2012-03-23 | 2013-09-26 | Hitachi, Ltd. | Storage system |
CN103369914A (en) * | 2012-03-29 | 2013-10-23 | 鸿富锦精密工业(深圳)有限公司 | Wind resistance device and electronic product with wind resistance device |
WO2013174639A1 (en) * | 2012-05-25 | 2013-11-28 | Siemens Aktiengesellschaft | Ventilation assembly for a switchgear assembly |
US10035224B2 (en) * | 2012-06-19 | 2018-07-31 | Dell Products L.P. | Systems and methods for cooling an information handling system and components thereof |
US8936443B2 (en) | 2012-07-31 | 2015-01-20 | International Business Machines Corporation | Dynamic compensation of airflow in electronics enclosures with failed fans |
CN103813685A (en) * | 2012-11-06 | 2014-05-21 | 鸿富锦精密工业(深圳)有限公司 | Fan fixing device |
TWI505767B (en) * | 2013-01-31 | 2015-10-21 | Hon Hai Prec Ind Co Ltd | Heat dissipating device |
CN104122953A (en) * | 2013-04-24 | 2014-10-29 | 鸿富锦精密工业(深圳)有限公司 | Chassis |
CN104125747B (en) * | 2013-04-25 | 2017-11-10 | 鸿富锦精密工业(深圳)有限公司 | Electronic installation and its fan module |
DE102013222967A1 (en) * | 2013-11-12 | 2015-05-13 | Siemens Aktiengesellschaft | Ventilation arrangement for a switchgear |
US9949400B2 (en) | 2015-04-16 | 2018-04-17 | Sandisk Technologies Llc | Front rack cable management system and apparatus |
US9883618B2 (en) * | 2015-09-29 | 2018-01-30 | Seagate Technology Llc | Computing system enclosure airflow distribution management |
US9615485B1 (en) | 2015-09-29 | 2017-04-04 | Seagate Technology Llc | Computing system enclosure airflow management |
US10624241B1 (en) * | 2015-10-06 | 2020-04-14 | Amazon Technologies, Inc. | Rack mountable thermal regulation system |
US10390457B2 (en) * | 2016-04-06 | 2019-08-20 | International Business Machines Corporation | Normally open anti-recirculation system |
FR3057054B1 (en) * | 2016-09-30 | 2019-08-02 | Safran Electronics & Defense | COOLING MODULE AND ELECTRONIC UNIT COMPRISING SUCH A MODULE |
US10054993B2 (en) * | 2016-10-05 | 2018-08-21 | Sandisk Enterprise Ip Llc | Airflow guide assembly and enclosure |
US10888028B2 (en) * | 2018-06-19 | 2021-01-05 | Quanta Computer Inc. | Chassis intelligent airflow control and cooling regulation mechanism |
FR3089703B1 (en) * | 2018-12-07 | 2022-12-09 | Schneider Electric Ind Sas | Air flow management system adaptable to an electrical cabinet |
US11913460B2 (en) | 2020-03-20 | 2024-02-27 | Greenheck Fan Corporation | Exhaust fan |
US11632874B1 (en) * | 2020-07-22 | 2023-04-18 | ZT Group Int'l, Inc. | Regulating airflow in a computer system |
US11675397B2 (en) * | 2020-12-07 | 2023-06-13 | Dell Products L.P. | Information handling system with airflow and acoustics vane for hard disk drive throughput |
US11523534B2 (en) | 2021-01-13 | 2022-12-06 | Baidu Usa Llc | Device for airflow management and cooling improvement in hybrid-cooled electronics |
EP4374669A1 (en) * | 2021-07-19 | 2024-05-29 | Soluna Computing, Inc. | Modular data center |
US11778771B2 (en) * | 2021-11-11 | 2023-10-03 | Cisco Technology, Inc. | Airflow control louver for bidirectional airflow cooling |
US20230200002A1 (en) * | 2021-12-16 | 2023-06-22 | International Business Machines Corporation | Structurally enhanced fan louver assembly |
US11781555B2 (en) * | 2021-12-28 | 2023-10-10 | Quanta Computer Inc. | Fan guard configured to selectively cover aperture |
FR3135925B1 (en) * | 2022-05-31 | 2024-04-12 | Psa Automobiles Sa | COOLING DEVICE FOR THE BATTERY CHARGER OF ELECTRIC MOTOR VEHICLES |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4648007A (en) * | 1985-10-28 | 1987-03-03 | Gte Communications Systems Corporation | Cooling module for electronic equipment |
US5890959A (en) * | 1998-03-31 | 1999-04-06 | Digital Equipment Corporation | High efficiency blower system with integral backflow preventor |
US6005770A (en) * | 1997-11-12 | 1999-12-21 | Dell U.S.A., L.P. | Computer and a system and method for cooling the interior of the computer |
US6115250A (en) * | 1998-01-20 | 2000-09-05 | Dell Usa, Lp | Computer and an assembly and method for cooling a computer |
US6135875A (en) * | 1999-06-29 | 2000-10-24 | Emc Corporation | Electrical cabinet |
US6174232B1 (en) * | 1999-09-07 | 2001-01-16 | International Business Machines Corporation | Helically conforming axial fan check valve |
US6181557B1 (en) * | 1999-10-29 | 2001-01-30 | Motorola, Inc. | Electronic component, method of cooling, and damper therefor |
US6217440B1 (en) * | 1998-10-29 | 2001-04-17 | Unisys Corporation | Air mover system with reduced reverse air flow |
US6554698B2 (en) * | 2000-12-05 | 2003-04-29 | Marconi Communications, Inc. | Fan one way air valve |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6688965B1 (en) * | 2002-11-27 | 2004-02-10 | International Business Machines Corporation | Invertible back flow damper for an air moving device |
-
2002
- 2002-05-29 TW TW091111402A patent/TW535488B/en not_active IP Right Cessation
- 2002-12-13 JP JP2002363005A patent/JP2003347778A/en active Pending
-
2003
- 2003-02-19 US US10/370,406 patent/US6991533B2/en not_active Expired - Lifetime
-
2005
- 2005-11-15 US US11/272,734 patent/US20060073783A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4648007A (en) * | 1985-10-28 | 1987-03-03 | Gte Communications Systems Corporation | Cooling module for electronic equipment |
US6005770A (en) * | 1997-11-12 | 1999-12-21 | Dell U.S.A., L.P. | Computer and a system and method for cooling the interior of the computer |
US6115250A (en) * | 1998-01-20 | 2000-09-05 | Dell Usa, Lp | Computer and an assembly and method for cooling a computer |
US5890959A (en) * | 1998-03-31 | 1999-04-06 | Digital Equipment Corporation | High efficiency blower system with integral backflow preventor |
US6217440B1 (en) * | 1998-10-29 | 2001-04-17 | Unisys Corporation | Air mover system with reduced reverse air flow |
US6135875A (en) * | 1999-06-29 | 2000-10-24 | Emc Corporation | Electrical cabinet |
US6174232B1 (en) * | 1999-09-07 | 2001-01-16 | International Business Machines Corporation | Helically conforming axial fan check valve |
US6181557B1 (en) * | 1999-10-29 | 2001-01-30 | Motorola, Inc. | Electronic component, method of cooling, and damper therefor |
US6554698B2 (en) * | 2000-12-05 | 2003-04-29 | Marconi Communications, Inc. | Fan one way air valve |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080170363A1 (en) * | 2007-01-12 | 2008-07-17 | Hon Hai Precision Industry Co., Ltd. | Computer case |
US7542275B2 (en) * | 2007-01-12 | 2009-06-02 | Hon Hai Precision Industry Co., Ltd. | Computer case |
US9253930B2 (en) | 2008-06-09 | 2016-02-02 | International Business Machines Corporation | Method to route airflow through dynamically changing ducts |
US8251784B2 (en) | 2008-06-09 | 2012-08-28 | International Business Machines Corporation | System and method to route airflow through dynamically changing ducts |
US20090301693A1 (en) * | 2008-06-09 | 2009-12-10 | International Business Machines Corporation | System and method to redirect and/or reduce airflow using actuators |
US11092355B2 (en) | 2008-06-09 | 2021-08-17 | International Business Machines Corporation | System and method to redirect and/or reduce airflow using actuators |
US10359210B2 (en) | 2008-06-09 | 2019-07-23 | International Business Machines Corporation | Apparatus to redirect and/or reduce airflow using actuators |
US20090305625A1 (en) * | 2008-06-09 | 2009-12-10 | International Business Machines Corporation | System and method to route airflow through dynamically changing ducts |
US9008844B2 (en) | 2008-06-09 | 2015-04-14 | International Business Machines Corporation | System and method to route airflow using dynamically changing ducts |
US8708788B2 (en) | 2008-06-09 | 2014-04-29 | International Business Machines Corporation | System to route airflow through dynamically changing ducts |
US8382565B2 (en) | 2008-06-09 | 2013-02-26 | International Business Machines Corporation | System and method to redirect and/or reduce airflow using actuators |
US8900040B2 (en) | 2008-06-09 | 2014-12-02 | International Business Machines Corporation | System and method to redirect and/or reduce airflow using actuators |
US20090302124A1 (en) * | 2008-06-09 | 2009-12-10 | International Business Machines Corporation | System and method to route airflow using dynamically changing ducts |
US8090476B2 (en) | 2008-07-11 | 2012-01-03 | International Business Machines Corporation | System and method to control data center air handling systems |
US20100010678A1 (en) * | 2008-07-11 | 2010-01-14 | International Business Machines Corporation | System and method to control data center air handling systems |
US10884387B2 (en) | 2008-09-29 | 2021-01-05 | International Business Machines Corporation | System and method to dynamically change data center partitions |
US9939796B2 (en) | 2008-09-29 | 2018-04-10 | International Business Machines Corporation | System and method to dynamically change data center partitions |
US9250663B2 (en) | 2008-09-29 | 2016-02-02 | International Business Machines Corporation | System and method for dynamically modeling data center partitions |
US20100082309A1 (en) * | 2008-09-29 | 2010-04-01 | International Business Machines Corporation | System and method for dynamically modeling data center partitions |
US20100082178A1 (en) * | 2008-09-29 | 2010-04-01 | International Business Machines Corporation | System and method to dynamically change data center partitions |
US8983675B2 (en) | 2008-09-29 | 2015-03-17 | International Business Machines Corporation | System and method to dynamically change data center partitions |
US20110081851A1 (en) * | 2009-10-05 | 2011-04-07 | Franz John P | Flow control system and method |
US20110228475A1 (en) * | 2010-03-17 | 2011-09-22 | International Business Machines Corporation | Enclosure with concurrently maintainable field replaceable units |
US8840453B2 (en) * | 2010-11-26 | 2014-09-23 | Fujitsu Limited | Apparatus on which fan can be mounted |
US20120133255A1 (en) * | 2010-11-26 | 2012-05-31 | Fujitsu Limited | Apparatus on which fan can be mounted |
US8740560B2 (en) * | 2010-12-17 | 2014-06-03 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Fan module |
US20120156019A1 (en) * | 2010-12-17 | 2012-06-21 | Hon Hai Precision Industry Co., Ltd. | Fan module |
US20130004308A1 (en) * | 2011-06-30 | 2013-01-03 | Hon Hai Precision Industry Co., Ltd. | Fan assembly |
US20130017076A1 (en) * | 2011-07-14 | 2013-01-17 | Hon Hai Precision Industry Co., Ltd. | Fan assembly |
CN104423480A (en) * | 2013-08-28 | 2015-03-18 | 鸿富锦精密工业(深圳)有限公司 | Server cabinet and cooling system |
US10151324B2 (en) | 2016-01-29 | 2018-12-11 | Western Digital Technologies, Inc. | Backflow stopper with acoustic barrier |
WO2017132460A1 (en) * | 2016-01-29 | 2017-08-03 | Western Digital Technologies Inc. | Backflow stopper with acoustic barrier |
US10523254B2 (en) * | 2017-07-20 | 2019-12-31 | Qualcomm Incorporated | Mixer S11 control via sum component termination |
Also Published As
Publication number | Publication date |
---|---|
JP2003347778A (en) | 2003-12-05 |
TW535488B (en) | 2003-06-01 |
US20030224717A1 (en) | 2003-12-04 |
US6991533B2 (en) | 2006-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6991533B2 (en) | Flow direction control mechanism | |
US7529088B2 (en) | Heat dissipation module and flow direction controlling structure thereof | |
US8206099B2 (en) | Active air flow adjustable fan | |
US6343984B1 (en) | Laminar flow duct cooling system | |
US7417856B2 (en) | Heat dissipation module and flow direction controlling structure thereof | |
US7436665B2 (en) | Heat-dissipating assembly of computer housing | |
US9157536B2 (en) | Backflow prevention device and fan assembly | |
EP3156875B1 (en) | Heat dissipation module, display card assembly and electronic device | |
US20080112806A1 (en) | Fan and fan housing capable of anti-backflow | |
US7123478B2 (en) | Electronic product having airflow-guiding device | |
CN113494485B (en) | Fan module and electronic device | |
US20130229774A1 (en) | Electronic device | |
US20100158671A1 (en) | Fan device with a vibration attenuating structure | |
US7586742B2 (en) | Heat dissipation module | |
TWI590032B (en) | Flap door mechamism with closable function and electronic device therewith | |
US8262444B2 (en) | Electronic device with airflow reversal prevention assembly | |
US20140185239A1 (en) | Electronic device with airflow control structure | |
US10781824B2 (en) | Fan and motor | |
US20110122568A1 (en) | Computer | |
CN114698290B (en) | Electronic equipment and heat dissipation mechanism thereof | |
US7220178B2 (en) | Receiving slot frame with fan | |
US20240023272A1 (en) | Fan module and electronic device | |
JP2001244683A (en) | Heat dissipation mechanism for closed housing | |
EP1480503B1 (en) | Heat-dissipating fan module of electronic apparatus | |
US20220397813A1 (en) | Projection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |