US20060065400A1 - Method and apparatus for stimulating a subterranean formation using liquefied natural gas - Google Patents
Method and apparatus for stimulating a subterranean formation using liquefied natural gas Download PDFInfo
- Publication number
- US20060065400A1 US20060065400A1 US10/954,668 US95466804A US2006065400A1 US 20060065400 A1 US20060065400 A1 US 20060065400A1 US 95466804 A US95466804 A US 95466804A US 2006065400 A1 US2006065400 A1 US 2006065400A1
- Authority
- US
- United States
- Prior art keywords
- subterranean formation
- natural gas
- well
- liquefied natural
- fracturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003949 liquefied natural gas Substances 0.000 title claims abstract description 113
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims description 75
- 230000004936 stimulating effect Effects 0.000 title claims description 11
- 239000012530 fluid Substances 0.000 claims abstract description 105
- 238000004519 manufacturing process Methods 0.000 claims abstract description 35
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 31
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 31
- 238000005086 pumping Methods 0.000 claims abstract description 29
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 81
- 238000002955 isolation Methods 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 20
- 239000004215 Carbon black (E152) Substances 0.000 claims description 16
- 239000003245 coal Substances 0.000 claims description 13
- 239000003345 natural gas Substances 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 4
- 229910001570 bauxite Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 2
- 239000002343 natural gas well Substances 0.000 claims 4
- 239000003129 oil well Substances 0.000 claims 4
- 239000011275 tar sand Substances 0.000 claims 4
- 238000004891 communication Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000005755 formation reaction Methods 0.000 abstract description 46
- 230000000638 stimulation Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000012206 bottled water Nutrition 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000004058 oil shale Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- -1 foamers Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/2605—Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
Definitions
- This invention generally relates to well fracturing and well stimulation operations, and, in particular, to a fracturing fluid and method of fracturing a subterranean formation to stimulate production of fluids from a well, or to improve permeability of the subterranean formation to facilitate injection of fluids into the well.
- subterranean formations used for producing oil and gas, coal bed methane, tar sands, oil shale, or shale gas formations require some form of stimulation to enhance hydrocarbon flow from the formations to make or keep them economically viable.
- most subterranean formations used for fluid storage or disposal require some form of stimulation to enhance fluid flow into those formations.
- the fracturing of subterranean formations to stimulate production or enhance injectability requires the pumping of fluids under high pressure through the wells and into the formations with which the wells communicate.
- fracturing fluids have been aqueous solutions treated with various chemicals such as surfactants, foamers, cross-linkers and/or gelling agents and often also include proppants such as bauxite, sand or ceramic particulates.
- aqueous fracturing fluids has certain disadvantages.
- sea water is often used for the fracturing fluid but the use of sea water requires filtering and chemical treatment to reduce the detrimental affects of the sea water in the subterranean formations.
- Second, transfer and disposal of used aqueous fluids is problematic.
- aqueous fluids are by nature incompatible with most hydrocarbons and many subterranean formation compositions. It is well known that aqueous fracturing fluids can reduce the porosity of coal seams, thus inhibiting the release of coal seam methane.
- fracturing fluids must be “flowed back” from a fractured well, separated from the oil and gas, and then disposed of in some way. There is inevitable loss of hydrocarbons during the flow back, separation, and transportation, which all results in a loss of time before commercialization of the produced products can begin.
- aqueous fracturing fluids can have deleterious effects on certain strata, such as clay stratum for example. If aqueous fluids are to be used where a clay stratum is exposed to the fracturing fluid, the fracturing fluid must be treated with a salt such as potassium chloride (KCl) to inhibit damage to the stratum. This adds expense and makes the fracturing fluid corrosive. Furthermore, aqueous fluids used for fracturing introduce different ions, and elements into the subterranean formations which often results in scale formation on production equipment after the stimulation treatment.
- KCl potassium chloride
- aqueous fluid fracturing fluids also present other environmental risks.
- the current methods used for fracturing coal bed methane wells which are frequently relatively shallow wells and may be in the same strata as a potable water supply used by a local population, employs aqueous fluids generally mixed with chemicals to reduce surface tension of the fluids, reduce the friction of the fluids being pumped, or otherwise enhance the stimulation treatment or recovery of the fracturing fluids.
- the injection of aqueous fluids into a coal bed methane strata can contaminate the potable water supply, entrain oxygen and air, stimulate bacterial growth, and induce the production of hydrogen sulfide in the strata.
- gases such as nitrogen and carbon dioxide
- hydrocarbon solvents such as ethanol and diesel fuel
- liquefied gases such as liquid nitrogen and liquid carbon dioxide.
- Hydrocarbon gases such as propane, butane, and heavier hydrocarbon solvents have also been injected into wells at sub-fracturing pressures to dissolve heavy oil deposits to stimulate production.
- refined fluids such as ethanol or diesel are used, they are generally dissolved in the oils produced from the well, and/or contaminated by chemicals used in the fracturing process, and cannot be readily recovered for re-use or commercialization.
- U.S. Pat. No. 5,014,788 which issued on May 14, 1991 and is entitled Method of Increasing the Permeability of a Coal Seam describes a method of injecting carbon dioxide, xenon, argon, neon, krypton, ammonia, methane, ethane, propane, butane, and any combination of those gases through standard wellhead equipment into a coal seam in order to clean and cause swelling in the seam and improve methane production after a conventional aqueous fracturing of the coal seam has been completed.
- U.S. Pat. No. 5,899,272 which issued May 4, 1999 and is entitled Fracture Treatment System for Wells.
- This patent describes a system in which a fracturing fluid storage vessel, high pressure pump and high pressure conduit are connected in series to a well.
- a pressure vessel is connected to the high pressure conduit for injecting proppant carrying fracturing fluid into the well without the proppant carrying fracturing fluid passing through the pump.
- the fracturing fluid is preferably an aqueous solution, though the applicant speculates that the fracturing fluid may also be a gas, such as methane, ethane or nitrogen, in which case the high pressure pumps are replaced with conventional compressors.
- the invention therefore provides a fracturing fluid for stimulating hydrocarbon production from a subterranean formation, the fracturing fluid comprising liquefied natural gas or liquefied methane.
- a proppant is optionally blended with the liquefied natural gas/liquefied methane before it is pumped into the subterranean formation.
- the invention further provides a method of stimulating a subterranean formation to increase hydrocarbon production from the subterranean formation.
- the method comprises, drawing liquefied natural gas/liquefied methane from a source, pumping the liquefied natural gas/liquefied methane at a pressure and a flow rate high enough to induce fracturing of the subterranean formation, and conducting the liquefied natural gas/liquefied methane into the subterranean formation.
- the invention also provides a method of fracturing a well to stimulate production or injection.
- the method comprises connecting wellhead isolation equipment to a wellhead of the hydrocarbon well, pumping liquefied natural gas or liquefied methane down through a tubular connected to the wellhead isolation equipment and suspended in the hydrocarbon well to a subterranean formation at a pressure and a flow rate adequate to induce fracturing in the subterranean formation, removing the wellhead isolation equipment and connecting hydrocarbon production equipment to the wellhead; and producing hydrocarbons from the well to recover the natural gas/methane and produce the hydrocarbons from the subterranean formation.
- the invention therefore provides a fracturing fluid and methods for fracturing wells that are fully compatible with subterranean formations.
- the fracturing fluids are universally available at a reasonable cost, are environmentally compatible, and are commercially recoverable after stimulation is completed.
- the invention also reduce time to production after stimulation because production can be commenced as soon as a fracturing closure operation is effected.
- the release of fracturing fluid can be effected at any desired rate to ensure that the stimulation treatment has a desirable and lasting affect.
- FIG. 1 is a schematic illustration of a system for fracturing a well in accordance with an embodiment of the invention in which liquefied natural gas is pumped directly into a well;
- FIG. 2 a is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which a proppant is blended with liquefied natural gas prior to pumping the liquefied natural gas into the well;
- FIG. 2 b is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which a proppant is blended with liquefied natural gas after pumping the liquefied natural gas but prior to conducting the liquid natural gas into the well;
- FIG. 3 is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which liquefied natural gas is heated prior to entry into the well;
- FIG. 4 is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which liquefied natural gas is heated using a heat-exchanging fluid prior to entry into the well;
- FIG. 5 is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which liquefied natural gas is heated by a heat-exchanging fluid during its descent through the well;
- FIGS. 6 a , 6 b and 6 c are schematic illustrations of a system for fracturing a well in accordance with another embodiment of the invention in which an inert cryogenic fluid is used to cool at least the pumping and fracturing equipment before the liquefied natural gas is pumped into the well.
- the invention provides a method and system for fracturing a subterranean formation using liquefied natural gas (LNG) or liquefied methane, hereinafter referred to collectively as liquefied natural gas.
- LNG liquefied natural gas
- the liquefied natural gas is pumped as a cryogenic fluid at pressures and flow rates that are high enough, to fracture the subterranean formation requiring stimulation.
- the natural gas used as fracturing fluid can be recovered and commercialized without loss or damage to the environment, rendering this method of fracturing highly economical and environmentally sound.
- the LNG can be blended with proppants before or after pumping and is optionally heated either before it enters the well or during descent through the well bore.
- liquefied natural gas means liquefied methane and blends of liquefied methane (CH 4 ) with any other normally gaseous hydrocarbons and/or atmospheric gases normally found in liquefied methane-based products generally referred to as “natural gas”.
- FIG. 1 schematically illustrates an apparatus for practicing a method of fracturing a subterranean formation in accordance with an embodiment of the invention in which liquefied natural gas is pumped directly into a well.
- a fracturing system in accordance with the invention is generally designated by reference numeral 10 .
- a LNG source 12 for example a pressure vessel containing LNG can be a static structure, a mobile unit carried by a tanker truck, a train or a pipeline for on-site delivery of LNG to terrestrial wells, or by a tanker vessel for delivery to offshore wells.
- Liquefied natural gas is a variable mixture of about 75-95% liquefied methane (CH 4 ), 5-15% ethane (C 2 H 6 ) with the remainder composed of other hydrocarbons including propane C 3 H 8 and butane (C 4 H 10 ).
- the largest constituent of LNG, liquefied methane has a melting point of ⁇ 182.5° C. ( ⁇ 296.5° F.) and a boiling point of ⁇ 161.6° C. ( ⁇ 259° F.).
- one or more cryogenic pump(s) 14 associated with a fracturing rig is provided, as schematically illustrated in FIG. 1 .
- each cryogenic pump 14 pumps the LNG into a well 20 equipped with wellhead isolation equipment 22 mounted to a wellhead of the well.
- the wellhead isolation equipment 22 includes surface fracture conduits 15 (“frac lines”), chicksans, manifolds, and a wellhead or well tree isolation tool, all of which are well known in the art.
- the well 20 has a well bore extending through a subterranean formation 30 .
- a well system includes wellhead equipment, production tubing(s), hangers, casing, packers, risers, etc.
- Off-shore well systems include sub-sea wellheads, as well as other components required for sub sea wells.
- a cryogenically compatible delivery tubular 24 conducts the LNG down through a casing of the well.
- the tubular 24 passes through any seals, packers or stuffing boxes (not shown) required to isolate the cryogenic fluid from a casing 26 of the well.
- geothermal heat in the formation causes the liquefied natural gas to expand to a gaseous state, which contributes significantly to the fracturing effect by increasing pressure in the subterranean formation.
- the subterranean formation is thus fractured (i.e., stimulated) by the LNG fracturing fluids (illustrated by the arrows indicating ejected CH 4 ).
- FIG. 2 a schematically illustrates a system 10 for fracturing a well in accordance with another embodiment of the invention in which a proppant 18 is blended with liquefied natural gas using a blender 16 prior to pumping the fracturing fluid into the well.
- proppants such as sand, resin-coated sand, sintered bauxite or ceramic particulate
- the blender 16 therefore blends a proppant into the LNG and the cryogenic pumps 14 then pump the LNG/proppant mixture into the well 20 .
- the blending equipment may also be positioned down stream of the cryogenic pumps 14 , as shown in FIG. 2 b .
- the blender 16 blends proppant from the proppant source 18 with the high pressure LNG before the LNG/proppant mixture enters the surface fracturing conduits 15 .
- FIG. 3 schematically illustrates a system 10 for fracturing a well in accordance with another embodiment of the invention in which the LNG is heated prior to entry into the well 20 .
- the LNG is heated using a gas boiler 40 to convert the LNG to compressed natural gas.
- the blender 16 and proppant source 18 are shown in dashed lines in FIG. 3 to indicate that these are optional.
- the liquefied natural gas can be cryogenically pumped directly through the boiler 40 and into the well 20 without blending in proppant.
- the optional proppant can also be blended into the LNG downstream of the cryogenic pumps 14 .
- FIG. 4 schematically illustrates a system 10 for fracturing a well in accordance with another embodiment of the invention in which the liquefied natural gas is heated using a heat-exchanging fluid prior to entry into the well.
- a heat exchanger 42 draws relatively warm heat-exchanger fluid from a heat exchanger fluid source 44 .
- the LNG is thus converted to compressed natural gas prior to entering the well 20 .
- the line from the cryogenic pump 14 to the well 20 can be exposed to a natural (ambient) source of heat.
- the line conveying the LNG from the cryogenic pumps 14 to the rig could be run through ocean water (or any other large body of water) to heat the LNG and to convert it to compressed natural gas (CNG) as it is pumped to the wellhead isolation equipment.
- CNG compressed natural gas
- the LNG can be conveyed through a line laid on the seabed.
- the blender 16 and proppant source 18 are shown in dashed lines in FIG. 4 to illustrate that these are optional, since the liquefied natural gas can be cryogenically pumped directly through the heat exchanger 42 and into the well 20 without blending in any proppant. As explained above with reference to FIG. 2 b , the optional proppant can also be blended into the LNG downstream of the cryogenic pumps 14 .
- FIG. 5 schematically illustrates a system 10 for fracturing a well in accordance with another embodiment of the invention in which the liquefied natural gas is heated by heat-exchanging fluids as it descends through the well bore.
- a down hole heat exchanger 46 associated with the tubular 24 is shown schematically in FIG. 5 .
- the heat exchanging fluids are drawn from the heat-exchange fluid source 44 , which may supply a heated inert gas, or any other conveniently circulated heating fluid.
- the blender 16 and proppant source 18 are shown in dashed lines in FIG. 5 to illustrate that these are optional, since the liquefied natural gas can be used as a fracturing fluid without blending in any proppant. As explained above with reference to FIG. 2 b , the optional proppant can also be blended into the LNG downstream of the cryogenic pumps 14 .
- FIG. 6 schematically illustrates the use of an inert cryogenic fluid to cool and pressure test an LNG flow path, including at least the cryogenic pump(s) 14 , surface fracturing lines 15 , wellhead isolation equipment 22 , and tubular 24 before the liquefied natural gas is pumped into the well. Cooling and pressure testing of the LNG flow-path with an inert cryogenic fluid ensures that the LNG flow path is cooled, free of leaks, and in condition to accept the strain of conducting cryogenic fluids before LNG pumping is begun.
- the inert cryogenic fluid is liquid nitrogen. Any other inert cryogenic fluid can also be used.
- the inert cryogenic fluid is stored in an inert fluid container 50 which is regulated by an inert fluid tank valve 52 .
- An LNG tank valve 13 is also provided to regulate the flow of LNG from the LNG source 12 .
- the LNG flow path is pre-cooled by flowing the inert cryogenic fluid through the flow path prior to pumping the liquefied natural gas. This can be achieved by first opening the inert fluid valve 52 to cool the LNG flow path. The inert fluid valve 52 is shut after the flow path has been adequately cooled and tested. The LNG valve 13 is then opened to permit the LNG to be pumped through the pre-cooled LNG flow path and into the well.
- the embodiment of the invention shown in FIG. 6 a may also include a proppant blender 16 upstream of the cryogenic pumps 14 , as shown in FIG. 6 b , or a proppant blender 16 downstream of the cryogenic pumps 14 , as shown in FIG. 6 c.
- inventions described above are effective for use in fracturing any type of subterranean formation, including gas deposits, oil deposits, coal bed methane seams, oil shale, gas shale, tar sands, storage caverns, and other permeable strata that form a geological trap for hydrocarbon fluids, whether on land or offshore.
- liquefied natural gas as a fracturing fluid is inexpensive, environmentally compatible, and recoverable and compatible will all subterranean formations. Unlike fresh water and other traditional fracturing fluids, LNG is also substantially universally available. Furthermore, the use of liquefied natural gas reduces fracturing completion time and does not delay the start of production from the well. As soon as the well stimulation procedure is completed, frac closure can begin. As soon as frac closure is completed, production can resume without any requirement to flow back fracturing fluids. Furthermore, there are no fracturing fluids to dispose of, and no gases to flare off. Assuming gas collection facilities are available; the LNG fracturing fluid can be collected and sold as an integral part of production from the stimulated well.
- LNG fracturing of a well to promote hydrocarbon production or increase permeability may by periodically beneficial.
- well stimulation equipment can be left permanently or semi-permanently in place to permit periodic injection of LNG fracturing fluids into an injection well which is separate from one or more production wells or injection wells in the same formation.
- LNG is intended to mean pure liquefied methane or any liquefied methane-based mixture of normally gaseous hydrocarbons, commonly marketed as liquid natural gas.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Liquefied natural gas is used as a fracturing fluid to stimulate production of hydrocarbons from and/or injectability of fluids into subterranean formations. Proppants may be blended with the LNG prior to pumping the liquefied natural gas into the well. Optionally, the liquefied natural gas is heated after it is pumped and before it is introduced into the subterranean formation.
Description
- This is the first application filed for the present invention.
- Not applicable.
- This invention generally relates to well fracturing and well stimulation operations, and, in particular, to a fracturing fluid and method of fracturing a subterranean formation to stimulate production of fluids from a well, or to improve permeability of the subterranean formation to facilitate injection of fluids into the well.
- Most subterranean formations used for producing oil and gas, coal bed methane, tar sands, oil shale, or shale gas formations require some form of stimulation to enhance hydrocarbon flow from the formations to make or keep them economically viable. Likewise, most subterranean formations used for fluid storage or disposal require some form of stimulation to enhance fluid flow into those formations. The fracturing of subterranean formations to stimulate production or enhance injectability requires the pumping of fluids under high pressure through the wells and into the formations with which the wells communicate.
- Traditionally, fracturing fluids have been aqueous solutions treated with various chemicals such as surfactants, foamers, cross-linkers and/or gelling agents and often also include proppants such as bauxite, sand or ceramic particulates. The use of aqueous fracturing fluids has certain disadvantages. First, in many parts of the world the water required for these fluids is difficult and expensive to obtain. In cases off-shore wells, sea water is often used for the fracturing fluid but the use of sea water requires filtering and chemical treatment to reduce the detrimental affects of the sea water in the subterranean formations. Second, transfer and disposal of used aqueous fluids is problematic. These fluids must be flowed back out of the subterranean formations, up the well and into tanks for shipping and disposal. Sometimes, they are dumped into the sea. It is well understood that dumping used fracturing fluids laden with chemical treatments and hydrocarbons into the sea is not an environmentally sound practice. In most land jurisdictions the fluids must be disposed of in deep underground formations, which is expensive and may have unpredictable environmental consequences. Third, aqueous fluids are by nature incompatible with most hydrocarbons and many subterranean formation compositions. It is well known that aqueous fracturing fluids can reduce the porosity of coal seams, thus inhibiting the release of coal seam methane. The mixing of aqueous fracture fluids with oil production is also undesirable, so fracturing fluids must be “flowed back” from a fractured well, separated from the oil and gas, and then disposed of in some way. There is inevitable loss of hydrocarbons during the flow back, separation, and transportation, which all results in a loss of time before commercialization of the produced products can begin.
- In addition, aqueous fracturing fluids can have deleterious effects on certain strata, such as clay stratum for example. If aqueous fluids are to be used where a clay stratum is exposed to the fracturing fluid, the fracturing fluid must be treated with a salt such as potassium chloride (KCl) to inhibit damage to the stratum. This adds expense and makes the fracturing fluid corrosive. Furthermore, aqueous fluids used for fracturing introduce different ions, and elements into the subterranean formations which often results in scale formation on production equipment after the stimulation treatment.
- The aqueous fluid fracturing fluids also present other environmental risks. For example, the current methods used for fracturing coal bed methane wells, which are frequently relatively shallow wells and may be in the same strata as a potable water supply used by a local population, employs aqueous fluids generally mixed with chemicals to reduce surface tension of the fluids, reduce the friction of the fluids being pumped, or otherwise enhance the stimulation treatment or recovery of the fracturing fluids. Besides, the injection of aqueous fluids into a coal bed methane strata can contaminate the potable water supply, entrain oxygen and air, stimulate bacterial growth, and induce the production of hydrogen sulfide in the strata.
- Other fluids have also been used for fracturing subterranean formations, including: gases such as nitrogen and carbon dioxide; hydrocarbon solvents such as ethanol and diesel fuel; and liquefied gases such as liquid nitrogen and liquid carbon dioxide. Hydrocarbon gases such as propane, butane, and heavier hydrocarbon solvents have also been injected into wells at sub-fracturing pressures to dissolve heavy oil deposits to stimulate production.
- Most of these fluids also have disadvantages. For example, if liquefied gases are used for well stimulation they have to be flowed back before production from the well can be commercialized. Of course, any natural gas present in the well mixes with these gases used for the fracturing process. Consequently, it is common to have to “flare off” such wells to the atmosphere for several days after a “frac closure” until the concentration of the fracturing gases in the well production fluid stream is low enough that the produced well stream can be commercialized.
- If refined fluids such as ethanol or diesel are used, they are generally dissolved in the oils produced from the well, and/or contaminated by chemicals used in the fracturing process, and cannot be readily recovered for re-use or commercialization.
- It is also been proposed to use methane gas to stimulate production from certain wells.
- For example, U.S. Pat. No. 5,014,788 which issued on May 14, 1991 and is entitled Method of Increasing the Permeability of a Coal Seam describes a method of injecting carbon dioxide, xenon, argon, neon, krypton, ammonia, methane, ethane, propane, butane, and any combination of those gases through standard wellhead equipment into a coal seam in order to clean and cause swelling in the seam and improve methane production after a conventional aqueous fracturing of the coal seam has been completed.
- Another example of the use of methane gas for well stimulation is found in U.S. Pat. No. 5,899,272 which issued May 4, 1999 and is entitled Fracture Treatment System for Wells. This patent describes a system in which a fracturing fluid storage vessel, high pressure pump and high pressure conduit are connected in series to a well. A pressure vessel is connected to the high pressure conduit for injecting proppant carrying fracturing fluid into the well without the proppant carrying fracturing fluid passing through the pump. The fracturing fluid is preferably an aqueous solution, though the applicant speculates that the fracturing fluid may also be a gas, such as methane, ethane or nitrogen, in which case the high pressure pumps are replaced with conventional compressors.
- Although techniques for stimulating subterranean formations have considerably evolved over time, there still remains a need for an inexpensive, universally available, environmentally compatible, recoverable fracturing fluid that is fully compatible with subterranean formations.
- There also exists a need for a method of stimulating production and injectability of a subterranean formation that uses inexpensive, universally available, environmentally compatible, recoverable fracturing fluids that reduce fracturing completion time, do not delay the start of production or the commercialization of the well products from the well, and do not cause hydrocarbons to be lost during or after a fracturing closure operation.
- It is therefore an object of the invention to provide an inexpensive, universally available, environmentally compatible, recoverable fracturing fluid that is fully compatible with subterranean formations.
- It is a further object of the invention to provide a method of stimulating production of a subterranean formation using an inexpensive, universally available, recoverable fracturing fluid that reduces fracturing completion time and does not delay the start of production or commercialization of hydrocarbons produced from the well.
- The invention therefore provides a fracturing fluid for stimulating hydrocarbon production from a subterranean formation, the fracturing fluid comprising liquefied natural gas or liquefied methane. A proppant is optionally blended with the liquefied natural gas/liquefied methane before it is pumped into the subterranean formation.
- The invention further provides a method of stimulating a subterranean formation to increase hydrocarbon production from the subterranean formation. The method comprises, drawing liquefied natural gas/liquefied methane from a source, pumping the liquefied natural gas/liquefied methane at a pressure and a flow rate high enough to induce fracturing of the subterranean formation, and conducting the liquefied natural gas/liquefied methane into the subterranean formation.
- The invention also provides a method of fracturing a well to stimulate production or injection. The method comprises connecting wellhead isolation equipment to a wellhead of the hydrocarbon well, pumping liquefied natural gas or liquefied methane down through a tubular connected to the wellhead isolation equipment and suspended in the hydrocarbon well to a subterranean formation at a pressure and a flow rate adequate to induce fracturing in the subterranean formation, removing the wellhead isolation equipment and connecting hydrocarbon production equipment to the wellhead; and producing hydrocarbons from the well to recover the natural gas/methane and produce the hydrocarbons from the subterranean formation.
- The invention therefore provides a fracturing fluid and methods for fracturing wells that are fully compatible with subterranean formations. The fracturing fluids are universally available at a reasonable cost, are environmentally compatible, and are commercially recoverable after stimulation is completed. The invention also reduce time to production after stimulation because production can be commenced as soon as a fracturing closure operation is effected. The release of fracturing fluid can be effected at any desired rate to ensure that the stimulation treatment has a desirable and lasting affect.
- Having thus generally described the nature of the invention, reference will now be made to the accompanying drawings, in which:
-
FIG. 1 is a schematic illustration of a system for fracturing a well in accordance with an embodiment of the invention in which liquefied natural gas is pumped directly into a well; -
FIG. 2 a is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which a proppant is blended with liquefied natural gas prior to pumping the liquefied natural gas into the well; -
FIG. 2 b is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which a proppant is blended with liquefied natural gas after pumping the liquefied natural gas but prior to conducting the liquid natural gas into the well; -
FIG. 3 is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which liquefied natural gas is heated prior to entry into the well; -
FIG. 4 is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which liquefied natural gas is heated using a heat-exchanging fluid prior to entry into the well; -
FIG. 5 is a schematic illustration of a system for fracturing a well in accordance with another embodiment of the invention in which liquefied natural gas is heated by a heat-exchanging fluid during its descent through the well; and -
FIGS. 6 a, 6 b and 6 c are schematic illustrations of a system for fracturing a well in accordance with another embodiment of the invention in which an inert cryogenic fluid is used to cool at least the pumping and fracturing equipment before the liquefied natural gas is pumped into the well. - In general, and as will be explained below in detail, the invention provides a method and system for fracturing a subterranean formation using liquefied natural gas (LNG) or liquefied methane, hereinafter referred to collectively as liquefied natural gas. The liquefied natural gas is pumped as a cryogenic fluid at pressures and flow rates that are high enough, to fracture the subterranean formation requiring stimulation. After fracturing operations are complete, the natural gas used as fracturing fluid can be recovered and commercialized without loss or damage to the environment, rendering this method of fracturing highly economical and environmentally sound. The LNG can be blended with proppants before or after pumping and is optionally heated either before it enters the well or during descent through the well bore.
- As used in this disclosure, “liquefied natural gas” means liquefied methane and blends of liquefied methane (CH4) with any other normally gaseous hydrocarbons and/or atmospheric gases normally found in liquefied methane-based products generally referred to as “natural gas”.
-
FIG. 1 schematically illustrates an apparatus for practicing a method of fracturing a subterranean formation in accordance with an embodiment of the invention in which liquefied natural gas is pumped directly into a well. As shown inFIG. 1 , a fracturing system in accordance with the invention is generally designated byreference numeral 10. ALNG source 12, for example a pressure vessel containing LNG can be a static structure, a mobile unit carried by a tanker truck, a train or a pipeline for on-site delivery of LNG to terrestrial wells, or by a tanker vessel for delivery to offshore wells. - Liquefied natural gas (“LNG”) is a variable mixture of about 75-95% liquefied methane (CH4), 5-15% ethane (C2H6) with the remainder composed of other hydrocarbons including propane C3H8 and butane (C4H10). The largest constituent of LNG, liquefied methane, has a melting point of −182.5° C. (−296.5° F.) and a boiling point of −161.6° C. (−259° F.). Accordingly, in order to pump liquefied natural gas, one or more cryogenic pump(s) 14 associated with a fracturing rig is provided, as schematically illustrated in
FIG. 1 . - In this embodiment, each
cryogenic pump 14 pumps the LNG into a well 20 equipped withwellhead isolation equipment 22 mounted to a wellhead of the well. Thewellhead isolation equipment 22 includes surface fracture conduits 15 (“frac lines”), chicksans, manifolds, and a wellhead or well tree isolation tool, all of which are well known in the art. The well 20 has a well bore extending through asubterranean formation 30. As is well known in the art, a well system includes wellhead equipment, production tubing(s), hangers, casing, packers, risers, etc. Off-shore well systems include sub-sea wellheads, as well as other components required for sub sea wells. A cryogenicallycompatible delivery tubular 24 conducts the LNG down through a casing of the well. The tubular 24 passes through any seals, packers or stuffing boxes (not shown) required to isolate the cryogenic fluid from acasing 26 of the well. When the liquefied natural gas enters thesubterranean formation 30, geothermal heat in the formation causes the liquefied natural gas to expand to a gaseous state, which contributes significantly to the fracturing effect by increasing pressure in the subterranean formation. The subterranean formation is thus fractured (i.e., stimulated) by the LNG fracturing fluids (illustrated by the arrows indicating ejected CH4). -
FIG. 2 a schematically illustrates asystem 10 for fracturing a well in accordance with another embodiment of the invention in which aproppant 18 is blended with liquefied natural gas using ablender 16 prior to pumping the fracturing fluid into the well. As is understood by those skilled in the art, proppants (such as sand, resin-coated sand, sintered bauxite or ceramic particulate) may be added to fracturing fluids to keep fractures created in the subterranean formation open after the fracturing process is completed and pressure is reduced in the subterranean formation. Theblender 16 therefore blends a proppant into the LNG and thecryogenic pumps 14 then pump the LNG/proppant mixture into thewell 20. As will be understood by those skilled in the art, the blending equipment may also be positioned down stream of thecryogenic pumps 14, as shown inFIG. 2 b. When positioned downstream of thecryogenic pumps 14, theblender 16 blends proppant from theproppant source 18 with the high pressure LNG before the LNG/proppant mixture enters thesurface fracturing conduits 15. -
FIG. 3 schematically illustrates asystem 10 for fracturing a well in accordance with another embodiment of the invention in which the LNG is heated prior to entry into thewell 20. In this embodiment, the LNG is heated using agas boiler 40 to convert the LNG to compressed natural gas. Theblender 16 andproppant source 18 are shown in dashed lines inFIG. 3 to indicate that these are optional. In other words, the liquefied natural gas can be cryogenically pumped directly through theboiler 40 and into the well 20 without blending in proppant. As explained above with reference toFIG. 2 b, the optional proppant can also be blended into the LNG downstream of the cryogenic pumps 14. -
FIG. 4 schematically illustrates asystem 10 for fracturing a well in accordance with another embodiment of the invention in which the liquefied natural gas is heated using a heat-exchanging fluid prior to entry into the well. As shown inFIG. 4 , aheat exchanger 42 draws relatively warm heat-exchanger fluid from a heatexchanger fluid source 44. The LNG is thus converted to compressed natural gas prior to entering the well 20. In lieu of theheat exchanger 42, the line from thecryogenic pump 14 to the well 20 can be exposed to a natural (ambient) source of heat. For example, for an offshore rig, the line conveying the LNG from thecryogenic pumps 14 to the rig could be run through ocean water (or any other large body of water) to heat the LNG and to convert it to compressed natural gas (CNG) as it is pumped to the wellhead isolation equipment. Where feasible, the LNG can be conveyed through a line laid on the seabed. - The
blender 16 andproppant source 18 are shown in dashed lines inFIG. 4 to illustrate that these are optional, since the liquefied natural gas can be cryogenically pumped directly through theheat exchanger 42 and into the well 20 without blending in any proppant. As explained above with reference toFIG. 2 b, the optional proppant can also be blended into the LNG downstream of the cryogenic pumps 14. -
FIG. 5 schematically illustrates asystem 10 for fracturing a well in accordance with another embodiment of the invention in which the liquefied natural gas is heated by heat-exchanging fluids as it descends through the well bore. A downhole heat exchanger 46 associated with the tubular 24 is shown schematically inFIG. 5 . The heat exchanging fluids are drawn from the heat-exchange fluid source 44, which may supply a heated inert gas, or any other conveniently circulated heating fluid. - The
blender 16 andproppant source 18 are shown in dashed lines inFIG. 5 to illustrate that these are optional, since the liquefied natural gas can be used as a fracturing fluid without blending in any proppant. As explained above with reference toFIG. 2 b, the optional proppant can also be blended into the LNG downstream of the cryogenic pumps 14. -
FIG. 6 schematically illustrates the use of an inert cryogenic fluid to cool and pressure test an LNG flow path, including at least the cryogenic pump(s) 14,surface fracturing lines 15,wellhead isolation equipment 22, and tubular 24 before the liquefied natural gas is pumped into the well. Cooling and pressure testing of the LNG flow-path with an inert cryogenic fluid ensures that the LNG flow path is cooled, free of leaks, and in condition to accept the strain of conducting cryogenic fluids before LNG pumping is begun. In one embodiment, the inert cryogenic fluid is liquid nitrogen. Any other inert cryogenic fluid can also be used. - As is shown in
FIG. 6 , the inert cryogenic fluid is stored in aninert fluid container 50 which is regulated by an inertfluid tank valve 52. AnLNG tank valve 13 is also provided to regulate the flow of LNG from theLNG source 12. The LNG flow path is pre-cooled by flowing the inert cryogenic fluid through the flow path prior to pumping the liquefied natural gas. This can be achieved by first opening theinert fluid valve 52 to cool the LNG flow path. Theinert fluid valve 52 is shut after the flow path has been adequately cooled and tested. TheLNG valve 13 is then opened to permit the LNG to be pumped through the pre-cooled LNG flow path and into the well. - As will also be understood by those skilled in the art, the embodiment of the invention shown in
FIG. 6 a may also include aproppant blender 16 upstream of thecryogenic pumps 14, as shown inFIG. 6 b, or aproppant blender 16 downstream of thecryogenic pumps 14, as shown inFIG. 6 c. - The embodiments of the invention described above are effective for use in fracturing any type of subterranean formation, including gas deposits, oil deposits, coal bed methane seams, oil shale, gas shale, tar sands, storage caverns, and other permeable strata that form a geological trap for hydrocarbon fluids, whether on land or offshore.
- The use of liquefied natural gas as a fracturing fluid is inexpensive, environmentally compatible, and recoverable and compatible will all subterranean formations. Unlike fresh water and other traditional fracturing fluids, LNG is also substantially universally available. Furthermore, the use of liquefied natural gas reduces fracturing completion time and does not delay the start of production from the well. As soon as the well stimulation procedure is completed, frac closure can begin. As soon as frac closure is completed, production can resume without any requirement to flow back fracturing fluids. Furthermore, there are no fracturing fluids to dispose of, and no gases to flare off. Assuming gas collection facilities are available; the LNG fracturing fluid can be collected and sold as an integral part of production from the stimulated well.
- In certain instances, LNG fracturing of a well to promote hydrocarbon production or increase permeability may by periodically beneficial. In such cases, well stimulation equipment can be left permanently or semi-permanently in place to permit periodic injection of LNG fracturing fluids into an injection well which is separate from one or more production wells or injection wells in the same formation.
- As noted above, the term LNG is intended to mean pure liquefied methane or any liquefied methane-based mixture of normally gaseous hydrocarbons, commonly marketed as liquid natural gas.
- Modifications and improvements to the above-described embodiments of the present invention may become apparent to those skilled in the art. The foregoing description is intended to be exemplary rather than limiting. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
Claims (54)
1. A fracturing fluid for stimulating hydrocarbon production from a subterranean formation, the fracturing fluid comprising liquefied natural gas.
2. The fracturing fluid as claimed in claim 1 further comprising a proppant carried by the liquefied natural gas.
3. The fracturing fluid as claimed in claim 2 wherein the proppant comprises sand.
4. The fracturing fluid as claimed in claim 2 wherein the proppant is sintered bauxite.
5. The fracturing fluid as claimed in claim 2 wherein the proppant is a ceramic particulate.
6. A method of stimulating a subterranean formation to increase hydrocarbon production from the subterranean formation, the method comprising:
drawing liquefied natural gas from a liquefied natural gas source;
pumping the liquefied natural gas at a pressure and a flow rate high enough to induce fracturing of the subterranean formation; and
conducting the natural gas into the subterranean formation.
7. The method as claimed in claim 6 further comprising an initial step of cooling and pressure testing at least pumps used for the pumping and conduits used for conducting the liquefied natural gas to the subterranean formation using an inert fluid prior to pumping the liquefied natural gas.
8. The method as claimed in claim 7 wherein the inert fluid is nitrogen.
9. The method as claimed in claim 6 further comprising blending a solid particulate with the liquefied natural gas before it is pumped.
10. The method as claimed in claim 6 wherein the subterranean formation comprises a natural gas well.
11. The method as claimed in claim 6 wherein the subterranean formation comprises an oil well.
12. The method as claimed in claim 6 wherein the subterranean formation comprises a coal bed seam.
13. The method as claimed in claim 6 wherein the subterranean formation comprises a storage cavern or permeable strata.
14. The method as claimed in claim 6 wherein the subterranean formation comprises an aquifer.
15. The method as claimed in claim 6 wherein the subterranean formation comprises shale.
16. The method as claimed in claim 6 wherein the subterranean formation comprises a tar sand.
17. A method of stimulating a subterranean formation to increase hydrocarbon production from the subterranean formation, the method comprising:
drawing liquefied natural gas from a liquefied natural gas source;
pumping the liquefied natural gas at a pressure and a flow rate high enough to induce fracturing of the subterranean formation;
heating the liquefied natural gas while it is being pumped down the well; and
conducting the natural gas into the subterranean formation.
18. The method as claimed in claim 17 wherein the heating comprises routing the liquefied natural gas through a gas boiler.
19. The method as claimed in claim 17 wherein the heating comprises laying a conduit for conducting the liquefied natural gas in a large body of water, the conduit being connected on one end to cryogenic pumps for the pumping the liquid natural gas and on the other end to wellhead isolation equipment connected to a wellhead of the well bore that communicates with the subterranean formation, whereby the large body of water provides ambient heat to convert the liquefied natural gas to the compressed natural gas as it is pumped to the subterranean formation.
20. The method as claimed in claim 17 wherein the heating comprises circulating a heating fluid through an annulus that surrounds a tubular used to conduct the liquefied natural gas to the subterranean formation.
21. The method as claimed in claim 17 wherein the subterranean formation comprises a natural gas well.
22. The method as claimed in claim 17 wherein the subterranean formation comprises an oil well.
23. The method as claimed in claim 17 wherein the subterranean formation comprises a coal bed seam.
24. The method as claimed in claim 17 wherein the subterranean formation comprises a storage cavern or permeable stratum.
25. The method as claimed in claim 17 wherein the subterranean formation comprises an aquifer.
26. The method as claimed in claim 17 wherein the subterranean formation comprises a shale.
27. The method as claimed in claim 17 wherein the subterranean formation comprises a tar sand.
28. A method of fracturing a well to stimulate production or injectability, comprising:
connecting wellhead isolation equipment to a wellhead of the a well;
pumping liquefied natural gas down through a tubular connected to the wellhead isolation equipment and suspended in the well to a subterranean formation at a pressure and a flow rate adequate to induce fracturing in the subterranean formation;
removing the wellhead isolation equipment and connecting hydrocarbon production equipment to the wellhead; and
producing hydrocarbons from the well to recover the natural gas and produce the hydrocarbons from the subterranean formation.
29. The method as claimed in claim 28 wherein prior to pumping the liquefied natural gas into the subterranean formation the method further comprises pumping an inert cryogenic fluid through the wellhead isolation equipment and the tubular to pressure test and pre-cool the wellhead isolation equipment and the tubular.
30. The method as claimed in claim 28 wherein prior to pumping the liquefied natural gas into the subterranean formation the method further comprises pumping an inert cryogenic fluid through the surface pumping equipment and surface fracture conduits, chicksans, and manifolds, to pressure test and pre-cool that surface equipment.
31. The method as claimed in claim 28 wherein prior to pumping the liquefied natural gas into the subterranean formation the method further comprises pumping an inert cryogenic fluid through well system tubulars to pressure test and pre-cool the well system.
32. The method as claimed in claim 28 further comprising blending proppant with the liquefied natural gas.
33. The method as claimed in claim 28 further comprising blending proppant with the liquefied natural gas prior to the pumping.
34. The method as claimed in claim 28 wherein the subterranean formation comprises a natural gas well.
35. The method as claimed in claim 28 wherein the subterranean formation comprises an oil well.
36. The method as claimed in claim 28 wherein the subterranean formation comprises a coal bed seam.
37. The method as claimed in claim 28 wherein the subterranean formation comprises a storage cavern or permeable strata.
38. The method as claimed in claim 28 wherein the subterranean formation comprises an aquifer.
39. The method as claimed in claim 28 wherein the subterranean formation comprises a shale.
40. The method as claimed in claim 28 wherein the subterranean formation comprises a tar sand.
41. A method of fracturing a well to stimulate at least one of production of fluids and injectability of fluids, comprising the steps of:
connecting wellhead isolation equipment to a wellhead of the well;
pumping liquefied natural gas through a heat exchanger in fluid communication with the wellhead isolation equipment and a subterranean formation of the well at a pressure and a flow rate adequate to induce fracturing in the subterranean formation;
removing the wellhead isolation equipment and connecting hydrocarbon production equipment to the wellhead; and
producing hydrocarbons from the well to recover the natural gas and produce the hydrocarbons from the subterranean formation.
42. The method as claimed in claim 41 further comprising blending proppants with the liquefied natural gas prior to the pumping.
43. The method as claimed in claim 41 wherein the heat exchanger comprises a methane boiler.
44. The method as claimed in claim 41 wherein the heat exchanger comprises a tubular in a large body of water.
45. The method as claimed in claim 41 wherein the heat exchanger comprises an annulus surrounding a tubular connected to the wellhead isolation equipment and the method further comprises circulating a heating fluid through the annulus.
46. The method as claimed in claim 41 wherein the subterranean formation comprises a natural gas well.
47. The method as claimed in claim 41 wherein the subterranean formation comprises an oil well.
48. The method as claimed in claim 41 wherein the subterranean formation comprises a coal bed seam.
49. The method as claimed in claim 41 wherein the subterranean formation comprises an aquifer.
50. The method as claimed in claim 41 wherein the subterranean formation comprises a shale.
51. The method as claimed in claim 41 wherein the subterranean formation comprises a tar sand.
52. A fracturing fluid for stimulating a subterranean formation, the fracturing fluid comprising liquefied methane.
53. A method of stimulating a subterranean formation to increase the rate of fluid injectability of a subterranean formation, the method comprising:
drawing liquefied natural gas from a liquefied natural gas source;
pumping the liquefied natural gas at a pressure and a flow rate high enough to induce fracturing of the subterranean formation; and
conducting the liquefied natural gas into the subterranean formation.
54. A method of fracturing a well to stimulate production or injectability of a subterranean formation, comprising:
connecting wellhead isolation equipment to a wellhead of the a well;
pumping liquefied natural gas down through a cryogenically compatible tubular connected to the wellhead isolation equipment and suspended in the well to a subterranean formation at a pressure and a flow rate adequate to induce fracturing in the subterranean formation;
maintaining the wellhead isolation equipment, cryogenically compatible tubulars, insulated pipes, and cooling conduits, connected at the well site and in the well system to permit periodic injection of liquefied natural gas into the well.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/954,668 US20060065400A1 (en) | 2004-09-30 | 2004-09-30 | Method and apparatus for stimulating a subterranean formation using liquefied natural gas |
| CA002499699A CA2499699A1 (en) | 2004-09-30 | 2005-03-07 | Method and apparatus for stimulating a subterranean formation using liquefied natural gas |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/954,668 US20060065400A1 (en) | 2004-09-30 | 2004-09-30 | Method and apparatus for stimulating a subterranean formation using liquefied natural gas |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060065400A1 true US20060065400A1 (en) | 2006-03-30 |
Family
ID=36097694
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/954,668 Abandoned US20060065400A1 (en) | 2004-09-30 | 2004-09-30 | Method and apparatus for stimulating a subterranean formation using liquefied natural gas |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20060065400A1 (en) |
| CA (1) | CA2499699A1 (en) |
Cited By (74)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070151729A1 (en) * | 2006-01-04 | 2007-07-05 | Halliburton Energy Services, Inc. | Methods of stimulating liquid-sensitive subterranean formations |
| US20070204991A1 (en) * | 2006-03-03 | 2007-09-06 | Loree Dwight N | Liquified petroleum gas fracturing system |
| WO2007141715A1 (en) * | 2006-06-02 | 2007-12-13 | Schlumberger Canada Limited | Split stream oilfield pumping systems |
| US20080110639A1 (en) * | 2006-11-15 | 2008-05-15 | Starr Phillip M | Wellhead isolation mandrel with centralizing device |
| US20080115935A1 (en) * | 2006-01-06 | 2008-05-22 | Mango Frank D | In situ conversion of heavy hydrocarbons to catalytic gas |
| US20090018487A1 (en) * | 2005-03-24 | 2009-01-15 | Medtronic Vascular, Inc. | Catheter-Based, Dual Coil Photopolymerization System |
| US20090183874A1 (en) * | 2006-03-03 | 2009-07-23 | Victor Fordyce | Proppant addition system and method |
| US20090301725A1 (en) * | 2008-06-06 | 2009-12-10 | Leonard Case | Proppant Addition Method and System |
| US20090301719A1 (en) * | 2008-06-06 | 2009-12-10 | Bull Brad R | Methods of Treating Subterranean Formations Utilizing Servicing Fluids Comprising Liquefied Petroleum Gas and Apparatus Thereof |
| WO2010020982A1 (en) * | 2008-08-19 | 2010-02-25 | Prowell Technologies Ltd | Method for impulse stimulation of oil and gas well production |
| US20100155066A1 (en) * | 2008-12-24 | 2010-06-24 | Victor Fordyce | Proppant control in an lpg frac system |
| WO2010071994A1 (en) * | 2008-12-24 | 2010-07-01 | Gasfrac Energy Services Inc. | Proppant addition system and related methods |
| US20100276146A1 (en) * | 2009-04-20 | 2010-11-04 | David Randolph Smith | Method and apparatus to enhance oil recovery in wells |
| US20100293967A1 (en) * | 2007-12-07 | 2010-11-25 | Dresser-Rand Company | Compressor system and method for gas liquefaction system |
| WO2011002557A1 (en) * | 2009-07-02 | 2011-01-06 | Exxonmobil Upstream Research Company | System and method for enhancing the production of hydrocarbons |
| US20110077445A1 (en) * | 2006-01-06 | 2011-03-31 | Mango Frank D | Generating natural gas from heavy hydrocarbons |
| CN102116150A (en) * | 2011-02-22 | 2011-07-06 | 中国海洋石油总公司 | Testing device for simulating influence law of sand on productivity of reservoir |
| US8082989B2 (en) | 2008-08-19 | 2011-12-27 | Flow Industries Ltd. | Method for impulse stimulation of oil and gas well production |
| WO2012097426A1 (en) * | 2011-01-17 | 2012-07-26 | Enfrac Inc. | Fracturing system and method for an underground formation using natural gas and an inert purging fluid |
| WO2012122636A1 (en) * | 2011-03-16 | 2012-09-20 | Charles Abernethy Anderson | Method and apparatus of hydraulic fracturing |
| US20120255734A1 (en) * | 2011-04-07 | 2012-10-11 | Todd Coli | Mobile, modular, electrically powered system for use in fracturing underground formations |
| EP2527586A1 (en) | 2011-05-27 | 2012-11-28 | Shell Internationale Research Maatschappij B.V. | Method for induced fracturing in a subsurface formation |
| US8342246B2 (en) | 2012-01-26 | 2013-01-01 | Expansion Energy, Llc | Fracturing systems and methods utilyzing metacritical phase natural gas |
| WO2013169103A1 (en) | 2012-05-08 | 2013-11-14 | Kenda Capital B.V. | Fracturing fluid for secondary gas production |
| US20130299159A1 (en) * | 2012-05-14 | 2013-11-14 | Gasfrac Energy Services Inc. | Inert gas supply equipment for oil and gas well operations |
| EP2666958A1 (en) * | 2012-05-23 | 2013-11-27 | Linde Aktiengesellschaft | Method of fraccing a well |
| US20140034322A1 (en) * | 2010-08-13 | 2014-02-06 | Baker Hughes Incorporated | Well servicing fluid containing compressed hydrocarbon gas |
| WO2014029000A1 (en) | 2012-08-23 | 2014-02-27 | Enfrac Inc. | Reduced emissions method for recovering product from a hydraulic fracturing operation |
| US8727006B2 (en) | 2010-05-04 | 2014-05-20 | Petroleum Habitats, Llc | Detecting and remedying hydrogen starvation of catalytic hydrocarbon generation reactions in earthen formations |
| US20140251623A1 (en) * | 2013-03-07 | 2014-09-11 | Prostim Labs, Llc | Fracturing systems and methods for a wellbore |
| WO2014137625A1 (en) * | 2013-03-04 | 2014-09-12 | Baker Hughes Incorporated | Method of fracturing with liquefied natural gas |
| US20140262285A1 (en) * | 2013-03-12 | 2014-09-18 | Rustam H. Sethna | Methods for fraccing oil and gas wells |
| US20140262292A1 (en) * | 2013-03-15 | 2014-09-18 | Schlumberger Technology Corporation | Stimulation with Natural Gas |
| WO2014085030A3 (en) * | 2012-11-30 | 2014-10-30 | General Electric Company | Apparatus and method of delivering a fluid using direct proppant injection |
| WO2015069404A1 (en) * | 2013-11-08 | 2015-05-14 | Schlumberger Canada Limited | Oilfield surface equipment cooling system |
| AU2014201895B2 (en) * | 2009-04-20 | 2015-09-03 | David Randolph Smith | Method and apparatus to enhance oil recovery in wells |
| US9316098B2 (en) | 2012-01-26 | 2016-04-19 | Expansion Energy Llc | Non-hydraulic fracturing and cold foam proppant delivery systems, methods, and processes |
| WO2016176531A1 (en) * | 2015-04-30 | 2016-11-03 | Schlumberger Technology Corporation | Optimized pressure exchanger fracturing |
| WO2016178959A1 (en) * | 2015-05-01 | 2016-11-10 | Schlumberger Technology Corporation | Rotary disc-type feeder for high pressure proppant injection |
| WO2017058485A1 (en) * | 2015-09-30 | 2017-04-06 | Halliburton Energy Services, Inc. | Use of natural gas as a vaporizing gas in a well intervention operation |
| WO2017058487A1 (en) * | 2015-09-30 | 2017-04-06 | Halliburton Energy Services, Inc. | Use of natural gas as a soluble servicing gas during a well intervention operation |
| US9683432B2 (en) | 2012-05-14 | 2017-06-20 | Step Energy Services Llc | Hybrid LPG frac |
| US9995122B2 (en) | 2014-08-19 | 2018-06-12 | Adler Hot Oil Service, LLC | Dual fuel burner |
| WO2018111257A1 (en) * | 2016-12-14 | 2018-06-21 | Halliburton Energy Services, Inc. | Hydraulic fracturing methods and systems using gas mixture |
| US10012064B2 (en) | 2015-04-09 | 2018-07-03 | Highlands Natural Resources, Plc | Gas diverter for well and reservoir stimulation |
| US10107084B2 (en) | 2012-10-05 | 2018-10-23 | Evolution Well Services | System and method for dedicated electric source for use in fracturing underground formations using liquid petroleum gas |
| WO2019022763A1 (en) * | 2017-07-28 | 2019-01-31 | Halliburton Energy Services, Inc. | Acidizing and interfacial tension reducing hydrolysable oils for subterranean treatments |
| RU2692297C2 (en) * | 2014-05-12 | 2019-06-24 | Шлюмбергер Текнолоджи Б.В. | Integrated supply in process at drilling site |
| US10344204B2 (en) | 2015-04-09 | 2019-07-09 | Diversion Technologies, LLC | Gas diverter for well and reservoir stimulation |
| WO2019151985A1 (en) * | 2018-01-30 | 2019-08-08 | Halliburton Energy Services, Inc. | Use of liquid natural gas for well treatment operations |
| US10584567B1 (en) * | 2014-12-03 | 2020-03-10 | Farris Mitchell, Sr. | Shale gas extraction system |
| US10591184B2 (en) | 2013-06-13 | 2020-03-17 | 1026844 B.C. Ltd. | Apparatuses and methods for supplying natural gas to a frac water heater |
| US10610842B2 (en) | 2014-03-31 | 2020-04-07 | Schlumberger Technology Corporation | Optimized drive of fracturing fluids blenders |
| US10625933B2 (en) | 2013-08-09 | 2020-04-21 | Schlumberger Technology Corporation | System and method for delivery of oilfield materials |
| US10633174B2 (en) | 2013-08-08 | 2020-04-28 | Schlumberger Technology Corporation | Mobile oilfield materialtransfer unit |
| US10704373B2 (en) * | 2016-11-11 | 2020-07-07 | Halliburton Energy Services, Inc. | Storing and de-liquefying liquefied natural gas (LNG) at a wellsite |
| US10738581B2 (en) | 2017-01-23 | 2020-08-11 | Halliburton Energy Services, Inc. | Fracturing treatments in subterranean formations using electrically controlled propellants |
| US10738582B2 (en) | 2017-01-23 | 2020-08-11 | Halliburton Energy Services, Inc. | Fracturing treatments in subterranean formation using inorganic cements and electrically controlled propellants |
| US10760390B2 (en) | 2015-09-30 | 2020-09-01 | Halliburton Energy Services, Inc. | Use of gaseous phase natural gas as a carrier fluid during a well intervention operation |
| US10767859B2 (en) | 2014-08-19 | 2020-09-08 | Adler Hot Oil Service, LLC | Wellhead gas heater |
| CN111706312A (en) * | 2020-06-12 | 2020-09-25 | 中国地质大学(北京) | System and working method for improving coalbed methane production rate by mixing hot air proppant |
| US10822935B2 (en) | 2013-03-04 | 2020-11-03 | Baker Hughes, A Ge Company, Llc | Method of treating a subterranean formation with natural gas |
| US10858923B2 (en) | 2017-01-23 | 2020-12-08 | Halliburton Energy Services, Inc. | Enhancing complex fracture networks in subterranean formations |
| US10895114B2 (en) | 2012-08-13 | 2021-01-19 | Schlumberger Technology Corporation | System and method for delivery of oilfield materials |
| US10968727B2 (en) | 2016-11-11 | 2021-04-06 | Halliburton Energy Services, Inc. | Treating a formation with a chemical agent and liquefied natural gas (LNG) de-liquefied at a wellsite |
| US10982520B2 (en) | 2016-04-27 | 2021-04-20 | Highland Natural Resources, PLC | Gas diverter for well and reservoir stimulation |
| US11255173B2 (en) | 2011-04-07 | 2022-02-22 | Typhon Technology Solutions, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
| US11306241B2 (en) * | 2017-06-30 | 2022-04-19 | Halliburton Energy Services, Inc. | Geochemically-driven wettability modification for subterranean surfaces |
| US11453146B2 (en) | 2014-02-27 | 2022-09-27 | Schlumberger Technology Corporation | Hydration systems and methods |
| US20230151720A1 (en) * | 2020-02-28 | 2023-05-18 | Eor Etc Llc | System and method for enhanced oil recovery utilizing alternating stacked liquid and gas slugs |
| US11708752B2 (en) | 2011-04-07 | 2023-07-25 | Typhon Technology Solutions (U.S.), Llc | Multiple generator mobile electric powered fracturing system |
| US11819810B2 (en) | 2014-02-27 | 2023-11-21 | Schlumberger Technology Corporation | Mixing apparatus with flush line and method |
| US11955782B1 (en) | 2022-11-01 | 2024-04-09 | Typhon Technology Solutions (U.S.), Llc | System and method for fracturing of underground formations using electric grid power |
| US12102970B2 (en) | 2014-02-27 | 2024-10-01 | Schlumberger Technology Corporation | Integrated process delivery at wellsite |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103866815B (en) * | 2012-12-18 | 2015-08-05 | 中国石油天然气股份有限公司 | Seawater taking facility for liquefied natural gas receiving station |
| US10323200B2 (en) | 2016-04-12 | 2019-06-18 | Enservco Corporation | System and method for providing separation of natural gas from oil and gas well fluids |
| CN111749670B (en) * | 2020-07-17 | 2024-11-26 | 杰瑞能源服务有限公司 | A natural gas pre-energized fracturing device and process |
Citations (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3557874A (en) * | 1969-09-30 | 1971-01-26 | Cities Service Oil Co | Method of drilling and completing a gas well |
| US3602310A (en) * | 1970-01-15 | 1971-08-31 | Tenneco Oil Co | Method of increasing the permeability of a subterranean hydrocarbon bearing formation |
| US3765488A (en) * | 1972-04-06 | 1973-10-16 | Dow Chemical Co | Well treating method |
| US3822747A (en) * | 1973-05-18 | 1974-07-09 | J Maguire | Method of fracturing and repressuring subsurface geological formations employing liquified gas |
| US3908762A (en) * | 1973-09-27 | 1975-09-30 | Texaco Exploration Ca Ltd | Method for establishing communication path in viscous petroleum-containing formations including tar sand deposits for use in oil recovery operations |
| US4374545A (en) * | 1981-09-28 | 1983-02-22 | L.H.B. Investment, Inc. | Carbon dioxide fracturing process and apparatus |
| US4495993A (en) * | 1981-11-30 | 1985-01-29 | Andersen Leonard M | Method for in-situ recovery of energy raw materials by the introduction of cryogenic liquid containing oxygen |
| US4607696A (en) * | 1985-08-30 | 1986-08-26 | New Mexico Tech. Research Foundation | Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation |
| US4756367A (en) * | 1987-04-28 | 1988-07-12 | Amoco Corporation | Method for producing natural gas from a coal seam |
| US5014788A (en) * | 1990-04-20 | 1991-05-14 | Amoco Corporation | Method of increasing the permeability of a coal seam |
| US5025863A (en) * | 1990-06-11 | 1991-06-25 | Marathon Oil Company | Enhanced liquid hydrocarbon recovery process |
| US5147111A (en) * | 1991-08-02 | 1992-09-15 | Atlantic Richfield Company | Cavity induced stimulation method of coal degasification wells |
| US5232049A (en) * | 1992-03-27 | 1993-08-03 | Marathon Oil Company | Sequentially flooding a subterranean hydrocarbon-bearing formation with a repeating cycle of immiscible displacement gases |
| US5464061A (en) * | 1994-12-14 | 1995-11-07 | Conoco Inc. | Cryogenic coal bed gas well stimulation method |
| US5653287A (en) * | 1994-12-14 | 1997-08-05 | Conoco Inc. | Cryogenic well stimulation method |
| US5769165A (en) * | 1996-01-31 | 1998-06-23 | Vastar Resources Inc. | Method for increasing methane recovery from a subterranean coal formation by injection of tail gas from a hydrocarbon synthesis process |
| US5883053A (en) * | 1994-11-14 | 1999-03-16 | Canadian Fracmaster Ltd. | Nitrogen/carbon dioxide combination fracture treatment |
| US6302209B1 (en) * | 1997-09-10 | 2001-10-16 | Bj Services Company | Surfactant compositions and uses therefor |
| US6517286B1 (en) * | 2001-02-06 | 2003-02-11 | Spectrum Energy Services, Llc | Method for handling liquified natural gas (LNG) |
-
2004
- 2004-09-30 US US10/954,668 patent/US20060065400A1/en not_active Abandoned
-
2005
- 2005-03-07 CA CA002499699A patent/CA2499699A1/en not_active Abandoned
Patent Citations (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3557874A (en) * | 1969-09-30 | 1971-01-26 | Cities Service Oil Co | Method of drilling and completing a gas well |
| US3602310A (en) * | 1970-01-15 | 1971-08-31 | Tenneco Oil Co | Method of increasing the permeability of a subterranean hydrocarbon bearing formation |
| US3765488A (en) * | 1972-04-06 | 1973-10-16 | Dow Chemical Co | Well treating method |
| US3822747A (en) * | 1973-05-18 | 1974-07-09 | J Maguire | Method of fracturing and repressuring subsurface geological formations employing liquified gas |
| US3908762A (en) * | 1973-09-27 | 1975-09-30 | Texaco Exploration Ca Ltd | Method for establishing communication path in viscous petroleum-containing formations including tar sand deposits for use in oil recovery operations |
| US4374545A (en) * | 1981-09-28 | 1983-02-22 | L.H.B. Investment, Inc. | Carbon dioxide fracturing process and apparatus |
| US4495993A (en) * | 1981-11-30 | 1985-01-29 | Andersen Leonard M | Method for in-situ recovery of energy raw materials by the introduction of cryogenic liquid containing oxygen |
| US4607696A (en) * | 1985-08-30 | 1986-08-26 | New Mexico Tech. Research Foundation | Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation |
| US4756367A (en) * | 1987-04-28 | 1988-07-12 | Amoco Corporation | Method for producing natural gas from a coal seam |
| US5014788A (en) * | 1990-04-20 | 1991-05-14 | Amoco Corporation | Method of increasing the permeability of a coal seam |
| US5025863A (en) * | 1990-06-11 | 1991-06-25 | Marathon Oil Company | Enhanced liquid hydrocarbon recovery process |
| US5147111A (en) * | 1991-08-02 | 1992-09-15 | Atlantic Richfield Company | Cavity induced stimulation method of coal degasification wells |
| US5232049A (en) * | 1992-03-27 | 1993-08-03 | Marathon Oil Company | Sequentially flooding a subterranean hydrocarbon-bearing formation with a repeating cycle of immiscible displacement gases |
| US5883053A (en) * | 1994-11-14 | 1999-03-16 | Canadian Fracmaster Ltd. | Nitrogen/carbon dioxide combination fracture treatment |
| US5464061A (en) * | 1994-12-14 | 1995-11-07 | Conoco Inc. | Cryogenic coal bed gas well stimulation method |
| US5653287A (en) * | 1994-12-14 | 1997-08-05 | Conoco Inc. | Cryogenic well stimulation method |
| US5769165A (en) * | 1996-01-31 | 1998-06-23 | Vastar Resources Inc. | Method for increasing methane recovery from a subterranean coal formation by injection of tail gas from a hydrocarbon synthesis process |
| US6302209B1 (en) * | 1997-09-10 | 2001-10-16 | Bj Services Company | Surfactant compositions and uses therefor |
| US6517286B1 (en) * | 2001-02-06 | 2003-02-11 | Spectrum Energy Services, Llc | Method for handling liquified natural gas (LNG) |
Cited By (168)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090018487A1 (en) * | 2005-03-24 | 2009-01-15 | Medtronic Vascular, Inc. | Catheter-Based, Dual Coil Photopolymerization System |
| US20070155630A1 (en) * | 2006-01-04 | 2007-07-05 | Halliburton Energy Services | Compositions for stimulating liquid-sensitive subterranean formations |
| US20120184469A1 (en) * | 2006-01-04 | 2012-07-19 | Halliburton Energy Services, Inc. | Stimulated Liquid-Sensitive Subterranean Formations |
| US20070151729A1 (en) * | 2006-01-04 | 2007-07-05 | Halliburton Energy Services, Inc. | Methods of stimulating liquid-sensitive subterranean formations |
| US20110136703A1 (en) * | 2006-01-04 | 2011-06-09 | Halliburton Energy Services, Inc. | Compositions for Stimulating Liquid-Sensitive Subterranean Formations |
| US8443890B2 (en) | 2006-01-04 | 2013-05-21 | Halliburton Energy Services, Inc. | Methods of stimulating liquid-sensitive subterranean formations |
| US8614171B2 (en) * | 2006-01-04 | 2013-12-24 | Halliburton Energy Services, Inc. | Compositions for stimulating liquid-sensitive subterranean formations |
| US20100200234A1 (en) * | 2006-01-06 | 2010-08-12 | Mango Frank D | In Situ Conversion of Heavy Hydrocarbons to Catalytic Gas |
| US8273937B2 (en) | 2006-01-06 | 2012-09-25 | Petroleum Habitats, Llc | Generating natural gas from heavy hydrocarbons |
| US20080115935A1 (en) * | 2006-01-06 | 2008-05-22 | Mango Frank D | In situ conversion of heavy hydrocarbons to catalytic gas |
| US8091643B2 (en) | 2006-01-06 | 2012-01-10 | Petroleum Habitats, Llc | In situ conversion of heavy hydrocarbons to catalytic gas |
| US20110077445A1 (en) * | 2006-01-06 | 2011-03-31 | Mango Frank D | Generating natural gas from heavy hydrocarbons |
| US8408289B2 (en) * | 2006-03-03 | 2013-04-02 | Gasfrac Energy Services Inc. | Liquified petroleum gas fracturing system |
| US8276659B2 (en) | 2006-03-03 | 2012-10-02 | Gasfrac Energy Services Inc. | Proppant addition system and method |
| US20140124208A1 (en) * | 2006-03-03 | 2014-05-08 | Gasfrac Energy Services Inc. | Liquified petroleum gas fracturing system |
| US8689876B2 (en) * | 2006-03-03 | 2014-04-08 | Gasfrac Energy Services Inc. | Liquified petroleum gas fracturing system |
| US20070204991A1 (en) * | 2006-03-03 | 2007-09-06 | Loree Dwight N | Liquified petroleum gas fracturing system |
| US20090183874A1 (en) * | 2006-03-03 | 2009-07-23 | Victor Fordyce | Proppant addition system and method |
| AU2007219687B2 (en) * | 2006-03-03 | 2013-05-09 | Gasfrac Energy Services Inc. | Liquified petroleum gas fracturing system |
| US11927086B2 (en) | 2006-06-02 | 2024-03-12 | Schlumberger Technology Corporation | Split stream oilfield pumping systems |
| US8336631B2 (en) | 2006-06-02 | 2012-12-25 | Schlumberger Technology Corporation | Split stream oilfield pumping systems |
| US7845413B2 (en) | 2006-06-02 | 2010-12-07 | Schlumberger Technology Corporation | Method of pumping an oilfield fluid and split stream oilfield pumping systems |
| US10174599B2 (en) | 2006-06-02 | 2019-01-08 | Schlumberger Technology Corporation | Split stream oilfield pumping systems |
| US8056635B2 (en) | 2006-06-02 | 2011-11-15 | Schlumberger Technology Corporation | Split stream oilfield pumping systems |
| WO2007141715A1 (en) * | 2006-06-02 | 2007-12-13 | Schlumberger Canada Limited | Split stream oilfield pumping systems |
| US9016383B2 (en) | 2006-06-02 | 2015-04-28 | Schlumberger Technology Corporation | Split stream oilfield pumping systems |
| US8851186B2 (en) | 2006-06-02 | 2014-10-07 | Schlumberger Technology Corporation | Split stream oilfield pumping systems |
| US20080110639A1 (en) * | 2006-11-15 | 2008-05-15 | Starr Phillip M | Wellhead isolation mandrel with centralizing device |
| WO2008085560A1 (en) * | 2007-01-08 | 2008-07-17 | Mango Frank D | In situ conversion of heavy hydrocarbons to catalytic gas |
| US20100293967A1 (en) * | 2007-12-07 | 2010-11-25 | Dresser-Rand Company | Compressor system and method for gas liquefaction system |
| US20090301725A1 (en) * | 2008-06-06 | 2009-12-10 | Leonard Case | Proppant Addition Method and System |
| US8727004B2 (en) * | 2008-06-06 | 2014-05-20 | Halliburton Energy Services, Inc. | Methods of treating subterranean formations utilizing servicing fluids comprising liquefied petroleum gas and apparatus thereof |
| US20090301719A1 (en) * | 2008-06-06 | 2009-12-10 | Bull Brad R | Methods of Treating Subterranean Formations Utilizing Servicing Fluids Comprising Liquefied Petroleum Gas and Apparatus Thereof |
| US8082989B2 (en) | 2008-08-19 | 2011-12-27 | Flow Industries Ltd. | Method for impulse stimulation of oil and gas well production |
| WO2010020982A1 (en) * | 2008-08-19 | 2010-02-25 | Prowell Technologies Ltd | Method for impulse stimulation of oil and gas well production |
| WO2010071994A1 (en) * | 2008-12-24 | 2010-07-01 | Gasfrac Energy Services Inc. | Proppant addition system and related methods |
| US20100155066A1 (en) * | 2008-12-24 | 2010-06-24 | Victor Fordyce | Proppant control in an lpg frac system |
| AU2010239363B2 (en) * | 2009-04-20 | 2014-01-16 | David Randolph Smith | Method and apparatus to enhance oil recovery in wells |
| US8490696B2 (en) | 2009-04-20 | 2013-07-23 | David Randolph Smith | Method and apparatus to enhance oil recovery in wells |
| US9074469B2 (en) | 2009-04-20 | 2015-07-07 | David Randolph Smith | Enhancing fluid recovery in subterranean wells with a cryogenic pump and a cryogenic fluid manufacturing plant |
| AU2014201895B2 (en) * | 2009-04-20 | 2015-09-03 | David Randolph Smith | Method and apparatus to enhance oil recovery in wells |
| US20100276146A1 (en) * | 2009-04-20 | 2010-11-04 | David Randolph Smith | Method and apparatus to enhance oil recovery in wells |
| WO2010123886A3 (en) * | 2009-04-20 | 2011-01-20 | David Randolph Smith | Method and apparatus to enhance oil recovery in wells |
| US8789593B2 (en) | 2009-04-20 | 2014-07-29 | David Randolph Smith | Enhancing water recovery in subterranean wells with a cryogenic pump |
| WO2010139938A3 (en) * | 2009-06-01 | 2011-01-27 | Halliburton Energy Services, Inc. | Proppant addition method and system |
| WO2011002557A1 (en) * | 2009-07-02 | 2011-01-06 | Exxonmobil Upstream Research Company | System and method for enhancing the production of hydrocarbons |
| US8967260B2 (en) | 2009-07-02 | 2015-03-03 | Exxonmobil Upstream Research Company | System and method for enhancing the production of hydrocarbons |
| US8727006B2 (en) | 2010-05-04 | 2014-05-20 | Petroleum Habitats, Llc | Detecting and remedying hydrogen starvation of catalytic hydrocarbon generation reactions in earthen formations |
| US20140034322A1 (en) * | 2010-08-13 | 2014-02-06 | Baker Hughes Incorporated | Well servicing fluid containing compressed hydrocarbon gas |
| CN103443397A (en) * | 2011-01-17 | 2013-12-11 | 恩弗拉卡公司 | Fracturing system and method for an underground formation using natural gas and an inert purging fluid |
| WO2012097426A1 (en) * | 2011-01-17 | 2012-07-26 | Enfrac Inc. | Fracturing system and method for an underground formation using natural gas and an inert purging fluid |
| EP2665891A4 (en) * | 2011-01-17 | 2018-01-17 | Halliburton Energy Services, Inc. | Fracturing system and method for an underground formation using natural gas and an inert purging fluid |
| US8991499B2 (en) | 2011-01-17 | 2015-03-31 | Millennium Stimulation Services Ltd. | Fracturing system and method for an underground formation |
| US9033035B2 (en) | 2011-01-17 | 2015-05-19 | Millennium Stimulation Services, Ltd. | Method for fracturing a formation using a fracturing fluid mixture |
| US9796910B2 (en) | 2011-01-17 | 2017-10-24 | Halliburton Energy Services, Inc. | Fracturing system and method for an underground formation using natural gas and an inert purging fluid |
| EA024378B1 (en) * | 2011-01-17 | 2016-09-30 | Миллениум Стимьюлэйшн Сервисез Лтд. | Method for hydraulic fracturing a downhole formation |
| CN103443397B (en) * | 2011-01-17 | 2016-08-17 | 米伦纽姆促进服务有限公司 | Fracturing systems and methods for subterranean formations using natural gas and inert purge fluids |
| US9181789B2 (en) | 2011-01-17 | 2015-11-10 | Millennium Stimulation Servicesltd. | Fracturing system and method for an underground formation using natural gas and an inert purging fluid |
| CN103429846A (en) * | 2011-01-17 | 2013-12-04 | 恩弗拉卡公司 | Fracturing system and method for an underground formation |
| EA030629B1 (en) * | 2011-01-17 | 2018-09-28 | Хэллибертон Энерджи Сервисиз, Инк. | System for fracturing a formation |
| EP2665890A4 (en) * | 2011-01-17 | 2018-04-18 | Halliburton Energy Services, Inc. | Fracturing system and method for an underground formation |
| EP2665892A4 (en) * | 2011-01-17 | 2018-04-18 | Halliburton Energy Services, Inc. | Method for fracturing a formation using a fracturing fluid mixture |
| CN102116150A (en) * | 2011-02-22 | 2011-07-06 | 中国海洋石油总公司 | Testing device for simulating influence law of sand on productivity of reservoir |
| WO2012122636A1 (en) * | 2011-03-16 | 2012-09-20 | Charles Abernethy Anderson | Method and apparatus of hydraulic fracturing |
| US10221668B2 (en) * | 2011-04-07 | 2019-03-05 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations |
| US11187069B2 (en) | 2011-04-07 | 2021-11-30 | Typhon Technology Solutions, Llc | Multiple generator mobile electric powered fracturing system |
| US10689961B2 (en) | 2011-04-07 | 2020-06-23 | Typhon Technology Solutions, Llc | Multiple generator mobile electric powered fracturing system |
| US11391136B2 (en) | 2011-04-07 | 2022-07-19 | Typhon Technology Solutions (U.S.), Llc | Dual pump VFD controlled motor electric fracturing system |
| US10502042B2 (en) | 2011-04-07 | 2019-12-10 | Typhon Technology Solutions, Llc | Electric blender system, apparatus and method for use in fracturing underground formations using liquid petroleum gas |
| US10718195B2 (en) | 2011-04-07 | 2020-07-21 | Typhon Technology Solutions, Llc | Dual pump VFD controlled motor electric fracturing system |
| US10718194B2 (en) | 2011-04-07 | 2020-07-21 | Typhon Technology Solutions, Llc | Control system for electric fracturing operations |
| US10895138B2 (en) | 2011-04-07 | 2021-01-19 | Typhon Technology Solutions, Llc | Multiple generator mobile electric powered fracturing system |
| US11613979B2 (en) | 2011-04-07 | 2023-03-28 | Typhon Technology Solutions, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
| US10876386B2 (en) | 2011-04-07 | 2020-12-29 | Typhon Technology Solutions, Llc | Dual pump trailer mounted electric fracturing system |
| US11708752B2 (en) | 2011-04-07 | 2023-07-25 | Typhon Technology Solutions (U.S.), Llc | Multiple generator mobile electric powered fracturing system |
| US10724353B2 (en) | 2011-04-07 | 2020-07-28 | Typhon Technology Solutions, Llc | Dual pump VFD controlled system for electric fracturing operations |
| US10227855B2 (en) * | 2011-04-07 | 2019-03-12 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations |
| US9366114B2 (en) * | 2011-04-07 | 2016-06-14 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations |
| US11002125B2 (en) | 2011-04-07 | 2021-05-11 | Typhon Technology Solutions, Llc | Control system for electric fracturing operations |
| US10982521B2 (en) | 2011-04-07 | 2021-04-20 | Typhon Technology Solutions, Llc | Dual pump VFD controlled motor electric fracturing system |
| US10851634B2 (en) | 2011-04-07 | 2020-12-01 | Typhon Technology Solutions, Llc | Dual pump mobile electrically powered system for use in fracturing underground formations |
| US11391133B2 (en) | 2011-04-07 | 2022-07-19 | Typhon Technology Solutions (U.S.), Llc | Dual pump VFD controlled motor electric fracturing system |
| US12258847B2 (en) | 2011-04-07 | 2025-03-25 | Typhon Technology Solutions (U.S.), Llc | Fracturing blender system and method |
| US10837270B2 (en) | 2011-04-07 | 2020-11-17 | Typhon Technology Solutions, Llc | VFD controlled motor mobile electrically powered system for use in fracturing underground formations for electric fracturing operations |
| US11851998B2 (en) | 2011-04-07 | 2023-12-26 | Typhon Technology Solutions (U.S.), Llc | Dual pump VFD controlled motor electric fracturing system |
| US10774630B2 (en) | 2011-04-07 | 2020-09-15 | Typhon Technology Solutions, Llc | Control system for electric fracturing operations |
| US11913315B2 (en) | 2011-04-07 | 2024-02-27 | Typhon Technology Solutions (U.S.), Llc | Fracturing blender system and method using liquid petroleum gas |
| US11255173B2 (en) | 2011-04-07 | 2022-02-22 | Typhon Technology Solutions, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
| US20120255734A1 (en) * | 2011-04-07 | 2012-10-11 | Todd Coli | Mobile, modular, electrically powered system for use in fracturing underground formations |
| US10648312B2 (en) | 2011-04-07 | 2020-05-12 | Typhon Technology Solutions, Llc | Dual pump trailer mounted electric fracturing system |
| US11939852B2 (en) | 2011-04-07 | 2024-03-26 | Typhon Technology Solutions (U.S.), Llc | Dual pump VFD controlled motor electric fracturing system |
| EP2527586A1 (en) | 2011-05-27 | 2012-11-28 | Shell Internationale Research Maatschappij B.V. | Method for induced fracturing in a subsurface formation |
| US8342246B2 (en) | 2012-01-26 | 2013-01-01 | Expansion Energy, Llc | Fracturing systems and methods utilyzing metacritical phase natural gas |
| US9309759B2 (en) | 2012-01-26 | 2016-04-12 | Expansion Energy Llc | Non-hydraulic fracturing systems, methods, and processes |
| US9316098B2 (en) | 2012-01-26 | 2016-04-19 | Expansion Energy Llc | Non-hydraulic fracturing and cold foam proppant delivery systems, methods, and processes |
| US9676994B2 (en) * | 2012-05-08 | 2017-06-13 | Kenda Capital B.V. | Fracturing fluid for secondary gas production |
| CN104428389A (en) * | 2012-05-08 | 2015-03-18 | 肯达投资股份有限公司 | Fracturing fluid for secondary gas production |
| WO2013169103A1 (en) | 2012-05-08 | 2013-11-14 | Kenda Capital B.V. | Fracturing fluid for secondary gas production |
| US20150101807A1 (en) * | 2012-05-08 | 2015-04-16 | Kenda Capital B.V. | Fracturing fluid for secondary gas production |
| US9683432B2 (en) | 2012-05-14 | 2017-06-20 | Step Energy Services Llc | Hybrid LPG frac |
| US9103190B2 (en) * | 2012-05-14 | 2015-08-11 | Gasfrac Energy Services Inc. | Inert gas supply equipment for oil and gas well operations |
| US20130299159A1 (en) * | 2012-05-14 | 2013-11-14 | Gasfrac Energy Services Inc. | Inert gas supply equipment for oil and gas well operations |
| EP2666958A1 (en) * | 2012-05-23 | 2013-11-27 | Linde Aktiengesellschaft | Method of fraccing a well |
| US10895114B2 (en) | 2012-08-13 | 2021-01-19 | Schlumberger Technology Corporation | System and method for delivery of oilfield materials |
| WO2014029000A1 (en) | 2012-08-23 | 2014-02-27 | Enfrac Inc. | Reduced emissions method for recovering product from a hydraulic fracturing operation |
| EP2888440A4 (en) * | 2012-08-23 | 2016-08-17 | Millennium Stimulation Services Ltd | Reduced emissions method for recovering product from a hydraulic fracturing operation |
| US9187996B1 (en) | 2012-08-23 | 2015-11-17 | Millennium Stimulation Services, Ltd. | Reduced emissions method for recovering product from a hydraulic fracturing operation |
| CN104685152A (en) * | 2012-08-23 | 2015-06-03 | 米伦纽姆促进服务有限公司 | Reduced emissions method for recovering product from a hydraulic fracturing operation |
| US11118438B2 (en) | 2012-10-05 | 2021-09-14 | Typhon Technology Solutions, Llc | Turbine driven electric fracturing system and method |
| US10107085B2 (en) | 2012-10-05 | 2018-10-23 | Evolution Well Services | Electric blender system, apparatus and method for use in fracturing underground formations using liquid petroleum gas |
| US10107084B2 (en) | 2012-10-05 | 2018-10-23 | Evolution Well Services | System and method for dedicated electric source for use in fracturing underground formations using liquid petroleum gas |
| CN104937210A (en) * | 2012-11-30 | 2015-09-23 | 通用电气公司 | Apparatus and method for fluid delivery using direct proppant jetting |
| WO2014085030A3 (en) * | 2012-11-30 | 2014-10-30 | General Electric Company | Apparatus and method of delivering a fluid using direct proppant injection |
| WO2014137625A1 (en) * | 2013-03-04 | 2014-09-12 | Baker Hughes Incorporated | Method of fracturing with liquefied natural gas |
| US10822935B2 (en) | 2013-03-04 | 2020-11-03 | Baker Hughes, A Ge Company, Llc | Method of treating a subterranean formation with natural gas |
| US10012062B2 (en) | 2013-03-04 | 2018-07-03 | Baker Hughes, A Ge Company, Llc | Method of fracturing with liquefied natural gas |
| US20140251623A1 (en) * | 2013-03-07 | 2014-09-11 | Prostim Labs, Llc | Fracturing systems and methods for a wellbore |
| US20140262285A1 (en) * | 2013-03-12 | 2014-09-18 | Rustam H. Sethna | Methods for fraccing oil and gas wells |
| WO2014152251A1 (en) * | 2013-03-15 | 2014-09-25 | Schlumberger Canada Limited | Stimulation with natural gas |
| US20140262292A1 (en) * | 2013-03-15 | 2014-09-18 | Schlumberger Technology Corporation | Stimulation with Natural Gas |
| US9790775B2 (en) * | 2013-03-15 | 2017-10-17 | Schlumberger Technology Corporation | Stimulation with natural gas |
| US10591184B2 (en) | 2013-06-13 | 2020-03-17 | 1026844 B.C. Ltd. | Apparatuses and methods for supplying natural gas to a frac water heater |
| US11391488B2 (en) | 2013-06-13 | 2022-07-19 | 1026844 B.C. Ltd. | Apparatuses and methods for supplying natural gas to a frac water heater |
| US10633174B2 (en) | 2013-08-08 | 2020-04-28 | Schlumberger Technology Corporation | Mobile oilfield materialtransfer unit |
| US10625933B2 (en) | 2013-08-09 | 2020-04-21 | Schlumberger Technology Corporation | System and method for delivery of oilfield materials |
| US9435175B2 (en) | 2013-11-08 | 2016-09-06 | Schlumberger Technology Corporation | Oilfield surface equipment cooling system |
| US10519758B2 (en) | 2013-11-08 | 2019-12-31 | Schlumberger Technology Corporation | Oilfield surface equipment cooling system |
| WO2015069404A1 (en) * | 2013-11-08 | 2015-05-14 | Schlumberger Canada Limited | Oilfield surface equipment cooling system |
| US11819810B2 (en) | 2014-02-27 | 2023-11-21 | Schlumberger Technology Corporation | Mixing apparatus with flush line and method |
| US12102970B2 (en) | 2014-02-27 | 2024-10-01 | Schlumberger Technology Corporation | Integrated process delivery at wellsite |
| US12220671B2 (en) | 2014-02-27 | 2025-02-11 | Schlumberger Technology Corporation | Mixing apparatus with flush line and method |
| US11453146B2 (en) | 2014-02-27 | 2022-09-27 | Schlumberger Technology Corporation | Hydration systems and methods |
| US12036521B2 (en) | 2014-03-31 | 2024-07-16 | Liberty Ollfield Services LLC | Optimized drive of fracturing fluids blenders |
| US10610842B2 (en) | 2014-03-31 | 2020-04-07 | Schlumberger Technology Corporation | Optimized drive of fracturing fluids blenders |
| US11452975B2 (en) | 2014-03-31 | 2022-09-27 | Liberty Oilfield Services Llc | Optimized drive of fracturing fluids blenders |
| RU2692297C2 (en) * | 2014-05-12 | 2019-06-24 | Шлюмбергер Текнолоджи Б.В. | Integrated supply in process at drilling site |
| US10767859B2 (en) | 2014-08-19 | 2020-09-08 | Adler Hot Oil Service, LLC | Wellhead gas heater |
| US9995122B2 (en) | 2014-08-19 | 2018-06-12 | Adler Hot Oil Service, LLC | Dual fuel burner |
| US10138711B2 (en) | 2014-08-19 | 2018-11-27 | Adler Hot Oil Service, LLC | Wellhead gas heater |
| US10584567B1 (en) * | 2014-12-03 | 2020-03-10 | Farris Mitchell, Sr. | Shale gas extraction system |
| US10012064B2 (en) | 2015-04-09 | 2018-07-03 | Highlands Natural Resources, Plc | Gas diverter for well and reservoir stimulation |
| US10344204B2 (en) | 2015-04-09 | 2019-07-09 | Diversion Technologies, LLC | Gas diverter for well and reservoir stimulation |
| US10385258B2 (en) | 2015-04-09 | 2019-08-20 | Highlands Natural Resources, Plc | Gas diverter for well and reservoir stimulation |
| US10385257B2 (en) | 2015-04-09 | 2019-08-20 | Highands Natural Resources, PLC | Gas diverter for well and reservoir stimulation |
| WO2016176531A1 (en) * | 2015-04-30 | 2016-11-03 | Schlumberger Technology Corporation | Optimized pressure exchanger fracturing |
| WO2016178959A1 (en) * | 2015-05-01 | 2016-11-10 | Schlumberger Technology Corporation | Rotary disc-type feeder for high pressure proppant injection |
| WO2017058487A1 (en) * | 2015-09-30 | 2017-04-06 | Halliburton Energy Services, Inc. | Use of natural gas as a soluble servicing gas during a well intervention operation |
| WO2017058485A1 (en) * | 2015-09-30 | 2017-04-06 | Halliburton Energy Services, Inc. | Use of natural gas as a vaporizing gas in a well intervention operation |
| US10907088B2 (en) | 2015-09-30 | 2021-02-02 | Halliburton Energy Services, Inc. | Use of natural gas as a vaporizing gas in a well intervention operation |
| US10760390B2 (en) | 2015-09-30 | 2020-09-01 | Halliburton Energy Services, Inc. | Use of gaseous phase natural gas as a carrier fluid during a well intervention operation |
| US11155750B2 (en) | 2015-09-30 | 2021-10-26 | Halliburton Energy Services, Inc. | Use of natural gas as a soluble servicing gas during a well intervention operation |
| US10982520B2 (en) | 2016-04-27 | 2021-04-20 | Highland Natural Resources, PLC | Gas diverter for well and reservoir stimulation |
| US10704373B2 (en) * | 2016-11-11 | 2020-07-07 | Halliburton Energy Services, Inc. | Storing and de-liquefying liquefied natural gas (LNG) at a wellsite |
| US10968727B2 (en) | 2016-11-11 | 2021-04-06 | Halliburton Energy Services, Inc. | Treating a formation with a chemical agent and liquefied natural gas (LNG) de-liquefied at a wellsite |
| WO2018111257A1 (en) * | 2016-12-14 | 2018-06-21 | Halliburton Energy Services, Inc. | Hydraulic fracturing methods and systems using gas mixture |
| US10738581B2 (en) | 2017-01-23 | 2020-08-11 | Halliburton Energy Services, Inc. | Fracturing treatments in subterranean formations using electrically controlled propellants |
| US10858923B2 (en) | 2017-01-23 | 2020-12-08 | Halliburton Energy Services, Inc. | Enhancing complex fracture networks in subterranean formations |
| US10738582B2 (en) | 2017-01-23 | 2020-08-11 | Halliburton Energy Services, Inc. | Fracturing treatments in subterranean formation using inorganic cements and electrically controlled propellants |
| US11306241B2 (en) * | 2017-06-30 | 2022-04-19 | Halliburton Energy Services, Inc. | Geochemically-driven wettability modification for subterranean surfaces |
| WO2019022763A1 (en) * | 2017-07-28 | 2019-01-31 | Halliburton Energy Services, Inc. | Acidizing and interfacial tension reducing hydrolysable oils for subterranean treatments |
| US11390798B2 (en) | 2017-07-28 | 2022-07-19 | Hallburton Energy Services, Inc. | Acidizing and interfacial tension reducing hydrolysable oils for subterranean treatments |
| WO2019151985A1 (en) * | 2018-01-30 | 2019-08-08 | Halliburton Energy Services, Inc. | Use of liquid natural gas for well treatment operations |
| US11370959B2 (en) | 2018-01-30 | 2022-06-28 | Halliburton Energy Services, Inc. | Use of liquid natural gas for well treatment operations |
| US20230151720A1 (en) * | 2020-02-28 | 2023-05-18 | Eor Etc Llc | System and method for enhanced oil recovery utilizing alternating stacked liquid and gas slugs |
| US12180814B2 (en) * | 2020-02-28 | 2024-12-31 | Eor Etc Llc | System and method for enhanced oil recovery utilizing alternating stacked liquid and gas slugs |
| CN111706312A (en) * | 2020-06-12 | 2020-09-25 | 中国地质大学(北京) | System and working method for improving coalbed methane production rate by mixing hot air proppant |
| US11955782B1 (en) | 2022-11-01 | 2024-04-09 | Typhon Technology Solutions (U.S.), Llc | System and method for fracturing of underground formations using electric grid power |
| US12444910B2 (en) | 2022-11-01 | 2025-10-14 | Typhon Technology Solutions (U.S.), Llc | Method for accessing electric grids to power fracturing operations |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2499699A1 (en) | 2006-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20060065400A1 (en) | Method and apparatus for stimulating a subterranean formation using liquefied natural gas | |
| AU2011356582B2 (en) | Fracturing system and method for an underground formation using natural gas and an inert purging fluid | |
| CA2700361C (en) | Method for managing hydrates in a subsea production line | |
| CA2129613C (en) | High proppant concentration/high co2 ratio fracturing system | |
| US9790775B2 (en) | Stimulation with natural gas | |
| CA1134258A (en) | Carbon dioxide fracturing process | |
| AU2012388203B2 (en) | Reduced emissions method for recovering product from a hydraulic fracturing operation | |
| CA3038988C (en) | Treating a formation with a chemical agent and liquefied natural gas (lng) de-liquefied at a wellsite | |
| CA3038985C (en) | Storing and de-liquefying liquefied natural gas (lng) at a wellsite | |
| CA3065937C (en) | Acidizing and interfacial tension reducing hydrolysable oils for subterranean treatments | |
| CA3036517C (en) | Liquefied natural gas (lng) re-fracturing | |
| CA3085548C (en) | Use of liquid natural gas for well treatment operations | |
| Scott et al. | Air foam improves efficiency of completion and workover operations in low-pressure gas wells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |