US20060055256A1 - Method for ventilating a motor - Google Patents
Method for ventilating a motor Download PDFInfo
- Publication number
- US20060055256A1 US20060055256A1 US11/219,585 US21958505A US2006055256A1 US 20060055256 A1 US20060055256 A1 US 20060055256A1 US 21958505 A US21958505 A US 21958505A US 2006055256 A1 US2006055256 A1 US 2006055256A1
- Authority
- US
- United States
- Prior art keywords
- motor
- air
- apertures
- air flow
- stator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 29
- 230000000694 effects Effects 0.000 claims abstract description 23
- 239000011258 core-shell material Substances 0.000 claims abstract description 18
- 238000001816 cooling Methods 0.000 claims description 12
- 238000009423 ventilation Methods 0.000 description 32
- 239000012530 fluid Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/14—Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
- H02K9/18—Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the external part of the closed circuit comprises a heat exchanger structurally associated with the machine casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
Definitions
- Various air ventilation methods can be used to cool electric motors.
- One ventilation scheme double-end-to-center or “X” ventilation, can bring inlet air from both ends of the motor and can exhaust air out of the center portion of the motor. The air is usually driven by two fans, one on each end of the motor, and by radial vents in the core itself.
- Another ventilation scheme end-to-end or “Z” ventilation, can bring inlet air through one end of the motor and can exhaust air out of the opposite end of the motor.
- the air is usually driven by one large fan on the air outlet side of the motor, and by radial vents in the core itself.
- the air exiting the stator core can be collected along the back of the core and then can travels axially towards the air exhaust.
- WPII weather protected II
- motors in the US market can have inlet and exhaust enclosures that meet special NEMA MG1 requirements.
- Certain ventilation schemes can be more effective at particular motor speeds. For example, X ventilation usually provides better cooling than Z ventilation at higher speeds, and Z ventilation is usually more superior for cooling at lower speeds.
- one scheme is typically selected for a particular motor product line and manufactured and specified for use for all speeds, resulting in motors with optimized cooling at certain speeds only.
- different motor product lines can comprise different ventilation systems, which can be costly and inefficient.
- Certain exemplary embodiments comprise a motor that can be easily and/or selectably reconfigured via the inclusion and/or removal of removable plates to enable an X, Z, and/or another predetermined type of ventilation while otherwise utilizing the same and/or substantially the same mechanical components for the motor.
- this design can meet the requirements of WPII protection as defined in NEMA MG1, and/or the requirements for Totally Enclosed Air-to Air Cooled (TEAAC) or Totally Enclosed Water-to-Air Cooled (TEWAC).
- FIG. 1 is a cut-away view of an exemplary embodiment of a system 1000 ;
- FIG. 2 is a cut-away view of an exemplary embodiment of a system 2000 ;
- FIG. 3 is a schematic of an exemplary internal air flow through a system 3000 ;
- FIG. 4 is a schematic of an exemplary internal air flow through a system 4000 ;
- FIG. 5 is an end view of an exemplary internal air flow through a system 5000 ;
- FIG. 6 is a side view of an exemplary internal air flow through a system 5000 ;
- FIG. 7 is an end view of an exemplary internal air flow through a system 7000 ;
- FIG. 8 is a side view of an exemplary internal air flow through a system 7000 ;
- FIG. 9 is an end view of an exemplary internal air flow through a system 9000 ;
- FIG. 10 is a side view of an exemplary internal air flow through a system 9000 ;
- FIG. 11 is an end view of an exemplary internal air flow through a system 11000 ;
- FIG. 12 is a side view of an exemplary internal air flow through a system 11000 ;
- FIG. 13 is an end view of an exemplary internal air flow through a system 13000 ;
- FIG. 14 is a side view of an exemplary internal air flow through a system 13000 ;
- FIG. 15 is an end view of an exemplary internal air flow through a system 15000 ;
- FIG. 16 is a side view of an exemplary internal air flow through a system 15000 ;
- FIG. 17 is a side view of an exemplary internal air flow through a system 17000 ;
- FIG. 18 is a side view of an exemplary internal air flow through a system 18000 ;
- FIG. 19 is a side view of an exemplary internal air flow through a system 19000 ;
- FIG. 20 is a side view of an exemplary internal air flow through a system 20000 ;
- FIG. 21 is a flowchart of an exemplary embodiment of a method 21000 ;
- a at least one.
- activity an action, act, step, and/or process or portion thereof.
- aperture an opening, hole, gap, and/or slit.
- apparatus an appliance or device for a particular purpose.
- an automatic light switch can turn on upon “seeing” a person in its view, without the person manually operating the light switch.
- axis a straight line about which a body or geometric object rotates or can be conceived to rotate and/or a center line to which parts of a structure or body can be referred.
- baffle a usually static, but potentially movable, device that regulates the flow of a fluid.
- circulation the movement and/or passage through a circuit, path, and/or system of conduits.
- component a constituent element and/or part.
- stator core shell a structure surrounding the stator core.
- cover to overlay, place upon and/or over, and/or immerse.
- electric motor a device that converts electrical energy into mechanical energy to turn a shaft.
- fan a device for creating a flow of a vapor via the rotational movement of typically thin, rigid vanes.
- heat exchanger a device used to transfer heat from a first fluid on one side of a barrier to a second fluid on the other side without bringing the first fluid and the second fluid into direct contact with each other.
- method a process, procedure, and/or collection of related activities for accomplishing something.
- NEMA National Electrical Manufacturers Association
- non-destructively removable able to be removed without destroying and/or degrading a structural integrity of the item removed and/or the item from which it is removed.
- open machine a machine having ventilating openings which permit passage of external cooling over and around the windings of the machine.
- plate a substantially smooth, substantially flat, substantially uniformly thick, relatively thin, and/or substantially rigid body.
- regular polygon a plane polygon that is both equilateral and equiangular.
- rib a long, narrow, member that, in certain embodiments, projects from the surface of a structure.
- rotor the rotating member and/or armature of motor, which is typically made up of stacked laminations.
- shaft a long, generally cylindrical bar that rotates and transmits power.
- stator a portion of an AC induction motor that does not rotate.
- stator core the iron portion of the stator made up of laminated electric steel.
- the stator core and the rotor are concentric and separated by an air gap, with the rotor being the smaller of the two and located inside the stator core.
- system a collection of mechanisms, devices, data, and/or instructions, the collection designed to perform one or more specific functions.
- Totally Enclosed characterized by a motor enclosure that prevents free exchange of air between the inside and the outside of the enclosure but is not airtight. Different methods of cooling can be used with this enclosure.
- Air-to-Air Cooled a totally enclosed machine cooled by circulating internal air through a heat exchanger that in turn, is cooled by ambient external air.
- an air-to-air heat exchanger for cooling ventilating air and fan or fans integral with rotor shaft or separate, for circulating external air.
- Totally Enclosed Water-to-Air Cooled a totally enclosed machine cooled by circulating internal air through a heat exchanger which in turn, is cooled by an external water supply.
- a heat exchanger Provided with an air-to-water heat exchanger for cooling ventilating air and fan or fans integral with rotor shaft.
- weather protected Type I an open machine with its ventilating passages so constructed as to minimize the entrance of rain, snow, and airborne particles to the electric parts, and having ventilating openings constructed to prevent direct access to live metal or rotating parts.
- the openings are small enough to prevent the passage of a probe as defined by NEMA MG 1.
- weather protected Type II an open, weather-protected machine having its ventilating passages at both intake and discharge so arranged that high velocity air and airborne particles blown into the machine by storms or high winds can be discharged without entering the internal ventilating passages leading directly to the electric parts of the machine itself.
- the normal path of the ventilating air that enters the electric parts of the machines is arranged by baffling or through a separate housing to provide at least three abrupt changes in direction, none of which are less than 90 degrees.
- an area of low velocity not exceeding 600 feet per minute is provided in the intake air path to minimize the possibility of moisture or dirt being carried into the electric parts of the machine.
- Certain exemplary embodiments comprise a system comprising: a motor stator comprising: a motor frame comprising a core shell adapted to surround a stator core comprising: a plurality of panels; a plurality of apertures located in one or more of said panels; and a first plurality of non-destructively removable plates adapted to effect a first direction of stator core air flow by impeding airflow through a first selectable sub-plurality of said plurality of apertures.
- FIG. 1 is a cut-away view of an exemplary embodiment of a system 1000 , which can comprise a plurality of components.
- System 1000 can comprise an electric motor 1100 , which can be, can be configured to qualify as, and/or can comprise one or more components configured to qualify motor 1100 as, a National Electrical Manufacturers Association (NEMA) weather protected motor, a weather protected Type II motor, a Totally Enclosed Air-to-Air Cooled (TEAAC) motor, and/or a Totally Enclosed Water-to-Air Cooled (TEWAC) motor, etc.
- NEMA National Electrical Manufacturers Association
- TEAAC Totally Enclosed Air-to-Air Cooled
- TEWAC Totally Enclosed Water-to-Air Cooled
- Motor 1100 can comprise a rotor 1200 and a stator 1400 .
- Rotor 1200 can comprise a motor shaft 1220 , fans 1240 , 1260 , and/or rotor core 1280 .
- Stator 1400 can comprise a motor frame 1500 , which can comprise a core shell 1600 , which can be adapted to at least partially surround a stator core 1440 .
- Rotor 1200 , stator 1400 , motor shaft 1220 , rotor core 1280 , and/or stator core 1440 can define a longitudinal axis A-A of motor 1100 .
- Core shell 1600 can comprise a plurality of axial ribs 1620 and/or a plurality of circumferential ribs 1640 , which can support and/or border a plurality of longitudinal panels 1650 , and/or define and/or border a plurality of apertures 1660 defined and/or located in one or more of panels 1650 .
- Core shell 1600 can be comprised of 4, 5, 6, 7 8, 9, 10 or more longitudinal panels 1650 , which can be arranged to form a regular polygon when viewed from an axial end of motor 1100 , and/or each of which can have a substantially similar longitudinal dimension.
- Fan 1240 and/or fan 1260 which can be coupled and/or mounted to rotor 1200 and/or motor shaft 1220 , can be adapted to continuously force and/or induce air to circulate and/or flow through, along, near, and/or around stator core 1440 , between stator radial vents 1460 , within core shell passage 1680 , and/or through apertures 1660 .
- Stator core air flow can be deflected and/or effected by one or more air baffles 1700 , which can be coupled to core shell 1600 .
- the configuration shown in FIG. 1 can be considered an X ventilation scheme for a motor.
- FIG. 2 is a cut-away view of an exemplary embodiment of a system 2000 , which comprise a motor 2100 that is similar in some respects to motor 1100 of FIG. 1 .
- Motor 2100 can differ in that it can utilize a single fan 2200 , a somewhat differently oriented air baffle(s) 2300 , and/or one or more non-destructively removable plates 2400 that can attachably, snuggly, snapably, and/or non-destructively removably fit within corresponding apertures 2500 of core shell 2600 and/or can effect a direction of stator core air flow by covering and/or uncovering a selected set and/or sub-set of apertures 2500 .
- stator core air flow can be effected by baffle 2300 and/or one or more of plates 2400 , such as to change an overall and/or localized pattern, velocity, flowrate, direction, etc. of the stator air flow.
- stator core air flow can be effected to flow across a heat exchanger (shown in FIGS. 17 and 19 ).
- the configuration shown in FIG. 2 can be considered a Z ventilation scheme for a motor.
- FIG. 4 is a schematic of an exemplary internal air flow through a system 4000 , which is configured as a Z ventilation scheme, whereby cooling and/or ventilating air enters the motor from one of its longitudinal ends, flows along and through the rotor and/or stator, and substantially exits via an opposite longitudinal end. Note that in the Z ventilation scheme, some and/or all of the apertures in the motor's core shell are closed by the non-destructively removable plates.
- FIG. 5 is an end view
- FIG. 6 is a side view, of an exemplary internal air flow through a system 5000 , which can comprise a Weather Protected II (WPII) style motor configured in the X (i.e., “double end to center”) ventilation scheme.
- WPII Weather Protected II
- FIG. 7 is an end view
- FIG. 8 is a side view, of an exemplary internal air flow through a system 7000 , which can comprise a WPII style motor configured in the Z (i.e., “end to end”) ventilation scheme.
- a WPII style motor configured in the Z (i.e., “end to end”) ventilation scheme.
- Z i.e., “end to end”
- removable plates 7100 can cover the apertures in the core shell, while in the X ventilation scheme, these plates can be removed from the apertures.
- FIG. 9 is an end view
- FIG. 10 is a side view, of an exemplary internal air flow through a system 9000 , which can comprise a Totally Enclosed Air-to-Air Cooled (TEACC) style motor configured in the X (i.e., “double end to center”) ventilation scheme.
- FIG. 11 is an end view
- FIG. 12 is a side view, of an exemplary internal air flow through a system 11000 , which can comprise a TEACC style motor configured in the Z (i.e., “end to end”) ventilation scheme.
- TEACC Totally Enclosed Air-to-Air Cooled
- TEAAC enclosure can be used for both the X and the Z ventilation scheme by utilizing removable plates 11100 .
- air flow within the TEACC enclosure can be effected by the positioning of enclosure panels 11200 .
- FIG. 13 is an end view
- FIG. 14 is a side view, of an exemplary internal air flow through a system 13000 , which can comprise a Totally Enclosed Water-to-Air Cooled (TEWAC) style motor configured in the X (i.e., “double end to center”) ventilation scheme.
- FIG. 15 is an end view
- FIG. 16 is a side view, of an exemplary internal air flow through a system 15000 , which can comprise a TEWAC style motor configured in the Z (i.e., “end to end”) ventilation scheme.
- the same TEAAC enclosure can be used for both the X and the Z ventilation scheme by utilizing removable panels 15100 .
- air flow within the TEWAC enclosure can be effected by the positioning of enclosure panels 15200 .
- FIG. 17 is a side view of an exemplary internal air flow through a system 17000 , that is configured for X ventilation, and which can comprise a motor 17100 coupled to a TEAAC-style enclosure 17200 that surrounds a heat exchanger 17300 adapted to cool air circulated supplied thereto, such as air circulated along the stator core. Enclosure panels 17400 can be attached as shown to prevent air from by-passing heat exchanger 17300 .
- FIG. 18 is a side view of an exemplary internal air flow through a system 18000 , which can be substantially similar to system 17000 , except that system 18000 is configured for Z ventilation, and/or can have enclosure panels removed to allow air to flow through the heat exchanger.
- FIG. 19 is a side view of an exemplary internal air flow through a system 19000 , that is configured for X ventilation, and which can comprise a TEWAC-style enclosure that surrounds a heat exchanger 19300 adapted to cool air circulated supplied thereto, such as air circulated along the stator core. Enclosure panels 19100 can be removed to allow air to flow through heat exchanger 19300 .
- FIG. 20 is a side view of an exemplary internal air flow through a system 20000 , which can be substantially similar to system 19000 , except that system 20000 is configured for Z ventilation, and/or can have enclosure panels 20100 attached as shown to prevent air from by-passing the heat exchanger, and/or can have enclosure panel 20200 removed to allow air to flow through the heat exchanger.
- air flow, the cooling of the motor, and/or the performance of the motor can be affected by changes to the apertures, covers, panels, and/or baffles.
- certain exemplary motors can be easily and/or selectably reconfigured, during manufacturing, after delivery, after installation, and/or after being placed in operation, via the inclusion and/or removal of removable plates to enable an X, Z, and/or another predetermined type of ventilation while otherwise utilizing the same and/or substantially the same mechanical components for the motor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
Description
- This application claims priority to, and incorporates by reference herein in its entirety, pending U.S. Provisional Patent Application Ser. No. 60/608,520 (Attorney Docket No. 2004P15438US01), filed 9 Sep. 2004.
- Various air ventilation methods can be used to cool electric motors. One ventilation scheme, double-end-to-center or “X” ventilation, can bring inlet air from both ends of the motor and can exhaust air out of the center portion of the motor. The air is usually driven by two fans, one on each end of the motor, and by radial vents in the core itself. Another ventilation scheme, end-to-end or “Z” ventilation, can bring inlet air through one end of the motor and can exhaust air out of the opposite end of the motor. The air is usually driven by one large fan on the air outlet side of the motor, and by radial vents in the core itself. The air exiting the stator core can be collected along the back of the core and then can travels axially towards the air exhaust. Additionally, WPII (weather protected II) motors in the US market can have inlet and exhaust enclosures that meet special NEMA MG1 requirements.
- Certain ventilation schemes can be more effective at particular motor speeds. For example, X ventilation usually provides better cooling than Z ventilation at higher speeds, and Z ventilation is usually more superior for cooling at lower speeds.
- Because of the geometric differences between both ventilation types, one scheme is typically selected for a particular motor product line and manufactured and specified for use for all speeds, resulting in motors with optimized cooling at certain speeds only. As a result, different motor product lines can comprise different ventilation systems, which can be costly and inefficient.
- Certain exemplary embodiments comprise a motor that can be easily and/or selectably reconfigured via the inclusion and/or removal of removable plates to enable an X, Z, and/or another predetermined type of ventilation while otherwise utilizing the same and/or substantially the same mechanical components for the motor. In certain exemplary embodiments, this design can meet the requirements of WPII protection as defined in NEMA MG1, and/or the requirements for Totally Enclosed Air-to Air Cooled (TEAAC) or Totally Enclosed Water-to-Air Cooled (TEWAC).
- A wide variety of potential embodiments will be more readily understood through the following detailed description of certain exemplary embodiments, with reference to the accompanying exemplary drawings in which:
-
FIG. 1 is a cut-away view of an exemplary embodiment of asystem 1000; -
FIG. 2 is a cut-away view of an exemplary embodiment of asystem 2000; -
FIG. 3 is a schematic of an exemplary internal air flow through asystem 3000; -
FIG. 4 is a schematic of an exemplary internal air flow through asystem 4000; -
FIG. 5 is an end view of an exemplary internal air flow through asystem 5000; -
FIG. 6 is a side view of an exemplary internal air flow through asystem 5000; -
FIG. 7 is an end view of an exemplary internal air flow through asystem 7000; -
FIG. 8 is a side view of an exemplary internal air flow through asystem 7000; -
FIG. 9 is an end view of an exemplary internal air flow through asystem 9000; -
FIG. 10 is a side view of an exemplary internal air flow through asystem 9000; -
FIG. 11 is an end view of an exemplary internal air flow through asystem 11000; -
FIG. 12 is a side view of an exemplary internal air flow through asystem 11000; -
FIG. 13 is an end view of an exemplary internal air flow through asystem 13000; -
FIG. 14 is a side view of an exemplary internal air flow through asystem 13000; -
FIG. 15 is an end view of an exemplary internal air flow through asystem 15000; -
FIG. 16 is a side view of an exemplary internal air flow through asystem 15000; -
FIG. 17 is a side view of an exemplary internal air flow through asystem 17000; -
FIG. 18 is a side view of an exemplary internal air flow through asystem 18000; -
FIG. 19 is a side view of an exemplary internal air flow through asystem 19000; -
FIG. 20 is a side view of an exemplary internal air flow through asystem 20000; -
FIG. 21 is a flowchart of an exemplary embodiment of amethod 21000; - When the following terms are used substantively herein, the accompanying definitions apply:
- a—at least one.
- activity—an action, act, step, and/or process or portion thereof.
- adapted to—made suitable or fit for a specific use or situation.
- adjacent—close to, near, next to, and/or adjoining.
- adjust—to change so as to match, fit, adapt, conform, and/or be in a more effective state.
- air flow—a current of air.
- and/or—either in conjunction with or in alternative to.
- aperture—an opening, hole, gap, and/or slit.
- apparatus—an appliance or device for a particular purpose.
- automatically—acting or operating in a manner essentially independent of external influence or control. For example, an automatic light switch can turn on upon “seeing” a person in its view, without the person manually operating the light switch.
- axis—a straight line about which a body or geometric object rotates or can be conceived to rotate and/or a center line to which parts of a structure or body can be referred.
- baffle—a usually static, but potentially movable, device that regulates the flow of a fluid.
- can—is capable of, in at least some embodiments.
- circulate—to move in or flow through a circuit and/or to move about.
- circulation—the movement and/or passage through a circuit, path, and/or system of conduits.
- component—a constituent element and/or part.
- comprising—including but not limited to.
- configuration—an arrangement of parts and/or elements.
- continuously—in a manner uninterrupted in time, sequence, substance, and/or extent.
- cool—to make less warm, to remove heat from, and/or to reduce the molecular and/or kinetic energy of.
- core shell—a structure surrounding the stator core.
- couple—to join, link, and/or connect.
- cover—to overlay, place upon and/or over, and/or immerse.
- cylindrical—of, relating to, and/or having the shape of a cylinder, especially of a circular cylinder.
- define—to establish the outline, form, and/or structure of.
- device—a machine, manufacture, and/or collection thereof.
- direction—the spatial relation between something and the course along which it points or moves.
- effect—to bring into existence, to bring about, and/or to produce as a result.
- electric motor—a device that converts electrical energy into mechanical energy to turn a shaft.
- end—an extremity of something that has length.
- fan—a device for creating a flow of a vapor via the rotational movement of typically thin, rigid vanes.
- frame—a supporting structure for the stator parts of an AC motor.
- heat exchanger—a device used to transfer heat from a first fluid on one side of a barrier to a second fluid on the other side without bringing the first fluid and the second fluid into direct contact with each other.
- locate—to place at a certain location.
- longitudinal—of and/or relating to a length; placed and/or running lengthwise.
- may—is allowed and/or permitted to, in at least some embodiments.
- method—a process, procedure, and/or collection of related activities for accomplishing something.
- mount—to couple and/or attach to.
- National Electrical Manufacturers Association (NEMA)—a non-profit standard-setting organization organized and supported by manufacturers of electric equipment and supplies.
- non-destructively removable—able to be removed without destroying and/or degrading a structural integrity of the item removed and/or the item from which it is removed.
- open machine—a machine having ventilating openings which permit passage of external cooling over and around the windings of the machine.
- operate—to perform a function and/or to work.
- operative embodiment—an implementation that is in operation and/or is working as designed.
- opposing—placed so as to be opposite something else.
- panel—a flat, usually rectangular piece.
- plate—a substantially smooth, substantially flat, substantially uniformly thick, relatively thin, and/or substantially rigid body.
- plurality—the state of being plural and/or more than one.
- portion—a part of whole.
- predetermined—established in advance.
- provide—to furnish, supply, and/or make available.
- qualify—to characterize and/or make eligible.
- regular polygon—a plane polygon that is both equilateral and equiangular.
- relocate—to move to or establish in a new place
- remove—to move from a place and/or position occupied.
- repeatedly—again and again; repetitively.
- rib—a long, narrow, member that, in certain embodiments, projects from the surface of a structure.
- rotor—the rotating member and/or armature of motor, which is typically made up of stacked laminations.
- set—a related plurality.
- shaft—a long, generally cylindrical bar that rotates and transmits power.
- stator—a portion of an AC induction motor that does not rotate.
- stator core—the iron portion of the stator made up of laminated electric steel. The stator core and the rotor are concentric and separated by an air gap, with the rotor being the smaller of the two and located inside the stator core.
- substantially—to a great extent or degree.
- surround—to extend on all sides of simultaneously, encircle, enclose, and/or confine on all sides.
- system—a collection of mechanisms, devices, data, and/or instructions, the collection designed to perform one or more specific functions.
- through—in one side and out the opposite or another side of, across, among, and/or between.
- Totally Enclosed—characterized by a motor enclosure that prevents free exchange of air between the inside and the outside of the enclosure but is not airtight. Different methods of cooling can be used with this enclosure.
- Totally Enclosed Air-to-Air Cooled—a totally enclosed machine cooled by circulating internal air through a heat exchanger that in turn, is cooled by ambient external air. Provided with an air-to-air heat exchanger for cooling ventilating air and fan or fans integral with rotor shaft or separate, for circulating external air.
- Totally Enclosed Water-to-Air Cooled—a totally enclosed machine cooled by circulating internal air through a heat exchanger which in turn, is cooled by an external water supply. Provided with an air-to-water heat exchanger for cooling ventilating air and fan or fans integral with rotor shaft.
- via—by way of and/or utilizing.
- weather protected Type I—an open machine with its ventilating passages so constructed as to minimize the entrance of rain, snow, and airborne particles to the electric parts, and having ventilating openings constructed to prevent direct access to live metal or rotating parts. The openings are small enough to prevent the passage of a probe as defined by NEMA MG 1.
- weather protected Type II—an open, weather-protected machine having its ventilating passages at both intake and discharge so arranged that high velocity air and airborne particles blown into the machine by storms or high winds can be discharged without entering the internal ventilating passages leading directly to the electric parts of the machine itself. The normal path of the ventilating air that enters the electric parts of the machines is arranged by baffling or through a separate housing to provide at least three abrupt changes in direction, none of which are less than 90 degrees. In addition, an area of low velocity not exceeding 600 feet per minute is provided in the intake air path to minimize the possibility of moisture or dirt being carried into the electric parts of the machine.
- Certain exemplary embodiments comprise a system comprising: a motor stator comprising: a motor frame comprising a core shell adapted to surround a stator core comprising: a plurality of panels; a plurality of apertures located in one or more of said panels; and a first plurality of non-destructively removable plates adapted to effect a first direction of stator core air flow by impeding airflow through a first selectable sub-plurality of said plurality of apertures.
-
FIG. 1 is a cut-away view of an exemplary embodiment of asystem 1000, which can comprise a plurality of components.System 1000 can comprise anelectric motor 1100, which can be, can be configured to qualify as, and/or can comprise one or more components configured to qualifymotor 1100 as, a National Electrical Manufacturers Association (NEMA) weather protected motor, a weather protected Type II motor, a Totally Enclosed Air-to-Air Cooled (TEAAC) motor, and/or a Totally Enclosed Water-to-Air Cooled (TEWAC) motor, etc. -
Motor 1100 can comprise arotor 1200 and astator 1400.Rotor 1200 can comprise a motor shaft 1220,fans rotor core 1280.Stator 1400 can comprise amotor frame 1500, which can comprise a core shell 1600, which can be adapted to at least partially surround astator core 1440.Rotor 1200,stator 1400, motor shaft 1220,rotor core 1280, and/orstator core 1440 can define a longitudinal axis A-A ofmotor 1100. - Core shell 1600 can comprise a plurality of
axial ribs 1620 and/or a plurality ofcircumferential ribs 1640, which can support and/or border a plurality of longitudinal panels 1650, and/or define and/or border a plurality ofapertures 1660 defined and/or located in one or more of panels 1650. Core shell 1600 can be comprised of 4, 5, 6, 7 8, 9, 10 or more longitudinal panels 1650, which can be arranged to form a regular polygon when viewed from an axial end ofmotor 1100, and/or each of which can have a substantially similar longitudinal dimension. -
Fan 1240 and/orfan 1260, which can be coupled and/or mounted torotor 1200 and/or motor shaft 1220, can be adapted to continuously force and/or induce air to circulate and/or flow through, along, near, and/or aroundstator core 1440, between statorradial vents 1460, withincore shell passage 1680, and/or throughapertures 1660. Stator core air flow can be deflected and/or effected by one or more air baffles 1700, which can be coupled to core shell 1600. The configuration shown inFIG. 1 can be considered an X ventilation scheme for a motor. -
FIG. 2 is a cut-away view of an exemplary embodiment of asystem 2000, which comprise amotor 2100 that is similar in some respects tomotor 1100 ofFIG. 1 . -
Motor 2100 can differ in that it can utilize asingle fan 2200, a somewhat differently oriented air baffle(s) 2300, and/or one or more non-destructivelyremovable plates 2400 that can attachably, snuggly, snapably, and/or non-destructively removably fit within correspondingapertures 2500 ofcore shell 2600 and/or can effect a direction of stator core air flow by covering and/or uncovering a selected set and/or sub-set ofapertures 2500. Thus, stator core air flow can be effected bybaffle 2300 and/or one or more ofplates 2400, such as to change an overall and/or localized pattern, velocity, flowrate, direction, etc. of the stator air flow. For example, by removing certainpredetermined plates 2400 from theircorresponding apertures 2500, stator core air flow can be effected to flow across a heat exchanger (shown inFIGS. 17 and 19 ). The configuration shown inFIG. 2 can be considered a Z ventilation scheme for a motor. -
FIG. 3 is a schematic of an exemplary internal air flow through asystem 3000, which is configured as an X ventilation scheme, whereby cooling and/or ventilating air enters the motor from both of its longitudinal ends, flows along and through the rotor and/or stator, and substantially exits via one or more apertures in the motor's core shell. -
FIG. 4 is a schematic of an exemplary internal air flow through asystem 4000, which is configured as a Z ventilation scheme, whereby cooling and/or ventilating air enters the motor from one of its longitudinal ends, flows along and through the rotor and/or stator, and substantially exits via an opposite longitudinal end. Note that in the Z ventilation scheme, some and/or all of the apertures in the motor's core shell are closed by the non-destructively removable plates. -
FIG. 5 is an end view, andFIG. 6 is a side view, of an exemplary internal air flow through asystem 5000, which can comprise a Weather Protected II (WPII) style motor configured in the X (i.e., “double end to center”) ventilation scheme. -
FIG. 7 is an end view, andFIG. 8 is a side view, of an exemplary internal air flow through asystem 7000, which can comprise a WPII style motor configured in the Z (i.e., “end to end”) ventilation scheme. Note that in the Z ventilation scheme,removable plates 7100 can cover the apertures in the core shell, while in the X ventilation scheme, these plates can be removed from the apertures. -
FIG. 9 is an end view, andFIG. 10 is a side view, of an exemplary internal air flow through asystem 9000, which can comprise a Totally Enclosed Air-to-Air Cooled (TEACC) style motor configured in the X (i.e., “double end to center”) ventilation scheme.FIG. 11 is an end view, andFIG. 12 is a side view, of an exemplary internal air flow through asystem 11000, which can comprise a TEACC style motor configured in the Z (i.e., “end to end”) ventilation scheme. - Note that the same TEAAC enclosure can be used for both the X and the Z ventilation scheme by utilizing
removable plates 11100. Note also that air flow within the TEACC enclosure can be effected by the positioning ofenclosure panels 11200. -
FIG. 13 is an end view, andFIG. 14 is a side view, of an exemplary internal air flow through asystem 13000, which can comprise a Totally Enclosed Water-to-Air Cooled (TEWAC) style motor configured in the X (i.e., “double end to center”) ventilation scheme.FIG. 15 is an end view, andFIG. 16 is a side view, of an exemplary internal air flow through asystem 15000, which can comprise a TEWAC style motor configured in the Z (i.e., “end to end”) ventilation scheme. Note that the same TEAAC enclosure can be used for both the X and the Z ventilation scheme by utilizingremovable panels 15100. Note also that air flow within the TEWAC enclosure can be effected by the positioning ofenclosure panels 15200. -
FIG. 17 is a side view of an exemplary internal air flow through asystem 17000, that is configured for X ventilation, and which can comprise amotor 17100 coupled to a TEAAC-style enclosure 17200 that surrounds aheat exchanger 17300 adapted to cool air circulated supplied thereto, such as air circulated along the stator core.Enclosure panels 17400 can be attached as shown to prevent air from by-passingheat exchanger 17300.FIG. 18 is a side view of an exemplary internal air flow through asystem 18000, which can be substantially similar tosystem 17000, except thatsystem 18000 is configured for Z ventilation, and/or can have enclosure panels removed to allow air to flow through the heat exchanger. -
FIG. 19 is a side view of an exemplary internal air flow through asystem 19000, that is configured for X ventilation, and which can comprise a TEWAC-style enclosure that surrounds a heat exchanger 19300 adapted to cool air circulated supplied thereto, such as air circulated along the stator core.Enclosure panels 19100 can be removed to allow air to flow through heat exchanger 19300. -
Enclosure panel 19200 can be attached as shown to prevent air from by-passing heat exchanger 19300.FIG. 20 is a side view of an exemplary internal air flow through asystem 20000, which can be substantially similar tosystem 19000, except thatsystem 20000 is configured for Z ventilation, and/or can haveenclosure panels 20100 attached as shown to prevent air from by-passing the heat exchanger, and/or can haveenclosure panel 20200 removed to allow air to flow through the heat exchanger. -
FIG. 21 is a flowchart of an exemplary embodiment of amethod 21000. Atactivity 21100, one or more apertures in the core shell can be covered. Atactivity 21200, the motor can be operated. Atactivity 21300, air can be circulated, such as by virtue of the motor operating and/or its fan rotating. Atactivity 21400, the circulated air can be cooled, such as via a heat exchanger. Atactivity 21500, one or more of the covers can be removed. Atactivity 21600, at least some of the removed covers can be relocated to cover different apertures. Atactivity 21700, at least some panels and/or baffles can be adjusted. Atactivity 21800, air flow, the cooling of the motor, and/or the performance of the motor, can be affected by changes to the apertures, covers, panels, and/or baffles. Thus, certain exemplary motors can be easily and/or selectably reconfigured, during manufacturing, after delivery, after installation, and/or after being placed in operation, via the inclusion and/or removal of removable plates to enable an X, Z, and/or another predetermined type of ventilation while otherwise utilizing the same and/or substantially the same mechanical components for the motor. - Still other embodiments will become readily apparent to those skilled in this art from reading the above-recited detailed description and drawings of certain exemplary embodiments. It should be understood that numerous variations, modifications, and additional embodiments are possible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of this application. For example, regardless of the content of any portion (e.g., title, field, background, summary, abstract, drawing figure, etc.) of this application, unless clearly specified to the contrary, such as via an explicit definition, there is no requirement for the inclusion in any claim herein (or of any claim of any application claiming priority hereto) of any particular described or illustrated characteristic, function, activity, or element, any particular sequence of activities, or any particular interrelationship of elements. Moreover, any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated. Further, any activity or element can be excluded, the sequence of activities can vary, and/or the interrelationship of elements can vary. Accordingly, the descriptions and drawings are to be regarded as illustrative in nature, and not as restrictive. Moreover, when any number or range is described herein, unless clearly stated otherwise, that number or range is approximate. When any range is described herein, unless clearly stated otherwise, that range includes all values therein and all subranges therein. Any information in any material (e.g., a United States patent, United States patent application, book, article, etc.) that has been incorporated by reference herein, is only incorporated by reference to the extent that no conflict exists between such information and the other statements and drawings set forth herein. In the event of such conflict, including a conflict that would render invalid any claim herein or seeking priority hereto, then any such conflicting information in such incorporated by reference material is specifically not incorporated by reference herein.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/219,585 US7345385B2 (en) | 2004-09-09 | 2005-09-02 | Method for ventilating a motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60852004P | 2004-09-09 | 2004-09-09 | |
US11/219,585 US7345385B2 (en) | 2004-09-09 | 2005-09-02 | Method for ventilating a motor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060055256A1 true US20060055256A1 (en) | 2006-03-16 |
US7345385B2 US7345385B2 (en) | 2008-03-18 |
Family
ID=35445936
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/575,027 Active 2026-12-06 US7777374B2 (en) | 2004-09-09 | 2005-08-23 | Electrical appliance |
US11/219,585 Active 2025-12-29 US7345385B2 (en) | 2004-09-09 | 2005-09-02 | Method for ventilating a motor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/575,027 Active 2026-12-06 US7777374B2 (en) | 2004-09-09 | 2005-08-23 | Electrical appliance |
Country Status (6)
Country | Link |
---|---|
US (2) | US7777374B2 (en) |
EP (1) | EP1787380B1 (en) |
CN (2) | CN101048927B (en) |
BR (1) | BRPI0515097B1 (en) |
RU (1) | RU2340066C1 (en) |
WO (1) | WO2006026952A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008039545A1 (en) * | 2006-09-28 | 2008-04-03 | Siemens Energy & Automation, Inc. | Devices and/or systems for mounting an auxiliary blower |
US20080270093A1 (en) * | 2007-04-27 | 2008-10-30 | Scott Kreitzer | Devices, systems, and methods for designing a motor |
US20100033042A1 (en) * | 2008-08-06 | 2010-02-11 | Thermal Motor Innovations , LLC | Totally enclosed heat pipe cooled motor |
US20100252335A1 (en) * | 2009-04-03 | 2010-10-07 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Capacitive Touchscreen or Touchpad for Finger and Active Stylus |
WO2010115539A1 (en) | 2009-04-08 | 2010-10-14 | Sew-Eurodrive Gmbh & Co. Kg | Electric motor |
US20150256045A1 (en) * | 2014-03-06 | 2015-09-10 | Honeywell International Inc. | Multi-directional air cooling of a motor using radially mounted fan |
JP2015171186A (en) * | 2014-03-05 | 2015-09-28 | 東芝三菱電機産業システム株式会社 | Totally-enclosed rotary electric machine |
US20200389069A1 (en) * | 2019-06-05 | 2020-12-10 | Hanwha Powersystems Co., Ltd. | Rotary device |
US11362563B2 (en) | 2017-05-27 | 2022-06-14 | Siemens Aktiengesellschaft | Cooling enclosure and motor |
US11715988B2 (en) * | 2020-04-08 | 2023-08-01 | Abb Schweiz Ag | System and methods for multiple configurations to cool an electric motor |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008016889B4 (en) * | 2008-04-02 | 2014-03-20 | Siemens Aktiengesellschaft | Housing attachment for an electrical machine with degree of protection IP 24W |
CN101350543B (en) * | 2008-09-12 | 2010-09-29 | 永济新时速电机电器有限责任公司 | Low-temperature lifting wind power generator |
EP2182618B1 (en) * | 2008-10-28 | 2012-10-17 | Siemens Aktiengesellschaft | Arrangement for cooling of an electrical machine |
DK2182611T3 (en) * | 2008-10-28 | 2013-03-25 | Siemens Ag | Device for cooling an electrical appliance |
JP5358667B2 (en) * | 2009-02-27 | 2013-12-04 | 株式会社日立製作所 | Permanent magnet generator |
US8159094B2 (en) * | 2009-03-11 | 2012-04-17 | Nidec Motor Corporation | Electric motor having fluid circulation system and methods for cooling an electric motor |
EP2483995A2 (en) * | 2009-10-01 | 2012-08-08 | Abb Ab | A cooling system for an electrical machine |
DE102009050004A1 (en) * | 2009-10-21 | 2011-04-28 | Voith Patent Gmbh | Electric generator |
CN102804552B (en) * | 2010-02-05 | 2015-11-25 | 信越化学工业株式会社 | Permanent magnet type rotary machine |
KR20110112074A (en) * | 2010-04-06 | 2011-10-12 | 삼성전자주식회사 | Substrate Processing Apparatus and Method |
DE102010029986A1 (en) | 2010-06-11 | 2011-12-15 | Siemens Aktiengesellschaft | Dynamoelectric machine with air-liquid cooling |
US20120222844A1 (en) * | 2011-03-04 | 2012-09-06 | General Electric Company | Rotating machine apparatus |
DE102011006844A1 (en) * | 2011-04-06 | 2012-10-11 | Siemens Aktiengesellschaft | Electric machine |
DE102011052128A1 (en) | 2011-07-26 | 2013-01-31 | Ventops UG ( haftungsbeschränkt) | Radiator, in particular for electric motors or wind power generators, and method for producing a cooling module for a radiator |
TWI455460B (en) * | 2011-12-16 | 2014-10-01 | Ind Tech Res Inst | Electric machine with dual air/water cooling mechanism |
EP2680408B1 (en) * | 2012-06-26 | 2014-12-17 | Etel S. A.. | Frame with integrated cooling for an electric drive |
US9158872B2 (en) | 2012-09-13 | 2015-10-13 | Siemens Industry, Inc. | Apparatus, systems, and methods for increasing airflow through induction motors |
DE102012219122A1 (en) | 2012-10-19 | 2014-04-24 | Siemens Aktiengesellschaft | Electric machine and method for cooling an electrical machine |
US9331550B2 (en) * | 2013-06-17 | 2016-05-03 | Honeywell International Inc. | Air cooling of a motor using radially mounted fan |
WO2015120914A1 (en) | 2014-02-17 | 2015-08-20 | Siemens Aktiengesellschaft | Electrical machine having a frame and sleeve |
JP6110338B2 (en) * | 2014-05-23 | 2017-04-05 | 東芝三菱電機産業システム株式会社 | Rotating electric machine |
US10669727B2 (en) | 2015-09-16 | 2020-06-02 | Owens Corning Intellectual Capital, Llc | Loosefill insulation blowing machine |
RU2622581C2 (en) * | 2015-10-21 | 2017-06-16 | Открытое акционерное общество "Троицкий электромеханический завод" | Air-water heat exchanger |
CN105406648B (en) * | 2015-12-12 | 2018-11-06 | 中船重工电机科技股份有限公司 | A kind of double wind path water-cooled machine cooling systems |
US9975415B2 (en) * | 2016-02-16 | 2018-05-22 | General Electric Company | Cooling arrangement for a motor of a vehicle |
US10763727B2 (en) * | 2016-08-30 | 2020-09-01 | Siemens Industry, Inc. | Heat exchanger for electric machines with double end to center cooling |
US11070101B2 (en) | 2018-01-18 | 2021-07-20 | Ge Aviation Systems Llc | Method and apparatus for cooling an rotor assembly |
CN109347254A (en) * | 2018-10-31 | 2019-02-15 | 中车永济电机有限公司 | The directly cooling doubly-fed wind turbine of air |
CN109245429A (en) * | 2018-10-31 | 2019-01-18 | 中车永济电机有限公司 | Protection bellows chamber for air directly cooled machine |
EP3840189A1 (en) | 2019-12-20 | 2021-06-23 | Volvo Car Corporation | Rotor air cooling system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US900977A (en) * | 1906-03-26 | 1908-10-13 | Allis Chalmers | Dynamo-electric machine. |
US3461328A (en) * | 1966-06-07 | 1969-08-12 | Drouard Moteurs | Externally prismatic shaped electromagnetic rotary machine |
US4520284A (en) * | 1983-08-12 | 1985-05-28 | Eaton Corporation | Rolled housing for eddy current coupling |
US4544855A (en) * | 1983-03-10 | 1985-10-01 | Bbc Brown, Boveri & Company Limited | Gas cooled alternating current machine |
US5698925A (en) * | 1994-06-17 | 1997-12-16 | Moteurs Leroy-Somer | Slotted wound stator for an electrical rotating machine, a method for manufacturing such a stator and a machine comprising such stator |
US6750573B1 (en) * | 2003-02-06 | 2004-06-15 | Emerson Electric Co. | Weather protected modular motor enclosure |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4348604A (en) * | 1980-06-13 | 1982-09-07 | General Dynamics Corp. | Totally enclosed air cooled electrical machines |
JPS5740344A (en) | 1980-08-20 | 1982-03-05 | Mitsubishi Electric Corp | Wholly closed cooling type electric rotary machine |
JPS60219939A (en) | 1984-04-13 | 1985-11-02 | Hitachi Ltd | Air cooler for totally enclosed external fan type rotating electric machine |
SU1403247A1 (en) | 1984-06-21 | 1988-06-15 | Всесоюзный Научно-Исследовательский Институт Электромашиностроения | Stator case of electric machine with forced exhaust ventilation units |
JPS61285039A (en) | 1985-06-07 | 1986-12-15 | Hitachi Ltd | Ventilation box for double-current cooling rotary electric machine |
DE3724186A1 (en) * | 1987-07-17 | 1989-01-26 | Siemens Ag | ELECTRIC MACHINE WITH CLOSED COOLING CIRCUIT |
GB2289992B (en) * | 1994-05-24 | 1998-05-20 | Gec Alsthom Ltd | Improvements in or relating to cooling arrangements in rotating electrical machines |
US5783892A (en) * | 1995-06-26 | 1998-07-21 | Kabushiki Kaisha Toshiba | Stator for dynamoelectric machines |
CN2244262Y (en) * | 1995-08-14 | 1997-01-01 | 南阳防爆电机厂 | Separable water cooling type explosion-proof motor |
RU2089033C1 (en) | 1996-01-12 | 1997-08-27 | Горелик Лев Вениаминович | Electrical machine |
DE19645272A1 (en) * | 1996-11-02 | 1998-05-07 | Asea Brown Boveri | Gas-cooled electrical machine |
JP3289698B2 (en) * | 1998-11-25 | 2002-06-10 | 株式会社日立製作所 | Rotating electric machine |
DE19856455A1 (en) * | 1998-12-03 | 2000-06-08 | Asea Brown Boveri | Generator cooling with cooler run-on mixture |
DE19856456A1 (en) * | 1998-12-03 | 2000-06-08 | Asea Brown Boveri | Gas-cooled electrical machine with an axial fan |
US6246134B1 (en) * | 1999-07-07 | 2001-06-12 | Siemens Westinghouse Power Corporation | Apparatus and method for applying totally enclosed air-to-air cooler to electrical power generator |
GB9920581D0 (en) | 1999-09-01 | 1999-11-03 | Alstom Uk Ltd | Improvements in rotating electrical machines |
DE69923799T2 (en) * | 1999-09-03 | 2006-02-09 | Hitachi, Ltd. | DYNAMOELECTRIC MACHINE |
EP1447899A1 (en) * | 2003-02-13 | 2004-08-18 | Loher GmbH | Dynamoelectric machine |
RU37281U1 (en) | 2003-12-01 | 2004-04-10 | Научно-производственное объединение "ЭЛСИБ" Открытое акционерное общество | ELECTRIC MACHINE |
-
2005
- 2005-08-23 RU RU2007112774/09A patent/RU2340066C1/en active
- 2005-08-23 BR BRPI0515097A patent/BRPI0515097B1/en not_active IP Right Cessation
- 2005-08-23 US US11/575,027 patent/US7777374B2/en active Active
- 2005-08-23 WO PCT/DE2005/001489 patent/WO2006026952A1/en active Application Filing
- 2005-08-23 EP EP05779616A patent/EP1787380B1/en active Active
- 2005-08-23 CN CN2005800366017A patent/CN101048927B/en active Active
- 2005-09-02 US US11/219,585 patent/US7345385B2/en active Active
- 2005-09-08 CN CN2005800379426A patent/CN101103510B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US900977A (en) * | 1906-03-26 | 1908-10-13 | Allis Chalmers | Dynamo-electric machine. |
US3461328A (en) * | 1966-06-07 | 1969-08-12 | Drouard Moteurs | Externally prismatic shaped electromagnetic rotary machine |
US4544855A (en) * | 1983-03-10 | 1985-10-01 | Bbc Brown, Boveri & Company Limited | Gas cooled alternating current machine |
US4520284A (en) * | 1983-08-12 | 1985-05-28 | Eaton Corporation | Rolled housing for eddy current coupling |
US5698925A (en) * | 1994-06-17 | 1997-12-16 | Moteurs Leroy-Somer | Slotted wound stator for an electrical rotating machine, a method for manufacturing such a stator and a machine comprising such stator |
US6750573B1 (en) * | 2003-02-06 | 2004-06-15 | Emerson Electric Co. | Weather protected modular motor enclosure |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8167585B2 (en) | 2006-09-28 | 2012-05-01 | Siemens Industry, Inc. | Devices and/or systems for mounting an auxiliary blower |
WO2008039545A1 (en) * | 2006-09-28 | 2008-04-03 | Siemens Energy & Automation, Inc. | Devices and/or systems for mounting an auxiliary blower |
US20080270093A1 (en) * | 2007-04-27 | 2008-10-30 | Scott Kreitzer | Devices, systems, and methods for designing a motor |
US8209160B2 (en) * | 2007-04-27 | 2012-06-26 | Siemens Industry, Inc. | Devices, systems, and methods for designing a motor |
US20100033042A1 (en) * | 2008-08-06 | 2010-02-11 | Thermal Motor Innovations , LLC | Totally enclosed heat pipe cooled motor |
US8148858B2 (en) * | 2008-08-06 | 2012-04-03 | Hpev, Inc. | Totally enclosed heat pipe cooled motor |
US20100252335A1 (en) * | 2009-04-03 | 2010-10-07 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Capacitive Touchscreen or Touchpad for Finger and Active Stylus |
WO2010115539A1 (en) | 2009-04-08 | 2010-10-14 | Sew-Eurodrive Gmbh & Co. Kg | Electric motor |
JP2015171186A (en) * | 2014-03-05 | 2015-09-28 | 東芝三菱電機産業システム株式会社 | Totally-enclosed rotary electric machine |
US20150256045A1 (en) * | 2014-03-06 | 2015-09-10 | Honeywell International Inc. | Multi-directional air cooling of a motor using radially mounted fan |
US9991759B2 (en) * | 2014-03-06 | 2018-06-05 | Honeywell International Inc. | Multi-directional air cooling of a motor using radially mounted fan and axial/circumferential cooling fins |
US11362563B2 (en) | 2017-05-27 | 2022-06-14 | Siemens Aktiengesellschaft | Cooling enclosure and motor |
US20200389069A1 (en) * | 2019-06-05 | 2020-12-10 | Hanwha Powersystems Co., Ltd. | Rotary device |
US12009731B2 (en) * | 2019-06-05 | 2024-06-11 | Hanwha Powersystems Co., Ltd | Rotary device with a fan mounted outside a housing to introduce external air into the housing |
US11715988B2 (en) * | 2020-04-08 | 2023-08-01 | Abb Schweiz Ag | System and methods for multiple configurations to cool an electric motor |
Also Published As
Publication number | Publication date |
---|---|
BRPI0515097B1 (en) | 2018-05-08 |
CN101103510B (en) | 2011-06-08 |
EP1787380A1 (en) | 2007-05-23 |
US20080238224A1 (en) | 2008-10-02 |
CN101048927B (en) | 2010-12-08 |
CN101103510A (en) | 2008-01-09 |
RU2340066C1 (en) | 2008-11-27 |
BRPI0515097A (en) | 2008-07-08 |
US7777374B2 (en) | 2010-08-17 |
US7345385B2 (en) | 2008-03-18 |
EP1787380B1 (en) | 2012-07-04 |
CN101048927A (en) | 2007-10-03 |
WO2006026952A1 (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7345385B2 (en) | Method for ventilating a motor | |
US7348697B2 (en) | System for ventilating a motor | |
US4391570A (en) | Apparatus for cooling a ceiling mounted fan motor | |
CN114026972B (en) | Heat dissipation cabinet and communication equipment | |
US8167585B2 (en) | Devices and/or systems for mounting an auxiliary blower | |
EP3054565A1 (en) | Cooling arrangement | |
CN103004062A (en) | Totally-enclosed fan-cooled motor | |
JP2003503995A (en) | Indirect cooling of motor driven fan | |
TW201212495A (en) | Rotating electrical machine and wind power generation system | |
US20090020520A1 (en) | Heater assembly | |
US4807354A (en) | Method of rearranging components of a dynamoelectric machine | |
US11715988B2 (en) | System and methods for multiple configurations to cool an electric motor | |
US11916467B2 (en) | Slip ring system with improved cooling | |
US10845065B1 (en) | Air fan with ice compartment | |
US20080179973A1 (en) | Methods for coupling an auxiliary blower to an electric motor | |
US20100141063A1 (en) | Cooling frame for electric motors | |
JP4857874B2 (en) | Rotating electric machine | |
CN221828390U (en) | High voltage room cabinet of photovoltaic box substation | |
CN220732151U (en) | Electric power automation protector | |
CN116154640A (en) | Multifunctional distribution box | |
KR20130005843A (en) | A radiate heat device of motor | |
JP2024012997A (en) | electrical equipment | |
CN214316088U (en) | Filtering and ventilating device | |
RU2280305C1 (en) | Electrical machine using magnetic bearings | |
US20240258880A1 (en) | Rotary electrical machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIEMENS ENERGY & AUTOMATION, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KREITZER, SCOTT;REEL/FRAME:017274/0191 Effective date: 20051103 |
|
AS | Assignment |
Owner name: SIEMENS ENERGY & AUTOMATION, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRELTZER, SCOTT;REEL/FRAME:017169/0250 Effective date: 20051103 |
|
AS | Assignment |
Owner name: SIEMENS ENERGY & AUTOMATION, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KREITZER, SCOTT;REEL/FRAME:017866/0284 Effective date: 20051103 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SIEMENS INDUSTRY, INC.,GEORGIA Free format text: MERGER;ASSIGNOR:SIEMENS ENERGY AND AUTOMATION AND SIEMENS BUILDING TECHNOLOGIES, INC.;REEL/FRAME:024411/0223 Effective date: 20090923 Owner name: SIEMENS INDUSTRY, INC., GEORGIA Free format text: MERGER;ASSIGNOR:SIEMENS ENERGY AND AUTOMATION AND SIEMENS BUILDING TECHNOLOGIES, INC.;REEL/FRAME:024411/0223 Effective date: 20090923 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: SIEMENS LARGE DRIVES LLC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS INDUSTRY, INC.;REEL/FRAME:065191/0604 Effective date: 20230927 |
|
AS | Assignment |
Owner name: INNOMOTICS LLC, GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS LARGE DRIVES LLC;REEL/FRAME:065225/0389 Effective date: 20230530 |