US20060053396A1 - Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information - Google Patents
Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information Download PDFInfo
- Publication number
- US20060053396A1 US20060053396A1 US11/262,736 US26273605A US2006053396A1 US 20060053396 A1 US20060053396 A1 US 20060053396A1 US 26273605 A US26273605 A US 26273605A US 2006053396 A1 US2006053396 A1 US 2006053396A1
- Authority
- US
- United States
- Prior art keywords
- logic
- design
- partitions
- data
- physical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/394—Routing
- G06F30/3947—Routing global
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/392—Floor-planning or layout, e.g. partitioning or placement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/06—Power analysis or power optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/12—Timing analysis or timing optimisation
Definitions
- the present invention relates generally to methods and systems used to create efficient physical implementations from high level descriptions of electronic designs and, in particular, to a software system and method that optimizes Register-Transfer-Level (RTL) descriptions with respect to performance parameters including area, timing, and power, prior to logic synthesis, floorplanning, placement and routing.
- RTL Register-Transfer-Level
- EDA Electronic Design Automation
- FIG. 1 illustrates a typical top-down design process.
- the primary entry point into the top-down design flow is a high level functional description, at behavioral-level or RTL, of an integrated circuit design expressed in a Hardware Description Language (HDL).
- HDL Hardware Description Language
- This design is coupled with various design goals, such as the overall operating frequency of the Integrated Circuit (IC), circuit area, power consumption, and the like.
- top-down methodology uses two overlapping processes, a front-end flow, and a back-end flow. Each of these flows involve multiple time consuming iterations, and the exchange of very complex information.
- the RTL model is manually partitioned by the designer into various functional blocks the designer thinks best represents the functional and architectural aspects of the design.
- logic synthesis tools convert the functional description into a detailed gate-level network (netlist) and create timing constraints based on a statistical wire-load estimation model and a pre-characterized cell library for the process technology that will be used to physically implement the integrated circuit.
- the gate-level netlist and timing constraints are then provided to the back-end flow to create a floorplan, and then to optimize the logic.
- the circuit is then placed and routed by the place-and-route tool to create a physical layout.
- parasitic extraction and timing tools typically by the circuit fabricator feed timing data back to the logic synthesis process so that a designer can iterate on the design until the design goals are met.
- top-down design methodology has failed to produce efficient physical implementations of many circuit designs that take full advantage of the capability of advanced IC manufacturing processes. This is evident in the growing “design gap” between what semiconductor vendors can manufacture with today's deep sub-micron processes and what IC designers can create using top-down EDA design tools.
- the latest 0.18 ⁇ m CMOS process can fabricate silicon die with 10 million gates, running at speeds in excess of 500 MHz.
- designers using conventional top-down EDA tools struggle with the creation, analysis, and verification of integrated circuits having 0.5-1 million gates, running at 150 MHz.
- top-down methodology arises from its reliance on statistical wire-load models proved to be inadequate in wire-delay dominated deep sub-micron digital systems. Timing in deep sub-micron integrated circuits is dominated by interconnect delays rather than gate delays. Conventional top-down design tools, such as behavioral and logic synthesis, were originally designed in an era when gate delays dominated chip timing. These tools use inaccurate, statistical wire-load estimates to model wiring parasitics at early stages in the design cycle, and the effects of these inaccuracies are propagated throughout the rest of the design methodology.
- timing-convergence problem To overcome the timing model inaccuracies, the designer engages in excessive and time-consuming iterations of logic synthesis, floorplanning, logic optimization, and place-and-route in attempting to converge on the timing constraints for the circuit. This iterative loop is referred to as the timing-convergence problem.
- Design efficiency suffers due to design over-constraint (timing non-convergence) or under-constraint (loss of performance and density), or some combination of both for various different partitions of the integrated circuit.
- top-down methodology requires a cumbersome netlist hand-off between front-end and back-end design cycles. Complex bi-directional information transfer occurs at the overlap between front-end and back-end iteration loops.
- the diverse design expertise required to effectively manage the top-down design process is rare and not commonly available to a typical design team. Design inefficiency causes the costly under-utilization of advanced IC manufacturing processes.
- the iterative nature of the top-down design methodology requires long design time and large design teams, often not available or even feasible in a competitive design environment characterized by short product life-cycles and short time-to-market requirements. Thus, achieving rapid timing convergence while satisfying density, power, and productivity constraints for high performance complex systems is a daunting challenge facing the electronic design industry today.
- the present invention overcomes the limitations of the conventional top-down methodology with an RTL optimization system and method that enhances existing top-down EDA systems by implementing an automatic performance-driven design paradigm.
- the RTL optimization system of the present invention implements automatic hierarchical structured custom design and delivers significant improvements in performance, density, power, and productivity over the existing top-down design methodology.
- the RTL design methodology of the present invention enables the user to enter, analyze, debug, optimize, and implement their designs by working exclusively with RTL models before logic synthesis. Full-chip design, analysis, and optimization run orders-of-magnitude faster than conventional gate-level tools, thereby enabling truly interactive design.
- the RTL design methodology and system of the present invention uses placement based wire load models to capture the performance characteristics of the known physical implementations of individual partitions of an electronic design, and of the overall electronic design itself, prior to any logic synthesis. This performance data is used to optimize the partitioning, floorplanning, and routing of the electronic design in order to find a known solution to design goals.
- This solution defines the physical implementation of the electronic design at the partition and chip level and thus constrains the back-end flow so that only a single pass through conventional logic synthesis, place-and-route, and so forth is required.
- the hand-off between the RTL optimization system and the conventional back-end flow includes the RTL model along with chip and block level netlists, floorplans, routing, aspect ratios and areas, pin assignments, output loads, input, output and internal timing constraints, placement based wire loads for wires within and between partitions, and command scripts for controlling back-end tools.
- the back-end flow can be fully constrained to a single pass, thereby accomplishing true RTL level hand-off.
- placement based wire load models are used throughout the RTL optimization process to characterize the performance of logic structures, partitions, and the overall chip or electronic design. This performance characterization of the timing, area, power, and other performance attributes is used to optimize the electronic design at the RTL level.
- This feature eliminates the conventional requirement of logic synthesis, floorplanning, and routing normally needed to capture the performance characteristics of the physical implementation.
- Another feature of the present invention is the ability to fully characterize the performance of a logic structure using performance data of a number of physical implementations of the logic structure derived from a placement based wire load model.
- Yet another feature of the present invention is the generation of such performance data for a variety of a physical implementations to create a fully characterized library, here called a library of logic building blocks or “LBBs”.
- LBB is a high level, technology-independent description of a logic structure that has performance data fully characterizing its performance envelope over a range of different physical implementations.
- the performance data preferably quantifies the relationship between the area, circuit delay, and output load of the logic structure for a number of different physical implementations.
- This performance data is created by placing and routing each physical implementation to create a placement based wire load model.
- the performance data may be characterized further for both random logic and datapath implementations.
- the performance data preferably defines these area, timing and output load relationships for each of a number of bit widths, and a number of driver sizes for various typical loading conditions.
- a LBB may have multiple implementations representing different area and speed tradeoffs.
- the performance data of a LBB for these different physical implementations thus defines its entire performance envelope.
- LBBs range from simple gates (inverter, NAND, latch, flip-flop) to complex logic structures such as adder, finite state machine, memory, and encoder.
- LBBs elevates the pre-characterized library approach from the conventional gate level to a complex-structure module level, and allows the accurate performance data which characterizes the LBB to be used at the RTL design level to optimize the partitioning and floorplanning of the electronic design.
- Another feature of the present invention is the fully automatic partitioning of the RTL model and subsequent automatic refinement of the partitions during chip optimization.
- Automatic partitioning creates partitions that optimize the local and global floorplanning, routing, timing and so forth, using the placement based wire load information.
- a high level chip optimization process can induce repartitioning to move logic between partitions, combine or split partitions as needed to meet design goals and generate timing and other constraints.
- This automatic process removes the burden from the designer of having to manually partition the design and allocate timing between partitions, only to find from the subsequent back-end flow that such timing allocations and partitions are either infeasible or suboptimal.
- FIG. 1 illustrates the overall design flow in accordance with the present invention.
- the present invention first automatically partitions the RTL model into a number of physical partitions. This automatic partitioning transforms the logical hierarchy of functionality inherent in the RTL model into a physical hierarchy optimized for the chip-level physical implementation. The partitions are optimized to select local physical implementations given the current design goals. Chip optimization, including floorplanning, pin assignment, placement and routing, refines the partitioning, and enables simulation and analysis of timing for the entire chip, and generates additional design constraints. These constraints are fed back through the partitioning and optimization phases to finally converge on an overall timing and area solution.
- the design methodology and system of the present invention takes an RTL model source and converts it to a network of LBBs that efficiently represent a desired hardware implementation.
- the LBB network and hence the RTL model, is then automatically partitioned into a number of physical partitions, such as datapath, finite state machines, memories, hard macro blocks, and random logic partitions.
- This functional partitioning transforms the logical hierarchy of functionality inherent in the RTL model into a physical hierarchy optimized for the chip-level physical implementation.
- the physical hierarchy defines both the connectivity and hierarchical relationships of the partitions.
- a number of feasible block-level physical implementations are modeled automatically.
- a physical implementation is feasible for a partition if it meets timing and other design constraints defined for the partition, including at least a minimum operating frequency for the entire chip.
- the implementation model data is extracted from the performance data included in the LBBs of the physical partitions and the placement-based wire-load model of the partition.
- the range of feasible implementations for a partition will likely vary in area, aspect ratio, timing, and power consumption.
- Each implementation model includes a pin-to-pin timing model, a placement based wire load model for the partition, and a block-level floorplan with pin assignment.
- the next automatic process is a chip-level optimization which produces a first-pass floorplan of the integrated circuit and a set of chip-level design constraints for block-level partitioning refinement.
- the chip-level optimization uses the feasible block-level implementation models for all partitions, design constraints on chip area, aspect ratio, operating frequency and I/O signal timing, and a chip-level netlist for partition connectivity. Chip-level optimization iterates through the implementation models and performs floorplan creation and compaction, pin assignment, global routing, and global timing analysis.
- the partitions of the floorplan are further optimized based on the refined design constraints derived from chip-level optimization using structural partitioning.
- Structural partitioning may include moving LBBs between partitions to improve timing, or merging partitions into larger units, breaking partitions up into smaller units, or changing a partition's architecture type (e.g., from a datapath to a random logic partition) to improve packing density.
- Structural partitioning produces new block-level constraints for datapath and non-datapath partitions which improve timing and floorplan packing density.
- New partition implementation models based on refined constraints, along with the other data of the chip design are reintroduced to the chip optimization process for a second and final optimization pass.
- This second-pass includes a final selection of a physical implementation of all partitions, floorplanning, pin assignment, and global routing.
- implementation constraints including an optimal floorplan and placement-based wired load models at chip and block-level.
- implementation constraints preferably include partitioning constraints, including a structural RTL netlist for each physical block and top level connectivity; physical constraints, including area, aspect ratio, pin assignment, global wire routing path, and floorplan (chip and block-level); and timing constraints, including output load, input arrival time, output timing constraints, operating frequency, and placement-based wire load models; and command scripts.
- the front-end flow at best predicts the timing and area results to be generated by the back-end flow.
- the final set of design constraints from the second-pass chip optimization guarantees a known solution to timing convergence. This is because accurate placement-based wire-load has been used throughout the optimization process and the implementation of individual partitions has been proven feasible. Multiple rapid internal iterations between chip-level and block-level optimization ensure that design constraints for driving the back-end implementation are well-balanced and optimal.
- These block-level constraints represent a recipe to meet area and performance goals in a single pass through the back-end process, and therefore serve as an effective interface between front-end and back-end implementation in a RTL hand-off design flow.
- the present invention supports the above design flow as a built-in, pre-programmed sequence designed to reach timing convergence in a single pass through the back-end automatically for a majority of IC designs.
- the present invention provides facilities for manual interventions to refine the automatic result.
- the built-in optimization sequence can also be modified by the user to adapt the system to unique chip requirements.
- Manual entry points include control of physical hierarchy construction, control of LBB synthesis, partitioning, pin assignment, floorplan (block and chip-level), creation and selection of block level implementations, in-place optimization, and back-annotation.
- the present invention provides numerous advantages over conventional top-down EDA design systems.
- RTL analyses of the present invention run at interactive speeds, enabling micro-architecture optimization.
- the use of LBB and bus representation raises the design abstraction above the conventional bit-wise gate-level representation of a circuit to simplify and accelerate design representation, analysis, and visualization. Since the design flow is completely performance driven, altering the high level constraints (area, timing, power) will result in vastly different chip implementation. Thus, the designer is immediately able to alter the design at any stage of the design flow to test out various alternate designs. This encourages design exploration in a manner not possible with conventional EDA tools.
- Hierarchical partitioning of the RTL model into efficient silicon structures can be performed automatically, thereby reducing the time and expertise required to implement efficient design.
- links to back-end tools may be built to fully automate gate-level optimization and physical implementation.
- links to front-end tools may enable improved behavioral synthesis based on more accurate parasitics and timing estimates.
- the high-level LBB representation and cross-probing capability between multiple design views provide traceability across multiple design transformations and enable the use of the user-defined RTL model as the ‘golden’ source throughout the design process.
- This feature of the present invention is found in the user interface of the RTL optimization system. While the RTL optimization system dramatically restructures and modifies the architecture of the RTL model, the system designer's original source RTL files are preserved as a functional interface for analyzing and probing the electronic design. The designer can thereby identify familiar RTL objects and trace their instantiation through any of the partitions, LBBs, or other entities created by the RTL optimization system.
- the present invention essentially provides designers an interactive ‘virtual’ back-end environment which models physical effects and implementations, thereby enabling front-end micro-architectural optimization at the register transfer level before synthesis.
- the system automatically searches the solution space and derives an optimal solution for rapid timing convergence. It then generates all necessary data to drive back-end tools to implement that solution.
- the ability to achieve better silicon efficiency predictably and rapidly, while de-coupling the front-end loop and streamlining the back-end loop, enables a more productive RTL hand-off design paradigm.
- FIG. 1 illustrates a comparison of conventional top-down design methodology with the RTL optimization methodology of the present invention.
- FIG. 2 is a data-flow diagram of the RTL optimization system of the present invention.
- FIG. 3 is a flowchart of the LBB synthesis process.
- FIG. 4 is a flowchart of the LBB library calibration process.
- FIG. 5 is an illustration of a LBB Performance Table.
- FIG. 6 is a table of LBB types.
- FIG. 7 is a flowchart of the functional partitioning process for data-flow analysis.
- FIG. 8 is a flowchart of the functional partitioning process for control-flow analysis.
- FIG. 9 is a flowchart of the DP Builder process.
- FIG. 10 is an illustration of an example of datapath floorplanning and compaction.
- FIG. 11 is an illustration of a datapath macro.
- FIG. 12 is a flowchart of the random logic estimation process of the Non-DP Structure Estimator.
- FIG. 13 is a flowchart of the chip optimization process.
- FIG. 14 is an illustration of the user interface of the RTL optimization system.
- FIG. 2 there is shown a data-flow diagram of a RTL optimization system 200 for optimizing an electronic design in accordance with the present invention.
- the RTL optimization system 200 is designed to converge automatically on the best solution for an electronic design that satisfies the design goals.
- manual intervention for the purpose of design refinement is allowed.
- the system 200 operates on a conventional computer system, such as an Intel based personal computer using the Microsoft Corp.'s Windows NT operating system.
- the system 200 may be implemented by software product executing in the computer's memory.
- the system 200 includes an LBB synthesis module, a functional partitioner module, a structural partitioner module, a datapath builder module, a non-datapath structure estimator module, a chip optimization module, and a library calibrator module.
- the system 200 interfaces with conventional back-end tools including a memory compiler 230 , a datapath place-and-route tool 227 , a logic synthesis tool 228 , a floorplanner 229 , a full-chip place-and-route tool 231 , and timing and parasitic extraction engine 232 .
- conventional back-end tools including a memory compiler 230 , a datapath place-and-route tool 227 , a logic synthesis tool 228 , a floorplanner 229 , a full-chip place-and-route tool 231 , and timing and parasitic extraction engine 232 .
- the preferred entry point into the design flow is a RTL model 201 of an electronic design or system.
- the physical implementation of the electronic design can be an Integrated Circuit (IC), part of an IC, or multiple ICs on a circuit board.
- the RTL model 201 describes the function of the electronic system using a Hardware Description Language (HDL) such as Verilog or VHDL.
- HDL Hardware Description Language
- the RTL model 201 may be either directly written by a system designer, or generated from a behavioral model using behavioral synthesis.
- the RTL model 201 may be extracted directly from internal data structures of a behavioral model without undergoing RTL model construction.
- the RTL model 201 is synthesized 202 into a network of Logic Building Blocks (LBBs) 203 .
- LBB is a technology independent description of a logic structure that has performance data fully characterizing its performance envelope over a range of different physical implementations. Preferably the performance data quantifies the relationship between circuit delay and output load, for both random logic and datapath implementations of the LBB.
- This performance data defines the relationships for each of a plurality of bit widths, and for each of a plurality of driver sizes for various typical loading conditions, and for each of a plurality of feasible logic implementations.
- LBBs range from simple gates (inverter, NAND, latch, flip-flop) to complex logic structures such as adder, finite state machine, memory, and encoder. Storing this data in the LBB fully characterizes the performance envelope of the LBB over its range of feasible physical implementations and variations in area, aspect ratio, and implementation architecture.
- FIG. 3 shows the synthesis steps that transform an RTL model 201 into a LBB network 203 .
- the parser 301 converts HDL statements in the RTL model 201 into a language-neutral HDL object database 302 .
- HDL objects are mapped into generic LBBs to create a technology-independent LBB network by processing latch inference, ‘case’ constructs, ‘if’ constructs, assignments, and expressions. In this pass, the smallest LBB implementation is chosen as the initial candidate. In this case, only the area data in the performance tables 501 of the LBB library 220 is used.
- Bus signals are preserved as integral entities, not individual signals:
- HDL objects are mapped using the highest logic structure available in the LBB library 220 to reduce complexity.
- a multi-bit adder is represented as an integral adder LBB.
- conventional logic synthesis reduces the adder down to potentially hundreds of individual gates.
- a ‘case’ construct is mapped to a multiplexer and a decoder.
- the block diagram window 1404 in FIG. 14 shows a graphical representation of an example of a LBB network 203 .
- the logic of the technology-independent LBB network is optimized 304 .
- LBBs in the optimized network are mapped 305 into technology-specific LBBs derived from the calibrated LBB library 220 to produce the final LBB network 203 .
- LBBs are supported by a characterized LBB library 220 that represents the performance envelop of a large number of LBBs.
- LBB characterization is performed once, and off-line, by the library calibrator 204 when an IC fabrication process and a library is incorporated into the system 200 of the present invention.
- Inputs 221 to the library calibrator 204 consist of standard logic synthesis cell library, complex libraries for datapath, process technology data, implementation styles information, and implementation tool information.
- logical and physical implementations of each LBB are built and characterized by varying some or all, individually or in combination, of the following input parameters that affect the area and speed of a LBB physical implementation.
- LBB area and performance data are stored in two forms in the calibrated LBB library 220 for access by the system 200 during performance optimization: data tables and circuit generators.
- FIG. 5 illustrates the format of the LBB in the calibrated library 220 using data tables.
- each LBB is characterized by variations in implementation topology 502 , architecture 503 , bit width 504 , and driver size 505 .
- a performance table 501 quantifies the relationship between area, delay, and output load.
- An adder, shown in FIG. 5 is one example of a LBB with a rich set of implementation possibilities.
- a hard macro block represents less variation in implementation. It has only one fixed physical implementation and a pre-characterized timing model.
- FIG. 4 shows a flowchart for the LBB library calibrator 204 used to generate the data tables, with the complete characterization flow for a LBB with a full range of variations.
- it is determined 401 , 402 whether random logic and/or datapath implementations are available.
- variations of logic architecture 403 , 404 , bit width 405 , 406 , and driver size 407 , 408 are processed to generate 409 , 410 a placed and routed implementation.
- timing, area, and input capacitance are measured 411 , 412 . This capacitance information is used during timing analysis to compute the total load presented to the previous logic stage.
- This data is stored in the performance table for the appropriate implementation, architecture, bit width, and driver size.
- Pre-characterized scaling factors are used to scale the data in these tables to compensate for variation in process, temperature, and voltage.
- circuit generators or estimators fast enough to generate performance data based on input parameters at run-time are used. This approach eliminates the need for pre-characterization and storage of characterization data. Circuit generator results are cached so that circuits with the same configuration are generated only once.
- a single LBB may contain the equivalent of several hundred gates found in a typical synthesis library.
- FIG. 6 shows an example of a set of built-in LBB types sufficient for efficient representation of a typical digital system. All LBB types accept bus signals are represented as a single entity. All LBB types, except finite state machines and hard macros, are parameterized (n-bit width) to support bus operations.
- Chip-level design goals 219 include operating frequency, area, aspect ratio, chip IO timing, and IO pad locations. Timing convergence at minimum area is achieved through an alternating series of chip-level and block-level optimization.
- Functional partitioning is the first step in a chip-level timing convergence process by creating a first set of top-down constraints in terms of a network of physical partitions. It breaks the “chicken and egg” inter-dependency cycle between creating optimal block-level implementations before chip-level constraints are known and creating optimal chip-level constraints before block-level implementations are known. The cycle is broken by performing a first partitioning 206 of the LBB network 203 into physical partitions 207 , 208 . Since the chip-level constraints are not known at the functional partitioning 206 step, the process is designed to be self-correcting during structural partitioning 215 . Accordingly, the boundary between physical partitions are not required to be optimal at the functional partitioning stage.
- Functional partitioning is a structural recognition process.
- the functional partitioner 206 separates logic into well-understood silicon structures that have proven optimal logical and physical implementation techniques.
- the implementation of these silicon structures are supported by specialized implementation tools and libraries available commercially, such as Cadence Design Systems, Inc.'s SmartPath product.
- the well-understood physical structure and timing behavior of these silicon structures enable accurate ‘bottom-up’ estimations.
- DP datapath
- FSM finite state machine
- MEM memories
- RL random logic
- a partition contains one or more LBB.
- Datapath (DP) partitions contain data operators.
- Non-datapath partitions contain either FSMs, MEMs, hard macro block (HMAC), or RL.
- the functional partitioning 206 process creates a FSM partition and data-flow-logic partitions: DP, HMAC, and MEM partitions.
- Data-flow analysis is a depth-first traversal of bus signals across all hierarchy levels in the LBB network 203 .
- Data-flow analysis separates data operators, FSM, HMAC, and MEM from the LBB network by tracing bus connections. It further groups inter-connected data operators into a DP partition. Data operators in a DP partition can vary in bit-width. Independent bus systems in the design result in multiple independent DP partitions.
- FSMs conform to RTL modeling style well understood in present top-down design methodology.
- FSM is a basic LBB recognized at the synthesis step.
- Each FSM forms its own partition.
- Memories are regular blocks such as RAM, ROM, Cache, etc.
- the functional partitioner 206 encounters a memory block in the data signal traversal process, it creates a memory partition.
- Memory blocks are special data operators with data bus and control connections.
- Hard macro blocks are recognized from explicit instantiation in the RTL model. Each hard macro block forms an independent partition.
- Traversal begins with identifying 701 an initial list of I/O busses at the top-level hierarchy of the design under analysis. Beginning with a current bus, the bus is traced 702 to find a next LBB that is connected to the bus. A check 703 determines if the LBB has been visited before. If not, then the LBB is checked 704 to determine if it is a data operator for a datapath. If so, the LBB is checked 705 to determine if it connects with an existing DP partition. If so, the LBB is added 706 to the existing DP partition. Otherwise, a new DP partition is created 708 , and the LBB is added to it. In either case, any new untraversed busses connected to the LBB are added 710 to the bus list. Traversal of the bus list continues 714 until completed.
- the LBB was not a datapath operator, it is checked 707 to determine if it is a memory or a hard macro. For these LBBs, a new partition is created 711 , and again untraversed busses are added to the bus list 712 . Finally, if the LBB is not a memory or hard macro, it is checked 709 to determine if it is a finite state machine. Here, a FSM partition is created 713 .
- LBB is not a datapath operator, MEM, HMAC, or FSM then it is passed to control-flow analysis.
- a control analysis process ( FIG. 8 ) is used to form control logic partitions associated with partitions created in the data-flow analysis process.
- the control-flow analysis process of functional partitioning 206 creates random logic partitions using the data-flow-logic partitions (DP, MEM, HMAC) created in the data-flow analysis process as anchor points.
- Control-flow analysis performs depth-first forward traversal from the output control signals and backward traversal from the input control signals of all data-flow-logic to form closely associated control partitions. The close association between these control logic partitions and the data-flow logic they control form natural clusters in the chip-level floorplanning process.
- Control-flow analysis results in the non-datapath partitions 208 .
- FIG. 8 shows the application of a series of backward and forward traversals on DP, MEM, and HMAC physical partitions.
- the control logic of a DP partition 207 is formed by the combined effect of forward traversals 807 , 801 , and backward traversals 810 , 804 .
- the control logic of a MEM partition is formed by the combined effect of forward traversals 808 , 802 , and backward traversals 811 , 805 .
- Forward traversals 809 , 803 , and backward traversals 812 , 806 form the control logic of a HMAC partition.
- Depth-first forward traversals 801 , 802 , 803 are applied to input signals not driven by the logic output of a latch or flip-flop. If the traversal reaches a physical partition boundary, the chip boundary, a latch, or a flip-flop, the traversal on the current path stops. Any LBB encountered will be added to the current control partition if it has not previously been partitioned into a physical partition.
- Depth-first backward traversals 804 , 805 , 806 are applied to output signals. If the traversal reaches a physical partition boundary, the chip boundary, a latch, or a flip-flop, the traversal on the current path stops. Any LBB encountered will be added to the current control partition if it has not previously been partitioned into a physical partition.
- a random logic partition 813 is formed by the remaining LBBs not included in any control logic partitions. This random logic partition will be further divided into multiple random logic partitions if clusters of LBBs are unrelated.
- control-flow analysis process The effect of the control-flow analysis process is to maximize the likelihood that single-cycle logic stays in the same partition and a partition's input/output signals are latched.
- the combined effect of data-flow and control-flow analysis by the functional partitioner 206 is the transformation of the logical hierarchy inherent to the RTL model 201 into a physical hierarchy optimized for chip-level physical implementation.
- the physical hierarchy is defined by the connectivity and hierarchical relationship of physical partitions created in the data-flow and control-flow analysis processes, which may be different from the logical hierarchy of the RTL model 201 .
- a range of feasible block-level physical implementation estimation models 210 , 212 are generated automatically.
- Feasible implementation models 210 can vary in area, aspect ratio, power consumption, or timing, provided that all critical paths within a block must at least meet the minimum operating frequency requirement of the chip.
- Each block-level estimation model 210 , 212 consists of:
- a Datapath Macro (DPM) consists of a semi-regular portion of data operators (DP partition) and a random section of Datapath Control (DPC) logic as shown in FIG. 11 .
- Data operators are arranged in rows and columns so that control signals and busses achieve maximum alignment for optimal density and speed.
- FIG. 9 depicts the detailed datapath building process performed by the datapath builder 209 .
- Inputs to the datapath building process include the LBB network of the DP partition 207 created by the functional partitioner 206 , operation frequency timing constraints 216 for critical paths internal to the DP partition, and timing constraints 216 for logic paths that end outside the DP partition.
- the DP builder 209 is run for the first time in the RTL optimization process, only the minimum operating frequency is known, as specified in the design goals 219 . In this case, only the timing of internal paths of the datapath partition is optimized. Both internal and external paths are optimized together when external timing constraints 216 become known in subsequent executions of the datapath builder 209 .
- Alternate DP physical implementation models 210 are created by varying 906 the bit-width of the datapath. Varying bit-width creates a number of feasible DP implementation models 210 with different aspect-ratios.
- the feasible bit-width range of the DP partition is determined 905 by X/4 ⁇ bit-width ⁇ 2X, at 1-bit increments 906 , where X is the bit-width of the widest data operator in the DP partition.
- the order of data operators in the bus direction 1001 is first optimized 907 to minimize bus length and meet timing constraints. Data operator order optimization is performed at the LBB level to speed up processing time.
- a ‘snaking’ path is formed when a critical path extends beyond the DP into DPC and then sometimes re-enters the DP.
- a snaking path may contain multiple sections of data operators. These sections are clustered together even though they are connected indirectly through random logic in DPC.
- Bit alignment 908 is optimized in the control direction 1002 aligning 908 busses at the bit level so that busses run straight across the DP.
- Bit alignment 908 performed mostly at the LBB level, employs the following techniques:
- a compaction 909 step is used to pack data operators to minimize area while meeting timing.
- Compaction employs the following techniques:
- FIG. 10 shows an example of floorplanning and compacting six data operators of varying bit-width (4, 8, 16) into a datapath with a bit-width of 8.
- Data operator A is folded from 16-bit into 8-bit.
- Data operators C and D are stacked end-to-end.
- Data operators E and F are spread apart and then merged.
- the compacted DP is globally routed 910 and timing analyzed 911 to obtain the first floorplan.
- An iteration loop 912 is set up to refine the initial result through an alternate series of placement and logic optimization. The following steps are employed in the logic optimization process:
- Datapath implementation models are varied by altering ( 906 ) the bit width of the datapath. As long as the block satisfies 915 the minimum chip operating frequency according to the result of timing analysis 911 , it is considered a viable candidate, and added to the block estimation models 210 .
- the smallest area implementation (in the block estimation models 210 ) is not necessarily the best choice because blocks with a different aspect ratio may actually produce a better overall chip design even though the block itself may be larger.
- Non-datapath structures include control logic (for DP, MEM, HMAC), random logic, finite state machines, memories, and hard macro blocks. Control logic and FSM are special forms of random logic with additional constraints.
- the non-DP estimator 211 generates a feasible implementation estimation model, 212 for non-datapath structures.
- the non-DP structure estimator 211 generates block estimation models 212 for random logic, finite state machines, memories, and hard macro blocks. Random logic estimation is based on standard cell physical implementation techniques.
- FIG. 12 shows the random logic estimation process of the non-DP structure estimator 211 .
- a random logic block is partitioned 1201 into small clusters of highly connected LBBs.
- Cluster-level placement 1202 is performed by a Min-cut algorithm.
- An annealing algorithm 1203 refines the LBB placement for a global routing 1204 .
- the global routing forms the basis for a placement-based wire-load model 212 for wires both within and between LBB clusters.
- the final timing analysis 1205 creates a pin-to-pin timing model for chip-level optimization 213 .
- the flexible nature of the standard cell place-and-route topology can potentially create an infinite combination of aspect ratio variations and I/O pin assignments.
- the non-DP structure estimator 211 responds to requests from the functional partitioner 206 , the structural partitioner 215 , and the chip optimizer 213 to create random logic estimations 211 under different constraints 217 during various steps in the RTL optimization process.
- the functional partitioner 206 initiates the first rough estimation with no constraints, and a default random logic block aspect ratio of 1:1 is used.
- the chip optimizer 213 and the structural partitioner 215 request random logic area and speed estimation by providing pin assignment and aspect ratio constraints.
- DPC logic is created using standard-cell place and route, the block topology is highly constrained by the regular nature of the DP block it controls.
- the present invention allows additional constraints to be imposed on DPC logic according to the datapath it controls.
- one dimension 1103 is required to be equal to the length of the DP side where control 10 signals exit the DP 1101 .
- the number of random logic LBBs and the amount of wiring overhead in the DPC block dictate its other dimension 1104 .
- the terminal location 1105 on the DP side is completely constrained and defined by the optimal placement of data operators in the DP. Other I/O signals naturally exit the DPC block from the opposite side 1106 .
- DP and its associated DPC form a natural cluster; as a result, these partitions always stay together, and need not be later re-analyzed to consider whether they should be reclustered.
- the abutment between DP and DPC is not always regular.
- the placement of the flexible DPC logic can match the irregular contour 1107 of the DP so that the combined DPM block achieves maximum packing density.
- the area/speed estimation process is identical to that of an ordinary random logic block.
- a finite state machine is also a special form of random logic.
- a finite state machine has a well-defined logic architecture which divides the logic into multiple sections: input latches, output latches, state-bit logic, and AND-OR logic for control outputs.
- the natural logic separation forms the basis for clustering of LBB within the finite state machine.
- the estimation process for finite state machines is similar to that of random logic.
- Aspect ratio, area, IO pin assignment, and timing information are derived from pre-characterized memory libraries. Alternate feasible implementations will be presented for chip-level optimization if the library is capable of generating them.
- Memory control logic is estimated similar to DP control logic.
- a hard macro has a pre-defined implementation supplied by the user. Area and performance are pre-characterized and no estimation is needed. HMAC control logic is estimated similar to DP control logic.
- the chip optimizer 213 performs chip-level optimization and produces structural partitioner constraints 214 to refine the block level implementation models 210 , 212 .
- FIG. 13 depicts the creation of a floorplan in the chip optimization process 213 . Inputs to this process include chip-level constraints 222 and a collection of feasible physical implementation models 212 , 210 .
- Chip-level optimization 213 outputs structural partitioner constraints which include:
- the pattern of data-flow and control-flow resulted from the partitioning steps forms the initial clustering of physical blocks.
- Data-flow-logic and its associated control logic form natural clusters in the initial floorplan.
- the placement of the clusters is initially computed by a force-directed method and then iteratively improved by packing the clusters along the x direction and y direction.
- an initial block-level implementation model 1301 is selected from its accompanying block implementation models 210 , 212 .
- the initial selection for each partition is the smallest block in the set of feasible implementations 210 , 212 .
- An initial floorplan using all of the selected implementations is created 1302 based on minimum wire length along the critical paths.
- the initial floorplan may contain overlap and unused space, which is removed in the compaction step 1303 .
- Compaction involves local movement of blocks and refinement of the block-level implementation model selection.
- the floorplan compactor 1303 has multiple options in refining the block-level implementation selection. It may pick alternate blocks in the set of feasibility DP blocks 210 or Non-DP blocks 212 . It may make continuous adjustment to the size and aspect ratio of random logic partitions 208 by modifying constraints 217 and invoking the Non-DP structure estimator 211 to produce refined block estimation models 212 for the modified partitions. It may also generate structural re-partition constraints 205 and invoke the structural partitioner 215 to split and merge partitions in order to precisely control the size and shape of blocks for better timing and area efficiency. Changes by the structural partitioner 215 induce revisions of the block estimation models 210 , 212 by either the DP builder 209 for the modified DP partitions or the non-DP structure estimator 211 for non-DP partitions 208 .
- Automatic pin assignment 1304 optimizes overall wire length to derive a first-pass chip floorplan.
- the first-pass chip floorplan is then globally routed 1305 to produce more accurate parasitics and timing 1306 for a second-pass refinement in physical implementation selection and pin assignment.
- the two-pass approach 1307 is completely automatic.
- a final global re-route 1305 and full chip timing analysis 1306 are used to determine slack and redistribute timing budget among blocks and generate new structural partitioner constraints 214 .
- Structural partitioning 215 refines the partitioning created by the functional partitioner 206 based on structural partitioning constraints 214 resulting from the chip-level optimization process 213 .
- the structural partitioner 215 creates new block-level constraints 216 , 217 for datapath partitions 207 and non-datapath partitions 208 to improve timing and floorplan packing density.
- New block constraints 216 , 217 trigger the re-estimation of feasible physical implementations by the DP builder 209 and non-DP structure estimator 211 .
- the chip optimizer 213 may invoke the structural partitioner 215 multiple times in the chip optimization process improve chip floorplanning packing density using steps 205 , 217 .
- the structural partitioner 215 analyzes failing timing paths based on the wire-load and timing information 214 . If these paths “snake” through different partitions, the structural partitioner 215 is used to move the LBBs in the “snaking-path” between partitions to achieve timing convergence.
- An example is a failing timing path that traverses from a DP block to its associated control (DPC) in the Datapath Macro.
- the structural partitioner 215 can analyze this path and bring the LBBs in the path in the control (source) partition to the datapath (destination) partition and utilize the empty spaces in the datapath for their placement. Conversely paths that are not timing critical can be made longer by the structural partitioner 215 if it reduces the path delay of other timing critical paths.
- LBBs moved from the source partition take on the same physical implementation style as the destination partition. If all LBBs in the source partition are moved then the source partition is in effect merged with the destination partition. Therefore, shifting LBBs between DP partitions 207 and Non-DP partitions 208 has the effect of changing the physical implementation style of the affected LBBs from datapath style to random logic style or vice versa.
- Final chip optimization is the 2 nd pass through the chip optimizer 213 with new block estimation models 210 , 212 based on the refined constraints 216 , 217 from the structural partitioner 215 , in addition to chip constraints 222 .
- the initial floorplan is refined for timing and density.
- Structural partitioner constraints 214 are converted to data and control files 223 , 224 , 225 , 226 (see below) suitable for driving back-end tools 227 , 228 , 229 , 230 , 231 , and 232 .
- the data and control files 223 , 224 , 225 , 226 constitute a rigorous set of instructions, not a questionable prediction, for implementing a known timing and area convergence solution because accurate placement-based wire-load data have been used throughout the optimization process and the implementation of individual blocks has been proven feasible.
- Multiple rapid internal iterations between chip-level and block-level optimization ensure that constraints for driving the back-end implementation are well-balanced and optimal.
- These block-level constraints represent instructions to meet area and performance goals in a single pass through the back-end process, and therefore serve as an effective interface between front-end and back-end implementation in a RTL hand-off design flow.
- the system 200 of the present invention does not directly generate final physical implementation of the chip. It generates detailed implementation constraints for back-end physical implementation tools based on an optimal floorplan and placement-based wire load models at chip and block level. The result of the final chip optimization is expressed in a set of data and control files 223 , 224 , 225 , 226 used to drive the back-end tools. Back-end tools are not required to follow all detailed guidance produced by the system 200 provided that the final physical implementation meets area and timing requirements.
- the overall strategy in the RTL optimization process is to meet chip-level timing constraints with minimum area in a single pass through the design flow. Since the design flow is completely performance driven, altering the high level constraints (area, timing, power) will result in vastly different chip implementation.
- the above design flow represents a built-in preprogrammed sequence designed to reach timing convergence in a single pass automatically for a majority of IC designs.
- the system 200 provides facilities for manual interventions to refine the automatic result.
- the built-in optimization sequence can also be modified by the user to adapt the system 200 to unique chip requirements.
- the RTL optimization system 200 automatically flattens the selected module for partitioning, If the user selects the top module, the whole chip will be flattened and the physical hierarchy for the entire chip will be created automatically. The user can therefore control the creation of the physical hierarchy by selecting manually modules in the logical hierarchy to be implemented hierarchically.
- Manual entry points are inserted into an otherwise automated process for users to refine the automatically generated result and to:
- All software modules of the system 200 used in the built-in sequence and an underlying design database storing the RTL models and generated models and data are available to users through a procedural interface.
- a user may customize the design flow sequence using a programming language and the procedural interface.
- Design visualization is key to maintaining links between all transformations performed by the system 200 on the original RTL model hierarchy.
- the user interface is designed to support the use of the original user-defined RTL model as a functional interface to the analysis of the electronic design throughout the RTL design process.
- FIG. 14 shows the following display windows:
- Block diagram window 1404 represents the LBB network that is extracted from the RTL model 201 .
- Conventional design tools today enable the user to begin with graphical inputs and develop a RTL model therefrom, or to view gate-level schematics after logic synthesis.
- the RTL optimization system 200 of the present invention provides the ability to begin with an RTL model and extract a higher level model in the form of the LBB network, which is then visualized in block diagram window 1404 . This enables the viewer to visualize and manipulate the electronic design at a higher level than gate-level schematics.
- this window represents visually the automatically partitioned electronic design, and enables the system designer to manually interact with the design, including changing partitioning, pin assignments, and the like as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Architecture (AREA)
- Computer Networks & Wireless Communication (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Stored Programmes (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 09/634,927, filed Aug. 8, 2000, which is a continuation of U.S. patent application Ser. No. 09/015,602, filed Jan. 30, 1998, now U.S. Pat. No. 6,145,117.
- 1. Field of the Invention
- The present invention relates generally to methods and systems used to create efficient physical implementations from high level descriptions of electronic designs and, in particular, to a software system and method that optimizes Register-Transfer-Level (RTL) descriptions with respect to performance parameters including area, timing, and power, prior to logic synthesis, floorplanning, placement and routing.
- 2. Description of the Background Art
- Present Electronic Design Automation (EDA) systems for designing electronic systems consist of software tools running on a digital computer that assist a designer in the creation and verification of complex electronic designs. Present day state-of-the-art design technique uses a combination of logic synthesis, floorplanning, place-and-route, parasitic extraction, and timing tools in an iterative sequence to form a design process commonly known as the top-down design methodology.
- The left side of
FIG. 1 illustrates a typical top-down design process. The primary entry point into the top-down design flow is a high level functional description, at behavioral-level or RTL, of an integrated circuit design expressed in a Hardware Description Language (HDL). This design is coupled with various design goals, such as the overall operating frequency of the Integrated Circuit (IC), circuit area, power consumption, and the like. - Conventional top-down methodology uses two overlapping processes, a front-end flow, and a back-end flow. Each of these flows involve multiple time consuming iterations, and the exchange of very complex information. In the front-end of the top-down methodology, the RTL model is manually partitioned by the designer into various functional blocks the designer thinks best represents the functional and architectural aspects of the design. Then, logic synthesis tools convert the functional description into a detailed gate-level network (netlist) and create timing constraints based on a statistical wire-load estimation model and a pre-characterized cell library for the process technology that will be used to physically implement the integrated circuit.
- The gate-level netlist and timing constraints are then provided to the back-end flow to create a floorplan, and then to optimize the logic. The circuit is then placed and routed by the place-and-route tool to create a physical layout. After place-and-route, parasitic extraction and timing tools (typically by the circuit fabricator) feed timing data back to the logic synthesis process so that a designer can iterate on the design until the design goals are met.
- While the synthesis and place-and-route automation represent a significant productivity improvement over an otherwise tedious and error-prone manual design process, the top-down design methodology has failed to produce efficient physical implementations of many circuit designs that take full advantage of the capability of advanced IC manufacturing processes. This is evident in the growing “design gap” between what semiconductor vendors can manufacture with today's deep sub-micron processes and what IC designers can create using top-down EDA design tools. The latest 0.18 μm CMOS process can fabricate silicon die with 10 million gates, running at speeds in excess of 500 MHz. In contrast, designers using conventional top-down EDA tools struggle with the creation, analysis, and verification of integrated circuits having 0.5-1 million gates, running at 150 MHz.
- The primary inefficiency of the top-down methodology arises from its reliance on statistical wire-load models proved to be inadequate in wire-delay dominated deep sub-micron digital systems. Timing in deep sub-micron integrated circuits is dominated by interconnect delays rather than gate delays. Conventional top-down design tools, such as behavioral and logic synthesis, were originally designed in an era when gate delays dominated chip timing. These tools use inaccurate, statistical wire-load estimates to model wiring parasitics at early stages in the design cycle, and the effects of these inaccuracies are propagated throughout the rest of the design methodology. To overcome the timing model inaccuracies, the designer engages in excessive and time-consuming iterations of logic synthesis, floorplanning, logic optimization, and place-and-route in attempting to converge on the timing constraints for the circuit. This iterative loop is referred to as the timing-convergence problem.
- The large discrepancy between statistical wire-load model and actual wire-load means that circuit designers must wait until gate-level floorplanning and place and route tasks are complete to begin chip-level optimization. The enormous gate-level complexity of today's system-on-a-chip designs places a heavy burden on gate-level verification and analysis tools and makes multiple design iterations very time consuming.
- Additionally, the complexity of present high performance integrated circuit designs overwhelms the capability of logic synthesis tools. Synthesis execution times of many hours on present day high-performance engineering workstations are typical for circuits containing only tens-of-thousands of logic gates. Place-and-route execution times for these circuits can also consume many hours. It is not unusual for a single synthesis and place-and-route iteration for a circuit containing tens-of-thousands of logic gates to take days. Synthesis and place-and-route tool run times grow non-linearly, sometimes exponentially, as the size of the circuit grows and as circuit-performance goals are increased. Thus, logic synthesis cannot process complex designs all at once. Designers are forced to develop functional descriptions and manually partition the design into smaller modules, upon which logic synthesis is individually performed. During manual partitioning, however, the designer has little or no accurate information on the back-end physical effect of the partitioning, and in particular, on the effect of such partitions on timing, area, and power consumption. The relationship between high-level functional description and the low-level layout physical effect is not obvious at the front-end design stage. The failure to predict accurate back-end physical effect at or above the RTL design stage results in local optimization and a sub-optimal functional description of the design. Design efficiency suffers due to design over-constraint (timing non-convergence) or under-constraint (loss of performance and density), or some combination of both for various different partitions of the integrated circuit. Sub-optimal RTL descriptions and partitioning serve as a poor starting point for logic synthesis, which propagates and amplifies the design deficiencies, eventually leading to silicon inefficiency (e.g., excessive area or power consumption, slower operating frequency), even after long iteration and manual intervention.
- Further inefficiency in the top-down design methodology is introduced because logic synthesis tools treat all logic as random logic. Consequently, logic synthesis typically fails to recognize and take advantage of more efficient silicon structures such as datapaths, which are commonly used and expressed in the high level description of the design. Designers who recognize this limitation frequently bypass synthesis by manually instantiating gate-level elements in their RTL source. This is equivalent to writing a gate-level netlist, an onerous, low-productivity, and error-prone task.
- Another deficiency of the top-down methodology is that it requires a cumbersome netlist hand-off between front-end and back-end design cycles. Complex bi-directional information transfer occurs at the overlap between front-end and back-end iteration loops. The diverse design expertise required to effectively manage the top-down design process is rare and not commonly available to a typical design team. Design inefficiency causes the costly under-utilization of advanced IC manufacturing processes. The iterative nature of the top-down design methodology requires long design time and large design teams, often not available or even feasible in a competitive design environment characterized by short product life-cycles and short time-to-market requirements. Thus, achieving rapid timing convergence while satisfying density, power, and productivity constraints for high performance complex systems is a daunting challenge facing the electronic design industry today.
- Accordingly, there is a need for an EDA system that improves the present top-down methodology in performance, density, power, and design productivity. In particular, there is a need for a software method and system that optimizes the design of an integrated circuit at the RTL stage, prior to conventional logic synthesis, floorplanning, and place-and-route design stages.
- The present invention overcomes the limitations of the conventional top-down methodology with an RTL optimization system and method that enhances existing top-down EDA systems by implementing an automatic performance-driven design paradigm. The RTL optimization system of the present invention implements automatic hierarchical structured custom design and delivers significant improvements in performance, density, power, and productivity over the existing top-down design methodology. The RTL design methodology of the present invention enables the user to enter, analyze, debug, optimize, and implement their designs by working exclusively with RTL models before logic synthesis. Full-chip design, analysis, and optimization run orders-of-magnitude faster than conventional gate-level tools, thereby enabling truly interactive design.
- The RTL design methodology and system of the present invention uses placement based wire load models to capture the performance characteristics of the known physical implementations of individual partitions of an electronic design, and of the overall electronic design itself, prior to any logic synthesis. This performance data is used to optimize the partitioning, floorplanning, and routing of the electronic design in order to find a known solution to design goals. This solution defines the physical implementation of the electronic design at the partition and chip level and thus constrains the back-end flow so that only a single pass through conventional logic synthesis, place-and-route, and so forth is required.
- In a preferred embodiment, the hand-off between the RTL optimization system and the conventional back-end flow includes the RTL model along with chip and block level netlists, floorplans, routing, aspect ratios and areas, pin assignments, output loads, input, output and internal timing constraints, placement based wire loads for wires within and between partitions, and command scripts for controlling back-end tools. In this fashion, the back-end flow can be fully constrained to a single pass, thereby accomplishing true RTL level hand-off.
- More particularly, placement based wire load models are used throughout the RTL optimization process to characterize the performance of logic structures, partitions, and the overall chip or electronic design. This performance characterization of the timing, area, power, and other performance attributes is used to optimize the electronic design at the RTL level. This feature eliminates the conventional requirement of logic synthesis, floorplanning, and routing normally needed to capture the performance characteristics of the physical implementation. Another feature of the present invention is the ability to fully characterize the performance of a logic structure using performance data of a number of physical implementations of the logic structure derived from a placement based wire load model.
- Yet another feature of the present invention is the generation of such performance data for a variety of a physical implementations to create a fully characterized library, here called a library of logic building blocks or “LBBs”. A LBB is a high level, technology-independent description of a logic structure that has performance data fully characterizing its performance envelope over a range of different physical implementations. The performance data preferably quantifies the relationship between the area, circuit delay, and output load of the logic structure for a number of different physical implementations. This performance data is created by placing and routing each physical implementation to create a placement based wire load model. The performance data may be characterized further for both random logic and datapath implementations. In addition, the performance data preferably defines these area, timing and output load relationships for each of a number of bit widths, and a number of driver sizes for various typical loading conditions. A LBB may have multiple implementations representing different area and speed tradeoffs. The performance data of a LBB for these different physical implementations thus defines its entire performance envelope. LBBs range from simple gates (inverter, NAND, latch, flip-flop) to complex logic structures such as adder, finite state machine, memory, and encoder. The use of LBBs elevates the pre-characterized library approach from the conventional gate level to a complex-structure module level, and allows the accurate performance data which characterizes the LBB to be used at the RTL design level to optimize the partitioning and floorplanning of the electronic design.
- Another feature of the present invention is the fully automatic partitioning of the RTL model and subsequent automatic refinement of the partitions during chip optimization. Automatic partitioning creates partitions that optimize the local and global floorplanning, routing, timing and so forth, using the placement based wire load information. A high level chip optimization process can induce repartitioning to move logic between partitions, combine or split partitions as needed to meet design goals and generate timing and other constraints. This automatic process removes the burden from the designer of having to manually partition the design and allocate timing between partitions, only to find from the subsequent back-end flow that such timing allocations and partitions are either infeasible or suboptimal.
- The right side of
FIG. 1 illustrates the overall design flow in accordance with the present invention. Beginning with an RTL model of an electronic design, the present invention first automatically partitions the RTL model into a number of physical partitions. This automatic partitioning transforms the logical hierarchy of functionality inherent in the RTL model into a physical hierarchy optimized for the chip-level physical implementation. The partitions are optimized to select local physical implementations given the current design goals. Chip optimization, including floorplanning, pin assignment, placement and routing, refines the partitioning, and enables simulation and analysis of timing for the entire chip, and generates additional design constraints. These constraints are fed back through the partitioning and optimization phases to finally converge on an overall timing and area solution. Because this entire process takes place without relying on the gate-level logic design of the conventional top-down approach, many fast iterations through this process enables a large range of different physical implementations to be quickly explored to automatically converge on the optimal physical implementations which satisfies the design goals, typically without the need for intervention or assistance by the designer. A simplified RTL level hand-off along with the generated design constraints is passed to the back-end flow, which now goes through only a single pass to fabricate the circuit design. - In a preferred embodiment, the design methodology and system of the present invention takes an RTL model source and converts it to a network of LBBs that efficiently represent a desired hardware implementation.
- The LBB network, and hence the RTL model, is then automatically partitioned into a number of physical partitions, such as datapath, finite state machines, memories, hard macro blocks, and random logic partitions. This functional partitioning transforms the logical hierarchy of functionality inherent in the RTL model into a physical hierarchy optimized for the chip-level physical implementation. The physical hierarchy defines both the connectivity and hierarchical relationships of the partitions.
- For each of the physical partitions, a number of feasible block-level physical implementations are modeled automatically. A physical implementation is feasible for a partition if it meets timing and other design constraints defined for the partition, including at least a minimum operating frequency for the entire chip. The implementation model data is extracted from the performance data included in the LBBs of the physical partitions and the placement-based wire-load model of the partition. The range of feasible implementations for a partition will likely vary in area, aspect ratio, timing, and power consumption. Each implementation model includes a pin-to-pin timing model, a placement based wire load model for the partition, and a block-level floorplan with pin assignment.
- The next automatic process is a chip-level optimization which produces a first-pass floorplan of the integrated circuit and a set of chip-level design constraints for block-level partitioning refinement. The chip-level optimization uses the feasible block-level implementation models for all partitions, design constraints on chip area, aspect ratio, operating frequency and I/O signal timing, and a chip-level netlist for partition connectivity. Chip-level optimization iterates through the implementation models and performs floorplan creation and compaction, pin assignment, global routing, and global timing analysis.
- After the first pass floorplan is generated, the partitions of the floorplan are further optimized based on the refined design constraints derived from chip-level optimization using structural partitioning. Structural partitioning may include moving LBBs between partitions to improve timing, or merging partitions into larger units, breaking partitions up into smaller units, or changing a partition's architecture type (e.g., from a datapath to a random logic partition) to improve packing density. Structural partitioning produces new block-level constraints for datapath and non-datapath partitions which improve timing and floorplan packing density.
- New partition implementation models based on refined constraints, along with the other data of the chip design are reintroduced to the chip optimization process for a second and final optimization pass. This second-pass includes a final selection of a physical implementation of all partitions, floorplanning, pin assignment, and global routing.
- To interface with conventional back-end process tools, the present invention provides detailed implementation constraints, including an optimal floorplan and placement-based wired load models at chip and block-level. These implementation constraints preferably include partitioning constraints, including a structural RTL netlist for each physical block and top level connectivity; physical constraints, including area, aspect ratio, pin assignment, global wire routing path, and floorplan (chip and block-level); and timing constraints, including output load, input arrival time, output timing constraints, operating frequency, and placement-based wire load models; and command scripts.
- In conventional top-down design, the front-end flow at best predicts the timing and area results to be generated by the back-end flow. In contrast, in the present invention, the final set of design constraints from the second-pass chip optimization guarantees a known solution to timing convergence. This is because accurate placement-based wire-load has been used throughout the optimization process and the implementation of individual partitions has been proven feasible. Multiple rapid internal iterations between chip-level and block-level optimization ensure that design constraints for driving the back-end implementation are well-balanced and optimal. These block-level constraints represent a recipe to meet area and performance goals in a single pass through the back-end process, and therefore serve as an effective interface between front-end and back-end implementation in a RTL hand-off design flow.
- The present invention supports the above design flow as a built-in, pre-programmed sequence designed to reach timing convergence in a single pass through the back-end automatically for a majority of IC designs. In addition, the present invention provides facilities for manual interventions to refine the automatic result. The built-in optimization sequence can also be modified by the user to adapt the system to unique chip requirements. Manual entry points include control of physical hierarchy construction, control of LBB synthesis, partitioning, pin assignment, floorplan (block and chip-level), creation and selection of block level implementations, in-place optimization, and back-annotation.
- The present invention provides numerous advantages over conventional top-down EDA design systems. First, because the RTL timing and power analyses use accurate placement-based wiring parasitics instead of unrealistic statistical wire-load estimates employed by many of today's tools, optimization of the circuit design is possible prior to logic synthesis. This eliminates the multiple design iterations following logic synthesis (or the custom manual design) common with deep sub-micron designs.
- Second, RTL analyses of the present invention run at interactive speeds, enabling micro-architecture optimization. The use of LBB and bus representation raises the design abstraction above the conventional bit-wise gate-level representation of a circuit to simplify and accelerate design representation, analysis, and visualization. Since the design flow is completely performance driven, altering the high level constraints (area, timing, power) will result in vastly different chip implementation. Thus, the designer is immediately able to alter the design at any stage of the design flow to test out various alternate designs. This encourages design exploration in a manner not possible with conventional EDA tools.
- Third, hierarchical partitioning of the RTL model into efficient silicon structures, such as datapath and complex libraries, can be performed automatically, thereby reducing the time and expertise required to implement efficient design.
- Fourth, links to back-end tools may be built to fully automate gate-level optimization and physical implementation. Likewise, links to front-end tools may enable improved behavioral synthesis based on more accurate parasitics and timing estimates.
- Fifth, the high-level LBB representation and cross-probing capability between multiple design views provide traceability across multiple design transformations and enable the use of the user-defined RTL model as the ‘golden’ source throughout the design process. This feature of the present invention is found in the user interface of the RTL optimization system. While the RTL optimization system dramatically restructures and modifies the architecture of the RTL model, the system designer's original source RTL files are preserved as a functional interface for analyzing and probing the electronic design. The designer can thereby identify familiar RTL objects and trace their instantiation through any of the partitions, LBBs, or other entities created by the RTL optimization system.
- To facilitate this feature, there is displayed both the logical hierarchy of the RTL and the physical, extracted hierarchy of the electronic design as created by the RTL optimization system. Also, block level diagrams of the LBB network are presented. The user interface windows for the RTL source, block diagrams, physical and logical hierarchies, floorplan, and timing, are linked together so that the designer can cross-probe RTL objects, LBBs, signals, components, variables, and the like at any level of the electronic design, and from any window.
- Finally, the present invention essentially provides designers an interactive ‘virtual’ back-end environment which models physical effects and implementations, thereby enabling front-end micro-architectural optimization at the register transfer level before synthesis. The system automatically searches the solution space and derives an optimal solution for rapid timing convergence. It then generates all necessary data to drive back-end tools to implement that solution. The ability to achieve better silicon efficiency predictably and rapidly, while de-coupling the front-end loop and streamlining the back-end loop, enables a more productive RTL hand-off design paradigm.
-
FIG. 1 illustrates a comparison of conventional top-down design methodology with the RTL optimization methodology of the present invention. -
FIG. 2 is a data-flow diagram of the RTL optimization system of the present invention. -
FIG. 3 is a flowchart of the LBB synthesis process. -
FIG. 4 is a flowchart of the LBB library calibration process. -
FIG. 5 is an illustration of a LBB Performance Table. -
FIG. 6 is a table of LBB types. -
FIG. 7 is a flowchart of the functional partitioning process for data-flow analysis. -
FIG. 8 is a flowchart of the functional partitioning process for control-flow analysis. -
FIG. 9 is a flowchart of the DP Builder process. -
FIG. 10 is an illustration of an example of datapath floorplanning and compaction. -
FIG. 11 is an illustration of a datapath macro. -
FIG. 12 is a flowchart of the random logic estimation process of the Non-DP Structure Estimator. -
FIG. 13 is a flowchart of the chip optimization process. -
FIG. 14 is an illustration of the user interface of the RTL optimization system. - 1. Overview of the RTL Optimization Process
- Referring now to
FIG. 2 there is shown a data-flow diagram of aRTL optimization system 200 for optimizing an electronic design in accordance with the present invention. TheRTL optimization system 200 is designed to converge automatically on the best solution for an electronic design that satisfies the design goals. At the end of the automatic processes provided by thesystem 200, manual intervention for the purpose of design refinement is allowed. - The following steps are employed in the RTL optimization system 200:
-
-
Synthesize 202 the RTL model to a LBB network - Enter chip-
level design goals 219 -
Functional partitioning 206 - Feasible block-
level implementation 209 & 211 -
Chip optimization 213 -
Structural partitioning 215 - Chip re-optimization 213 (2nd pass)
-
- The
system 200 operates on a conventional computer system, such as an Intel based personal computer using the Microsoft Corp.'s Windows NT operating system. Thesystem 200 may be implemented by software product executing in the computer's memory. Thesystem 200 includes an LBB synthesis module, a functional partitioner module, a structural partitioner module, a datapath builder module, a non-datapath structure estimator module, a chip optimization module, and a library calibrator module. - The
system 200 interfaces with conventional back-end tools including amemory compiler 230, a datapath place-and-route tool 227, alogic synthesis tool 228, afloorplanner 229, a full-chip place-and-route tool 231, and timing andparasitic extraction engine 232. - The following sections describe the
RTL optimization system 200 in detail. - 2. RTL Model
- The preferred entry point into the design flow is a
RTL model 201 of an electronic design or system. The physical implementation of the electronic design can be an Integrated Circuit (IC), part of an IC, or multiple ICs on a circuit board. TheRTL model 201 describes the function of the electronic system using a Hardware Description Language (HDL) such as Verilog or VHDL. TheRTL model 201 may be either directly written by a system designer, or generated from a behavioral model using behavioral synthesis. In addition, theRTL model 201 may be extracted directly from internal data structures of a behavioral model without undergoing RTL model construction. - 3. Synthesis into Logic Building Block (LBB)
- The
RTL model 201 is synthesized 202 into a network of Logic Building Blocks (LBBs) 203. A LBB is a technology independent description of a logic structure that has performance data fully characterizing its performance envelope over a range of different physical implementations. Preferably the performance data quantifies the relationship between circuit delay and output load, for both random logic and datapath implementations of the LBB. This performance data defines the relationships for each of a plurality of bit widths, and for each of a plurality of driver sizes for various typical loading conditions, and for each of a plurality of feasible logic implementations. LBBs range from simple gates (inverter, NAND, latch, flip-flop) to complex logic structures such as adder, finite state machine, memory, and encoder. Storing this data in the LBB fully characterizes the performance envelope of the LBB over its range of feasible physical implementations and variations in area, aspect ratio, and implementation architecture. -
FIG. 3 shows the synthesis steps that transform anRTL model 201 into aLBB network 203. Theparser 301 converts HDL statements in theRTL model 201 into a language-neutralHDL object database 302. HDL objects are mapped into generic LBBs to create a technology-independent LBB network by processing latch inference, ‘case’ constructs, ‘if’ constructs, assignments, and expressions. In this pass, the smallest LBB implementation is chosen as the initial candidate. In this case, only the area data in the performance tables 501 of theLBB library 220 is used. - Bus signals are preserved as integral entities, not individual signals:
-
- 1. All explicit bus-oriented structures, expressed in explicit bus declaration in the RTL model, are preserved and represented as bus entities.
- 2. All implicit bus-oriented structures, such as those expressed as repeated RTL constructs and vectorized instantiation across multiple bits, are recognized and preserved as bus entities.
- 3. All LBB types, except finite state machines and hard macros, can be used in random logic or in multi-bit datapath with corresponding characterization data supporting either usage. When a LBB is connected to a bus entity, it becomes a data operator. Data operators are multi-bit LBBs that can store, steer, or transform data. For example, a register stores data; a multiplexer and a shifter steer data; an adder transforms input data to different output data; and a decoder data operator transforms input data to control signals.
- HDL objects are mapped using the highest logic structure available in the
LBB library 220 to reduce complexity. For example, a multi-bit adder is represented as an integral adder LBB. In contrast, conventional logic synthesis reduces the adder down to potentially hundreds of individual gates. Another example, a ‘case’ construct, is mapped to a multiplexer and a decoder. - Only Boolean expressions not mappable into complex LBBs are mapped into networks of simple gate-level LBBs. The
block diagram window 1404 inFIG. 14 shows a graphical representation of an example of aLBB network 203. - The logic of the technology-independent LBB network is optimized 304. LBBs in the optimized network are mapped 305 into technology-specific LBBs derived from the calibrated
LBB library 220 to produce thefinal LBB network 203. - 3.1. Calibrated LBB Library
- LBBs are supported by a characterized
LBB library 220 that represents the performance envelop of a large number of LBBs. LBB characterization is performed once, and off-line, by thelibrary calibrator 204 when an IC fabrication process and a library is incorporated into thesystem 200 of the present invention.Inputs 221 to thelibrary calibrator 204 consist of standard logic synthesis cell library, complex libraries for datapath, process technology data, implementation styles information, and implementation tool information. In the characterization process, logical and physical implementations of each LBB are built and characterized by varying some or all, individually or in combination, of the following input parameters that affect the area and speed of a LBB physical implementation. -
- Variable layout style such as regular datapath topology and random logic place & route topology.
- Variable architecture for LBB that can be implemented using alternative logic implementations (e.g., ripple adder, carry-look-ahead adder, carry-save adder)
- Variable bit width for LBB that supports multi-bit data operator configurations.
- Output driver size.
- Output loading.
- Process parameters (best, typical, worst case, and the like).
- Temperature and power supply voltage.
- LBB area and performance data are stored in two forms in the calibrated
LBB library 220 for access by thesystem 200 during performance optimization: data tables and circuit generators. - 3.1.1 Data Tables
- The number of possible implementation variations of a LBB depends on the richness of the
library source 221.FIG. 5 illustrates the format of the LBB in the calibratedlibrary 220 using data tables. In this format, each LBB is characterized by variations inimplementation topology 502,architecture 503,bit width 504, anddriver size 505. For each of these variations, a performance table 501 quantifies the relationship between area, delay, and output load. An adder, shown inFIG. 5 , is one example of a LBB with a rich set of implementation possibilities. A hard macro block represents less variation in implementation. It has only one fixed physical implementation and a pre-characterized timing model. -
FIG. 4 shows a flowchart for theLBB library calibrator 204 used to generate the data tables, with the complete characterization flow for a LBB with a full range of variations. Generally, for each library entry, it is determined 401, 402 whether random logic and/or datapath implementations are available. For each implementation, variations oflogic architecture bit width driver size - 3.1.2 Circuit Generators
- In an alternate embodiment, circuit generators or estimators fast enough to generate performance data based on input parameters at run-time are used. This approach eliminates the need for pre-characterization and storage of characterization data. Circuit generator results are cached so that circuits with the same configuration are generated only once.
- 3.2 LBB Types
- A single LBB may contain the equivalent of several hundred gates found in a typical synthesis library.
FIG. 6 shows an example of a set of built-in LBB types sufficient for efficient representation of a typical digital system. All LBB types accept bus signals are represented as a single entity. All LBB types, except finite state machines and hard macros, are parameterized (n-bit width) to support bus operations. - The higher level abstraction of the LBB representation offers the following advantages:
-
- Reduces the sizes of design databases by orders of magnitude vs. gate-level tools. This translates into smaller memory requirements for complex designs and faster analysis run-times.
- Reduces the complexity of the logic network and allows high speed full-chip analysis.
- Makes RTL visualization more efficient. It overcomes the unstructured nature of HDL and elevates the users from the tedious complexity of viewing a gate-level schematic.
- Postpones running gate-level synthesis and the burden of synthesis details until later in the design cycle.
- Leverages complex and pre-characterized library from multiple sources.
- Preserves bus structures in analysis and visualization.
4. Design Goals
- Chip-
level design goals 219 include operating frequency, area, aspect ratio, chip IO timing, and IO pad locations. Timing convergence at minimum area is achieved through an alternating series of chip-level and block-level optimization. - 5. Functional Partitioning
- Functional partitioning is the first step in a chip-level timing convergence process by creating a first set of top-down constraints in terms of a network of physical partitions. It breaks the “chicken and egg” inter-dependency cycle between creating optimal block-level implementations before chip-level constraints are known and creating optimal chip-level constraints before block-level implementations are known. The cycle is broken by performing a
first partitioning 206 of theLBB network 203 intophysical partitions functional partitioning 206 step, the process is designed to be self-correcting duringstructural partitioning 215. Accordingly, the boundary between physical partitions are not required to be optimal at the functional partitioning stage. - Functional partitioning is a structural recognition process. The
functional partitioner 206 separates logic into well-understood silicon structures that have proven optimal logical and physical implementation techniques. The implementation of these silicon structures are supported by specialized implementation tools and libraries available commercially, such as Cadence Design Systems, Inc.'s SmartPath product. The well-understood physical structure and timing behavior of these silicon structures enable accurate ‘bottom-up’ estimations. - Present well-understood silicon structures include datapath (DP), finite state machine (FSM), memories (MEM), and random logic (RL). Even though these structures are commonly used in digital designs, their precise boundaries in the
RTL model 201 are not always obvious to the designer. As a result, the logical hierarchy in the RTL functional description usually does not reflect optimal physical partitioning for the implementation of these silicon structures. For example, data operators belonging to a single datapath partition may be scattered in many RTL modules in different logical hierarchies. Thefunctional partitioner 206 identifies such related structures and creates a single physical hierarchy from them. - Data signal traversal, followed by control signal traversal, accomplishes partitioning and structural recognition in parallel. The result is the separation of
datapath partitions 207 from other logic classified asnon-datapath partitions 208. A partition contains one or more LBB. Datapath (DP) partitions contain data operators. Non-datapath partitions contain either FSMs, MEMs, hard macro block (HMAC), or RL. - 5.1 Data-Flow Analysis
- The
functional partitioning 206 process creates a FSM partition and data-flow-logic partitions: DP, HMAC, and MEM partitions. Data-flow analysis is a depth-first traversal of bus signals across all hierarchy levels in theLBB network 203. - 5.1.1 DP Partition
- Data-flow analysis separates data operators, FSM, HMAC, and MEM from the LBB network by tracing bus connections. It further groups inter-connected data operators into a DP partition. Data operators in a DP partition can vary in bit-width. Independent bus systems in the design result in multiple independent DP partitions.
- 5.1.2 Finite State Machine (FSM)
- FSMs conform to RTL modeling style well understood in present top-down design methodology. FSM is a basic LBB recognized at the synthesis step. Each FSM forms its own partition.
- 5.1.3 Memories (MEM)
- Memories are regular blocks such as RAM, ROM, Cache, etc. When the
functional partitioner 206 encounters a memory block in the data signal traversal process, it creates a memory partition. Memory blocks are special data operators with data bus and control connections. - 5.1.4 Hard Macro Blocks (HMAC)
- Hard macro blocks are recognized from explicit instantiation in the RTL model. Each hard macro block forms an independent partition.
- 5.1.5 Data-Flow Analysis Process
- Referring now to
FIG. 7 there is shown the data-flow analysis of thefunctional partitioner 206. Traversal begins with identifying 701 an initial list of I/O busses at the top-level hierarchy of the design under analysis. Beginning with a current bus, the bus is traced 702 to find a next LBB that is connected to the bus. Acheck 703 determines if the LBB has been visited before. If not, then the LBB is checked 704 to determine if it is a data operator for a datapath. If so, the LBB is checked 705 to determine if it connects with an existing DP partition. If so, the LBB is added 706 to the existing DP partition. Otherwise, a new DP partition is created 708, and the LBB is added to it. In either case, any new untraversed busses connected to the LBB are added 710 to the bus list. Traversal of the bus list continues 714 until completed. - If the LBB was not a datapath operator, it is checked 707 to determine if it is a memory or a hard macro. For these LBBs, a new partition is created 711, and again untraversed busses are added to the
bus list 712. Finally, if the LBB is not a memory or hard macro, it is checked 709 to determine if it is a finite state machine. Here, a FSM partition is created 713. - If an LBB is not a datapath operator, MEM, HMAC, or FSM then it is passed to control-flow analysis.
- At the end of the data-flow analysis process, a control analysis process (
FIG. 8 ) is used to form control logic partitions associated with partitions created in the data-flow analysis process. - 5.2 Control-Flow Analysis
- The control-flow analysis process of
functional partitioning 206 creates random logic partitions using the data-flow-logic partitions (DP, MEM, HMAC) created in the data-flow analysis process as anchor points. Control-flow analysis performs depth-first forward traversal from the output control signals and backward traversal from the input control signals of all data-flow-logic to form closely associated control partitions. The close association between these control logic partitions and the data-flow logic they control form natural clusters in the chip-level floorplanning process. Control-flow analysis results in thenon-datapath partitions 208. -
FIG. 8 shows the application of a series of backward and forward traversals on DP, MEM, and HMAC physical partitions. The control logic of aDP partition 207 is formed by the combined effect offorward traversals backward traversals forward traversals backward traversals Forward traversals backward traversals - Depth-
first forward traversals - Depth-first
backward traversals - A
random logic partition 813 is formed by the remaining LBBs not included in any control logic partitions. This random logic partition will be further divided into multiple random logic partitions if clusters of LBBs are unrelated. - The effect of the control-flow analysis process is to maximize the likelihood that single-cycle logic stays in the same partition and a partition's input/output signals are latched.
- 5.3 Logical Hierarchy to Physical Hierarchy Transformation
- The combined effect of data-flow and control-flow analysis by the
functional partitioner 206 is the transformation of the logical hierarchy inherent to theRTL model 201 into a physical hierarchy optimized for chip-level physical implementation. The physical hierarchy is defined by the connectivity and hierarchical relationship of physical partitions created in the data-flow and control-flow analysis processes, which may be different from the logical hierarchy of theRTL model 201. - 6. Block Level Implementation Feasibility
- For each physical partition (stored in DP and
Non-DP partitions 207, 208) created by thefunctional partitioner 206, a range of feasible block-level physicalimplementation estimation models Feasible implementation models 210 can vary in area, aspect ratio, power consumption, or timing, provided that all critical paths within a block must at least meet the minimum operating frequency requirement of the chip. Each block-level estimation model -
- A pin-to-pin timing model suitable for chip-level analysis.
- A placement-based wire load model internal to the partition.
- A block-level floorplan with pin assignment.
- A structural netlist
- 6.1 Datapath Partition
- A Datapath Macro (DPM) consists of a semi-regular portion of data operators (DP partition) and a random section of Datapath Control (DPC) logic as shown in
FIG. 11 . Data operators are arranged in rows and columns so that control signals and busses achieve maximum alignment for optimal density and speed. - 6.1.1 DP Construction
-
FIG. 9 depicts the detailed datapath building process performed by thedatapath builder 209. Inputs to the datapath building process include the LBB network of theDP partition 207 created by thefunctional partitioner 206, operationfrequency timing constraints 216 for critical paths internal to the DP partition, andtiming constraints 216 for logic paths that end outside the DP partition. When theDP builder 209 is run for the first time in the RTL optimization process, only the minimum operating frequency is known, as specified in thedesign goals 219. In this case, only the timing of internal paths of the datapath partition is optimized. Both internal and external paths are optimized together whenexternal timing constraints 216 become known in subsequent executions of thedatapath builder 209. - The smallest LBB implementation is selected in the
initial selection 904 of the individual LBB implementations in the calibratedLBB library 220. Alternate DPphysical implementation models 210 are created by varying 906 the bit-width of the datapath. Varying bit-width creates a number of feasibleDP implementation models 210 with different aspect-ratios. The feasible bit-width range of the DP partition is determined 905 by X/4≦bit-width≦2X, at 1-bit increments 906, where X is the bit-width of the widest data operator in the DP partition. - 6.1.2 DP Placement Optimization
- The order of data operators in the
bus direction 1001 is first optimized 907 to minimize bus length and meet timing constraints. Data operator order optimization is performed at the LBB level to speed up processing time. - Data operators along a critical timing path within the DP are clustered in close proximity. A ‘snaking’ path is formed when a critical path extends beyond the DP into DPC and then sometimes re-enters the DP. A snaking path may contain multiple sections of data operators. These sections are clustered together even though they are connected indirectly through random logic in DPC.
- After bus optimization, data operator placement is optimized in the
control direction 1002 aligning 908 busses at the bit level so that busses run straight across the DP.Bit alignment 908, performed mostly at the LBB level, employs the following techniques: -
- Fold bits in data operators wider than the DP bit-width.
- Spread apart bits in data operators narrower than the DP bit-width.
- Shift the entire data operator along the control direction to minimize bus wire bending.
- A
compaction 909 step is used to pack data operators to minimize area while meeting timing. Compaction employs the following techniques: -
- Merge data operators that don't occupy every bit position.
- Stack multiple narrower data operators end-to-end to fill the entire bit-width.
- Move data operators to fill any space as long as timing constraints are met.
-
FIG. 10 shows an example of floorplanning and compacting six data operators of varying bit-width (4, 8, 16) into a datapath with a bit-width of 8. Data operator A is folded from 16-bit into 8-bit. Data operators C and D are stacked end-to-end. Data operators E and F are spread apart and then merged. - The compacted DP is globally routed 910 and timing analyzed 911 to obtain the first floorplan.
- 6.1.3 DP Logic Optimization
- An
iteration loop 912 is set up to refine the initial result through an alternate series of placement and logic optimization. The following steps are employed in the logic optimization process: -
- 1. Refine
LBB selection 913—select faster LBB (better architecture and higher drive) in the LBB library to meet timing at the expense of area or select smaller LBB to reduce area as long as timing is met. The selection of a LBB is a table look-up process in which the performance tables 501 for LBBs withvarious driver sizes 505 andalternative architectures 503 are searched. A LBB implementation will be chosen if it is the smallest LBB satisfying the timing constraint. - 2.
Buffer Insertion 914 for signals with heavy load.
- 1. Refine
- 6.1.4 Viable DP Implementation Candidates
- Datapath implementation models are varied by altering (906) the bit width of the datapath. As long as the block satisfies 915 the minimum chip operating frequency according to the result of
timing analysis 911, it is considered a viable candidate, and added to theblock estimation models 210. The smallest area implementation (in the block estimation models 210) is not necessarily the best choice because blocks with a different aspect ratio may actually produce a better overall chip design even though the block itself may be larger. - 6.2 Non-Datapath structures
- Non-datapath structures include control logic (for DP, MEM, HMAC), random logic, finite state machines, memories, and hard macro blocks. Control logic and FSM are special forms of random logic with additional constraints. The
non-DP estimator 211 generates a feasible implementation estimation model, 212 for non-datapath structures. - 6.2.1 Non-DP Structure Estimator
- The
non-DP structure estimator 211 generatesblock estimation models 212 for random logic, finite state machines, memories, and hard macro blocks. Random logic estimation is based on standard cell physical implementation techniques.FIG. 12 shows the random logic estimation process of thenon-DP structure estimator 211. A random logic block is partitioned 1201 into small clusters of highly connected LBBs. Cluster-level placement 1202 is performed by a Min-cut algorithm. Anannealing algorithm 1203 refines the LBB placement for aglobal routing 1204. The global routing forms the basis for a placement-based wire-load model 212 for wires both within and between LBB clusters. Thefinal timing analysis 1205 creates a pin-to-pin timing model for chip-level optimization 213. - The flexible nature of the standard cell place-and-route topology can potentially create an infinite combination of aspect ratio variations and I/O pin assignments. The
non-DP structure estimator 211 responds to requests from thefunctional partitioner 206, thestructural partitioner 215, and thechip optimizer 213 to createrandom logic estimations 211 underdifferent constraints 217 during various steps in the RTL optimization process. Thefunctional partitioner 206 initiates the first rough estimation with no constraints, and a default random logic block aspect ratio of 1:1 is used. Thechip optimizer 213 and thestructural partitioner 215 request random logic area and speed estimation by providing pin assignment and aspect ratio constraints. - 6.2.2 Datapath Control Logic
- Even though DPC logic is created using standard-cell place and route, the block topology is highly constrained by the regular nature of the DP block it controls. The present invention allows additional constraints to be imposed on DPC logic according to the datapath it controls. As illustrated in
FIG. 11 , in aDPC 1102 block, onedimension 1103 is required to be equal to the length of the DP side wherecontrol 10 signals exit theDP 1101. The number of random logic LBBs and the amount of wiring overhead in the DPC block dictate itsother dimension 1104. Furthermore, theterminal location 1105 on the DP side is completely constrained and defined by the optimal placement of data operators in the DP. Other I/O signals naturally exit the DPC block from theopposite side 1106. Occasionally, I/O terminals also exit from the remaining two sides of the DPC block. DP and its associated DPC form a natural cluster; as a result, these partitions always stay together, and need not be later re-analyzed to consider whether they should be reclustered. The abutment between DP and DPC is not always regular. The placement of the flexible DPC logic can match theirregular contour 1107 of the DP so that the combined DPM block achieves maximum packing density. - Once the pin assignment and aspect ratio of a DPC block are determined, the area/speed estimation process is identical to that of an ordinary random logic block.
- 6.2.3 Finite State Machines
- From the physical implementation perspective, a finite state machine is also a special form of random logic. A finite state machine has a well-defined logic architecture which divides the logic into multiple sections: input latches, output latches, state-bit logic, and AND-OR logic for control outputs. The natural logic separation forms the basis for clustering of LBB within the finite state machine.
- The estimation process for finite state machines is similar to that of random logic.
- 6.2.4 Memories
- Aspect ratio, area, IO pin assignment, and timing information are derived from pre-characterized memory libraries. Alternate feasible implementations will be presented for chip-level optimization if the library is capable of generating them.
- Memory control logic is estimated similar to DP control logic.
- 6.2.5 Hard Macro Blocks
- A hard macro has a pre-defined implementation supplied by the user. Area and performance are pre-characterized and no estimation is needed. HMAC control logic is estimated similar to DP control logic.
- 7. Chin-Level Optimization
- The
chip optimizer 213 performs chip-level optimization and producesstructural partitioner constraints 214 to refine the blocklevel implementation models FIG. 13 depicts the creation of a floorplan in thechip optimization process 213. Inputs to this process include chip-level constraints 222 and a collection of feasiblephysical implementation models level optimization 213 outputs structural partitioner constraints which include: -
- Chip-level floorplan
- Physical partition
- Implementation model selection for each partition
- Placement based global Wire load model
- Pin assignment
- Block level timing budget.
- The pattern of data-flow and control-flow resulted from the partitioning steps forms the initial clustering of physical blocks. Data-flow-logic and its associated control logic form natural clusters in the initial floorplan. The placement of the clusters is initially computed by a force-directed method and then iteratively improved by packing the clusters along the x direction and y direction. For each
partition level implementation model 1301 is selected from its accompanyingblock implementation models feasible implementations - The initial floorplan may contain overlap and unused space, which is removed in the
compaction step 1303. Compaction involves local movement of blocks and refinement of the block-level implementation model selection. Thefloorplan compactor 1303 has multiple options in refining the block-level implementation selection. It may pick alternate blocks in the set of feasibility DP blocks 210 orNon-DP blocks 212. It may make continuous adjustment to the size and aspect ratio ofrandom logic partitions 208 by modifyingconstraints 217 and invoking theNon-DP structure estimator 211 to produce refinedblock estimation models 212 for the modified partitions. It may also generate structuralre-partition constraints 205 and invoke thestructural partitioner 215 to split and merge partitions in order to precisely control the size and shape of blocks for better timing and area efficiency. Changes by thestructural partitioner 215 induce revisions of theblock estimation models DP builder 209 for the modified DP partitions or thenon-DP structure estimator 211 fornon-DP partitions 208. -
Automatic pin assignment 1304 optimizes overall wire length to derive a first-pass chip floorplan. The first-pass chip floorplan is then globally routed 1305 to produce more accurate parasitics andtiming 1306 for a second-pass refinement in physical implementation selection and pin assignment. The two-pass approach 1307 is completely automatic. A final global re-route 1305 and fullchip timing analysis 1306 are used to determine slack and redistribute timing budget among blocks and generate newstructural partitioner constraints 214. - 8. Structural Partitioning
-
Structural partitioning 215 refines the partitioning created by thefunctional partitioner 206 based onstructural partitioning constraints 214 resulting from the chip-level optimization process 213. Thestructural partitioner 215 creates new block-level constraints datapath partitions 207 andnon-datapath partitions 208 to improve timing and floorplan packing density.New block constraints DP builder 209 andnon-DP structure estimator 211. - As noted above, the
chip optimizer 213 may invoke thestructural partitioner 215 multiple times in the chip optimization process improve chip floorplanning packingdensity using steps - For timing closure, the
structural partitioner 215 analyzes failing timing paths based on the wire-load andtiming information 214. If these paths “snake” through different partitions, thestructural partitioner 215 is used to move the LBBs in the “snaking-path” between partitions to achieve timing convergence. An example is a failing timing path that traverses from a DP block to its associated control (DPC) in the Datapath Macro. In this case thestructural partitioner 215 can analyze this path and bring the LBBs in the path in the control (source) partition to the datapath (destination) partition and utilize the empty spaces in the datapath for their placement. Conversely paths that are not timing critical can be made longer by thestructural partitioner 215 if it reduces the path delay of other timing critical paths. - LBBs moved from the source partition take on the same physical implementation style as the destination partition. If all LBBs in the source partition are moved then the source partition is in effect merged with the destination partition. Therefore, shifting LBBs between
DP partitions 207 andNon-DP partitions 208 has the effect of changing the physical implementation style of the affected LBBs from datapath style to random logic style or vice versa. - 9. Final Chip Optimization
- Final chip optimization is the 2nd pass through the
chip optimizer 213 with newblock estimation models refined constraints structural partitioner 215, in addition tochip constraints 222. The initial floorplan is refined for timing and density.Structural partitioner constraints 214 are converted to data andcontrol files end tools - The data and
control files - 10. Interface to Back-End Tools
- The
system 200 of the present invention does not directly generate final physical implementation of the chip. It generates detailed implementation constraints for back-end physical implementation tools based on an optimal floorplan and placement-based wire load models at chip and block level. The result of the final chip optimization is expressed in a set of data andcontrol files system 200 provided that the final physical implementation meets area and timing requirements. - The follow information is sent to the back-end tools for detailed physical implementation:
-
-
Datapath 224- Block-level structural netlist.
- LBB-level floorplan
- Routing path of global wires
- Aspect ratio and area constraints
- Pin assignment
- Output load
- Block input arrival time
- Block output timing constraints
- Internal timing constraints
- Placement-based wire-load for wires between LBBs
- Command scripts
-
Non-DP Logic 223- Block-level structural netlist
- LBB-level cluster floorplan
- Routing path of global wires
- Aspect ratio and area constraints
- Pin assignment
- Output load
- Block input arrival time
- Block output timing constraints
- Internal timing constraints.
- Placement-based wire-load for wires between LBBs
- Command scripts
-
Chip Floor Plan 226- Chip-level structural netlist of physical partitions
- Chip-level floorplan of physical partitions
- Routing path of global wires
- Aspect ratio and area constraints
- Pin assignment
- Output load
- Chip input arrival time
- Chip output timing constraints
- Internal timing constraints
- Placement-based wire-load for wires between physical partitions
- Command scripts
- Memory and
hard macro 225- Aspect ratio and area constraints
- Output load
- Block input arrival time
- Block output timing constraints
- Operating frequency
- Command scripts for calling memory generators or instantiating hard macro
11. User-Controlled Automation
-
- The overall strategy in the RTL optimization process is to meet chip-level timing constraints with minimum area in a single pass through the design flow. Since the design flow is completely performance driven, altering the high level constraints (area, timing, power) will result in vastly different chip implementation.
- The above design flow represents a built-in preprogrammed sequence designed to reach timing convergence in a single pass automatically for a majority of IC designs. The
system 200 provides facilities for manual interventions to refine the automatic result. The built-in optimization sequence can also be modified by the user to adapt thesystem 200 to unique chip requirements. - 11.1 Manual Refinement
- When a user selects a module in the logical hierarchy tree, the
RTL optimization system 200 automatically flattens the selected module for partitioning, If the user selects the top module, the whole chip will be flattened and the physical hierarchy for the entire chip will be created automatically. The user can therefore control the creation of the physical hierarchy by selecting manually modules in the logical hierarchy to be implemented hierarchically. - Manual entry points are inserted into an otherwise automated process for users to refine the automatically generated result and to:
-
- Control the mapping of logic into LBB library element.
- Control the partitioning interactively or by embedding directives in the RTL model. User intervention for partitioning includes:
- Moving LBB between partitions.
- Splitting and merging blocks.
- Changing block structure (e.g., change DP to random logic).
- Making an instance unique.
- Grouping and clustering.
- Hierarchy flattening.
- Control the creation and selection of block level implementation.
- Change pin assignment.
- Change block-level floorplans.
- Change chip-level floorplan.
- Use in-place-optimization for local refinement with minimum disturbance to unaffected logic.
- Fine tune chip optimization by back-annotating blocks with
macro models 218 derived from actual block level implementation.
- 11.2 User-Programmable sequence
- All software modules of the
system 200 used in the built-in sequence and an underlying design database storing the RTL models and generated models and data are available to users through a procedural interface. A user may customize the design flow sequence using a programming language and the procedural interface. - 12. Design Visualization
- Design visualization is key to maintaining links between all transformations performed by the
system 200 on the original RTL model hierarchy. The user interface is designed to support the use of the original user-defined RTL model as a functional interface to the analysis of the electronic design throughout the RTL design process. - A user can open one or more of the following windows to examine various views of the design. Cross-probing between all windows allows a user to select an object in any window and the same object, represented in different views in other windows, will be highlighted.
FIG. 14 shows the following display windows: -
- 1.
Logical hierarchy window 1401—reflects the original RTL model instance hierarchy tree. - 2.
Physical hierarchy window 1402—reflects the physical hierarchy tree after partitioning. - 3. RTL
model source window 1403—displays the content (HDL statements) of selected RTL model files. - 4.
Block diagram window 1404—displays the LBB network of selected logical or physical partitions graphically as schematics. - 5.
Floorplan window 1405—displays the physical floorplan and wiring of selected physical partitions. - 6.
Net window 1406—displays all signal and instance names in the design for searching. - 7. Timing
analysis window 1407—displays timing delay on logic paths.
- 1.
-
Block diagram window 1404 represents the LBB network that is extracted from theRTL model 201. Conventional design tools today enable the user to begin with graphical inputs and develop a RTL model therefrom, or to view gate-level schematics after logic synthesis. In contrast, theRTL optimization system 200 of the present invention provides the ability to begin with an RTL model and extract a higher level model in the form of the LBB network, which is then visualized inblock diagram window 1404. This enables the viewer to visualize and manipulate the electronic design at a higher level than gate-level schematics. Thus, this window represents visually the automatically partitioned electronic design, and enables the system designer to manually interact with the design, including changing partitioning, pin assignments, and the like as described above. - 12.1 Special Partition Visualization Modes
-
- 1. Select modules in the logical hierarchy and display schematics at block, LBB, or mixed level. In the LBB schematic mode, each LBB is color coded to indicate the physical partition it belongs to.
- 2. Select modules in the physical hierarchy and display schematics at block, LBB, or mixed level. In the LBB schematic mode, each LBB is color coded to indicate which logical block it belongs to.
- 3. In the RTL source window, use different background color to highlight the RTL statements corresponding to various physical partitions.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/262,736 US20060053396A1 (en) | 1998-01-30 | 2005-11-01 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/015,602 US6145117A (en) | 1998-01-30 | 1998-01-30 | Creating optimized physical implementations from high-level descriptions of electronic design using placement based information |
US09/634,927 US6360356B1 (en) | 1998-01-30 | 2000-08-08 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
US10/040,852 US7143367B2 (en) | 1998-01-30 | 2001-12-28 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
US11/262,736 US20060053396A1 (en) | 1998-01-30 | 2005-11-01 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/040,852 Continuation US7143367B2 (en) | 1998-01-30 | 2001-12-28 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060053396A1 true US20060053396A1 (en) | 2006-03-09 |
Family
ID=21772380
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/015,602 Expired - Lifetime US6145117A (en) | 1998-01-30 | 1998-01-30 | Creating optimized physical implementations from high-level descriptions of electronic design using placement based information |
US09/634,927 Expired - Fee Related US6360356B1 (en) | 1998-01-30 | 2000-08-08 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
US10/040,852 Expired - Lifetime US7143367B2 (en) | 1998-01-30 | 2001-12-28 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
US11/262,736 Abandoned US20060053396A1 (en) | 1998-01-30 | 2005-11-01 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/015,602 Expired - Lifetime US6145117A (en) | 1998-01-30 | 1998-01-30 | Creating optimized physical implementations from high-level descriptions of electronic design using placement based information |
US09/634,927 Expired - Fee Related US6360356B1 (en) | 1998-01-30 | 2000-08-08 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
US10/040,852 Expired - Lifetime US7143367B2 (en) | 1998-01-30 | 2001-12-28 | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information |
Country Status (6)
Country | Link |
---|---|
US (4) | US6145117A (en) |
EP (1) | EP0979471A2 (en) |
JP (1) | JP2001519958A (en) |
AU (1) | AU2350099A (en) |
IL (1) | IL132082A (en) |
WO (1) | WO1999039288A2 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040078767A1 (en) * | 2001-06-08 | 2004-04-22 | Burks Timothy M. | Representing the design of a sub-module in a hierarchical integrated circuit design and analysis system |
US20050210428A1 (en) * | 2004-03-18 | 2005-09-22 | Keller S B | System and method for flattening hierarchical designs in VLSI circuit analysis tools |
US20050268258A1 (en) * | 2004-06-01 | 2005-12-01 | Tera Systems, Inc. | Rule-based design consultant and method for integrated circuit design |
US20050268267A1 (en) * | 2004-06-01 | 2005-12-01 | Tera Systems, Inc. | Methods and systems for mixed-mode physical synthesis in electronic design automation |
US20050268268A1 (en) * | 2004-06-01 | 2005-12-01 | Tera Systems, Inc. | Methods and systems for structured ASIC electronic design automation |
US20050289485A1 (en) * | 2004-06-24 | 2005-12-29 | Ftl Systems, Inc. | Hardware/software design tool and language specification mechanism enabling efficient technology retargeting and optimization |
US20060101365A1 (en) * | 2004-11-08 | 2006-05-11 | Pei-Hsin Ho | Method and apparatus for partitioning an integrated circuit chip |
US20060129964A1 (en) * | 2004-12-10 | 2006-06-15 | Matsushita Electric Industrial Co., Ltd. | Net list generating method and layout designing method of semiconductor integrated circuit |
US7107564B1 (en) * | 2001-06-03 | 2006-09-12 | Cadence Design Systems, Inc. | Method and apparatus for routing a set of nets |
US20060242613A1 (en) * | 2005-04-20 | 2006-10-26 | Hiromasa Fukazawa | Automatic floorplanning approach for semiconductor integrated circuit |
US20090031276A1 (en) * | 2007-07-27 | 2009-01-29 | Shuntaro Seno | Design Apparatus, Design Method, and Program |
US20090112350A1 (en) * | 2007-10-30 | 2009-04-30 | Gm Global Technology Operations, Inc. | Process for generating control sequence of operations |
US7673257B1 (en) * | 2007-03-05 | 2010-03-02 | Calypto Design Systems, Inc. | System, method and computer program product for word-level operator-to-cell mapping |
US20100162185A1 (en) * | 2005-08-12 | 2010-06-24 | University Of Sussex | Electronic circuit design |
US20100218155A1 (en) * | 2009-02-26 | 2010-08-26 | Fleischer Bruce M | Automated Critical Area Allocation in a Physical Synthesized Hierarchical Design |
US20100223587A1 (en) * | 2009-02-27 | 2010-09-02 | Sun Microsystems, Inc. | Efficient chip routing method and apparatus for integrated circuit blocks with multiple connections |
US20100220516A1 (en) * | 2009-03-02 | 2010-09-02 | Qualcomm Incorporated | Reducing Source Loading Effect in Spin Torque Transfer Magnetoresisitive Random Access Memory (STT-MRAM) |
US7913194B1 (en) | 2006-06-02 | 2011-03-22 | Cadence Design Systems, Inc. | Systems and methods for super-threading |
WO2011146309A1 (en) * | 2010-05-19 | 2011-11-24 | Xldyn, Llc | Spreadsheet-based graphical user interface for dynamic system modeling and simulation |
US20110289468A1 (en) * | 2009-12-09 | 2011-11-24 | International Business Machines Corporation | Circuit Macro Placement Using Macro Aspect Ratio Based on Ports |
US20120036491A1 (en) * | 2010-08-04 | 2012-02-09 | International Business Machines Corporation | Constraint Programming Based Method for Bus-Aware Macro-Block Pin Placement in a Hierarchical Integrated Circuit Layout |
US8397197B1 (en) | 2011-05-25 | 2013-03-12 | Applied Micro Circuits Corporation | Integrated circuit module time delay budgeting |
US8448122B1 (en) * | 2009-04-01 | 2013-05-21 | Xilinx, Inc. | Implementing sub-circuits with predictable behavior within a circuit design |
US8453093B2 (en) | 2011-10-17 | 2013-05-28 | International Business Machines Corporation | Alignment net insertion for straightening the datapath in a force-directed placer |
US8504978B1 (en) * | 2009-03-30 | 2013-08-06 | Cadence Design Systems, Inc. | User interface for timing budget analysis of integrated circuit designs |
US8549461B2 (en) | 2010-12-09 | 2013-10-01 | Synopsys, Inc. | Generation of independent logical and physical hierarchy |
US20130283225A1 (en) * | 2012-04-19 | 2013-10-24 | International Business Machines Corporation | Datapath placement using tiered assignment |
US8667444B2 (en) * | 2012-02-17 | 2014-03-04 | Synopsys, Inc. | Concurrent placement and routing using hierarchical constraints |
US8751983B1 (en) * | 2013-03-07 | 2014-06-10 | Oracle International Corporation | Method for design partitioning at the behavioral circuit design level |
US9053270B1 (en) * | 2012-12-18 | 2015-06-09 | Cadence Design Systems, Inc. | Methods, systems, and articles of manufacture for synchronous hierarchical implementation of electronic circuit designs |
US20160275229A1 (en) * | 2014-04-14 | 2016-09-22 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Viewing multi paired schematic and layout windows on printed circuit board (pcb) design software and tools |
US10503861B1 (en) * | 2018-05-21 | 2019-12-10 | Xilinx, Inc. | Placing and routing an interface portion and a main portion of a circuit design |
CN112202258A (en) * | 2020-11-11 | 2021-01-08 | 中达电机股份有限公司 | Rotor conducting bar and end ring structure of high-voltage motor and welding process thereof |
US10997350B1 (en) * | 2020-07-02 | 2021-05-04 | International Business Machines Corporation | Semiconductor circuit design and unit pin placement |
US11080456B2 (en) | 2019-11-28 | 2021-08-03 | International Business Machines Corporation | Automated design closure with abutted hierarchy |
Families Citing this family (225)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6519749B1 (en) * | 1998-01-09 | 2003-02-11 | Silicon Perspective Corporation | Integrated circuit partitioning placement and routing system |
US6145117A (en) * | 1998-01-30 | 2000-11-07 | Tera Systems Incorporated | Creating optimized physical implementations from high-level descriptions of electronic design using placement based information |
US6286128B1 (en) * | 1998-02-11 | 2001-09-04 | Monterey Design Systems, Inc. | Method for design optimization using logical and physical information |
US6314552B1 (en) * | 1998-05-18 | 2001-11-06 | Lev A. Markov | Electronic design creation through architectural exploration |
US6442743B1 (en) * | 1998-06-12 | 2002-08-27 | Monterey Design Systems | Placement method for integrated circuit design using topo-clustering |
US6243653B1 (en) * | 1998-08-17 | 2001-06-05 | Vlsi Technology, Inc. | Methods and apparatus for extracting parasitic capacitance values from a physical design of an integrated circuit |
JP2000133718A (en) * | 1998-10-23 | 2000-05-12 | Mitsubishi Electric Corp | Equipment and method for wiring capacitance improvement supporting and medium with program for recorded therein |
TW476069B (en) * | 1998-11-20 | 2002-02-11 | Via Tech Inc | Placement and routing for array device |
US6381731B1 (en) * | 1999-01-19 | 2002-04-30 | Laurence W. Grodd | Placement based design cells injection into an integrated circuit design |
JP3250542B2 (en) * | 1999-03-23 | 2002-01-28 | 日本電気株式会社 | LSI design method |
US6584605B1 (en) * | 1999-04-15 | 2003-06-24 | Sycon Design, Inc. | Method for forming a relative placement of components of an integrated circuit using a structural similarity group |
US6505328B1 (en) * | 1999-04-27 | 2003-01-07 | Magma Design Automation, Inc. | Method for storing multiple levels of design data in a common database |
US6519754B1 (en) * | 1999-05-17 | 2003-02-11 | Synplicity, Inc. | Methods and apparatuses for designing integrated circuits |
US6438735B1 (en) * | 1999-05-17 | 2002-08-20 | Synplicity, Inc. | Methods and apparatuses for designing integrated circuits |
JP3231741B2 (en) * | 1999-06-28 | 2001-11-26 | エヌイーシーマイクロシステム株式会社 | Standard cell, standard cell row, standard cell placement and routing device and placement and routing method |
US6430731B1 (en) * | 1999-08-04 | 2002-08-06 | International Business Machines Corporation | Methods and apparatus for performing slew dependent signal bounding for signal timing analysis |
EP1126052B1 (en) * | 1999-08-11 | 2003-09-03 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber and its use |
US6397341B1 (en) * | 1999-08-27 | 2002-05-28 | Synopsys, Inc. | Method for improving the speed of behavioral synthesis links to logic synthesis |
US7810069B2 (en) * | 1999-10-05 | 2010-10-05 | Borland Software Corporation | Methods and systems for relating data structures and object-oriented elements for distributed computing |
US7036103B2 (en) * | 1999-10-14 | 2006-04-25 | Synopsys, Inc. | Detailed placer for optimizing high density cell placement in a linear runtime |
WO2001033334A1 (en) * | 1999-10-29 | 2001-05-10 | Antrim Design Systems, Inc. | Mixed signal synthesis behavioral models and use in circuit design optimization |
JP2001142927A (en) * | 1999-11-16 | 2001-05-25 | Matsushita Electric Ind Co Ltd | Design method for semiconductor integrated circuit device, power consumption analyzing method for circuit and power consumption analyzing device |
US6557160B2 (en) * | 1999-12-21 | 2003-04-29 | Khalil Shalish | Correlation of behavioral HDL signals |
US6442745B1 (en) * | 1999-12-29 | 2002-08-27 | Intel Corporation | Method and apparatus for layout-constrained global routing |
US6591407B1 (en) * | 2000-03-01 | 2003-07-08 | Sequence Design, Inc. | Method and apparatus for interconnect-driven optimization of integrated circuit design |
US6817005B2 (en) * | 2000-05-25 | 2004-11-09 | Xilinx, Inc. | Modular design method and system for programmable logic devices |
US6631508B1 (en) * | 2000-06-07 | 2003-10-07 | Xilinx, Inc. | Method and apparatus for developing and placing a circuit design |
US6539533B1 (en) * | 2000-06-20 | 2003-03-25 | Bae Systems Information And Electronic Systems Integration, Inc. | Tool suite for the rapid development of advanced standard cell libraries |
US6701496B1 (en) * | 2000-07-20 | 2004-03-02 | Silicon Graphics, Inc. | Synthesis with automated placement information feedback |
US6588001B1 (en) * | 2000-08-31 | 2003-07-01 | Micron Technology, Inc. | Method for inserting repeater cells in a deep sub-micron design |
US6567967B2 (en) | 2000-09-06 | 2003-05-20 | Monterey Design Systems, Inc. | Method for designing large standard-cell base integrated circuits |
US6721922B1 (en) * | 2000-09-27 | 2004-04-13 | Cadence Design Systems, Inc. | System for electronic circuit characterization, analysis, modeling and plan development |
US6622291B1 (en) * | 2000-10-30 | 2003-09-16 | Cadence Design Systems, Inc. | Method and apparatus for physical budgeting during RTL floorplanning |
US7013438B1 (en) * | 2000-11-01 | 2006-03-14 | Cadence Design Systems, Inc. | System chip synthesis |
US6857116B1 (en) * | 2000-11-15 | 2005-02-15 | Reshape, Inc. | Optimization of abutted-pin hierarchical physical design |
US6496962B1 (en) * | 2000-11-17 | 2002-12-17 | Lsi Logic Corporation | Standard library generator for cell timing model |
US6704917B1 (en) * | 2000-11-21 | 2004-03-09 | Micro Industries Corporation | Table driven design system and method |
US6530069B2 (en) * | 2000-11-29 | 2003-03-04 | Unisys Corporation | Printed circuit board design, testing, and manufacturing process |
US6449760B1 (en) * | 2000-11-30 | 2002-09-10 | Lsi Logic Corporation | Pin placement method for integrated circuits |
US6711729B1 (en) * | 2000-12-05 | 2004-03-23 | Synplicity, Inc. | Methods and apparatuses for designing integrated circuits using automatic reallocation techniques |
US6634014B1 (en) * | 2000-12-12 | 2003-10-14 | Lsi Logic Corporation | Delay/load estimation for use in integrated circuit design |
US7302670B2 (en) * | 2000-12-21 | 2007-11-27 | Bryan Darrell Bowyer | Interactive interface resource allocation in a behavioral synthesis tool |
US6584600B2 (en) * | 2001-02-15 | 2003-06-24 | Hewlett-Packard Development Company, L.P. | Hierarchical metal one usage tool for child level leaf cell |
US7103523B2 (en) * | 2001-03-01 | 2006-09-05 | International Business Machines Corporation | Method and apparatus for implementing multiple configurations of multiple IO subsystems in a single simulation model |
US6470476B2 (en) | 2001-03-16 | 2002-10-22 | International Business Machines Corporation | Substitution of non-minimum groundrule cells for non-critical minimum groundrule cells to increase yield |
US6480991B1 (en) * | 2001-04-11 | 2002-11-12 | International Business Machines Corporation | Timing-driven global placement based on geometry-aware timing budgets |
US6507939B1 (en) * | 2001-05-15 | 2003-01-14 | Lsi Logic Corporation | Net delay optimization with ramptime violation removal |
US7082104B2 (en) * | 2001-05-18 | 2006-07-25 | Intel Corporation | Network device switch |
CA2450135A1 (en) * | 2001-06-08 | 2002-12-19 | Magma Design Automation, Inc. | Method for generating design constraints for modulates in a hierarchical integrated circuit design system |
US7363609B2 (en) * | 2001-07-26 | 2008-04-22 | International Business Machines Corporation | Method of logic circuit synthesis and design using a dynamic circuit library |
US6480999B1 (en) * | 2001-07-26 | 2002-11-12 | Xilinx, Inc. | Signal routing in programmable logic devices |
DE10137574B4 (en) * | 2001-07-31 | 2006-01-19 | Infineon Technologies Ag | Method, computer program and data processing system for processing network topologies |
US6598216B2 (en) * | 2001-08-08 | 2003-07-22 | International Business Machines Corporation | Method for enhancing a power bus in I/O regions of an ASIC device |
US7093224B2 (en) | 2001-08-28 | 2006-08-15 | Intel Corporation | Model-based logic design |
US7073156B2 (en) * | 2001-08-29 | 2006-07-04 | Intel Corporation | Gate estimation process and method |
US7107201B2 (en) * | 2001-08-29 | 2006-09-12 | Intel Corporation | Simulating a logic design |
US20030046054A1 (en) * | 2001-08-29 | 2003-03-06 | Wheeler William R. | Providing modeling instrumentation with an application programming interface to a GUI application |
US7130784B2 (en) * | 2001-08-29 | 2006-10-31 | Intel Corporation | Logic simulation |
US6859913B2 (en) * | 2001-08-29 | 2005-02-22 | Intel Corporation | Representing a simulation model using a hardware configuration database |
US6983427B2 (en) * | 2001-08-29 | 2006-01-03 | Intel Corporation | Generating a logic design |
US20030046051A1 (en) * | 2001-08-29 | 2003-03-06 | Wheeler William R. | Unified design parameter dependency management method and apparatus |
US6766500B1 (en) * | 2001-12-06 | 2004-07-20 | Synopsys, Inc. | Multiple pass optimization for automatic electronic circuit placement |
US6567971B1 (en) | 2001-12-20 | 2003-05-20 | Logicvision, Inc. | Circuit synthesis method using technology parameters extracting circuit |
KR100429573B1 (en) * | 2001-12-24 | 2004-05-03 | 주식회사 하이닉스반도체 | Method for creating Register transfer level code |
US6789234B2 (en) * | 2001-12-28 | 2004-09-07 | International Business Machines Corporation | Method and system for a timing based logic entry |
US7197724B2 (en) * | 2002-01-17 | 2007-03-27 | Intel Corporation | Modeling a logic design |
US20030145311A1 (en) * | 2002-01-25 | 2003-07-31 | Wheeler William R. | Generating simulation code |
US6763507B2 (en) * | 2002-01-30 | 2004-07-13 | Agilent Technologies, Inc. | System and method for testing abstracted timing models |
US7310787B2 (en) * | 2002-03-08 | 2007-12-18 | Shiv Prakash | Array transformation in a behavioral synthesis tool |
US7188327B2 (en) * | 2002-04-11 | 2007-03-06 | Cadence Design Systems, Inc. | Method and system for logic-level circuit modeling |
US8082138B1 (en) * | 2002-04-11 | 2011-12-20 | Synopsys, Inc. | Automated bottom-up and top-down partitioned design synthesis |
US6732343B2 (en) * | 2002-05-13 | 2004-05-04 | Agilent Technologies, Inc. | System and methods for placing clock buffers in a datapath stack |
US6880133B2 (en) * | 2002-05-15 | 2005-04-12 | Sonics, Inc. | Method and apparatus for optimizing distributed multiplexed bus interconnects |
US7149991B2 (en) * | 2002-05-30 | 2006-12-12 | Nec Electronics America, Inc. | Calibrating a wire load model for an integrated circuit |
US6980211B2 (en) * | 2002-06-04 | 2005-12-27 | Springsoft, Inc. | Automatic schematic diagram generation using topology information |
US6789248B1 (en) | 2002-06-24 | 2004-09-07 | Taiwan Semiconductor Manufacturing Company | Method and apparatus to perform resistance and capacitance (RC) parameter customization for better timing closure results in physical synthesis and optimization |
US7127692B2 (en) * | 2002-06-27 | 2006-10-24 | Lsi Logic Corporation | Timing abstraction and partitioning strategy |
US6848084B1 (en) * | 2002-07-02 | 2005-01-25 | Cadence Design Systems, Inc. | Method and apparatus for verification of memories at multiple abstraction levels |
US20040010766A1 (en) * | 2002-07-10 | 2004-01-15 | Swope John M. | Method and system for automated design of printed circuit boards |
US6971083B1 (en) * | 2002-11-13 | 2005-11-29 | Altera Corporation | Method for programming programmable logic device with blocks that perform multiplication and other arithmetic functions |
US6907588B2 (en) * | 2002-12-31 | 2005-06-14 | Lsi Logic Corporation | Congestion estimation for register transfer level code |
US6757885B1 (en) | 2002-12-31 | 2004-06-29 | Lsi Logic Corporation | Length matrix generator for register transfer level code |
US7137082B1 (en) | 2003-03-28 | 2006-11-14 | Magma Design Automation Inc. | Reduced architecture processing paths |
US7765506B2 (en) * | 2003-04-04 | 2010-07-27 | Synopsys, Inc. | Method and apparatus for automated synthesis of multi-channel circuits |
US7093204B2 (en) * | 2003-04-04 | 2006-08-15 | Synplicity, Inc. | Method and apparatus for automated synthesis of multi-channel circuits |
US7082584B2 (en) * | 2003-04-30 | 2006-07-25 | Lsi Logic Corporation | Automated analysis of RTL code containing ASIC vendor rules |
US6990651B2 (en) * | 2003-05-14 | 2006-01-24 | Lsi Logic Corporation | Advanced design format library for integrated circuit design synthesis and floorplanning tools |
US7757197B1 (en) | 2003-05-29 | 2010-07-13 | Altera Corporation | Method and apparatus for utilizing constraints for the routing of a design on a programmable logic device |
US7178118B2 (en) * | 2003-05-30 | 2007-02-13 | Synplicity, Inc. | Method and apparatus for automated circuit design |
US7178124B1 (en) | 2003-05-30 | 2007-02-13 | Golden Gate Technology, Inc. | Methods, algorithms, software, architectures and system for placing clocked components and routing timing signals in a circuit and/or layout |
US7823112B1 (en) | 2003-05-30 | 2010-10-26 | Golden Gate Technology, Inc. | Method, software and system for ensuring timing between clocked components in a circuit |
US7627842B1 (en) | 2003-06-03 | 2009-12-01 | Cadence Design Systems, Inc. | Method and system for verification of circuits with encoded signals |
US7139985B2 (en) | 2003-06-18 | 2006-11-21 | Ambric, Inc. | Development system for an integrated circuit having standardized hardware objects |
DE10338964A1 (en) * | 2003-08-25 | 2005-04-07 | Kuratorium Offis E.V. | Circuit design method using high level synthesis, involves dividing the circuit diagram into a number of syntactic and semantic elements and assigning classes to each element from a hierarchical class structure |
US7437707B2 (en) * | 2003-12-12 | 2008-10-14 | International Business Machines Corporation | Systems and methods for generating applications that are automatically optimized for network performance |
US7213220B2 (en) * | 2003-12-19 | 2007-05-01 | International Business Machines Corporation | Method for verification of gate level netlists using colored bits |
JP4001584B2 (en) * | 2004-02-26 | 2007-10-31 | 松下電器産業株式会社 | Simulation device |
US7437695B1 (en) | 2004-03-03 | 2008-10-14 | Xilinx, Inc. | Method of memory and run-time efficient hierarchical timing analysis in programmable logic devices |
US7073149B2 (en) * | 2004-03-03 | 2006-07-04 | Xilinx, Inc. | System for representing the logical and physical information of an integrated circuit |
US7117473B1 (en) * | 2004-03-03 | 2006-10-03 | Xilinx, Inc. | System for creating a physical hierarchy of a chip without restriction by invading a logical hierarchy of logic blocks |
US20050210430A1 (en) * | 2004-03-18 | 2005-09-22 | Keller S B | System and method to optimize logical configuration relationships in VLSI circuit analysis tools |
JP4159496B2 (en) * | 2004-03-26 | 2008-10-01 | エルピーダメモリ株式会社 | CIRCUIT DIAGRAM CREATION DEVICE, CIRCUIT DIAGRAM CREATION METHOD, ITS PROGRAM, AND RECORDING MEDIUM CONTAINING THE PROGRAM |
US7448012B1 (en) | 2004-04-21 | 2008-11-04 | Qi-De Qian | Methods and system for improving integrated circuit layout |
WO2005119442A2 (en) * | 2004-06-01 | 2005-12-15 | Tera Systems, Inc. | Methods and systems for cross-probing in integrated circuit design |
WO2006004710A2 (en) * | 2004-06-30 | 2006-01-12 | Coherent Logix Incorporated | Execution of hardware description language (hdl) programs |
US7331027B2 (en) * | 2004-07-20 | 2008-02-12 | International Business Machines Corporation | Method for swapping circuits in a metal-only engineering change |
US7305640B1 (en) * | 2004-11-12 | 2007-12-04 | Altera Corporation | Programmable soft macro memory using gate array base cells |
US7155688B2 (en) * | 2004-11-17 | 2006-12-26 | Lsi Logic Corporation | Memory generation and placement |
US7290232B1 (en) * | 2004-12-01 | 2007-10-30 | Altera Corporation | Optimizing long-path and short-path timing and accounting for manufacturing and operating condition variability |
US7254789B1 (en) * | 2004-12-01 | 2007-08-07 | Altera Corporation | Optimizing long-path and short-path timing and accounting for manufacturing and operating condition variability |
US20060155520A1 (en) * | 2005-01-11 | 2006-07-13 | O'neill Peter M | Model-based pre-assembly testing of multi-component production devices |
US7493578B1 (en) * | 2005-03-18 | 2009-02-17 | Xilinx, Inc. | Correlation of data from design analysis tools with design blocks in a high-level modeling system |
US7281233B1 (en) * | 2005-05-27 | 2007-10-09 | Xilinx, Inc. | Method and apparatus for implementing a circuit design for integrated circuitry on a circuit board |
US7451427B2 (en) * | 2005-06-13 | 2008-11-11 | Atrenta, Inc. | Bus representation for efficient physical synthesis of integrated circuit designs |
US7752588B2 (en) * | 2005-06-29 | 2010-07-06 | Subhasis Bose | Timing driven force directed placement flow |
EP1907957A4 (en) * | 2005-06-29 | 2013-03-20 | Otrsotech Ltd Liability Company | Methods and systems for placement |
JP4321502B2 (en) * | 2005-07-07 | 2009-08-26 | セイコーエプソン株式会社 | Drive circuit, electro-optical device, and electronic apparatus |
US7444610B1 (en) | 2005-08-03 | 2008-10-28 | Xilinx, Inc. | Visualizing hardware cost in high level modeling systems |
US20070033557A1 (en) * | 2005-08-08 | 2007-02-08 | Byrn Jonathan W | Method for creating constraints for integrated circuit design closure |
US7398494B2 (en) * | 2005-08-30 | 2008-07-08 | International Business Machines Corporation | Method for performing verification of logic circuits |
US7363599B1 (en) | 2005-10-04 | 2008-04-22 | Xilinx, Inc. | Method and system for matching a hierarchical identifier |
US7496869B1 (en) | 2005-10-04 | 2009-02-24 | Xilinx, Inc. | Method and apparatus for implementing a program language description of a circuit design for an integrated circuit |
US7424687B2 (en) * | 2005-11-16 | 2008-09-09 | Lsi Corporation | Method and apparatus for mapping design memories to integrated circuit layout |
US8069016B2 (en) * | 2005-12-08 | 2011-11-29 | 3M Innovative Properties Company | Virtual designer |
US7735050B2 (en) | 2006-02-09 | 2010-06-08 | Henry Yu | Managing and controlling the use of hardware resources on integrated circuits |
US8402409B1 (en) | 2006-03-10 | 2013-03-19 | Xilinx, Inc. | Method and apparatus for supporting run-time reconfiguration in a programmable logic integrated circuit |
US7380232B1 (en) | 2006-03-10 | 2008-05-27 | Xilinx, Inc. | Method and apparatus for designing a system for implementation in a programmable logic device |
US7761272B1 (en) | 2006-03-10 | 2010-07-20 | Xilinx, Inc. | Method and apparatus for processing a dataflow description of a digital processing system |
US7971173B1 (en) * | 2006-04-28 | 2011-06-28 | Cadence Design Systems, Inc. | Method and system for implementing partial reconfiguration and rip-up of routing |
US7657860B1 (en) | 2006-04-28 | 2010-02-02 | Cadence Design Systems, Inc. | Method and system for implementing routing refinement and timing convergence |
US7614028B1 (en) | 2006-04-28 | 2009-11-03 | Cadence Design Systems, Inc. | Representation, configuration, and reconfiguration of routing method and system |
US8332793B2 (en) * | 2006-05-18 | 2012-12-11 | Otrsotech, Llc | Methods and systems for placement and routing |
US20070283306A1 (en) * | 2006-05-30 | 2007-12-06 | Matthias Koefferlein | Layout cells, layout cell arrangement, method of generating a layout cell, method of generating a layout cell arrangement, computer program products |
US8302042B2 (en) * | 2006-07-24 | 2012-10-30 | Oasys Design Systems | Generating a convergent circuit design from a functional description using entities having access to the functional description and to physical design information |
US20080092113A1 (en) * | 2006-10-12 | 2008-04-17 | Weinstein Randall K | System and method for configuring a programmable electronic device to include an execution engine |
US20080109780A1 (en) * | 2006-10-20 | 2008-05-08 | International Business Machines Corporation | Method of and apparatus for optimal placement and validation of i/o blocks within an asic |
JP5248762B2 (en) * | 2006-10-27 | 2013-07-31 | 富士通株式会社 | Design data dependency management device, design data dependency management method and program |
US7551985B1 (en) * | 2006-10-30 | 2009-06-23 | Cadence Design Systems, Inc. | Method and apparatus for power consumption optimization for integrated circuits |
US8127260B1 (en) | 2006-11-22 | 2012-02-28 | Cadence Design Systems, Inc. | Physical layout estimator |
US7636902B1 (en) * | 2006-12-15 | 2009-12-22 | Sprint Communications Company L.P. | Report validation tool |
US7926011B1 (en) * | 2007-01-10 | 2011-04-12 | Cadence Design Systems, Inc. | System and method of generating hierarchical block-level timing constraints from chip-level timing constraints |
US8365113B1 (en) | 2007-01-10 | 2013-01-29 | Cadence Design Systems, Inc. | Flow methodology for single pass parallel hierarchical timing closure of integrated circuit designs |
US8640066B1 (en) * | 2007-01-10 | 2014-01-28 | Cadence Design Systems, Inc. | Multi-phase models for timing closure of integrated circuit designs |
US8977995B1 (en) * | 2007-01-10 | 2015-03-10 | Cadence Design Systems, Inc. | Timing budgeting of nested partitions for hierarchical integrated circuit designs |
US20080244472A1 (en) * | 2007-03-29 | 2008-10-02 | Atrenta, Inc. | Method for accelerating the generation of an optimized gate-level representation from a rtl representation |
DE102007017850A1 (en) * | 2007-04-16 | 2008-10-23 | Edaptability E.K. | Complex circuits partitioning method for e.g. verilog, involves successively providing essential influence on decision point of partitioning process during complete processing of process algorithm |
US7568176B2 (en) * | 2007-06-04 | 2009-07-28 | International Business Machines Corporation | Method, system, and computer program product for hierarchical integrated circuit repartitioning |
US20080307374A1 (en) * | 2007-06-05 | 2008-12-11 | International Business Machines Corporation | Method, system, and computer program product for mapping a logical design onto an integrated circuit with slack apportionment |
US8819608B2 (en) | 2007-07-23 | 2014-08-26 | Synopsys, Inc. | Architectural physical synthesis |
US8595674B2 (en) | 2007-07-23 | 2013-11-26 | Synopsys, Inc. | Architectural physical synthesis |
US20090064082A1 (en) * | 2007-08-27 | 2009-03-05 | International Business Machines Corporation | Method for custom register circuit design |
US7873934B1 (en) | 2007-11-23 | 2011-01-18 | Altera Corporation | Method and apparatus for implementing carry chains on field programmable gate array devices |
US7913203B1 (en) | 2007-11-23 | 2011-03-22 | Altera Corporation | Method and apparatus for designing a system on multiple field programmable gate array device types |
US8935651B1 (en) * | 2007-12-28 | 2015-01-13 | Cadence Design Systems, Inc. | Methods and apparatus for data path cluster optimization |
WO2009113312A1 (en) * | 2008-03-13 | 2009-09-17 | 株式会社ニコン | Semiconductor device design system, semiconductor device manufacturing method, semiconductor device, and substrate bonding device |
US8499230B2 (en) * | 2008-05-07 | 2013-07-30 | Lsi Corporation | Critical path monitor for an integrated circuit and method of operation thereof |
US8099702B2 (en) * | 2008-07-30 | 2012-01-17 | Synopsys, Inc. | Method and apparatus for proximate placement of sequential cells |
US8307315B2 (en) * | 2009-01-30 | 2012-11-06 | Synopsys, Inc. | Methods and apparatuses for circuit design and optimization |
JP2010257164A (en) * | 2009-04-24 | 2010-11-11 | Renesas Electronics Corp | Design method and program for semiconductor integrated circuit device |
US8239805B2 (en) | 2009-07-27 | 2012-08-07 | Lsi Corporation | Method for designing integrated circuits employing a partitioned hierarchical design flow and an apparatus employing the method |
US8185851B2 (en) * | 2009-08-12 | 2012-05-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Memory building blocks and memory design using automatic design tools |
US8255847B1 (en) * | 2009-10-01 | 2012-08-28 | Altera Corporation | Method and apparatus for automatic hierarchical design partitioning |
US8281274B1 (en) * | 2010-01-08 | 2012-10-02 | Altera Corporation | Method and apparatus for performing efficient incremental compilation |
US8185850B1 (en) * | 2010-03-23 | 2012-05-22 | Xilinx, Inc. | Method of implementing a circuit design using control and data path information |
US9230047B1 (en) * | 2010-06-11 | 2016-01-05 | Altera Corporation | Method and apparatus for partitioning a synthesis netlist for compile time and quality of results improvement |
US8943451B2 (en) * | 2010-06-23 | 2015-01-27 | Mentor Graphics Corporation | Hierarchical finite state machine generation for power state behavior in an electronic design |
US8499266B2 (en) * | 2010-06-30 | 2013-07-30 | Terence Wai-kwok Chan | Race logic synthesis for large-scale integrated circuit designs |
US8484588B2 (en) * | 2010-07-13 | 2013-07-09 | Algo to Chip Corporation | System, architecture and micro-architecture (SAMA) representation of an integrated circuit |
US8271920B2 (en) * | 2010-08-25 | 2012-09-18 | International Business Machines Corporation | Converged large block and structured synthesis for high performance microprocessor designs |
WO2012051577A1 (en) | 2010-10-15 | 2012-04-19 | Coherent Logix, Incorporated | Disabling communication in a multiprocessor system |
US8316335B2 (en) | 2010-12-09 | 2012-11-20 | International Business Machines Corporation | Multistage, hybrid synthesis processing facilitating integrated circuit layout |
US8875079B2 (en) * | 2011-09-29 | 2014-10-28 | Lsi Corporation | System and method of automated design augmentation for efficient hierarchical implementation |
US8769462B2 (en) * | 2011-10-07 | 2014-07-01 | Synopsys, Inc. | Parasitic extraction for semiconductors |
US8584062B2 (en) * | 2011-10-27 | 2013-11-12 | Apple Inc. | Tool suite for RTL-level reconfiguration and repartitioning |
US8756538B2 (en) * | 2012-02-20 | 2014-06-17 | International Business Machines Corporation | Parsing data representative of a hardware design into commands of a hardware design environment |
US8434052B1 (en) | 2012-02-21 | 2013-04-30 | Avago Technologies General Ip (Singapore) Pte. Ltd. | System and method for ensuring partitioned block physical compatibility between revisions of an integrated circuit design |
US8762904B2 (en) * | 2012-03-28 | 2014-06-24 | Synopsys, Inc. | Optimizing logic synthesis for environmental insensitivity |
US8589855B1 (en) * | 2012-05-30 | 2013-11-19 | International Business Machines Corporation | Machine-learning based datapath extraction |
US8863058B2 (en) * | 2012-09-24 | 2014-10-14 | Atrenta, Inc. | Characterization based buffering and sizing for system performance optimization |
US10558437B1 (en) * | 2013-01-22 | 2020-02-11 | Altera Corporation | Method and apparatus for performing profile guided optimization for high-level synthesis |
US11720736B2 (en) * | 2013-04-15 | 2023-08-08 | Monolithic 3D Inc. | Automation methods for 3D integrated circuits and devices |
US12093628B2 (en) * | 2013-04-15 | 2024-09-17 | Monolithic 3D Inc. | Automation methods for 3D integrated circuits and devices |
US9529951B2 (en) | 2014-05-29 | 2016-12-27 | International Business Machines Corporation | Synthesis tuning system for VLSI design optimization |
US9223915B1 (en) | 2014-08-05 | 2015-12-29 | Cadence Design Systems, Inc. | Method, system, and computer program product for checking, verifying, or testing a multi-fabric electronic design spanning across multiple design fabrics |
US9378326B2 (en) * | 2014-09-09 | 2016-06-28 | International Business Machines Corporation | Critical region identification |
US9940428B2 (en) * | 2014-10-07 | 2018-04-10 | Mentor Graphics Corporation | Hierarchical fill in a design layout |
US9881119B1 (en) | 2015-06-29 | 2018-01-30 | Cadence Design Systems, Inc. | Methods, systems, and computer program product for constructing a simulation schematic of an electronic design across multiple design fabrics |
US9881120B1 (en) | 2015-09-30 | 2018-01-30 | Cadence Design Systems, Inc. | Method, system, and computer program product for implementing a multi-fabric mixed-signal design spanning across multiple design fabrics with electrical and thermal analysis awareness |
US9852254B2 (en) * | 2015-11-10 | 2017-12-26 | Arteris, Inc. | Automatic architecture placement guidance |
US9934341B2 (en) | 2015-11-11 | 2018-04-03 | International Business Machines Corporation | Simulation of modifications to microprocessor design |
US9928329B2 (en) | 2016-01-27 | 2018-03-27 | International Business Machines Corporation | Layout of large block synthesis blocks in integrated circuits |
US9495501B1 (en) * | 2016-01-29 | 2016-11-15 | International Business Machines Corporation | Large cluster persistence during placement optimization of integrated circuit designs |
US10325050B2 (en) * | 2016-04-14 | 2019-06-18 | Oracle International Corporation | User-defined partitions for logical and physical circuit syntheses |
US9934354B1 (en) | 2016-06-30 | 2018-04-03 | Cadence Design Systems, Inc. | Methods, systems, and computer program product for implementing a layout-driven, multi-fabric schematic design |
US10664377B2 (en) * | 2016-07-15 | 2020-05-26 | Blackberry Limited | Automation of software verification |
KR102402673B1 (en) * | 2017-04-28 | 2022-05-26 | 삼성전자주식회사 | Computer-implemented method and computing system for designing integrated circuit by considering process variations of Back-End-Of-Line |
CN117272924A (en) | 2017-04-28 | 2023-12-22 | 三星电子株式会社 | Method for designing integrated circuit |
CN108052739B (en) * | 2017-12-13 | 2021-07-20 | 嘉兴倚韦电子科技有限公司 | Method for designing quick channel of semi-custom back-end design of integrated circuit |
US10719651B2 (en) * | 2017-12-30 | 2020-07-21 | Arteris, Inc. | Synthesizing topology for an interconnect network of a system-on-chip with intellectual property blocks |
US10565347B2 (en) * | 2018-03-29 | 2020-02-18 | International Business Machines Corporation | Global routing optimization |
CN110489814B (en) * | 2019-07-26 | 2022-09-27 | 西安理工大学 | Method for assisting chip layout planning by extracting data stream from code |
US11120171B2 (en) * | 2019-09-13 | 2021-09-14 | Mccormick Systems Llc. | System and method for construction cost estimation for non-computer aided design (CAD) files |
US10831955B1 (en) | 2019-11-19 | 2020-11-10 | International Business Machines Corporation | Prediction of closure feasibility in microprocessor design |
US10997333B1 (en) * | 2019-12-05 | 2021-05-04 | Cadence Design Systems, Inc. | Methods, systems, and computer program product for characterizing an electronic design with a schematic driven extracted view |
US11657203B2 (en) | 2019-12-27 | 2023-05-23 | Arteris, Inc. | Multi-phase topology synthesis of a network-on-chip (NoC) |
US11121933B2 (en) | 2019-12-27 | 2021-09-14 | Arteris, Inc. | Physically aware topology synthesis of a network |
US11558259B2 (en) | 2019-12-27 | 2023-01-17 | Arteris, Inc. | System and method for generating and using physical roadmaps in network synthesis |
US10990724B1 (en) | 2019-12-27 | 2021-04-27 | Arteris, Inc. | System and method for incremental topology synthesis of a network-on-chip |
US11665776B2 (en) | 2019-12-27 | 2023-05-30 | Arteris, Inc. | System and method for synthesis of a network-on-chip for deadlock-free transformation |
US11418448B2 (en) | 2020-04-09 | 2022-08-16 | Arteris, Inc. | System and method for synthesis of a network-on-chip to determine optimal path with load balancing |
US11601357B2 (en) | 2020-12-22 | 2023-03-07 | Arteris, Inc. | System and method for generation of quality metrics for optimization tasks in topology synthesis of a network |
US11281827B1 (en) | 2020-12-26 | 2022-03-22 | Arteris, Inc. | Optimization of parameters for synthesis of a topology using a discriminant function module |
US11449655B2 (en) | 2020-12-30 | 2022-09-20 | Arteris, Inc. | Synthesis of a network-on-chip (NoC) using performance constraints and objectives |
US11956127B2 (en) | 2021-03-10 | 2024-04-09 | Arteris, Inc. | Incremental topology modification of a network-on-chip |
US12073156B2 (en) * | 2021-03-16 | 2024-08-27 | Synopsys, Inc. | Propagating physical design information through logical design hierarchy of an electronic circuit |
US11238206B1 (en) * | 2021-03-26 | 2022-02-01 | Xilinx, Inc. | Partition wire assignment for routing multi-partition circuit designs |
US11907634B2 (en) | 2021-09-01 | 2024-02-20 | International Business Machines Corporation | Automating addition of power supply rails, fences, and level translators to a modular circuit design |
US12050852B2 (en) | 2021-09-07 | 2024-07-30 | International Business Machines Corporation | Signal pre-routing in an integrated circuit design |
US12204832B2 (en) | 2021-09-07 | 2025-01-21 | International Business Machines Corporation | Logical clock connection in an integrated circuit design |
US11663381B2 (en) | 2021-09-07 | 2023-05-30 | International Business Machines Corporation | Clock mapping in an integrated circuit design |
US12184499B2 (en) | 2021-09-29 | 2024-12-31 | Arteris, Inc. | System and method for editing a network-on-chip (NOC) |
US12067335B2 (en) | 2022-04-11 | 2024-08-20 | Arteris, Inc. | Automatic configuration of pipeline modules in an electronics system |
CN115017860B (en) * | 2022-06-21 | 2022-12-13 | 正心元科技(杭州)有限公司 | Incremental layout optimization method and device for layout and wiring synchronization and computer equipment |
CN119227628B (en) * | 2024-11-29 | 2025-03-14 | 沐曦集成电路(上海)股份有限公司 | Chip layout system for front-end and back-end design cooperation |
CN119272681B (en) * | 2024-12-09 | 2025-03-14 | 宁波大学 | A circuit level optimization method based on NAND and XOR majority logic |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5452239A (en) * | 1993-01-29 | 1995-09-19 | Quickturn Design Systems, Inc. | Method of removing gated clocks from the clock nets of a netlist for timing sensitive implementation of the netlist in a hardware emulation system |
US5544066A (en) * | 1990-04-06 | 1996-08-06 | Lsi Logic Corporation | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including estimation and comparison of low-level design constraints |
US5764951A (en) * | 1995-05-12 | 1998-06-09 | Synopsys, Inc. | Methods for automatically pipelining loops |
US6026219A (en) * | 1995-05-12 | 2000-02-15 | Synopsys, Inc. | Behavioral synthesis links to logic synthesis |
US6135647A (en) * | 1997-10-23 | 2000-10-24 | Lsi Logic Corporation | System and method for representing a system level RTL design using HDL independent objects and translation to synthesizable RTL code |
US6141631A (en) * | 1998-03-25 | 2000-10-31 | Lsi Logic Corporation | Pulse rejection circuit model program and technique in VHDL |
US6145117A (en) * | 1998-01-30 | 2000-11-07 | Tera Systems Incorporated | Creating optimized physical implementations from high-level descriptions of electronic design using placement based information |
US6192504B1 (en) * | 1997-05-14 | 2001-02-20 | International Business Machines Corporation | Methods and systems for functionally describing a digital hardware design and for converting a functional specification of same into a netlist |
US6205572B1 (en) * | 1998-02-20 | 2001-03-20 | Lsi Logic Corporation | Buffering tree analysis in mapped design |
US6341361B1 (en) * | 1999-06-01 | 2002-01-22 | Advanced Micro Devices, Inc. | Graphical user interface for testability operation |
US6370493B1 (en) * | 1998-09-10 | 2002-04-09 | Lsi Logic Corporation | Simulation format creation system and method |
US6438735B1 (en) * | 1999-05-17 | 2002-08-20 | Synplicity, Inc. | Methods and apparatuses for designing integrated circuits |
US6519754B1 (en) * | 1999-05-17 | 2003-02-11 | Synplicity, Inc. | Methods and apparatuses for designing integrated circuits |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5222030A (en) * | 1990-04-06 | 1993-06-22 | Lsi Logic Corporation | Methodology for deriving executable low-level structural descriptions and valid physical implementations of circuits and systems from high-level semantic specifications and descriptions thereof |
US5557531A (en) * | 1990-04-06 | 1996-09-17 | Lsi Logic Corporation | Method and system for creating and validating low level structural description of electronic design from higher level, behavior-oriented description, including estimating power dissipation of physical implementation |
US5555201A (en) * | 1990-04-06 | 1996-09-10 | Lsi Logic Corporation | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including interactive system for hierarchical display of control and dataflow information |
US5544067A (en) * | 1990-04-06 | 1996-08-06 | Lsi Logic Corporation | Method and system for creating, deriving and validating structural description of electronic system from higher level, behavior-oriented description, including interactive schematic design and simulation |
US5553002A (en) * | 1990-04-06 | 1996-09-03 | Lsi Logic Corporation | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, using milestone matrix incorporated into user-interface |
US5572436A (en) * | 1990-04-06 | 1996-11-05 | Lsi Logic Corporation | Method and system for creating and validating low level description of electronic design |
US5572437A (en) * | 1990-04-06 | 1996-11-05 | Lsi Logic Corporation | Method and system for creating and verifying structural logic model of electronic design from behavioral description, including generation of logic and timing models |
US5598344A (en) * | 1990-04-06 | 1997-01-28 | Lsi Logic Corporation | Method and system for creating, validating, and scaling structural description of electronic device |
US5870308A (en) * | 1990-04-06 | 1999-02-09 | Lsi Logic Corporation | Method and system for creating and validating low-level description of electronic design |
US5541849A (en) * | 1990-04-06 | 1996-07-30 | Lsi Logic Corporation | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including estimation and comparison of timing parameters |
US5680318A (en) * | 1990-12-21 | 1997-10-21 | Synopsys Inc. | Synthesizer for generating a logic network using a hardware independent description |
EP0539641A1 (en) * | 1991-10-31 | 1993-05-05 | International Business Machines Corporation | A design method for the automatic implementation of data-flow partitions in asic's |
US5491640A (en) * | 1992-05-01 | 1996-02-13 | Vlsi Technology, Inc. | Method and apparatus for synthesizing datapaths for integrated circuit design and fabrication |
US5493508A (en) * | 1994-06-01 | 1996-02-20 | Lsi Logic Corporation | Specification and design of complex digital systems |
US5537580A (en) * | 1994-12-21 | 1996-07-16 | Vlsi Technology, Inc. | Integrated circuit fabrication using state machine extraction from behavioral hardware description language |
-
1998
- 1998-01-30 US US09/015,602 patent/US6145117A/en not_active Expired - Lifetime
-
1999
- 1999-01-29 AU AU23500/99A patent/AU2350099A/en not_active Abandoned
- 1999-01-29 JP JP53957299A patent/JP2001519958A/en not_active Ceased
- 1999-01-29 IL IL13208299A patent/IL132082A/en active IP Right Grant
- 1999-01-29 EP EP99903493A patent/EP0979471A2/en not_active Withdrawn
- 1999-01-29 WO PCT/US1999/001965 patent/WO1999039288A2/en not_active Application Discontinuation
-
2000
- 2000-08-08 US US09/634,927 patent/US6360356B1/en not_active Expired - Fee Related
-
2001
- 2001-12-28 US US10/040,852 patent/US7143367B2/en not_active Expired - Lifetime
-
2005
- 2005-11-01 US US11/262,736 patent/US20060053396A1/en not_active Abandoned
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5544066A (en) * | 1990-04-06 | 1996-08-06 | Lsi Logic Corporation | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including estimation and comparison of low-level design constraints |
US5452239A (en) * | 1993-01-29 | 1995-09-19 | Quickturn Design Systems, Inc. | Method of removing gated clocks from the clock nets of a netlist for timing sensitive implementation of the netlist in a hardware emulation system |
US5764951A (en) * | 1995-05-12 | 1998-06-09 | Synopsys, Inc. | Methods for automatically pipelining loops |
US6026219A (en) * | 1995-05-12 | 2000-02-15 | Synopsys, Inc. | Behavioral synthesis links to logic synthesis |
US6192504B1 (en) * | 1997-05-14 | 2001-02-20 | International Business Machines Corporation | Methods and systems for functionally describing a digital hardware design and for converting a functional specification of same into a netlist |
US6135647A (en) * | 1997-10-23 | 2000-10-24 | Lsi Logic Corporation | System and method for representing a system level RTL design using HDL independent objects and translation to synthesizable RTL code |
US6145117A (en) * | 1998-01-30 | 2000-11-07 | Tera Systems Incorporated | Creating optimized physical implementations from high-level descriptions of electronic design using placement based information |
US6205572B1 (en) * | 1998-02-20 | 2001-03-20 | Lsi Logic Corporation | Buffering tree analysis in mapped design |
US6141631A (en) * | 1998-03-25 | 2000-10-31 | Lsi Logic Corporation | Pulse rejection circuit model program and technique in VHDL |
US6370493B1 (en) * | 1998-09-10 | 2002-04-09 | Lsi Logic Corporation | Simulation format creation system and method |
US6438735B1 (en) * | 1999-05-17 | 2002-08-20 | Synplicity, Inc. | Methods and apparatuses for designing integrated circuits |
US6519754B1 (en) * | 1999-05-17 | 2003-02-11 | Synplicity, Inc. | Methods and apparatuses for designing integrated circuits |
US6668364B2 (en) * | 1999-05-17 | 2003-12-23 | Synplicity, Inc. | Methods and apparatuses for designing integrated circuits |
US6341361B1 (en) * | 1999-06-01 | 2002-01-22 | Advanced Micro Devices, Inc. | Graphical user interface for testability operation |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7107564B1 (en) * | 2001-06-03 | 2006-09-12 | Cadence Design Systems, Inc. | Method and apparatus for routing a set of nets |
US7103863B2 (en) * | 2001-06-08 | 2006-09-05 | Magma Design Automation, Inc. | Representing the design of a sub-module in a hierarchical integrated circuit design and analysis system |
US20040078767A1 (en) * | 2001-06-08 | 2004-04-22 | Burks Timothy M. | Representing the design of a sub-module in a hierarchical integrated circuit design and analysis system |
US20050210428A1 (en) * | 2004-03-18 | 2005-09-22 | Keller S B | System and method for flattening hierarchical designs in VLSI circuit analysis tools |
US20050268267A1 (en) * | 2004-06-01 | 2005-12-01 | Tera Systems, Inc. | Methods and systems for mixed-mode physical synthesis in electronic design automation |
US20050268268A1 (en) * | 2004-06-01 | 2005-12-01 | Tera Systems, Inc. | Methods and systems for structured ASIC electronic design automation |
US7409658B2 (en) * | 2004-06-01 | 2008-08-05 | Magma Design Automation, Inc. | Methods and systems for mixed-mode physical synthesis in electronic design automation |
US20050268258A1 (en) * | 2004-06-01 | 2005-12-01 | Tera Systems, Inc. | Rule-based design consultant and method for integrated circuit design |
US20050289485A1 (en) * | 2004-06-24 | 2005-12-29 | Ftl Systems, Inc. | Hardware/software design tool and language specification mechanism enabling efficient technology retargeting and optimization |
US7278122B2 (en) * | 2004-06-24 | 2007-10-02 | Ftl Systems, Inc. | Hardware/software design tool and language specification mechanism enabling efficient technology retargeting and optimization |
US20060101365A1 (en) * | 2004-11-08 | 2006-05-11 | Pei-Hsin Ho | Method and apparatus for partitioning an integrated circuit chip |
US7260802B2 (en) * | 2004-11-08 | 2007-08-21 | Synopsys, Inc. | Method and apparatus for partitioning an integrated circuit chip |
US20060129964A1 (en) * | 2004-12-10 | 2006-06-15 | Matsushita Electric Industrial Co., Ltd. | Net list generating method and layout designing method of semiconductor integrated circuit |
US20060242613A1 (en) * | 2005-04-20 | 2006-10-26 | Hiromasa Fukazawa | Automatic floorplanning approach for semiconductor integrated circuit |
US20100162185A1 (en) * | 2005-08-12 | 2010-06-24 | University Of Sussex | Electronic circuit design |
US8694931B1 (en) * | 2006-06-02 | 2014-04-08 | Cadence Design Systems, Inc. | Systems and methods for super-threading of integrated circuit design programs |
US8375350B1 (en) | 2006-06-02 | 2013-02-12 | Cadence Design Systems, Inc. | Methods for reduced test case generation |
US7913194B1 (en) | 2006-06-02 | 2011-03-22 | Cadence Design Systems, Inc. | Systems and methods for super-threading |
US7673257B1 (en) * | 2007-03-05 | 2010-03-02 | Calypto Design Systems, Inc. | System, method and computer program product for word-level operator-to-cell mapping |
US20090031276A1 (en) * | 2007-07-27 | 2009-01-29 | Shuntaro Seno | Design Apparatus, Design Method, and Program |
US7904856B2 (en) * | 2007-07-27 | 2011-03-08 | Hitachi, Ltd. | Arrangement handling commands as control system behaviors and data system behaviors |
US20090112350A1 (en) * | 2007-10-30 | 2009-04-30 | Gm Global Technology Operations, Inc. | Process for generating control sequence of operations |
US7684892B2 (en) * | 2007-10-30 | 2010-03-23 | Gm Global Technology Operations, Inc. | Process for generating control sequence of operations |
US8656332B2 (en) * | 2009-02-26 | 2014-02-18 | International Business Machines Corporation | Automated critical area allocation in a physical synthesized hierarchical design |
US20100218155A1 (en) * | 2009-02-26 | 2010-08-26 | Fleischer Bruce M | Automated Critical Area Allocation in a Physical Synthesized Hierarchical Design |
US8099701B2 (en) * | 2009-02-27 | 2012-01-17 | Oracle America, Inc. | Efficient chip routing method and apparatus for integrated circuit blocks with multiple connections |
US20100223587A1 (en) * | 2009-02-27 | 2010-09-02 | Sun Microsystems, Inc. | Efficient chip routing method and apparatus for integrated circuit blocks with multiple connections |
WO2010101860A3 (en) * | 2009-03-02 | 2010-11-11 | Qualcomm Incorporated | Reducing source loading effect in spin torque transfer magnetoresitive random access memory (stt-mram) |
US9368715B2 (en) | 2009-03-02 | 2016-06-14 | Qualcomm Incorporated | Reducing source loading effect in spin torque transfer magnetoresistive random access memory (STT-MRAM) |
US8913423B2 (en) | 2009-03-02 | 2014-12-16 | Qualcomm Incorporated | Reducing source loading effect in spin torque transfer magnetoresistive random access memory (STT-MRAM) |
US8587993B2 (en) | 2009-03-02 | 2013-11-19 | Qualcomm Incorporated | Reducing source loading effect in spin torque transfer magnetoresisitive random access memory (STT-MRAM) |
US20100220516A1 (en) * | 2009-03-02 | 2010-09-02 | Qualcomm Incorporated | Reducing Source Loading Effect in Spin Torque Transfer Magnetoresisitive Random Access Memory (STT-MRAM) |
US9105340B2 (en) | 2009-03-02 | 2015-08-11 | Qualcomm Incorporated | Reducing source loading effect in spin torque transfer magnetoresistive random access memory (STT-MRAM) |
KR101293610B1 (en) | 2009-03-02 | 2013-08-13 | 퀄컴 인코포레이티드 | Reducing source loading effect in spin torque transfer magnetoresitive random access memory (stt-mram) |
CN102334166A (en) * | 2009-03-02 | 2012-01-25 | 高通股份有限公司 | Reducing source loading effect in spin torque transfer magnetoresitive random access memory (stt-mram) |
US8504978B1 (en) * | 2009-03-30 | 2013-08-06 | Cadence Design Systems, Inc. | User interface for timing budget analysis of integrated circuit designs |
US8448122B1 (en) * | 2009-04-01 | 2013-05-21 | Xilinx, Inc. | Implementing sub-circuits with predictable behavior within a circuit design |
US20110289468A1 (en) * | 2009-12-09 | 2011-11-24 | International Business Machines Corporation | Circuit Macro Placement Using Macro Aspect Ratio Based on Ports |
US8762919B2 (en) * | 2009-12-09 | 2014-06-24 | International Business Machines Corporation | Circuit macro placement using macro aspect ratio based on ports |
WO2011146309A1 (en) * | 2010-05-19 | 2011-11-24 | Xldyn, Llc | Spreadsheet-based graphical user interface for dynamic system modeling and simulation |
US8234615B2 (en) * | 2010-08-04 | 2012-07-31 | International Business Machines Corporation | Constraint programming based method for bus-aware macro-block pin placement in a hierarchical integrated circuit layout |
US20120036491A1 (en) * | 2010-08-04 | 2012-02-09 | International Business Machines Corporation | Constraint Programming Based Method for Bus-Aware Macro-Block Pin Placement in a Hierarchical Integrated Circuit Layout |
US8549461B2 (en) | 2010-12-09 | 2013-10-01 | Synopsys, Inc. | Generation of independent logical and physical hierarchy |
US8397197B1 (en) | 2011-05-25 | 2013-03-12 | Applied Micro Circuits Corporation | Integrated circuit module time delay budgeting |
US9251306B2 (en) | 2011-10-17 | 2016-02-02 | Globalfoundries Inc. | Alignment net insertion for straightening the datapath in a force-directed placer |
US8453093B2 (en) | 2011-10-17 | 2013-05-28 | International Business Machines Corporation | Alignment net insertion for straightening the datapath in a force-directed placer |
US8667444B2 (en) * | 2012-02-17 | 2014-03-04 | Synopsys, Inc. | Concurrent placement and routing using hierarchical constraints |
US8589848B2 (en) * | 2012-04-19 | 2013-11-19 | International Business Machines Corporation | Datapath placement using tiered assignment |
US20130283225A1 (en) * | 2012-04-19 | 2013-10-24 | International Business Machines Corporation | Datapath placement using tiered assignment |
US9053270B1 (en) * | 2012-12-18 | 2015-06-09 | Cadence Design Systems, Inc. | Methods, systems, and articles of manufacture for synchronous hierarchical implementation of electronic circuit designs |
US8751983B1 (en) * | 2013-03-07 | 2014-06-10 | Oracle International Corporation | Method for design partitioning at the behavioral circuit design level |
US20160275229A1 (en) * | 2014-04-14 | 2016-09-22 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Viewing multi paired schematic and layout windows on printed circuit board (pcb) design software and tools |
US10255401B2 (en) * | 2014-04-14 | 2019-04-09 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Viewing multi paired schematic and layout windows on printed circuit board (PCB) design software and tools |
US10503861B1 (en) * | 2018-05-21 | 2019-12-10 | Xilinx, Inc. | Placing and routing an interface portion and a main portion of a circuit design |
US11080456B2 (en) | 2019-11-28 | 2021-08-03 | International Business Machines Corporation | Automated design closure with abutted hierarchy |
US10997350B1 (en) * | 2020-07-02 | 2021-05-04 | International Business Machines Corporation | Semiconductor circuit design and unit pin placement |
US11354478B2 (en) * | 2020-07-02 | 2022-06-07 | International Business Machines Corporation | Semiconductor circuit design and unit pin placement |
DE112021002870T5 (en) | 2020-07-02 | 2023-03-09 | International Business Machines Corporation | SEMICONDUCTOR CIRCUIT DESIGN AND UNIT PIN ARRANGEMENT |
CN112202258A (en) * | 2020-11-11 | 2021-01-08 | 中达电机股份有限公司 | Rotor conducting bar and end ring structure of high-voltage motor and welding process thereof |
Also Published As
Publication number | Publication date |
---|---|
WO1999039288A3 (en) | 1999-09-30 |
US6360356B1 (en) | 2002-03-19 |
JP2001519958A (en) | 2001-10-23 |
WO1999039288A2 (en) | 1999-08-05 |
AU2350099A (en) | 1999-08-16 |
US20020059553A1 (en) | 2002-05-16 |
US7143367B2 (en) | 2006-11-28 |
IL132082A0 (en) | 2001-03-19 |
EP0979471A2 (en) | 2000-02-16 |
IL132082A (en) | 2003-05-29 |
US6145117A (en) | 2000-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7143367B2 (en) | Creating optimized physical implementations from high-level descriptions of electronic design using placement-based information | |
US10808333B2 (en) | Method and apparatus for performing layout designs using stem cells | |
US6080201A (en) | Integrated placement and synthesis for timing closure of microprocessors | |
US5553002A (en) | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, using milestone matrix incorporated into user-interface | |
US6216252B1 (en) | Method and system for creating, validating, and scaling structural description of electronic device | |
US5541849A (en) | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including estimation and comparison of timing parameters | |
US5544066A (en) | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including estimation and comparison of low-level design constraints | |
US5557531A (en) | Method and system for creating and validating low level structural description of electronic design from higher level, behavior-oriented description, including estimating power dissipation of physical implementation | |
US9852253B2 (en) | Automated layout for integrated circuits with nonstandard cells | |
US5870308A (en) | Method and system for creating and validating low-level description of electronic design | |
KR100186869B1 (en) | Methodology inferring from the high-level semantic specifications and techniques of circuits and systems the feasible low-level structural descriptions and legitimate physical implementations of circuits and systems. | |
US5956257A (en) | Automated optimization of hierarchical netlists | |
US8966415B2 (en) | Architectural physical synthesis | |
US20050268258A1 (en) | Rule-based design consultant and method for integrated circuit design | |
US7159202B2 (en) | Methods, apparatus and computer program products for generating selective netlists that include interconnection influences at pre-layout and post-layout design stages | |
CN106503282B (en) | Incremental register retiming for integrated circuit designs | |
US20130061195A1 (en) | Methods and Apparatuses for Circuit Design and Optimization | |
EP1092201A1 (en) | Method for storing multiple levels of design data in a common database | |
Karmazin et al. | celltk: Automated layout for asynchronous circuits with nonstandard cells | |
Newton et al. | Computer-aided design for VLSI circuits | |
Pedram et al. | Combining technology mapping with layout | |
Khoozani | Capturing Realistic Architectures for Field Programmable Gate Array Optimization | |
Talaei Khoozani | Capturing Realistic Architectures for Field Programmable Gate Array Optimization | |
Enns et al. | Designing FPGAs and Reconfigurable SoCs Using Methods of Program Analysis and Prototyping | |
Chang et al. | Physical design for system-on-a-chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MAGMA DESIGN AUTOMATION, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TERA SYSTEMS, INC.;REEL/FRAME:019765/0659 Effective date: 20070702 |
|
AS | Assignment |
Owner name: TERA SYSTEMS, INC.,, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENG, TOMMY K.;REEL/FRAME:020246/0390 Effective date: 19980130 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: WELLS FARGO CAPITAL FINANCE, LLC,CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:MAGMA DESIGN AUTOMATION, INC.;REEL/FRAME:024120/0809 Effective date: 20100319 Owner name: WELLS FARGO CAPITAL FINANCE, LLC, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:MAGMA DESIGN AUTOMATION, INC.;REEL/FRAME:024120/0809 Effective date: 20100319 |
|
AS | Assignment |
Owner name: SYNOPSYS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO CAPITAL FINANCE, LLC;REEL/FRAME:040607/0632 Effective date: 20161031 |