US20060053104A1 - Hierarchical data-driven navigation system and method for information retrieval - Google Patents
Hierarchical data-driven navigation system and method for information retrieval Download PDFInfo
- Publication number
- US20060053104A1 US20060053104A1 US11/268,868 US26886805A US2006053104A1 US 20060053104 A1 US20060053104 A1 US 20060053104A1 US 26886805 A US26886805 A US 26886805A US 2006053104 A1 US2006053104 A1 US 2006053104A1
- Authority
- US
- United States
- Prior art keywords
- attribute
- value pairs
- materials
- navigation
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 239000000463 material Substances 0.000 claims abstract description 60
- 230000009471 action Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims 4
- 230000008569 process Effects 0.000 abstract description 30
- 230000007246 mechanism Effects 0.000 abstract description 2
- 235000014101 wine Nutrition 0.000 description 16
- 239000000796 flavoring agent Substances 0.000 description 8
- 235000019634 flavors Nutrition 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000007670 refining Methods 0.000 description 5
- 125000002015 acyclic group Chemical group 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000009193 crawling Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/0482—Interaction with lists of selectable items, e.g. menus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/242—Query formulation
- G06F16/2428—Query predicate definition using graphical user interfaces, including menus and forms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/332—Query formulation
- G06F16/3322—Query formulation using system suggestions
- G06F16/3323—Query formulation using system suggestions using document space presentation or visualization, e.g. category, hierarchy or range presentation and selection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/954—Navigation, e.g. using categorised browsing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/953—Organization of data
- Y10S707/962—Entity-attribute-value
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99932—Access augmentation or optimizing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99933—Query processing, i.e. searching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99933—Query processing, i.e. searching
- Y10S707/99935—Query augmenting and refining, e.g. inexact access
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99941—Database schema or data structure
- Y10S707/99943—Generating database or data structure, e.g. via user interface
Definitions
- the present invention generally relates to information navigation systems and search engines.
- Information retrieval from a database of information is an increasingly challenging problem, particularly on the World Wide Web (WWW), as increased computing power and networking infrastructure allow the aggregation of large amounts of information and widespread access to that information.
- a goal of the information retrieval process is to allow the identification of materials of interest to users.
- the information retrieval process comprehends two interrelated technical aspects, namely, information organization and access.
- a database query system In a typical database query system, a user formulates a structured query by specifying values for fixed data fields, and the system enumerates the documents whose data fields contain those values.
- PriceSCAN.com uses such an interface, for example.
- a database query system presents users with a form-based interface, converts the form input into a query in a formal database language, such as SQL, and then executes the query on a relational database management system.
- Disadvantages of typical query-based systems include that they allow users to make queries that return no documents and that they offer query modification options that lead only to further restriction of the result set (the documents that correspond to the user's search specifications), rather than to expansion or extension of the result set.
- a second type of information navigation system is a free-text search engine.
- a free-text search engine In a typical free-text search engine, the user enters an arbitrary text string, often in the form of a Boolean expression, and the system responds by enumerating the documents that contain matching text.
- Google.com for example, includes a free-text search engine.
- a free-text search engine presents users with a search form, often a single line, and processes queries using a precomputed index. Generally this index associates each document with a large portion of the words contained in that document, without substantive consideration of the document's content. Accordingly, the result set is often a voluminous, disorganized list that mixes relevant and irrelevant documents.
- a third type of information navigation system is a tree-based directory.
- a tree-based directory the user generally starts at the root node of the tree and specifies a query by successively selecting refining branches that lead to other nodes in the tree.
- Shopping.yahoo.com uses a tree-based directory, for example.
- the hard-coded tree is stored in a data structure, and the same or another data structure maps documents to the node or nodes of the tree where they are located.
- a particular document is typically accessible from only one or, at most, a few, paths through the tree.
- the collection of navigation states is relatively static—while documents are commonly added to nodes in the directory, the structure of the directory typically remains the same.
- the directory nodes are arranged such that there is a single root node from which all users start, and every other directory node can only be reached via a unique sequence of branches that the user selects from the root node.
- Such a directory imposes the limitation that the branches of the tree must be navigationally disjoint—even though the way that documents are assigned to the disjoint branches may not be intuitive to users. It is possible to address this rigidity by adding additional links to convert the tree to a directed acyclic graph. Updating the directory structure remains a difficult task, and leaf nodes are especially prone to end up with large numbers of corresponding documents.
- U.S. Pat. Nos. 5,715,444 and 5,983,219 to Danish et al., both entitled “Method and System for Executing a Guided Parametric Search,” disclose an interface for identifying a single item from a family of items.
- the interface provides users with a set of lists of features present in the family of items and identifies items that satisfy selected features.
- the present invention a hierarchical, data-driven information navigation system and method, enables the navigation of a collection of documents or other materials using certain common attributes associated with those materials.
- the navigation system interface allows the user to select values for the attributes associated with the materials in the current navigation state and returns the materials that correspond to the user's selections.
- the present invention enables this navigation mode by associating terms (attribute-value pairs) with the documents, defining a set of hierarchical refinement relationships (i.e., a partial order) among the terms, and providing a guided navigation mechanism based on the association of terms with documents and the relationships among the terms.
- the present invention includes several components and features relating to a hierarchical data-driven navigation system. Among these are a user interface, a knowledge base, a process for generating and maintaining the knowledge base, a navigable data structure and method for generating the data structure, WWW-based applications of the system, and methods of implementing the system. Although the invention is described herein primarily with reference to a WWW-based system for navigating a product database, it should be understood that a similar navigation system could be employed in any database context where materials may be associated with terms and users can identify materials of interest by way of those terms.
- the present invention uses a knowledge base of information regarding the collection of materials to formulate and to adapt the interface to guide the user through the collection of navigation states by providing relevant navigation options.
- the knowledge base includes an enumeration of attributes relevant to the materials, a range of values for each attribute, and a representation of the partial order that relates terms (the attribute-value pairs). Attribute-value pairs for materials relating to entertainment, for example, may be Products: Movies and Director: Spike Lee. (Attribute-value pairs are represented throughout this specification in this Attribute: Value format; navigation states are represented as bracketed sets of attribute-value pairs.)
- the knowledge base also includes a classification mapping that associates each item in the collection of materials with a set of terms that characterize that item.
- the knowledge base is typically organized by domains, which are sets of materials that conform to natural groupings.
- a domain is chosen such that a manageable number of attributes suffice to effectively distinguish and to navigate among the materials in that domain.
- the knowledge base preferably includes a characterization of each domain, which might include rules or default expectations concerning the classification of documents in that domain.
- a particular item may be in more than one domain.
- the present invention includes a user interface for navigation.
- the user interface preferably presents the user's navigation state as a set of terms organized by attribute. For a given set of terms, the user interface presents materials that are associated with those terms and presents relevant navigation options for narrowing or for generalizing the navigation state.
- users navigate through the collection of materials by selecting and deselecting terms.
- the user interface responds immediately to the selection or the deselection of terms, rather than waiting for the user to construct and to submit a comprehensive query composed of multiple terms.
- the user may narrow the navigation state by selecting additional terms, or by refining existing terms.
- the user may broaden the navigation state by deselecting terms that have already been selected or by generalizing the terms.
- the user may broaden the navigation state by deselecting terms in an order different from that in which they were selected.
- a user could start at ⁇ Products: Movies ⁇ , narrow by selecting an additional term to ⁇ Products: Movies; Genre: Drama ⁇ , narrow again to ⁇ Products: Movies; Genre: Drama; Director: Spike Lee ⁇ , and then broaden by deselecting a term to ⁇ Products: Movies; Director: Spike Lee ⁇ .
- the user interface allows users to use free-text search to find terms of interest.
- the user interface also allows users to use free-text search on descriptive information associated with the materials.
- the user interface presents users with context-dependent navigation options for narrowing the navigation state.
- the user interface does not present the user with terms whose selection would correspond to no documents in the resulting navigation state.
- the user interface presents the user only with terms that are associated with at least one item in the present navigation state.
- the user interface presents new navigation options as they become relevant.
- the knowledge base may contain rules that determine when particular attributes or terms are made available to users for navigation.
- the knowledge base includes a catalog of canonical representations that have been aggregated from the materials.
- the knowledge base may include definitions of stores, sets of materials that are grouped to be searchable at one time.
- a store may include documents from one or more domains.
- An item may be assigned to more than one store.
- the knowledge base may also include rules to customize navigation for particular stores.
- the knowledge base is developed through a multi-stage, iterative process. Workflow management allocates resources to maximize the efficiency of generating and of maintaining the knowledge base.
- the knowledge base is used to generate data structures that support navigation through a collection of materials.
- the navigation system consists of a hierarchy (i.e., a partial order) of navigation states that map sets of terms to the sets of materials with which those terms are associated.
- the navigation states are related by transitions corresponding to terms used to narrow from one navigation state to another.
- the navigation states may be fully or partially precomputed, or may be entirely computed at run-time.
- FIG. 1 is a view of a user interface to a navigation system in accordance with an embodiment of the present invention.
- FIG. 2 is a view of the user interface of FIG. 1 , showing a drop-down pick list of navigable terms.
- FIG. 3 is a view of the user interface of FIG. 1 , showing a navigation state.
- FIG. 4 is a view of the user interface of FIG. 1 , showing a navigation state.
- FIG. 5 is a view of the user interface of FIG. 1 , showing a navigation state.
- FIG. 6 is a view of the user interface of FIG. 1 , showing a navigation state.
- FIG. 7 is a view of the user interface of FIG. 1 , showing a navigation state.
- FIG. 8 is a view of the user interface of FIG. 1 , showing a navigation state.
- FIG. 9 is a view of the user interface of FIG. 1 , showing the result of a free-text search for terms.
- FIG. 10 is a view of the user interface of FIG. 1 , showing information about a particular document.
- FIGS. 11 A-C are representative examples of how the range of values for an attribute could be partially ordered in accordance with an embodiment of the present invention.
- FIG. 12 is a block diagram of a process for collecting and classifying documents in accordance with an embodiment of the present invention.
- FIG. 13 is a table illustrating how a set of documents may be classified in accordance with an embodiment of the present invention.
- FIG. 14 is a representative partial order of navigation states in accordance with an embodiment of the present invention.
- FIG. 15 is a block diagram of a process for precomputing a navigation state in accordance with an embodiment of the present invention.
- FIG. 1 shows a user interface 10 to a hierarchical, data-driven navigation system.
- the navigation system operates on a collection of documents defined in a knowledge base.
- the user is preferably presented with at least two alternative methods of using the navigation system: (1) by selecting terms to navigate through the collection of documents, or (2) by entering a desired keyword in a search box.
- the navigation system preferably organizes documents by domain.
- the user interface 10 shown in FIGS. 1-10 is operating on a set of documents that are part of a wine domain.
- a domain defines a portion of the collection of documents that reflects a natural grouping.
- the set of attributes used to classify documents in a domain will be a manageable subset of the attributes used to classify the entire collection of documents.
- a domain definition may be a type of product, e.g., wines or consumer electronics.
- a domain may be divided into subdomains to further organize the collection of documents. For example, there can be a consumer electronics domain that is divided into the subdomains of televisions, stereo equipment, etc. Documents may correspond to goods or services.
- the user interface may allow users to navigate in one domain at a time.
- the user interface may allow the simultaneous navigation of multiple domains, particularly when certain attributes are common to multiple domains.
- the user interface allows the user to navigate through a collection of navigation states.
- Each state is composed of a set of terms and of the set of documents associated with those terms. Users navigate through the collection of navigation states by selecting and deselecting terms to obtain the navigation state corresponding to each set of selected terms.
- the user interface 10 presents a navigation state by displaying both the list 50 of terms 52 and a list 41 of some or all of the documents 42 that correspond to that state.
- the user interface presents the terms 52 of the navigation state organized by attribute.
- the initial navigation state is a root state that corresponds to no term selections and, therefore, to all of the documents in the collection.
- the user interface 10 allows users to narrow the navigation state by choosing a value 28 for an attribute 22 , or by replacing the currently selected value with a more specific one (if appropriate).
- the user interface 10 presents users with the options available to narrow the present navigation state, preferably with relevant terms organized by attribute.
- users can select values 28 from drop-down lists 26 denoted by indicators 24 , that are organized by attributes 22 in the current navigation state.
- the user interface may present these navigation options in a variety of formats. For example, values can be presented as pictures or as symbols rather than as text.
- the interface may allow for any method of selecting terms, e.g., mouse clicks, keyboard strokes, or voice commands.
- the interface may be provided through various media and devices, such as television or WWW, and telephonic or wireless devices. Although discussed herein primarily as a visual interface, the interface may also include an audio component or be primarily audio-based.
- the user interface only presents options for narrowing the navigation state that lead to a navigation state with at least one document.
- This preferred criteria for providing navigation options ensures that there are no “dead ends,” or navigation states that correspond to an empty result set.
- the user interface only presents options for narrowing the navigation state if they lead to a navigation state with strictly fewer documents than the present one. Doing so ensures that the user interface does not present the user with choices that are already implied by terms in the current navigation state.
- the user interface presents a new navigation state as soon as the user has chosen a term 28 to narrow the current navigation state, without any further triggering action by the user. Because the system responds to each user with immediate feedback, the user need not formulate a comprehensive query and then submit the query.
- the user interface 10 may enable broadening of the current navigation state by allowing the user to remove terms 52 from the list 50 of terms selected.
- the interface 10 may provide a list 50 with checkboxes 54 for removing selections and a button 56 to trigger the new search.
- the user can remove selected terms 52 in any order and can remove more than one selection 52 at a time.
- the navigation options presented to the user are context-dependent.
- terms that refine previously selected terms may become navigation options in the resulting navigation state.
- Flavors Wood and Nut Flavors 52 is selected (the user has selected the value Wood and Nut Flavors 23 for the attribute Flavors)
- Wood and Nut Flavors 23 then appears in the interface for the new navigation state in the list 20 of attributes and allows selection of values 28 that relate to that specific attribute for further refinement of the query.
- the user interface may also present certain attributes that were not presented initially, as they become newly relevant. For example, comparing FIG. 3 to FIG.
- the attribute French Vineyards 25 appears in the list 20 of attributes only after the user has already selected the term Regions: French Regions in a previous navigation state. Attributes may be embedded in this way to as many levels as are desired. Presenting attributes as navigation options when those attributes become relevant avoids overwhelming the user with navigation options before those options are meaningful.
- values 28 may be applicable for some attributes 22 .
- the values Fruity and Nutty, neither of which refines the other may both be selected so that the terms Flavors: Fruity and Flavors: Nutty narrow the navigation state.
- users may sometimes be able to refine a query by selecting multiple values under a single attribute.
- certain attributes will be eliminated as navigation options if they are no longer valid or helpful choices. For example, if all of the documents in the result set share a common term (in addition to the term(s) selected to reach the navigation state), then selection of that term will not further refine the result set; thus, the attribute associated with that term is eliminated as a navigation option. For example, comparing FIG. 6 with FIG. 4 , the attribute Wine Types 27 has been eliminated as a navigation option because all of the documents 42 in the result set share the same term, Wine Types: Appellational Wines.
- an additional feature of the interface 10 is that this information is presented to the user as a common characteristic of the documents 42 in the result set. For example, referring to FIG.
- the interface 10 includes a display 60 that indicates the common characteristics of the documents 42 in the result set. Removing a term as a navigation option when all of the documents in the result set share that term prevents the user from wasting time by selecting terms that do not refine the result set.
- the user interface also eliminates values as navigation options if their selection would result in no documents in the result set. For example, comparing FIG. 8 to FIG. 7 , after the user selects the term Wine Spectator Range: 95-100, the user interface eliminates as navigation options all the values 28 , 29 in the list 26 of values for the attribute Appellations 22 except for the values Alexander Valley 29 and Napa Valley 29 . Alexander Valley 29 and Napa Valley 29 are the only two values in the list 26 of values for the attribute Appellations that return at least one document in the result set; all other values 28 return the empty set. Removing values as navigation options that would result in an empty result set saves the user time by preventing the user from reaching dead-ends.
- the user interface allows users to search for desired words using free-text search.
- a search box 30 preferably allows users to perform a free-text search for terms of interest, rather than performing a full-text search of the documents themselves.
- the user interface responds to such a search by presenting a list 32 of terms 34 including organized by attribute 36 , and allowing the user to select from among them.
- the user interface responds to the user's selection by presenting the user with the navigation state corresponding to the selection of that term. The user may then either navigate from that state (i.e., by narrowing or broadening it) or perform additional free-text searches for terms.
- the user interface 10 presents a full or partial list 41 of the documents that correspond to the current navigation state.
- the user may select it and obtain a record 70 containing further information about it, including the list 72 of terms 74 that are associated with that document, as shown in FIG. 10 .
- the user interface 10 allows the user to select any subset of those terms 74 and thereby navigate to the navigation state that corresponds to the selected term set.
- the user interface 10 also offers navigation options that directly link to an associated navigation state that is relevant to, but not necessarily a generalization or refinement of, the present navigation state.
- These links preferably infer the user's interests from the present navigation state and enable the user to cross-over to a related topic. For example, if the user is visiting a particular navigation state in a food domain, links may direct the user to navigation states of wines that would complement those foods in the wine domain.
- the interface to the navigation system has been described herein as a user interface 10 , the interface could provide other forms of access to the navigation system.
- the interface may be an applications program interface to allow access to the navigation system for or through other applications.
- the interface may also enhance the functionality of an independent data-oriented application.
- the interface may also be used in the context of a WWW-based application or an XML-based application.
- the navigation system may also support multiple interface modes simultaneously.
- the navigation system may be made available in a variety of ways, for example via wireless communications or on handheld devices.
- the navigation system stores all information relevant to navigation in a knowledge base.
- the knowledge base is the repository of information from two processes: taxonomy definition and classification.
- Taxonomy definition is the process of identifying the relevant attributes to characterize documents, determining the acceptable values for those attributes (such as a list or range of values), and defining a partial order of refinement relationships among terms (attribute-value pairs).
- Classification is the process of associating terms with documents.
- the knowledge base may also be used to maintain any information assets that support these two processes, such as domains, classification rules and default expectations. Additionally, the knowledge base may be used to maintain supplementary information and materials that affect users' navigation experience.
- the taxonomy definition process identifies a set of attributes that appropriately characterize documents.
- a typical way to organize the taxonomy definition process is to arrange the collections of documents into domains, which are sets of documents that conform to a natural grouping and for which a manageable number of attributes suffice to effectively distinguish and navigate among the documents in that domain.
- the knowledge base preferably includes a characterization of each domain, which might include rules or default expectations concerning the classification of documents in that domain.
- the taxonomy definition process also identifies a full set of values, at varying levels of specificity when appropriate, for each attribute.
- the values preferably identify the specific properties of the documents in the collection.
- the values may be enumerated explicitly or defined implicitly. For example, for a “color” attribute, a full set of valid color values may be specified, but for a “price” or “date” attribute, a range within which the values may fall or a general data type, without defining a range, may be specified.
- the process of identifying these values may include researching the domain or analyzing the collection of documents.
- the taxonomy definition process also defines a partial order of refinement relationships among terms (attribute-value pairs). For example, the term Origin: France could refine the term Origin: Europe.
- the refinement relationship is transitive and antisymmetric but not necessarily total. Transitivity means that, if term A refines term B and term B refines term C, then term A refines term C.
- Transitivity means that, if term A refines term B and term B refines term C, then term A refines term C.
- Origin: Paris refines Origin: France and Origin: France refines Origin: Europe then Origin: Paris refines Origin: Europe.
- Antisymmetry means that, if two terms are distinct, then both terms cannot refine each other. For example, if Origin: Paris refines Origin: France, then Origin: France does not refine Origin: Paris.
- the partial order of refinement relationships among terms is not necessarily a total one. For example, there could be two terms, Origin: France and Origin: Spain, such that neither term refines the other. Two terms with this property are said to be incomparable. Generally, a set of two or more terms is mutually incomparable if, for every pair of distinct terms chosen from that set, the two terms are incomparable. Typically, but not necessarily, two terms with distinct attributes will be incomparable.
- a term is a maximal term in that set if it does not refine any other terms in the set, and it is a minimal term in that set if no other term in the set refines it. For example, in the set ⁇ Origin: France, Origin: Paris, Origin: Spain, Origin: Madrid ⁇ , Origin: France and Origin: Spain are maximal, while Origin: Paris and Origin: Madrid are minimal.
- a term is a root term if it does not refine any other terms and a term is a leaf term if no other term refines it.
- FIGS. 11A, 11B , and 11 C illustrate attributes 112 and values 114 , arranged in accordance with the partial order relationships, that could be used for classifying wines.
- the attributes 112 are Type/Varietal, Origin, and Vintage. Each attribute 112 corresponds to a maximal term for that attribute.
- An attribute 112 can have a flat set of mutually incomparable values (e.g., Vintage), a tree of values (e.g., Origin), or a general partial order that allows a value to refine a set of two or more mutually incomparable values (e.g., Type/Varietal).
- the arrows 113 indicate the refinement relationships among values 114 .
- Attributes and values may be identified and developed in several ways, including manual or automatic processing and the analysis of documents. Moreover, this kind of analysis may be top-down or bottom-up; that is, starting from root terms and working towards leaf terms, or starting from leaf terms and working towards root terms. Retailers, or others who have an interest in using the presented invention to disseminate information, may also define attributes and terms.
- the classification process locates documents in the collection of navigation states by associating each document with a set of terms. Each document is associated with a set of mutually incomparable terms, e.g., ⁇ Type/Varietal: Chianti, Origin: Italy, Vintage: 1996 ⁇ , as well as any other desired descriptive information. If a document is associated with a given term, then the document is also associated with all of the terms that the given term refines.
- the classification process may proceed according to a variety of workflows. Documents may be classified in series or in parallel, and the automatic and manual classification steps may be performed one or more times and in any order. To improve accuracy and throughput, human experts may be assigned as specialists to oversee the classification task for particular subsets of the documents, or even particular attributes for particular subsets of the documents. In addition, the classification and taxonomy processes may be interleaved, especially as knowledge gained from one process allows improvements in the other.
- FIG. 12 illustrates the stages in a possible flow for the classification process 250 .
- the data acquisition step 252 that is, the collection of documents for the database, may occur in several different ways. For example, a retailer with a product catalog over which the navigation system will operate might provide a set of documents describing its products as a pre-defined set. Alternatively, documents may be collected from one source, e.g., one Web site, or from a number of sources, e.g., multiple Web sites, and then aggregated. If the desired documents are Web pages, the documents may be collected by appropriately crawling the Web, selecting documents, and discarding documents that do not fit in the domain. In the data translation step 254 , the collected documents are formatted and parsed to facilitate further processing.
- the formatted and parsed documents are processed in order to automatically associate documents with terms.
- human reviewers may verify and amend the automatic classifications, thereby ensuring quality control.
- any rules or expectations violated in either the automatic classification step 256 or the manual classification step 258 would be flagged and presented to human reviewers as part of the manual classification step 258 .
- the collection of documents is divided into domains, then there will typically be rules that specify a certain minimal or preferred set of attributes used to classify documents from each domain, as well as other domain-specific classification rules.
- each document will have a set of terms associated with it, which locate the document in the collection of navigation states.
- table 180 shows a possible representation of a collection of classified wine bottles.
- each entry is associated with a document number 182 , which could be a universal identifier, a name 184 , and the associated terms 186 .
- the name is preferably descriptive information that could allow the collection to be accessed via a free-text search engine as well as via the term-based navigation system.
- the knowledge base also includes a catalog of canonical representations of documents.
- Each catalog entry represents a conceptually distinct item that may be associated with one or more documents.
- the catalog allows aggregation of profile information from multiple documents that relate to the item, possibly from multiple sources. For example, if the same wine is sold by two vendors, and if one vendor provides vintage and geographic location information and another provides taste information, that information from the two vendors can be combined in the catalog entry for that type of wine.
- the catalog may also improve the efficiency of the classification process by eliminating duplicative profiling.
- the catalog creation step 260 associates classified documents with catalog entries, creating new catalog entries when appropriate. For ease of reference, an item may be uniquely identified in the catalog by a universal identifier.
- the knowledge base may also define stores, where a store is a subcollection of documents that are grouped to be searchable at one time. For example, a particular online wine merchant may not wish to display documents corresponding to products sold by that merchant's competitors, even though the knowledge base may contain such documents. In this case, the knowledge base can define a store of documents that does not include wines sold by the merchant's competitors.
- the store creation step 262 may define stores based on attributes, terms, or any other properties of documents. A document may be identified with more than one store.
- the knowledge base may also contain attributes or terms that have been customized for particular stores.
- the export process step 264 exports information from the knowledge base to another stage in the system that performs further processing necessary to generate a navigable data structure.
- the navigation system represents, explicitly or implicitly, a collection of navigation states. These navigation states are related by a partial order of refinement that is derived from the partial order that relates the terms.
- a navigation state has two representations. First, a navigation state corresponds to a subset of the collection of documents. Second, a navigation state corresponds to a set of mutually incomparable terms.
- FIG. 14 illustrates some navigation states for the documents and terms based on the wine example discussed above. For example, one navigation state 224 is ⁇ Origin: South America ⁇ (documents #1, #4, #5); a second navigation state 224 is ⁇ Type/Varietal: White, Origin: United States ⁇ (documents #2, #9).
- the subset of documents corresponding to each navigation state includes the documents that are commonly associated with all of the terms in the corresponding set of mutually incomparable terms.
- the set of mutually incomparable terms corresponding to each navigation state includes all of the minimal terms from the set of terms that are common to the subset of documents, i.e., the set of terms that are commonly associated with every document in the subset.
- Each navigation state is preferably unique and fully specified; for a particular set of terms, or for a given set of documents, there is no more than one corresponding navigation state.
- One way preferred to define the collection of navigation states is to uniquely identify each navigation state by a canonical set of mutually incomparable terms.
- a two-step mapping process that maps an arbitrary term set to a canonical set of mutually incomparable terms creates states that satisfy this property.
- an arbitrary set of terms is mapped to the subset of documents that are associated with all of those terms.
- this subset of documents is mapped to the set of minimal terms in the set of terms that are common to all of the documents in that document set.
- the term set derived from this second step is a set of mutually incomparable terms that uniquely identifies the corresponding subset of documents, and, hence, is a canonical representation for a navigation state.
- the term set ⁇ Origin: France ⁇ maps to the subset of documents ⁇ documents #8, #11 ⁇ , which in turn maps to the canonical term set ⁇ Type/Varietal: Red, Origin: France ⁇ .
- the navigation states 222 , 224 , 226 are related by a partial order of refinement relationships 220 derived from the partial order that relates terms.
- This partial order can be expressed in terms of either the subsets of documents or the term sets that define a navigation state.
- a navigation state A refines a navigation state B if the set of documents that corresponds to state A is a subset of the set of documents that corresponds to state B.
- a navigation state A refines a navigation state B if all of the terms in state B either are in state A or are refined by terms in state A.
- the root navigation state 222 is defined to be the navigation state corresponding to the entire collection of documents.
- the leaf navigation states 226 are defined to be those that cannot be further refined, and often (though not necessarily) correspond to individual documents. There can be arbitrarily many intermediate navigation states 224 between the root 222 and the leaves 226 . Given a pair of navigation states A and B where B refines A, there can be multiple paths of intermediate navigation states 224 connecting A to B in the partial order. For convenience of definition in reference to the implementation described herein, a navigation state is considered to refine itself.
- a user browses the collection of documents by visiting a sequence of one or more navigation states typically starting at the root navigation state 222 .
- the first mode is refinement, or moving from the current navigation state to a navigation state that refines it.
- the user can perform refinement either by adding a term to the current navigation state or by refining a term in the current navigation state; i.e., replacing a term with a refinement of that term.
- the new term set can be mapped to a canonical term set according to the two-step mapping described above.
- the second mode is generalization, or moving from the current navigation state to a more general navigation state that the current state refines.
- the user can perform generalization either by removing a term from the current navigation state or by generalizing a term in the current navigation state; i.e., replacing a current term with a term that the current term refines. After the user removes or generalizes a term, the new term set can be mapped to a canonical term set.
- the third mode is simply creating a query in the form of a desired term set, which again can be mapped to a canonical term set to obtain a navigation state.
- the knowledge base is transferred to a navigable data structure in order to implement the present invention.
- the navigation states may be fully precomputed, computed dynamically at run-time, or partially precomputed.
- a cache may be used to avoid redundant computation of navigation states.
- the collection of navigation states may be represented as a graph—preferably, a directed acyclic multigraph with labeled edges.
- a graph is a combinatorial structure consisting of nodes and edges, where each edge links a pair of nodes. The two nodes linked by an edge are called its endpoints.
- the nodes correspond to navigation states, and the edges represent transitions that refine from one navigation state to another. Since refinement is directional, each edge is directed from the more general node to the node that refines it. Because there is a partial order on the navigation states, there can be no directed cycles in the graph, i.e., the graph is acyclic.
- the graph is a multigraph, since it allows the possibility of multiple edges connecting a given pair of nodes.
- Each edge is labeled with a term.
- Each edge has the property that starting with the term set of the more general end point, adding the edge term, and using the two-step map to put this term set into canonical form leads to a refinement which results in the navigation state that is the other endpoint. That is, each edge represents a refinement transition between nodes based on the addition of a single term.
- C is an ancestor of A and C is also an ancestor of B
- C is said to be a common ancestor of A and B, where A, B, and C are either all terms or all nodes.
- the minimal elements of the set of common ancestors of A and B are called the least common ancestors (LCAs) of A and B.
- LCAs least common ancestors
- no term has a pair of incomparable ancestors, then the LCA of two terms—or of two nodes—is unique.
- the LCA of Origin: Argentina and Origin: Chile is Origin: South America in the partial order of terms 110 of FIG. 11B .
- Computation of the nodes in the graphs is preferably performed bottom-up.
- the leaf nodes in the graph may be computed directly from the classified documents. Typically, but not necessarily, a leaf node will correspond to a set containing a single document.
- the remaining, non-leaf nodes are obtained by computing the LCA-closure of the leaf nodes—that is, all of the nodes that are the LCAs of subsets of the leaf nodes.
- the edges of the graph are determined according to a refinement function, called the R function for notational convenience.
- the R function takes as arguments two nodes A and B, where A is a proper ancestor of B, and returns the set of maximal terms such that, if term C is in R (A, B), then refining node A with term C results in a node that is a proper descendant of A and an ancestor (not necessarily proper) of B.
- R ⁇ Type/Varietal: Red ⁇ , ⁇ Type/Varietal: Merlot, Origin: Argentina, Vintage: 1998 ⁇
- ⁇ Type/Varietal: Merlot, Origin: South America, Vintage: 1998 ⁇ ⁇ Type/Varietal: Merlot, Origin: South America, Vintage: 1998 ⁇ .
- R (A, B 1 ) is a subset of R (A, B 2 )—assuming that A is a proper ancestor of both B 1 and B 2 .
- R ( ⁇ Type/Varietal: Red ⁇ , ⁇ Type/Varietal: Red, Origin: South America ⁇ ) ⁇ Origin: South America ⁇ .
- the edges between nodes A and B will correspond to a subset of the terms in R (A, B). Also, no two edges from a single ancestor node A use the same term for refinement. If node A has a collection of descendant nodes ⁇ B 1 , B 2 , . . . ⁇ such that term C is in all of the R (A, B i ), then the only edge from node A with term C goes to LCA (B 1 , B 2 , . . . ), which is guaranteed to be the unique maximal node among the B i . In FIG.
- the LCA-closure of the graph results in the useful property that, for a given term set S, the set of nodes whose term sets refine S has a unique maximal node. This node is called the greatest lower bound (GLB) of S.
- the graph may be computed explicitly and stored in a combinatorial data structure; it may be represented implicitly in a structure that does not necessarily contain explicit representations of the nodes and edges; or it may be represented using a method that combines these strategies. Because the navigation system will typically operate on a large collection of documents, it is preferred that the graph be represented by a method that is scalable.
- the graph could be obtained by computing the LCAs of every possible subset of leaf nodes. Such an approach, however, grows exponentially in the number of leaf nodes, and is inherently not scalable.
- An alternative strategy for obtaining the LCA closure is to repeatedly consider all pairs of nodes in the graph, check if each pair's LCA is in the graph, and add that LCA to the graph as needed. This strategy, though a significant improvement on the previous one, is still relatively not scalable.
- a more efficient way to precompute the nodes is to process the document set sequentially, compute the node for each document, and add that node to the graph along with any other nodes necessary to maintain LCA-closure.
- the system stores the nodes and edges as a directed acyclic multigraph.
- the graph is initialized to contain a single node corresponding to the empty term set, the root node. Referring to FIG. 15 , in process 230 for inserting a new node into the graph, in step 232 , for each new document to be inserted into the graph that does not correspond to an existing node, the system creates a new node.
- step 234 before inserting the new node into the graph, the system recursively generates and inserts any missing LCA nodes between the root node (or ancestor node) and the new node. To ensure LCA-closure after every node insertion, the system inserts the document node last, in steps 236 and 238 , after inserting all the other nodes that are proper ancestors of it.
- Inserting a new node requires the addition of the appropriate edges from ancestors to the node, in step 236 , and to descendants out of the new node, in step 238 .
- the edges into the node are preferably determined by identifying the ancestors that have refinement terms that lead into the new node and do not already have those refinement terms used on edges leading to intermediate ancestors of the new node.
- the edges out of the node are preferably determined by computing the GLB of the new node and appropriately adding edges from the new node to the GLB and to nodes to which the GLB has edges.
- the entire graph may be precomputed by following the above procedures for each document in the collection. Precomputing of the graph may be preferred where the size of the graph is manageable, or if users are likely to visit every navigation state with equal probability. In practice, however, users typically visit some navigation states more frequently than others. Indeed, as the graph gets larger, some navigation states may never be visited at all. Unfortunately, reliable predictions of the frequency with which navigation states will be visited are difficult.
- An alternative strategy to precomputing the navigation states is to create indexes that allow the navigation states to be computed dynamically.
- each document can be indexed by all of the terms that are associated with that document or that have refinements associated with that document.
- the resulting index is generally much smaller in size than a data structure that stores the graph of navigation states.
- This dynamic approach may save space and precomputation time, but it may do so at the cost of higher response times or greater computational requirements for operation.
- a dynamic implementation may use a one-argument version of the R function that returns all refinement terms from a given navigation state, as well a procedure for computing the GLB of a term set.
- precompute a subset of the navigation states It is also possible to precompute a subset of the navigation states. It is preferable to precompute the states that will cost the most to compute dynamically. For example, if a state corresponds to a large subset of the documents, it may be preferable to compute it in advance. In one possible partial precomputation approach, all navigation states corresponding to a subset of documents above a threshold size may be precomputed. Precomputing a state is also preferable if the state will be visited frequently. In some instances it may be possible to predict the frequency with which a navigation state will be visited. Even if the frequency with which a navigation state will be visited cannot be predicted in advance, the need to continually recompute can be reduced by caching the results of dynamic computation. Most recently or most frequently visited states may be cached.
- the system supports three kinds of query operations—namely refinement, generalization, and query by specifying a set of terms. These operations may be further described in terms of the graph.
- query refinement the system enumerates the terms that are on edges from the node corresponding to the current navigation state. When the user selects a term for refinement, the system responds by presenting the node to which that edge leads.
- query generalization options the system enumerates and selects edges that lead to (rather than from) the node corresponding to the current navigation state.
- query generalization may be implemented as a special case of query by specifying a set of terms.
- the system For query by specifying a set of keywords, the system creates a virtual node corresponding to the given term set and determines the GLB of the virtual node in the graph. If no GLB is found, then there are no documents that satisfy the query. Otherwise, the GLB node will be the most general node in the graph that corresponds to a navigation state where all documents satisfy the query.
- the navigation system of the present invention allows information providers to overlay a navigation system over any collection of documents.
- the knowledge base and navigation aspects of the invention can be performed independently by different providers, and information providers may outsource these functions to separate entities.
- a generated knowledge base may be imported by a navigation specialist.
- Information providers may also outsource this navigation requirement to a navigation system provider.
- a navigation system provider could charge customers a license fee for the system independent of the amount of its usage.
- a navigation system provider could charge customers on a per-click basis, a per-purchase basis if products are available via the system, or per-transaction generated from a click through the navigation system.
- a navigation system provider could also function as an aggregator—compiling records from a number of sources, combining them into a global data set, and generating a navigation system to search the data set.
- a navigation system in accordance with the present invention may also enhance user profiling capability and merchandising capability.
- the navigation system may maintain a profile of users based on the users' selections, including the particular paths selected to explore the collection of navigation states.
- the system may also infer additional information regarding the users' preferences and interests by supplementing the selection information with information regarding related documents, attributes and terms in the knowledge base. That information may be used to market goods and services related to the documents of interest to the user.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
A data-driven, hierarchical information navigation system and method enable search of sets of documents or other materials by certain common attributes that characterize the materials. The invention includes several aspects of a data-driven, hierarchical navigation system that employs this navigation mode. The navigation system of the present invention includes features of an interface, a knowledge base and a taxonomy definition process and a classification process for generating the knowledge base, a graph-based navigable data structure and method for generating the data structure, World Wide Web-based applications of the system, and methods of implementing the system. Users are able to search or browse a particular collection of documents by selecting desired values for the attributes. A data-driven, hierarchical information navigation system and method enable this navigation mode by associating terms with the materials, defining a set of hierarchical relationships among the terms, and providing a guided search mechanism based on the relationship between the terms.
Description
- This application is a division of co-pending U.S. patent application Ser. No. 09/573,305 filed May 18, 2000, and entitled Hierarchical Data-Driven Navigation System And Method For Information Retrieval.
- The present invention generally relates to information navigation systems and search engines.
- Information retrieval from a database of information is an increasingly challenging problem, particularly on the World Wide Web (WWW), as increased computing power and networking infrastructure allow the aggregation of large amounts of information and widespread access to that information. A goal of the information retrieval process is to allow the identification of materials of interest to users.
- As the number of materials that users may search increases, identifying materials relevant to the search becomes increasingly important, but also increasingly difficult. Challenges posed by the information retrieval process include providing an intuitive, flexible user interface and completely and accurately identifying materials relevant to the user's needs within a reasonable amount of time. The information retrieval process comprehends two interrelated technical aspects, namely, information organization and access.
- Current information navigation systems usually follow one of three paradigms. One type of information navigation system employs a database query system. In a typical database query system, a user formulates a structured query by specifying values for fixed data fields, and the system enumerates the documents whose data fields contain those values. PriceSCAN.com uses such an interface, for example. Generally, a database query system presents users with a form-based interface, converts the form input into a query in a formal database language, such as SQL, and then executes the query on a relational database management system. Disadvantages of typical query-based systems include that they allow users to make queries that return no documents and that they offer query modification options that lead only to further restriction of the result set (the documents that correspond to the user's search specifications), rather than to expansion or extension of the result set.
- A second type of information navigation system is a free-text search engine. In a typical free-text search engine, the user enters an arbitrary text string, often in the form of a Boolean expression, and the system responds by enumerating the documents that contain matching text. Google.com, for example, includes a free-text search engine. Generally a free-text search engine presents users with a search form, often a single line, and processes queries using a precomputed index. Generally this index associates each document with a large portion of the words contained in that document, without substantive consideration of the document's content. Accordingly, the result set is often a voluminous, disorganized list that mixes relevant and irrelevant documents. Although variations have been developed that attempt to determine the objective of the user's query and to provide relevance rankings to the result set or to otherwise narrow or organize the result set, these systems are limited and unreliable in achieving these objectives.
- A third type of information navigation system is a tree-based directory. In a tree-based directory, the user generally starts at the root node of the tree and specifies a query by successively selecting refining branches that lead to other nodes in the tree. Shopping.yahoo.com uses a tree-based directory, for example. In a typical implementation, the hard-coded tree is stored in a data structure, and the same or another data structure maps documents to the node or nodes of the tree where they are located. A particular document is typically accessible from only one or, at most, a few, paths through the tree. The collection of navigation states is relatively static—while documents are commonly added to nodes in the directory, the structure of the directory typically remains the same. In a pure tree-based directory, the directory nodes are arranged such that there is a single root node from which all users start, and every other directory node can only be reached via a unique sequence of branches that the user selects from the root node. Such a directory imposes the limitation that the branches of the tree must be navigationally disjoint—even though the way that documents are assigned to the disjoint branches may not be intuitive to users. It is possible to address this rigidity by adding additional links to convert the tree to a directed acyclic graph. Updating the directory structure remains a difficult task, and leaf nodes are especially prone to end up with large numbers of corresponding documents.
- In all of these types of navigation systems, it may be difficult for a user to revise a query effectively after viewing its result set. In a database query system, users can add or remove terms from the query, but it is generally difficult for users to avoid underspecified queries (i.e. too many results) or overspecified queries (i.e. no results). The same problem arises in free-text search engines. In tree-based directories, the only means for users to revise a query is either to narrow it by selecting a branch or to generalize it by backing up to a previous branch.
- Various other systems for information retrieval are also available. For example. U.S. Pat. Nos. 5,715,444 and 5,983,219 to Danish et al., both entitled “Method and System for Executing a Guided Parametric Search,” disclose an interface for identifying a single item from a family of items. The interface provides users with a set of lists of features present in the family of items and identifies items that satisfy selected features.
- The present invention, a hierarchical, data-driven information navigation system and method, enables the navigation of a collection of documents or other materials using certain common attributes associated with those materials. The navigation system interface allows the user to select values for the attributes associated with the materials in the current navigation state and returns the materials that correspond to the user's selections. The present invention enables this navigation mode by associating terms (attribute-value pairs) with the documents, defining a set of hierarchical refinement relationships (i.e., a partial order) among the terms, and providing a guided navigation mechanism based on the association of terms with documents and the relationships among the terms.
- The present invention includes several components and features relating to a hierarchical data-driven navigation system. Among these are a user interface, a knowledge base, a process for generating and maintaining the knowledge base, a navigable data structure and method for generating the data structure, WWW-based applications of the system, and methods of implementing the system. Although the invention is described herein primarily with reference to a WWW-based system for navigating a product database, it should be understood that a similar navigation system could be employed in any database context where materials may be associated with terms and users can identify materials of interest by way of those terms.
- The present invention uses a knowledge base of information regarding the collection of materials to formulate and to adapt the interface to guide the user through the collection of navigation states by providing relevant navigation options. The knowledge base includes an enumeration of attributes relevant to the materials, a range of values for each attribute, and a representation of the partial order that relates terms (the attribute-value pairs). Attribute-value pairs for materials relating to entertainment, for example, may be Products: Movies and Director: Spike Lee. (Attribute-value pairs are represented throughout this specification in this Attribute: Value format; navigation states are represented as bracketed sets of attribute-value pairs.) The knowledge base also includes a classification mapping that associates each item in the collection of materials with a set of terms that characterize that item.
- The knowledge base is typically organized by domains, which are sets of materials that conform to natural groupings. Preferably, a domain is chosen such that a manageable number of attributes suffice to effectively distinguish and to navigate among the materials in that domain. The knowledge base preferably includes a characterization of each domain, which might include rules or default expectations concerning the classification of documents in that domain. A particular item may be in more than one domain.
- The present invention includes a user interface for navigation. The user interface preferably presents the user's navigation state as a set of terms organized by attribute. For a given set of terms, the user interface presents materials that are associated with those terms and presents relevant navigation options for narrowing or for generalizing the navigation state. In one aspect of the present invention, users navigate through the collection of materials by selecting and deselecting terms.
- In one aspect of the present invention, the user interface responds immediately to the selection or the deselection of terms, rather than waiting for the user to construct and to submit a comprehensive query composed of multiple terms. Once a query has been executed, the user may narrow the navigation state by selecting additional terms, or by refining existing terms. Alternatively, the user may broaden the navigation state by deselecting terms that have already been selected or by generalizing the terms. In preferred embodiments, the user may broaden the navigation state by deselecting terms in an order different from that in which they were selected. For example, a user could start at {Products: Movies}, narrow by selecting an additional term to {Products: Movies; Genre: Drama}, narrow again to {Products: Movies; Genre: Drama; Director: Spike Lee}, and then broaden by deselecting a term to {Products: Movies; Director: Spike Lee}.
- In another aspect of the present invention, the user interface allows users to use free-text search to find terms of interest. In another aspect of the present invention, the user interface also allows users to use free-text search on descriptive information associated with the materials.
- In another aspect of the present invention, the user interface presents users with context-dependent navigation options for narrowing the navigation state. The user interface does not present the user with terms whose selection would correspond to no documents in the resulting navigation state. The user interface presents the user only with terms that are associated with at least one item in the present navigation state. Also, the user interface presents new navigation options as they become relevant. The knowledge base may contain rules that determine when particular attributes or terms are made available to users for navigation.
- In another aspect of the invention—for example, when the materials correspond to products available for purchase from various sources—the knowledge base includes a catalog of canonical representations that have been aggregated from the materials.
- In another aspect of the invention, the knowledge base may include definitions of stores, sets of materials that are grouped to be searchable at one time. A store may include documents from one or more domains. An item may be assigned to more than one store. The knowledge base may also include rules to customize navigation for particular stores.
- In another aspect of the invention, the knowledge base is developed through a multi-stage, iterative process. Workflow management allocates resources to maximize the efficiency of generating and of maintaining the knowledge base.
- The knowledge base is used to generate data structures that support navigation through a collection of materials. In one aspect of the invention, the navigation system consists of a hierarchy (i.e., a partial order) of navigation states that map sets of terms to the sets of materials with which those terms are associated. In another aspect of the invention, the navigation states are related by transitions corresponding to terms used to narrow from one navigation state to another. The navigation states may be fully or partially precomputed, or may be entirely computed at run-time.
- The invention, including these and other features thereof, may be more fully understood from the following description and accompanying drawings, in which:
-
FIG. 1 is a view of a user interface to a navigation system in accordance with an embodiment of the present invention. -
FIG. 2 is a view of the user interface ofFIG. 1 , showing a drop-down pick list of navigable terms. -
FIG. 3 is a view of the user interface ofFIG. 1 , showing a navigation state. -
FIG. 4 is a view of the user interface ofFIG. 1 , showing a navigation state. -
FIG. 5 is a view of the user interface ofFIG. 1 , showing a navigation state. -
FIG. 6 is a view of the user interface ofFIG. 1 , showing a navigation state. -
FIG. 7 is a view of the user interface ofFIG. 1 , showing a navigation state. -
FIG. 8 is a view of the user interface ofFIG. 1 , showing a navigation state. -
FIG. 9 is a view of the user interface ofFIG. 1 , showing the result of a free-text search for terms. -
FIG. 10 is a view of the user interface ofFIG. 1 , showing information about a particular document. - FIGS. 11A-C are representative examples of how the range of values for an attribute could be partially ordered in accordance with an embodiment of the present invention.
-
FIG. 12 is a block diagram of a process for collecting and classifying documents in accordance with an embodiment of the present invention. -
FIG. 13 is a table illustrating how a set of documents may be classified in accordance with an embodiment of the present invention. -
FIG. 14 is a representative partial order of navigation states in accordance with an embodiment of the present invention. -
FIG. 15 is a block diagram of a process for precomputing a navigation state in accordance with an embodiment of the present invention. - User Interface
- In accordance with one embodiment of the present invention,
FIG. 1 shows auser interface 10 to a hierarchical, data-driven navigation system. The navigation system operates on a collection of documents defined in a knowledge base. As is shown, the user is preferably presented with at least two alternative methods of using the navigation system: (1) by selecting terms to navigate through the collection of documents, or (2) by entering a desired keyword in a search box. - The navigation system preferably organizes documents by domain. In accordance with one embodiment of the present invention, the
user interface 10 shown inFIGS. 1-10 is operating on a set of documents that are part of a wine domain. Preferably, a domain defines a portion of the collection of documents that reflects a natural grouping. Generally, the set of attributes used to classify documents in a domain will be a manageable subset of the attributes used to classify the entire collection of documents. A domain definition may be a type of product, e.g., wines or consumer electronics. A domain may be divided into subdomains to further organize the collection of documents. For example, there can be a consumer electronics domain that is divided into the subdomains of televisions, stereo equipment, etc. Documents may correspond to goods or services. - The user interface may allow users to navigate in one domain at a time. Alternatively, the user interface may allow the simultaneous navigation of multiple domains, particularly when certain attributes are common to multiple domains.
- The user interface allows the user to navigate through a collection of navigation states. Each state is composed of a set of terms and of the set of documents associated with those terms. Users navigate through the collection of navigation states by selecting and deselecting terms to obtain the navigation state corresponding to each set of selected terms. Preferably, as in
FIG. 4 , theuser interface 10 presents a navigation state by displaying both thelist 50 ofterms 52 and alist 41 of some or all of thedocuments 42 that correspond to that state. Preferably, the user interface presents theterms 52 of the navigation state organized by attribute. Preferably, the initial navigation state is a root state that corresponds to no term selections and, therefore, to all of the documents in the collection. - As shown in
FIG. 2 , theuser interface 10 allows users to narrow the navigation state by choosing avalue 28 for anattribute 22, or by replacing the currently selected value with a more specific one (if appropriate). Preferably, theuser interface 10 presents users with the options available to narrow the present navigation state, preferably with relevant terms organized by attribute. In some embodiments of the present invention, as shown inFIG. 2 , users can selectvalues 28 from drop-downlists 26 denoted byindicators 24, that are organized byattributes 22 in the current navigation state. The user interface may present these navigation options in a variety of formats. For example, values can be presented as pictures or as symbols rather than as text. The interface may allow for any method of selecting terms, e.g., mouse clicks, keyboard strokes, or voice commands. The interface may be provided through various media and devices, such as television or WWW, and telephonic or wireless devices. Although discussed herein primarily as a visual interface, the interface may also include an audio component or be primarily audio-based. - Preferably, in the present navigation state, the user interface only presents options for narrowing the navigation state that lead to a navigation state with at least one document. This preferred criteria for providing navigation options ensures that there are no “dead ends,” or navigation states that correspond to an empty result set.
- Preferably, the user interface only presents options for narrowing the navigation state if they lead to a navigation state with strictly fewer documents than the present one. Doing so ensures that the user interface does not present the user with choices that are already implied by terms in the current navigation state.
- Preferably, the user interface presents a new navigation state as soon as the user has chosen a
term 28 to narrow the current navigation state, without any further triggering action by the user. Because the system responds to each user with immediate feedback, the user need not formulate a comprehensive query and then submit the query. - In accordance with one embodiment of the present invention, as shown in
FIGS. 3 and 4 , theuser interface 10 may enable broadening of the current navigation state by allowing the user to removeterms 52 from thelist 50 of terms selected. For example, theinterface 10 may provide alist 50 withcheckboxes 54 for removing selections and abutton 56 to trigger the new search. In the illustrated embodiment, the user can remove selectedterms 52 in any order and can remove more than oneselection 52 at a time. - Preferably, the navigation options presented to the user are context-dependent. For example, terms that refine previously selected terms may become navigation options in the resulting navigation state. For example, referring to
FIG. 5 , after the term Flavors: Wood andNut Flavors 52 is selected (the user has selected the value Wood andNut Flavors 23 for the attribute Flavors), Wood andNut Flavors 23 then appears in the interface for the new navigation state in thelist 20 of attributes and allows selection ofvalues 28 that relate to that specific attribute for further refinement of the query. The user interface may also present certain attributes that were not presented initially, as they become newly relevant. For example, comparingFIG. 3 toFIG. 2 , the attribute French Vineyards 25 appears in thelist 20 of attributes only after the user has already selected the term Regions: French Regions in a previous navigation state. Attributes may be embedded in this way to as many levels as are desired. Presenting attributes as navigation options when those attributes become relevant avoids overwhelming the user with navigation options before those options are meaningful. - Additionally, for some
attributes 22, multiple incomparable (non-refining) selections ofvalues 28 may be applicable. For example, for the attribute Flavor, the values Fruity and Nutty, neither of which refines the other, may both be selected so that the terms Flavors: Fruity and Flavors: Nutty narrow the navigation state. Thus, users may sometimes be able to refine a query by selecting multiple values under a single attribute. - Preferably, certain attributes will be eliminated as navigation options if they are no longer valid or helpful choices. For example, if all of the documents in the result set share a common term (in addition to the term(s) selected to reach the navigation state), then selection of that term will not further refine the result set; thus, the attribute associated with that term is eliminated as a navigation option. For example, comparing
FIG. 6 withFIG. 4 , the attribute Wine Types 27 has been eliminated as a navigation option because all of thedocuments 42 in the result set share the same term, Wine Types: Appellational Wines. In preferred embodiments, an additional feature of theinterface 10 is that this information is presented to the user as a common characteristic of thedocuments 42 in the result set. For example, referring toFIG. 6 , theinterface 10 includes adisplay 60 that indicates the common characteristics of thedocuments 42 in the result set. Removing a term as a navigation option when all of the documents in the result set share that term prevents the user from wasting time by selecting terms that do not refine the result set. - Preferably, the user interface also eliminates values as navigation options if their selection would result in no documents in the result set. For example, comparing
FIG. 8 toFIG. 7 , after the user selects the term Wine Spectator Range: 95-100, the user interface eliminates as navigation options all thevalues list 26 of values for the attribute Appellations 22 except for thevalues Alexander Valley 29 andNapa Valley 29.Alexander Valley 29 andNapa Valley 29 are the only two values in thelist 26 of values for the attribute Appellations that return at least one document in the result set; allother values 28 return the empty set. Removing values as navigation options that would result in an empty result set saves the user time by preventing the user from reaching dead-ends. - Preferably, the user interface allows users to search for desired words using free-text search. In accordance with one embodiment of the present invention, illustrated in
FIG. 9 , asearch box 30 preferably allows users to perform a free-text search for terms of interest, rather than performing a full-text search of the documents themselves. Preferably, the user interface responds to such a search by presenting alist 32 ofterms 34 including organized byattribute 36, and allowing the user to select from among them. Preferably, the user interface responds to the user's selection by presenting the user with the navigation state corresponding to the selection of that term. The user may then either navigate from that state (i.e., by narrowing or broadening it) or perform additional free-text searches for terms. - Preferably, the
user interface 10 presents a full orpartial list 41 of the documents that correspond to the current navigation state. Preferably, if a user is interested in aparticular document 42, the user may select it and obtain arecord 70 containing further information about it, including thelist 72 of terms 74 that are associated with that document, as shown inFIG. 10 . Preferably, theuser interface 10 allows the user to select any subset of those terms 74 and thereby navigate to the navigation state that corresponds to the selected term set. - Preferably, the
user interface 10 also offers navigation options that directly link to an associated navigation state that is relevant to, but not necessarily a generalization or refinement of, the present navigation state. These links preferably infer the user's interests from the present navigation state and enable the user to cross-over to a related topic. For example, if the user is visiting a particular navigation state in a food domain, links may direct the user to navigation states of wines that would complement those foods in the wine domain. - Although the interface to the navigation system has been described herein as a
user interface 10, the interface could provide other forms of access to the navigation system. In alternative embodiments, the interface may be an applications program interface to allow access to the navigation system for or through other applications. The interface may also enhance the functionality of an independent data-oriented application. The interface may also be used in the context of a WWW-based application or an XML-based application. The navigation system may also support multiple interface modes simultaneously. The navigation system may be made available in a variety of ways, for example via wireless communications or on handheld devices. - Knowledge Base
- Preferably, the navigation system stores all information relevant to navigation in a knowledge base. The knowledge base is the repository of information from two processes: taxonomy definition and classification. Taxonomy definition is the process of identifying the relevant attributes to characterize documents, determining the acceptable values for those attributes (such as a list or range of values), and defining a partial order of refinement relationships among terms (attribute-value pairs). Classification is the process of associating terms with documents. The knowledge base may also be used to maintain any information assets that support these two processes, such as domains, classification rules and default expectations. Additionally, the knowledge base may be used to maintain supplementary information and materials that affect users' navigation experience.
- The taxonomy definition process identifies a set of attributes that appropriately characterize documents. A typical way to organize the taxonomy definition process is to arrange the collections of documents into domains, which are sets of documents that conform to a natural grouping and for which a manageable number of attributes suffice to effectively distinguish and navigate among the documents in that domain. The knowledge base preferably includes a characterization of each domain, which might include rules or default expectations concerning the classification of documents in that domain.
- The taxonomy definition process also identifies a full set of values, at varying levels of specificity when appropriate, for each attribute. The values preferably identify the specific properties of the documents in the collection. The values may be enumerated explicitly or defined implicitly. For example, for a “color” attribute, a full set of valid color values may be specified, but for a “price” or “date” attribute, a range within which the values may fall or a general data type, without defining a range, may be specified. The process of identifying these values may include researching the domain or analyzing the collection of documents.
- The taxonomy definition process also defines a partial order of refinement relationships among terms (attribute-value pairs). For example, the term Origin: France could refine the term Origin: Europe. The refinement relationship is transitive and antisymmetric but not necessarily total. Transitivity means that, if term A refines term B and term B refines term C, then term A refines term C. For example, if Origin: Paris refines Origin: France and Origin: France refines Origin: Europe, then Origin: Paris refines Origin: Europe. Antisymmetry means that, if two terms are distinct, then both terms cannot refine each other. For example, if Origin: Paris refines Origin: France, then Origin: France does not refine Origin: Paris.
- Further, the partial order of refinement relationships among terms is not necessarily a total one. For example, there could be two terms, Origin: France and Origin: Spain, such that neither term refines the other. Two terms with this property are said to be incomparable. Generally, a set of two or more terms is mutually incomparable if, for every pair of distinct terms chosen from that set, the two terms are incomparable. Typically, but not necessarily, two terms with distinct attributes will be incomparable.
- Given a set of terms, a term is a maximal term in that set if it does not refine any other terms in the set, and it is a minimal term in that set if no other term in the set refines it. For example, in the set {Origin: France, Origin: Paris, Origin: Spain, Origin: Madrid}, Origin: France and Origin: Spain are maximal, while Origin: Paris and Origin: Madrid are minimal. In the knowledge base, a term is a root term if it does not refine any other terms and a term is a leaf term if no other term refines it.
-
FIGS. 11A, 11B , and 11C illustrateattributes 112 andvalues 114, arranged in accordance with the partial order relationships, that could be used for classifying wines. Theattributes 112 are Type/Varietal, Origin, and Vintage. Eachattribute 112 corresponds to a maximal term for that attribute. Anattribute 112 can have a flat set of mutually incomparable values (e.g., Vintage), a tree of values (e.g., Origin), or a general partial order that allows a value to refine a set of two or more mutually incomparable values (e.g., Type/Varietal). Thearrows 113 indicate the refinement relationships amongvalues 114. - Attributes and values may be identified and developed in several ways, including manual or automatic processing and the analysis of documents. Moreover, this kind of analysis may be top-down or bottom-up; that is, starting from root terms and working towards leaf terms, or starting from leaf terms and working towards root terms. Retailers, or others who have an interest in using the presented invention to disseminate information, may also define attributes and terms.
- The classification process locates documents in the collection of navigation states by associating each document with a set of terms. Each document is associated with a set of mutually incomparable terms, e.g., {Type/Varietal: Chianti, Origin: Italy, Vintage: 1996}, as well as any other desired descriptive information. If a document is associated with a given term, then the document is also associated with all of the terms that the given term refines.
- The classification process may proceed according to a variety of workflows. Documents may be classified in series or in parallel, and the automatic and manual classification steps may be performed one or more times and in any order. To improve accuracy and throughput, human experts may be assigned as specialists to oversee the classification task for particular subsets of the documents, or even particular attributes for particular subsets of the documents. In addition, the classification and taxonomy processes may be interleaved, especially as knowledge gained from one process allows improvements in the other.
-
FIG. 12 illustrates the stages in a possible flow for theclassification process 250. Thedata acquisition step 252, that is, the collection of documents for the database, may occur in several different ways. For example, a retailer with a product catalog over which the navigation system will operate might provide a set of documents describing its products as a pre-defined set. Alternatively, documents may be collected from one source, e.g., one Web site, or from a number of sources, e.g., multiple Web sites, and then aggregated. If the desired documents are Web pages, the documents may be collected by appropriately crawling the Web, selecting documents, and discarding documents that do not fit in the domain. In thedata translation step 254, the collected documents are formatted and parsed to facilitate further processing. In theautomatic classification step 256, the formatted and parsed documents are processed in order to automatically associate documents with terms. In themanual classification step 258, human reviewers may verify and amend the automatic classifications, thereby ensuring quality control. Preferably, any rules or expectations violated in either theautomatic classification step 256 or themanual classification step 258 would be flagged and presented to human reviewers as part of themanual classification step 258. If the collection of documents is divided into domains, then there will typically be rules that specify a certain minimal or preferred set of attributes used to classify documents from each domain, as well as other domain-specific classification rules. When the classification process is complete, each document will have a set of terms associated with it, which locate the document in the collection of navigation states. - In
FIG. 13 , table 180 shows a possible representation of a collection of classified wine bottles. Preferably, each entry is associated with adocument number 182, which could be a universal identifier, aname 184, and the associatedterms 186. The name is preferably descriptive information that could allow the collection to be accessed via a free-text search engine as well as via the term-based navigation system. - In another aspect of the invention, the knowledge base also includes a catalog of canonical representations of documents. Each catalog entry represents a conceptually distinct item that may be associated with one or more documents. The catalog allows aggregation of profile information from multiple documents that relate to the item, possibly from multiple sources. For example, if the same wine is sold by two vendors, and if one vendor provides vintage and geographic location information and another provides taste information, that information from the two vendors can be combined in the catalog entry for that type of wine. The catalog may also improve the efficiency of the classification process by eliminating duplicative profiling. In
FIG. 12 , thecatalog creation step 260 associates classified documents with catalog entries, creating new catalog entries when appropriate. For ease of reference, an item may be uniquely identified in the catalog by a universal identifier. - The knowledge base may also define stores, where a store is a subcollection of documents that are grouped to be searchable at one time. For example, a particular online wine merchant may not wish to display documents corresponding to products sold by that merchant's competitors, even though the knowledge base may contain such documents. In this case, the knowledge base can define a store of documents that does not include wines sold by the merchant's competitors. In
FIG. 12 , thestore creation step 262 may define stores based on attributes, terms, or any other properties of documents. A document may be identified with more than one store. The knowledge base may also contain attributes or terms that have been customized for particular stores. - In
FIG. 12 , theexport process step 264 exports information from the knowledge base to another stage in the system that performs further processing necessary to generate a navigable data structure. - Navigation States
- The navigation system represents, explicitly or implicitly, a collection of navigation states. These navigation states are related by a partial order of refinement that is derived from the partial order that relates the terms.
- A navigation state has two representations. First, a navigation state corresponds to a subset of the collection of documents. Second, a navigation state corresponds to a set of mutually incomparable terms.
FIG. 14 illustrates some navigation states for the documents and terms based on the wine example discussed above. For example, onenavigation state 224 is {Origin: South America} (documents # 1, #4, #5); asecond navigation state 224 is {Type/Varietal: White, Origin: United States} (documents # 2, #9). The subset of documents corresponding to each navigation state includes the documents that are commonly associated with all of the terms in the corresponding set of mutually incomparable terms. At the same time, the set of mutually incomparable terms corresponding to each navigation state includes all of the minimal terms from the set of terms that are common to the subset of documents, i.e., the set of terms that are commonly associated with every document in the subset. Each navigation state is preferably unique and fully specified; for a particular set of terms, or for a given set of documents, there is no more than one corresponding navigation state. - One way preferred to define the collection of navigation states is to uniquely identify each navigation state by a canonical set of mutually incomparable terms. A two-step mapping process that maps an arbitrary term set to a canonical set of mutually incomparable terms creates states that satisfy this property. In the first step of the process, an arbitrary set of terms is mapped to the subset of documents that are associated with all of those terms. Recalling that if a document is associated with a given term, then the document is also associated with all of the terms that the given term refines, in the second step of the process, this subset of documents is mapped to the set of minimal terms in the set of terms that are common to all of the documents in that document set. The term set derived from this second step is a set of mutually incomparable terms that uniquely identifies the corresponding subset of documents, and, hence, is a canonical representation for a navigation state. By way of illustration, referring to the wine example in
FIG. 14 , the term set {Origin: France} maps to the subset of documents {documents # 8, #11}, which in turn maps to the canonical term set {Type/Varietal: Red, Origin: France}. - The navigation states 222, 224, 226 are related by a partial order of
refinement relationships 220 derived from the partial order that relates terms. This partial order can be expressed in terms of either the subsets of documents or the term sets that define a navigation state. Expressed in terms of subsets of documents, a navigation state A refines a navigation state B if the set of documents that corresponds to state A is a subset of the set of documents that corresponds to state B. Expressed in terms of term sets, a navigation state A refines a navigation state B if all of the terms in state B either are in state A or are refined by terms in state A. Referring toFIG. 14 , thenavigation state 226 corresponding to the term set {Type/Varietal: Red, Origin: Chile} (document #4) refines thenavigation state 224 corresponding to {Origin: Chile} (documents # 4, #5). Since the refinement relationships among navigation states give rise to a partial order, they are transitive and antisymmetric. In the example, {Type/Varietal: Red, Origin: Chile} (document #4) refines {Origin: Chile} (documents # 4, #5) and {Origin: Chile} (documents # 4, #5) refines {Origin: South America} (documents # 1, #4, #5); therefore, {Type/Varietal: Red, Origin: Chile} (document #4) refines {Origin: South America} (documents # 1, #4, #5). Theroot navigation state 222 is defined to be the navigation state corresponding to the entire collection of documents. The leaf navigation states 226 are defined to be those that cannot be further refined, and often (though not necessarily) correspond to individual documents. There can be arbitrarily many intermediate navigation states 224 between theroot 222 and theleaves 226. Given a pair of navigation states A and B where B refines A, there can be multiple paths of intermediate navigation states 224 connecting A to B in the partial order. For convenience of definition in reference to the implementation described herein, a navigation state is considered to refine itself. - A user browses the collection of documents by visiting a sequence of one or more navigation states typically starting at the
root navigation state 222. There are three basic modes of navigation among these states. The first mode is refinement, or moving from the current navigation state to a navigation state that refines it. The user can perform refinement either by adding a term to the current navigation state or by refining a term in the current navigation state; i.e., replacing a term with a refinement of that term. After the user adds or refines a term, the new term set can be mapped to a canonical term set according to the two-step mapping described above. The second mode is generalization, or moving from the current navigation state to a more general navigation state that the current state refines. The user can perform generalization either by removing a term from the current navigation state or by generalizing a term in the current navigation state; i.e., replacing a current term with a term that the current term refines. After the user removes or generalizes a term, the new term set can be mapped to a canonical term set. The third mode is simply creating a query in the form of a desired term set, which again can be mapped to a canonical term set to obtain a navigation state. - Implementation
- The knowledge base is transferred to a navigable data structure in order to implement the present invention. The navigation states may be fully precomputed, computed dynamically at run-time, or partially precomputed. A cache may be used to avoid redundant computation of navigation states.
- In preferred embodiments, the collection of navigation states may be represented as a graph—preferably, a directed acyclic multigraph with labeled edges. A graph is a combinatorial structure consisting of nodes and edges, where each edge links a pair of nodes. The two nodes linked by an edge are called its endpoints. With respect to the present invention, the nodes correspond to navigation states, and the edges represent transitions that refine from one navigation state to another. Since refinement is directional, each edge is directed from the more general node to the node that refines it. Because there is a partial order on the navigation states, there can be no directed cycles in the graph, i.e., the graph is acyclic. Preferably, the graph is a multigraph, since it allows the possibility of multiple edges connecting a given pair of nodes. Each edge is labeled with a term. Each edge has the property that starting with the term set of the more general end point, adding the edge term, and using the two-step map to put this term set into canonical form leads to a refinement which results in the navigation state that is the other endpoint. That is, each edge represents a refinement transition between nodes based on the addition of a single term.
- The following definitions are useful for understanding the structure of the graph: descendant, ancestor, least common ancestor (LCA), proper ancestor, proper descendant, and greatest lower bound (GLB). These definitions apply to the refinement partial order among terms and among nodes. If A and B are terms and B refines A, then B is said to be a descendant of A and A is said to be an ancestor of B. If, furthermore, A and B are distinct terms, then B is said to be a proper descendant of A and A is said to be a proper ancestor of B. The same definitions apply if A and B are both nodes.
- If C is an ancestor of A and C is also an ancestor of B, then C is said to be a common ancestor of A and B, where A, B, and C are either all terms or all nodes. The minimal elements of the set of common ancestors of A and B are called the least common ancestors (LCAs) of A and B. If no term has a pair of incomparable ancestors, then the LCA of two terms—or of two nodes—is unique. For example, the LCA of Origin: Argentina and Origin: Chile is Origin: South America in the partial order of
terms 110 ofFIG. 11B . In general, however, there may be a set of LCAs for a given pair of terms or nodes. - Computation of the nodes in the graphs is preferably performed bottom-up.
- The leaf nodes in the graph—that is, the nodes corresponding to leaf navigation states—may be computed directly from the classified documents. Typically, but not necessarily, a leaf node will correspond to a set containing a single document. The remaining, non-leaf nodes are obtained by computing the LCA-closure of the leaf nodes—that is, all of the nodes that are the LCAs of subsets of the leaf nodes.
- The edges of the graph are determined according to a refinement function, called the R function for notational convenience. The R function takes as arguments two nodes A and B, where A is a proper ancestor of B, and returns the set of maximal terms such that, if term C is in R (A, B), then refining node A with term C results in a node that is a proper descendant of A and an ancestor (not necessarily proper) of B. For example, in
FIG. 14 , R ({Type/Varietal: Red}, {Type/Varietal: Merlot, Origin: Argentina, Vintage: 1998})={Type/Varietal: Merlot, Origin: South America, Vintage: 1998}. If B is an ancestor of B2, then R (A, B1) is a subset of R (A, B2)—assuming that A is a proper ancestor of both B1 and B2. For example, R ({Type/Varietal: Red}, {Type/Varietal: Red, Origin: South America})={Origin: South America}. - In the graph, the edges between nodes A and B will correspond to a subset of the terms in R (A, B). Also, no two edges from a single ancestor node A use the same term for refinement. If node A has a collection of descendant nodes {B1, B2, . . . } such that term C is in all of the R (A, Bi), then the only edge from node A with term C goes to LCA (B1, B2, . . . ), which is guaranteed to be the unique maximal node among the Bi. In
FIG. 14 , for example, the edge from node {Type/Varietal: Red} with term Origin: South America goes to node {Type/Varietal: Red, Origin: South America} rather than to that node's proper descendants {Type/Varietal: Merlot, Origin: South America, Vintage: 1998} and {Type/Varietal: Red, Origin: Chile}. The LCA-closure property of the graph ensures the existence of a unique maximal node among the Bi. Thus, each edge maps a node-term pair uniquely to a proper descendant of that node. - The LCA-closure of the graph results in the useful property that, for a given term set S, the set of nodes whose term sets refine S has a unique maximal node. This node is called the greatest lower bound (GLB) of S.
- The graph may be computed explicitly and stored in a combinatorial data structure; it may be represented implicitly in a structure that does not necessarily contain explicit representations of the nodes and edges; or it may be represented using a method that combines these strategies. Because the navigation system will typically operate on a large collection of documents, it is preferred that the graph be represented by a method that is scalable.
- The graph could be obtained by computing the LCAs of every possible subset of leaf nodes. Such an approach, however, grows exponentially in the number of leaf nodes, and is inherently not scalable. An alternative strategy for obtaining the LCA closure is to repeatedly consider all pairs of nodes in the graph, check if each pair's LCA is in the graph, and add that LCA to the graph as needed. This strategy, though a significant improvement on the previous one, is still relatively not scalable.
- A more efficient way to precompute the nodes is to process the document set sequentially, compute the node for each document, and add that node to the graph along with any other nodes necessary to maintain LCA-closure. The system stores the nodes and edges as a directed acyclic multigraph. The graph is initialized to contain a single node corresponding to the empty term set, the root node. Referring to
FIG. 15 , inprocess 230 for inserting a new node into the graph, instep 232, for each new document to be inserted into the graph that does not correspond to an existing node, the system creates a new node. Instep 234, before inserting the new node into the graph, the system recursively generates and inserts any missing LCA nodes between the root node (or ancestor node) and the new node. To ensure LCA-closure after every node insertion, the system inserts the document node last, insteps - Inserting a new node requires the addition of the appropriate edges from ancestors to the node, in
step 236, and to descendants out of the new node, instep 238. The edges into the node are preferably determined by identifying the ancestors that have refinement terms that lead into the new node and do not already have those refinement terms used on edges leading to intermediate ancestors of the new node. The edges out of the node are preferably determined by computing the GLB of the new node and appropriately adding edges from the new node to the GLB and to nodes to which the GLB has edges. - The entire graph may be precomputed by following the above procedures for each document in the collection. Precomputing of the graph may be preferred where the size of the graph is manageable, or if users are likely to visit every navigation state with equal probability. In practice, however, users typically visit some navigation states more frequently than others. Indeed, as the graph gets larger, some navigation states may never be visited at all. Unfortunately, reliable predictions of the frequency with which navigation states will be visited are difficult.
- An alternative strategy to precomputing the navigation states is to create indexes that allow the navigation states to be computed dynamically. Specifically, each document can be indexed by all of the terms that are associated with that document or that have refinements associated with that document. The resulting index is generally much smaller in size than a data structure that stores the graph of navigation states. This dynamic approach may save space and precomputation time, but it may do so at the cost of higher response times or greater computational requirements for operation. A dynamic implementation may use a one-argument version of the R function that returns all refinement terms from a given navigation state, as well a procedure for computing the GLB of a term set.
- It is also possible to precompute a subset of the navigation states. It is preferable to precompute the states that will cost the most to compute dynamically. For example, if a state corresponds to a large subset of the documents, it may be preferable to compute it in advance. In one possible partial precomputation approach, all navigation states corresponding to a subset of documents above a threshold size may be precomputed. Precomputing a state is also preferable if the state will be visited frequently. In some instances it may be possible to predict the frequency with which a navigation state will be visited. Even if the frequency with which a navigation state will be visited cannot be predicted in advance, the need to continually recompute can be reduced by caching the results of dynamic computation. Most recently or most frequently visited states may be cached.
- As described above with respect to the interface, the system supports three kinds of query operations—namely refinement, generalization, and query by specifying a set of terms. These operations may be further described in terms of the graph. For query refinement, the system enumerates the terms that are on edges from the node corresponding to the current navigation state. When the user selects a term for refinement, the system responds by presenting the node to which that edge leads. Similarly, for query generalization options, the system enumerates and selects edges that lead to (rather than from) the node corresponding to the current navigation state. Alternatively, query generalization may be implemented as a special case of query by specifying a set of terms. For query by specifying a set of keywords, the system creates a virtual node corresponding to the given term set and determines the GLB of the virtual node in the graph. If no GLB is found, then there are no documents that satisfy the query. Otherwise, the GLB node will be the most general node in the graph that corresponds to a navigation state where all documents satisfy the query.
- The navigation system of the present invention allows information providers to overlay a navigation system over any collection of documents. The knowledge base and navigation aspects of the invention can be performed independently by different providers, and information providers may outsource these functions to separate entities. Similarly, a generated knowledge base may be imported by a navigation specialist. Information providers may also outsource this navigation requirement to a navigation system provider. A navigation system provider could charge customers a license fee for the system independent of the amount of its usage. Alternatively, a navigation system provider could charge customers on a per-click basis, a per-purchase basis if products are available via the system, or per-transaction generated from a click through the navigation system. A navigation system provider could also function as an aggregator—compiling records from a number of sources, combining them into a global data set, and generating a navigation system to search the data set.
- A navigation system in accordance with the present invention may also enhance user profiling capability and merchandising capability. The navigation system may maintain a profile of users based on the users' selections, including the particular paths selected to explore the collection of navigation states. Using the knowledge base, the system may also infer additional information regarding the users' preferences and interests by supplementing the selection information with information regarding related documents, attributes and terms in the knowledge base. That information may be used to market goods and services related to the documents of interest to the user.
- The foregoing description has been directed to specific embodiments of the invention. The invention may be embodied in other specific forms without departing from the spirit and scope of the invention. The embodiments, figures, terms and examples used herein are intended by way of reference and illustration only and not by way of limitation. The scope of the invention is indicated by the appended claims and all changes that come within the meaning and scope of equivalency of the claims are intended to be embraced therein.
Claims (12)
1. A computer-implemented method for enabling a user to browse information, the method comprising:
storing a plurality of attribute-value pairs associated with a collection of materials, wherein each of a plurality of values has an association with at least one of a plurality of attributes characterizing the materials;
displaying a free-text search box;
accepting a search term entered in the free-text search box;
determining the attribute-value pairs that match the search term;
displaying a representation of the matching attribute-value pairs for the search term;
accepting a selection of an initial set of one or more of the matching attribute-value pairs;
entering a first navigation state corresponding to a first set of attribute-value pairs including at least the initial set of matching attribute-value pairs and to a first particular subset of the materials, the first particular subset of the materials consisting of those materials in the collection of materials that are each described by every attribute-value pair in the first set of attribute-value pairs; and
entering a second navigation state in response to a user action, the second navigation state corresponding to a second set of attribute-value pairs and to a second particular subset of the materials, the second set including at least two mutually incomparable attribute-value pairs, the second particular subset of the materials consisting of those materials in the collection of materials that are each described by every attribute-value pair in the second set of attribute-value pairs.
2. The method of claim 1 , wherein the second set of attribute-value pairs includes an attribute-value pair that represents a refinement of the value of an attribute-value pair within the first set of attribute-value pairs.
3. The method of claim 1 , wherein the second set of attribute-value pairs includes an attribute-value pair that represents a generalization of the value of an attribute-value pair within the first set of attribute-value pairs.
4. The method of claim 1 , further comprising deselecting an attribute-value pair from the first set of attribute-value pairs to obtain the second set of attribute-value pairs.
5. The method of claim 1 , wherein the first particular subset of the materials includes an integrally navigable subset of the collection of materials.
6. The method of claim 5 , wherein within the integrally navigable subset of the collection of materials at least one of the materials also belongs to a second integrally navigable subset of the collection of materials.
7. The method of claim 1 , further comprising presenting navigation options for selection from the first navigation state, the navigation options including refinements of the first set of attribute-value pairs.
8. The method of claim 1 , further comprising presenting navigation options for selection from the first navigation state, the navigation options including lists of attribute-value pairs, each list corresponding to one of the plurality of attributes.
9. A computer-implemented method for enabling a user to browse information, the method comprising:
storing a plurality of attribute-value pairs associated with a collection of materials, wherein each of a plurality of values has an association with at least one of a plurality of attributes characterizing the materials;
displaying a free-text search box;
accepting a search term entered in the free-text search box;
determining the attribute-value pairs that match the search term;
displaying a representation of the matching attribute-value pairs for the search term;
accepting a selection of a selected set of one or more of the matching attribute-value pairs; and
entering a first navigation state corresponding to a first set of attribute-value pairs including at least the selected set of matching attribute-value pairs and to a first particular subset of the materials, the first set of attribute-value pairs including at least two mutually incomparable attribute-value pairs, the first particular subset of the materials consisting of those materials in the collection of materials that are each described by every attribute-value pair in the first set of attribute-value pairs.
10. A computer program product, residing on a computer-readable medium, for use in browsing information associated with a collection of materials, the computer program product comprising instructions for causing a computer to:
access a data structure containing a plurality of attribute-value pairs associated with the materials, wherein each of a plurality of values has an association with at least one of a plurality of attributes characterizing the materials;
display a free-text search box;
accept a search term entered in the free-text search box;
determine the attribute-value pairs that match the search term;
display a representation of the matching attribute-value pairs for the search term;
accept a selection of a selected set of one or more of the matching attribute-value pairs;
enter a first navigation state corresponding to a first set of attribute-value pairs including at least the selected set of one or more matching attribute-value pairs and to a particular subset of the materials, the particular subset of the materials consisting of those materials in the collection of materials that are each described by every attribute-value pair in the first set of attribute-value pairs; and
enter a second navigation state in response to a user action, the second navigation state corresponding to a second set of attribute-value pairs and to a second particular subset of the materials, the second set including at least two mutually incomparable attribute-value pairs, the second particular subset of the materials consisting of those materials in the collection of materials that are each described by every attribute-value pair in the second set of attribute-value pairs.
11. The computer program product of claim 10 , wherein some of the attribute-value pairs in the data structure refine other of the attribute-value pairs.
12. The computer program product of claim 11 , wherein the second set of attribute-value pairs includes an attribute-value pair that represents a refinement of the value of an attribute-value pair within the first set of attribute-value pairs.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/268,868 US20060053104A1 (en) | 2000-05-18 | 2005-11-08 | Hierarchical data-driven navigation system and method for information retrieval |
US11/931,345 US7912823B2 (en) | 2000-05-18 | 2007-10-31 | Hierarchical data-driven navigation system and method for information retrieval |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/573,305 US7035864B1 (en) | 2000-05-18 | 2000-05-18 | Hierarchical data-driven navigation system and method for information retrieval |
US11/268,868 US20060053104A1 (en) | 2000-05-18 | 2005-11-08 | Hierarchical data-driven navigation system and method for information retrieval |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/573,305 Division US7035864B1 (en) | 2000-05-18 | 2000-05-18 | Hierarchical data-driven navigation system and method for information retrieval |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/931,345 Division US7912823B2 (en) | 2000-05-18 | 2007-10-31 | Hierarchical data-driven navigation system and method for information retrieval |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060053104A1 true US20060053104A1 (en) | 2006-03-09 |
Family
ID=24291434
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/573,305 Expired - Lifetime US7035864B1 (en) | 2000-05-18 | 2000-05-18 | Hierarchical data-driven navigation system and method for information retrieval |
US11/268,868 Abandoned US20060053104A1 (en) | 2000-05-18 | 2005-11-08 | Hierarchical data-driven navigation system and method for information retrieval |
US11/931,345 Expired - Fee Related US7912823B2 (en) | 2000-05-18 | 2007-10-31 | Hierarchical data-driven navigation system and method for information retrieval |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/573,305 Expired - Lifetime US7035864B1 (en) | 2000-05-18 | 2000-05-18 | Hierarchical data-driven navigation system and method for information retrieval |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/931,345 Expired - Fee Related US7912823B2 (en) | 2000-05-18 | 2007-10-31 | Hierarchical data-driven navigation system and method for information retrieval |
Country Status (1)
Country | Link |
---|---|
US (3) | US7035864B1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040133562A1 (en) * | 1998-12-04 | 2004-07-08 | Toong Hoo-Min | Systems and methods of searching databases |
US20080082501A1 (en) * | 2006-10-02 | 2008-04-03 | Science Applications International Corporation | Methods and systems for formulating and executing concept-structured queries of unorganized data |
US20080086451A1 (en) * | 2006-10-05 | 2008-04-10 | Torres Robert J | System and Method to Provide Custom Constraints for Faceted Exploration |
US20080140617A1 (en) * | 2006-12-06 | 2008-06-12 | Torres Robert J | User interface for faceted exploration |
US20080313106A1 (en) * | 2007-03-07 | 2008-12-18 | International Business Machines Corporation | System and Method for Interactive Browsing |
US20090228831A1 (en) * | 2008-03-04 | 2009-09-10 | Andreas Wendker | Customization of user interface elements |
US20110029952A1 (en) * | 2009-07-31 | 2011-02-03 | Xerox Corporation | Method and system for constructing a document redundancy graph |
US20110087387A1 (en) * | 2009-10-12 | 2011-04-14 | The Boeing Company | Platform Health Monitoring System |
US20120185512A1 (en) * | 2011-01-18 | 2012-07-19 | Mccully George Elliott | Promoting philanthropy |
US8316001B1 (en) | 2002-07-22 | 2012-11-20 | Ipvision, Inc. | Apparatus and method for performing analyses on data derived from a web-based search engine |
US20130246426A1 (en) * | 2011-01-26 | 2013-09-19 | DiscoverReady LLC | Document Classification and Characterization |
US8572009B2 (en) | 2011-08-16 | 2013-10-29 | The Boeing Company | Evaluating the health status of a system using groups of vibration data including images of the vibrations of the system |
US8914149B2 (en) | 2009-10-12 | 2014-12-16 | The Boeing Company | Platform health monitoring system |
US9418389B2 (en) | 2012-05-07 | 2016-08-16 | Nasdaq, Inc. | Social intelligence architecture using social media message queues |
US9552412B1 (en) * | 2016-04-07 | 2017-01-24 | Quid, Inc. | Boolean-query composer |
US9667514B1 (en) | 2012-01-30 | 2017-05-30 | DiscoverReady LLC | Electronic discovery system with statistical sampling |
US10304036B2 (en) | 2012-05-07 | 2019-05-28 | Nasdaq, Inc. | Social media profiling for one or more authors using one or more social media platforms |
US10467252B1 (en) | 2012-01-30 | 2019-11-05 | DiscoverReady LLC | Document classification and characterization using human judgment, tiered similarity analysis and language/concept analysis |
Families Citing this family (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8781940B2 (en) | 2000-01-26 | 2014-07-15 | Ebay Inc. | Method and apparatus for facilitating user selection of a category item in a transaction |
US10002167B2 (en) | 2000-02-25 | 2018-06-19 | Vilox Technologies, Llc | Search-on-the-fly/sort-on-the-fly by a search engine directed to a plurality of disparate data sources |
US7617184B2 (en) * | 2000-05-18 | 2009-11-10 | Endeca Technologies, Inc. | Scalable hierarchical data-driven navigation system and method for information retrieval |
US7035864B1 (en) * | 2000-05-18 | 2006-04-25 | Endeca Technologies, Inc. | Hierarchical data-driven navigation system and method for information retrieval |
US7062483B2 (en) | 2000-05-18 | 2006-06-13 | Endeca Technologies, Inc. | Hierarchical data-driven search and navigation system and method for information retrieval |
US7325201B2 (en) | 2000-05-18 | 2008-01-29 | Endeca Technologies, Inc. | System and method for manipulating content in a hierarchical data-driven search and navigation system |
US7107535B2 (en) * | 2000-05-24 | 2006-09-12 | Clickfox, Llc | System and method for providing customized web pages |
US6792475B1 (en) * | 2000-06-23 | 2004-09-14 | Microsoft Corporation | System and method for facilitating the design of a website |
US20020133392A1 (en) * | 2001-02-22 | 2002-09-19 | Angel Mark A. | Distributed customer relationship management systems and methods |
US7158971B1 (en) | 2001-03-07 | 2007-01-02 | Thomas Layne Bascom | Method for searching document objects on a network |
US7386792B1 (en) | 2001-03-07 | 2008-06-10 | Thomas Layne Bascom | System and method for collecting, storing, managing and providing categorized information related to a document object |
US7197506B2 (en) * | 2001-04-06 | 2007-03-27 | Renar Company, Llc | Collection management system |
US7134088B2 (en) * | 2001-09-24 | 2006-11-07 | Tactical Survey Group, Inc. | Method and system for providing tactical information during crisis situations |
US7146617B2 (en) * | 2001-09-29 | 2006-12-05 | Siebel Systems, Inc. | Method, apparatus, and system for implementing view caching in a framework to support web-based applications |
US8359335B2 (en) * | 2001-09-29 | 2013-01-22 | Siebel Systems, Inc. | Computing system and method to implicitly commit unsaved data for a world wide web application |
US6907451B1 (en) * | 2001-09-29 | 2005-06-14 | Siebel Systems, Inc. | Method, apparatus, and system for immediate posting of changes in a client server environment |
US7885996B2 (en) | 2001-09-29 | 2011-02-08 | Siebel Systems, Inc. | Method, apparatus, and system for implementing notifications in a framework to support web-based applications |
US20050038781A1 (en) * | 2002-12-12 | 2005-02-17 | Endeca Technologies, Inc. | Method and system for interpreting multiple-term queries |
US20040117366A1 (en) * | 2002-12-12 | 2004-06-17 | Ferrari Adam J. | Method and system for interpreting multiple-term queries |
JP5068996B2 (en) | 2003-04-04 | 2012-11-07 | ヤフー! インコーポレイテッド | Search result generation system incorporating subdomain hint search and subdomain sponsored result provision |
US20050015274A1 (en) * | 2003-07-14 | 2005-01-20 | David Fennell | Fennell hierarchy for marketable product categorization |
EP1716511A1 (en) * | 2004-02-20 | 2006-11-02 | Dow Jones Reuters Business Interactive, LLC | Intelligent search and retrieval system and method |
US7428528B1 (en) * | 2004-03-31 | 2008-09-23 | Endeca Technologies, Inc. | Integrated application for manipulating content in a hierarchical data-driven search and navigation system |
US7747601B2 (en) * | 2006-08-14 | 2010-06-29 | Inquira, Inc. | Method and apparatus for identifying and classifying query intent |
US8612208B2 (en) | 2004-04-07 | 2013-12-17 | Oracle Otc Subsidiary Llc | Ontology for use with a system, method, and computer readable medium for retrieving information and response to a query |
US8082264B2 (en) * | 2004-04-07 | 2011-12-20 | Inquira, Inc. | Automated scheme for identifying user intent in real-time |
US7698333B2 (en) * | 2004-07-22 | 2010-04-13 | Factiva, Inc. | Intelligent query system and method using phrase-code frequency-inverse phrase-code document frequency module |
US9760629B1 (en) | 2004-12-29 | 2017-09-12 | Google Inc. | Systems and methods for implementing a news round table |
US8887099B1 (en) * | 2005-01-27 | 2014-11-11 | Oracle America, Inc. | Managing data hierarchically in a user interface |
US9177248B2 (en) | 2005-03-30 | 2015-11-03 | Primal Fusion Inc. | Knowledge representation systems and methods incorporating customization |
US7849090B2 (en) * | 2005-03-30 | 2010-12-07 | Primal Fusion Inc. | System, method and computer program for faceted classification synthesis |
US10002325B2 (en) | 2005-03-30 | 2018-06-19 | Primal Fusion Inc. | Knowledge representation systems and methods incorporating inference rules |
US8849860B2 (en) | 2005-03-30 | 2014-09-30 | Primal Fusion Inc. | Systems and methods for applying statistical inference techniques to knowledge representations |
US9378203B2 (en) | 2008-05-01 | 2016-06-28 | Primal Fusion Inc. | Methods and apparatus for providing information of interest to one or more users |
US9104779B2 (en) | 2005-03-30 | 2015-08-11 | Primal Fusion Inc. | Systems and methods for analyzing and synthesizing complex knowledge representations |
NO20052215L (en) | 2005-05-06 | 2006-11-07 | Fast Search & Transfer Asa | Procedure for determining contextual summary information of documents |
US7493317B2 (en) * | 2005-10-20 | 2009-02-17 | Omniture, Inc. | Result-based triggering for presentation of online content |
US8019752B2 (en) * | 2005-11-10 | 2011-09-13 | Endeca Technologies, Inc. | System and method for information retrieval from object collections with complex interrelationships |
US8271521B2 (en) * | 2006-03-20 | 2012-09-18 | Blue Nile, Inc. | Computerized search technique, such as an internet-based gemstone search technique |
US7529795B2 (en) | 2006-03-20 | 2009-05-05 | Stragent, Llc | Message board aggregator |
US7921099B2 (en) | 2006-05-10 | 2011-04-05 | Inquira, Inc. | Guided navigation system |
US8781813B2 (en) | 2006-08-14 | 2014-07-15 | Oracle Otc Subsidiary Llc | Intent management tool for identifying concepts associated with a plurality of users' queries |
US8533602B2 (en) | 2006-10-05 | 2013-09-10 | Adobe Systems Israel Ltd. | Actionable reports |
NO325864B1 (en) | 2006-11-07 | 2008-08-04 | Fast Search & Transfer Asa | Procedure for calculating summary information and a search engine to support and implement the procedure |
US7930313B1 (en) | 2006-11-22 | 2011-04-19 | Adobe Systems Incorporated | Controlling presentation of refinement options in online searches |
US8095476B2 (en) * | 2006-11-27 | 2012-01-10 | Inquira, Inc. | Automated support scheme for electronic forms |
US8676802B2 (en) * | 2006-11-30 | 2014-03-18 | Oracle Otc Subsidiary Llc | Method and system for information retrieval with clustering |
US20080189163A1 (en) * | 2007-02-05 | 2008-08-07 | Inquira, Inc. | Information management system |
US8019742B1 (en) | 2007-05-31 | 2011-09-13 | Google Inc. | Identifying related queries |
US7752285B2 (en) | 2007-09-17 | 2010-07-06 | Yahoo! Inc. | Shortcut sets for controlled environments |
US20090125846A1 (en) * | 2007-11-08 | 2009-05-14 | Anderson Mark A | Facility to Show Secondary Relationships in a Topological Graph Using an Associated View |
US7856434B2 (en) | 2007-11-12 | 2010-12-21 | Endeca Technologies, Inc. | System and method for filtering rules for manipulating search results in a hierarchical search and navigation system |
US8549407B2 (en) | 2007-12-05 | 2013-10-01 | Ebay Inc. | Multi-dimensional dynamic visual browsing |
US8306987B2 (en) * | 2008-04-03 | 2012-11-06 | Ofer Ber | System and method for matching search requests and relevant data |
US8676732B2 (en) | 2008-05-01 | 2014-03-18 | Primal Fusion Inc. | Methods and apparatus for providing information of interest to one or more users |
US9361365B2 (en) | 2008-05-01 | 2016-06-07 | Primal Fusion Inc. | Methods and apparatus for searching of content using semantic synthesis |
WO2009132442A1 (en) * | 2008-05-01 | 2009-11-05 | Sweeney Peter | Method, system, and computer program for user-driven dynamic generation of semantic networks and media synthesis |
US9183323B1 (en) | 2008-06-27 | 2015-11-10 | Google Inc. | Suggesting alternative query phrases in query results |
US9418706B2 (en) * | 2008-07-23 | 2016-08-16 | Koninklijke Philips N.V. | Method and apparatus for displaying a plurality of items |
EP2329406A1 (en) | 2008-08-29 | 2011-06-08 | Primal Fusion Inc. | Systems and methods for semantic concept definition and semantic concept relationship synthesis utilizing existing domain definitions |
US20100076979A1 (en) * | 2008-09-05 | 2010-03-25 | Xuejun Wang | Performing search query dimensional analysis on heterogeneous structured data based on relative density |
US8290923B2 (en) * | 2008-09-05 | 2012-10-16 | Yahoo! Inc. | Performing large scale structured search allowing partial schema changes without system downtime |
US20100076952A1 (en) * | 2008-09-05 | 2010-03-25 | Xuejun Wang | Self contained multi-dimensional traffic data reporting and analysis in a large scale search hosting system |
NO330101B1 (en) * | 2008-12-23 | 2011-02-21 | Microsoft Int Holdings B V | Procedure for human-centric information access and presentation |
CN101901235B (en) * | 2009-05-27 | 2013-03-27 | 国际商业机器公司 | Method and system for document processing |
US20110060645A1 (en) * | 2009-09-08 | 2011-03-10 | Peter Sweeney | Synthesizing messaging using context provided by consumers |
US9292855B2 (en) * | 2009-09-08 | 2016-03-22 | Primal Fusion Inc. | Synthesizing messaging using context provided by consumers |
US20110060644A1 (en) * | 2009-09-08 | 2011-03-10 | Peter Sweeney | Synthesizing messaging using context provided by consumers |
US9262520B2 (en) | 2009-11-10 | 2016-02-16 | Primal Fusion Inc. | System, method and computer program for creating and manipulating data structures using an interactive graphical interface |
US8200656B2 (en) * | 2009-11-17 | 2012-06-12 | International Business Machines Corporation | Inference-driven multi-source semantic search |
US8849785B1 (en) | 2010-01-15 | 2014-09-30 | Google Inc. | Search query reformulation using result term occurrence count |
WO2011119410A2 (en) * | 2010-03-24 | 2011-09-29 | Taykey, Ltd. | A system and methods thereof for mining web based user generated content for creation of term taxonomies |
US10600073B2 (en) | 2010-03-24 | 2020-03-24 | Innovid Inc. | System and method for tracking the performance of advertisements and predicting future behavior of the advertisement |
US9946775B2 (en) | 2010-03-24 | 2018-04-17 | Taykey Ltd. | System and methods thereof for detection of user demographic information |
US8782046B2 (en) | 2010-03-24 | 2014-07-15 | Taykey Ltd. | System and methods for predicting future trends of term taxonomies usage |
US9183292B2 (en) | 2010-03-24 | 2015-11-10 | Taykey Ltd. | System and methods thereof for real-time detection of an hidden connection between phrases |
US10474647B2 (en) | 2010-06-22 | 2019-11-12 | Primal Fusion Inc. | Methods and devices for customizing knowledge representation systems |
US9235806B2 (en) | 2010-06-22 | 2016-01-12 | Primal Fusion Inc. | Methods and devices for customizing knowledge representation systems |
US8219453B1 (en) * | 2010-08-13 | 2012-07-10 | Amazon Technologies, Inc. | Generating classifications from normalized item attributes |
EP2627277B1 (en) | 2010-10-12 | 2019-11-20 | Smith & Nephew, Inc. | Medical device |
US9092516B2 (en) | 2011-06-20 | 2015-07-28 | Primal Fusion Inc. | Identifying information of interest based on user preferences |
US11294977B2 (en) | 2011-06-20 | 2022-04-05 | Primal Fusion Inc. | Techniques for presenting content to a user based on the user's preferences |
US20120266106A1 (en) * | 2011-04-13 | 2012-10-18 | Pugazendhi Asaimuthu | Method and system for multi-level browsing |
US8620891B1 (en) * | 2011-06-29 | 2013-12-31 | Amazon Technologies, Inc. | Ranking item attribute refinements |
US8452773B1 (en) | 2011-08-05 | 2013-05-28 | EMC Corporations | Mapping terms between multiple taxonomies |
JP5277296B2 (en) * | 2011-08-31 | 2013-08-28 | 楽天株式会社 | SEARCH SYSTEM, INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING DEVICE CONTROL METHOD, PROGRAM, AND INFORMATION STORAGE MEDIUM |
EP2852333B1 (en) | 2012-05-22 | 2021-12-15 | Smith & Nephew plc | Apparatuses for wound therapy |
US9201934B2 (en) | 2012-10-02 | 2015-12-01 | Oracle International Corporation | Interactive data mining |
US9081785B2 (en) * | 2012-12-07 | 2015-07-14 | International Business Machines Corporation | Inferring valid values for objects in a glossary using reference data |
AU2014236701B2 (en) | 2013-03-14 | 2018-07-19 | Smith & Nephew Inc. | Systems and methods for applying reduced pressure therapy |
US9737649B2 (en) | 2013-03-14 | 2017-08-22 | Smith & Nephew, Inc. | Systems and methods for applying reduced pressure therapy |
US20140337373A1 (en) * | 2013-05-07 | 2014-11-13 | Magnet Systems, Inc. | System for managing graph queries on relationships among entities using graph index |
MX2016005281A (en) * | 2013-10-24 | 2017-04-13 | Carsales Com Ltd | System and method for implementing multi-faceted search queries. |
US12133789B2 (en) | 2014-07-31 | 2024-11-05 | Smith & Nephew, Inc. | Reduced pressure therapy apparatus construction and control |
US10459608B2 (en) | 2014-12-01 | 2019-10-29 | Ebay Inc. | Mobile optimized shopping comparison |
US10162868B1 (en) * | 2015-03-13 | 2018-12-25 | Amazon Technologies, Inc. | Data mining system for assessing pairwise item similarity |
US10089687B2 (en) * | 2015-08-04 | 2018-10-02 | Fidelity National Information Services, Inc. | System and associated methodology of creating order lifecycles via daisy chain linkage |
JP6942698B2 (en) | 2015-10-07 | 2021-09-29 | スミス アンド ネフュー インコーポレイテッド | Systems and methods for performing decompression therapy |
US10387465B2 (en) * | 2015-12-21 | 2019-08-20 | Sap Se | Display of relevant information from multiple data sources |
US11602461B2 (en) | 2016-05-13 | 2023-03-14 | Smith & Nephew, Inc. | Automatic wound coupling detection in negative pressure wound therapy systems |
WO2018064077A2 (en) | 2016-09-29 | 2018-04-05 | Smith & Nephew, Inc. | Construction and protection of components in negative pressure wound therapy systems |
AU2018230992B2 (en) | 2017-03-07 | 2023-07-27 | Smith & Nephew, Inc. | Reduced pressure therapy systems and methods including an antenna |
US11712508B2 (en) | 2017-07-10 | 2023-08-01 | Smith & Nephew, Inc. | Systems and methods for directly interacting with communications module of wound therapy apparatus |
US10977263B2 (en) * | 2017-11-28 | 2021-04-13 | Sap Se | Optimization of multiple query filters |
GB201820668D0 (en) | 2018-12-19 | 2019-01-30 | Smith & Nephew Inc | Systems and methods for delivering prescribed wound therapy |
US10997357B2 (en) | 2019-06-20 | 2021-05-04 | International Business Machines Corporation | User interface navigation management |
CN113342991B (en) * | 2021-06-08 | 2021-12-21 | 南京智云兴禾信息科技有限公司 | Knowledge graph fusion system and method based on artificial intelligence |
Citations (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4996642A (en) * | 1987-10-01 | 1991-02-26 | Neonics, Inc. | System and method for recommending items |
US5671404A (en) * | 1994-03-31 | 1997-09-23 | Martin Lizee | System for querying databases automatically |
US5706497A (en) * | 1994-08-15 | 1998-01-06 | Nec Research Institute, Inc. | Document retrieval using fuzzy-logic inference |
US5787422A (en) * | 1996-01-11 | 1998-07-28 | Xerox Corporation | Method and apparatus for information accesss employing overlapping clusters |
US5924105A (en) * | 1997-01-27 | 1999-07-13 | Michigan State University | Method and product for determining salient features for use in information searching |
US6012066A (en) * | 1997-10-01 | 2000-01-04 | Vallon, Inc. | Computerized work flow system |
US6049797A (en) * | 1998-04-07 | 2000-04-11 | Lucent Technologies, Inc. | Method, apparatus and programmed medium for clustering databases with categorical attributes |
US6092049A (en) * | 1995-06-30 | 2000-07-18 | Microsoft Corporation | Method and apparatus for efficiently recommending items using automated collaborative filtering and feature-guided automated collaborative filtering |
US6167368A (en) * | 1998-08-14 | 2000-12-26 | The Trustees Of Columbia University In The City Of New York | Method and system for indentifying significant topics of a document |
US6212517B1 (en) * | 1997-07-02 | 2001-04-03 | Matsushita Electric Industrial Co., Ltd. | Keyword extracting system and text retrieval system using the same |
US6266199B1 (en) * | 1999-05-18 | 2001-07-24 | International Business Machines Corporation | Method of apparatus to characterize and limit the effect of disk damage in a hard disk drive |
US6360277B1 (en) * | 1998-07-22 | 2002-03-19 | Crydom Corporation | Addressable intelligent relay |
US6363377B1 (en) * | 1998-07-30 | 2002-03-26 | Sarnoff Corporation | Search data processor |
US20020051020A1 (en) * | 2000-05-18 | 2002-05-02 | Adam Ferrari | Scalable hierarchical data-driven navigation system and method for information retrieval |
US6385602B1 (en) * | 1998-11-03 | 2002-05-07 | E-Centives, Inc. | Presentation of search results using dynamic categorization |
US20020065857A1 (en) * | 2000-10-04 | 2002-05-30 | Zbigniew Michalewicz | System and method for analysis and clustering of documents for search engine |
US20020099675A1 (en) * | 2000-04-03 | 2002-07-25 | 3-Dimensional Pharmaceuticals, Inc. | Method, system, and computer program product for representing object relationships in a multidimensional space |
US6429984B1 (en) * | 1999-08-06 | 2002-08-06 | Komag, Inc | Circuit and method for refreshing data recorded at a density sufficiently high to undergo thermal degradation |
US6490111B1 (en) * | 1999-08-25 | 2002-12-03 | Seagate Technology Llc | Method and apparatus for refreshing servo patterns in a disc drive |
US6505197B1 (en) * | 1999-11-15 | 2003-01-07 | International Business Machines Corporation | System and method for automatically and iteratively mining related terms in a document through relations and patterns of occurrences |
US6539376B1 (en) * | 1999-11-15 | 2003-03-25 | International Business Machines Corporation | System and method for the automatic mining of new relationships |
US6553367B2 (en) * | 1997-06-27 | 2003-04-22 | Mercado Software, Ltd. | Method for obtaining a unified information graph from multiple information resources |
US6560597B1 (en) * | 2000-03-21 | 2003-05-06 | International Business Machines Corporation | Concept decomposition using clustering |
US6563521B1 (en) * | 2000-06-14 | 2003-05-13 | Cary D. Perttunen | Method, article and apparatus for organizing information |
US20030101187A1 (en) * | 2001-10-19 | 2003-05-29 | Xerox Corporation | Methods, systems, and articles of manufacture for soft hierarchical clustering of co-occurring objects |
US20030110181A1 (en) * | 1999-01-26 | 2003-06-12 | Hinrich Schuetze | System and method for clustering data objects in a collection |
US20030120630A1 (en) * | 2001-12-20 | 2003-06-26 | Daniel Tunkelang | Method and system for similarity search and clustering |
US6606619B2 (en) * | 1999-11-18 | 2003-08-12 | Amazon.Com, Inc. | Computer processes for selecting nodes to call to attention of a user during browsing of a hierarchical browse structure |
US6618697B1 (en) * | 1999-05-14 | 2003-09-09 | Justsystem Corporation | Method for rule-based correction of spelling and grammar errors |
US6651058B1 (en) * | 1999-11-15 | 2003-11-18 | International Business Machines Corporation | System and method of automatic discovery of terms in a document that are relevant to a given target topic |
US20030217335A1 (en) * | 2002-05-17 | 2003-11-20 | Verity, Inc. | System and method for automatically discovering a hierarchy of concepts from a corpus of documents |
US6697998B1 (en) * | 2000-06-12 | 2004-02-24 | International Business Machines Corporation | Automatic labeling of unlabeled text data |
US6711585B1 (en) * | 1999-06-15 | 2004-03-23 | Kanisa Inc. | System and method for implementing a knowledge management system |
US6735578B2 (en) * | 2001-05-10 | 2004-05-11 | Honeywell International Inc. | Indexing of knowledge base in multilayer self-organizing maps with hessian and perturbation induced fast learning |
US6778995B1 (en) * | 2001-08-31 | 2004-08-17 | Attenex Corporation | System and method for efficiently generating cluster groupings in a multi-dimensional concept space |
US20040205448A1 (en) * | 2001-08-13 | 2004-10-14 | Grefenstette Gregory T. | Meta-document management system with document identifiers |
US20040243557A1 (en) * | 2003-05-30 | 2004-12-02 | International Business Machines Corporation | System, method and computer program product for performing unstructured information management and automatic text analysis, including a search operator functioning as a weighted and (WAND) |
US20040243554A1 (en) * | 2003-05-30 | 2004-12-02 | International Business Machines Corporation | System, method and computer program product for performing unstructured information management and automatic text analysis |
US20050022114A1 (en) * | 2001-08-13 | 2005-01-27 | Xerox Corporation | Meta-document management system with personality identifiers |
US6868411B2 (en) * | 2001-08-13 | 2005-03-15 | Xerox Corporation | Fuzzy text categorizer |
US20050097088A1 (en) * | 2003-11-04 | 2005-05-05 | Dominic Bennett | Techniques for analyzing the performance of websites |
US20050108212A1 (en) * | 2003-11-18 | 2005-05-19 | Oracle International Corporation | Method of and system for searching unstructured data stored in a database |
US20050165780A1 (en) * | 2004-01-20 | 2005-07-28 | Xerox Corporation | Scheme for creating a ranked subject matter expert index |
US6928434B1 (en) * | 2001-01-31 | 2005-08-09 | Rosetta Marketing Strategies Group | Method and system for clustering optimization and applications |
US6947930B2 (en) * | 2003-03-21 | 2005-09-20 | Overture Services, Inc. | Systems and methods for interactive search query refinement |
US20050210042A1 (en) * | 2004-03-22 | 2005-09-22 | Goedken James F | Methods and apparatus to search and analyze prior art |
US6978274B1 (en) * | 2001-08-31 | 2005-12-20 | Attenex Corporation | System and method for dynamically evaluating latent concepts in unstructured documents |
US20060031215A1 (en) * | 2004-08-03 | 2006-02-09 | Luk Wing Pong Robert | Search system |
US7035864B1 (en) * | 2000-05-18 | 2006-04-25 | Endeca Technologies, Inc. | Hierarchical data-driven navigation system and method for information retrieval |
US7062483B2 (en) * | 2000-05-18 | 2006-06-13 | Endeca Technologies, Inc. | Hierarchical data-driven search and navigation system and method for information retrieval |
US7072902B2 (en) * | 2000-05-26 | 2006-07-04 | Tzunami Inc | Method and system for organizing objects according to information categories |
US7092936B1 (en) * | 2001-08-22 | 2006-08-15 | Oracle International Corporation | System and method for search and recommendation based on usage mining |
US7093200B2 (en) * | 2001-05-25 | 2006-08-15 | Zvi Schreiber | Instance browser for ontology |
US20060224581A1 (en) * | 2005-03-31 | 2006-10-05 | Konica Minolta Holdings, Inc. | Information retrieval system |
US7149732B2 (en) * | 2001-10-12 | 2006-12-12 | Microsoft Corporation | Clustering web queries |
US7366721B1 (en) * | 2000-08-29 | 2008-04-29 | Intel Corporation | Method and apparatus for displaying a plurality of related products to a user based upon the selection of a main product by the user |
US20080104032A1 (en) * | 2004-09-29 | 2008-05-01 | Sarkar Pte Ltd. | Method and System for Organizing Items |
US7389241B1 (en) * | 2001-03-07 | 2008-06-17 | Thomas Layne Bascom | Method for users of a network to provide other users with access to link relationships between documents |
Family Cites Families (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5696916A (en) | 1985-03-27 | 1997-12-09 | Hitachi, Ltd. | Information storage and retrieval system and display method therefor |
JPS61220027A (en) | 1985-03-27 | 1986-09-30 | Hitachi Ltd | Information memory system |
US5206949A (en) | 1986-09-19 | 1993-04-27 | Nancy P. Cochran | Database search and record retrieval system which continuously displays category names during scrolling and selection of individually displayed search terms |
US4879648A (en) | 1986-09-19 | 1989-11-07 | Nancy P. Cochran | Search system which continuously displays search terms during scrolling and selections of individually displayed data sets |
US4775935A (en) | 1986-09-22 | 1988-10-04 | Westinghouse Electric Corp. | Video merchandising system with variable and adoptive product sequence presentation order |
US5241671C1 (en) | 1989-10-26 | 2002-07-02 | Encyclopaedia Britannica Educa | Multimedia search system using a plurality of entry path means which indicate interrelatedness of information |
US5418717A (en) * | 1990-08-27 | 1995-05-23 | Su; Keh-Yih | Multiple score language processing system |
US5440742A (en) | 1991-05-10 | 1995-08-08 | Siemens Corporate Research, Inc. | Two-neighborhood method for computing similarity between two groups of objects |
US5485621A (en) * | 1991-05-10 | 1996-01-16 | Siemens Corporate Research, Inc. | Interactive method of using a group similarity measure for providing a decision on which groups to combine |
US5265065A (en) * | 1991-10-08 | 1993-11-23 | West Publishing Company | Method and apparatus for information retrieval from a database by replacing domain specific stemmed phases in a natural language to create a search query |
GB9220404D0 (en) * | 1992-08-20 | 1992-11-11 | Nat Security Agency | Method of identifying,retrieving and sorting documents |
JP3270783B2 (en) | 1992-09-29 | 2002-04-02 | ゼロックス・コーポレーション | Multiple document search methods |
IL107482A (en) | 1992-11-04 | 1998-10-30 | Conquest Software Inc | Method for resolution of natural-language queries against full-text databases |
JPH06176081A (en) | 1992-12-02 | 1994-06-24 | Hitachi Ltd | Hierarchical browsing method and apparatus |
US5634128A (en) | 1993-09-24 | 1997-05-27 | International Business Machines Corporation | Method and system for controlling access to objects in a data processing system |
JPH07105239A (en) | 1993-09-30 | 1995-04-21 | Omron Corp | Data base managing method and data base retrieving method |
US5991751A (en) | 1997-06-02 | 1999-11-23 | Smartpatents, Inc. | System, method, and computer program product for patent-centric and group-oriented data processing |
US6339767B1 (en) * | 1997-06-02 | 2002-01-15 | Aurigin Systems, Inc. | Using hyperbolic trees to visualize data generated by patent-centric and group-oriented data processing |
US5600831A (en) | 1994-02-28 | 1997-02-04 | Lucent Technologies Inc. | Apparatus and methods for retrieving information by modifying query plan based on description of information sources |
US5548506A (en) | 1994-03-17 | 1996-08-20 | Srinivasan; Seshan R. | Automated, electronic network based, project management server system, for managing multiple work-groups |
US5602596A (en) | 1994-04-08 | 1997-02-11 | U S West Technologies, Inc. | Method for navigating a complex multimedia structure at an interactive user station |
US5590269A (en) | 1994-04-22 | 1996-12-31 | Minnesota Mining & Manufacturing Company | Resource assignment system providing mixed-initiative user interface updates |
US5630125A (en) | 1994-05-23 | 1997-05-13 | Zellweger; Paul | Method and apparatus for information management using an open hierarchical data structure |
US5623652A (en) | 1994-07-25 | 1997-04-22 | Apple Computer, Inc. | Method and apparatus for searching for information in a network and for controlling the display of searchable information on display devices in the network |
US5546529A (en) | 1994-07-28 | 1996-08-13 | Xerox Corporation | Method and apparatus for visualization of database search results |
US5600829A (en) | 1994-09-02 | 1997-02-04 | Wisconsin Alumni Research Foundation | Computer database matching a user query to queries indicating the contents of individual database tables |
GB2293667B (en) | 1994-09-30 | 1998-05-27 | Intermation Limited | Database management system |
US5715444A (en) | 1994-10-14 | 1998-02-03 | Danish; Mohamed Sherif | Method and system for executing a guided parametric search |
JP2809341B2 (en) * | 1994-11-18 | 1998-10-08 | 松下電器産業株式会社 | Information summarizing method, information summarizing device, weighting method, and teletext receiving device. |
US6029195A (en) * | 1994-11-29 | 2000-02-22 | Herz; Frederick S. M. | System for customized electronic identification of desirable objects |
GB2297179B (en) | 1995-01-17 | 1997-01-08 | Nippon Telegraph & Telephone | Information navigation system using clusterized information resource topology |
US5546576A (en) | 1995-02-17 | 1996-08-13 | International Business Machines Corporation | Query optimizer system that detects and prevents mutating table violations of database integrity in a query before execution plan generation |
JP3049636B2 (en) * | 1995-03-31 | 2000-06-05 | 株式会社日立製作所 | Data analysis method |
US5749081A (en) * | 1995-04-06 | 1998-05-05 | Firefly Network, Inc. | System and method for recommending items to a user |
US5675784A (en) | 1995-05-31 | 1997-10-07 | International Business Machnes Corporation | Data structure for a relational database system for collecting component and specification level data related to products |
US6112186A (en) | 1995-06-30 | 2000-08-29 | Microsoft Corporation | Distributed system for facilitating exchange of user information and opinion using automated collaborative filtering |
US5724571A (en) * | 1995-07-07 | 1998-03-03 | Sun Microsystems, Inc. | Method and apparatus for generating query responses in a computer-based document retrieval system |
US5740425A (en) | 1995-09-26 | 1998-04-14 | Povilus; David S. | Data structure and method for publishing electronic and printed product catalogs |
US5870746A (en) | 1995-10-12 | 1999-02-09 | Ncr Corporation | System and method for segmenting a database based upon data attributes |
US5983220A (en) | 1995-11-15 | 1999-11-09 | Bizrate.Com | Supporting intuitive decision in complex multi-attributive domains using fuzzy, hierarchical expert models |
JPH09156438A (en) * | 1995-12-07 | 1997-06-17 | Kansei Corp | Occupant detecting device |
US6218237B1 (en) * | 1996-01-03 | 2001-04-17 | Micron Technology, Inc. | Method of forming a capacitor |
DE19610637A1 (en) | 1996-03-11 | 1997-09-18 | Mannesmann Ag | Means for menu-guided navigation in a complex database |
US6014655A (en) | 1996-03-13 | 2000-01-11 | Hitachi, Ltd. | Method of retrieving database |
US5926811A (en) * | 1996-03-15 | 1999-07-20 | Lexis-Nexis | Statistical thesaurus, method of forming same, and use thereof in query expansion in automated text searching |
US5978794A (en) | 1996-04-09 | 1999-11-02 | International Business Machines Corporation | Method and system for performing spatial similarity joins on high-dimensional points |
US5768581A (en) | 1996-05-07 | 1998-06-16 | Cochran; Nancy Pauline | Apparatus and method for selecting records from a computer database by repeatedly displaying search terms from multiple list identifiers before either a list identifier or a search term is selected |
US5920859A (en) * | 1997-02-05 | 1999-07-06 | Idd Enterprises, L.P. | Hypertext document retrieval system and method |
US5864845A (en) | 1996-06-28 | 1999-01-26 | Siemens Corporate Research, Inc. | Facilitating world wide web searches utilizing a multiple search engine query clustering fusion strategy |
US5864846A (en) | 1996-06-28 | 1999-01-26 | Siemens Corporate Research, Inc. | Method for facilitating world wide web searches utilizing a document distribution fusion strategy |
US5893104A (en) | 1996-07-09 | 1999-04-06 | Oracle Corporation | Method and system for processing queries in a database system using index structures that are not native to the database system |
US5864863A (en) | 1996-08-09 | 1999-01-26 | Digital Equipment Corporation | Method for parsing, indexing and searching world-wide-web pages |
US5745890A (en) | 1996-08-09 | 1998-04-28 | Digital Equipment Corporation | Sequential searching of a database index using constraints on word-location pairs |
EP0827063B1 (en) | 1996-08-28 | 2002-11-13 | Koninklijke Philips Electronics N.V. | Method and system for selecting an information item |
JP3148692B2 (en) | 1996-09-04 | 2001-03-19 | 株式会社エイ・ティ・アール音声翻訳通信研究所 | Similarity search device |
US5897639A (en) | 1996-10-07 | 1999-04-27 | Greef; Arthur Reginald | Electronic catalog system and method with enhanced feature-based search |
US5852822A (en) | 1996-12-09 | 1998-12-22 | Oracle Corporation | Index-only tables with nested group keys |
US5907838A (en) * | 1996-12-10 | 1999-05-25 | Seiko Epson Corporation | Information search and collection method and system |
US5950189A (en) | 1997-01-02 | 1999-09-07 | At&T Corp | Retrieval system and method |
US5978799A (en) | 1997-01-30 | 1999-11-02 | Hirsch; G. Scott | Search engine including query database, user profile database, information templates and email facility |
US5875446A (en) | 1997-02-24 | 1999-02-23 | International Business Machines Corporation | System and method for hierarchically grouping and ranking a set of objects in a query context based on one or more relationships |
US6006218A (en) | 1997-02-28 | 1999-12-21 | Microsoft | Methods and apparatus for retrieving and/or processing retrieved information as a function of a user's estimated knowledge |
US6226745B1 (en) | 1997-03-21 | 2001-05-01 | Gio Wiederhold | Information sharing system and method with requester dependent sharing and security rules |
US5835905A (en) | 1997-04-09 | 1998-11-10 | Xerox Corporation | System for predicting documents relevant to focus documents by spreading activation through network representations of a linked collection of documents |
US6272507B1 (en) | 1997-04-09 | 2001-08-07 | Xerox Corporation | System for ranking search results from a collection of documents using spreading activation techniques |
US5895470A (en) | 1997-04-09 | 1999-04-20 | Xerox Corporation | System for categorizing documents in a linked collection of documents |
US5978788A (en) | 1997-04-14 | 1999-11-02 | International Business Machines Corporation | System and method for generating multi-representations of a data cube |
US5878423A (en) | 1997-04-21 | 1999-03-02 | Bellsouth Corporation | Dynamically processing an index to create an ordered set of questions |
US6006222A (en) | 1997-04-25 | 1999-12-21 | Culliss; Gary | Method for organizing information |
US5875440A (en) | 1997-04-29 | 1999-02-23 | Teleran Technologies, L.P. | Hierarchically arranged knowledge domains |
US5983223A (en) | 1997-05-06 | 1999-11-09 | Novell, Inc. | Method and apparatus for determining a longest matching prefix from a dictionary of prefixes |
US5970489A (en) | 1997-05-20 | 1999-10-19 | At&T Corp | Method for using region-sets to focus searches in hierarchical structures |
US6038560A (en) * | 1997-05-21 | 2000-03-14 | Oracle Corporation | Concept knowledge base search and retrieval system |
US6460034B1 (en) | 1997-05-21 | 2002-10-01 | Oracle Corporation | Document knowledge base research and retrieval system |
US5940821A (en) | 1997-05-21 | 1999-08-17 | Oracle Corporation | Information presentation in a knowledge base search and retrieval system |
US5873075A (en) | 1997-06-30 | 1999-02-16 | International Business Machines Corporation | Synchronization of SQL actions in a relational database system |
US6014665A (en) | 1997-08-01 | 2000-01-11 | Culliss; Gary | Method for organizing information |
US5987470A (en) | 1997-08-21 | 1999-11-16 | Sandia Corporation | Method of data mining including determining multidimensional coordinates of each item using a predetermined scalar similarity value for each item pair |
US6167397A (en) | 1997-09-23 | 2000-12-26 | At&T Corporation | Method of clustering electronic documents in response to a search query |
US6269368B1 (en) * | 1997-10-17 | 2001-07-31 | Textwise Llc | Information retrieval using dynamic evidence combination |
US5986655A (en) | 1997-10-28 | 1999-11-16 | Xerox Corporation | Method and system for indexing and controlling the playback of multimedia documents |
US5991756A (en) | 1997-11-03 | 1999-11-23 | Yahoo, Inc. | Information retrieval from hierarchical compound documents |
US6014639A (en) | 1997-11-05 | 2000-01-11 | International Business Machines Corporation | Electronic catalog system for exploring a multitude of hierarchies, using attribute relevance and forwarding-checking |
US6006217A (en) | 1997-11-07 | 1999-12-21 | International Business Machines Corporation | Technique for providing enhanced relevance information for documents retrieved in a multi database search |
US5943670A (en) | 1997-11-21 | 1999-08-24 | International Business Machines Corporation | System and method for categorizing objects in combined categories |
US6014657A (en) | 1997-11-27 | 2000-01-11 | International Business Machines Corporation | Checking and enabling database updates with a dynamic multi-modal, rule base system |
US5987468A (en) | 1997-12-12 | 1999-11-16 | Hitachi America Ltd. | Structure and method for efficient parallel high-dimensional similarity join |
US6094650A (en) | 1997-12-15 | 2000-07-25 | Manning & Napier Information Services | Database analysis using a probabilistic ontology |
US6260008B1 (en) | 1998-01-08 | 2001-07-10 | Sharp Kabushiki Kaisha | Method of and system for disambiguating syntactic word multiples |
US6028605A (en) | 1998-02-03 | 2000-02-22 | Documentum, Inc. | Multi-dimensional analysis of objects by manipulating discovered semantic properties |
US6038574A (en) * | 1998-03-18 | 2000-03-14 | Xerox Corporation | Method and apparatus for clustering a collection of linked documents using co-citation analysis |
US6236987B1 (en) | 1998-04-03 | 2001-05-22 | Damon Horowitz | Dynamic content organization in information retrieval systems |
US6483523B1 (en) | 1998-05-08 | 2002-11-19 | Institute For Information Industry | Personalized interface browser and its browsing method |
US6424983B1 (en) | 1998-05-26 | 2002-07-23 | Global Information Research And Technologies, Llc | Spelling and grammar checking system |
US6006225A (en) | 1998-06-15 | 1999-12-21 | Amazon.Com | Refining search queries by the suggestion of correlated terms from prior searches |
US6144958A (en) | 1998-07-15 | 2000-11-07 | Amazon.Com, Inc. | System and method for correcting spelling errors in search queries |
US6240409B1 (en) * | 1998-07-31 | 2001-05-29 | The Regents Of The University Of California | Method and apparatus for detecting and summarizing document similarity within large document sets |
US6035294A (en) | 1998-08-03 | 2000-03-07 | Big Fat Fish, Inc. | Wide access databases and database systems |
US6243713B1 (en) * | 1998-08-24 | 2001-06-05 | Excalibur Technologies Corp. | Multimedia document retrieval by application of multimedia queries to a unified index of multimedia data for a plurality of multimedia data types |
US6356899B1 (en) * | 1998-08-29 | 2002-03-12 | International Business Machines Corporation | Method for interactively creating an information database including preferred information elements, such as preferred-authority, world wide web pages |
US6397221B1 (en) * | 1998-09-12 | 2002-05-28 | International Business Machines Corp. | Method for creating and maintaining a frame-based hierarchically organized databases with tabularly organized data |
US6317722B1 (en) * | 1998-09-18 | 2001-11-13 | Amazon.Com, Inc. | Use of electronic shopping carts to generate personal recommendations |
US6266649B1 (en) | 1998-09-18 | 2001-07-24 | Amazon.Com, Inc. | Collaborative recommendations using item-to-item similarity mappings |
US6236985B1 (en) * | 1998-10-07 | 2001-05-22 | International Business Machines Corporation | System and method for searching databases with applications such as peer groups, collaborative filtering, and e-commerce |
US6289354B1 (en) | 1998-10-07 | 2001-09-11 | International Business Machines Corporation | System and method for similarity searching in high-dimensional data space |
US6418429B1 (en) * | 1998-10-21 | 2002-07-09 | Apple Computer, Inc. | Portable browsing interface for information retrieval |
US6480843B2 (en) | 1998-11-03 | 2002-11-12 | Nec Usa, Inc. | Supporting web-query expansion efficiently using multi-granularity indexing and query processing |
US6263334B1 (en) * | 1998-11-11 | 2001-07-17 | Microsoft Corporation | Density-based indexing method for efficient execution of high dimensional nearest-neighbor queries on large databases |
IT1303603B1 (en) * | 1998-12-16 | 2000-11-14 | Giovanni Sacco | DYNAMIC TAXONOMY PROCEDURE FOR FINDING INFORMATION ON LARGE HETEROGENEOUS DATABASES. |
US6704739B2 (en) | 1999-01-04 | 2004-03-09 | Adobe Systems Incorporated | Tagging data assets |
US6360227B1 (en) * | 1999-01-29 | 2002-03-19 | International Business Machines Corporation | System and method for generating taxonomies with applications to content-based recommendations |
US6633860B1 (en) | 1999-04-22 | 2003-10-14 | Ramot At Tel Aviv University Ltd. | Method for fast multi-dimensional packet classification |
US6327590B1 (en) | 1999-05-05 | 2001-12-04 | Xerox Corporation | System and method for collaborative ranking of search results employing user and group profiles derived from document collection content analysis |
US6633316B1 (en) | 1999-05-13 | 2003-10-14 | International Business Machines Corporation | Method and apparatus for implementing direct link selection of cached, previously visited links in nested web pages |
US6611825B1 (en) | 1999-06-09 | 2003-08-26 | The Boeing Company | Method and system for text mining using multidimensional subspaces |
US6571282B1 (en) * | 1999-08-31 | 2003-05-27 | Accenture Llp | Block-based communication in a communication services patterns environment |
US6845354B1 (en) * | 1999-09-09 | 2005-01-18 | Institute For Information Industry | Information retrieval system with a neuro-fuzzy structure |
US6453315B1 (en) | 1999-09-22 | 2002-09-17 | Applied Semantics, Inc. | Meaning-based information organization and retrieval |
JP2001160067A (en) | 1999-09-22 | 2001-06-12 | Ddi Corp | Method for retrieving similar document and recommended article communication service system using the method |
US6345273B1 (en) * | 1999-10-27 | 2002-02-05 | Nancy P. Cochran | Search system having user-interface for searching online information |
US6424971B1 (en) * | 1999-10-29 | 2002-07-23 | International Business Machines Corporation | System and method for interactive classification and analysis of data |
US6446068B1 (en) | 1999-11-15 | 2002-09-03 | Chris Alan Kortge | System and method of finding near neighbors in large metric space databases |
US6466918B1 (en) | 1999-11-18 | 2002-10-15 | Amazon. Com, Inc. | System and method for exposing popular nodes within a browse tree |
US20010047353A1 (en) | 2000-03-30 | 2001-11-29 | Iqbal Talib | Methods and systems for enabling efficient search and retrieval of records from a collection of biological data |
US7325201B2 (en) | 2000-05-18 | 2008-01-29 | Endeca Technologies, Inc. | System and method for manipulating content in a hierarchical data-driven search and navigation system |
US6748371B1 (en) | 2000-07-10 | 2004-06-08 | International Business Machines Corporation | Data mining techniques for enhancing product manufacturing management |
US6647391B1 (en) | 2000-07-11 | 2003-11-11 | Ian E. Smith | System, method and article of manufacture for fast mapping from a propertied document management system to a relational database |
US6633868B1 (en) | 2000-07-28 | 2003-10-14 | Shermann Loyall Min | System and method for context-based document retrieval |
US6697801B1 (en) * | 2000-08-31 | 2004-02-24 | Novell, Inc. | Methods of hierarchically parsing and indexing text |
US6519618B1 (en) * | 2000-11-02 | 2003-02-11 | Steven L. Snyder | Real estate database search method |
US20020095405A1 (en) | 2001-01-18 | 2002-07-18 | Hitachi America, Ltd. | View definition with mask for cell-level data access control |
US6834278B2 (en) | 2001-04-05 | 2004-12-21 | Thothe Technologies Private Limited | Transformation-based method for indexing high-dimensional data for nearest neighbour queries |
JP5097328B2 (en) | 2001-05-25 | 2012-12-12 | オラクル・オゥ・ティー・シィ・サブシディアリィ・リミテッド・ライアビリティ・カンパニー | Hierarchical data driven navigation system and method for information retrieval |
US6763351B1 (en) | 2001-06-18 | 2004-07-13 | Siebel Systems, Inc. | Method, apparatus, and system for attaching search results |
US20040117366A1 (en) * | 2002-12-12 | 2004-06-17 | Ferrari Adam J. | Method and system for interpreting multiple-term queries |
US7428528B1 (en) | 2004-03-31 | 2008-09-23 | Endeca Technologies, Inc. | Integrated application for manipulating content in a hierarchical data-driven search and navigation system |
US8019752B2 (en) | 2005-11-10 | 2011-09-13 | Endeca Technologies, Inc. | System and method for information retrieval from object collections with complex interrelationships |
US8676802B2 (en) | 2006-11-30 | 2014-03-18 | Oracle Otc Subsidiary Llc | Method and system for information retrieval with clustering |
US7856434B2 (en) | 2007-11-12 | 2010-12-21 | Endeca Technologies, Inc. | System and method for filtering rules for manipulating search results in a hierarchical search and navigation system |
-
2000
- 2000-05-18 US US09/573,305 patent/US7035864B1/en not_active Expired - Lifetime
-
2005
- 2005-11-08 US US11/268,868 patent/US20060053104A1/en not_active Abandoned
-
2007
- 2007-10-31 US US11/931,345 patent/US7912823B2/en not_active Expired - Fee Related
Patent Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4996642A (en) * | 1987-10-01 | 1991-02-26 | Neonics, Inc. | System and method for recommending items |
US5671404A (en) * | 1994-03-31 | 1997-09-23 | Martin Lizee | System for querying databases automatically |
US5706497A (en) * | 1994-08-15 | 1998-01-06 | Nec Research Institute, Inc. | Document retrieval using fuzzy-logic inference |
US6092049A (en) * | 1995-06-30 | 2000-07-18 | Microsoft Corporation | Method and apparatus for efficiently recommending items using automated collaborative filtering and feature-guided automated collaborative filtering |
US5787422A (en) * | 1996-01-11 | 1998-07-28 | Xerox Corporation | Method and apparatus for information accesss employing overlapping clusters |
US5924105A (en) * | 1997-01-27 | 1999-07-13 | Michigan State University | Method and product for determining salient features for use in information searching |
US6553367B2 (en) * | 1997-06-27 | 2003-04-22 | Mercado Software, Ltd. | Method for obtaining a unified information graph from multiple information resources |
US6212517B1 (en) * | 1997-07-02 | 2001-04-03 | Matsushita Electric Industrial Co., Ltd. | Keyword extracting system and text retrieval system using the same |
US6012066A (en) * | 1997-10-01 | 2000-01-04 | Vallon, Inc. | Computerized work flow system |
US6049797A (en) * | 1998-04-07 | 2000-04-11 | Lucent Technologies, Inc. | Method, apparatus and programmed medium for clustering databases with categorical attributes |
US6360277B1 (en) * | 1998-07-22 | 2002-03-19 | Crydom Corporation | Addressable intelligent relay |
US6363377B1 (en) * | 1998-07-30 | 2002-03-26 | Sarnoff Corporation | Search data processor |
US6167368A (en) * | 1998-08-14 | 2000-12-26 | The Trustees Of Columbia University In The City Of New York | Method and system for indentifying significant topics of a document |
US6385602B1 (en) * | 1998-11-03 | 2002-05-07 | E-Centives, Inc. | Presentation of search results using dynamic categorization |
US20030110181A1 (en) * | 1999-01-26 | 2003-06-12 | Hinrich Schuetze | System and method for clustering data objects in a collection |
US6618697B1 (en) * | 1999-05-14 | 2003-09-09 | Justsystem Corporation | Method for rule-based correction of spelling and grammar errors |
US6266199B1 (en) * | 1999-05-18 | 2001-07-24 | International Business Machines Corporation | Method of apparatus to characterize and limit the effect of disk damage in a hard disk drive |
US6711585B1 (en) * | 1999-06-15 | 2004-03-23 | Kanisa Inc. | System and method for implementing a knowledge management system |
US6429984B1 (en) * | 1999-08-06 | 2002-08-06 | Komag, Inc | Circuit and method for refreshing data recorded at a density sufficiently high to undergo thermal degradation |
US6628466B2 (en) * | 1999-08-06 | 2003-09-30 | Komag, Inc | Circuit and method for refreshing data recorded at a density sufficiently high to undergo thermal degradation |
US6490111B1 (en) * | 1999-08-25 | 2002-12-03 | Seagate Technology Llc | Method and apparatus for refreshing servo patterns in a disc drive |
US6539376B1 (en) * | 1999-11-15 | 2003-03-25 | International Business Machines Corporation | System and method for the automatic mining of new relationships |
US6505197B1 (en) * | 1999-11-15 | 2003-01-07 | International Business Machines Corporation | System and method for automatically and iteratively mining related terms in a document through relations and patterns of occurrences |
US6651058B1 (en) * | 1999-11-15 | 2003-11-18 | International Business Machines Corporation | System and method of automatic discovery of terms in a document that are relevant to a given target topic |
US6606619B2 (en) * | 1999-11-18 | 2003-08-12 | Amazon.Com, Inc. | Computer processes for selecting nodes to call to attention of a user during browsing of a hierarchical browse structure |
US6560597B1 (en) * | 2000-03-21 | 2003-05-06 | International Business Machines Corporation | Concept decomposition using clustering |
US20020099675A1 (en) * | 2000-04-03 | 2002-07-25 | 3-Dimensional Pharmaceuticals, Inc. | Method, system, and computer program product for representing object relationships in a multidimensional space |
US20020051020A1 (en) * | 2000-05-18 | 2002-05-02 | Adam Ferrari | Scalable hierarchical data-driven navigation system and method for information retrieval |
US7035864B1 (en) * | 2000-05-18 | 2006-04-25 | Endeca Technologies, Inc. | Hierarchical data-driven navigation system and method for information retrieval |
US7062483B2 (en) * | 2000-05-18 | 2006-06-13 | Endeca Technologies, Inc. | Hierarchical data-driven search and navigation system and method for information retrieval |
US7072902B2 (en) * | 2000-05-26 | 2006-07-04 | Tzunami Inc | Method and system for organizing objects according to information categories |
US6697998B1 (en) * | 2000-06-12 | 2004-02-24 | International Business Machines Corporation | Automatic labeling of unlabeled text data |
US6563521B1 (en) * | 2000-06-14 | 2003-05-13 | Cary D. Perttunen | Method, article and apparatus for organizing information |
US7366721B1 (en) * | 2000-08-29 | 2008-04-29 | Intel Corporation | Method and apparatus for displaying a plurality of related products to a user based upon the selection of a main product by the user |
US20020065857A1 (en) * | 2000-10-04 | 2002-05-30 | Zbigniew Michalewicz | System and method for analysis and clustering of documents for search engine |
US6928434B1 (en) * | 2001-01-31 | 2005-08-09 | Rosetta Marketing Strategies Group | Method and system for clustering optimization and applications |
US7389241B1 (en) * | 2001-03-07 | 2008-06-17 | Thomas Layne Bascom | Method for users of a network to provide other users with access to link relationships between documents |
US6735578B2 (en) * | 2001-05-10 | 2004-05-11 | Honeywell International Inc. | Indexing of knowledge base in multilayer self-organizing maps with hessian and perturbation induced fast learning |
US7099885B2 (en) * | 2001-05-25 | 2006-08-29 | Unicorn Solutions | Method and system for collaborative ontology modeling |
US7093200B2 (en) * | 2001-05-25 | 2006-08-15 | Zvi Schreiber | Instance browser for ontology |
US20050022114A1 (en) * | 2001-08-13 | 2005-01-27 | Xerox Corporation | Meta-document management system with personality identifiers |
US6868411B2 (en) * | 2001-08-13 | 2005-03-15 | Xerox Corporation | Fuzzy text categorizer |
US20040205448A1 (en) * | 2001-08-13 | 2004-10-14 | Grefenstette Gregory T. | Meta-document management system with document identifiers |
US7092936B1 (en) * | 2001-08-22 | 2006-08-15 | Oracle International Corporation | System and method for search and recommendation based on usage mining |
US6778995B1 (en) * | 2001-08-31 | 2004-08-17 | Attenex Corporation | System and method for efficiently generating cluster groupings in a multi-dimensional concept space |
US6978274B1 (en) * | 2001-08-31 | 2005-12-20 | Attenex Corporation | System and method for dynamically evaluating latent concepts in unstructured documents |
US7149732B2 (en) * | 2001-10-12 | 2006-12-12 | Microsoft Corporation | Clustering web queries |
US20030101187A1 (en) * | 2001-10-19 | 2003-05-29 | Xerox Corporation | Methods, systems, and articles of manufacture for soft hierarchical clustering of co-occurring objects |
US20030120630A1 (en) * | 2001-12-20 | 2003-06-26 | Daniel Tunkelang | Method and system for similarity search and clustering |
US7085771B2 (en) * | 2002-05-17 | 2006-08-01 | Verity, Inc | System and method for automatically discovering a hierarchy of concepts from a corpus of documents |
US20030217335A1 (en) * | 2002-05-17 | 2003-11-20 | Verity, Inc. | System and method for automatically discovering a hierarchy of concepts from a corpus of documents |
US6947930B2 (en) * | 2003-03-21 | 2005-09-20 | Overture Services, Inc. | Systems and methods for interactive search query refinement |
US20040243554A1 (en) * | 2003-05-30 | 2004-12-02 | International Business Machines Corporation | System, method and computer program product for performing unstructured information management and automatic text analysis |
US20040243557A1 (en) * | 2003-05-30 | 2004-12-02 | International Business Machines Corporation | System, method and computer program product for performing unstructured information management and automatic text analysis, including a search operator functioning as a weighted and (WAND) |
US20050097088A1 (en) * | 2003-11-04 | 2005-05-05 | Dominic Bennett | Techniques for analyzing the performance of websites |
US20050108212A1 (en) * | 2003-11-18 | 2005-05-19 | Oracle International Corporation | Method of and system for searching unstructured data stored in a database |
US20050165780A1 (en) * | 2004-01-20 | 2005-07-28 | Xerox Corporation | Scheme for creating a ranked subject matter expert index |
US20050210042A1 (en) * | 2004-03-22 | 2005-09-22 | Goedken James F | Methods and apparatus to search and analyze prior art |
US20060031215A1 (en) * | 2004-08-03 | 2006-02-09 | Luk Wing Pong Robert | Search system |
US20080104032A1 (en) * | 2004-09-29 | 2008-05-01 | Sarkar Pte Ltd. | Method and System for Organizing Items |
US20060224581A1 (en) * | 2005-03-31 | 2006-10-05 | Konica Minolta Holdings, Inc. | Information retrieval system |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090077020A9 (en) * | 1998-12-04 | 2009-03-19 | Toong Hoo-Min | Systems and methods of searching databases |
US20040133562A1 (en) * | 1998-12-04 | 2004-07-08 | Toong Hoo-Min | Systems and methods of searching databases |
US8316001B1 (en) | 2002-07-22 | 2012-11-20 | Ipvision, Inc. | Apparatus and method for performing analyses on data derived from a web-based search engine |
US20080082501A1 (en) * | 2006-10-02 | 2008-04-03 | Science Applications International Corporation | Methods and systems for formulating and executing concept-structured queries of unorganized data |
US9009133B2 (en) * | 2006-10-02 | 2015-04-14 | Leidos, Inc. | Methods and systems for formulating and executing concept-structured queries of unorganized data |
US20080086451A1 (en) * | 2006-10-05 | 2008-04-10 | Torres Robert J | System and Method to Provide Custom Constraints for Faceted Exploration |
US8214345B2 (en) * | 2006-10-05 | 2012-07-03 | International Business Machines Corporation | Custom constraints for faceted exploration |
US20080140617A1 (en) * | 2006-12-06 | 2008-06-12 | Torres Robert J | User interface for faceted exploration |
US7788273B2 (en) * | 2006-12-06 | 2010-08-31 | International Business Machines Corporation | User interface for faceted exploration |
US20080313106A1 (en) * | 2007-03-07 | 2008-12-18 | International Business Machines Corporation | System and Method for Interactive Browsing |
US7899812B2 (en) * | 2007-03-07 | 2011-03-01 | International Business Machines Corporation | System and method for interactive browsing |
US20090228831A1 (en) * | 2008-03-04 | 2009-09-10 | Andreas Wendker | Customization of user interface elements |
US20110029952A1 (en) * | 2009-07-31 | 2011-02-03 | Xerox Corporation | Method and system for constructing a document redundancy graph |
US8914720B2 (en) * | 2009-07-31 | 2014-12-16 | Xerox Corporation | Method and system for constructing a document redundancy graph |
US20110087387A1 (en) * | 2009-10-12 | 2011-04-14 | The Boeing Company | Platform Health Monitoring System |
US8914149B2 (en) | 2009-10-12 | 2014-12-16 | The Boeing Company | Platform health monitoring system |
US20120185512A1 (en) * | 2011-01-18 | 2012-07-19 | Mccully George Elliott | Promoting philanthropy |
US9348942B2 (en) * | 2011-01-18 | 2016-05-24 | Catalogue For Philanthropy | Promoting philanthropy |
US20130246426A1 (en) * | 2011-01-26 | 2013-09-19 | DiscoverReady LLC | Document Classification and Characterization |
US9703863B2 (en) * | 2011-01-26 | 2017-07-11 | DiscoverReady LLC | Document classification and characterization |
US8572009B2 (en) | 2011-08-16 | 2013-10-29 | The Boeing Company | Evaluating the health status of a system using groups of vibration data including images of the vibrations of the system |
US9667514B1 (en) | 2012-01-30 | 2017-05-30 | DiscoverReady LLC | Electronic discovery system with statistical sampling |
US10467252B1 (en) | 2012-01-30 | 2019-11-05 | DiscoverReady LLC | Document classification and characterization using human judgment, tiered similarity analysis and language/concept analysis |
US9418389B2 (en) | 2012-05-07 | 2016-08-16 | Nasdaq, Inc. | Social intelligence architecture using social media message queues |
US10304036B2 (en) | 2012-05-07 | 2019-05-28 | Nasdaq, Inc. | Social media profiling for one or more authors using one or more social media platforms |
US11086885B2 (en) | 2012-05-07 | 2021-08-10 | Nasdaq, Inc. | Social intelligence architecture using social media message queues |
US11100466B2 (en) | 2012-05-07 | 2021-08-24 | Nasdaq, Inc. | Social media profiling for one or more authors using one or more social media platforms |
US11803557B2 (en) | 2012-05-07 | 2023-10-31 | Nasdaq, Inc. | Social intelligence architecture using social media message queues |
US11847612B2 (en) | 2012-05-07 | 2023-12-19 | Nasdaq, Inc. | Social media profiling for one or more authors using one or more social media platforms |
US9552412B1 (en) * | 2016-04-07 | 2017-01-24 | Quid, Inc. | Boolean-query composer |
WO2017176626A1 (en) * | 2016-04-07 | 2017-10-12 | Quid, Inc. | Boolean-query composer |
Also Published As
Publication number | Publication date |
---|---|
US20080134100A1 (en) | 2008-06-05 |
US7912823B2 (en) | 2011-03-22 |
US7035864B1 (en) | 2006-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7912823B2 (en) | Hierarchical data-driven navigation system and method for information retrieval | |
US7617184B2 (en) | Scalable hierarchical data-driven navigation system and method for information retrieval | |
CA2447907C (en) | Hierarchical data-driven navigation system and method for information retrieval | |
US7567957B2 (en) | Hierarchical data-driven search and navigation system and method for information retrieval | |
US7325201B2 (en) | System and method for manipulating content in a hierarchical data-driven search and navigation system | |
AU2001268095A1 (en) | Hierarchical data-driven navigation system and method for information retrieval | |
US7428528B1 (en) | Integrated application for manipulating content in a hierarchical data-driven search and navigation system | |
US6631496B1 (en) | System for personalizing, organizing and managing web information | |
Terveen et al. | Constructing, organizing, and visualizing collections of topically related web resources | |
Maarek et al. | Automatically organizing bookmarks per contents | |
Liu et al. | Identifying meaningful return information for XML keyword search | |
US6434556B1 (en) | Visualization of Internet search information | |
US6256623B1 (en) | Network search access construct for accessing web-based search services | |
US7428705B2 (en) | Web map tool | |
EP0860786A2 (en) | System and method for hierarchically grouping and ranking a set of objects in a query context | |
Zheng et al. | DVQ: towards visual query processing of XML database systems | |
Klement et al. | Metadata for Multidimensional Categorization and Navigation Support on Multimedia Documents | |
Afrati et al. | Answering aggregation queries on hierarchical web sites using adaptive sampling | |
Dontcheva et al. | From Web Summaries to search templates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |