US20060052514A1 - Pigment dispersing resin - Google Patents
Pigment dispersing resin Download PDFInfo
- Publication number
- US20060052514A1 US20060052514A1 US11/246,097 US24609705A US2006052514A1 US 20060052514 A1 US20060052514 A1 US 20060052514A1 US 24609705 A US24609705 A US 24609705A US 2006052514 A1 US2006052514 A1 US 2006052514A1
- Authority
- US
- United States
- Prior art keywords
- pigment
- unsaturated monomer
- meth
- group
- polymerizable unsaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000049 pigment Substances 0.000 title claims abstract description 237
- 229920005989 resin Polymers 0.000 title claims abstract description 119
- 239000011347 resin Substances 0.000 title claims abstract description 119
- 239000000178 monomer Substances 0.000 claims abstract description 100
- 125000000524 functional group Chemical group 0.000 claims abstract description 16
- 229920001577 copolymer Polymers 0.000 claims abstract description 12
- 150000003242 quaternary ammonium salts Chemical group 0.000 claims abstract description 9
- 125000000542 sulfonic acid group Chemical group 0.000 claims abstract description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 60
- -1 N,N-dimethylaminoethyl Chemical group 0.000 claims description 31
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 21
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 11
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 7
- RRHXZLALVWBDKH-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)C RRHXZLALVWBDKH-UHFFFAOYSA-M 0.000 claims description 7
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 6
- 125000001302 tertiary amino group Chemical group 0.000 claims description 6
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- SJIXRGNQPBQWMK-UHFFFAOYSA-N DEAEMA Natural products CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- YOUGRGFIHBUKRS-UHFFFAOYSA-N benzyl(trimethyl)azanium Chemical compound C[N+](C)(C)CC1=CC=CC=C1 YOUGRGFIHBUKRS-UHFFFAOYSA-N 0.000 claims description 2
- XTBJQOCOEVHHFJ-UHFFFAOYSA-M dimethyl phosphate;trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium Chemical compound COP([O-])(=O)OC.CC(=C)C(=O)OCC[N+](C)(C)C XTBJQOCOEVHHFJ-UHFFFAOYSA-M 0.000 claims description 2
- 125000005702 oxyalkylene group Chemical group 0.000 claims description 2
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 claims description 2
- FGKCGMMQJOWMFW-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;bromide Chemical compound [Br-].CC(=C)C(=O)OCC[N+](C)(C)C FGKCGMMQJOWMFW-UHFFFAOYSA-M 0.000 claims description 2
- OEIXGLMQZVLOQX-UHFFFAOYSA-N trimethyl-[3-(prop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCNC(=O)C=C OEIXGLMQZVLOQX-UHFFFAOYSA-N 0.000 claims description 2
- AISMNBXOJRHCIA-UHFFFAOYSA-N trimethylazanium;bromide Chemical compound Br.CN(C)C AISMNBXOJRHCIA-UHFFFAOYSA-N 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 96
- 239000003973 paint Substances 0.000 abstract description 68
- 239000000203 mixture Substances 0.000 description 62
- 239000011248 coating agent Substances 0.000 description 55
- 238000000576 coating method Methods 0.000 description 55
- 239000006185 dispersion Substances 0.000 description 52
- 239000000243 solution Substances 0.000 description 26
- 239000008367 deionised water Substances 0.000 description 20
- 229910021641 deionized water Inorganic materials 0.000 description 20
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 241000557626 Corvus corax Species 0.000 description 17
- 229920001228 polyisocyanate Polymers 0.000 description 17
- 239000005056 polyisocyanate Substances 0.000 description 17
- 239000007787 solid Substances 0.000 description 17
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 16
- 239000012736 aqueous medium Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 16
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 16
- 239000003960 organic solvent Substances 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 229920000058 polyacrylate Polymers 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 229920001225 polyester resin Polymers 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 239000004645 polyester resin Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 229920000178 Acrylic resin Polymers 0.000 description 10
- 239000004925 Acrylic resin Substances 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 229920000877 Melamine resin Polymers 0.000 description 10
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 10
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 10
- 239000002270 dispersing agent Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000007334 copolymerization reaction Methods 0.000 description 9
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 9
- 229920002799 BoPET Polymers 0.000 description 8
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 8
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 7
- 238000004040 coloring Methods 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 229940035429 isobutyl alcohol Drugs 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 6
- 241000721047 Danaus plexippus Species 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 230000032683 aging Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 150000005846 sugar alcohols Polymers 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 229920003180 amino resin Polymers 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 238000011056 performance test Methods 0.000 description 5
- 239000007870 radical polymerization initiator Substances 0.000 description 5
- 238000009736 wetting Methods 0.000 description 5
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 4
- 235000011037 adipic acid Nutrition 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N 1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylic acid Chemical compound C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 3
- RDFLLVCQYHQOBU-GPGGJFNDSA-O Cyanin Natural products O([C@H]1[C@H](O)[C@H](O)[C@H](O)[C@H](CO)O1)c1c(-c2cc(O)c(O)cc2)[o+]c2c(c(O[C@H]3[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O3)cc(O)c2)c1 RDFLLVCQYHQOBU-GPGGJFNDSA-O 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- RDFLLVCQYHQOBU-ZOTFFYTFSA-O cyanin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC(C(=[O+]C1=CC(O)=C2)C=3C=C(O)C(O)=CC=3)=CC1=C2O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 RDFLLVCQYHQOBU-ZOTFFYTFSA-O 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 229920000578 graft copolymer Polymers 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 102220206201 rs1057524801 Human genes 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 3
- 230000002087 whitening effect Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 2
- 0 C.C.[1*]C(=C)C(=O)OC[2*] Chemical compound C.C.[1*]C(=C)C(=O)OC[2*] 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000001055 blue pigment Substances 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 2
- 229960002887 deanol Drugs 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000012972 dimethylethanolamine Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229940099800 pigment red 48 Drugs 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000001054 red pigment Substances 0.000 description 2
- 239000011369 resultant mixture Substances 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 235000010215 titanium dioxide Nutrition 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- PVCVRLMCLUQGBT-UHFFFAOYSA-N (1-tert-butylcyclohexyl) (1-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CCCCC1(C(C)(C)C)OC(=O)OOC(=O)OC1(C(C)(C)C)CCCCC1 PVCVRLMCLUQGBT-UHFFFAOYSA-N 0.000 description 1
- WRXCBRHBHGNNQA-UHFFFAOYSA-N (2,4-dichlorobenzoyl) 2,4-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC(Cl)=CC=C1C(=O)OOC(=O)C1=CC=C(Cl)C=C1Cl WRXCBRHBHGNNQA-UHFFFAOYSA-N 0.000 description 1
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical class O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VZXPHDGHQXLXJC-UHFFFAOYSA-N 1,6-diisocyanato-5,6-dimethylheptane Chemical compound O=C=NC(C)(C)C(C)CCCCN=C=O VZXPHDGHQXLXJC-UHFFFAOYSA-N 0.000 description 1
- UICXTANXZJJIBC-UHFFFAOYSA-N 1-(1-hydroperoxycyclohexyl)peroxycyclohexan-1-ol Chemical compound C1CCCCC1(O)OOC1(OO)CCCCC1 UICXTANXZJJIBC-UHFFFAOYSA-N 0.000 description 1
- FSCWZPJJVFRLAV-UHFFFAOYSA-N 1-[1-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]propan-2-yloxy]-3-methoxypropan-2-ol Chemical compound COCC(O)COC(C)COC(C)COC(C)CO FSCWZPJJVFRLAV-UHFFFAOYSA-N 0.000 description 1
- RPOTYPSPQZVIJY-UHFFFAOYSA-N 1-aminopentan-3-ol Chemical compound CCC(O)CCN RPOTYPSPQZVIJY-UHFFFAOYSA-N 0.000 description 1
- ZRYJEQLKDDQWSL-UHFFFAOYSA-N 1-butoxy-2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCOC(O)COCCOCCOCCO ZRYJEQLKDDQWSL-UHFFFAOYSA-N 0.000 description 1
- VYKUTMODSNVEIE-UHFFFAOYSA-N 1-butoxy-3-[1-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]propan-2-yloxy]propan-2-ol Chemical compound CCCCOCC(O)COC(C)COC(C)COC(C)CO VYKUTMODSNVEIE-UHFFFAOYSA-N 0.000 description 1
- VTETWVVUUXJHMT-UHFFFAOYSA-N 1-ethoxy-2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCOC(O)COCCOCCOCCO VTETWVVUUXJHMT-UHFFFAOYSA-N 0.000 description 1
- NDSXPGLHNXTSNF-UHFFFAOYSA-N 1-ethoxy-3-[1-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]propan-2-yloxy]propan-2-ol Chemical compound CCOCC(O)COC(C)COC(C)COC(C)CO NDSXPGLHNXTSNF-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- STFXXRRQKFUYEU-UHFFFAOYSA-N 16-methylheptadecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)C=C STFXXRRQKFUYEU-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- JGBAASVQPMTVHO-UHFFFAOYSA-N 2,5-dihydroperoxy-2,5-dimethylhexane Chemical compound OOC(C)(C)CCC(C)(C)OO JGBAASVQPMTVHO-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- SHJIJMBTDZCOFE-UHFFFAOYSA-N 2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]-1-methoxyethanol Chemical compound COC(O)COCCOCCOCCO SHJIJMBTDZCOFE-UHFFFAOYSA-N 0.000 description 1
- SKIIKRJAQOSWFT-UHFFFAOYSA-N 2-[3-[1-(2,2-difluoroethyl)piperidin-4-yl]oxy-4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound FC(CN1CCC(CC1)OC1=NN(C=C1C=1C=NC(=NC=1)NC1CC2=CC=CC=C2C1)CC(=O)N1CC2=C(CC1)NN=N2)F SKIIKRJAQOSWFT-UHFFFAOYSA-N 0.000 description 1
- SBMYBOVJMOVVQW-UHFFFAOYSA-N 2-[3-[[4-(2,2-difluoroethyl)piperazin-1-yl]methyl]-4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound FC(CN1CCN(CC1)CC1=NN(C=C1C=1C=NC(=NC=1)NC1CC2=CC=CC=C2C1)CC(=O)N1CC2=C(CC1)NN=N2)F SBMYBOVJMOVVQW-UHFFFAOYSA-N 0.000 description 1
- PQJZHMCWDKOPQG-UHFFFAOYSA-N 2-anilino-2-oxoacetic acid Chemical class OC(=O)C(=O)NC1=CC=CC=C1 PQJZHMCWDKOPQG-UHFFFAOYSA-N 0.000 description 1
- KRDXTHSSNCTAGY-UHFFFAOYSA-N 2-cyclohexylpyrrolidine Chemical compound C1CCNC1C1CCCCC1 KRDXTHSSNCTAGY-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- PYSGFFTXMUWEOT-UHFFFAOYSA-N 3-(dimethylamino)propan-1-ol Chemical compound CN(C)CCCO PYSGFFTXMUWEOT-UHFFFAOYSA-N 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- OKAUOXITMZTUOJ-UHFFFAOYSA-N 7-aminonaphthalene-2-sulfonic acid Chemical compound C1=CC(S(O)(=O)=O)=CC2=CC(N)=CC=C21 OKAUOXITMZTUOJ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920003275 CYMEL® 325 Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QVHMSMOUDQXMRS-UHFFFAOYSA-N PPG n4 Chemical compound CC(O)COC(C)COC(C)COC(C)CO QVHMSMOUDQXMRS-UHFFFAOYSA-N 0.000 description 1
- 244000137852 Petrea volubilis Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 241000125250 Scandix Species 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical compound NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000007869 azo polymerization initiator Substances 0.000 description 1
- LFZDEAVRTJKYAF-UHFFFAOYSA-L barium(2+) 2-[(2-hydroxynaphthalen-1-yl)diazenyl]naphthalene-1-sulfonate Chemical compound [Ba+2].C1=CC=CC2=C(S([O-])(=O)=O)C(N=NC3=C4C=CC=CC4=CC=C3O)=CC=C21.C1=CC=CC2=C(S([O-])(=O)=O)C(N=NC3=C4C=CC=CC4=CC=C3O)=CC=C21 LFZDEAVRTJKYAF-UHFFFAOYSA-L 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- MYONAGGJKCJOBT-UHFFFAOYSA-N benzimidazol-2-one Chemical compound C1=CC=CC2=NC(=O)N=C21 MYONAGGJKCJOBT-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- BXIQXYOPGBXIEM-UHFFFAOYSA-N butyl 4,4-bis(tert-butylperoxy)pentanoate Chemical compound CCCCOC(=O)CCC(C)(OOC(C)(C)C)OOC(C)(C)C BXIQXYOPGBXIEM-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- PZTQVMXMKVTIRC-UHFFFAOYSA-L chembl2028348 Chemical compound [Ca+2].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 PZTQVMXMKVTIRC-UHFFFAOYSA-L 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- VBWIZSYFQSOUFQ-UHFFFAOYSA-N cyclohexanecarbonitrile Chemical compound N#CC1CCCCC1 VBWIZSYFQSOUFQ-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- XJOBOFWTZOKMOH-UHFFFAOYSA-N decanoyl decaneperoxoate Chemical compound CCCCCCCCCC(=O)OOC(=O)CCCCCCCCC XJOBOFWTZOKMOH-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- POSWICCRDBKBMH-UHFFFAOYSA-N dihydroisophorone Natural products CC1CC(=O)CC(C)(C)C1 POSWICCRDBKBMH-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- VPWFPZBFBFHIIL-UHFFFAOYSA-L disodium 4-[(4-methyl-2-sulfophenyl)diazenyl]-3-oxidonaphthalene-2-carboxylate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 VPWFPZBFBFHIIL-UHFFFAOYSA-L 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- RNNPRMKAYSAUHJ-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate;2-hydroxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCO.CCCCCCCCCCCCOC(=O)C(C)=C RNNPRMKAYSAUHJ-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- CJMZLCRLBNZJQR-UHFFFAOYSA-N ethyl 2-amino-4-(4-fluorophenyl)thiophene-3-carboxylate Chemical compound CCOC(=O)C1=C(N)SC=C1C1=CC=C(F)C=C1 CJMZLCRLBNZJQR-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- QCIYAEYRVFUFAP-UHFFFAOYSA-N hexane-2,3-diol Chemical compound CCCC(O)C(C)O QCIYAEYRVFUFAP-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- REOJLIXKJWXUGB-UHFFFAOYSA-N mofebutazone Chemical group O=C1C(CCCC)C(=O)NN1C1=CC=CC=C1 REOJLIXKJWXUGB-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000011049 pearl Substances 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 150000004978 peroxycarbonates Chemical class 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229940110337 pigment blue 1 Drugs 0.000 description 1
- 229940104573 pigment red 5 Drugs 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000004964 sulfoalkyl group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/32—Inkjet printing inks characterised by colouring agents
- C09D11/324—Inkjet printing inks characterised by colouring agents containing carbon black
- C09D11/326—Inkjet printing inks characterised by colouring agents containing carbon black characterised by the pigment dispersant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/061—Polyesters; Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/062—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/14—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0071—Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
- C09B67/0084—Dispersions of dyes
- C09B67/0085—Non common dispersing agents
- C09B67/0089—Non common dispersing agents non ionic dispersing agent, e.g. EO or PO addition products
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
- C09D17/001—Pigment pastes, e.g. for mixing in paints in aqueous medium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/02—Emulsion paints including aerosols
- C09D5/024—Emulsion paints including aerosols characterised by the additives
- C09D5/027—Dispersing agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/45—Anti-settling agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5245—Macromolecular coatings characterised by the use of polymers containing cationic or anionic groups, e.g. mordants
Definitions
- This invention relates to a pigment dispersing resin which is suitably used for water-based paint or water-based ink, and to aqueous pigment dispersions containing said pigment dispersing resin which are especially suitable as water-based top-coating paint for automobile and as ink-jet ink.
- top-coating paint for automotive finish there have heretofore been used those of solvent-based type in which a base resin (base polymer) component such as acrylic resin, polyester resin or alkyd resin having such functional groups as hydroxyl group and carboxyl group is used together with a curing agent such as amino resin, optionally-blocked polyisocyanate compound and epoxy compound.
- base resin base polymer
- a curing agent such as amino resin, optionally-blocked polyisocyanate compound and epoxy compound.
- VOC volatile organic matter content
- pigment dispersing resin blended in water-based paint is incompatible with the binder component in water-based paint; (2) pigment dispersing resin or dispersant fails to uniformly disperse the pigment, and invites flocculation or agglomeration of pigment; and (3) pigment dispersing resin or dispersant in the water-based paint composition fails to cure under baking, and invites the degradation of coating film performance.
- Pigments which are used for colored base coating paint generally have hydrophobic surfaces, and are difficult to be wetted with water, while pigment dispersing resins which have conventionally been used for solvent-based colored paint have low solubility in water, and are inferior in dispersing stability in aqueous media.
- pigment is now being substituting for dye as a color material for ink, in particular ink-jet ink, from the viewpoint of water resistance and weatherability.
- water-based pigment ink is still unsatisfactory in the print density of printed image.
- pigment has a problem that, when its dispersion stability is low, clogging occurs in head when it is used for ink-jet ink.
- high-level pigment wettability and pigment dispersion stability are required of said water-based pigment ink.
- pigment dispersing resin Low viscosity and low molecular weight of pigment dispersing resin are considered advantageous for wetting property of pigment; and easy formation of steric repelling layer on the pigment surfaces or good solubility of the pigment dispersing resin in the continuous phase (aqueous medium) are considered advantageous for the dispersing stability.
- Both the pigment-wetting property and the dispersing stability of the pigment dispersing resin are considered to participate in wetting of the pigment surface with the pigment dispersing resin (a resin having a group capable of forming weak flocculation in aqueous system such as alkyl-group is effective) and in adsorption onto the pigment, which are attributable to the interaction between hydrophobic part on the pigment surface and that of pigment dispersing resin.
- Said graft copolymer excels in pigment dispersing stability because its trunk portion is hydrophobic and the branch portion is hydrophilic whereas pigment dispersions formed with the use of said copolymer show high viscosity, and the graft copolymer is far from being satisfactory in view of the increasing demand for pigment dispersions having high pigment concentration to save cost and to reduce VOC.
- Japanese Patent Application Laid-Open No. 255728/1997, Japanese Patent Application Laid-Open No. 267034/1997 and Japanese Patent Publication No. 19201/1996 disclose an idea of using, as pigment dispersing agent, a nonionic surfactant having polyoxyalkylene chain. Although capable of existing stably in water-based pigment dispersions, said surfactant is unsatisfactory in adsorption to pigment, and is in particular poor in let-down stability, and, moreover, inferior in the appearance of resultant coating film.
- top-coating paint for automotive finish are now required to have not only film performance such as high durability, acid resistance, washability (scratch resistance) and chipping resistance, but also still better appearance of coating film in sharpness, transparency, color development, and the like, than before.
- An object of the present invention is to provide pigment dispersing resins which excel in wetting property and dispersing stability even at high pigment concentration, and which can provide aqueous pigment dispersions having low viscosity, excellent in color developing property and giving a coating film with good appearance.
- a further object of the present invention is to provide a water-based pigment dispersion which has low viscosity and which excels in color-developing property.
- Another object of the invention is to provide a water-based paint which excels in curability and which is capable of forming a painted film of spectacular finish appearance in sharpness, transparency and color-developing property and weatherability.
- Another object of the invention is to provide a water-based ink composition which excels in sharpness, transparency, color-developing property and weatherability.
- a pigment dispersing resin which is obtained by copolymerizing a monomer having hydrophilic functional group which is a certain kind of ionic group, a nonionic hydrophilic monomer having polyoxyethylene chain and the like, and other ethylenically unsaturated monomers in the presence of radical polymerization initiator is quite suitable as a pigment dispersing resin for water-based paint or water-based ink.
- This invention provides a pigment dispersing resin which is a copolymer of:
- This invention also provides an aqueous pigment dispersion which comprises the above-mentioned pigment dispersing resin, pigment, aqueous medium and, if necessary, dispersion adjuvant as well.
- This invention further provides a water-based paint composition and a water-based ink composition each of which comprises the above-mentioned aqueous pigment dispersion.
- the pigment dispersing resin which is provided by this invention is a copolymer of (A) an ionic functional group-containing polymerizable unsaturated monomer, (B) a nonionic polymerizable unsaturated monomer, and (C) other ethylenically unsaturated monomer, as follows.
- Monomer (A) is a monomeric component by which to introduce a specific ionic functional group into a pigment dispersing resin.
- this monomer (A) there is employed a polymerizable unsaturated monomer having at least one kind of ionic functional group which is selected from quaternary ammonium salt group and sulfonic acid group.
- monomer (A) include quaternary ammonium salt-containing polymerizable unsaturated monomers like: (meth)acryloyloxyalkyl trialkylammonium salt groups such as 2-(methacryloyloxy)ethyl trimethylammonium chloride, 2-(methacryloyloxy)ethyl trimethylammonium bromide and 2-(methacryloyloxy)ethyl trimethylammonium dimethylphosphate; (meth)acryloylaminoalkyltrialkyl ammonium salt groups such as (meth)acryloylaminopropyl trimethylammonium chloride and (meth)acryloylaminopropyl trimethylammonium bromide; tetraalkyl(meth)acrylate such as tetrabutylammonium(meth)acrylate; and trialkylbenzylammonium (meth)acrylate such as trimethylbenzylammonium (meth)acrylate; and
- monomers may be used either singly or in combination of two or more.
- 2-(methacryloyloxy)ethyltrimethylammonium chloride and 2-acrylamide-2-methylpropanesulfonic acid are particularly suitable as polymerizable unsaturated monomer (A).
- the above-mentioned quaternary ammonium salt group-containing polymerizable unsaturated monomer may be used together with tertiary amino group-containing polymerizable unsaturated monomer.
- 2-(methacryloyloxy)ethyltrimethylammonium chloride is preferably used together with N,N-dimethylaminoethyl(meth)acrylate and/or N,N-diethylaminoethyl(meth)acrylate, which can broaden the range of pigment to which the pigment dispersing resin of this invention is applicable.
- tertiary amino group-containing polymerizable unsaturated monomer which can be used together include N,N-dialkylaminoalkyl (meth)acrylates such as N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-di-t-butylaminoethyl (meth)acrylate and N,N-dimethylaminobutyl (meth)acrylate; and N,N-dialkylaminoalkyl (meth)acrylamides such as N,N-dimethylaminoethyl (meth)acrylamide, N,N-diethylaminoethyl (meth)acrylamide and N,N-dimethylaminopropyl (meth)acrylamide;
- the weight ratio of (a) quaternary ammonium salt group-containing polymerizable unsaturated monomer to (b) tertiary amino group-containing polymerizable unsaturated monomer is usually in a range of 10/1 to 1/20, especially 5/1 to 1/10.
- quaternary ammonium salt group-containing polymerizable unsaturated monomer When quaternary ammonium salt group-containing polymerizable unsaturated monomer is used as monomer (A), quaternary ammonium salt group which is introduced into resin acts effectively especially for the sake of dispersibility of acidic pigment or neutral pigment.
- sulfonic acid group-containing polymerizable unsaturated monomer is used as monomer (A)
- sulfonic group which is introduced into resin acts effectively especially for the sake of dispersibility of basic pigment.
- Monomer (B) is a monomeric component which gives hydrophilicity to the formed copolymer, and which contains polyoxyalkylene chain and polymerizable unsaturated monomer in molecule.
- polyoxyalkylene chain examples include polyoxyethylene chain, polyoxypropylene chain and polyoxyethylene-polyoxypropylene block chain.
- Polyoxyalkylene chain has preferably a molecular weight in a range of 200 to 3,000, in particular 300 to 2,500.
- Typical example of monomer (B) is represented by compounds of the following formula (1):
- R 1 stands for hydrogen or CH 3 ,
- R 2 stands for hydrogen or C 1 to C 4 alkyl group
- n is an integer of 4-60, in particular 6-50, and
- n is an integer of 2-3, preferably 2, and
- oxyalkylene units (C n H 2n O) in the number of m may be the same or different from each other.
- Such monomer (B) are as follows: tetraethylene glycol (meth)acrylate, methoxytetraethylene glycol (meth)acrylate, ethoxytetraethylene glycol (meth)acrylate, n-butoxytetraethylene glycol (meth)acrylate, tetrapropylene glycol (meth)acrylate, methoxytetrapropylene glycol (meth)acrylate, ethoxytetrapropylene glycol (meth)acrylate, n-butoxytetrapropylene glycol (meth)acrylate, polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate and ethoxypolyethylene glycol (meth)acrylate, among which polyethylene glycol (meth)acrylate and polypropylene glycol (meth)acrylate are particularly suitable.
- These monomers may be used either singly or in combination of two or more.
- ethylenically unsaturated monomer (C) is a polymerizable unsaturated monomer other than the above monomers (A) and (B), which is copolymerizable with said monomers (A) and (B), and is suitably selected according to properties required of pigment dispersing resins.
- Such monomer (C) include C 1 to C 24 straight chain- or cyclic-alkyl (meth)acrylate monomer such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate and tridecyl (meth)acrylate; hydroxyl group-containing polymerizable unsaturated monomer (typically hydroxyalkyl (meth)acrylate monomer) such as 2-hydroxyethyl (meth)acrylate
- the pigment dispersing resin which is provided by the present invention is used, for example, for the preparation of colored water-based base coating paint.
- the pigment dispersing resin of the present invention desirably reacts with curing agent component, e.g., amino resins or optionally-blocked polyisocyanate compounds, to be incorporated into the crosslinked paint film, for the sake of favorable paint film performance.
- curing agent component e.g., amino resins or optionally-blocked polyisocyanate compounds
- monomer (C) desirably contains a hydroxyl group-containing polymerizable unsaturated monomer at least as a part of its component.
- monomer (C) When used for water-based ink, monomer (C) desirably contains a hydroxyl group-containing polymerizable unsaturated monomer at least as a part of its component from a viewpoint of wettability to printed surface, spreadability of ink and reactivity with the above-mentioned curing agent component, and the like.
- hydroxyl group-containing polymerizable unsaturated monomer examples include monoesters between polyhydric alcohols and (meth)acrylic acid such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 2,3-dihydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, polyethylene glycol mono(meth)acrylate and the like; and compounds formed by ring-opening polymerization of said monoesters of polyhydric alcohols and (meth)acrylic acid, with ⁇ -caprolactone.
- monoesters between polyhydric alcohols and (meth)acrylic acid such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 2,3-dihydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, polyethylene glycol mono(meth)acrylate and the like
- 4-hydroxybutyl (meth)acrylate, polyethylene glycol mono(meth)acrylate and compounds formed by ring-opening polymerization of said monoesters of polyhydric alcohols and acrylic or methacrylic acid, with ⁇ -caprolactone show favorable reactivity.
- the above-recited compounds may be used either singly or in combination of two or more.
- the use rate of the hydroxyl group-containing polymerizable unsaturated monomers is normally 3-30% by weight, in particular 5-25% by weight, based on the total weight of the monomers (A), (B) and (C).
- the pigment dispersing resin of this invention is intended to be used chiefly for aqueous system. With a view to keeping the water dispersibility of said resin, there may be used, in addition to the above-mentioned monomer (B), carboxyl group-containing polymerizable unsaturated monomer at least as a part of the above-mentioned other ethylenically unsaturated monomer (C), if necessary.
- the pigment dispersing resin of this invention is produced by the copolymerization of ionic functional group-containing polymerizable unsaturated monomer (A), nonionic polymerizable unsaturated monomer (B) and other ethylenically unsaturated monomer (C).
- the proportion of monomers (A), (B) and (C) in copolymerization is not strictly restricted, but may be varied depending on the physical property required of formed copolymer, and the like. Generally, however, the proportion may be set in the following range on the basis of the total weight of monomers (A), (B) and (C):
- the copolymerization of monomers (A), (B) and (C) may be conducted by any known method, for instance, by solution polymerization in an organic solvent, emulsion polymerization in water, or the like, among which solution polymerization is suitable.
- a mixture of the above-mentioned monomers (A), (B) and (C) and a radical polymerization initiator is dissolved or dispersed in an organic solvent, and heated for polymerization at a temperature of about 80° C. to about 200° C. with stirring for 1 to 10 hours.
- organic solvents can be used either singly or in combination of two or more.
- the organic solvent is normally used in an amount not more than 400 parts by weight based on 100 parts by weight of the monomer components to be (co-)polymerized.
- radical polymerization initiator examples include organic peroxide polymerization initiators like ketone peroxides such as cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide and methylcyclohexanone peroxide; peroxyketals such as 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-butylperoxy)cyclohexane and n-butyl-4,4-bis(tert-butylperoxy)valerate; hydroperoxides such as cumene hydroperoxide and 2,5-dimethylhexane-2,5-dihydroperoxide; dialkylperoxides such as 1,3-bis(tert-butylperoxy-m-isopropyl)benzene, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, diis
- the use rate of these polymerization initiators is not critical. Normally, however, it is desirably within a range of 0.1-15 parts by weight, in particular 0.3-10 parts by weight, per 100 parts by weight of the total of the monomers to be copolymerized.
- the method of addition of the monomeric components or the polymerization initiator is not critical.
- the polymerization initiator is, however, conveniently added dropwise plural times by portions over the time spun from the initial stage of polymerization to the advanced stage, rather than added in a lump sum at the initial stage, for the sake of effective temperature control during the polymerization reaction and of the prevention of undesirable cross-linked product such as gel from formed.
- the molecular weight of thus produced copolymer is not in particular restricted.
- the weight average molecular weight of copolymer is within a range of 500 to 100,000, in particular 1,000 to 70,000, especially 3,000 to 50,000, from a viewpoint of aqueous dispersion stability, pigment dispersibility, viscosity, VOC and color number (degree of pigmentation).
- the pigment dispersing resin of this invention which comprises copolymer produced in the afore-mentioned manner is used for the preparation of water-based pigment dispersion.
- the pigment dispersion resin is therefore required to have both wettability with regard to pigment and pigment dispersion stability.
- Monomer (A) component which constitutes the pigment dispersing resin of this invention is capable of improving the adsorption of pigment dispersing resin to pigment, and thus acts advantageously for the improvement both in wettability with regard to pigment and in the dispersion stability of resin.
- Monomer (B) component which constitutes the pigment dispersing resin of this invention contributes to the improvement of pigment dispersing resin in the solubility in continuous phase (aqueous medium), and acts advantageously in particular for the improvement of pigment dispersing resin in dispersion stability. Furthermore, copolymerization with use of tertiary amino group-containing polymerizable unsaturated monomer in combination with monomer (A) provides a pigment dispersing resin which has remarkably improved capability to disperse black (carbon black) pigment which is said to be especially difficult to be dispersed.
- the pigment dispersing resin of this invention is quite useful for the preparation of water-based pigment dispersion together with pigment and aqueous medium.
- the water-based pigment dispersion of this invention can be prepared by blending, with the afore-mentioned pigment dispersing resin of the invention, pigment, aqueous medium and, as circumstances may demand, other pigment dispersing resins, dispersing agent, basic neutralizer and other additives as well.
- pigment examples include: bright pigments such as aluminum powder, copper powder, nickel powder, stainless steel powder, chromium powder, micaceous iron oxide, titanium dioxide-coated mica powder, iron oxide-coated mica powder and bright graphite; organic red pigments such as Pink EB, azo- and quinacridone-derived pigments; organic blue pigments such as cyanin blue and cyanin green; organic yellow pigments such as benzimidazolone-, isoindolin- and quinophthalone-derived pigments; inorganic colored pigments such as titanium white, titanium yellow, iron red, carbon black, chrome yellow, iron oxide and various calcined pigments. Also extender pigment may be included.
- bright pigments such as aluminum powder, copper powder, nickel powder, stainless steel powder, chromium powder, micaceous iron oxide, titanium dioxide-coated mica powder, iron oxide-coated mica powder and bright graphite
- organic red pigments such as Pink EB, azo- and quinacridone-derived pigments
- organic blue pigments such as cyanin
- These pigments may be subjected to any known treatment such as acid base treatment, coupling agent treatment or oxidation/reduction treatment.
- pigments which are used in particular for ink-jet ink include black pigment like Raven 7000, Raven 5750, Raven 5250, Raven 5000 ULTRAII, Raven 3500, Raven 2000, Raven 1500, Raven 1250, Raven 1200, Raven 1190 ULTRAII, Raven 1170, Raven 1255, Raven 1080 and Raven 1060 (which are manufactured by Columbian Carbon Co.); Regal400R, Regal330R, Regal660R, Mogul L, Black Pearls L, Monarch 700, Monarch 800, Monarch 880, Monarch 900, Monarch 1000, Monarch 1100, Monarch 1300 and Monarch 1400 (which are manufactured by Cabot Co.); Color Black FW1, Color Black FW2, Color Black FW2V, Color Black 18, Color Black FW200, Color Black S150, Color Black S160, Color Black S170, Printex35, PrintexU, PrintexV, Printex140U, Printex140V, Special Black 6, Special Black 5, Special Black 4A and Special Black 4 (which are manufactured by Degus
- Pigment Yellow-74 C.I. Pigment Yellow-75, C.I. Pigment Yellow-83, C.I. Pigment Yellow-93, C.I. Pigment Yellow-95, C.I. Pigment Yellow-97, C.I. Pigment Yellow-98, C.I. Pigment Yellow-114, C.I. Pigment Yellow-128, C.I. Pigment Yellow-129, C.I. Pigment Yellow-151 and C.I. Pigment Yellow-154. These are only examples, and not restrictive at all.
- Blend ratios of these pigments are not subject to specific limitations. Normally, however, they are within a range of 10-3,000, preferably 15-2,000, inter alia 15-1,500 parts by weight, per 100 parts by weight of a pigment dispersing resin of the present invention in consideration of pigment dispersing ability, dispersion stability and color developing property of resulting pigment dispersions.
- useful aqueous medium examples include water and water-organic solvent mixtures formed by dissolving organic solvent such as water-soluble organic solvent in water.
- Useful organic solvent in such mixtures include, for example, water-soluble organic solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, propylpropylene glycol, butyl cellosolve, propylene glycol monomethyl ether and 3-methyl-3-methoxybutanol; and water-hardly-soluble or water-insoluble organic solvents such as xylene, toluene, cyclohexanone, hexane and pentane. These organic solvents may be used either singly or as a mixture of two or more.
- Water-insoluble organic solvent may be concurrently used with water-soluble organic solvent, in minor quantities.
- the mixing ratio of water and organic solvent is not critical. It is desirable, however, that the organic solvent content of the mixture does not exceed 50%, in particular 35%, by weight.
- the blend ratio of the aqueous medium is not critical. It is desirable, however, that the ratio is within a range of 50-5,000, preferably 100-3,000, inter alia 100-2,000, parts by weight per 100 parts by weight of a pigment dispersing resin or resins of the present invention in respect of viscosity in the occasion of dispersing the pigment, pigment dispersing ability, dispersion stability and production efficiency.
- pigment dispersing resins which are used where necessary include acryilc resin which is produced by the copolymerization of carboxylic group-containing polymerizable unsaturated monomer such as (meth)acrylic acid with hydroxyl group-containing polymerizable unsaturated monomer such as 2-hydroxyethyl (meth)acrylate and other polymerizable unsaturated monomer in the presence of radical polymerization initiator.
- acryilc resin which is produced by the copolymerization of carboxylic group-containing polymerizable unsaturated monomer such as (meth)acrylic acid with hydroxyl group-containing polymerizable unsaturated monomer such as 2-hydroxyethyl (meth)acrylate and other polymerizable unsaturated monomer in the presence of radical polymerization initiator.
- Such an acrylic resin preferably has a weight average molecular weight within a range of about 2,000 to 150,000, in particular 5,000 to 100,000, and an acid value in a range of 5 to 150, especially 15 to
- polyester resin which is produced by condensation reaction between polyhydric alcohol such as ethylene glycol, butylene glycol, 1,6-hexane diol, trimethylol propane and pentaerythritol and polyvalent carboxylic acid component such as adipic acid, isophthalic acid, terephthalic acid, phthalic anhydride, hexahydrophthalic anhydride and trimellitic acid anhydride.
- polyhydric alcohol such as ethylene glycol, butylene glycol, 1,6-hexane diol, trimethylol propane and pentaerythritol
- polyvalent carboxylic acid component such as adipic acid, isophthalic acid, terephthalic acid, phthalic anhydride, hexahydrophthalic anhydride and trimellitic acid anhydride.
- Such a polyester resin preferably has a weight average molecular weight within a range of about 1,000 to 100,000, in particular 1,500 to 70,000, and an acid value in a range
- pigment and pigment dispersing resin of this invention are usually diluted with other pigment dispersing resin after dispersed in aqueous medium. Owing to this dilution, the resultant dispersion has stability as enamel or long-term storage stability, or becomes readily miscible with binder component of paint etc.
- resin (II) is suitably used in an amount of 5 to 300 parts by weight, in particular 20 to 150 parts by weight, per 100 parts by weight of resin (I).
- DisperbykTM 184 or 190 (BYK-Chemie Co.) may be named.
- Other usable additives include anti-foaming agent, antiseptic, rust-proofing agent and plasticizing agent. It is desirable that blend ratio of any of these additives does not exceed 50 parts by weight per 100 parts by weight of the pigment dispersing resin of the present invention in respect of pigment dispersing ability of the resin, stability of the pigment paste, let-down stability or coating film performance.
- basic neutralizer is used to neutralize the carboxyl groups and to make said other pigment dispersing resins water-soluble or water-dispersible.
- a basic neutralizer include inorganic bases such as ammonium hydroxide, sodium hydroxide and potassium hydroxide; and amines such as aminomethyl propanol, aminoethylpropanol, dimethylethanolamine, triethylamine, diethylethanolamine, dimethylaminopropanol and aminomethylpropanol.
- Such a basic neutralizer should be used in a sufficient rate to render said other pigment dispersing resins water-soluble or water-dispersible. Normally, therefore, basic neutralizer is used at a rate sufficient to make the neutralization equivalent of carboxyl group in said other pigment dispersing resins 0.3-1.5, preferably 0.4-1.3.
- no basic neutralizer is desirably used when pigment is to be dispersed with use of the pigment dispersing resin of this invention. If a basic neutralizer is used, pigment adsorbs the basic neutralizer before the pigment dispersing resin of this invention is adsorbed on the pigment, with the result that dispersibility may possibly be damaged. When, on the other hand, pigment is dispersed by the pigment dispersing resin of this invention and is then diluted with other pigment dispersing resins, neutralization with basic neutralizer is desirable.
- Water-based pigment dispersions can be formulated by homogeneously mixing and dispersing the above-described components with a dispersing machine such as paint shaker, Scandix, LMZ mill, DCP pearl mill and the like.
- prepared water-based pigment dispersion can be blended with binder resin for paint and suitably with other additives such as aqueous medium, fine polymer particles, curing catalyst, basic neutralizer, ultraviolet absorber, ultraviolet stabilizer, paint film surface regulating agent, antioxidant, flow property regulator, silane coupling agent and the like, and stably dispersed in aqueous medium to provide a water-based paint composition.
- additives such as aqueous medium, fine polymer particles, curing catalyst, basic neutralizer, ultraviolet absorber, ultraviolet stabilizer, paint film surface regulating agent, antioxidant, flow property regulator, silane coupling agent and the like, and stably dispersed in aqueous medium to provide a water-based paint composition.
- Useful paint binder resins include combination of base resins which are normally used in the field of water-soluble or water-dispersible paint, with curing agent.
- base resins include hydroxyl group-containing acrylic resin, hydroxyl group-containing polyester resin, epoxy group-containing copolymer resin and carboxyl group-containing high acid value resin.
- useful curing agent amino resins and optionally-blocked polyisocyanate compounds can be named, which can be used either singly or in combination.
- hydroxyl group-containing acrylic resin copolymers having a weight-average molecular weight within a range of from about 2,000 to about 100,000, in particular, from 5,000 to 50,000, which are obtained by copolymerization of a hydroxyl group-containing polymerizable unsaturated monomer such as 2-hydroxyethyl (meth)acrylate with other polymerizable unsaturated monomer or monomers in the presence of a radical polymerization initiator are preferred.
- hydroxyl group-containing polyester resin those having a weight-average molecular weight within a range of from about 1,000 to about 100,000, in particular, from 1,500 to 70,000, which are obtained by condensation reaction between polyhydric alcohols such as ethylene glycol, butylene glycol, 1,6-hexanediol, trimethylolpropane and pentaerythritol, and polyvalent carboxylic acids such as adipic acid, isophthalic acid, terephthalic acid, phthalic anhydride, hexahydrophthalic anhydride and trimellitic anhydride are preferred.
- polyhydric alcohols such as ethylene glycol, butylene glycol, 1,6-hexanediol, trimethylolpropane and pentaerythritol
- polyvalent carboxylic acids such as adipic acid, isophthalic acid, terephthalic acid, phthalic anhydride, hexahydrophthalic anhydride and trimellitic anhydr
- melamine resins are used in general.
- methylolmelamine resins and melamine resins whose methylol groups are at least partially etherified with C 1 -C 4 monohydric alcohols are suitable. While it is preferred that they be water-soluble or water-dispersible, water-insoluble ones can also be used.
- melamine resins useful for the above purpose the following may be named for example: butyl etherified melamine resins such as U-VanTM 20SE-60 and 225 (Mitsui Chemicals, Inc.), Super BeckamineTM G840 and G821 (Dainippon Ink & Chemicals, Inc.); methyl etherified melamine resins such as SumimalTM M-100, M-40S and M-55 (Sumitomo Chemical Co., Ltd.), CymelTM 303, 325, 327, 350 and 370 (Mitsui Cytec Co., Ltd.), NikalacTM MS17 and MS15 (Sanwa Chemical Co., Ltd.) and ResimineTM 741 (Monsanto Co.); methyl- and iso-butyl-mixed etherified melamine resins such as CymelTM 235, 202, 238, 254, 272 and 1130 (Mitsui Cytec Co., Ltd.), and SumimalTM M66B (S
- Said optionally-blocked polyisocyanate compounds usable as the curing agent include both of polyisocyanate compounds having free isocyanate groups and those in which isocyanate groups are blocked.
- polyisocyanate compounds having free isocyanate groups include organic polyisocyanates per se, e.g., aliphatic diisocyanates such as hexamethylenediisocyanate and trimethylhexamethylenediisocyanate; cycloaliphatic diisocyanates such as hydrogenated xylylenediisocyanate and isophoronediisocyanate; aromatic diisocyanates such as tolylenediisocyanate and 4,4′-diphenylmethanediisocyanate; and polyisocyanate compounds having not less than 3 isocyanate groups such as triphenylmethane-4,4′,4′′-triisocyanate, 1,3,5-triisocyanatebenzene, 2,4,6-triisocyanatetoluene and 4,4′-dimethyldiphenylmethane-2,2′,5,5′-tetraisocyanate.
- organic polyisocyanates may be used in such forms as
- polyisocyanate compounds having free isocyanate groups for example, BurnockTM D-750, -800, DN-950, DN-970 and DN-15-455 (Dainippon Ink & Chemicals, Inc.); DesmodurTM L, N, HL and N3390 (Sumitomo Bayer Urethane Co., Ltd.); TakenateTM D-102, -202, -110 and -123N (Takeda Chemical Industries, Ltd.); CoronateTM EH, L, HL and 203 (Nippon Polyurethane Industry Co., Ltd.); and DuranateTM 24A-90CX (Asahi Chemical Industry Co., Ltd.) may be named.
- BurnockTM D-750, -800, DN-950, DN-970 and DN-15-455 (Dainippon Ink & Chemicals, Inc.); DesmodurTM L, N, HL and N3390 (Sumitomo Bayer Urethane Co., Ltd
- polyisocyanate compounds in which isocyanate groups are blocked those formed by blocking isocyanate groups in the above-described polyisocyanate compounds having free isocyanate groups, with a known blocking agent such as oxime, phenol, alcohol, lactam, malonic acid ester or mercaptane can be used.
- a known blocking agent such as oxime, phenol, alcohol, lactam, malonic acid ester or mercaptane
- Typical commercially available polyisocyanate compounds whose isocyanate groups are blocked include BurnockTM D-550 (Dainippon Ink & Chemicals, Inc.), TakenateTM B-815-N (Takeda Chemical Industries, Ltd.), AdditolTM VXL-80 (Hoechst AG, Germany), CoronateTM 2507 (Nippon Polyurethane Industry Co., Ltd.) and DesmodurTM N3500 (Sumitomo Bayer Urethane Co., Ltd.).
- the aqueous medium which is used when necessity arises can be suitably selected from those useful for preparing the pigment dispersions as earlier explained.
- the fine polymer particles are provided by a polymer which does not dissolve in water-based paint compositions of the present invention but disperses as fine particles. Suitable average particle size normally is within a range of 0.01-1 ⁇ m, preferably 0.05-0.8 ⁇ m. Inside of the particles may either be crosslinked or not, the former being preferred. As such fine polymer particles, those known per se as flow property regulator in the field of paint can be used.
- organometal catalysts such as dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate and the like; and amines such as triethylamine, diethanolamine and the like can be conveniently used as the curing catalyst.
- an amino resin such as melamine resin
- such curing catalyst as sulfonic acid compound, e.g., paratoluenesulfonic acid, dodecylbenzensulfonic acid and dinonylnaphthalenesulfonic acid; or amine-neutralization products of these sulfonic acid compounds are conveniently used.
- ultraviolet absorber benzophenone, benzotriazole, cyanoacrylate, salicylate and oxalic acid anilide compounds may be named.
- ultraviolet stabilizer hindered amine compounds can be used.
- the water-based paint compositions according to the invention are useful as coloring paint compositions (including metallic paint and iridescent paint) into which various pigments such as coloring pigments, metallic pigments and iridescent pigments are blended.
- coloring paint compositions including metallic paint and iridescent paint
- various pigments such as coloring pigments, metallic pigments and iridescent pigments are blended.
- they can be conveniently used as top coating paint (coloring base coat) for automotive finish.
- the paint compositions according to the invention can be applied onto various substrate, following the practice known per se, and can form cured coating film when baked normally at temperatures of from about 80° C. to about 180° C., for about 10-60 minutes. Where a short time baking is desired, for example, a cured coating film can be formed by baking under such conditions as will attain the highest temperature of from about 180° C. to about 250° C. of the material being baked, for about 20-about 60 seconds.
- Substrate to be coated with the paint compositions of the present invention are subject to no specific limitation, examples of which include metallic substrate such as steel sheet, aluminum, tin and the like; other substrate such as of mortar, cement, plastics, glass and the like; and these substrates which have been subjected to surface treatment and/or coating film formation.
- metallic substrates and plastic substrates are suitable for use.
- steel sheet examples include cold-rolled steel sheet, molten galvanized steel sheet, electrogalvanized steel sheet, aluminum plated steel sheet, stainless steel sheet, copper plated steel sheet, tin plated steel sheet, lead-tin alloy plated steel sheet (ternesheet); steel sheet plated with zinc alloy such as iron-zinc, aluminum-zinc, nickel-zinc alloys and the like.
- surface-treated steel sheet for example, steel sheet which is given a chemical treatment such as phosphate treatment, chromate treatment and the like may be named.
- a substrate which has been optionally surface treated and thereafter primer-coated, or said substrate which is further coated with an inter-coat can be used.
- typical substrates include: a chemically treated steel sheet which is further electrodeposition-coated with primer and optionally coated with an inter coat thereon; various plastic substrates (which have been optionally surface treated, primer-coated or further coated with an inter coat); and composite members which are combination of the foregoing.
- the electrodepositing paint for electrodeposition coating may be anionic or cationic, cationic type being preferred because of good corrosion resistance.
- cationic electrodeposition paint any of those known per se can be used.
- those containing as the resin component a base resin having hydroxyl groups and cationic groups and as the curing agent a blocked polyisocyanate compound can be conveniently used.
- the water-based paint compositions according to the present invention are conveniently used for colored coating film-forming compositions for 1-coat-1-bake finish of substrates, and for top coating colored base paint compositions in 2-coat-1-bake (2C1B), 2-coat-2-bake (2C2B), 3-coat-1-bake (3C1B), 3-coat-2-bake (3C2B), or 3-coat-3-bake (3C3B) systems.
- the top coat can be formed through the steps of, applying the paint composition onto a primer film such as an electrodeposited coating film or onto an uncured or cured inter coat applied onto such a primer film, by such means as electrostatic atomizing coating (bell-type or the like) or aerosol coating, to a dry film thickness of normally from about 10 to about 60 ⁇ m; and allowing it to stand for several minutes at room temperature, or forcedly drying the film for several minutes at temperatures ranging from about 50 to about 80° C.; thereafter applying a clear top coat paint thereon; and baking the same at temperatures of from about 120 to about 180° C. normally for about 10-about 60 minutes.
- a primer film such as an electrodeposited coating film or onto an uncured or cured inter coat applied onto such a primer film
- electrostatic atomizing coating bell-type or the like
- aerosol coating aerosol coating
- top coating paint onto the uncured or cured colored top coat film, by such means as electrostatic atomizing coating (bell-type or the like) or aerosol coating, to a dry film thickness of normally from about 20 to about 100 ⁇ m followed by curing, to form multi-layered top coating film.
- electrostatic atomizing coating bell-type or the like
- aerosol coating to a dry film thickness of normally from about 20 to about 100 ⁇ m followed by curing, to form multi-layered top coating film.
- clear top coating paints comprising at least one base resin having a crosslinkable functional group (e.g., hydroxyl, epoxy, carboxyl, alkoxysilane group and the like) such as acrylic, vinyl, polyester, alkyd and urethane resins; and at least one crosslinking agent for crosslinking and curing the base resin, such as alkyletherified melamine resin, urea resin, guanamine resin, optionally-blocked polyisocyanate compound, epoxy resin and carboxyl-containing compound.
- a crosslinkable functional group e.g., hydroxyl, epoxy, carboxyl, alkoxysilane group and the like
- acrylic, vinyl, polyester, alkyd and urethane resins such as acrylic, vinyl, polyester, alkyd and urethane resins
- crosslinking agent for crosslinking and curing the base resin such as alkyletherified melamine resin, urea resin, guanamine resin, optionally-blocked polyisocyanate compound, epoxy resin
- Such clear top coating paint convenient blend ratio of the base resin and the crosslinking agent is, based on the sum of the two components, normally 50-90% by weight of the base resin component and 10-50% by weight of the cross-linking agent component.
- the form of such clear top coating paint is subject to no specific limitation, and it can take any desired form such as organic solvent type, non-aqueous liquid dispersion type, aqueous solution type, aqueous dispersion (slurry) type, high solid type or powder type.
- water-based ink composition can be prepared from the above-mentioned water-based pigment dispersion as it is, or from said water-based pigment dispersion and, added thereto if necessary, additives such as aqueous medium, water soluble resin, thickening agent, fluidity adjustor, film forming assistant, surfactant, pH adjustor, mildew-proofing agent, antioxidant, ultraviolet absorbing agent, ultraviolet stabilizing agent and chelating agent and dye stuffs as well.
- additives such as aqueous medium, water soluble resin, thickening agent, fluidity adjustor, film forming assistant, surfactant, pH adjustor, mildew-proofing agent, antioxidant, ultraviolet absorbing agent, ultraviolet stabilizing agent and chelating agent and dye stuffs as well.
- aqueous medium anyone may be selected for use from those explained above as ones which are usable where necessary for the production of the water-based pigment dispersion of this invention.
- water soluble resin there may be used, from the viewpoint of ink property control, polyethylene imine, polyamines, polyvinyl pyrrolidone, cellulose derivative, polysaccharides, acrylic emulsion or polyurethane emulsion.
- Dispersed particles which are contained in the water-based ink composition of this invention have preferably an average particle size in a range of 1 to 300 nm, in particular 1 to 200 nm.
- the viscosity of ink liquid is preferably within a range of 1.0 to 10 mPa ⁇ s, in particular 1.5 to 7 mPa ⁇ s.
- the water-based ink composition of this invention is in particular suitable as ink-jet ink, and is used for ink-jet drawing by usual ink-jet drawing system.
- Ink-jet drawing system may be any of piezo ink-jet type, thermal ink-jet type or any other known type.
- the water-based ink composition of this invention may be applied not only to normal ink-jet drawing device but also to a drawing device which is equipped with heater or the like with which to control ink drying; to a recording device which is equipped with intermediate transfer mechanism by which to print recording material on an intermediate medium and then to transfer the resultant print on recording medium such as paper; and to automatic drawing device by which to directly paint wall, outdoor sign board or automobile body.
- Substrate on which the ink composition of this invention is to be applied is not restricted in particular. There may be mentioned base material such as paper, metal or plastics; base material such as mortar or slate; or these base materials which have been subjected to surface treatment and/or coating film formation.
- An ordinary reaction vessel for producing acrylic resins equipped with a stirrer, thermometer and a reflux condenser was charged with 45 parts of ethylene glycol monobutyl ether. The content in the vessel was heated under stirring, and maintained at 110° C.
- Example 1 was repeated except that the formulation of the used components was varied for each run as shown in the following Tables 1 and 2, to provide solutions of pigment dispersing resins (A-2) to (A-9), and solutions of pigment dispersing resins (AC-1) to (AC-11).
- the solid contents of these solutions, and resin acid values of these resins are as shown in the same Tables 1 and 2.
- the note (*1) in Tables 1 and 2 means as follows Incidentally, the amount of NF BISOMERTM S20W in Table 1 is shown by solid content.
- a reaction vessel equipped with a stirrer, thermometer, rectification column and nitrogen inlet pipe was charged with 208.8 parts of isophthalic acid, 387.5 parts of hexahydrophthalic acid, 275.5 parts of adipic acid, 198.1 parts of neopentyl glycol, 371.1 parts of 1,6-hexanediol and 171.1 parts of trimethylolpropane, which were heated under stirring while nitrogen gas was introduced. After the temperature reached 160° C., the system was gradually heated to 235° C. over a period of 3 hours, followed by 1.5 hours' aging. Thereafter the rectification column was switched to reflux condenser, and the reaction was conducted after introduction of 100 parts of toluene, under reflux.
- a wide-mouthed glass bottle of 225 cc in capacity was fed with those pigment dispersing resin solutions which had been produced in the above Examples 1 to 2 and Comparative Examples 1 to 8, pigment, and, if necessary, with neutralizing amine (N,N-dimethylamino ethanol) as well, and further with deionized water at the compositional formulation as shown by Tables 3 and 4 below, and was further fed with glass beads of about 1.3 mm in diameter as a dispersing medium.
- the bottle was then sealed, and the content was dispersed with a paint shaker for 4 hours to give water-based pigment dispersions (B-1) to (B-8) and (BC-1) to (BC-10).
- a wide-mouthed glass bottle of 225 cc in capacity was fed with those pigment dispersing resin solutions which had been produced in the above Examples 3 to 9 and Comparative Examples 9 to 11, the polyester resin solution which had been prepared in the above-mentioned Synthesis Example 1, pigment, and, if necessary, with neutralizing amine (N,N-dimethylamino ethanol) as well, and further with deionized water at the compositional formulation as shown by Tables 5 and 6 below, and was further fed with glass beads of about 1.3 mm in diameter as a dispersing medium. The bottle was then sealed, and the content was dispersed with a paint shaker for 4 hours to give water-based ink.
- acrylic resin solution (AC-10) and polyester resin solution (PP-1) each for dilution, and neutralizing amine were added after pigment dispersing resin solutions and pigments had been sufficiently dispersed.
- RT 355D an organic red pigment manufactured by Ciba Specialty Chemicals, Inc., under tradename of “Cinquasia Magenta RT 355D”
- G 314 an organic blue pigment manufactured by Sanyo Color Works, Ltd., under tradename of “Cyanin Blue G314” (NOTE 3)
- MT500HD tradename of an inorganic white pigment manufactured by TAYCA Corporation
- Raven 5000 UIII tradename of carbon black pigment manufactured by Columbia Carbon Co., Ltd.
- Disper BYK-192 tradename of wetting-dispersing agent manufactured by BYK-Chemie Co.
- Each of the pigment dispersion paste was applied onto a 100 ⁇ 200 mm transparent PET film with a bar coater to a dry film thickness of 15 ⁇ m, and baked at 140° C. for 15 minutes.
- the extent of turbidity of the coating on the PET film was visually evaluated according to the following grading standard:
- Each pigment dispersion was applied onto PET film with a doctor blade so that coating film thickness might be 100 ⁇ m.
- Water-based ink was applied onto PET film with a doctor blade so that coating film thickness might be 50 ⁇ m.
- the gloss of dried coating films of pigment dispersion and of water-based ink was determined by the measurement of 60° mirror surface reflectivity in accordance with JIS K5400 7.6 (1990).
- Viscosity [Pascal ⁇ sec (Pa ⁇ sec.)] and yield point (dyn/cm 2 ) were measured with a dynamic viscoelasticity measuring apparatus, MR-300 (Rheology Co.).
- L* is the index of brightness as shown by JIS Z-8105.
- the higher BI value means the better blackness.
- a reaction vessel for producing acrylic resins equipped with a stirrer, thermometer and a reflux condenser was charged with 40 parts of ethylene glycol monobutyl ether and 30 parts of isobutyl alcohol, which were heated under stirring.
- a mixture of the following monomers was added to the system dropwise, over a period of 3 hours:
- a reaction vessel equipped with a stirrer, thermometer, rectification column and nitrogen inlet pipe was charged with 317.8 parts of isophthalic acid, 196.5 parts of hexahydrophthalic acid, 372.6 parts of adipic acid, 268 parts of neopentyl glycol, 217.8 parts of 1,6-hexanediol and 263.5 parts of trimethylolpropane, which were heated under stirring while nitrogen gas was introduced. After the temperature reached 160° C., the system was gradually heated to 235° C. over a period of 3 hours, followed by 1.5 hours' aging. Thereafter the rectification column was switched to reflux condenser, and the reaction was conducted after introduction of 100 parts of toluene, under reflux.
- the reaction was continued for 6 hours at 235° C., and thereafter the toluene was removed under reduced pressure.
- the system was cooled to 170° C., followed by addition of 122.5 parts of trimellitic anhydride and 30 minutes' aging at 170° C. Further 322 parts of butyl cellosolve was added, and the system was thereafter cooled to 80° C., 4 parts of N,N-dimethylaminoethanol was added, and the system was allowed to stand at 80° C. for 30 minutes, followed by cooling to 50° C., addition of 2600 parts of deionized water and 30 minutes' stirring.
- a polyester resin (PP-2) solution having a solid concentration of 50% was obtained.
- the obtained resin had an acid value of 56 mgKOH/g, a hydroxyl value of 90 mgKOH/g and a weight average molecular weight of 25,000.
- a reaction vessel for producing acrylic resins equipped with a stirrer, thermometer and a reflux condenser was charged with 400 parts of deionized water and 2.4 parts of NewcolTM 562SF (Nippon Nyukazai Co., Ltd., a surfactant), which were heated under stirring.
- NewcolTM 562SF NaturalcolTM 562SF
- a pre-emulsion forming mixture was charged, which had been prepared by mixing 6 parts of styrene, 8.5 parts of n-butyl acrylate, 0.5 part of allyl methacrylate, 0.175 part of NewcolTM 562SF and 7.5 parts of deionized water and stirring the mixture with disper at about 1000 r.p.m. for 10 minutes.
- a second monomeric mixture formed by mixing 50 parts of styrene, 23 parts of n-butyl acrylate, 10 parts of 2-hydroxyethyl acrylate, 5 parts of methacrylic acid, 1.6 parts of NewcolTM 562SF and 60 parts of deionized water, stirring the mixture with a disper at about 1,000 r.p.m. for 10 minutes and adding thereto 15 parts of deionized water and 0.54 part of potassium persulfate, was added dropwise over a period of 1.5 hours. After the addition, the system was maintained at 82° C.
- Example 43 was repeated except that the formulation of components was varied for each run as shown in Table 7 which is mentioned later, and, thus, there were obtained colored paint compositions.
- test panels were prepared by the following method.
- a 0.8 mm-thick cold rolled dull steel sheet which had been chemically treated with zinc phosphate was applied with an epoxy resin-based cationic electrodeposition paint to a dry film thickness of about 20 ⁇ m which was subsequently baked.
- an epoxy resin-based cationic electrodeposition paint was applied to a dry film thickness of about 20 ⁇ m which was subsequently baked.
- automotive polyester resin-based inter coating paint was applied to a dry film thickness of about 20 ⁇ m and baked.
- This coated steel sheet was wet-sanded with #400 sand paper, dried off and degreased with petroleum benzin.
- each of the coloring paint compositions whose viscosity had been adjusted to 500 mPa ⁇ s was applied with minibell rotation type electrostatic coater at a booth humidity of 70%, to a dry film thickness of about 15 ⁇ m, and allowed to stand at room temperature for about 5 minutes for setting.
- Each of the paint film was baked with an electric hot air dryer at 80° C. for 10 minutes to evaporate off most of volatile components.
- the film was left to stand still in room to be cooled, and, subsequently, was coated with an automotive acrylic resin-based clear paint, “MagicronTM TC71” (manufactured by Kansai Paint Co., Ltd.) to a dry film thickness of about 40 ⁇ m, followed by baking with an electric hot air dryer at 140° C. for 30 minutes, and, thus, test panels were prepared.
- an automotive acrylic resin-based clear paint “MagicronTM TC71” (manufactured by Kansai Paint Co., Ltd.)
- coat finish was synthetically examined in respect of gloss and fatness, and evaluated according to the following criteria:
- Sharpness was measured with a portable gloss distinctness meter P.G.D-IV (Japan Color Research Institute). The higher the measured value is, the better is the sharpness.
- the artificial rain used was a blend of 19.6 g of 1 mg/g aqueous solution of NaNO 3 ; 5.2 g of 1 mg/g aqueous KNO 3 solution,; 3.7 g of 1 mg/g aqueous solution of CaCl 2 .2H 2 O,; 8.2 g of 1 mg/g aqueous solution of MgSO 4 .7H 2 O; 73.3 g of 1 mg/g aqueous solution of (NH 4 ) 2 SO 4 ,; 30.0 g of 0.1 N aqueous solution of H 2 SO 4 ; 20.0 g of 0.1 N aqueous solution of HNO 3 ; 10.0 g of 0.05N aqueous solution of HCl, and 4.7 g of 1 mg/g aqueous solution of NaF.
- the pH of the blend was adjusted to 1.0 with H 2 SO 4 .
- each test panel surface was rubbed with a piece of cotton gauze soaked with methyl ethyl ketone under about 1 kg/cm 2 load over a length of about 5 cm. After 50 times reciprocal rubbing, the surface condition of the test panel was visually graded according to the following standard:
- the use of the water-based pigment dispersing resins of this invention provides water-based pigment dispersions which excel in wetting property and dispersing stability even at high pigment concentration, and which have low viscosity and are excellent in color developing property and weatherability.
- the use of said water-based pigment dispersions in turn gives a coating composition which excels not only in pigment color-developing property and in coating film performance such as coating film appearance, weatherability and physical properties, but also in pigment dispersing stability, and which can be made to contain pigment at a high concentration.
- the use of said water-based pigment dispersions also gives a water-based ink composition which is excellent not only in pigment color-developing property and dispersing stability but also in sharpness, transparency and color developing property.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
This invention relates to the use of a copolymer of polymerizable unsaturated monomer containing at least one kind of ionic functional group selected from the group consisting of quaternary ammonium salt group and sulfonic acid group, nonionic polymerizable unsaturated monomer having polyoxyalkylene chain, and other ethylenically unsaturated monomer, as a pigment dispersing resin for water-based paint or water-based ink.
Description
- This is a divisional of U.S. application Ser. No. 10/149,676, filed Jun. 13, 2002 which is a 371 of PCT/JP01/08972, filed Oct. 12, 2001.
- This invention relates to a pigment dispersing resin which is suitably used for water-based paint or water-based ink, and to aqueous pigment dispersions containing said pigment dispersing resin which are especially suitable as water-based top-coating paint for automobile and as ink-jet ink.
- As top-coating paint for automotive finish, there have heretofore been used those of solvent-based type in which a base resin (base polymer) component such as acrylic resin, polyester resin or alkyd resin having such functional groups as hydroxyl group and carboxyl group is used together with a curing agent such as amino resin, optionally-blocked polyisocyanate compound and epoxy compound.
- For the protection of terrestrial environment, paint of low volatile organic matter content (VOC) has been demanded in these years. In the field of paint for automotive finish, colored base coating paint in particular has high discharge of VOC. It has therefore been strongly required to switch colored base coating paint to water-based type. It is now expected that, in future, solvent-based coating type will be replaced with water-based coating type.
- Problems incidental to the switching of colored base coating paint to water-based type are, for example: (1) pigment dispersing resin blended in water-based paint is incompatible with the binder component in water-based paint; (2) pigment dispersing resin or dispersant fails to uniformly disperse the pigment, and invites flocculation or agglomeration of pigment; and (3) pigment dispersing resin or dispersant in the water-based paint composition fails to cure under baking, and invites the degradation of coating film performance.
- Pigments which are used for colored base coating paint generally have hydrophobic surfaces, and are difficult to be wetted with water, while pigment dispersing resins which have conventionally been used for solvent-based colored paint have low solubility in water, and are inferior in dispersing stability in aqueous media. Hence, it is important in designing a pigment dispersing resin for water-based paint to secure satisfactory levels of both wettability of pigment and dispersing stability of pigment dispersing resin in an aqueous medium.
- Besides, pigment is now being substituting for dye as a color material for ink, in particular ink-jet ink, from the viewpoint of water resistance and weatherability. However, water-based pigment ink is still unsatisfactory in the print density of printed image. Besides, pigment has a problem that, when its dispersion stability is low, clogging occurs in head when it is used for ink-jet ink. Hence, high-level pigment wettability and pigment dispersion stability are required of said water-based pigment ink.
- Low viscosity and low molecular weight of pigment dispersing resin are considered advantageous for wetting property of pigment; and easy formation of steric repelling layer on the pigment surfaces or good solubility of the pigment dispersing resin in the continuous phase (aqueous medium) are considered advantageous for the dispersing stability. Both the pigment-wetting property and the dispersing stability of the pigment dispersing resin are considered to participate in wetting of the pigment surface with the pigment dispersing resin (a resin having a group capable of forming weak flocculation in aqueous system such as alkyl-group is effective) and in adsorption onto the pigment, which are attributable to the interaction between hydrophobic part on the pigment surface and that of pigment dispersing resin.
- Past development of pigment dispersing resins or assistant for water-based paint or water-based ink has been advanced based on the foregoing viewpoints. For instance, Japanese Patent Application Laid-Open No. 154328/1975 proposed use of a straight chain anionic polymer containing acidic functional groups which is obtained through polymerization of a monomer mixture containing as a part of its monomer components an acidic functional group-containing, polymerizable unsaturated monomer such as (meth)acrylic acid, as the pigment dispersing resin. Said polymer, however, exhibits high solubility in aqueous media and hence is unsatisfactory in respect of dispersion stability of pigment dispersions. Furthermore, pigment dispersions formed with the use of said polymer show excessively high viscosity and are subject to a drawback of difficult handling.
- Japanese Patent Application Laid-Open No. 182304/1989, Japanese Patent Application Laid-Open No. 316240/1995 and Japanese Patent Application Laid-Open No. 502097/1998 disclosed, as the pigment dispersing resin, a graft copolymer obtained through copolymerization of carboxyl-containing macromonomers. Said graft copolymer excels in pigment dispersing stability because its trunk portion is hydrophobic and the branch portion is hydrophilic whereas pigment dispersions formed with the use of said copolymer show high viscosity, and the graft copolymer is far from being satisfactory in view of the increasing demand for pigment dispersions having high pigment concentration to save cost and to reduce VOC.
- Japanese Patent Application Laid-Open No. 255728/1997, Japanese Patent Application Laid-Open No. 267034/1997 and Japanese Patent Publication No. 19201/1996 disclose an idea of using, as pigment dispersing agent, a nonionic surfactant having polyoxyalkylene chain. Although capable of existing stably in water-based pigment dispersions, said surfactant is unsatisfactory in adsorption to pigment, and is in particular poor in let-down stability, and, moreover, inferior in the appearance of resultant coating film.
- On the other hand, top-coating paint for automotive finish are now required to have not only film performance such as high durability, acid resistance, washability (scratch resistance) and chipping resistance, but also still better appearance of coating film in sharpness, transparency, color development, and the like, than before.
- An object of the present invention is to provide pigment dispersing resins which excel in wetting property and dispersing stability even at high pigment concentration, and which can provide aqueous pigment dispersions having low viscosity, excellent in color developing property and giving a coating film with good appearance.
- A further object of the present invention is to provide a water-based pigment dispersion which has low viscosity and which excels in color-developing property.
- Another object of the invention is to provide a water-based paint which excels in curability and which is capable of forming a painted film of splendid finish appearance in sharpness, transparency and color-developing property and weatherability.
- Another object of the invention is to provide a water-based ink composition which excels in sharpness, transparency, color-developing property and weatherability.
- Other objects and characteristics of the invention will become apparent from the following descriptions.
- After assiduous study to achieve the above-mentioned objectives, the inventors of this invention have found out that a pigment dispersing resin which is obtained by copolymerizing a monomer having hydrophilic functional group which is a certain kind of ionic group, a nonionic hydrophilic monomer having polyoxyethylene chain and the like, and other ethylenically unsaturated monomers in the presence of radical polymerization initiator is quite suitable as a pigment dispersing resin for water-based paint or water-based ink.
- This invention provides a pigment dispersing resin which is a copolymer of:
-
- (A) polymerizable unsaturated monomer containing at least one kind of ionic functional group selected from the group consisting of quaternary ammonium base and sulfonic acid group;
- (B) nonionic polymerizable unsaturated monomer having polyoxyalkylene chain; and
- (C) other ethylenically unsaturated monomer.
- This invention also provides an aqueous pigment dispersion which comprises the above-mentioned pigment dispersing resin, pigment, aqueous medium and, if necessary, dispersion adjuvant as well.
- This invention further provides a water-based paint composition and a water-based ink composition each of which comprises the above-mentioned aqueous pigment dispersion.
- The following is a further detailed explanation about pigment dispersing resin, aqueous pigment dispersion, water-based paint composition and water-based ink composition of this invention.
- Pigment Dispersing Resin
- The pigment dispersing resin which is provided by this invention is a copolymer of (A) an ionic functional group-containing polymerizable unsaturated monomer, (B) a nonionic polymerizable unsaturated monomer, and (C) other ethylenically unsaturated monomer, as follows.
- Ionic Functional Group-Containing Polymerizable Unsaturated Monomer (A):
- Monomer (A) is a monomeric component by which to introduce a specific ionic functional group into a pigment dispersing resin. For this monomer (A), there is employed a polymerizable unsaturated monomer having at least one kind of ionic functional group which is selected from quaternary ammonium salt group and sulfonic acid group.
- Specific examples of monomer (A) include quaternary ammonium salt-containing polymerizable unsaturated monomers like: (meth)acryloyloxyalkyl trialkylammonium salt groups such as 2-(methacryloyloxy)ethyl trimethylammonium chloride, 2-(methacryloyloxy)ethyl trimethylammonium bromide and 2-(methacryloyloxy)ethyl trimethylammonium dimethylphosphate; (meth)acryloylaminoalkyltrialkyl ammonium salt groups such as (meth)acryloylaminopropyl trimethylammonium chloride and (meth)acryloylaminopropyl trimethylammonium bromide; tetraalkyl(meth)acrylate such as tetrabutylammonium(meth)acrylate; and trialkylbenzylammonium (meth)acrylate such as trimethylbenzylammonium (meth)acrylate; and sulfonic acid group-containing polymerizable unsaturated monomers like: (meth)acrylamide-alkanesulfonic acid such as 2-acrylamide-2-methylpropanesulfonic acid; and sulfoalkyl(meth)acrylate such as 2-sulfoethyl(meth)acrylate. These monomers may be used either singly or in combination of two or more. Among the above-mentioned monomers, 2-(methacryloyloxy)ethyltrimethylammonium chloride and 2-acrylamide-2-methylpropanesulfonic acid are particularly suitable as polymerizable unsaturated monomer (A).
- The above-mentioned quaternary ammonium salt group-containing polymerizable unsaturated monomer may be used together with tertiary amino group-containing polymerizable unsaturated monomer. For example, 2-(methacryloyloxy)ethyltrimethylammonium chloride is preferably used together with N,N-dimethylaminoethyl(meth)acrylate and/or N,N-diethylaminoethyl(meth)acrylate, which can broaden the range of pigment to which the pigment dispersing resin of this invention is applicable.
- Examples of tertiary amino group-containing polymerizable unsaturated monomer which can be used together include N,N-dialkylaminoalkyl (meth)acrylates such as N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-di-t-butylaminoethyl (meth)acrylate and N,N-dimethylaminobutyl (meth)acrylate; and N,N-dialkylaminoalkyl (meth)acrylamides such as N,N-dimethylaminoethyl (meth)acrylamide, N,N-diethylaminoethyl (meth)acrylamide and N,N-dimethylaminopropyl (meth)acrylamide;
- In the case of said combined use, the weight ratio of (a) quaternary ammonium salt group-containing polymerizable unsaturated monomer to (b) tertiary amino group-containing polymerizable unsaturated monomer is usually in a range of 10/1 to 1/20, especially 5/1 to 1/10.
- When quaternary ammonium salt group-containing polymerizable unsaturated monomer is used as monomer (A), quaternary ammonium salt group which is introduced into resin acts effectively especially for the sake of dispersibility of acidic pigment or neutral pigment. When, on the other hand, sulfonic acid group-containing polymerizable unsaturated monomer is used as monomer (A), sulfonic group which is introduced into resin acts effectively especially for the sake of dispersibility of basic pigment.
- Nonionic Polymerizable Unsaturated Monomer (B) Containing Polyoxyalkylene Chain:
- Monomer (B) is a monomeric component which gives hydrophilicity to the formed copolymer, and which contains polyoxyalkylene chain and polymerizable unsaturated monomer in molecule. Examples of said polyoxyalkylene chain include polyoxyethylene chain, polyoxypropylene chain and polyoxyethylene-polyoxypropylene block chain.
- Polyoxyalkylene chain has preferably a molecular weight in a range of 200 to 3,000, in particular 300 to 2,500.
-
- in which
- R1 stands for hydrogen or CH3,
- R2 stands for hydrogen or C1 to C4 alkyl group,
- m is an integer of 4-60, in particular 6-50, and
- n is an integer of 2-3, preferably 2, and
- oxyalkylene units (CnH2nO) in the number of m may be the same or different from each other.
- Specific examples of such monomer (B) are as follows: tetraethylene glycol (meth)acrylate, methoxytetraethylene glycol (meth)acrylate, ethoxytetraethylene glycol (meth)acrylate, n-butoxytetraethylene glycol (meth)acrylate, tetrapropylene glycol (meth)acrylate, methoxytetrapropylene glycol (meth)acrylate, ethoxytetrapropylene glycol (meth)acrylate, n-butoxytetrapropylene glycol (meth)acrylate, polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate and ethoxypolyethylene glycol (meth)acrylate, among which polyethylene glycol (meth)acrylate and polypropylene glycol (meth)acrylate are particularly suitable.
- These monomers may be used either singly or in combination of two or more.
- Other Ethylenically Unsaturated Monomer (C):
- Other ethylenically unsaturated monomer (C) is a polymerizable unsaturated monomer other than the above monomers (A) and (B), which is copolymerizable with said monomers (A) and (B), and is suitably selected according to properties required of pigment dispersing resins.
- Concrete examples of such monomer (C) include C1 to C24 straight chain- or cyclic-alkyl (meth)acrylate monomer such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate and tridecyl (meth)acrylate; hydroxyl group-containing polymerizable unsaturated monomer (typically hydroxyalkyl (meth)acrylate monomer) such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate and hydroxybutyl (meth)acrylate; carboxyl group-containing polymerizable unsaturated monomer such as methacrylic acid and acrylic acid; acrylamide and (meth)acrylamide; oxetane ring-containing (meth)acrylates such as 3-ethyl-3-(meth)acryloyloxymethyl oxetane, 3-methyl-3-(meth)acryloyloxymethyl oxetane and 3-butyl-3-(meth)acryloyloxymethyl oxetane; aromatic vinyl compounds such as styrene, α-methyl styrene and vinyl toluene; (meth)acrylonitrile; and vinyl acetate. These polymerizable unsaturated monomers may be used either singly or in combination of two or more.
- The pigment dispersing resin which is provided by the present invention is used, for example, for the preparation of colored water-based base coating paint. Hence, the pigment dispersing resin of the present invention desirably reacts with curing agent component, e.g., amino resins or optionally-blocked polyisocyanate compounds, to be incorporated into the crosslinked paint film, for the sake of favorable paint film performance. Therefore, monomer (C) desirably contains a hydroxyl group-containing polymerizable unsaturated monomer at least as a part of its component.
- When used for water-based ink, monomer (C) desirably contains a hydroxyl group-containing polymerizable unsaturated monomer at least as a part of its component from a viewpoint of wettability to printed surface, spreadability of ink and reactivity with the above-mentioned curing agent component, and the like.
- Specific examples of such hydroxyl group-containing polymerizable unsaturated monomer include monoesters between polyhydric alcohols and (meth)acrylic acid such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 2,3-dihydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, polyethylene glycol mono(meth)acrylate and the like; and compounds formed by ring-opening polymerization of said monoesters of polyhydric alcohols and (meth)acrylic acid, with ε-caprolactone. In particular, 4-hydroxybutyl (meth)acrylate, polyethylene glycol mono(meth)acrylate and compounds formed by ring-opening polymerization of said monoesters of polyhydric alcohols and acrylic or methacrylic acid, with ε-caprolactone, show favorable reactivity. The above-recited compounds may be used either singly or in combination of two or more.
- The use rate of the hydroxyl group-containing polymerizable unsaturated monomers is normally 3-30% by weight, in particular 5-25% by weight, based on the total weight of the monomers (A), (B) and (C).
- The pigment dispersing resin of this invention is intended to be used chiefly for aqueous system. With a view to keeping the water dispersibility of said resin, there may be used, in addition to the above-mentioned monomer (B), carboxyl group-containing polymerizable unsaturated monomer at least as a part of the above-mentioned other ethylenically unsaturated monomer (C), if necessary.
- Pigment Dispersing Resin
- The pigment dispersing resin of this invention is produced by the copolymerization of ionic functional group-containing polymerizable unsaturated monomer (A), nonionic polymerizable unsaturated monomer (B) and other ethylenically unsaturated monomer (C). The proportion of monomers (A), (B) and (C) in copolymerization is not strictly restricted, but may be varied depending on the physical property required of formed copolymer, and the like. Generally, however, the proportion may be set in the following range on the basis of the total weight of monomers (A), (B) and (C):
-
- Monomer (A): 1 to 15% by weight, preferably 2 to 10% by weight, much more desirably 3 to 8% by weight;
- Monomer (B): 5 to 40% by weight, preferably 7 to 35% by weight, much more desirably 10 to 30% by weight;
- Monomer (C): 45 to 94% by weight, preferably 55 to 91% by weight, much more desirably 62 to 87% by weight.
- The copolymerization of monomers (A), (B) and (C) may be conducted by any known method, for instance, by solution polymerization in an organic solvent, emulsion polymerization in water, or the like, among which solution polymerization is suitable. In an example of copolymerization by solution polymerization, a mixture of the above-mentioned monomers (A), (B) and (C) and a radical polymerization initiator is dissolved or dispersed in an organic solvent, and heated for polymerization at a temperature of about 80° C. to about 200° C. with stirring for 1 to 10 hours.
- Examples of organic solvent which is usable for copolymerization include hydrocarbon solvents such as heptane, toluene, xylene, octane and mineral spirit; ester solvents such as ethyl acetate, n-butyl acetate, isobutyl acetate, ethylene glycol monomethylether acetate and diethylene glycol monobutylether acetate; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and cyclohexanone; alcohol solvents such as methanol, ethanol, isopropanol, n-butanol, sec-butanol and isobutanol; ether solvents such as n-butyl ether, dioxane, ethylene glycol monomethyl ether and ethylene glycol monoethyl ether and the like; and aromatic petroleum solvents such as Swasol™ 310, Swasol™ 1000 and Swasol™ 1500 of Cosmo Oil Co., Ltd. These organic solvents can be used either singly or in combination of two or more. At the time of (co-)polymerization, the organic solvent is normally used in an amount not more than 400 parts by weight based on 100 parts by weight of the monomer components to be (co-)polymerized.
- Examples of the above-mentioned radical polymerization initiator include organic peroxide polymerization initiators like ketone peroxides such as cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide and methylcyclohexanone peroxide; peroxyketals such as 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-butylperoxy)cyclohexane and n-butyl-4,4-bis(tert-butylperoxy)valerate; hydroperoxides such as cumene hydroperoxide and 2,5-dimethylhexane-2,5-dihydroperoxide; dialkylperoxides such as 1,3-bis(tert-butylperoxy-m-isopropyl)benzene, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, diisopropylbenzene peroxide and tert-butylcumyl peroxide; diacyl peroxides such as decanoyl peroxide, lauroyl peroxide, benzoyl peroxide and 2,4-dichlorobenzoyl peroxide; peroxycarbonates such as bis(tert-butylcyclohexyl)peroxydicarbonate; and peroxy esters such as tert-butylperoxybenzoate and 2,5-dimethyl-2,5-di(benzoylperoxy)hexane; and azo polymerization initiators like 2,2′-azobisisobutyronitrile, 1,1-azobis(cyclohexane-1-carbonitrile), azocumene-2,2′-azobismethylvaleronitrile and 4,4′-azobis(4-cyanovalerianic acid). The use rate of these polymerization initiators is not critical. Normally, however, it is desirably within a range of 0.1-15 parts by weight, in particular 0.3-10 parts by weight, per 100 parts by weight of the total of the monomers to be copolymerized.
- In the above-mentioned polymerization reaction, the method of addition of the monomeric components or the polymerization initiator is not critical. The polymerization initiator is, however, conveniently added dropwise plural times by portions over the time spun from the initial stage of polymerization to the advanced stage, rather than added in a lump sum at the initial stage, for the sake of effective temperature control during the polymerization reaction and of the prevention of undesirable cross-linked product such as gel from formed.
- The molecular weight of thus produced copolymer is not in particular restricted. Preferably, however, the weight average molecular weight of copolymer is within a range of 500 to 100,000, in particular 1,000 to 70,000, especially 3,000 to 50,000, from a viewpoint of aqueous dispersion stability, pigment dispersibility, viscosity, VOC and color number (degree of pigmentation).
- The pigment dispersing resin of this invention which comprises copolymer produced in the afore-mentioned manner is used for the preparation of water-based pigment dispersion. The pigment dispersion resin is therefore required to have both wettability with regard to pigment and pigment dispersion stability. Monomer (A) component which constitutes the pigment dispersing resin of this invention is capable of improving the adsorption of pigment dispersing resin to pigment, and thus acts advantageously for the improvement both in wettability with regard to pigment and in the dispersion stability of resin. Monomer (B) component which constitutes the pigment dispersing resin of this invention contributes to the improvement of pigment dispersing resin in the solubility in continuous phase (aqueous medium), and acts advantageously in particular for the improvement of pigment dispersing resin in dispersion stability. Furthermore, copolymerization with use of tertiary amino group-containing polymerizable unsaturated monomer in combination with monomer (A) provides a pigment dispersing resin which has remarkably improved capability to disperse black (carbon black) pigment which is said to be especially difficult to be dispersed.
- Hence, the pigment dispersing resin of this invention is quite useful for the preparation of water-based pigment dispersion together with pigment and aqueous medium.
- Water-Based Pigment Dispersion
- The water-based pigment dispersion of this invention can be prepared by blending, with the afore-mentioned pigment dispersing resin of the invention, pigment, aqueous medium and, as circumstances may demand, other pigment dispersing resins, dispersing agent, basic neutralizer and other additives as well.
- Examples of pigment include: bright pigments such as aluminum powder, copper powder, nickel powder, stainless steel powder, chromium powder, micaceous iron oxide, titanium dioxide-coated mica powder, iron oxide-coated mica powder and bright graphite; organic red pigments such as Pink EB, azo- and quinacridone-derived pigments; organic blue pigments such as cyanin blue and cyanin green; organic yellow pigments such as benzimidazolone-, isoindolin- and quinophthalone-derived pigments; inorganic colored pigments such as titanium white, titanium yellow, iron red, carbon black, chrome yellow, iron oxide and various calcined pigments. Also extender pigment may be included.
- These pigments may be subjected to any known treatment such as acid base treatment, coupling agent treatment or oxidation/reduction treatment.
- Among the above pigments, concrete examples of pigments which are used in particular for ink-jet ink include black pigment like Raven 7000, Raven 5750, Raven 5250, Raven 5000 ULTRAII, Raven 3500, Raven 2000, Raven 1500, Raven 1250, Raven 1200, Raven 1190 ULTRAII, Raven 1170, Raven 1255, Raven 1080 and Raven 1060 (which are manufactured by Columbian Carbon Co.); Regal400R, Regal330R, Regal660R, Mogul L, Black Pearls L, Monarch 700, Monarch 800, Monarch 880, Monarch 900, Monarch 1000, Monarch 1100, Monarch 1300 and Monarch 1400 (which are manufactured by Cabot Co.); Color Black FW1, Color Black FW2, Color Black FW2V, Color Black 18, Color Black FW200, Color Black S150, Color Black S160, Color Black S170, Printex35, PrintexU, PrintexV, Printex140U, Printex140V, Special Black 6, Special Black 5, Special Black 4A and Special Black 4 (which are manufactured by Degussa Co.); No. 25, No. 33, No. 40, No. 47, No. 52, No. 900, No. 2300, MCF-88, MA600, MA7, MA8 and MA100 (which are manufactured by Mitsubishi Chemical Corporation); cyanic color pigment like C.I. Pigment Blue-1, C.I. Pigment Blue-2, C.I. Pigment Blue-3, C.I. Pigment Blue-15, C.I. Pigment Blue-15:1, C.I. Pigment Blue-15:3, C.I. Pigment Blue-15:34, C.I. Pigment Blue-16, C.I. Pigment Blue-22 and C.I. Pigment Blue-60; magenta color pigment like C.I. Pigment Red-5, C.I. Pigment Red-7, C.I. Pigment Red-12, C.I. Pigment Red-48, C.I. Pigment Red-48:1, C.I. Pigment Red-57, C.I. Pigment Red-112, C.I. Pigment Red-122, C.I. Pigment Red-123, C.I. Pigment Red-146, C.I. Pigment Red-168, C.I. Pigment Red-184 and C.I. Pigment Red-202; and yellow color pigment like C.I. Pigment Yellow-1, C.I. Pigment Yellow-2, C.I. Pigment Yellow-3, C.I. Pigment Yellow-12, C.I. Pigment Yellow-13, C.I. Pigment Yellow-14, C.I. Pigment Yellow-16, C.I. Pigment Yellow-17, C.I. Pigment Yellow-73, C.I. Pigment Yellow-74, C.I. Pigment Yellow-75, C.I. Pigment Yellow-83, C.I. Pigment Yellow-93, C.I. Pigment Yellow-95, C.I. Pigment Yellow-97, C.I. Pigment Yellow-98, C.I. Pigment Yellow-114, C.I. Pigment Yellow-128, C.I. Pigment Yellow-129, C.I. Pigment Yellow-151 and C.I. Pigment Yellow-154. These are only examples, and not restrictive at all.
- Blend ratios of these pigments are not subject to specific limitations. Normally, however, they are within a range of 10-3,000, preferably 15-2,000, inter alia 15-1,500 parts by weight, per 100 parts by weight of a pigment dispersing resin of the present invention in consideration of pigment dispersing ability, dispersion stability and color developing property of resulting pigment dispersions.
- Examples of useful aqueous medium include water and water-organic solvent mixtures formed by dissolving organic solvent such as water-soluble organic solvent in water. Useful organic solvent in such mixtures include, for example, water-soluble organic solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, propylpropylene glycol, butyl cellosolve, propylene glycol monomethyl ether and 3-methyl-3-methoxybutanol; and water-hardly-soluble or water-insoluble organic solvents such as xylene, toluene, cyclohexanone, hexane and pentane. These organic solvents may be used either singly or as a mixture of two or more. Water-insoluble organic solvent may be concurrently used with water-soluble organic solvent, in minor quantities. The mixing ratio of water and organic solvent is not critical. It is desirable, however, that the organic solvent content of the mixture does not exceed 50%, in particular 35%, by weight. The blend ratio of the aqueous medium is not critical. It is desirable, however, that the ratio is within a range of 50-5,000, preferably 100-3,000, inter alia 100-2,000, parts by weight per 100 parts by weight of a pigment dispersing resin or resins of the present invention in respect of viscosity in the occasion of dispersing the pigment, pigment dispersing ability, dispersion stability and production efficiency.
- Examples of other pigment dispersing resins which are used where necessary include acryilc resin which is produced by the copolymerization of carboxylic group-containing polymerizable unsaturated monomer such as (meth)acrylic acid with hydroxyl group-containing polymerizable unsaturated monomer such as 2-hydroxyethyl (meth)acrylate and other polymerizable unsaturated monomer in the presence of radical polymerization initiator. Such an acrylic resin preferably has a weight average molecular weight within a range of about 2,000 to 150,000, in particular 5,000 to 100,000, and an acid value in a range of 5 to 150, especially 15 to 80, and a hydroxyl value in a range of 10 to 160, in particular 30 to 120. Other pigment dispersing resins also include polyester resin which is produced by condensation reaction between polyhydric alcohol such as ethylene glycol, butylene glycol, 1,6-hexane diol, trimethylol propane and pentaerythritol and polyvalent carboxylic acid component such as adipic acid, isophthalic acid, terephthalic acid, phthalic anhydride, hexahydrophthalic anhydride and trimellitic acid anhydride. Such a polyester resin preferably has a weight average molecular weight within a range of about 1,000 to 100,000, in particular 1,500 to 70,000, and an acid value in a range of 5 to 150, especially 10 to 75, and a hydroxyl value in a range of 10 to 160, in particular 30 to 120.
- In the process of production of water-based pigment dispersion of this invention, pigment and pigment dispersing resin of this invention are usually diluted with other pigment dispersing resin after dispersed in aqueous medium. Owing to this dilution, the resultant dispersion has stability as enamel or long-term storage stability, or becomes readily miscible with binder component of paint etc.
- As for the proportion of the pigment dispersing resin (I) of this invention and other pigment dispersing resin (II), resin (II) is suitably used in an amount of 5 to 300 parts by weight, in particular 20 to 150 parts by weight, per 100 parts by weight of resin (I).
- As examples of dispersing agent to be used where necessary, Disperbyk™ 184 or 190 (BYK-Chemie Co.) may be named. Other usable additives include anti-foaming agent, antiseptic, rust-proofing agent and plasticizing agent. It is desirable that blend ratio of any of these additives does not exceed 50 parts by weight per 100 parts by weight of the pigment dispersing resin of the present invention in respect of pigment dispersing ability of the resin, stability of the pigment paste, let-down stability or coating film performance.
- When other pigment dispersing resins have carboxyl groups, basic neutralizer is used to neutralize the carboxyl groups and to make said other pigment dispersing resins water-soluble or water-dispersible. Specific examples of such a basic neutralizer include inorganic bases such as ammonium hydroxide, sodium hydroxide and potassium hydroxide; and amines such as aminomethyl propanol, aminoethylpropanol, dimethylethanolamine, triethylamine, diethylethanolamine, dimethylaminopropanol and aminomethylpropanol. Such a basic neutralizer should be used in a sufficient rate to render said other pigment dispersing resins water-soluble or water-dispersible. Normally, therefore, basic neutralizer is used at a rate sufficient to make the neutralization equivalent of carboxyl group in said other pigment dispersing resins 0.3-1.5, preferably 0.4-1.3.
- In this invention, no basic neutralizer is desirably used when pigment is to be dispersed with use of the pigment dispersing resin of this invention. If a basic neutralizer is used, pigment adsorbs the basic neutralizer before the pigment dispersing resin of this invention is adsorbed on the pigment, with the result that dispersibility may possibly be damaged. When, on the other hand, pigment is dispersed by the pigment dispersing resin of this invention and is then diluted with other pigment dispersing resins, neutralization with basic neutralizer is desirable.
- Water-based pigment dispersions can be formulated by homogeneously mixing and dispersing the above-described components with a dispersing machine such as paint shaker, Scandix, LMZ mill, DCP pearl mill and the like.
- Water-Based Paint Compositions
- Thus prepared water-based pigment dispersion can be blended with binder resin for paint and suitably with other additives such as aqueous medium, fine polymer particles, curing catalyst, basic neutralizer, ultraviolet absorber, ultraviolet stabilizer, paint film surface regulating agent, antioxidant, flow property regulator, silane coupling agent and the like, and stably dispersed in aqueous medium to provide a water-based paint composition.
- Useful paint binder resins include combination of base resins which are normally used in the field of water-soluble or water-dispersible paint, with curing agent. Examples of such base resin include hydroxyl group-containing acrylic resin, hydroxyl group-containing polyester resin, epoxy group-containing copolymer resin and carboxyl group-containing high acid value resin. As examples of useful curing agent, amino resins and optionally-blocked polyisocyanate compounds can be named, which can be used either singly or in combination.
- As said hydroxyl group-containing acrylic resin, copolymers having a weight-average molecular weight within a range of from about 2,000 to about 100,000, in particular, from 5,000 to 50,000, which are obtained by copolymerization of a hydroxyl group-containing polymerizable unsaturated monomer such as 2-hydroxyethyl (meth)acrylate with other polymerizable unsaturated monomer or monomers in the presence of a radical polymerization initiator are preferred.
- As hydroxyl group-containing polyester resin, those having a weight-average molecular weight within a range of from about 1,000 to about 100,000, in particular, from 1,500 to 70,000, which are obtained by condensation reaction between polyhydric alcohols such as ethylene glycol, butylene glycol, 1,6-hexanediol, trimethylolpropane and pentaerythritol, and polyvalent carboxylic acids such as adipic acid, isophthalic acid, terephthalic acid, phthalic anhydride, hexahydrophthalic anhydride and trimellitic anhydride are preferred.
- As amino resins which are used as curing agent, melamine resins are used in general. In particular, methylolmelamine resins and melamine resins whose methylol groups are at least partially etherified with C1-C4 monohydric alcohols are suitable. While it is preferred that they be water-soluble or water-dispersible, water-insoluble ones can also be used.
- As commercially available melamine resins useful for the above purpose, the following may be named for example: butyl etherified melamine resins such as U-Van™ 20SE-60 and 225 (Mitsui Chemicals, Inc.), Super Beckamine™ G840 and G821 (Dainippon Ink & Chemicals, Inc.); methyl etherified melamine resins such as Sumimal™ M-100, M-40S and M-55 (Sumitomo Chemical Co., Ltd.), Cymel™ 303, 325, 327, 350 and 370 (Mitsui Cytec Co., Ltd.), Nikalac™ MS17 and MS15 (Sanwa Chemical Co., Ltd.) and Resimine™ 741 (Monsanto Co.); methyl- and iso-butyl-mixed etherified melamine resins such as Cymel™ 235, 202, 238, 254, 272 and 1130 (Mitsui Cytec Co., Ltd.), and Sumimal™ M66B (Sumitomo Chemical Co., Ltd.); and methyl- and n-butyl-mixed etherified melamine resins such as Cymel™ XV805 (Mitsui Cytec Co., Ltd.) and Nikalac™ MS95 (Sanwa Chemical Co., Ltd.).
- Said optionally-blocked polyisocyanate compounds usable as the curing agent include both of polyisocyanate compounds having free isocyanate groups and those in which isocyanate groups are blocked.
- Examples of polyisocyanate compounds having free isocyanate groups include organic polyisocyanates per se, e.g., aliphatic diisocyanates such as hexamethylenediisocyanate and trimethylhexamethylenediisocyanate; cycloaliphatic diisocyanates such as hydrogenated xylylenediisocyanate and isophoronediisocyanate; aromatic diisocyanates such as tolylenediisocyanate and 4,4′-diphenylmethanediisocyanate; and polyisocyanate compounds having not less than 3 isocyanate groups such as triphenylmethane-4,4′,4″-triisocyanate, 1,3,5-triisocyanatebenzene, 2,4,6-triisocyanatetoluene and 4,4′-dimethyldiphenylmethane-2,2′,5,5′-tetraisocyanate. These organic polyisocyanates may be used in such forms as adducts with polyhydric alcohol, low molecular weight polyester resin, water or the like; or cyclized polymers composed of these organic polyisocyanates, or isocyanate biuret.
- As commercially available polyisocyanate compounds having free isocyanate groups, for example, Burnock™ D-750, -800, DN-950, DN-970 and DN-15-455 (Dainippon Ink & Chemicals, Inc.); Desmodur™ L, N, HL and N3390 (Sumitomo Bayer Urethane Co., Ltd.); Takenate™ D-102, -202, -110 and -123N (Takeda Chemical Industries, Ltd.); Coronate™ EH, L, HL and 203 (Nippon Polyurethane Industry Co., Ltd.); and Duranate™ 24A-90CX (Asahi Chemical Industry Co., Ltd.) may be named.
- As polyisocyanate compounds in which isocyanate groups are blocked, those formed by blocking isocyanate groups in the above-described polyisocyanate compounds having free isocyanate groups, with a known blocking agent such as oxime, phenol, alcohol, lactam, malonic acid ester or mercaptane can be used. Typical commercially available polyisocyanate compounds whose isocyanate groups are blocked include Burnock™ D-550 (Dainippon Ink & Chemicals, Inc.), Takenate™ B-815-N (Takeda Chemical Industries, Ltd.), Additol™ VXL-80 (Hoechst AG, Germany), Coronate™ 2507 (Nippon Polyurethane Industry Co., Ltd.) and Desmodur™ N3500 (Sumitomo Bayer Urethane Co., Ltd.).
- The aqueous medium which is used when necessity arises can be suitably selected from those useful for preparing the pigment dispersions as earlier explained.
- The fine polymer particles are provided by a polymer which does not dissolve in water-based paint compositions of the present invention but disperses as fine particles. Suitable average particle size normally is within a range of 0.01-1 μm, preferably 0.05-0.8 μm. Inside of the particles may either be crosslinked or not, the former being preferred. As such fine polymer particles, those known per se as flow property regulator in the field of paint can be used.
- Where an optionally-blocked polyisocyanate compound is used as the curing agent, organometal catalysts such as dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate and the like; and amines such as triethylamine, diethanolamine and the like can be conveniently used as the curing catalyst. When an amino resin such as melamine resin is used as the curing agent, such curing catalyst as sulfonic acid compound, e.g., paratoluenesulfonic acid, dodecylbenzensulfonic acid and dinonylnaphthalenesulfonic acid; or amine-neutralization products of these sulfonic acid compounds are conveniently used.
- As examples of ultraviolet absorber, benzophenone, benzotriazole, cyanoacrylate, salicylate and oxalic acid anilide compounds may be named. As the ultraviolet stabilizer, hindered amine compounds can be used.
- The water-based paint compositions according to the invention are useful as coloring paint compositions (including metallic paint and iridescent paint) into which various pigments such as coloring pigments, metallic pigments and iridescent pigments are blended. In particular, they can be conveniently used as top coating paint (coloring base coat) for automotive finish.
- The paint compositions according to the invention can be applied onto various substrate, following the practice known per se, and can form cured coating film when baked normally at temperatures of from about 80° C. to about 180° C., for about 10-60 minutes. Where a short time baking is desired, for example, a cured coating film can be formed by baking under such conditions as will attain the highest temperature of from about 180° C. to about 250° C. of the material being baked, for about 20-about 60 seconds.
- Substrate to be coated with the paint compositions of the present invention are subject to no specific limitation, examples of which include metallic substrate such as steel sheet, aluminum, tin and the like; other substrate such as of mortar, cement, plastics, glass and the like; and these substrates which have been subjected to surface treatment and/or coating film formation. In particular, metallic substrates and plastic substrates are suitable for use.
- Examples of steel sheet include cold-rolled steel sheet, molten galvanized steel sheet, electrogalvanized steel sheet, aluminum plated steel sheet, stainless steel sheet, copper plated steel sheet, tin plated steel sheet, lead-tin alloy plated steel sheet (ternesheet); steel sheet plated with zinc alloy such as iron-zinc, aluminum-zinc, nickel-zinc alloys and the like. As surface-treated steel sheet, for example, steel sheet which is given a chemical treatment such as phosphate treatment, chromate treatment and the like may be named.
- As the substrate on which coating film has been formed, a substrate which has been optionally surface treated and thereafter primer-coated, or said substrate which is further coated with an inter-coat can be used.
- When a paint composition according to the present invention is used for automotive finish, typical substrates include: a chemically treated steel sheet which is further electrodeposition-coated with primer and optionally coated with an inter coat thereon; various plastic substrates (which have been optionally surface treated, primer-coated or further coated with an inter coat); and composite members which are combination of the foregoing.
- The electrodepositing paint for electrodeposition coating may be anionic or cationic, cationic type being preferred because of good corrosion resistance. As cationic electrodeposition paint, any of those known per se can be used. For example, those containing as the resin component a base resin having hydroxyl groups and cationic groups and as the curing agent a blocked polyisocyanate compound can be conveniently used.
- The water-based paint compositions according to the present invention are conveniently used for colored coating film-forming compositions for 1-coat-1-bake finish of substrates, and for top coating colored base paint compositions in 2-coat-1-bake (2C1B), 2-coat-2-bake (2C2B), 3-coat-1-bake (3C1B), 3-coat-2-bake (3C2B), or 3-coat-3-bake (3C3B) systems.
- Where the paint compositions according to the present invention are used for colored top coating for automobiles, the top coat can be formed through the steps of, applying the paint composition onto a primer film such as an electrodeposited coating film or onto an uncured or cured inter coat applied onto such a primer film, by such means as electrostatic atomizing coating (bell-type or the like) or aerosol coating, to a dry film thickness of normally from about 10 to about 60 μm; and allowing it to stand for several minutes at room temperature, or forcedly drying the film for several minutes at temperatures ranging from about 50 to about 80° C.; thereafter applying a clear top coat paint thereon; and baking the same at temperatures of from about 120 to about 180° C. normally for about 10-about 60 minutes. It is also possible to apply a clear top coating paint onto the uncured or cured colored top coat film, by such means as electrostatic atomizing coating (bell-type or the like) or aerosol coating, to a dry film thickness of normally from about 20 to about 100 μm followed by curing, to form multi-layered top coating film.
- As such clear top coating paint to be applied onto the above-described colored top coat, those conveniently used are clear top coating paints comprising at least one base resin having a crosslinkable functional group (e.g., hydroxyl, epoxy, carboxyl, alkoxysilane group and the like) such as acrylic, vinyl, polyester, alkyd and urethane resins; and at least one crosslinking agent for crosslinking and curing the base resin, such as alkyletherified melamine resin, urea resin, guanamine resin, optionally-blocked polyisocyanate compound, epoxy resin and carboxyl-containing compound. In such clear top coating paint, convenient blend ratio of the base resin and the crosslinking agent is, based on the sum of the two components, normally 50-90% by weight of the base resin component and 10-50% by weight of the cross-linking agent component. The form of such clear top coating paint is subject to no specific limitation, and it can take any desired form such as organic solvent type, non-aqueous liquid dispersion type, aqueous solution type, aqueous dispersion (slurry) type, high solid type or powder type.
- Water-Based Ink Composition
- According to this invention, water-based ink composition can be prepared from the above-mentioned water-based pigment dispersion as it is, or from said water-based pigment dispersion and, added thereto if necessary, additives such as aqueous medium, water soluble resin, thickening agent, fluidity adjustor, film forming assistant, surfactant, pH adjustor, mildew-proofing agent, antioxidant, ultraviolet absorbing agent, ultraviolet stabilizing agent and chelating agent and dye stuffs as well.
- As aqueous medium, anyone may be selected for use from those explained above as ones which are usable where necessary for the production of the water-based pigment dispersion of this invention.
- As water soluble resin, there may be used, from the viewpoint of ink property control, polyethylene imine, polyamines, polyvinyl pyrrolidone, cellulose derivative, polysaccharides, acrylic emulsion or polyurethane emulsion.
- Dispersed particles which are contained in the water-based ink composition of this invention have preferably an average particle size in a range of 1 to 300 nm, in particular 1 to 200 nm. The viscosity of ink liquid is preferably within a range of 1.0 to 10 mPa·s, in particular 1.5 to 7 mPa·s.
- The water-based ink composition of this invention is in particular suitable as ink-jet ink, and is used for ink-jet drawing by usual ink-jet drawing system. Ink-jet drawing system may be any of piezo ink-jet type, thermal ink-jet type or any other known type. The water-based ink composition of this invention may be applied not only to normal ink-jet drawing device but also to a drawing device which is equipped with heater or the like with which to control ink drying; to a recording device which is equipped with intermediate transfer mechanism by which to print recording material on an intermediate medium and then to transfer the resultant print on recording medium such as paper; and to automatic drawing device by which to directly paint wall, outdoor sign board or automobile body.
- Substrate on which the ink composition of this invention is to be applied is not restricted in particular. There may be mentioned base material such as paper, metal or plastics; base material such as mortar or slate; or these base materials which have been subjected to surface treatment and/or coating film formation.
- Hereinafter the invention is explained in further details, referring to production examples, working examples and comparative examples, in which parts and percentages are by weight unless otherwise specified.
- Preparation of Pigment Dispersing Resins
- An ordinary reaction vessel for producing acrylic resins, equipped with a stirrer, thermometer and a reflux condenser was charged with 45 parts of ethylene glycol monobutyl ether. The content in the vessel was heated under stirring, and maintained at 110° C. Into the system, a mixture of 10 parts of styrene, 40 parts of methyl methacrylate, 25 parts of n-butyl methacrylate, 10 parts of 2-hydroxyethyl methacrylate, 3 parts of methacrylic acid, 7 parts of 2-(methacryloyloxy)ethyltrimethyl ammonium chloride, 5 parts of “NF BISOMER™ PEM6E” (trademark of polyethylene glycol monomethacrylate having a molecular weight of about 350, manufactured by Dai-ich Kogyo Seiyaku Co., Ltd.,), 4 parts of azobisisobutyronitrile and 15 parts of isobutyl alcohol was added dropwise over a period of 3 hours, followed by 30 minutes' aging at 110° C. Then an additional catalytic liquid mixture of 20 parts of ethylene glycol monobutyl ether and 0.5 part of azobisisobutyronitrile was added dropwise over a period of 1 hour, followed by an hour's aging at 110° C. and cooling. Thus, a pigment dispersing resin (A-1) solution having a solid content of 55% was obtained.
- Example 1 was repeated except that the formulation of the used components was varied for each run as shown in the following Tables 1 and 2, to provide solutions of pigment dispersing resins (A-2) to (A-9), and solutions of pigment dispersing resins (AC-1) to (AC-11). The solid contents of these solutions, and resin acid values of these resins are as shown in the same Tables 1 and 2. The note (*1) in Tables 1 and 2 means as follows Incidentally, the amount of NF BISOMER™ S20W in Table 1 is shown by solid content.
TABLE 1 Examples 1 2 3 4 5 6 7 8 9 Solution of pigment-dispersing resin A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 Ethylene glycol monobutyl ether 45 35 38 38 38 38 38 38 38 Isobutyl alcohol 32 32 32 32 32 32 32 Styrene 10 10 Methyl methacrylate 40 40 50 48 40 40 50 48 40 n-Butyl acrylate 20 20 20 20 20 20 20 n-Butyl methacrylate 25 25 2-Ethylhexyl methacrylate Isostearyl acrylate 10 10 Lauryl methacrylate 2-Hydroxyethyl methacrylate 10 10 2-Hydroxyethyl acrylate 5 5 5 5 5 5 5 Methacrylic acid 3 Dimethylaminoethyl methacrylate 10 Methacryloyloxyethyl trimethyl 7 5 7 5 5 ammonium chloride 2-Acrylamide-2-methylsulfonic acid 5 5 7 5 NF BISOMER ™ PEM6E 5 10 NF BISOMER ™ S20W (*1) 20 20 20 20 20 20 20 Deionized water 10 Azobisisobutyronitrile 4 4 1 1 1 1 1 1 1 Isobutylalcohol 15 20 Additional Ethyleneglicol 20 15 10 10 10 10 10 10 10 catalytic monobutyl ether mixture Azobisisobutyronitrile 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Special Solid content (%) 55 55 50 50 50 50 50 50 50 value Resin acid value (mgKOH/g) 19.6 5 — — — — 38 50 38 Hydroxyl value (mgKOH/g) 43 43 24 24 24 24 24 24 24 Weight average molecular weight 20000 20000 35000 35000 35000 35000 35000 35000 35000
Note
(*1) NF BISOMER ™ S20W: Trademark of 50% water-diluted methoxy polyethylene glycol monomethacrylate having a molecular weight of about 2080, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.)
-
TABLE 2 Examples 1 2 3 4 5 6 7 8 9 10 11 Solution of pigment-dispersing resin AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7 AC-8 AC-9 AC-10 AC-11 Ethylene glycol monobutyl ether 55 55 55 55 55 55 65 25 38 50 33 Isobutyl alcohol 32 20 32 Styrene 10 10 10 10 10 Methyl methacrylate 40 40 30 36 33 32 32 32 55 44 60 n-Butyl acrylate 20 20 25 n-Butyl methacrylate 39 30 20 20 20 20 20 2-Ethylhexyl methacrylate 20 20 20 20 20 Lauryl methacrylate 10 2-Hydroxyethyl methacrylate 10 5 13 10 10 10 10 10 10 2-Hydroxyethyl acrylate 5 5 Methacrylic acid 6 5 7 6 5 8 8 8 Acryl acid 6 Dimethylaminoethyl methacrylate 5 20 Methacryloyloxyethyl trimethyl 8 ammonium chloride 2-Acrylamide-2-methylsulfonic acid 2 5 NF BISOMER ™ PEM6E 10 Deionized water 5 Azobisisobutyronitrile 4 4 4 4 8 4 1 8 1 1 1 Isobutylalcohol 5 5 5 5 5 5 15 20 Additional Ethyleneglicol monobutyl 20 20 Gelatinized 20 15 20 20 20 10 10 10 catalytic ether mixture Azobisisobutyronitrile 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Special Solid content (%) 55 55 55 55 55 50 60 50 50 50 value Resin acid value 39 32 39 34 52 52 52 — 47 38 (mgKOH/g) Hydroxyl value 43 21.5 43 43 43 43 43 24 43 24 (mgKOH/g) Weight average molecular 20000 20000 20000 20000 20000 40000 15000 35000 40000 35000 weight - A reaction vessel equipped with a stirrer, thermometer, rectification column and nitrogen inlet pipe was charged with 208.8 parts of isophthalic acid, 387.5 parts of hexahydrophthalic acid, 275.5 parts of adipic acid, 198.1 parts of neopentyl glycol, 371.1 parts of 1,6-hexanediol and 171.1 parts of trimethylolpropane, which were heated under stirring while nitrogen gas was introduced. After the temperature reached 160° C., the system was gradually heated to 235° C. over a period of 3 hours, followed by 1.5 hours' aging. Thereafter the rectification column was switched to reflux condenser, and the reaction was conducted after introduction of 100 parts of toluene, under reflux. The reaction was continued for 6 hours at 235° C., and thereafter the toluene was removed under reduced pressure. The system was cooled to 170° C., followed by the addition of 120.8 parts of trimellitic anhydride and 30 minutes' aging at 170° C. Then, 322 parts of butyl cellosolve was added, and the system was thereafter cooled to 80° C. Subsequently, 4 parts of N,N-dimethylaminoethanol was added, and the system was allowed to stand at 80° C. for 30 minutes, and was then cooled to 50° C. Subsequently, 2600 parts of deionized water was added, and the resultant mixture was stirred for 30 minutes. Thus, a polyester resin (PP-1) solution having a solid concentration of 35% was obtained. Thus obtained resin had an acid value of 90 mgKOH/g, a hydroxyl value of 55 mgKOH/g and a weight average molecular weight of 28,000.
- Preparation of Water-Based Pigment Dispersions
- A wide-mouthed glass bottle of 225 cc in capacity was fed with those pigment dispersing resin solutions which had been produced in the above Examples 1 to 2 and Comparative Examples 1 to 8, pigment, and, if necessary, with neutralizing amine (N,N-dimethylamino ethanol) as well, and further with deionized water at the compositional formulation as shown by Tables 3 and 4 below, and was further fed with glass beads of about 1.3 mm in diameter as a dispersing medium. The bottle was then sealed, and the content was dispersed with a paint shaker for 4 hours to give water-based pigment dispersions (B-1) to (B-8) and (BC-1) to (BC-10).
- Preparation of Water-Based Ink
- A wide-mouthed glass bottle of 225 cc in capacity was fed with those pigment dispersing resin solutions which had been produced in the above Examples 3 to 9 and Comparative Examples 9 to 11, the polyester resin solution which had been prepared in the above-mentioned Synthesis Example 1, pigment, and, if necessary, with neutralizing amine (N,N-dimethylamino ethanol) as well, and further with deionized water at the compositional formulation as shown by Tables 5 and 6 below, and was further fed with glass beads of about 1.3 mm in diameter as a dispersing medium. The bottle was then sealed, and the content was dispersed with a paint shaker for 4 hours to give water-based ink. In the above, acrylic resin solution (AC-10) and polyester resin solution (PP-1) each for dilution, and neutralizing amine were added after pigment dispersing resin solutions and pigments had been sufficiently dispersed.
- The following are explanations of notes in Tables 3 to 6.
(NOTE 1) RT 355D: an organic red pigment manufactured by Ciba Specialty Chemicals, Inc., under tradename of “Cinquasia Magenta RT 355D” (NOTE 2) G 314: an organic blue pigment manufactured by Sanyo Color Works, Ltd., under tradename of “Cyanin Blue G314” (NOTE 3) MT500HD: tradename of an inorganic white pigment manufactured by TAYCA Corporation (NOTE 4) Raven 5000 UIII: tradename of carbon black pigment manufactured by Columbia Carbon Co., Ltd. (NOTE 5) Disper BYK-192: tradename of wetting-dispersing agent manufactured by BYK-Chemie Co. (NOTE 6) TG730: tradename of wetting-dispersing agent manufactured by Kyoei Kagaku K.K. (NOTE 7) Disper BYK-182: tradename of wetting-dispersing agent manufactured by BYK-Chemie Co. (NOTE 8) Disper BYK-191: tradename of wetting-dispersing agent manufactured by BYK-Chemie Co. (NOTE 9) S#2000: tradename of wetting-dispersing agent manufactured by Avecia Ltd. (NOTE 10) BYK-028: trademark of anti-foaming agent manufactured by BYK-Chemie Co.
Performance Test - Water-based pigment dispersions which had been obtained in the above Examples 10 to 17 and Comparative Examples 12 to 21 were subjected to performance test by the following test method. Results are shown in Tables 3 and 4 which are mentioned later. Besides, each of water-based ink which had been obtained in the above Examples 18 to 42 and Comparative Examples 22 to 36 was also subjected to performance test by the following test method. Results are shown in Tables 5 and 6 which are mentioned later.
- Performance Test Method
- Appearance of Coating Film:
- Each of the pigment dispersion paste was applied onto a 100×200 mm transparent PET film with a bar coater to a dry film thickness of 15 μm, and baked at 140° C. for 15 minutes. The extent of turbidity of the coating on the PET film was visually evaluated according to the following grading standard:
-
- ∘: Uniform and perfectly free of turbidity.
- Δ: Slightly turbid.
- x: Considerably turbid.
State of Paste:
- The state of each water-based ink in glass container was visually observed according to the following criteria.
-
- ∘: Uniform, and perfectly free of precipitate and foam.
- Δ: A small amount of precipitate and foam is observed.
- x: A considerable amount of precipitate and foam is observed.
Gloss:
- Each pigment dispersion was applied onto PET film with a doctor blade so that coating film thickness might be 100 μm. Water-based ink was applied onto PET film with a doctor blade so that coating film thickness might be 50 μm. The gloss of dried coating films of pigment dispersion and of water-based ink was determined by the measurement of 60° mirror surface reflectivity in accordance with JIS K5400 7.6 (1990).
- Light Transmission:
- Each pigment dispersion was applied onto PET film with a doctor blade so that coating film thickness might be 100 μm. Water-based ink was applied onto PET film with a doctor blade so that coating film thickness might be 50 μm. The light transmission (%) of dried coating films of pigment dispersion and of water-based ink was determined with a turbidimeter (COH-300) in accordance with the equation below, and, thus, transparency was evaluated:
Viscoelasticity Characteristics: - Viscosity [Pascal·sec (Pa·sec.)] and yield point (dyn/cm2) were measured with a dynamic viscoelasticity measuring apparatus, MR-300 (Rheology Co.).
- Blackness:
- Water-based ink which had been prepared in Examples 18 to 24 and Comparative Examples 22 to 26 were each applied onto PET film with a doctor blade so that coating film thickness might be 50 μm. The blackness of dried coating film was evaluated by BI value. “BI value”, which is an abbreviation of Blackness Index, is expressed by the following equation:
BI value=(1−L*/3.5)×100 - L* is the index of brightness as shown by JIS Z-8105. The higher BI value means the better blackness.
-
- BI value is 100: Perfect blackness
- BI value is 0: Marginal blackness which is recognized by human eye as such
- BI value is less than 0: Gray
Hue—Coloring Power:
- Each of water-based ink which had been prepared in Examples 32 to 42 and Comparative Examples 33 to 36 was applied onto black and white PET films with a doctor blade so that coating film thickness might be 50 μm. L*, a* and b* of dried coating film was measured with a spectrocolorimeter (made by BYK-Chemie Co.), and, thus, hue and coloring power were evaluated. It was known from the results of L*, a* and b* that Examples showed strong coloring power and improved chroma.
TABLE 3 Example 10 11 12 13 14 15 16 17 Pigment dispersion B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 Resin solution for Kind A-1 A-1 A-1 A-1 A-2 A-2 A-2 A-2 dispersing pigment Amount 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 Pigment RT 355D (Note 1) 100 100 G 314 (Note 2) 100 100 MT500HD (Note 3) 200 200 Raven 5000 UIII (Note 4) 20 20 N,N-dimethylaminoethanol 0 0 0 0 1.1 1.1 1.1 1.1 Deionized water 327.2 327.2 327.2 327.2 327.2 327.2 327.2 327.2 Test result Coating film appearance ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ Gloss (60°) 92 94 88 89 91 93 85 88 Light transmission (%) 90 92 85 — 91 91 78 — Viscosity (Pa · sec) 1.3 1.5 1.2 1.5 1.3 1.6 1.4 1.2 Yield point (dyn/cm2) 4.2 3.5 2.4 5.3 3.1 2.9 3.5 3.5 -
TABLE 4 Example 12 13 14 15 16 17 18 19 20 21 Pigment dispersion BC-1 BC-2 BC-3 BC-4 BC-5 BC-6 BC-7 BC-8 BC-9 BC-10 Resin solution for Kind AC-1 AC-2 AC-4 AC-5 AC-6 AC-6 AC-6 AC-6 AC-7 AC-8 dispersing pigment Amount 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 200 166.7 Pigment RT 355D (Note 1) 100 G 314 (Note 2) 100 MT500HD (Note 3) 200 Raven 5000 UIII (Note 4) 20 20 20 20 20 20 20 N,N-dimethylaminoethanol 3.1 2.5 3.1 2.6 4.1 4.1 4.1 4.1 4.1 4.1 Deionized water 327.2 327.2 327.2 327.2 327.2 327.2 327.2 327.2 309 342.3 Test result Coating film appearance X Δ Δ Δ Δ Δ Δ Δ Δ X Gloss (60°) 71 76 78 74 84 82 72 78 83 72 Light transmission (%) — — — — 86 85 70 — — — Viscosity (Pa · sec) 1.5 1.3 1.4 1.5 2.5 2.1 2.9 5.5 11.2 1.8 Yield point (dyn/cm2) 5.8 4.2 3.9 5.9 8.5 7.9 8.5 11.5 39.1 3.9 -
TABLE 5 Example Comparative Example 18 19 20 21 22 23 24 22 23 24 25 26 Resin solution for Kind A-3 A-4 A-5 A-6 A-7 A-8 A-9 AC-9 AC-10 AC-11 BYK-192 TG-730 dispersing pigment Amount 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 7.4 18.5 Pigment; C.I. Pigment Black 7 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 Deionized water 70.9 70.9 70.9 70.9 70.9 70.9 70.9 70.9 70.9 70.9 78.3 67.2 Test State of paste ◯ ◯ ◯ ◯ ◯ ◯ ◯ Δ Δ Δ X X result Viscosity (Pa · sec) 0.044 0.07 0.06 0.04 0.055 0.07 0.08 0.08 0.12 0.09 0.37 0.43 Yield point (dyn/cm2) 1.7 3.5 3.5 1.5 1.7 3.2 3.6 4.6 5.2 3.7 4.9 5.3 Blackness; B1 value 50.3 48.1 48.5 52.3 46.6 46.2 46.5 10 0 0 21 15 Gloss (60°) 91 90 90 92 90 90 89 80 25 60 89 85 Example Comparative Example 25 26 27 28 29 30 31 27 28 29 30 31 32 Resin solution Kind A-3 A-4 A-5 A-6 A-7 A-8 A-9 AC-9 AC-10 AC-11 BYK-182 BYK-191 S#20000 for dispersing Amount 8.6 8.6 8.6 8.6 10 10 10 8.6 8.6 8.6 11.6 5 5 pigment Pigment; C.I. Pigment 8.5 8.5 8.5 8.5 8.5 8.5 8.5 Blue 15:3 Pigment; C.I. Pigment 10 10 10 10 10 10 Red 122 BYK-028 1.2 1.2 1.2 1.2 1.2 1.2 Deionized water 82.9 82.9 82.9 82.9 40 40 40 82.9 82.9 82.9 38.4 45 45 Test State of paste ◯ ◯ ◯ ◯ ◯ ◯ ◯ Δ Δ Δ Δ Δ Δ result Viscosity 0.012 0.015 0.02 0.018 0.03 0.035 0.06 0.084 0.032 0.035 0.083 0.08 0.13 (Pa · sec) Yield point 1.3 1.3 1.5 1.7 2.2 2.2 7.1 1.96 10.5 1.8 8.1 7.3 57.4 (dyn/cm2) Gloss (60°) 60.5 60.2 59.6 58.9 99 99 98 52.8 54 20.4 98 98 97 -
TABLE 6 Example Comparative Example 32 33 34 35 36 37 38 39 40 41 42 33 34 35 36 Resin solution Kind A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-3 A-4 A-5 A-6 S#20000 BYK191 A-3 A-3 for dispersing Amount 10 10 10 10 10 10 10 10 10 10 10 5 5 10 10 pigment Pigment; G-314 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 AC-10 30 30 30 30 30 30 30 30 30 30 30 30 30 PP-1 42.8 4.28 Aminomethyl propanol 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 Deionized water 57.3 57.3 57.3 57.3 57.3 57.3 57.3 92.5 79.6 92.5 92.5 57.3 57.3 92.5 79.6 Test State of paste ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ X Δ X X result Light transmission (%) 100 100 100 100 100 100 100 98.5 98.4 97.8 98.2 84.7 80.4 85.3 81.9 L* 2.1 2.2 2.5 2 2.6 2.6 2.8 2.8 2.9 3.2 2.9 6.2 5 5 6.2 a* 7.3 7.3 7.8 7.1 8.6 8.5 8.9 9 8.7 9.1 9.2 16.4 15.5 10.5 15.3 b* −19.1 −19.6 −20.3 −19.5 −21.6 −21.2 −22.3 −21.7 −22.3 −23.5 −20.5 −29.8 −29.9 −27.4 −30.5
Synthesis of Base Resin for Paint - A reaction vessel for producing acrylic resins, equipped with a stirrer, thermometer and a reflux condenser was charged with 40 parts of ethylene glycol monobutyl ether and 30 parts of isobutyl alcohol, which were heated under stirring. When the temperature of the system reached 100° C., a mixture of the following monomers was added to the system dropwise, over a period of 3 hours:
Styrene 10 parts Methyl methacrylate 38 parts n-Butyl acrylate 25 parts 2-Hydroxyethyl methacrylate 20 parts Acrylic acid 7 parts 2,2′-Azobisisobutyronitrile 1 part - After the dropwise addition was completed, the system was maintained at 100° C. for further 30 minutes, and thereafter an additional catalytic solution which was a mixture of 0.5 part of 2,2′-azobisisobutyronitrile and 10 parts of ethylene glycol monobutyl ether was added dropwise, consuming an hour, followed by further an hour's stirring at 100° C. and cooling. Subsequently, 15 parts of isobutylalcohol was added, and, when the temperature of the resulting mixture became 75° C., 4 parts of N,N-dimethylamino ethanol was added, and the resultant mixture was stirred for 30 minutes to give an acrylic resin solution (AP-1) having a solid concentration of 50%. The obtained resin had an acid value of 54 mgKOH/g, a hydroxyl value of 86 mgKOH/g and a weight average molecular weight of 32,000.
- A reaction vessel equipped with a stirrer, thermometer, rectification column and nitrogen inlet pipe was charged with 317.8 parts of isophthalic acid, 196.5 parts of hexahydrophthalic acid, 372.6 parts of adipic acid, 268 parts of neopentyl glycol, 217.8 parts of 1,6-hexanediol and 263.5 parts of trimethylolpropane, which were heated under stirring while nitrogen gas was introduced. After the temperature reached 160° C., the system was gradually heated to 235° C. over a period of 3 hours, followed by 1.5 hours' aging. Thereafter the rectification column was switched to reflux condenser, and the reaction was conducted after introduction of 100 parts of toluene, under reflux. The reaction was continued for 6 hours at 235° C., and thereafter the toluene was removed under reduced pressure. The system was cooled to 170° C., followed by addition of 122.5 parts of trimellitic anhydride and 30 minutes' aging at 170° C. Further 322 parts of butyl cellosolve was added, and the system was thereafter cooled to 80° C., 4 parts of N,N-dimethylaminoethanol was added, and the system was allowed to stand at 80° C. for 30 minutes, followed by cooling to 50° C., addition of 2600 parts of deionized water and 30 minutes' stirring. Thus a polyester resin (PP-2) solution having a solid concentration of 50% was obtained. The obtained resin had an acid value of 56 mgKOH/g, a hydroxyl value of 90 mgKOH/g and a weight average molecular weight of 25,000.
- A reaction vessel for producing acrylic resins, equipped with a stirrer, thermometer and a reflux condenser was charged with 400 parts of deionized water and 2.4 parts of Newcol™ 562SF (Nippon Nyukazai Co., Ltd., a surfactant), which were heated under stirring. When the temperature reached 82° C., a pre-emulsion forming mixture was charged, which had been prepared by mixing 6 parts of styrene, 8.5 parts of n-butyl acrylate, 0.5 part of allyl methacrylate, 0.175 part of Newcol™ 562SF and 7.5 parts of deionized water and stirring the mixture with disper at about 1000 r.p.m. for 10 minutes. Twenty (20) minutes after charging said pre-emulsion forming mixture, 15 parts of deionized water and 0.54 part of potassium persulfate were added. After further 10 minutes, while the system was still maintained at 82° C., a first monomeric mixture formed by mixing 114 parts of styrene, 161.5 parts of n-butyl acrylate, 9.5 parts of allyl methacrylate, 3.325 parts of Newcol™ 562SF and 142.5 parts of deionized water, stirring the mixture with a disper at about 1,000 r.p.m. for 10 minutes and adding thereto 15 parts of deionized water and 0.54 part of potassium persulfate, was added dropwise over a period of 3 hours. Then after intervening standing at 82° C. for 30 minutes, a second monomeric mixture formed by mixing 50 parts of styrene, 23 parts of n-butyl acrylate, 10 parts of 2-hydroxyethyl acrylate, 5 parts of methacrylic acid, 1.6 parts of Newcol™ 562SF and 60 parts of deionized water, stirring the mixture with a disper at about 1,000 r.p.m. for 10 minutes and adding thereto 15 parts of deionized water and 0.54 part of potassium persulfate, was added dropwise over a period of 1.5 hours. After the addition, the system was maintained at 82° C. for 30 minutes, cooled, and when the temperature dropped to 75° C., a mixture of 7 parts of N,N-dimethylamionoethanol and 280 parts of deionized water was added dropwise over 15 minutes, followed by 15 minutes' standing at 75° C. Upon further cooling, an acrylic emulsion having a solid concentration of 30% was synthesized.
- Preparation of Colored Paint Composition
- There were mixed 132.2 parts water-based pigment dispersion (B-1) as a pigment dispersion paste (30 parts as solid) which had been prepared in Example 10, 30 parts (15 parts as solid) of the acrylic polymer (AP-1) solution formed in Synthesis Example 2, 42.9 parts (15 parts as solid) of the polyester polymer (PP-2) formed in Synthesis Example 3, 37.5 parts (30 parts as solid) of Cymel™ 325 (Mitsui Cytec Co., Ltd., a methyl etherified melamine resin solution having a solid content of about 80%), 50 parts (15 parts as solid) of the acrylic emulsion formed in Synthesis Example 4, and further 1 part of 28% Primal™ ASE (which had been formed by diluting “gPrimal™ ASE-60”, a thickener manufactured by Japan Acryl Chemicals Co., Ltd., with water to a solid content of 28%), 0.8 part of dimethylethanol amine, 230 parts of deionized water and 30 parts of 2-ethylhexyl alcohol, and, thus, there was obtained a colored paint composition having a viscosity of 500 mPa·s. (measured with B-type viscometer at 60 r.p.m.) and a pH of about 8.5.
- Example 43 was repeated except that the formulation of components was varied for each run as shown in Table 7 which is mentioned later, and, thus, there were obtained colored paint compositions.
- Using those paint compositions obtained in Examples 43 to 45 and Comparative Examples 37 to 43, test panels were prepared by the following method.
- Preparation of Test Panels
- A 0.8 mm-thick cold rolled dull steel sheet which had been chemically treated with zinc phosphate was applied with an epoxy resin-based cationic electrodeposition paint to a dry film thickness of about 20 μm which was subsequently baked. Onto this electrodeposited paint film, automotive polyester resin-based inter coating paint was applied to a dry film thickness of about 20 μm and baked. This coated steel sheet was wet-sanded with #400 sand paper, dried off and degreased with petroleum benzin. Onto so degreased coat surface, each of the coloring paint compositions whose viscosity had been adjusted to 500 mPa·s (measured with B-type viscometer at 60 r.p.m.) was applied with minibell rotation type electrostatic coater at a booth humidity of 70%, to a dry film thickness of about 15 μm, and allowed to stand at room temperature for about 5 minutes for setting. Each of the paint film was baked with an electric hot air dryer at 80° C. for 10 minutes to evaporate off most of volatile components. Then, the film was left to stand still in room to be cooled, and, subsequently, was coated with an automotive acrylic resin-based clear paint, “Magicron™ TC71” (manufactured by Kansai Paint Co., Ltd.) to a dry film thickness of about 40 μm, followed by baking with an electric hot air dryer at 140° C. for 30 minutes, and, thus, test panels were prepared.
- Thus prepared test panels were subjected to various performance tests by the following test methods, with the results as given in Table 7 which is mentioned later.
- Appearance of Coat Finish:
- The appearance of coat finish was synthetically examined in respect of gloss and fatness, and evaluated according to the following criteria:
- ∘: good; Δ: poor; x: very poor.
- Gloss:
- Following JIS K5400 7.6 (1990), 60°-specular gloss of each coated film was measured.
- Sharpness:
- Sharpness was measured with a portable gloss distinctness meter P.G.D-IV (Japan Color Research Institute). The higher the measured value is, the better is the sharpness.
- Intimate Adhesion:
- Following JIS K-5400 8.5.2 (1990) lattice pattern tape method, each eleven parallel straight lines were orthogonally drawn vertically and horizontally at 1 mm intervals on the top coat film surface on each test panel, to form one hundred 1 mm×1 mm squares. Onto the same surface cellophane adhesive tape was applied intimately. The tape was then rapidly peeled off, and the extent of peeling of the squares was observed. Evaluation of adhesion was made according to the following criteria:
-
- ∘: at least 90 squares of the coat film remained unpeeled;
- Δ: no less than 50 but less than 90 squares emained unpeeled;
- x: less than 50 squares remained unpeeled.
Acid Resistance:
- An artificial rain (0.5 cc) of the following composition was dropped onto each of the test panels which were heated on 80° C. hot plate for 30 minutes and then washed with water. The coated surfaces were visually examined and evaluated according to the following grading standards:
-
- ∘: no change observed on the coated surface;
- Δ: no whitening or swelling observed on the coated surface, but difference in level was recognized at the boundaries;
- x: whitening or swelling observed on the coated surface.
- The artificial rain used was a blend of 19.6 g of 1 mg/g aqueous solution of NaNO3; 5.2 g of 1 mg/g aqueous KNO3 solution,; 3.7 g of 1 mg/g aqueous solution of CaCl2.2H2O,; 8.2 g of 1 mg/g aqueous solution of MgSO4.7H2O; 73.3 g of 1 mg/g aqueous solution of (NH4)2 SO4,; 30.0 g of 0.1 N aqueous solution of H2SO4; 20.0 g of 0.1 N aqueous solution of HNO3; 10.0 g of 0.05N aqueous solution of HCl, and 4.7 g of 1 mg/g aqueous solution of NaF. The pH of the blend was adjusted to 1.0 with H2SO4.
- Solvent Resistance:
- In a 20° C. room, each test panel surface was rubbed with a piece of cotton gauze soaked with methyl ethyl ketone under about 1 kg/cm2 load over a length of about 5 cm. After 50 times reciprocal rubbing, the surface condition of the test panel was visually graded according to the following standard:
-
- ∘: no change observed on the coated surface;
- Δ: scratches observed on the coated surface; and
- x: whitening or swelling observed on the coated surface.
Impact Resistance:
- Following JIS K-5400 8.3.2 (1990) DuPont impact resistance test, a weight of 500 g with its hitting front end having a diameter of about 12.7 mm was dropped on the coated film surface facing upward, and, thus, the maximum height of weight was measured as far as no damage was made on the coating film. The maximal value is 50 cm.
TABLE 7 Example Comparative Example 43 44 45 37 38 39 40 41 42 43 Pigment Kind B-1 B-4 B-8 BC-1 BC-2 BC-3 BC-4 BC-8 BC-9 BC-10 dispersing paste Amount 132.2 132.2 Acryl polymer Kind AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 solution Amount 30 30 Polyester polymer Kind PP-2 PP-2 PP-2 PP-2 PP-2 PP-2 PP-2 PP-2 PP-2 PP-2 solution Amount 42.9 42.9 Acryl emulsion of Synthesis Example 4 66.7 66.7 Cymel 325 37.5 37.5 28% Primal ASE-60 1.0 1.0 N,N-dimethylamino ethanol 0.8 0.8 Dionized water 213.9 213.9 Coating film Coating film appearance ◯ ◯ ◯ X X X X Δ Δ X performance 60° Gloss 87 84 85 62 66 69 67 72 72 64 Sharpness 1.2 1.2 1.2 0.5 0.7 0.7 0.8 0.9 0.9 0.7 Intimate adhesion ◯ ◯ ◯ Δ Δ Δ Δ Δ Δ Δ Acid resistance ◯ ◯ ◯ Δ Δ Δ Δ Δ Δ Δ Solvent resistance ◯ ◯ ◯ Δ Δ Δ Δ Δ Δ Δ Impact resistance 50 50 50 30 35 35 30 35 30 30 - The use of the water-based pigment dispersing resins of this invention provides water-based pigment dispersions which excel in wetting property and dispersing stability even at high pigment concentration, and which have low viscosity and are excellent in color developing property and weatherability. The use of said water-based pigment dispersions in turn gives a coating composition which excels not only in pigment color-developing property and in coating film performance such as coating film appearance, weatherability and physical properties, but also in pigment dispersing stability, and which can be made to contain pigment at a high concentration. The use of said water-based pigment dispersions also gives a water-based ink composition which is excellent not only in pigment color-developing property and dispersing stability but also in sharpness, transparency and color developing property.
Claims (11)
1. A pigment dispersing resin which is a copolymer of:
(A) polymerizable unsaturated monomer containing at least one kind of ionic functional group selected from the group consisting of quaternary ammonium salt group and sulfonic acid group;
(B) nonionic polymerizable unsaturated monomer having polyoxyalkylene chain; and
(C) other ethylenically unsaturated monomer.
2. A pigment dispersing resin of claim 1 wherein the ionic functional group-containing polymerizable unsaturated monomer (A) is selected from the group consisting of 2-(methacryloyloxy)ethyl trimethylammonium chloride, 2-(methacryloyloxy)ethyl trimethylammonium bromide, (meth)acryloylaminopropyl trimethylammonium chloride, (meth)acryloylaminopropyl trimethylammonium bromide, tetrabutylammonium(meth)acrylate, trimethylbenzylammonium (meth)acrylate, 2-(methacryloyloxy)ethyl trimethylammonium dimethylphosphate, 2-acrylamide-2-methylpropanesulfonic acid and 2-sulfoethyl(meth)acrylate.
3. A pigment dispersing resin of claim 1 wherein the ionic functional group-containing polymerizable unsaturated monomer (A) is selected from the group consisting of 2-(methacryloyloxy)ethyltrimethylammonium chloride and 2-acrylamide-2-methylpropanesulfonic acid.
4. A pigment dispersing resin of claim 1 wherein the ionic functional group-containing polymerizable unsaturated monomer (A) comprises a combination of quaternary ammonium salt group-containing polymerizable unsaturated monomer and tertiary amino group-containing polymerizable unsaturated monomer.
5. A pigment dispersing resin of claim 4 wherein tertiary amino group-containing polymerizable unsaturated monomer is selected from the group consisting of N,N-dialkylaminoalkyl (meth)acrylate and N,N-dialkylaminoalkyl (meth)acrylamide.
6. A pigment dispersing resin of claim 4 wherein the ionic functional group-containing polymerizable unsaturated monomer (A) comprises a combination of 2-(methacryloyloxy)ethyltrimethylammonium chloride and either N,N-dimethylaminoethyl (meth)acrylate or N,N-diethylaminoethyl (meth)acrylate.
7. A pigment dispersing resin of claim 1 wherein nonionic polymerizable unsaturated monomer (B) is compound of the following formula (1):
8. A pigment dispersing resin of claim 1 wherein nonionic polymerizable unsaturated monomer (B) is selected from the group consisting of polyethylene glycol (meth)acrylate and polypropylene glycol (meth) acrylate.
9. A pigment dispersing resin of claim 1 wherein other ethylenically unsaturated monomer (C) contains a hydroxyl group-containing polymerizable unsaturated monomer at least as a part of its component.
10. A pigment dispersing resin of claim 1 wherein other ethylenically unsaturated monomer (C) contains a carboxyl group-containing polymerizable unsaturated monomer at least as a part of its component.
11. A pigment dispersing resin of claim 1 wherein the copolymer has a weight average molecular weight within a range of 500 to 100,000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/246,097 US20060052514A1 (en) | 2000-10-13 | 2005-10-11 | Pigment dispersing resin |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-314381 | 2000-10-13 | ||
JP2000314381 | 2000-10-13 | ||
JP2001-82740 | 2001-03-22 | ||
JP2001082740 | 2001-03-22 | ||
US10/149,676 US7026392B2 (en) | 2000-10-13 | 2001-10-12 | Resin for pigment dispersion |
PCT/JP2001/008972 WO2002031010A1 (en) | 2000-10-13 | 2001-10-12 | Resin for pigment dispersion |
US11/246,097 US20060052514A1 (en) | 2000-10-13 | 2005-10-11 | Pigment dispersing resin |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/008972 Division WO2002031010A1 (en) | 2000-10-13 | 2001-10-12 | Resin for pigment dispersion |
US10/149,676 Division US7026392B2 (en) | 2000-10-13 | 2001-10-12 | Resin for pigment dispersion |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060052514A1 true US20060052514A1 (en) | 2006-03-09 |
Family
ID=26602101
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/149,676 Expired - Lifetime US7026392B2 (en) | 2000-10-13 | 2001-10-12 | Resin for pigment dispersion |
US11/246,097 Abandoned US20060052514A1 (en) | 2000-10-13 | 2005-10-11 | Pigment dispersing resin |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/149,676 Expired - Lifetime US7026392B2 (en) | 2000-10-13 | 2001-10-12 | Resin for pigment dispersion |
Country Status (5)
Country | Link |
---|---|
US (2) | US7026392B2 (en) |
EP (1) | EP1270624B1 (en) |
JP (1) | JP4049670B2 (en) |
DE (1) | DE60131634T2 (en) |
WO (1) | WO2002031010A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090234048A1 (en) * | 2008-03-14 | 2009-09-17 | Kiyoshi Kato | Pigment dispersion paste for electrodeposition coating compositions, and electrodeposition coating composition |
US20100168282A1 (en) * | 2007-05-21 | 2010-07-01 | Evonik Roehm Gmbh | Dispersion comprising inorganic particles, water, and at least one polymeric additive |
TWI425012B (en) * | 2010-04-14 | 2014-02-01 | Nippon Soda Co | Preparation of Block Copolymer and Copolymer Precursor |
US9115239B2 (en) | 2010-04-14 | 2015-08-25 | Nippon Soda Co., Ltd. | Copolymer |
US9296908B2 (en) | 2010-05-26 | 2016-03-29 | Toyo Ink Sc Holdings Co., Ltd. | Aqueous inkjet ink composition |
CN107109088A (en) * | 2014-11-03 | 2017-08-29 | 本杰明·摩尔公司 | Coating compositions for the additive of the covering of raising and comprising it |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7026392B2 (en) * | 2000-10-13 | 2006-04-11 | Kansai Paint Co., Ltd. | Resin for pigment dispersion |
US7427641B2 (en) * | 2001-12-27 | 2008-09-23 | Seiko Epson Corporation | Ink composition |
EP1333072A3 (en) * | 2002-01-30 | 2003-11-12 | Rohm And Haas Company | Ink composition |
JP4235476B2 (en) * | 2002-03-29 | 2009-03-11 | 関西ペイント株式会社 | Pigment dispersion resin and aqueous pigment dispersion containing the same |
US6852817B2 (en) | 2002-03-29 | 2005-02-08 | Kansai Paint Co., Ltd. | Pigment dispersing resin and water-based pigment dispersion which contains the same |
MY134362A (en) * | 2002-11-20 | 2007-12-31 | Efka Additives B V | Aqueous emulsion polymer as dipersant |
AU2003234770A1 (en) * | 2003-04-30 | 2004-11-23 | Hitachi Maxell, Ltd. | Aqueous dispersion and process for production thereof |
KR20060090226A (en) * | 2003-09-22 | 2006-08-10 | 니혼 이타가라스 가부시키가이샤 | Black color bright pigment and cosmetics, coating composition, resin composition and ink composition containing the same |
US7378459B2 (en) * | 2003-10-07 | 2008-05-27 | Canon Kabushiki Kaisha | Pigment-dispersed ink-jet ink, ink set, ink tank, recording unit, ink-jet recording apparatus, ink-jet recording process and production process of pigment-dispersed ink-jet ink |
FR2872423B1 (en) * | 2004-07-02 | 2006-09-22 | Oreal | COSMETIC COMPOSITIONS CONTAINING AT LEAST ONE CONDITIONING AGENT AND AT LEAST ONE ETHYLENE POLYETHYLENE GLYCOL GRAFT COPOLYMER |
JP2006094814A (en) * | 2004-09-30 | 2006-04-13 | Nissan Motor Co Ltd | Information nucleic acid and information nucleic acid composition using the same |
DE102004051455A1 (en) | 2004-10-22 | 2006-04-27 | Clariant Gmbh | Oligoester-based water based pigment preparations, their preparation and use |
CN101056954B (en) * | 2004-11-22 | 2010-10-27 | 花王株式会社 | Water-based inks for ink-jet printing |
JP4674794B2 (en) * | 2004-12-15 | 2011-04-20 | 日産自動車株式会社 | Clear coating composition and clear coating film |
JP2006169332A (en) * | 2004-12-15 | 2006-06-29 | Nissan Motor Co Ltd | Colored topcoat coating composition and colored topcoat coating film |
DE102004062437A1 (en) * | 2004-12-20 | 2006-06-22 | Basf Ag | Process for coloring cellulosic substrates |
JP5116002B2 (en) * | 2005-03-17 | 2013-01-09 | 株式会社リコー | Water-based pigment dispersion manufacturing method, water-based pigment ink manufacturing method, ink cartridge using the ink, ink jet recording apparatus, image forming method, and image formed product thereby |
US20060217486A1 (en) * | 2005-03-22 | 2006-09-28 | Yoshinori Ohyama | Pigment formulations and paint compositions comprising the formulations |
US20060217485A1 (en) * | 2005-03-23 | 2006-09-28 | Basf Corporation | Pigment dispersant, method of making coating compositions, and coating compositions |
US8404354B2 (en) | 2006-07-25 | 2013-03-26 | Kansai Paint Co., Ltd. | Water-based paint compositions |
JP5444591B2 (en) * | 2007-04-11 | 2014-03-19 | コニカミノルタ株式会社 | Water-based heat fixing type ink and heat fixing type ink jet recording method |
DE102007039781A1 (en) * | 2007-08-23 | 2009-02-26 | Clariant International Ltd. | Aqueous pigment preparations with nonionic additives based on allyl and vinyl ether |
JP2009102480A (en) * | 2007-10-22 | 2009-05-14 | Dic Corp | Ink jet recording ink, ink set, and ink jet recording method |
JP5433225B2 (en) * | 2008-12-24 | 2014-03-05 | 学校法人東京理科大学 | Inkjet ink |
JP2010235741A (en) * | 2009-03-31 | 2010-10-21 | Fujifilm Corp | Water-insoluble colorant dispersion |
US9308761B2 (en) * | 2010-08-11 | 2016-04-12 | Seiko Epson Corporation | Ink jet printing method, ink set, and printed matter |
CN102146234B (en) * | 2011-01-20 | 2013-07-03 | 佩特化工(上海)有限公司 | Water-based paint dispersing technology |
JP5950392B2 (en) * | 2012-06-26 | 2016-07-13 | 関西ペイント株式会社 | Water-based paint composition |
DE102012106145A1 (en) * | 2012-07-09 | 2014-01-09 | Baumeister Chemicals & Consulting Gmbh & Co. Kg | Additives for coating color |
US9771488B2 (en) * | 2012-11-19 | 2017-09-26 | Sensient Colors Llc | Self-crosslinking dispersions, and methods for making and using the same |
US9499677B2 (en) * | 2013-03-15 | 2016-11-22 | Melior Innovations, Inc. | Black ceramic additives, pigments, and formulations |
US20150252170A1 (en) * | 2013-03-15 | 2015-09-10 | Melior Innovations, Inc. | Black ceramic additives, pigments, and formulations |
JP6100893B2 (en) * | 2013-05-27 | 2017-03-22 | Jsr株式会社 | Surface treatment agent for surface composed of inorganic material, instrument and apparatus with modified surface, and method for producing instrument and apparatus |
JP6316612B2 (en) * | 2014-02-06 | 2018-04-25 | 東亞合成株式会社 | Highly hydrophilic coating composition and use thereof |
JPWO2016052119A1 (en) * | 2014-09-30 | 2017-08-31 | 富士フイルム株式会社 | Aqueous ink composition, ink set and image forming method |
JP6862105B2 (en) * | 2016-06-23 | 2021-04-21 | 株式会社パイロットコーポレーション | Water-based ink composition for writing instruments |
DE102016223590A1 (en) | 2016-11-28 | 2018-05-30 | Clariant International Ltd | COPOLYMER-CONTAINING DETERGENT COMPOSITIONS |
DE102016223586A1 (en) | 2016-11-28 | 2018-05-30 | Clariant International Ltd | COPOLYMERS AND THEIR USE IN DETERGENT COMPOSITIONS |
DE102016223588A1 (en) * | 2016-11-28 | 2018-05-30 | Clariant International Ltd | COPOLYMERS AND THEIR USE IN DETERGENT COMPOSITIONS |
US11130879B2 (en) | 2017-12-28 | 2021-09-28 | Axalta Coating Systems Ip Co., Llc | Dispersants, coating compositions including dispersants, and methods of forming the same |
US11718805B2 (en) * | 2021-01-04 | 2023-08-08 | Saudi Arabian Oil Company | CO2-philic crosslinked polyethylene glycol-based membranes for acid and sour gas separations |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3896072A (en) * | 1973-07-03 | 1975-07-22 | Vianova Kunstharz Ag | Process of making aqueous co-polymer dispersion and dispersion therefor |
US4565854A (en) * | 1983-04-07 | 1986-01-21 | Kuraray Co., Ltd. | Polymer having thiol end group |
US4594174A (en) * | 1984-08-22 | 1986-06-10 | Nippon Zeon Co., Ltd. | Magnetic paint for magnetic recording media |
US4740546A (en) * | 1983-12-16 | 1988-04-26 | Dainippon Ink And Chemicals, Inc. | Aqueous dispersion of vinyl copolymer resin |
US5231131A (en) * | 1991-12-24 | 1993-07-27 | E. I. Du Pont De Nemours And Company | Aqueous graft copolymer pigment dispersants |
US5349036A (en) * | 1992-04-21 | 1994-09-20 | Imperial Chemical Industries Plc | Amphipathic copolymer pigment dispersants |
US5530056A (en) * | 1995-05-03 | 1996-06-25 | National Starch And Chemical Investment Holding Corporation | latex binders and paints which are free of volatile coalescents and freeze-thaw additives |
US5698628A (en) * | 1995-02-27 | 1997-12-16 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Resin composition suitable as water-based paint and process for forming coating films having excellent stain resistance |
US5736606A (en) * | 1995-12-28 | 1998-04-07 | Kao Corporation | Aqueous ink of pigment type |
US5910532A (en) * | 1997-05-29 | 1999-06-08 | The Dow Chemical Company | Multisolvent-based film-forming compositions |
US6368397B1 (en) * | 1999-01-13 | 2002-04-09 | Fuji Xerox Co., Ltd. | Ink for ink jet printing |
US6413306B1 (en) * | 1999-10-07 | 2002-07-02 | E. I. Du Pont De Nemours And Company | Pigment dispersions containing ABC-block polymer dispersant |
US20030055146A1 (en) * | 2001-03-22 | 2003-03-20 | Yihua Chang | Water-dispersible, cationic polymers, a method of making same and items using same |
US6541538B1 (en) * | 1998-08-26 | 2003-04-01 | Westvaco Corporation | Resin for ink-jet printing ink |
US20030209695A1 (en) * | 2000-02-09 | 2003-11-13 | Toshitaka Tsuzuki | Dispersant composition |
US6994745B2 (en) * | 2001-04-05 | 2006-02-07 | Kansai Paint Co., Ltd. | Pigment dispersing resin |
US7026392B2 (en) * | 2000-10-13 | 2006-04-11 | Kansai Paint Co., Ltd. | Resin for pigment dispersion |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50154328A (en) | 1974-06-05 | 1975-12-12 | ||
JPS61204034A (en) * | 1985-03-08 | 1986-09-10 | Kao Corp | Aqueous dispersion liquid |
JPH0617421B2 (en) * | 1986-06-25 | 1994-03-09 | 日本ペイント株式会社 | Emulsion polymerization composition |
JP2585042B2 (en) | 1988-01-12 | 1997-02-26 | 日東電工株式会社 | Method for producing graft polymer |
DE68914926T2 (en) * | 1988-09-13 | 1994-09-01 | Nippon Oils & Fats Co Ltd | Synthetic resin compositions. |
JPH0670104B2 (en) | 1988-12-09 | 1994-09-07 | 花王株式会社 | Film-forming resin and hair cosmetic containing the same |
JP2750932B2 (en) * | 1990-02-16 | 1998-05-18 | ライオン株式会社 | Method for producing binder for ceramic molding |
JPH06313010A (en) * | 1993-04-28 | 1994-11-08 | Shinnakamura Kagaku Kogyo Kk | High molecular compound and antistatic agent |
JP2649480B2 (en) * | 1993-09-27 | 1997-09-03 | 三洋化成工業株式会社 | Aqueous pigment dispersant |
JPH07252395A (en) * | 1994-03-17 | 1995-10-03 | Osaka Toryo Kogyo Kyodo Kumiai | Colorant composition |
CA2149399A1 (en) | 1994-05-19 | 1995-11-20 | Jozef Huybrechts | Self-stable lattices and the molecular weight control thereof |
JPH0853522A (en) * | 1994-08-11 | 1996-02-27 | Sanyo Chem Ind Ltd | Dispersant for aqueous slurry |
JPH0978056A (en) * | 1995-09-11 | 1997-03-25 | Mitsubishi Paper Mills Ltd | Antistatic agent |
JPH09255728A (en) | 1996-03-25 | 1997-09-30 | Toyo Ink Mfg Co Ltd | Nonionic high-molecular surfactant and use thereof |
JPH09255740A (en) * | 1996-03-26 | 1997-09-30 | Nof Corp | Terpolymer |
JPH09267034A (en) | 1996-04-01 | 1997-10-14 | Toyo Ink Mfg Co Ltd | Defoamable nonionic high polymer surfactant and its application |
JPH09272721A (en) * | 1996-04-03 | 1997-10-21 | Kuraray Co Ltd | Copolymer and composition thereof |
JPH1030010A (en) | 1996-07-15 | 1998-02-03 | Toyo Ink Mfg Co Ltd | Nonionic polymer surfactant, its production and its pigment dispersed material |
JPH10139999A (en) * | 1996-11-05 | 1998-05-26 | Toyo Ink Mfg Co Ltd | Pigment composition, and pigment dispersion |
JP4121176B2 (en) * | 1997-03-05 | 2008-07-23 | 関西ペイント株式会社 | Water-based paint composition and coating method using the same |
US6025449A (en) * | 1997-03-05 | 2000-02-15 | Kansai Paint Co., Ltd. | Water-soluble acrylic resin, resin composition containing the same for use in water-based coating composition, water-based coating composition and coating method by use of the same |
JP3946309B2 (en) * | 1997-04-10 | 2007-07-18 | 富士フイルム株式会社 | Colored photosensitive composition |
JPH11130999A (en) * | 1997-07-28 | 1999-05-18 | Hitachi Maxell Ltd | Dispersion ink |
JP3229589B2 (en) * | 1997-10-17 | 2001-11-19 | 川研ファインケミカル株式会社 | Dispersant |
JP4010522B2 (en) * | 1998-02-19 | 2007-11-21 | 株式会社タイホーコーザイ | Ink for inkjet recording |
JP2000007734A (en) * | 1998-06-23 | 2000-01-11 | Jsr Corp | Water-soluble copolymer (salt) and scale preventive |
JP2000095992A (en) | 1998-09-22 | 2000-04-04 | Dainippon Printing Co Ltd | Pigment dispersant and photosensitive coloring composition |
JP2000204281A (en) * | 1999-01-08 | 2000-07-25 | Ajinomoto Co Inc | Pigment dispersant and coating or ink composition containing the same |
JP2000336292A (en) * | 1999-05-28 | 2000-12-05 | Nippon Paint Co Ltd | Pigment dispersion type ink jet ink |
DE10037629A1 (en) * | 2000-08-02 | 2002-02-14 | Skw Bauwerkstoffe Deutschland | Water-soluble or water-swellable sulfo-containing associative thickening copolymers, process for their preparation and their use |
US6599973B1 (en) * | 2000-09-27 | 2003-07-29 | E. I. Du Pont De Nemours And Company | Aqueous graft copolymer pigment dispersants |
JP2002194037A (en) * | 2000-10-13 | 2002-07-10 | Kansai Paint Co Ltd | Pigment dispersion resin and aqueous pigment dispersion containing the same |
JP2002143667A (en) * | 2000-11-08 | 2002-05-21 | Nippon Nsc Ltd | Dispersant used in water system and water-based dispersion containing the same |
JP2002145969A (en) * | 2000-11-16 | 2002-05-22 | Daicel Chem Ind Ltd | Aqueous resin dispersion and aqueous coating composition for inorganic building materials |
-
2001
- 2001-10-12 US US10/149,676 patent/US7026392B2/en not_active Expired - Lifetime
- 2001-10-12 EP EP20010976669 patent/EP1270624B1/en not_active Expired - Lifetime
- 2001-10-12 DE DE2001631634 patent/DE60131634T2/en not_active Expired - Lifetime
- 2001-10-12 JP JP2002534390A patent/JP4049670B2/en not_active Expired - Lifetime
- 2001-10-12 WO PCT/JP2001/008972 patent/WO2002031010A1/en active IP Right Grant
-
2005
- 2005-10-11 US US11/246,097 patent/US20060052514A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3896072A (en) * | 1973-07-03 | 1975-07-22 | Vianova Kunstharz Ag | Process of making aqueous co-polymer dispersion and dispersion therefor |
US4565854A (en) * | 1983-04-07 | 1986-01-21 | Kuraray Co., Ltd. | Polymer having thiol end group |
US4740546A (en) * | 1983-12-16 | 1988-04-26 | Dainippon Ink And Chemicals, Inc. | Aqueous dispersion of vinyl copolymer resin |
US4594174A (en) * | 1984-08-22 | 1986-06-10 | Nippon Zeon Co., Ltd. | Magnetic paint for magnetic recording media |
US5231131A (en) * | 1991-12-24 | 1993-07-27 | E. I. Du Pont De Nemours And Company | Aqueous graft copolymer pigment dispersants |
US5349036A (en) * | 1992-04-21 | 1994-09-20 | Imperial Chemical Industries Plc | Amphipathic copolymer pigment dispersants |
US5698628A (en) * | 1995-02-27 | 1997-12-16 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Resin composition suitable as water-based paint and process for forming coating films having excellent stain resistance |
US5530056A (en) * | 1995-05-03 | 1996-06-25 | National Starch And Chemical Investment Holding Corporation | latex binders and paints which are free of volatile coalescents and freeze-thaw additives |
US5736606A (en) * | 1995-12-28 | 1998-04-07 | Kao Corporation | Aqueous ink of pigment type |
US5910532A (en) * | 1997-05-29 | 1999-06-08 | The Dow Chemical Company | Multisolvent-based film-forming compositions |
US6541538B1 (en) * | 1998-08-26 | 2003-04-01 | Westvaco Corporation | Resin for ink-jet printing ink |
US6368397B1 (en) * | 1999-01-13 | 2002-04-09 | Fuji Xerox Co., Ltd. | Ink for ink jet printing |
US6413306B1 (en) * | 1999-10-07 | 2002-07-02 | E. I. Du Pont De Nemours And Company | Pigment dispersions containing ABC-block polymer dispersant |
US20030209695A1 (en) * | 2000-02-09 | 2003-11-13 | Toshitaka Tsuzuki | Dispersant composition |
US7026392B2 (en) * | 2000-10-13 | 2006-04-11 | Kansai Paint Co., Ltd. | Resin for pigment dispersion |
US20030055146A1 (en) * | 2001-03-22 | 2003-03-20 | Yihua Chang | Water-dispersible, cationic polymers, a method of making same and items using same |
US6994745B2 (en) * | 2001-04-05 | 2006-02-07 | Kansai Paint Co., Ltd. | Pigment dispersing resin |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100168282A1 (en) * | 2007-05-21 | 2010-07-01 | Evonik Roehm Gmbh | Dispersion comprising inorganic particles, water, and at least one polymeric additive |
US20090234048A1 (en) * | 2008-03-14 | 2009-09-17 | Kiyoshi Kato | Pigment dispersion paste for electrodeposition coating compositions, and electrodeposition coating composition |
TWI425012B (en) * | 2010-04-14 | 2014-02-01 | Nippon Soda Co | Preparation of Block Copolymer and Copolymer Precursor |
US9115239B2 (en) | 2010-04-14 | 2015-08-25 | Nippon Soda Co., Ltd. | Copolymer |
US9296908B2 (en) | 2010-05-26 | 2016-03-29 | Toyo Ink Sc Holdings Co., Ltd. | Aqueous inkjet ink composition |
CN107109088A (en) * | 2014-11-03 | 2017-08-29 | 本杰明·摩尔公司 | Coating compositions for the additive of the covering of raising and comprising it |
Also Published As
Publication number | Publication date |
---|---|
EP1270624A1 (en) | 2003-01-02 |
DE60131634D1 (en) | 2008-01-10 |
US20030125414A1 (en) | 2003-07-03 |
JPWO2002031010A1 (en) | 2004-02-19 |
DE60131634T2 (en) | 2008-10-30 |
US7026392B2 (en) | 2006-04-11 |
EP1270624B1 (en) | 2007-11-28 |
EP1270624A4 (en) | 2006-01-18 |
WO2002031010A1 (en) | 2002-04-18 |
JP4049670B2 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7026392B2 (en) | Resin for pigment dispersion | |
US7271213B2 (en) | Pigment dispersing resin | |
KR100529683B1 (en) | Pigment dispersions containing hydroxylated AB-block polymer dispersant | |
US6743848B2 (en) | Pigment dispersing resins | |
US20030179269A1 (en) | Ink-jet printing | |
JP2002194037A (en) | Pigment dispersion resin and aqueous pigment dispersion containing the same | |
JP3967949B2 (en) | Resin for pigment dispersion | |
US6656595B2 (en) | Pigment dispersing resins | |
JP5483080B2 (en) | Aqueous pigment dispersion | |
EP1167478B1 (en) | Pigment dispersing resins | |
JP2002012811A (en) | Method for producing pigment-dispersed resin and water- based pigment dispersion containing the same | |
JP4219113B2 (en) | Inkjet printing | |
US6465589B2 (en) | Paint composition | |
JP2001002736A (en) | Resin for dispersing pigment and pigment-dispersing paste composition | |
JP4235476B2 (en) | Pigment dispersion resin and aqueous pigment dispersion containing the same | |
US6852817B2 (en) | Pigment dispersing resin and water-based pigment dispersion which contains the same | |
JP2002206013A (en) | Pigment-dispersed resin and water-based pigment dispersion including the same | |
JP2002053628A (en) | Method for producing pigment dispersion resin and aqueous pigment dispersing element containing the resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |