US20060049464A1 - Semiconductor devices with graded dopant regions - Google Patents
Semiconductor devices with graded dopant regions Download PDFInfo
- Publication number
- US20060049464A1 US20060049464A1 US10/934,915 US93491504A US2006049464A1 US 20060049464 A1 US20060049464 A1 US 20060049464A1 US 93491504 A US93491504 A US 93491504A US 2006049464 A1 US2006049464 A1 US 2006049464A1
- Authority
- US
- United States
- Prior art keywords
- dopant concentration
- semiconductor device
- graded
- graded dopant
- carrier movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
- H10B41/35—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/60—Impurity distributions or concentrations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/211—Design considerations for internal polarisation
Definitions
- This present invention relates to all semiconductor devices and systems. Particularly it applies to diffused diodes, avalanche diodes, Schottky devices, power MOS transistors, JFET's, RF bipolar transistors, IGBTs (Insulated Gate Bipolar Transistors), varactors, digital VLSI, mixed signal circuits and sensor devices including camera ICs employing CCD (Charge Coupled Device) as well as CMOS technologies.
- CCD Charge Coupled Device
- BJT Bipolar Junction transistors
- majority carriers also a small yet finite role in modulating the conductivity in BJTs. Consequently, both carriers (electrons and holes) play a role in the switching performance of BJTs.
- the maximum frequency of operation in BJTs is limited by the base transit time as well as the quick recombination of the majority carriers when the device is switched off (prior to beginning the next cycle).
- the dominant carrier mechanism in BJTs is carrier diffusion. Carrier drift current component is fairly small, especially in uniformly doped base BJTs. Efforts have been made in graded base transistors to create an ‘aiding drift field’, to enhance the diffusing minority carrier's speed from emitter to collector.
- FIG. 1 shows the relative doping concentration versus distance in a BJT.
- FIG. 2 shows the ‘uniformly doped epi region’ in a IGBT.
- MOS devices are majority carrier devices for conduction. The conduction is channel dominated. The channel can be a surface in one plane in planar devices. The surface can also be on the sidewalls in a vertical device. Other device architectures to combine planar and vertical conductions are also possible.
- the maximum frequency of operation is dictated primarily by source-drain separation distance. Most MOS devices use a uniformly doped substrate (or a well region). When a MOSFET is optimillay integrated with a BJT in a monolithic fashion, an IGBT results.
- the IGBT inherits the advantages of both MOSFET and BJT. It also brings new challenges because the required characteristics (electron transit and hole recombination as fast as possible in the case of an n-channel IGBT) require different dopant gradients either in the same layer at different positions, or at the interfaces of similar or dissimilar layers.
- FIG. 3 ( a ) shows a typical CMOS VLSI device employing a twin well substrate, on which active devices are subsequently fabricated.
- FIGS. 3 ( b ), 3 ( c ), and 3 ( d ) illustrate device cross sections, as practiced today.
- ‘Retrograde’ and ‘halo’ wells have also been attempted to improve refresh time in DRAM's (dynamic random access memories), as well as, reducing dark current (background noise) and enhance RGB (Red, Green, Blue) color resolution in digital camera Ics. Most of these techniques either divert the minority carriers away form the active regions of critical charge storage nodes at the surface, or, increase minority carrier density locally as the particular application requires.
- FIG. 1 illustrates the relative doping profiles of emitter, base, and collector, for the two most popular bipolar junction transistors: namely, A—uniform base, and B—graded base;
- FIG. 2 illustrates the cross section of a commercial IGBT with a uniform epitaxial drift region (base);
- FIGS. 3 ( a ), 3 ( b ), 3 ( c ), 3 ( d ) illustrate cross sections commonly used CMOS silicon substrate with two wells (one n-well in which p-channel transistors are subsequently fabricated, and, one p-well in which n-channel transistors are subsequently fabricated)—typical IC, EEPROM using tunnel insulator, DRAM and NAND flash;
- FIG. 4 illustrates the cross section of a IGBT, using one embodiment of the invention described here, where the dopant is optimally graded in the eptaxial drift region;
- FIGS. 5 ( a ), 5 ( b ), 5 ( c ) illustrate the cross sections of a MOS silicon substrate with two wells, and, an underlying layer using embodiments of the invention to improve performance in each application—VLSI logic, DRAM/image IC, nonvolatile memory IC.
- the relative doping concentrations of emitter and collector regions varies from 10 18 to 10 20 /cm 3 , where as the base region is 10 14 to 10 16 /cm 3 depending on the desired characteristics of the BJT.
- the donor dopant concentration may be 10 to 100 ⁇ at the emitter-base junction, relative to the base-collector junction (1 ⁇ ).
- the gradient can be linear, quasi linear, exponential or complimentary error function.
- the relative slope of the donor concentration throughout the base creates a suitable aiding drift electric field, to help the holes (p-n-p transistor) transverse from emitter to collector.
- cut-off frequency or, frequency at unity gain, f T
- Similar performance improvements are also applicable to n-p-n transistors.
- a donor gradient is established from the emitter-drift epitaxial base region junction of the punch-through IGBT, to the drift epitaxial base region—n t buffer layer boundary (electrons in this case are accelerated in their transit from emitter to collector).
- the ‘average’ base resistance is optimized, so that conductivity modulation and lifetime (for minority carriers) in base region are not compromised.
- drift region can also be a non-epitaxial silicon substrate. Epitaxy enhances lifetime, but, epitaxy is not mandatory. Different layers of dopan regions can be transferred through wafer to wafer bonding (or other similar transfer mechanisms) for eventual device fabrication.
- the “reverse recovery time” for an IGBT is significantly improved due to the optimized graded dopant in the so called “drift region” as well as at the interfaces of the drift region.
- Graded dopants can also be implemented in the n+ buffer layer as well as other regions adjacent to the respective layers. Two important performance enhancements are the result of dopant gradients. For example, in an n-channel IGBT, electrons can be swept from source to drain rapidly, while at the same time holes can be recombined closer to the n+ buffer layer. This can improve t(on) and t(off) in the same device.
- donor gradient is also of benefit to very large scale integrated circuits (VLSI)—VLSI logic, DRAM, nonvolatile memory like NAND flash.
- VLSI very large scale integrated circuits
- Spurious minority carriers can be generated by clock switching in digital VLSI logic and memory IC'S. These unwanted carriers can discharge dynamically-held ‘actively held high’ nodes.
- Statically held nodes (with V cc ) can not be affected, in most cases.
- Degradation of refresh time in DRAM's is one of the results, because the capacitor holds charge dynamically.
- degradation of CMOS digital images, in digital imaging IC's is another result of the havoc caused by minority carriers.
- the subterrain n-layer has a graded donor concentration to sweep the minority carriers deep into the substrate.
- One or more of such layers can also be implemented through wafer to wafer bonding or similar “transfer” mechanisms.
- This n-layer can be a deeply-implanted layer. It can also be an epitaxial layer.
- the n-well and p-well also can be graded or retrograded in dopants, as desired, to sweep those carriers away from the surface as well.
- the graded dopant can also be implemented in surface channel MOS devices to accelerate majority carriers towards the drain. In nonvolatile memory devices, to decrease programming time, carriers should be accelerated towards the surface when programming of memory cells is executed.
- the graded dopant can also be used to fabricate superior Junction field-effect transistors where the “channel pinchoff” is controlled by a graded channel instead of a uniformly doped channel (as practiced in prior art).
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICS, improvement in refresh time for DRAM's, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFET's, and a host of other applications.
Description
- This application is not related to any pending application.
- This present invention relates to all semiconductor devices and systems. Particularly it applies to diffused diodes, avalanche diodes, Schottky devices, power MOS transistors, JFET's, RF bipolar transistors, IGBTs (Insulated Gate Bipolar Transistors), varactors, digital VLSI, mixed signal circuits and sensor devices including camera ICs employing CCD (Charge Coupled Device) as well as CMOS technologies.
- Bipolar Junction transistors (BJT) are minority carrier devices as the principle device conduction mechanism. However, majority carriers also a small yet finite role in modulating the conductivity in BJTs. Consequently, both carriers (electrons and holes) play a role in the switching performance of BJTs. The maximum frequency of operation in BJTs is limited by the base transit time as well as the quick recombination of the majority carriers when the device is switched off (prior to beginning the next cycle). The dominant carrier mechanism in BJTs is carrier diffusion. Carrier drift current component is fairly small, especially in uniformly doped base BJTs. Efforts have been made in graded base transistors to create an ‘aiding drift field’, to enhance the diffusing minority carrier's speed from emitter to collector. However, most semiconductor devices, including various power MOSFETs (traditional, DMOS, lateral, vertical and a host of other configurations), IGBT's (Insulated Gated Base Transistors), still use a uniformly doped ‘drift epitaxial’ region in the base.
FIG. 1 shows the relative doping concentration versus distance in a BJT.FIG. 2 shows the ‘uniformly doped epi region’ in a IGBT. In contrast to BJTs, MOS devices are majority carrier devices for conduction. The conduction is channel dominated. The channel can be a surface in one plane in planar devices. The surface can also be on the sidewalls in a vertical device. Other device architectures to combine planar and vertical conductions are also possible. The maximum frequency of operation is dictated primarily by source-drain separation distance. Most MOS devices use a uniformly doped substrate (or a well region). When a MOSFET is optimillay integrated with a BJT in a monolithic fashion, an IGBT results. The IGBT inherits the advantages of both MOSFET and BJT. It also brings new challenges because the required characteristics (electron transit and hole recombination as fast as possible in the case of an n-channel IGBT) require different dopant gradients either in the same layer at different positions, or at the interfaces of similar or dissimilar layers. - ‘Retrograde’ wells have been attempted, with little success, to help improve soft error immunity in SRAM's and visual quality in imaging circuits.
FIG. 3 (a) shows a typical CMOS VLSI device employing a twin well substrate, on which active devices are subsequently fabricated. FIGS. 3(b), 3(c), and 3(d) illustrate device cross sections, as practiced today. ‘Retrograde’ and ‘halo’ wells have also been attempted to improve refresh time in DRAM's (dynamic random access memories), as well as, reducing dark current (background noise) and enhance RGB (Red, Green, Blue) color resolution in digital camera Ics. Most of these techniques either divert the minority carriers away form the active regions of critical charge storage nodes at the surface, or, increase minority carrier density locally as the particular application requires. - For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
-
FIG. 1 illustrates the relative doping profiles of emitter, base, and collector, for the two most popular bipolar junction transistors: namely, A—uniform base, and B—graded base; -
FIG. 2 illustrates the cross section of a commercial IGBT with a uniform epitaxial drift region (base); - FIGS. 3(a), 3(b), 3(c), 3(d) illustrate cross sections commonly used CMOS silicon substrate with two wells (one n-well in which p-channel transistors are subsequently fabricated, and, one p-well in which n-channel transistors are subsequently fabricated)—typical IC, EEPROM using tunnel insulator, DRAM and NAND flash;
-
FIG. 4 illustrates the cross section of a IGBT, using one embodiment of the invention described here, where the dopant is optimally graded in the eptaxial drift region; and - FIGS. 5(a), 5(b), 5(c) illustrate the cross sections of a MOS silicon substrate with two wells, and, an underlying layer using embodiments of the invention to improve performance in each application—VLSI logic, DRAM/image IC, nonvolatile memory IC.
- The relative doping concentrations of emitter and collector regions varies from 1018 to 1020/cm3, where as the base region is 1014 to 1016/cm3 depending on the desired characteristics of the BJT. In graded base p-n-p transistors, the donor dopant concentration may be 10 to 100× at the emitter-base junction, relative to the base-collector junction (1×). The gradient can be linear, quasi linear, exponential or complimentary error function. The relative slope of the donor concentration throughout the base, creates a suitable aiding drift electric field, to help the holes (p-n-p transistor) transverse from emitter to collector. Since the aiding drift field helps hole conduction, the current gain at a given frequency is enhanced, relative to a uniformly-doped-(base) BJT. The improvement in cut-off frequency (or, frequency at unity gain, fT) can be as large as 2×-5×. Similar performance improvements are also applicable to n-p-n transistors.
- As illustrated in
FIG. 4 , in one embodiment according to the invention, a donor gradient is established from the emitter-drift epitaxial base region junction of the punch-through IGBT, to the drift epitaxial base region—nt buffer layer boundary (electrons in this case are accelerated in their transit from emitter to collector). The ‘average’ base resistance is optimized, so that conductivity modulation and lifetime (for minority carriers) in base region are not compromised. By sweeping the carriers towards the nt buffer region two advantages are obtained—the frequency of operation (combination of ton and toff as is known in the IGBT commercial nomenclature) can be enhanced. More importantly, during toff, holes can be recombined much quicker at the nt buffer layer, compared to a uniformly doped n− epitaxial drift region by establishing a different dopant gradient near the n+ buffer layer. It should be noted that the drift region can also be a non-epitaxial silicon substrate. Epitaxy enhances lifetime, but, epitaxy is not mandatory. Different layers of dopan regions can be transferred through wafer to wafer bonding (or other similar transfer mechanisms) for eventual device fabrication. The “reverse recovery time” for an IGBT is significantly improved due to the optimized graded dopant in the so called “drift region” as well as at the interfaces of the drift region. Graded dopants can also be implemented in the n+ buffer layer as well as other regions adjacent to the respective layers. Two important performance enhancements are the result of dopant gradients. For example, in an n-channel IGBT, electrons can be swept from source to drain rapidly, while at the same time holes can be recombined closer to the n+ buffer layer. This can improve t(on) and t(off) in the same device. - As illustrated in FIGS. 5(a), 5(b), 5(c), donor gradient is also of benefit to very large scale integrated circuits (VLSI)—VLSI logic, DRAM, nonvolatile memory like NAND flash. Spurious minority carriers can be generated by clock switching in digital VLSI logic and memory IC'S. These unwanted carriers can discharge dynamically-held ‘actively held high’ nodes. Statically held nodes (with Vcc) can not be affected, in most cases. Degradation of refresh time in DRAM's is one of the results, because the capacitor holds charge dynamically. Similarly, degradation of CMOS digital images, in digital imaging IC's is another result of the havoc caused by minority carriers. Pixel and color resolution can be significantly enhanced in imaging IC's with the embodiments described here. Creating ‘Sub Terrain’ recombination centers underneath the wells (gold doping, platinum doping) as is done in some high-voltage diodes is not practical for VLSI circuits. Hence, a novel technique has been described here by creating a drift field to sweep these unwanted minority carriers into the substrate as quickly as possible, from the active circuitry at the surface. In a preferred embodiment, the subterrain n-layer has a graded donor concentration to sweep the minority carriers deep into the substrate. One or more of such layers can also be implemented through wafer to wafer bonding or similar “transfer” mechanisms. This n-layer can be a deeply-implanted layer. It can also be an epitaxial layer. The n-well and p-well also can be graded or retrograded in dopants, as desired, to sweep those carriers away from the surface as well. The graded dopant can also be implemented in surface channel MOS devices to accelerate majority carriers towards the drain. In nonvolatile memory devices, to decrease programming time, carriers should be accelerated towards the surface when programming of memory cells is executed. The graded dopant can also be used to fabricate superior Junction field-effect transistors where the “channel pinchoff” is controlled by a graded channel instead of a uniformly doped channel (as practiced in prior art).
- One of ordinary skill and familiarity in the art will recognize that the concepts taught herein can be customized and tailored to a particular application in many advantageous ways. For instance, minority carriers can be channeled to the surface, to aid programming in nonvolatile memory devices (NOR, NAND, multivalued-cell). Moreover, single well, as well triple-well CMOS fabrication techniques can also be optimized to incorporate these embodiments, individually and collectively. Any modifications of such embodiments (described here) fall within the spirit and scope of the invention. Hence, they fall within the scope of the claims described below
- Although the invention has been described with reference to specific embodiments, these descriptions are not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention will become apparent to persons skilled in the art upon reference to the description of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
- It is therefore, contemplated that the claims will cover any such modifications or embodiments that fall within the true scope of the invention.
Claims (9)
1. A semiconductor device with graded dopant concentration in the active region, to aid carrier movement from emitter to collector.
2. A semiconductor device with graded dopant concentration in the active region, to aid carrier movement from source to drain.
3. A semiconductor device with graded dopant concentration in the well regions, to aid carrier movement away from the active surface regions, towards the substrate.
4. A semiconductor device with graded dopant concentration in the substrate region to aid carrier movement away from the active surface regions, deeper towards the substrate.
5. A semiconductor device with at least one graded dopant concentration of donor or acceptor, to aid or impede carrier movement in selected regions in the monolithic die.
6. A semiconductor device with at least one each of dopant concentration of both donor and acceptor, to optimize the operating performance of the device.
7. A semiconductor device with at least one graded dopant concentration fabricated with ion implantation, to provide an aiding or retarding electric field locally in a monolithic integrated circuit.
8. A semiconductor device with at least one graded dopant concentration in an epitaxial layer.
9. A semiconductor device where one layer of dopant from one wafer, is transferred to another wafer having either same polarity or different polarity dopant through wafer bonding or similar processes.
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/934,915 US20060049464A1 (en) | 2004-09-03 | 2004-09-03 | Semiconductor devices with graded dopant regions |
| US11/622,496 US8421195B2 (en) | 2004-09-03 | 2007-01-12 | Semiconductor devices with graded dopant regions |
| US12/549,283 US8106481B2 (en) | 2004-09-03 | 2009-08-27 | Semiconductor devices with graded dopant regions |
| US13/854,319 US20130221488A1 (en) | 2004-09-03 | 2013-04-01 | Semiconductor devices with graded dopant regions |
| US14/515,584 US9190502B2 (en) | 2004-09-03 | 2014-10-16 | Semiconductor devices with graded dopant regions |
| US14/931,636 US9647070B2 (en) | 2004-09-03 | 2015-11-03 | Semiconductor devices with graded dopant regions |
| US15/590,282 US10510842B2 (en) | 2004-09-03 | 2017-05-09 | Semiconductor devices with graded dopant regions |
| US16/717,950 US10734481B2 (en) | 2004-09-03 | 2019-12-17 | Semiconductor devices with graded dopant regions |
| US16/947,294 US11121222B2 (en) | 2004-09-03 | 2020-07-27 | Semiconductor devices with graded dopant regions |
| US17/371,839 US11316014B2 (en) | 2004-09-03 | 2021-07-09 | Semiconductor devices with graded dopant regions |
| US17/728,588 US20220246725A1 (en) | 2004-09-03 | 2022-04-25 | Semiconductor devices with graded dopant regions |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/934,915 US20060049464A1 (en) | 2004-09-03 | 2004-09-03 | Semiconductor devices with graded dopant regions |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/622,496 Division US8421195B2 (en) | 2004-09-03 | 2007-01-12 | Semiconductor devices with graded dopant regions |
| US12/549,283 Continuation-In-Part US8106481B2 (en) | 2004-09-03 | 2009-08-27 | Semiconductor devices with graded dopant regions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060049464A1 true US20060049464A1 (en) | 2006-03-09 |
Family
ID=35995339
Family Applications (10)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/934,915 Abandoned US20060049464A1 (en) | 2004-09-03 | 2004-09-03 | Semiconductor devices with graded dopant regions |
| US11/622,496 Expired - Fee Related US8421195B2 (en) | 2004-09-03 | 2007-01-12 | Semiconductor devices with graded dopant regions |
| US13/854,319 Abandoned US20130221488A1 (en) | 2004-09-03 | 2013-04-01 | Semiconductor devices with graded dopant regions |
| US14/515,584 Expired - Lifetime US9190502B2 (en) | 2004-09-03 | 2014-10-16 | Semiconductor devices with graded dopant regions |
| US14/931,636 Expired - Fee Related US9647070B2 (en) | 2004-09-03 | 2015-11-03 | Semiconductor devices with graded dopant regions |
| US15/590,282 Expired - Lifetime US10510842B2 (en) | 2004-09-03 | 2017-05-09 | Semiconductor devices with graded dopant regions |
| US16/717,950 Expired - Lifetime US10734481B2 (en) | 2004-09-03 | 2019-12-17 | Semiconductor devices with graded dopant regions |
| US16/947,294 Expired - Fee Related US11121222B2 (en) | 2004-09-03 | 2020-07-27 | Semiconductor devices with graded dopant regions |
| US17/371,839 Expired - Lifetime US11316014B2 (en) | 2004-09-03 | 2021-07-09 | Semiconductor devices with graded dopant regions |
| US17/728,588 Abandoned US20220246725A1 (en) | 2004-09-03 | 2022-04-25 | Semiconductor devices with graded dopant regions |
Family Applications After (9)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/622,496 Expired - Fee Related US8421195B2 (en) | 2004-09-03 | 2007-01-12 | Semiconductor devices with graded dopant regions |
| US13/854,319 Abandoned US20130221488A1 (en) | 2004-09-03 | 2013-04-01 | Semiconductor devices with graded dopant regions |
| US14/515,584 Expired - Lifetime US9190502B2 (en) | 2004-09-03 | 2014-10-16 | Semiconductor devices with graded dopant regions |
| US14/931,636 Expired - Fee Related US9647070B2 (en) | 2004-09-03 | 2015-11-03 | Semiconductor devices with graded dopant regions |
| US15/590,282 Expired - Lifetime US10510842B2 (en) | 2004-09-03 | 2017-05-09 | Semiconductor devices with graded dopant regions |
| US16/717,950 Expired - Lifetime US10734481B2 (en) | 2004-09-03 | 2019-12-17 | Semiconductor devices with graded dopant regions |
| US16/947,294 Expired - Fee Related US11121222B2 (en) | 2004-09-03 | 2020-07-27 | Semiconductor devices with graded dopant regions |
| US17/371,839 Expired - Lifetime US11316014B2 (en) | 2004-09-03 | 2021-07-09 | Semiconductor devices with graded dopant regions |
| US17/728,588 Abandoned US20220246725A1 (en) | 2004-09-03 | 2022-04-25 | Semiconductor devices with graded dopant regions |
Country Status (1)
| Country | Link |
|---|---|
| US (10) | US20060049464A1 (en) |
Cited By (61)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102006019940B3 (en) * | 2006-04-28 | 2007-12-27 | Qimonda Ag | Memory cell field of non volatile semiconductor memory cells, comprises semiconductor body with semiconductor zone of conductivity type, extending up to surface of body, where bit line is formed and buried in semiconductor zone |
| US20080087800A1 (en) * | 2006-10-04 | 2008-04-17 | Sony Corporation | Solid-state image capturing device, image capturing device, and manufacturing method of solid-state image capturing device |
| US20080277717A1 (en) * | 2007-05-10 | 2008-11-13 | Qimonda Ag | Minority carrier sink for a memory cell array comprising nonvolatile semiconductor memory cells |
| US20090224355A1 (en) * | 2007-03-23 | 2009-09-10 | Siliconix Technology C. V. Ir | Semiconductor device with buffer layer |
| US20100032713A1 (en) * | 2008-08-06 | 2010-02-11 | Texas Instruments Incorporated | Lateral insulated gate bipolar transistor |
| US20110074498A1 (en) * | 2009-09-30 | 2011-03-31 | Suvolta, Inc. | Electronic Devices and Systems, and Methods for Making and Using the Same |
| US20110079861A1 (en) * | 2009-09-30 | 2011-04-07 | Lucian Shifren | Advanced Transistors with Threshold Voltage Set Dopant Structures |
| US20110121404A1 (en) * | 2009-09-30 | 2011-05-26 | Lucian Shifren | Advanced transistors with punch through suppression |
| US20110140176A1 (en) * | 2009-12-10 | 2011-06-16 | International Rectifier Corporation | Monolithic integrated composite group III-V and group IV semiconductor device and method for fabricating same |
| US8377783B2 (en) | 2010-09-30 | 2013-02-19 | Suvolta, Inc. | Method for reducing punch-through in a transistor device |
| US8400219B2 (en) | 2011-03-24 | 2013-03-19 | Suvolta, Inc. | Analog circuits having improved transistors, and methods therefor |
| US8404551B2 (en) | 2010-12-03 | 2013-03-26 | Suvolta, Inc. | Source/drain extension control for advanced transistors |
| US8461875B1 (en) | 2011-02-18 | 2013-06-11 | Suvolta, Inc. | Digital circuits having improved transistors, and methods therefor |
| US8525271B2 (en) | 2011-03-03 | 2013-09-03 | Suvolta, Inc. | Semiconductor structure with improved channel stack and method for fabrication thereof |
| US8530286B2 (en) | 2010-04-12 | 2013-09-10 | Suvolta, Inc. | Low power semiconductor transistor structure and method of fabrication thereof |
| US8569156B1 (en) | 2011-05-16 | 2013-10-29 | Suvolta, Inc. | Reducing or eliminating pre-amorphization in transistor manufacture |
| US8569128B2 (en) | 2010-06-21 | 2013-10-29 | Suvolta, Inc. | Semiconductor structure and method of fabrication thereof with mixed metal types |
| US8599623B1 (en) | 2011-12-23 | 2013-12-03 | Suvolta, Inc. | Circuits and methods for measuring circuit elements in an integrated circuit device |
| US8614128B1 (en) | 2011-08-23 | 2013-12-24 | Suvolta, Inc. | CMOS structures and processes based on selective thinning |
| US8629016B1 (en) | 2011-07-26 | 2014-01-14 | Suvolta, Inc. | Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer |
| US8637955B1 (en) | 2012-08-31 | 2014-01-28 | Suvolta, Inc. | Semiconductor structure with reduced junction leakage and method of fabrication thereof |
| US8645878B1 (en) | 2011-08-23 | 2014-02-04 | Suvolta, Inc. | Porting a circuit design from a first semiconductor process to a second semiconductor process |
| US8713511B1 (en) | 2011-09-16 | 2014-04-29 | Suvolta, Inc. | Tools and methods for yield-aware semiconductor manufacturing process target generation |
| US8735987B1 (en) | 2011-06-06 | 2014-05-27 | Suvolta, Inc. | CMOS gate stack structures and processes |
| US8748270B1 (en) | 2011-03-30 | 2014-06-10 | Suvolta, Inc. | Process for manufacturing an improved analog transistor |
| US8748986B1 (en) | 2011-08-05 | 2014-06-10 | Suvolta, Inc. | Electronic device with controlled threshold voltage |
| US8759872B2 (en) | 2010-06-22 | 2014-06-24 | Suvolta, Inc. | Transistor with threshold voltage set notch and method of fabrication thereof |
| US8796048B1 (en) | 2011-05-11 | 2014-08-05 | Suvolta, Inc. | Monitoring and measurement of thin film layers |
| US8811068B1 (en) | 2011-05-13 | 2014-08-19 | Suvolta, Inc. | Integrated circuit devices and methods |
| US8816754B1 (en) | 2012-11-02 | 2014-08-26 | Suvolta, Inc. | Body bias circuits and methods |
| US8819603B1 (en) | 2011-12-15 | 2014-08-26 | Suvolta, Inc. | Memory circuits and methods of making and designing the same |
| US8863064B1 (en) | 2012-03-23 | 2014-10-14 | Suvolta, Inc. | SRAM cell layout structure and devices therefrom |
| US8877619B1 (en) | 2012-01-23 | 2014-11-04 | Suvolta, Inc. | Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom |
| US8883600B1 (en) | 2011-12-22 | 2014-11-11 | Suvolta, Inc. | Transistor having reduced junction leakage and methods of forming thereof |
| US8895327B1 (en) | 2011-12-09 | 2014-11-25 | Suvolta, Inc. | Tipless transistors, short-tip transistors, and methods and circuits therefor |
| US8970289B1 (en) | 2012-01-23 | 2015-03-03 | Suvolta, Inc. | Circuits and devices for generating bi-directional body bias voltages, and methods therefor |
| US8976575B1 (en) | 2013-08-29 | 2015-03-10 | Suvolta, Inc. | SRAM performance monitor |
| US8988153B1 (en) | 2013-03-09 | 2015-03-24 | Suvolta, Inc. | Ring oscillator with NMOS or PMOS variation insensitivity |
| US8995204B2 (en) | 2011-06-23 | 2015-03-31 | Suvolta, Inc. | Circuit devices and methods having adjustable transistor body bias |
| US8994415B1 (en) | 2013-03-01 | 2015-03-31 | Suvolta, Inc. | Multiple VDD clock buffer |
| US8999861B1 (en) | 2011-05-11 | 2015-04-07 | Suvolta, Inc. | Semiconductor structure with substitutional boron and method for fabrication thereof |
| US9041126B2 (en) | 2012-09-21 | 2015-05-26 | Mie Fujitsu Semiconductor Limited | Deeply depleted MOS transistors having a screening layer and methods thereof |
| US9054219B1 (en) | 2011-08-05 | 2015-06-09 | Mie Fujitsu Semiconductor Limited | Semiconductor devices having fin structures and fabrication methods thereof |
| US9070477B1 (en) | 2012-12-12 | 2015-06-30 | Mie Fujitsu Semiconductor Limited | Bit interleaved low voltage static random access memory (SRAM) and related methods |
| US9093997B1 (en) | 2012-11-15 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Slew based process and bias monitors and related methods |
| US9093550B1 (en) | 2012-01-31 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same |
| US9112495B1 (en) | 2013-03-15 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit device body bias circuits and methods |
| US9112484B1 (en) | 2012-12-20 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit process and bias monitors and related methods |
| US9112057B1 (en) | 2012-09-18 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Semiconductor devices with dopant migration suppression and method of fabrication thereof |
| US9236466B1 (en) | 2011-10-07 | 2016-01-12 | Mie Fujitsu Semiconductor Limited | Analog circuits having improved insulated gate transistors, and methods therefor |
| US9268885B1 (en) | 2013-02-28 | 2016-02-23 | Mie Fujitsu Semiconductor Limited | Integrated circuit device methods and models with predicted device metric variations |
| US9299801B1 (en) | 2013-03-14 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Method for fabricating a transistor device with a tuned dopant profile |
| US9299698B2 (en) | 2012-06-27 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with multiple transistors having various threshold voltages |
| US9319013B2 (en) | 2014-08-19 | 2016-04-19 | Mie Fujitsu Semiconductor Limited | Operational amplifier input offset correction with transistor threshold voltage adjustment |
| US9406567B1 (en) | 2012-02-28 | 2016-08-02 | Mie Fujitsu Semiconductor Limited | Method for fabricating multiple transistor devices on a substrate with varying threshold voltages |
| US9431068B2 (en) | 2012-10-31 | 2016-08-30 | Mie Fujitsu Semiconductor Limited | Dynamic random access memory (DRAM) with low variation transistor peripheral circuits |
| US9449967B1 (en) | 2013-03-15 | 2016-09-20 | Fujitsu Semiconductor Limited | Transistor array structure |
| US9478571B1 (en) | 2013-05-24 | 2016-10-25 | Mie Fujitsu Semiconductor Limited | Buried channel deeply depleted channel transistor |
| US9710006B2 (en) | 2014-07-25 | 2017-07-18 | Mie Fujitsu Semiconductor Limited | Power up body bias circuits and methods |
| TWI800105B (en) * | 2020-11-23 | 2023-04-21 | 加拿大商萬國半導體國際有限合夥公司 | Gas dopant doped deep trench super junction high voltage mosfet |
| US20250148983A1 (en) * | 2023-11-06 | 2025-05-08 | Canon Kabushiki Kaisha | Light emitting device, display device, photoelectric conversion device, electronic apparatus, illumination device, and moving body |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060049464A1 (en) | 2004-09-03 | 2006-03-09 | Rao G R Mohan | Semiconductor devices with graded dopant regions |
| US8598637B2 (en) * | 2009-09-18 | 2013-12-03 | Monolithic Power Systems, Inc. | High voltage junction field effect transistor with spiral field plate |
| US9147690B2 (en) * | 2012-03-08 | 2015-09-29 | Ememory Technology Inc. | Erasable programmable single-ploy nonvolatile memory |
| US8941167B2 (en) | 2012-03-08 | 2015-01-27 | Ememory Technology Inc. | Erasable programmable single-ploy nonvolatile memory |
| US9379259B2 (en) * | 2012-11-05 | 2016-06-28 | International Business Machines Corporation | Double layered transparent conductive oxide for reduced schottky barrier in photovoltaic devices |
| CN103151371A (en) * | 2013-03-05 | 2013-06-12 | 矽力杰半导体技术(杭州)有限公司 | Wafer structure and power device by using same |
| TWI514590B (en) * | 2013-05-14 | 2015-12-21 | Ememory Technology Inc | Erasable programmable single-ploy nonvolatile memory |
| CN103441143B (en) * | 2013-07-10 | 2015-09-09 | 电子科技大学 | Latch-up resistant IGBT with variable composition mixed crystal emitter |
| KR20230013704A (en) | 2021-07-19 | 2023-01-27 | 삼성전자주식회사 | Image sensor |
Citations (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4001864A (en) * | 1976-01-30 | 1977-01-04 | Gibbons James F | Semiconductor p-n junction solar cell and method of manufacture |
| US4347654A (en) * | 1980-06-18 | 1982-09-07 | National Semiconductor Corporation | Method of fabricating a high-frequency bipolar transistor structure utilizing permeation-etching |
| US4866000A (en) * | 1987-09-16 | 1989-09-12 | Oki Electric Industry Co., Ltd. | Fabrication method for semiconductor integrated circuits |
| US5130262A (en) * | 1989-12-26 | 1992-07-14 | Masquelier Michael P | Internal current limit and overvoltage protection method |
| US5213988A (en) * | 1990-02-07 | 1993-05-25 | Kabushiki Kaisha Toshiba | Method of manufacturing bipolar transistor with self-aligned base regions |
| US5329144A (en) * | 1993-04-23 | 1994-07-12 | At&T Bell Laboratories | Heterojunction bipolar transistor with a specific graded base structure |
| US5480816A (en) * | 1992-02-17 | 1996-01-02 | Mitsubishi Denki Kabushiki Kaisha | Method of fabricating a bipolar transistor having a link base |
| US5496746A (en) * | 1991-10-23 | 1996-03-05 | Microsystems Engineering, Inc. | Method for fabricating a bipolar junction transistor exhibiting improved beta and punch-through characteristics |
| US5569612A (en) * | 1993-06-28 | 1996-10-29 | Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno | Process for manufacturing a bipolar power transistor having a high breakdown voltage |
| US5575862A (en) * | 1993-11-30 | 1996-11-19 | Canon Kabushiki Kaisha | Polycrystalline silicon photoelectric conversion device and process for its production |
| US5797999A (en) * | 1995-09-08 | 1998-08-25 | Sharp Kabushiki Kaisha | Solar cell and method for fabricating the same |
| US6211028B1 (en) * | 1999-02-05 | 2001-04-03 | Taiwan Semiconductor Manufacturing Company | Twin current bipolar device with hi-lo base profile |
| USRE37441E1 (en) * | 1982-08-24 | 2001-11-13 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
| US20020074585A1 (en) * | 1988-05-17 | 2002-06-20 | Advanced Power Technology, Inc., Delaware Corporation | Self-aligned power MOSFET with enhanced base region |
| US6452086B1 (en) * | 1998-10-05 | 2002-09-17 | Astrium Gmbh | Solar cell comprising a bypass diode |
| US6472715B1 (en) * | 2000-09-28 | 2002-10-29 | Lsi Logic Corporation | Reduced soft error rate (SER) construction for integrated circuit structures |
| US6670544B2 (en) * | 2000-12-08 | 2003-12-30 | Daimlerchrysler Ag | Silicon-germanium solar cell having a high power efficiency |
| US6683343B2 (en) * | 2001-02-28 | 2004-01-27 | Kabushiki Kaisha Toshiba | High voltage semiconductor device having two buffer layer |
| US6696314B2 (en) * | 2001-08-30 | 2004-02-24 | Micron Technology, Inc. | CMOS imager and method of formation |
| US6706550B2 (en) * | 1998-06-27 | 2004-03-16 | Hyundai Electronics Industries Co, Ltd. | Photodiode having a plurality of PN injections and image sensor having the same |
| US6713813B2 (en) * | 2001-01-30 | 2004-03-30 | Fairchild Semiconductor Corporation | Field effect transistor having a lateral depletion structure |
| US20040063288A1 (en) * | 2002-09-18 | 2004-04-01 | Danny Kenney | System and method for reducing soft error rate utilizing customized epitaxial layers |
| US6737722B2 (en) * | 2001-04-25 | 2004-05-18 | Sanken Electric Co., Ltd. | Lateral transistor having graded base region, semiconductor integrated circuit and fabrication method thereof |
| US6744117B2 (en) * | 2002-02-28 | 2004-06-01 | Motorola, Inc. | High frequency semiconductor device and method of manufacture |
| US6747883B2 (en) * | 2002-02-15 | 2004-06-08 | Sony Corporation | Switching power supply circuit |
| US6753202B2 (en) * | 2001-05-03 | 2004-06-22 | Texas Instruments Incorporated | CMOS photodiode having reduced dark current and improved light sensitivity and responsivity |
| US6754093B2 (en) * | 2002-06-06 | 2004-06-22 | Integrated Device Technology, Inc. | CAM circuit with radiation resistance |
| US6756616B2 (en) * | 2001-08-30 | 2004-06-29 | Micron Technology, Inc. | CMOS imager and method of formation |
Family Cites Families (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4078947A (en) * | 1976-08-05 | 1978-03-14 | International Business Machines Corporation | Method for forming a narrow channel length MOS field effect transistor |
| US4160985A (en) * | 1977-11-25 | 1979-07-10 | Hewlett-Packard Company | Photosensing arrays with improved spatial resolution |
| US4684971A (en) | 1981-03-13 | 1987-08-04 | American Telephone And Telegraph Company, At&T Bell Laboratories | Ion implanted CMOS devices |
| US4481522A (en) * | 1982-03-24 | 1984-11-06 | Rca Corporation | CCD Imagers with substrates having drift field |
| US4688063A (en) | 1984-06-29 | 1987-08-18 | International Business Machines Corporation | Dynamic ram cell with MOS trench capacitor in CMOS |
| JPS6410656A (en) | 1987-07-03 | 1989-01-13 | Hitachi Ltd | Complementary type semiconductor device |
| JPS6482563A (en) | 1987-09-24 | 1989-03-28 | Mitsubishi Electric Corp | Semiconductor device |
| US4994887A (en) | 1987-11-13 | 1991-02-19 | Texas Instruments Incorporated | High voltage merged bipolar/CMOS technology |
| US5262345A (en) | 1990-01-25 | 1993-11-16 | Analog Devices, Inc. | Complimentary bipolar/CMOS fabrication method |
| US5029277A (en) * | 1990-02-28 | 1991-07-02 | Motorola, Inc. | Optically compensated bipolar transistor |
| US5448087A (en) | 1992-04-30 | 1995-09-05 | Trw Inc. | Heterojunction bipolar transistor with graded base doping |
| TW226478B (en) * | 1992-12-04 | 1994-07-11 | Semiconductor Energy Res Co Ltd | Semiconductor device and method for manufacturing the same |
| US5532177A (en) * | 1993-07-07 | 1996-07-02 | Micron Display Technology | Method for forming electron emitters |
| US5517052A (en) * | 1994-06-24 | 1996-05-14 | General Electric Company | Deep-diffused phototransistor |
| JPH0897163A (en) * | 1994-07-28 | 1996-04-12 | Hitachi Ltd | Semiconductor wafer manufacturing method, semiconductor wafer, semiconductor integrated circuit device manufacturing method, and semiconductor integrated circuit device |
| US5637898A (en) * | 1995-12-22 | 1997-06-10 | North Carolina State University | Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance |
| JP3958388B2 (en) * | 1996-08-26 | 2007-08-15 | 株式会社ルネサステクノロジ | Semiconductor device |
| EP0859457B1 (en) | 1997-02-14 | 2003-08-27 | Nippon Telegraph And Telephone Corporation | A voltage controlled oscillator |
| KR100225411B1 (en) | 1997-03-24 | 1999-10-15 | 김덕중 | Ldmos transistor device and method of manufacturing the same |
| US5835402A (en) | 1997-03-27 | 1998-11-10 | Xilinx, Inc. | Non-volatile storage for standard CMOS integrated circuits |
| JP3691963B2 (en) | 1998-05-28 | 2005-09-07 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
| US6310366B1 (en) | 1999-06-16 | 2001-10-30 | Micron Technology, Inc. | Retrograde well structure for a CMOS imager |
| US6465862B1 (en) | 1999-10-05 | 2002-10-15 | Brannon Harris | Method and apparatus for implementing efficient CMOS photo sensors |
| JP4164962B2 (en) | 1999-10-08 | 2008-10-15 | 株式会社デンソー | Insulated gate bipolar transistor |
| JP2001296599A (en) * | 2000-04-12 | 2001-10-26 | Olympus Optical Co Ltd | Camera used for silver halide photography and also for electronic image pickup |
| US6743972B2 (en) * | 2000-09-18 | 2004-06-01 | Chris Macris | Heat dissipating IC devices |
| JP5046452B2 (en) * | 2000-10-26 | 2012-10-10 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
| US6515740B2 (en) * | 2000-11-09 | 2003-02-04 | Canesta, Inc. | Methods for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation |
| AU2002230482A1 (en) * | 2000-11-16 | 2002-05-27 | Silicon Wireless Corporation | Discrete and packaged power devices for radio frequency (rf) applications and methods of forming same |
| DE10062026A1 (en) | 2000-12-13 | 2002-07-04 | Siemens Ag | Electronic switching device |
| JP2002305304A (en) | 2001-04-05 | 2002-10-18 | Toshiba Corp | Power semiconductor device |
| DE10131705B4 (en) | 2001-06-29 | 2010-03-18 | Atmel Automotive Gmbh | Method for producing a DMOS transistor |
| DE10131706B4 (en) | 2001-06-29 | 2005-10-06 | Atmel Germany Gmbh | Method for producing a DMOS transistor |
| DE10131704A1 (en) | 2001-06-29 | 2003-01-16 | Atmel Germany Gmbh | Method for doping a semiconductor body |
| JP2003051551A (en) | 2001-08-03 | 2003-02-21 | Hitachi Ltd | Semiconductor device manufacturing method and semiconductor device |
| JP2003051184A (en) | 2001-08-06 | 2003-02-21 | Nec Corp | Memory device |
| GB0119215D0 (en) * | 2001-08-07 | 2001-09-26 | Koninkl Philips Electronics Nv | Trench bipolar transistor |
| AU2002349881A1 (en) * | 2001-09-21 | 2003-04-01 | Amberwave Systems Corporation | Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same |
| JP2003218356A (en) | 2002-01-21 | 2003-07-31 | Sony Corp | Method for manufacturing and designing soi type semiconductor device, and soi type semiconductor device |
| DE10214066B4 (en) | 2002-03-28 | 2007-02-01 | Advanced Micro Devices, Inc., Sunnyvale | Semiconductor device having a retrograde doping profile in a channel region and method of making the same |
| US6720622B1 (en) * | 2002-07-05 | 2004-04-13 | Taiwan Semiconductor Manufacturing Company | SCR-ESD structures with shallow trench isolation |
| AU2003259111A1 (en) | 2002-11-26 | 2004-06-18 | Advanced Micro Devices, Inc. | Retrograde channel doping to improve short channel effect |
| US6921946B2 (en) | 2002-12-16 | 2005-07-26 | Koninklijke Philips Electronics N.V. | Test structure for electrical well-to-well overlay |
| US7285466B2 (en) * | 2003-08-05 | 2007-10-23 | Samsung Electronics Co., Ltd. | Methods of forming metal oxide semiconductor (MOS) transistors having three dimensional channels |
| DE10345347A1 (en) | 2003-09-19 | 2005-04-14 | Atmel Germany Gmbh | Method of making a lateral drift region dopant profile DMOS transistor |
| DE102004005948B4 (en) | 2004-02-02 | 2009-04-02 | Atmel Germany Gmbh | MOS transistor and method of manufacturing a MOS transistor structure |
| US7238986B2 (en) * | 2004-05-03 | 2007-07-03 | Texas Instruments Incorporated | Robust DEMOS transistors and method for making the same |
| US20060049464A1 (en) | 2004-09-03 | 2006-03-09 | Rao G R Mohan | Semiconductor devices with graded dopant regions |
| US7115925B2 (en) | 2005-01-14 | 2006-10-03 | Omnivision Technologies, Inc. | Image sensor and pixel having an optimized floating diffusion |
| US7307327B2 (en) | 2005-08-04 | 2007-12-11 | Micron Technology, Inc. | Reduced crosstalk CMOS image sensors |
| US20070045682A1 (en) * | 2005-08-31 | 2007-03-01 | Hong Sungkwon C | Imager with gradient doped EPI layer |
| DE102005042827A1 (en) | 2005-09-09 | 2007-03-22 | Atmel Germany Gmbh | High-voltage FET with source drain gate and channel has doped drift region having potential barrier spaced from the body region |
| US20080142899A1 (en) | 2006-08-04 | 2008-06-19 | Silicon Space Technology Corporation | Radiation immunity of integrated circuits using backside die contact and electrically conductive layers |
| US8164124B2 (en) | 2007-04-04 | 2012-04-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photodiode with multi-epi films for image sensor |
| US8704292B2 (en) * | 2010-02-23 | 2014-04-22 | Donald R. Disney | Vertical capacitive depletion field effect transistor |
| US8293629B2 (en) | 2010-04-06 | 2012-10-23 | Omnivision Technologies, Inc. | High full-well capacity pixel with graded photodetector implant |
| KR101729717B1 (en) * | 2010-08-31 | 2017-04-25 | 삼성디스플레이 주식회사 | A mask for sealant hardening and the flat display device manufacturing method using the same |
| KR101798273B1 (en) * | 2011-04-06 | 2017-11-15 | 에이비비 슈바이쯔 아게 | Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device |
| US9331116B2 (en) | 2014-01-15 | 2016-05-03 | Omnivision Technologies, Inc. | Back side illuminated single photon avalanche diode imaging sensor with high short wavelength detection efficiency |
-
2004
- 2004-09-03 US US10/934,915 patent/US20060049464A1/en not_active Abandoned
-
2007
- 2007-01-12 US US11/622,496 patent/US8421195B2/en not_active Expired - Fee Related
-
2013
- 2013-04-01 US US13/854,319 patent/US20130221488A1/en not_active Abandoned
-
2014
- 2014-10-16 US US14/515,584 patent/US9190502B2/en not_active Expired - Lifetime
-
2015
- 2015-11-03 US US14/931,636 patent/US9647070B2/en not_active Expired - Fee Related
-
2017
- 2017-05-09 US US15/590,282 patent/US10510842B2/en not_active Expired - Lifetime
-
2019
- 2019-12-17 US US16/717,950 patent/US10734481B2/en not_active Expired - Lifetime
-
2020
- 2020-07-27 US US16/947,294 patent/US11121222B2/en not_active Expired - Fee Related
-
2021
- 2021-07-09 US US17/371,839 patent/US11316014B2/en not_active Expired - Lifetime
-
2022
- 2022-04-25 US US17/728,588 patent/US20220246725A1/en not_active Abandoned
Patent Citations (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4001864A (en) * | 1976-01-30 | 1977-01-04 | Gibbons James F | Semiconductor p-n junction solar cell and method of manufacture |
| US4347654A (en) * | 1980-06-18 | 1982-09-07 | National Semiconductor Corporation | Method of fabricating a high-frequency bipolar transistor structure utilizing permeation-etching |
| USRE37441E1 (en) * | 1982-08-24 | 2001-11-13 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
| US4866000A (en) * | 1987-09-16 | 1989-09-12 | Oki Electric Industry Co., Ltd. | Fabrication method for semiconductor integrated circuits |
| US20020074585A1 (en) * | 1988-05-17 | 2002-06-20 | Advanced Power Technology, Inc., Delaware Corporation | Self-aligned power MOSFET with enhanced base region |
| US5130262A (en) * | 1989-12-26 | 1992-07-14 | Masquelier Michael P | Internal current limit and overvoltage protection method |
| US5213988A (en) * | 1990-02-07 | 1993-05-25 | Kabushiki Kaisha Toshiba | Method of manufacturing bipolar transistor with self-aligned base regions |
| US5496746A (en) * | 1991-10-23 | 1996-03-05 | Microsystems Engineering, Inc. | Method for fabricating a bipolar junction transistor exhibiting improved beta and punch-through characteristics |
| US5480816A (en) * | 1992-02-17 | 1996-01-02 | Mitsubishi Denki Kabushiki Kaisha | Method of fabricating a bipolar transistor having a link base |
| US5329144A (en) * | 1993-04-23 | 1994-07-12 | At&T Bell Laboratories | Heterojunction bipolar transistor with a specific graded base structure |
| US5569612A (en) * | 1993-06-28 | 1996-10-29 | Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno | Process for manufacturing a bipolar power transistor having a high breakdown voltage |
| US5575862A (en) * | 1993-11-30 | 1996-11-19 | Canon Kabushiki Kaisha | Polycrystalline silicon photoelectric conversion device and process for its production |
| US5797999A (en) * | 1995-09-08 | 1998-08-25 | Sharp Kabushiki Kaisha | Solar cell and method for fabricating the same |
| US6706550B2 (en) * | 1998-06-27 | 2004-03-16 | Hyundai Electronics Industries Co, Ltd. | Photodiode having a plurality of PN injections and image sensor having the same |
| US6452086B1 (en) * | 1998-10-05 | 2002-09-17 | Astrium Gmbh | Solar cell comprising a bypass diode |
| US6211028B1 (en) * | 1999-02-05 | 2001-04-03 | Taiwan Semiconductor Manufacturing Company | Twin current bipolar device with hi-lo base profile |
| US6472715B1 (en) * | 2000-09-28 | 2002-10-29 | Lsi Logic Corporation | Reduced soft error rate (SER) construction for integrated circuit structures |
| US6670544B2 (en) * | 2000-12-08 | 2003-12-30 | Daimlerchrysler Ag | Silicon-germanium solar cell having a high power efficiency |
| US6713813B2 (en) * | 2001-01-30 | 2004-03-30 | Fairchild Semiconductor Corporation | Field effect transistor having a lateral depletion structure |
| US6683343B2 (en) * | 2001-02-28 | 2004-01-27 | Kabushiki Kaisha Toshiba | High voltage semiconductor device having two buffer layer |
| US6737722B2 (en) * | 2001-04-25 | 2004-05-18 | Sanken Electric Co., Ltd. | Lateral transistor having graded base region, semiconductor integrated circuit and fabrication method thereof |
| US6753202B2 (en) * | 2001-05-03 | 2004-06-22 | Texas Instruments Incorporated | CMOS photodiode having reduced dark current and improved light sensitivity and responsivity |
| US6696314B2 (en) * | 2001-08-30 | 2004-02-24 | Micron Technology, Inc. | CMOS imager and method of formation |
| US6756616B2 (en) * | 2001-08-30 | 2004-06-29 | Micron Technology, Inc. | CMOS imager and method of formation |
| US6747883B2 (en) * | 2002-02-15 | 2004-06-08 | Sony Corporation | Switching power supply circuit |
| US6744117B2 (en) * | 2002-02-28 | 2004-06-01 | Motorola, Inc. | High frequency semiconductor device and method of manufacture |
| US6754093B2 (en) * | 2002-06-06 | 2004-06-22 | Integrated Device Technology, Inc. | CAM circuit with radiation resistance |
| US20040063288A1 (en) * | 2002-09-18 | 2004-04-01 | Danny Kenney | System and method for reducing soft error rate utilizing customized epitaxial layers |
Cited By (138)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102006019940B3 (en) * | 2006-04-28 | 2007-12-27 | Qimonda Ag | Memory cell field of non volatile semiconductor memory cells, comprises semiconductor body with semiconductor zone of conductivity type, extending up to surface of body, where bit line is formed and buried in semiconductor zone |
| US8035067B2 (en) * | 2006-10-04 | 2011-10-11 | Sony Corporation | Solid-state image capturing device, image capturing device, and manufacturing method of solid-state image capturing device |
| US20080087800A1 (en) * | 2006-10-04 | 2008-04-17 | Sony Corporation | Solid-state image capturing device, image capturing device, and manufacturing method of solid-state image capturing device |
| US20090215220A1 (en) * | 2006-10-04 | 2009-08-27 | Sony Corporation | Solid-state image capturing device, image capturing device, and manufacturing method of solid-state image capturing device |
| US7928352B2 (en) * | 2006-10-04 | 2011-04-19 | Sony Corporation | Solid-state image capturing device, image capturing device, and manufacturing method of solid-state image capturing device |
| US20090224355A1 (en) * | 2007-03-23 | 2009-09-10 | Siliconix Technology C. V. Ir | Semiconductor device with buffer layer |
| US8685849B2 (en) * | 2007-03-23 | 2014-04-01 | Siliconix Technology C. V. Ir | Semiconductor device with buffer layer |
| US8274128B2 (en) * | 2007-03-23 | 2012-09-25 | Siliconix Technology C. V. Ir | Semiconductor device with buffer layer |
| US20080277717A1 (en) * | 2007-05-10 | 2008-11-13 | Qimonda Ag | Minority carrier sink for a memory cell array comprising nonvolatile semiconductor memory cells |
| US7755130B2 (en) | 2007-05-10 | 2010-07-13 | Qimonda Ag | Minority carrier sink for a memory cell array comprising nonvolatile semiconductor memory cells |
| US20100032713A1 (en) * | 2008-08-06 | 2010-02-11 | Texas Instruments Incorporated | Lateral insulated gate bipolar transistor |
| US10224244B2 (en) | 2009-09-30 | 2019-03-05 | Mie Fujitsu Semiconductor Limited | Electronic devices and systems, and methods for making and using the same |
| US10217668B2 (en) | 2009-09-30 | 2019-02-26 | Mie Fujitsu Semiconductor Limited | Electronic devices and systems, and methods for making and using the same |
| US20110121404A1 (en) * | 2009-09-30 | 2011-05-26 | Lucian Shifren | Advanced transistors with punch through suppression |
| US8273617B2 (en) | 2009-09-30 | 2012-09-25 | Suvolta, Inc. | Electronic devices and systems, and methods for making and using the same |
| US20110074498A1 (en) * | 2009-09-30 | 2011-03-31 | Suvolta, Inc. | Electronic Devices and Systems, and Methods for Making and Using the Same |
| US9508800B2 (en) | 2009-09-30 | 2016-11-29 | Mie Fujitsu Semiconductor Limited | Advanced transistors with punch through suppression |
| US20110079861A1 (en) * | 2009-09-30 | 2011-04-07 | Lucian Shifren | Advanced Transistors with Threshold Voltage Set Dopant Structures |
| US8421162B2 (en) | 2009-09-30 | 2013-04-16 | Suvolta, Inc. | Advanced transistors with punch through suppression |
| US9263523B2 (en) | 2009-09-30 | 2016-02-16 | Mie Fujitsu Semiconductor Limited | Advanced transistors with punch through suppression |
| US8604527B2 (en) | 2009-09-30 | 2013-12-10 | Suvolta, Inc. | Electronic devices and systems, and methods for making and using the same |
| US11062950B2 (en) | 2009-09-30 | 2021-07-13 | United Semiconductor Japan Co., Ltd. | Electronic devices and systems, and methods for making and using the same |
| US8604530B2 (en) | 2009-09-30 | 2013-12-10 | Suvolta, Inc. | Electronic devices and systems, and methods for making and using the same |
| US8541824B2 (en) | 2009-09-30 | 2013-09-24 | Suvolta, Inc. | Electronic devices and systems, and methods for making and using the same |
| US11887895B2 (en) | 2009-09-30 | 2024-01-30 | United Semiconductor Japan Co., Ltd. | Electronic devices and systems, and methods for making and using the same |
| US8975128B2 (en) | 2009-09-30 | 2015-03-10 | Suvolta, Inc. | Electronic devices and systems, and methods for making and using the same |
| US10325986B2 (en) | 2009-09-30 | 2019-06-18 | Mie Fujitsu Semiconductor Limited | Advanced transistors with punch through suppression |
| US10074568B2 (en) | 2009-09-30 | 2018-09-11 | Mie Fujitsu Semiconductor Limited | Electronic devices and systems, and methods for making and using same |
| US20140008663A1 (en) * | 2009-12-10 | 2014-01-09 | International Rectifier Corporation | Integrated Composite Group III-V and Group IV Semiconductor Device |
| US8530938B2 (en) * | 2009-12-10 | 2013-09-10 | International Rectifier Corporation | Monolithic integrated composite group III-V and group IV semiconductor device and method for fabricating same |
| US20130337626A1 (en) * | 2009-12-10 | 2013-12-19 | International Rectifier Corporation | Monolithic Group III-V and Group IV Device |
| US20110140176A1 (en) * | 2009-12-10 | 2011-06-16 | International Rectifier Corporation | Monolithic integrated composite group III-V and group IV semiconductor device and method for fabricating same |
| US9496261B2 (en) | 2010-04-12 | 2016-11-15 | Mie Fujitsu Semiconductor Limited | Low power semiconductor transistor structure and method of fabrication thereof |
| US8530286B2 (en) | 2010-04-12 | 2013-09-10 | Suvolta, Inc. | Low power semiconductor transistor structure and method of fabrication thereof |
| US9865596B2 (en) | 2010-04-12 | 2018-01-09 | Mie Fujitsu Semiconductor Limited | Low power semiconductor transistor structure and method of fabrication thereof |
| US8569128B2 (en) | 2010-06-21 | 2013-10-29 | Suvolta, Inc. | Semiconductor structure and method of fabrication thereof with mixed metal types |
| US9224733B2 (en) | 2010-06-21 | 2015-12-29 | Mie Fujitsu Semiconductor Limited | Semiconductor structure and method of fabrication thereof with mixed metal types |
| US8759872B2 (en) | 2010-06-22 | 2014-06-24 | Suvolta, Inc. | Transistor with threshold voltage set notch and method of fabrication thereof |
| US9418987B2 (en) | 2010-06-22 | 2016-08-16 | Mie Fujitsu Semiconductor Limited | Transistor with threshold voltage set notch and method of fabrication thereof |
| US9922977B2 (en) | 2010-06-22 | 2018-03-20 | Mie Fujitsu Semiconductor Limited | Transistor with threshold voltage set notch and method of fabrication thereof |
| US8377783B2 (en) | 2010-09-30 | 2013-02-19 | Suvolta, Inc. | Method for reducing punch-through in a transistor device |
| US8563384B2 (en) | 2010-12-03 | 2013-10-22 | Suvolta, Inc. | Source/drain extension control for advanced transistors |
| US8404551B2 (en) | 2010-12-03 | 2013-03-26 | Suvolta, Inc. | Source/drain extension control for advanced transistors |
| US9006843B2 (en) | 2010-12-03 | 2015-04-14 | Suvolta, Inc. | Source/drain extension control for advanced transistors |
| US8686511B2 (en) | 2010-12-03 | 2014-04-01 | Suvolta, Inc. | Source/drain extension control for advanced transistors |
| US8461875B1 (en) | 2011-02-18 | 2013-06-11 | Suvolta, Inc. | Digital circuits having improved transistors, and methods therefor |
| US10250257B2 (en) | 2011-02-18 | 2019-04-02 | Mie Fujitsu Semiconductor Limited | Digital circuits having improved transistors, and methods therefor |
| US9985631B2 (en) | 2011-02-18 | 2018-05-29 | Mie Fujitsu Semiconductor Limited | Digital circuits having improved transistors, and methods therefor |
| US9184750B1 (en) | 2011-02-18 | 2015-11-10 | Mie Fujitsu Semiconductor Limited | Digital circuits having improved transistors, and methods therefor |
| US9838012B2 (en) | 2011-02-18 | 2017-12-05 | Mie Fujitsu Semiconductor Limited | Digital circuits having improved transistors, and methods therefor |
| US9680470B2 (en) | 2011-02-18 | 2017-06-13 | Mie Fujitsu Semiconductor Limited | Digital circuits having improved transistors, and methods therefor |
| US9111785B2 (en) | 2011-03-03 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with improved channel stack and method for fabrication thereof |
| US8525271B2 (en) | 2011-03-03 | 2013-09-03 | Suvolta, Inc. | Semiconductor structure with improved channel stack and method for fabrication thereof |
| US9231541B2 (en) | 2011-03-24 | 2016-01-05 | Mie Fujitsu Semiconductor Limited | Analog circuits having improved transistors, and methods therefor |
| US8847684B2 (en) | 2011-03-24 | 2014-09-30 | Suvolta, Inc. | Analog circuits having improved transistors, and methods therefor |
| US8400219B2 (en) | 2011-03-24 | 2013-03-19 | Suvolta, Inc. | Analog circuits having improved transistors, and methods therefor |
| US9093469B2 (en) | 2011-03-30 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Analog transistor |
| US8748270B1 (en) | 2011-03-30 | 2014-06-10 | Suvolta, Inc. | Process for manufacturing an improved analog transistor |
| US8999861B1 (en) | 2011-05-11 | 2015-04-07 | Suvolta, Inc. | Semiconductor structure with substitutional boron and method for fabrication thereof |
| US8796048B1 (en) | 2011-05-11 | 2014-08-05 | Suvolta, Inc. | Monitoring and measurement of thin film layers |
| US9362291B1 (en) | 2011-05-13 | 2016-06-07 | Mie Fujitsu Semiconductor Limited | Integrated circuit devices and methods |
| US9966130B2 (en) | 2011-05-13 | 2018-05-08 | Mie Fujitsu Semiconductor Limited | Integrated circuit devices and methods |
| US9741428B2 (en) | 2011-05-13 | 2017-08-22 | Mie Fujitsu Semiconductor Limited | Integrated circuit devices and methods |
| US8811068B1 (en) | 2011-05-13 | 2014-08-19 | Suvolta, Inc. | Integrated circuit devices and methods |
| US8569156B1 (en) | 2011-05-16 | 2013-10-29 | Suvolta, Inc. | Reducing or eliminating pre-amorphization in transistor manufacture |
| US9793172B2 (en) | 2011-05-16 | 2017-10-17 | Mie Fujitsu Semiconductor Limited | Reducing or eliminating pre-amorphization in transistor manufacture |
| US8937005B2 (en) | 2011-05-16 | 2015-01-20 | Suvolta, Inc. | Reducing or eliminating pre-amorphization in transistor manufacture |
| US9514940B2 (en) | 2011-05-16 | 2016-12-06 | Mie Fujitsu Semiconductor Limited | Reducing or eliminating pre-amorphization in transistor manufacture |
| US9281248B1 (en) | 2011-06-06 | 2016-03-08 | Mie Fujitsu Semiconductor Limited | CMOS gate stack structures and processes |
| US9508728B2 (en) | 2011-06-06 | 2016-11-29 | Mie Fujitsu Semiconductor Limited | CMOS gate stack structures and processes |
| US8735987B1 (en) | 2011-06-06 | 2014-05-27 | Suvolta, Inc. | CMOS gate stack structures and processes |
| US8995204B2 (en) | 2011-06-23 | 2015-03-31 | Suvolta, Inc. | Circuit devices and methods having adjustable transistor body bias |
| US8653604B1 (en) | 2011-07-26 | 2014-02-18 | Suvolta, Inc. | Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer |
| US8629016B1 (en) | 2011-07-26 | 2014-01-14 | Suvolta, Inc. | Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer |
| US8916937B1 (en) | 2011-07-26 | 2014-12-23 | Suvolta, Inc. | Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer |
| US8748986B1 (en) | 2011-08-05 | 2014-06-10 | Suvolta, Inc. | Electronic device with controlled threshold voltage |
| US8963249B1 (en) | 2011-08-05 | 2015-02-24 | Suvolta, Inc. | Electronic device with controlled threshold voltage |
| US9054219B1 (en) | 2011-08-05 | 2015-06-09 | Mie Fujitsu Semiconductor Limited | Semiconductor devices having fin structures and fabrication methods thereof |
| US8614128B1 (en) | 2011-08-23 | 2013-12-24 | Suvolta, Inc. | CMOS structures and processes based on selective thinning |
| US9117746B1 (en) | 2011-08-23 | 2015-08-25 | Mie Fujitsu Semiconductor Limited | Porting a circuit design from a first semiconductor process to a second semiconductor process |
| US8645878B1 (en) | 2011-08-23 | 2014-02-04 | Suvolta, Inc. | Porting a circuit design from a first semiconductor process to a second semiconductor process |
| US9391076B1 (en) | 2011-08-23 | 2016-07-12 | Mie Fujitsu Semiconductor Limited | CMOS structures and processes based on selective thinning |
| US8806395B1 (en) | 2011-08-23 | 2014-08-12 | Suvolta, Inc. | Porting a circuit design from a first semiconductor process to a second semiconductor process |
| US8713511B1 (en) | 2011-09-16 | 2014-04-29 | Suvolta, Inc. | Tools and methods for yield-aware semiconductor manufacturing process target generation |
| US9236466B1 (en) | 2011-10-07 | 2016-01-12 | Mie Fujitsu Semiconductor Limited | Analog circuits having improved insulated gate transistors, and methods therefor |
| US9953974B2 (en) | 2011-12-09 | 2018-04-24 | Mie Fujitsu Semiconductor Limited | Tipless transistors, short-tip transistors, and methods and circuits therefor |
| US11145647B2 (en) | 2011-12-09 | 2021-10-12 | United Semiconductor Japan Co., Ltd. | Tipless transistors, short-tip transistors, and methods and circuits therefor |
| US8895327B1 (en) | 2011-12-09 | 2014-11-25 | Suvolta, Inc. | Tipless transistors, short-tip transistors, and methods and circuits therefor |
| US9583484B2 (en) | 2011-12-09 | 2017-02-28 | Mie Fujitsu Semiconductor Limited | Tipless transistors, short-tip transistors, and methods and circuits therefor |
| US10573644B2 (en) | 2011-12-09 | 2020-02-25 | Mie Fujitsu Semiconductor Limited | Tipless transistors, short-tip transistors, and methods and circuits therefor |
| US9385121B1 (en) | 2011-12-09 | 2016-07-05 | Mie Fujitsu Semiconductor Limited | Tipless transistors, short-tip transistors, and methods and circuits therefor |
| US8819603B1 (en) | 2011-12-15 | 2014-08-26 | Suvolta, Inc. | Memory circuits and methods of making and designing the same |
| US9368624B2 (en) | 2011-12-22 | 2016-06-14 | Mie Fujitsu Semiconductor Limited | Method for fabricating a transistor with reduced junction leakage current |
| US9196727B2 (en) | 2011-12-22 | 2015-11-24 | Mie Fujitsu Semiconductor Limited | High uniformity screen and epitaxial layers for CMOS devices |
| US8883600B1 (en) | 2011-12-22 | 2014-11-11 | Suvolta, Inc. | Transistor having reduced junction leakage and methods of forming thereof |
| US8599623B1 (en) | 2011-12-23 | 2013-12-03 | Suvolta, Inc. | Circuits and methods for measuring circuit elements in an integrated circuit device |
| US9297850B1 (en) | 2011-12-23 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Circuits and methods for measuring circuit elements in an integrated circuit device |
| US8970289B1 (en) | 2012-01-23 | 2015-03-03 | Suvolta, Inc. | Circuits and devices for generating bi-directional body bias voltages, and methods therefor |
| US8877619B1 (en) | 2012-01-23 | 2014-11-04 | Suvolta, Inc. | Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom |
| US9385047B2 (en) | 2012-01-31 | 2016-07-05 | Mie Fujitsu Semiconductor Limited | Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same |
| US9093550B1 (en) | 2012-01-31 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same |
| US9406567B1 (en) | 2012-02-28 | 2016-08-02 | Mie Fujitsu Semiconductor Limited | Method for fabricating multiple transistor devices on a substrate with varying threshold voltages |
| US9424385B1 (en) | 2012-03-23 | 2016-08-23 | Mie Fujitsu Semiconductor Limited | SRAM cell layout structure and devices therefrom |
| US8863064B1 (en) | 2012-03-23 | 2014-10-14 | Suvolta, Inc. | SRAM cell layout structure and devices therefrom |
| US10217838B2 (en) | 2012-06-27 | 2019-02-26 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with multiple transistors having various threshold voltages |
| US9812550B2 (en) | 2012-06-27 | 2017-11-07 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with multiple transistors having various threshold voltages |
| US9299698B2 (en) | 2012-06-27 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with multiple transistors having various threshold voltages |
| US10014387B2 (en) | 2012-06-27 | 2018-07-03 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with multiple transistors having various threshold voltages |
| US9105711B2 (en) | 2012-08-31 | 2015-08-11 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with reduced junction leakage and method of fabrication thereof |
| US8637955B1 (en) | 2012-08-31 | 2014-01-28 | Suvolta, Inc. | Semiconductor structure with reduced junction leakage and method of fabrication thereof |
| US9112057B1 (en) | 2012-09-18 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Semiconductor devices with dopant migration suppression and method of fabrication thereof |
| US9041126B2 (en) | 2012-09-21 | 2015-05-26 | Mie Fujitsu Semiconductor Limited | Deeply depleted MOS transistors having a screening layer and methods thereof |
| US9431068B2 (en) | 2012-10-31 | 2016-08-30 | Mie Fujitsu Semiconductor Limited | Dynamic random access memory (DRAM) with low variation transistor peripheral circuits |
| US8816754B1 (en) | 2012-11-02 | 2014-08-26 | Suvolta, Inc. | Body bias circuits and methods |
| US9154123B1 (en) | 2012-11-02 | 2015-10-06 | Mie Fujitsu Semiconductor Limited | Body bias circuits and methods |
| US9093997B1 (en) | 2012-11-15 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Slew based process and bias monitors and related methods |
| US9319034B2 (en) | 2012-11-15 | 2016-04-19 | Mie Fujitsu Semiconductor Limited | Slew based process and bias monitors and related methods |
| US9070477B1 (en) | 2012-12-12 | 2015-06-30 | Mie Fujitsu Semiconductor Limited | Bit interleaved low voltage static random access memory (SRAM) and related methods |
| US9112484B1 (en) | 2012-12-20 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit process and bias monitors and related methods |
| US9276561B2 (en) | 2012-12-20 | 2016-03-01 | Mie Fujitsu Semiconductor Limited | Integrated circuit process and bias monitors and related methods |
| US9268885B1 (en) | 2013-02-28 | 2016-02-23 | Mie Fujitsu Semiconductor Limited | Integrated circuit device methods and models with predicted device metric variations |
| US8994415B1 (en) | 2013-03-01 | 2015-03-31 | Suvolta, Inc. | Multiple VDD clock buffer |
| US8988153B1 (en) | 2013-03-09 | 2015-03-24 | Suvolta, Inc. | Ring oscillator with NMOS or PMOS variation insensitivity |
| US9299801B1 (en) | 2013-03-14 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Method for fabricating a transistor device with a tuned dopant profile |
| US9893148B2 (en) | 2013-03-14 | 2018-02-13 | Mie Fujitsu Semiconductor Limited | Method for fabricating a transistor device with a tuned dopant profile |
| US9577041B2 (en) | 2013-03-14 | 2017-02-21 | Mie Fujitsu Semiconductor Limited | Method for fabricating a transistor device with a tuned dopant profile |
| US9112495B1 (en) | 2013-03-15 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit device body bias circuits and methods |
| US9449967B1 (en) | 2013-03-15 | 2016-09-20 | Fujitsu Semiconductor Limited | Transistor array structure |
| US9548086B2 (en) | 2013-03-15 | 2017-01-17 | Mie Fujitsu Semiconductor Limited | Integrated circuit device body bias circuits and methods |
| US9853019B2 (en) | 2013-03-15 | 2017-12-26 | Mie Fujitsu Semiconductor Limited | Integrated circuit device body bias circuits and methods |
| US9991300B2 (en) | 2013-05-24 | 2018-06-05 | Mie Fujitsu Semiconductor Limited | Buried channel deeply depleted channel transistor |
| US9478571B1 (en) | 2013-05-24 | 2016-10-25 | Mie Fujitsu Semiconductor Limited | Buried channel deeply depleted channel transistor |
| US9786703B2 (en) | 2013-05-24 | 2017-10-10 | Mie Fujitsu Semiconductor Limited | Buried channel deeply depleted channel transistor |
| US8976575B1 (en) | 2013-08-29 | 2015-03-10 | Suvolta, Inc. | SRAM performance monitor |
| US9710006B2 (en) | 2014-07-25 | 2017-07-18 | Mie Fujitsu Semiconductor Limited | Power up body bias circuits and methods |
| US9319013B2 (en) | 2014-08-19 | 2016-04-19 | Mie Fujitsu Semiconductor Limited | Operational amplifier input offset correction with transistor threshold voltage adjustment |
| TWI800105B (en) * | 2020-11-23 | 2023-04-21 | 加拿大商萬國半導體國際有限合夥公司 | Gas dopant doped deep trench super junction high voltage mosfet |
| US20250148983A1 (en) * | 2023-11-06 | 2025-05-08 | Canon Kabushiki Kaisha | Light emitting device, display device, photoelectric conversion device, electronic apparatus, illumination device, and moving body |
Also Published As
| Publication number | Publication date |
|---|---|
| US11316014B2 (en) | 2022-04-26 |
| US11121222B2 (en) | 2021-09-14 |
| US8421195B2 (en) | 2013-04-16 |
| US20220246725A1 (en) | 2022-08-04 |
| US20130221488A1 (en) | 2013-08-29 |
| US20070158790A1 (en) | 2007-07-12 |
| US20170243876A1 (en) | 2017-08-24 |
| US20160172447A1 (en) | 2016-06-16 |
| US9190502B2 (en) | 2015-11-17 |
| US20200127095A1 (en) | 2020-04-23 |
| US10734481B2 (en) | 2020-08-04 |
| US9647070B2 (en) | 2017-05-09 |
| US10510842B2 (en) | 2019-12-17 |
| US20210359086A1 (en) | 2021-11-18 |
| US20150035004A1 (en) | 2015-02-05 |
| US20210005716A1 (en) | 2021-01-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11316014B2 (en) | Semiconductor devices with graded dopant regions | |
| US8106481B2 (en) | Semiconductor devices with graded dopant regions | |
| US8563986B2 (en) | Power semiconductor devices having selectively doped JFET regions and related methods of forming such devices | |
| US6713794B2 (en) | Lateral semiconductor device | |
| US5444272A (en) | Three-terminal thyristor with single MOS-gate controlled characteristics | |
| US20060145284A1 (en) | Method for manufacturing semiconductor device | |
| JP3469967B2 (en) | Power device integrated structure | |
| US5894139A (en) | Semiconductor device structure for insulated gate bipolar transistor | |
| US5498884A (en) | MOS-controlled thyristor with current saturation characteristics | |
| US5608238A (en) | Semiconductor device having two insulated gates and capable of thyristor function and method for operating the same | |
| GB2295052A (en) | Integrated circuits | |
| US7199403B2 (en) | Semiconductor arrangement having a MOSFET structure and a zener device | |
| US5723349A (en) | Process for manufacturing a high conductivity insulated gate bipolar transistor integrater structure | |
| Ueda et al. | A new vertical double diffused MOSFET—the self-aligned terraced-gate MOSFET | |
| US7211846B2 (en) | Transistor having compensation zones enabling a low on-resistance and a high reverse voltage | |
| US6881976B1 (en) | Heterojunction BiCMOS semiconductor | |
| US7808039B2 (en) | SOI transistor with merged lateral bipolar transistor | |
| JPH11195784A (en) | Insulated gate semiconductor device | |
| JP2594296B2 (en) | Insulated gate field effect transistor | |
| JP2629434B2 (en) | Semiconductor device with anode short conductivity modulation type MISFET | |
| JPH03145163A (en) | thyristor | |
| Al-Sa'di et al. | RF NMOS switch with dedicated sinks for reduced leakage current | |
| US20020179995A1 (en) | Semiconductor component on an insulation layer | |
| JPH022157A (en) | semiconductor element | |
| JPS62224066A (en) | Semiconductor integrated circuit device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GREENTHREAD, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAO, G.R. MOHAN;REEL/FRAME:015998/0471 Effective date: 20041026 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: GREENTHREAD, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAO, G.R. MOHAN;REEL/FRAME:035630/0391 Effective date: 20150427 |